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Abstract

I introduce endogenous human-capital accumulation into an infinite-
horizon version of Chari & Hopenhayn’s (1991) vintage-human-capital
model. Returns to skill and tenure premia are highest in young vin-
tages, where skill is scarcest and agents accumulate human capital
fastest. As the vintage ages, the skill premium decreases and van-
ishes entirely upon vintage death. Workers run through cycles of
human-capital accumulation: their wages rise as they accumulate skill,
undergo downward pressure as the technology ages and finally drop
sharply when the worker switches to a new technology. The results are
in line with German linked employer-employee data: tenure premia
are higher in young establishments, as well as in fast-growing indus-
tries, occupations and establishments. A calibration exercise suggests
that human-capital accumulation is the most important determinant
of workers’ wage profiles, whereas changes to the price of skill and
vintage productivity gains play a smaller quantitative role.
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1 Introduction

Returns to skill vary substantially across industries, occupations and firms.
This paper argues that this is what we should expect when skill is specific
to technologies. The basic mechanism I propose is as follows. New technolo-
gies, in which skill is scarce, offer high returns to skill in order to provide
incentives for rapid skill accumulation. In old technologies, however, there
is an abundance of skilled workers, but firms in these technologies face prob-
lems filling vacancies at the entry level. Workers know that the technology
is at risk of becoming obsolete and are thus reluctant to enter. In order to
lure workers into these old technologies, firms have to compensate workers
with higher entry wages.

To develop these ideas, I build a vintage-human-capital model with en-
dogenous human-capital accumulation. As in Chari & Hopenhayn (1991),
human capital is tied to a technology and is lost when the technology is
phased out. In each vintage, different levels of human capital are used in
production. Unlike in Chari & Hopenhayn’s (1991) two-period overlapping-
generations model, however, human-capital accumulation is endogenous and
the possibly infinite lives of individuals allow for rich patterns in tenure-wage
profiles (shown in figure 1).

In the model, workers run through cycles of skill formation. They enter
into a vintage, accumulate skill there and finally re-locate to a new vintage
once the technology becomes obsolete. If different skill levels are comple-
mentary, then workers enter all active vintages. This is true even for the
oldest technologies because firms need to fill vacancies of low-skill workers.
Since workers are ex-ante homogeneous, all technologies have to be equally
attractive for workers at entry. This requires old technologies to pay higher
entry wages in order to make up for the shorter duration of the career. This
is apparent in the shortest earnings profiles in figure 1, which pertain to
workers entering old technologies.

Skill accumulation is fastest in the newest vintages, in which skilled
labor is scarce. For these workers earnings growth is fastest, as we see in the
long profiles in figure 1. Entrants into frontier technologies have the lowest
entry wages. They can reap the benefits from their skills over a long time,
which makes these careers especially attractive. In equilibrium, entry into
young technologies increases until the return of the career is equal to that of
old technologies. Since skill is abundant in old technologies, human-capital
accumulation is slowest and earnings profiles are flattest in old vintages.

We also see in figure 1 that many workers experience wage losses towards
the end of their career. These are driven by obsolescence, the fact that the
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Figure 1: Tenure-earnings profiles over career

relative price of skill falls as the vintage ages. Upon re-locating to new
technologies, workers again experience sharp drops in wages as they lose
their vintage-specific human capital.

I find evidence supporting the model in a German matched employer-
employee dataset when interpreting vintage age (in the model) as establish-
ment age (in the data): young establishments have higher tenure premia,
but pay lower average wages than old establishments. The model is also
successful in predicting correlations of growth measures and the earnings
structure: fast-growing industries, occupations and establishments display
higher tenure premia than slow-growing ones, but pay wages on average.1

Finally, I calibrate the model to the cross-sectional tenure-earnings struc-
ture and the employment distribution across establishments. I find that
there is complementarity between skills, but that this complementarity is
weak. Workers’ earnings growth is estimated to be due mainly to human-
capital accumulation, whereas the relative scarcity of the skill and produc-
tivity gains in their technology play quantitatively minor roles. The cal-
ibration results indicate that an acceleration in the pace of technological
change – as has been measured over recent decades by Cummins & Violante

1Only occupations are an exception to the latter statement: fast-growing occupations
pay higher wages than slow-growing ones on average.
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(2002) based on work by Gordon (1990) – leads to an intensification in skill
accumulation and a rise in the premium on skill.

