
 

 

 

 

 

 

 

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 



SINR Degradation in MIMO-OFDM Systems with
Channel Estimation Errors and Partial Phase Noise Compensation

Roberto Corvaja, Member, IEEE, and Ana García Armada, Senior Member, IEEE

Abstract—The phase noise effect in multiple-input-multiple-
output systems employing orthogonal frequency division multi-
plexing is considered in a realistic scenario where the estimated
channel matrix is affected by an error. The analytical SINR
degradation due to phase noise and channel estimation is
obtained for linear receivers (ZF and MMSE).

Index Terms—MIMO-OFDM systems, phase noise, channel
estimation, inter-channel interference, linear receivers.

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiplexing
(OFDM) is becoming the most frequently used

technique for wireless systems, such as Long Term Evolution
(LTE), and enhanced standards are contemplating its
combination with multiple input-multiple output (MIMO).
These systems suffer from inter-channel interference (ICI)
introduced by phase noise and channel estimation errors. In
most of the works these impairments are treated separately
[1]–[4]: with ICI reduction schemes assuming perfect channel
knowledge or analyzing the channel estimation error without
phase noise. In [1] a scheme is proposed to remove the
common phase error (CPE) and in [3] an iterative technique
is presented to cancel successively the ICI terms, both
assuming ideal channel estimation. In [2] the ICI power is
obtained for zero-forcing (ZF) with ideal channel estimation
by a f rst-order approximation of the phase noise term.
The channel estimation error is analyzed in [4] for ZF, in
f at fading, without phase noise. In [5]–[7] the effects are
considered jointly for SISO-OFDM. The combination of
MIMO with OFDM introduces the spatial dimension that
causes additional interference. Depending on the chosen
receiver scheme, it will have a different impact on the ICI.
This is more accentuated if the channel is spatially correlated,
as we will show. The degradation of phase noise and channel
estimation for MIMO-OFDM is analyzed in [8] where the
signal to interference plus noise ratio (SINR) is derived
before the application of the receiver. However, phase noise
and channel estimation errors are not separable and have
different effects depending on the type of receiver. Therefore,
it is important to consider them jointly and to characterize
the degradation after the equalization of the receiver. Here we
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Fig. 1. Scheme of the MIMO-OFDM transmission system.

derive an analytical expression of the SINR degradation after
two types of linear receivers, ZF and minimum mean squared
error (MMSE). Moreover, we evaluate this degradation in
the general case of spatially correlated multipath channel and
without any approximation of the phase noise term. Some
preliminary results were presented in [9], resorting mainly
to simulations. Here we present in detail the analytical
derivation of the SINR degradation. In [10] part of these
analytical results was used to discuss the system parameters
(number of antennas, multipath and phase noise conditions,
and estimation errors) only for a spatially white channel.

II. MIMO-OFDM SYSTEM
The spatial multiplexing MIMO-OFDM system [11] is

shown in Fig. 1, where MT independent data streams are
OFDM modulated over N sub-carriers and sent to MT trans-
mit antennas. The receiver has MR antennas. The vector of
transmitted symbols is x =

[
xT
0 , . . . ,x

T
N−1

]T , where each com-
ponent xn = [xn,1, . . . ,xn,MT ]

T groups the symbols transmitted
on the nth sub-carrier on all the antennas. For each antenna
pair (i, j), i = 1, . . . ,MR, j = 1, . . . ,MT we have a multipath
MR×MT impulse response hm[i, j], m= 0, . . . ,NCh, with length
NCh shorter than the cyclic pref x. The elements of hm are
randomly distributed with powers determined according to the
power delay prof le. The spatial correlation is characterized
by E[HnHH

n ] = RR, E[HH
n Hn] = RT where (⋅)H denotes the

conjugate transpose. In a separable channel model, RT and
RR correspond to the antenna correlations at transmitter and
receiver, respectively. The phase noise θ(t) at the receiver,
sampled at kT , θk = θ(kT ), coming mainly from the down-
conversion by high-frequency oscillators, is assumed to be
the same for all the antennas. The received signal after the
discrete Fourier transform (DFT), y =

[
yT
0 , . . . ,y

T
N−1

]T , with
yn = [yn,1, . . . ,yn,MR ]

T grouping all the signals on sub-carrier
n, is

y = QHx+w . (1)
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H= diag [H0,H1, . . . ,HN−1] is the MRN×MT N block diagonal
channel frequency response, where each block is the nth sub-
carrier component of the channel DFT,

Hn =
NCh−1
∑

m=0
hme− j2πmn

N . (2)

The phase noise matrix Q in (1) is

Q =

⎡
⎢⎢⎢⎣

Θ0 ΘN−1 ⋅ ⋅ ⋅ Θ1
Θ1 Θ0 ⋅ ⋅ ⋅ Θ2
...

...
. . .

...
ΘN−1 ΘN−2 ⋅ ⋅ ⋅ Θ0

⎤
⎥⎥⎥⎦⊗ IMR , (3)

where⊗ is the Kronecker product and Θn is the nth component
of the phase noise vector DFT

Θn =
N−1
∑
k=0

e jθk e− j2π kn
N . (4)

The value E[∣Θn∣2], required for the ICI power, can be obtained
by the phase noise spectral characteristics: E

[∣Θn∣2
]
is the

power spectral density (PSD) of the sampled phase noise
process P (s)

θ ( f ), evaluated at the nth sub-carrier frequency,
nΔ f , where Δ f = 1/(NT ) is the sub-carrier spacing. P (s)

θ ( f )
is related to the continuous-time phase noise PSD Pθ( f ) by
periodic repetition

E
[∣Θn∣2

]
= P (s)

θ (nΔ f ) =
+∞

∑
k=0

Pθ (nΔ f + kNΔ f ) . (5)

The phase noise PSD in PLL-based frequency synthesizers
can be expressed as a weighted sum of components Pθ( f ) =

a0 + a1
(

f1
f

)
+ a2

(
f2
f 2

)
+ a3

(
f3
f 3

)
, where the characteristic

frequencies of each component fi and the relative weights ai

strongly depend on the actual technology and device [12]. In
the case of free running oscillators, they can be accurately
characterized by a Wiener phase noise, which corresponds
only to the 1/ f 2 PSD component. In this case the amount of
phase noise is usually expressed by the 3-dB carrier bandwidth
B, normalized to the sub-carrier spacing Bθ = BNT . An
alternative approach often employed is the approximation of
the exponential e jθk by its f rst order Taylor series expansion,
1+ jθk, which holds in the case of small phase noise [2].
Finally w in (1) is the AWGN contribution, where the phase

noise is neglected, due to circular symmetry. We can then
introduce an overall equivalent channel matrix Heq = QH,
giving y = Heqx+w. We def ne the reference signal to noise
ratio (SNR) as the ratio between the useful component and
the noise power, SNR = E[(Heqx)H (Heqx)]/E[wHw].

III. RECEIVER SCHEMES

We will analyze linear receivers (ZF and MMSE), where the
recovered signal is obtained by z = Gy. With ZF the matrix
GZF , which removes the spatial interference at the expense
of enhancing the additive noise, is GZF = H̃†

eq, where (⋅)†
denotes the Moore-Penrose pseudo-inverse and H̃eq = H̃Q̃ is
the estimated overall channel matrix. With MMSE the matrix
GMMSE , balancing the spatial interference with the noise, is

GMMSE =

(
H̃H

eqH̃eq +
1

SNR
INMT

)−1
H̃H

eq . (6)

For both receivers we assume that f rst the CPE is compensated
[1] by multiplication of the received signal by the matrix
Θ̃−1
0 INMR , in other words Q is approximated by its diagonal

elements Q̃ = Θ̃0 INMR and H̃eq = Θ̃0 H̃. The CPE can be
estimated by means of Np pilot sub-carriers, inserted in the
OFDM symbol at positions pi, i = 1, . . . ,Np on the antenna
streams Mj , j = 1, . . . ,Mp. It is estimated as the mean phase
displacement with respect to the expected symbol [13], by an
average