In relation to the previous literature, the model presented here is clos-
est to Chari & Hopenhayn (1991), but differentiates itself by endogenous
human-capital accumulation, workers’ infinite life time and the resulting de-
tailed predictions on tenure-wage profiles. In terms of predictions, a key
difference is that workers in my setting experience wage losses both dur-
ing their tenure in a vintage and upon switching between vintages, whereas
workers always see their wage increase over time in their setting. Further-
more, since human-capital accumulation is exogenous in Chari & Hopen-
hayn’s (1991), their setting cannot tell apart how much of wage growth is
due to skill accumulation and which part is due to the scarcity of skill.

The paper is also related to the wider literature on vintage capital (see
Boucekkine, de la Croix & Licandro, 2006, for an overview). Many issues,
such as the incentives for the optimal scrapping time of a technology and
the possibility of replacement echoes, are common to vintage capital and
vintage human capital.

Similar to vintage models are ladder models of technology, in which all
technologies are in principle available at all times but firms choose to push
the frontier only little by little because they face high switching cost when
jumping to technologies that are much more advanced than the one they
are currently using. Parente (1994) studies a ladder model where agents
face a trade-off between experience accumulation (following an exogenous
learning curve) and obsolescence. In Violante’s (2002) model, workers and
machines of different vintages are matched in a frictional process. Again,
workers accumulate skill according to a learning curve and experience skill
losses that are increasing in the technological distance between machines.
These human-capital losses induce wage losses upon job switches as in my
model, but there is no obsolescence of skill: wages always increase during a
worker’s tenure in a vintage. Furthermore, these models do not predict that
the premium on experience is higher in young technologies.

Nelson & Phelps (1966) have a view of human capital that is entirely
different from, if not opposite to, vintage human capital. These authors
posit that human capital facilitates the transmission and adoption of new
ideas. Under this hypothesis, a high stock of human capital gives rise to
frequent adoption of new technologies. Vintage-human-capital models take
the opposite view: all skills are specific to a technology, so the adoption
of new technologies destroys human capital. The Nelson-Phelps view sug-
gests that an economy which adopts new technologies possesses high. The
vintage-human-capital model in this paper, however, tells us that fast tech-
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nological growth is disruptive in the sense that workers experience abrupt
wage losses and an ensuing spell of steep wage growth when they re-locate
to new vintages.2

Some theoretical analyses of the dynamics of organizations are also re-
lated to my model. Prescott & Boyd (1987) develop an overlapping-generations
model of coalitions, where experienced and inexperienced workers face a
trade-off between production of output and training of young workers. An
important difference between their model and mine is that no reallocation of
workers from obsolete technologies to new ones occurs in their model. In a
more recent contribution, Garicano & Rossi-Hansberg (2008) model explic-
itly how tasks are shared within an organization and how organizations grow
more complex over time. In my framework, however, technologies maintain
the same structure over time; it is only the scarcity of different skills that
changes.

An entirely different class of models that is able to generate increasing
earnings profiles are search-and-matching models. Burdett & Coles (2003)
show that firms in a frictional labor market optimally offer increasing wage
schedules in order to prevent costly turnover. The predictions of the model
presented here are different, however: in Burdett & Coles (2003) changes in
employer are crucial for the determination of wages, whereas changes in the
technology used by a worker are what matters in my setting.

The remainder of the paper is organized as follows: Section 2 presents the
model, characterizes the competitive equilibrium and shows equivalence to a
planner’s problem. Section 3 presents quantitative results from a calibrated
version of the model. Section 4 concludes and discusses potential further
applications of the framework.

2 Model

2.1 Technology

Time is continuous. In every instant s, a new production technology (or
vintage) arrives that is available to the agents in the economy for all t ≥ s.
I will either refer to the vintages by their birth date s or – especially in
a stationary setting – identify them by their age τ ≡ t − s. All vintages
produce the same good y.

2Ljungqvist & Sargent (1998) use an ad-hoc specification of the idea that fast techno-
logical progress destroys human capital to argue that European labor-market institutions
kept unemployment low in tranquil times but fail to do so in times of technological tur-
bulence.
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The production technology s uses labor inputs that are specific to this
technology. The inputs are arranged on a hierarchy and indexed by 0 ≤ h ≤
1. The inputs on this ladder can be thought of as tasks that are increasing
in difficulty; tasks with a higher index require more vintage-specific human
capital. Section 2.2 will specify exactly how vintage-specific human capital
is accumulated by workers.

The production function is supposed to capture the following notions: (i)
newer vintages are more productive holding input ratios equal and (ii) the
production function is complementary in its inputs. Specifically, I impose

Y (t, s) = eγsỸ
(
n(t, s, ·)

)
,

where n(t, s, h) is the density function of workers at time t in vintage s with
human capital h and Ỹ is a functional on the space of C1 functions on [0, 1]
with the following properties:

• Constant returns to scale (CRS): Ỹ (λn) = λỸ (n).

• The Frechet derivative3 w̃(n) exists everywhere, is continuous in n and
w̃(n) > 0 for all h, n.

• Weak concavity: Ỹ
(
λn + (1 − λ)n′

)
≥ λỸ (n) + (1 − λ)Ỹ (n′) for all

0 ≤ λ ≤ 1.

The first two properties imply that in a competitive setting, total wage
payments exhaust production. An example for a functional that satisfies
the above three conditions is the constant-elasticity-of-substitution (CES)
aggregator

ỸCES [n(t, s, ·)] =

[∫ 1

0
f(h)n(t, s, h)ρdh,

]1/ρ

, (1)

where ρ ≤ 1. The function f(·) ≥ 0 captures returns to human capital:
I assume that returns to skill accumulation are non-negative (f ′ ≥ 0) and
weakly decreasing (f ′′ ≤ 0). Total output in the economy at time t is given
by Y (t) =

∫ t
−∞ Y (t, s)ds.

At times, I will additionally invoke the following Inada condition:

Definition 2.1. (Inada condition) The production function is said to fulfill
an Inada condition if n(h)→ 0 implies w̃(h)→∞ for all h ∈ [0, 1] and there

3Recall that the Frechet derivative is the generalization of the gradient vector from
Rn to infinite-dimensional spaces. In this model, it is a wage function w̃ : [0, 1] → R+

which takes h as its argument. In the case of the CES aggregator in (1), it is given by the
familiar f(h)Ỹ 1−ρn(t, s, h)ρ−1.
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is a unique element n∗ on the interior of the unit simplex ∆ = {n :
∫
h n = 1}

that maximizes output at ȳ ≡ maxn∈∆ Ỹ (n).

Note that n∗ being the output-maximizing element of the unit simplex
implies that marginal factor returns are equalized and that thus the wage
schedule is constant, i.e. w̃(n∗) = ȳ. The CES aggregator in (1) above fulfills
the Inada condition if and only if ρ < 1.

Competitive firms take wages for all labor inputs as given in each in-
stant. Since the production technology is CRS, profits are zero for any t
and s in equilibrium. Workers are paid their marginal product, so wages are
w(t, s, ·) = eγsw̃

(
n(t, s·)

)
.

2.2 Workers

There is a continuum of agents of mass one. Agents die at a constant rate δ.
New agents are born at the same rate δ, keeping total population constant.

Agents have linear utility and discount the future at rate β, where β +
δ > γ. Each agent chooses a work life {s(t), h(t)}0≤t<∞, which consists
of a function s(t) specifying the vintage the agent works in for all t and
a function h(t) specifying the task he performs at t in vintage s(t). It is
required that the vintage already exist at time t, i.e. s(t) ≤ t, and that s(t)
be a measurable function in t.4

As for human-capital accumulation h(t), I require that a worker start
her work life in position h = 0 when she enters the vintage; mathematically
I impose that h(t̄) > 0 only if there is an interval (a, b) around t̄ such that
s(t) = t̄ for all a < t̄ < b.5 There is no cost of switching between vintages.
I will refer to a career segment (or short career) l′(t) as the maximal open
interval (l′0(t), l′1(t)) around an instant t that is entirely spent in one vintage.6

If l′0(t) = t = l′1(t), the career segment as an open interval is empty and
we will not call this degenerate stay in a vintage a career segment. Since
segments are open intervals and each of them contains a rational number,
there can only be countably many of them in an agent’s life.