Θ̃0 =
1

Mp

1
Np

Np

∑
i=1

Mp

∑
j=1

ypi,Mj

xpi,Mj ∣ypi,Mj ∣
, (7)

where ypi,Mj denotes the received value at the positions where
the pilot symbols are placed, and xpi,Mj is the corresponding
pilot symbol value. The effect of the estimation process on
Θ0 can be expressed by Θ̃0 = Θ0+ εCPE , where εCPE is the
error in the CPE estimate, with zero mean and variance σ2CPE .
The residual error left by CPE estimation will depend on the
number of pilots and phase noise characteristics. For example,
with the CPE estimation technique reported in [16], 4 pilots
out of 64 are enough to obtain the same performance as with-
out phase noise when Wiener phase noise has Bθ < 5 ⋅ 10−2
and SNR = 30dB. Channel estimation in MIMO-OFDM uses
typically pilot symbols scattered in time and frequency, and
has been extensively analyzed (see for example [14] and
references therein). Here, we include the f nal estimation error
on H by an additive term Z, and the actual channel matrix
is H = H̃ + Z where Z is independent of H, with zero-
mean independent Gaussian elements z[i, j] whose variance
σ2est is equal to the mean-squared error (MSE) obtained by
the channel estimator. The accuracy of the channel estimate
obtained by Np pilots inserted in the OFDM signal depends
on the position of the pilots. The best achievable MSE for
each SISO-OFDM channel is [17] MSE = (σ2nNp)/Ep where
Ep is the pilot energy and σ2n the AWGN variance. Note that
CPE and channel estimation are usually performed separately;
moreover, from (7) the effect of a channel estimation error on
H has a reduced effect on the CPE estimation, so that we
consider Z and εCPE independent.

IV. SINR DEGRADATION

We def ne the SINR after the receiver as the ratio between
the useful signal power σ2x and the variance of the overall
disturbance caused by noise and spatial interference σ20, that
is, SINR = σ2x/σ20. In ideal conditions, that is, without phase
noise or estimation error, the SINR for the the nth signalling
vector at the output of the ZF receiver is [15]

SINRn =
SNR/MT[
HH

eqH
]−1
n,n

(8)

while for the MMSE receiver, on the nth signalling vector, it
has the form

SINRn =
1[

(SNR/MT )HH
eqH+ INMT

]−1
n,n

−1 (9)

where [⋅]n,n indicates the (n,n)th entry of a matrix. In the
following evaluations the average SINR over all the signalling
vectors is considered, SINR= 1

MT
∑MT

n=1 SINRn.
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The joint effects of phase noise and estimation error will be
accounted for by the SINR degradation, def ned as the increase
to the SINR giving the same error probability as in the ideal
case of perfect channel knowledge and no phase noise. In the
non-ideal case we should reduce the disturbance power by the
overall interference power σ2ICI to get the same performance,
where

σ2ICI =
1
N

N−1
∑
n=0

σ2vn
(10)

with σ2vn
denoting the ICI variance on the nth sub-carrier,

averaged over the MT transmit antennas, obtained in the next
section. Then the degradation D is the ratio between the new
SINR, with disturbance power reduced by the ICI variance
σ2ICI , and the original SINR, in dB

D = 10 log10
σ2x/

(
σ20−σ2ICI

)
σ2x/σ20

= 10 log10

(
σ20

σ20−σ2ICI

)
. (11)

Clearly, from (11), the degradation goes to inf nite if σ2ICI gets
close to σ20. This is a f oor effect due to the dominance of phase
noise and channel imperfections at high SNR.

V. DERIVATION OF THE ICI VARIANCE
The overall interference term v at the decision point, which

includes ICI and imperfect CPE estimation after equalization,
is

v = G
[(

Q− Θ̃0IN
)⊗ IMR

]
Hx . (12)

If we consider the component on the nth sub-carrier, we have

vn = Gn

N−1
∑

i=0 i∕=n

Θn−i Hixi + εCPEGnHixi (13)

where Gn is the nth diagonal block of G. The ICI variance on
the nth sub-carrier, averaged over the transmit antennas MT ,
is then

σ2vn
=

σ2x
MT

N−1
∑

i=0 i∕=n

E
[∣Θn−i∣2

]
Tr
{

E
[
HH

i GH
n GnHi

]}

+ σ2x
σ2CPE

MT
Tr
{

E
[
HH

n GH
n GnHn

]}
(14)

where the symbols xi have been assumed independent with
E[xixH

i ] = σ2xIMT .