To capture the notion that human-capital accumulation inside a vintage
is costly, I require that the function h be differentiable on all segments and

4This specification allows for lives with more than countably many vintage changes; a
relevant example for such a life is s(t) = t.

5This also means that a worker has to start at zero again even if he had worked in that
vintage before but quit it at some point. This assumption is imposed for tractability; in
equilibrium, workers would not want to return to vintages they have once left.

6Formally, define the end points as l′0(t) ≡ inf{a ≤ t : s(u) = s(t) ∀u ∈ [a, t]} and
l′1(t) = sup{b ≥ t : s(u) = s(t) ∀u ∈ [t, b]}.
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assume that the worker has to pay a flow cost eγs(t)c
(
ḣ(t)

)
on segments,

where ḣ denotes the time derivative of h and c is a cost functional with the
following properties:7

• Costless demotion: c(ḣ) = 0 if ḣ ≤ 0.

• Convexity: c′(ḣ) is a continuous, strictly increasing function on (0,∞).

• Inada condition: limḣ→∞ c
′(ḣ) =∞

An example that satisfies these properties is c(ḣ) = c̄max{ḣ, 0}2/2, where
c̄ > 0. No costs accrue for non-segments; observe that for any t that is not
on a segment, we must have h(t) = 0. This cost may be interpreted as a
psychic or monetary cost that the worker incurs when learning about the
technology in his spare time or during unpaid overtime at work.

Each agent born at t = 0 enters the economy with some experience
level h0 for a vintage of age s0 ≤ 0, i.e. the first segment may start off with
h0 ≥ h(0) > 0 if s(0) = s0. An initial density n0(τ, h) is given over these
endowments, which constitutes the state of the economy at t = 0. New-
born workers enter without any endowment, i.e. h(t) = 0 for a worker born
at t > 0.

To summarize, the agent’s criterion for a given life lt starting at t is

v(lt) =

∫ ∞
t

e−(β+δ)(u−t)
[
w
(
u, st(u), ht(u)

)
− eγst(u)c

(
ḣt(u)

)]
du,

where it is understood that ḣ = 0 on non-segments. The value function
is defined as V (t, s, h) = suplt(t)=(s,h) v(lt), where the supremum is taken
over all feasible lives starting with endowment (s, h). Since discounting is
exponential, optimal policies are time-consistent and V (t, s, h) also gives us
the forward-looking value for any agent born before t who finds herself in
position (s, h) at t.

7The cost of human-capital accumulation is growing at the pace of total factor pro-
ductivity (TFP) to ensure stationarity of the economy. This specification entails that
the costs of human-capital accumulation relative to productivity in a technology do not
change. This is in line with models where workers have to set aside time from productive
work in order to accumulate human capital; in such a setting, the opportunity cost of
human-capital accumulation is given by the marginal productivity of devoting one’s time
to productive work instead of learning. The specification here is a modeling shortcut that
avoids the explicit modeling of hours.
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2.3 Stationary equilibrium

I will limit the discussion to densities n which have a collection of sets Sin
in X ≡ [0,∞)× [0,∞)× [0, 1] as their support Sn = ∪iSin. I require the sets
Sin to contain an open ball; n is assumed continuous and differentiable on
each set Sin.8

For a stationary environment, I require that n(t, s, h) depend only on
the age of the vintage τ = t− s, but not on time:

n(t, s, h) = n(s+ τ, s, h) = n̄(τ, h).

Stationarity immediately implies that wages and production grow at rate γ,
i.e. w(t, s, h) = eγtw̄(τ, h), Y (t, s) = eγtȲ (τ) and Y (t) = eγtȲ . By sta-
tionarity of the cost functional, also the value function grows at rate γ:
V (t, s, h) = eγtV̄ (τ, h). From now on, we will only work with the stationary
distribution; I thus drop the bar-notation and write simply n(τ, h), w(τ, h)
and so forth.

Definition 2.2. A stationary competitive equilibrium is a stationary density
n(τ, h), a measure µ on all possible work lives l(t) = {τ(t), h(t)} and a wage
function w(τ, h) that is continuous on the interior of X such that:

• Compatibility of µ and n: for all Borel sets B in R2 and for all u ≥ 0,9∫
t≤u

e−δ(u−t)I
{(
τt(u), ht(u)

)
∈ B

}
dµ(l) =

∫
B
n(τ, h)dτdh.

• Optimal labor demand: n(τ, ·) = arg maxñ
{
Y (ñ)−

∫
w(τ, h)ñ(h)dh

}
∀τ .

• Optimal labor supply: let A be any set of lives such that lt ∈ A implies
v(lt) < eγtV (τt(t), ht(t)). Then A has measure zero under µ.

Note that this definition requires wages to be specified also for regions
outside the support Sn of n. In such regions, equilibrium must specify a

8The Inada condition 2.1 will naturally lead to such non-degenerate sets Sin for the
support. Only for the case of a linear production function (i.e. setting ρ = 1 in ỸCES)
it will make sense to consider a more general class of sets for Sn, see section 2.6. Note
that the specification here allows for densities that drop precipitously down to zero when
a vintage dies — which is exactly what occurs in equilibrium. Also, note that feasibility
requires that the neighborhoods be connected to points with h = 0 or t = 0.

9I{·} denotes the indicator function. The subscript lt again refers to an agent born
at t ≥ .0. The simple multiplication of the indicator function by the survival function
e−δ(u−t) is valid since death is independent of workers’ strategies.
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wage schedule that makes workers (firms) choose labor demand (supply)
equal to zero.

The economy is understood easiest by first deriving some general prop-
erties of equilibrium and by characterizing the worker’s problem, which is
done in the following subsections 2.4 and 2.5. Subsections 2.6 and 2.7 present
sharper characterizations that are obtained when invoking more specific as-
sumptions on the production function. Section 2.8 shows equivalence of
competitive equilibrium to a planning solution, which which will give addi-
tional insights.

2.4 Properties of equilibrium

We will be looking for a value function V ∈ C1(X) that is consistent with
a stationary equilibrium. I start to characterize the equilibrium by deriv-
ing some properties of the value function. Since workers can always drop
down arbitrarily fast in the hierarchy at zero cost and the value function is
continuous, we have:

Lemma 2.1. (Value function weakly increasing in h) The value function
V (τ, h) is weakly increasing in h for all fixed τ .

Also, workers always have the option to start a new career immediately.
So in any position, they must always be at least as well off as workers who
start an optimal career.

Definition 2.3. Define the maximal value that can be attained by a career
starter as W = maxτ V (τ, 0).

Lemma 2.2. (Value equal for all career starters) We have V (τ, 0) = W for
all τ and V (τ, h) ≥W for all (τ, h).

We will now turn to characterizing the support of the equilibrium den-
sity Sn. First, observe that the Inada condition ensures that all rungs in the
skill hierarchy must be filled if a vintage is in production:

Lemma 2.3. (All jobs filled in producing vintage) If the Inada condition 2.1
holds, then Y (τ) > 0 implies (τ, h) ∈ S̄n.10

This is a consequence of promotion costs being bounded for any position
with τ > 0 but wages going to infinity for empty slots in the skill ladder.
Now and in the following, refer to appendix A.1.2 for formal proofs if these
are not given in the text.

10Ā denotes the closure of a set A.
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Another result that allows us to make some headway is that we do not
have to consider the entire space of vintages 0 ≤ τ < ∞, but can restrict
ourselves to a finite interval 0 ≤ τ ≤ T :

Lemma 2.4. (Finite support of technologies) There exists T <∞ such that∫ 1
0 n(τ, h)dh = 0 for all τ > T .

The proof uses the argument that workers can always secure some pos-
itive wage in a frontier vintage without going through training, but that
old vintages’ productivity goes to zero relative to the frontier. The result is
ultimately driven by the the fact that returns to learning are bounded but
TFP growth is not.

Definition 2.4. Define the last vintage in production by T ∗ ≡ infτ{τ :∫ 1
0 n(τ, h)dh = 0}. Note that T ∗ <∞ is ensured by lemma 2.4.