A. ZF receiver

In the expression of the ICI variance (14), for the ZF
receiver we have

Tr
{

E
[
HH

i GH
n GnHi

]}
= Tr

{
E

[
HH

i

(
H†

n

)H
H†

nHi

]}

+Tr
{

E

[
ZH

i

(
H†

n

)H
H†

nZi

]}
. (15)

Because of the independence of Z and H and E
[
ZiZH

i

]
=

σ2estI, we have

Tr
{

E

[
ZH

i

(
H†

n

)H
H†

nZi

]}

= σ2estTr
{

E
[(

HH
n Hn

)−1]}
= σ2est

Tr
[
R−1

T

]
MR −MT

, (16)

for MR > MT , since the above term represents the expected
value of the trace of an inverse Wishart matrix [18]. To
evaluate the f rst right-hand-side term of (15), the joint channel
frequency response statistics on sub-carriers i and n are
required. The channel frequency response on different sub-
carriers can be expressed by a combination of a totally corre-
lated component and an independent component, weighted by
the sub-carrier correlation ρ, namely Hi = ρHn +

√
1−ρHI ,

where HI is independent of Hn, and the correlation is the
Fourier transform of the power delay prof le (PDP) evaluated
at (n− i)Δ f

ρ=E [Hi( j,k)Hn( j,k)] =
NcH

∑
m=1

E[∣hm( j,k)∣2e j2πm(n−i)Δ f . (17)

For example, for an exponential PDP, ρ = 1
1+ j2π(n−i)Δ f Trms

,
where Trms is the channel r.m.s. delay spread. Here we assume
that the PDP does not depend on the transmit-receive antenna
pair, as in [19]. The case of different PDP for different
antenna pairs is detailed in the Appendix. Considering the
f rst (correlated) component, ρHn, we have

Tr
{

E
[
(H†

n Hn)
HH†

nHn

]}
= MT . (18)

Considering the second component,
√
1−∣ρ∣2HI , by applying

the trace property Tr[AB] = Tr[BA] and the independence
between Hn and HI , we have

Tr
{

E
[
HH

I (H†
n)

H H†
nHI

]}
= Tr

{
E

[(
HH

n Hn

)†]
E
[
HIHH

I

]}
= MR . (19)

For the particular case of Wiener phase noise and spatially
incorrelated channel with exponential PDP, the variance of the
overall phase noise interference after ZF can be summarized
in

σ2vn
= σ2xσ

2
CPE +

σ2x
MT

N−1
∑
i=0
i∕=n

+∞

∑
k=0

2πBθ

1+
(
(n−i)/N+k

Bθ

)2
×

[
σ2estMT

MR −MT
+

MT

1+4π2(n− i)2(Δ f Trms)2

+
4π2(n− i)2(Δ f Trms)

2

1+4π2(n− i)2(Δ f Trms)2
MT MR

]
(20)

B. MMSE receiver

Also in the case of the MMSE receiver, in the trace of
the inner matrix of (14), we can separate the effects of the
estimation error and of the sub-carrier correlation,

Tr
{

E
[
HH

i GH
n GnHi

]}
= σ2est E

[
Tr
{

GH
n Gn

}]
+Tr

⎧⎨
⎩E

⎡
⎣HH

i Hn

{(
HH

n Hn +
1

SNR
IMT

)−1}H

×
(

HH
n Hn +

1
SNR

IMT

)−1
HH

n Hi

]}
. (21)

Again we can express Hi as Hi = ρHn +
√
1−ρHI , where

the latter is independent of Hn. The difference between the
MMSE and ZF is relevant in the low SNR region, since for
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Fig. 2. Power of the ICI contribution for the ZF receiver with independent
fading and ideal channel estimation.

high SNR GMMSE converges to GZF . Then, for low SNR, Gn

can be approximated as Gn = SNRHH
n , and

E
[
Tr
{

GH
n Gn

}]
= SNR2E

[
Tr
{

HH
n Hn

}]
= SNR2MRTr [RT ] .

(22)
In fact the expectation in (22) represents the mean value of the
trace of a Wishart matrix [18]. For the correlated component,
the expected trace of the square of a Wishart matrix [18] gives

Tr
{

E
[
Hn HH

n HnHH
n

]}
= MT MR

[
Tr
(
R2

R

)
+

1
MT

Tr2 (RR)

]
.

(23)
In the independent fading term, we have the expected
trace of the product of independent matrices [18] with
Tr
{

E
[
Hn HH

n HIHH
I

]}
= MTTr

[
R2

R

]
.

With MMSE at low SNR, the overall phase noise interfer-
ence variance for the particular case of Wiener phase noise
and spatially incorrelated channel with exponential PDP, is

σ2vn
= σ2xσ

2
CPE +

σ2x
MT

N−1
∑
i=0
i∕=n

+∞

∑
k=0

2πBθ

1+
(
(n−i)/N+k

Bθ

)2
×

[
σ2estMT

MR −MT
+

SNR2MT MR(MT +MR)

1+ 4π2(n− i)2(Δ f Trms)2

+
4π2(n− i)2(Δ f Trms)

2

1+ 4π2(n− i)2(Δ f Trms)2
SNR2M2

T MR

]
.(24)

VI. PERFORMANCE RESULTS

To validate the above expressions, we show some results
with N = 64 sub-carriers and, without loss of generality, the
same variance of the estimation error on the channel and on the
CPE, σ2est = σ2CPE . First, we present the case of independent
fading among the sub-carriers and Wiener phase noise, to
compare our analytic approach with simulations and with [2].
The curves of the ICI power vs. Bθ of Fig. 2 show a very
good matching, although the f rst order approximation of [2]
is slightly optimistic. Note that the assumption of independent
fading in sub-carriers is an idealization analyzed here just to
compare with [2]. In practical systems, pilot-based channel
estimation would not work in such circumstances so that the
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number of sub-carriers is always properly designed to avoid
this condition. As examples of more realistic channel models,
we use a spatially uncorrelated channel with exponential PDP
with Trms = 0.1, and on the other hand also a fully realistic
spatially correlated channel with the spatial correlation and
the PDP specif ed by 3GPP for the LTE evaluation [19].
Fig. 3 shows the SINR degradation of ZF for SNR= 5 dB
and estimation error MSE=−30dB, with a good f t between
the simulations and the theoretical analysis and again [2] is
slightly optimistic. To illustrate the performance of MMSE,
a more general phase noise model is adopted [12], with
an example of PSD with 1/ f 3 decay up to f3, then 1/ f 2

up to f2 = 10 f3, followed by a f xed white noise level
of −140 dBc/Hz for f > f2. The value in dBc/Hz of the
phase noise PSD at 0.1Δ f is considered as a parameter, thus
setting f3. Fig. 4 compares the theoretical SINR degradation
with the simulation values, again with MSE= −30 dB, for
reference SNR= 5 dB and 10 dB. We note a very good match
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between the theoretical and the simulation results, especially
for low SNR, while at higher SNR values the theoretical result
becomes an upper-bound.

VII. CONCLUSIONS

We derived the expression of the SINR degradation in linear
receivers for MIMO-OFDM, considering both the channel
estimation error and the phase noise, with partial CPE com-
pensation. The accuracy of the expressions has been compared
to previously published works and verif ed with simulation
results.

APPENDIX

CHANNELS WITH DIFFERENT POWER DELAY PROFILES
In the case of different PDP describing the second-order

distribution of the channel paths for different antenna pairs,
we can use a decomposition similar to Hi = ρHn+

√
1−ρHI ,

where instead of a scalar ρ for all the matrix elements, we
have different correlations, so that

Hi = ρρ∘Hn+ ρC ∘HI (25)

where ∘ represents the Hadamard product, ρC(i, j) =√
1−∣ρρ(i, j)∣ and the elements of the matrix ρρ are given

by (17). In this case, when considering the expected trace
of products of the kind E

[
ρ∘Hn ((ρρ∘Hn)

H
]
, such as for

example in (19) or (22) (similarly for ρC ∘HI), these can be
seen as the expected value of the squared Frobenius norm of a
Hadamard matrix product. Thus, we can derive an upper bound
to the variance, by the property [20], ∣∣A∘A∣ ∣2 ≤ ∣∣A∣ ∣2 ∣∣B∣ ∣2.
In practice the results (20) and (24), with ∣∣ρρ∣ ∣22 and ∣∣ρρC∣ ∣22
instead of ∣ρ∣2 and (1−∣ρ∣2), would represent an upper bound
to the variance of the overall interference.
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