In order to further characterize Sn, it will be useful to know more about
the wage structure in the oldest technology. Consider the problem of a
worker who optimizes his career with respect to the switching point t̄ when
he quits a vintage:

max
t̄

∫ t̄

0
e−(β+δ−γ)tw[τ(t), h(t)]dt+ e−(β+δ−γ)t̄W

Since w is continuous, differentiating with respect to τ yields that t̄ can only
be optimal if w[τ(t̄), h(t̄)] = (β + δ − γ)W , where the right-hand side is the
flow value of starting a new career. If the wage was still higher than that,
the worker should stay in the vintage at least a bit more; if it was lower,
quitting a bit earlier would make him better off. We summarize:

Lemma 2.5. (Final career wage) At the end of any career segment l0, wages
tend to the flow value of starting a new career, i.e. limt→l1 w[τ(t), h(t)] =
(β + δ − γ)W .

Corollary 2.6. (Flat wage structure in oldest technology) For all (T ∗, h) ∈
Sn, we have w(T ∗, h) = (β+ δ− γ)W . If the Inada condition 2.1 holds, this
implies that vintages attain maximal productivity upon their death.

For vintages τ > T ∗ that are out of production, the equilibrium defini-
tion 2.3 requires us to specify a wage structure that makes it undesirable
for both workers and firms to use those vintages. There are many possible
choices for w in this region; one of them is w(τ, h) = e−γ(t−T ∗)/2w(T ∗, 0).
Workers will strictly prefer W to any career beyond T ∗, and firms would not
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break even for τ > T ∗ — even at optimal factor-input ratios, TFP decays
faster with τ than the wage bill does. Also, continuity of w is ensured by
this construction.

Reasoning along these lines shows that there cannot be any holes in the
support of n along the τ -direction. If there were two vintages from which
workers dropped out into new careers, then their wages in these two vintages
would have to be equalized at the same value. But this is impossible since
the older vintage has lower TFP.

Lemma 2.7. (No holes in vintage space) Suppose the Inada condition 2.1
holds. Then, if both Y (τ0) > 0 and Y (τ1) > 0, also Y (τ) > 0 for all
τ0 < τ < τ1.

Lemma 2.7 together with lemma 2.3 implies that the closure of Sn must
be a rectangle [T0, T

∗] × [0, 1] if the Inada condition 2.1 holds. Section 2.6
establishes that there cannot be holes in the τ -direction either when labor
inputs are perfect substitutes. Arguments in subsections 2.6 and 2.7 will
finally show that we must of course have T0 = 0.

2.5 Recursive characterization: partial differential equations

We will now seek to further characterize equilibrium by studying the worker’s
behavior on career segments. The Hamilton-Jacobi-Bellman equation (HJB)
for an interior point of a career segment is the following first-order partial
differential equation (PDE):

(β + δ − γ)V (τ, h) = w(τ, h) + Vτ (τ, h) + max
ḣ

{
−c(ḣ) + ḣVh(τ, h)

}
, (2)

where partial derivatives are denoted by subscripts. The equation says that
the flow value of being in state (τ, h) equals the current wage plus the gains
(or losses) from vintage aging and the gains from optimal human-capital
accumulation.

The optimal career slope ḣ depends on the marginal value of skill Vh and
the cost of learning. The first-order condition (FOC) for ḣ corresponding to
the HJB (2) is

c′
(
ḣ(τ, h)

)
= Vh(τ, h), (3)

where a unique solution for ḣ is assured whenever Vh > 0 by the assumptions
on c. Since c is convex, the FOC implies that greater value differentials in the
hierarchy induce faster human-capital accumulation. Given the boundary
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condition V (T ∗, h) = W for all h, equations (2) and (3) together determine
the optimal policies of an agent who takes the wage function w as given.

Sometimes, it will be convenient to work with the Euler equation, which
tells us how the marginal value of human capital Vh changes along an op-
timal career path. Differentiate (2) with respect to h and use the envelope
condition (3) to obtain

dVh
dt

= ḣ(Vh)h + (Vh)τ = (β + δ − γ)Vh − wh, (4)

where an agent’s career is parameterized by time by t: we have dτ = dt and
dh = ḣdt. The dependence of the various functions on (τ, h) is suppressed
for the sake of clarity. We can solve (4) as an ordinary differential equation
in t along an agent’s optimal career path and see that the marginal value of
human capital equals the discounted integral of marginal wage gains over a
career:

Vh(t) =

∫ T

t
e−(β+δ−γ)(u−t)wh

(
τ(u), h(u)

)
du, (5)

where T is the end of the career segment and Vh(T, h) = 0 since V (T, h) = W
for all h, i.e. the marginal value of skill is zero at the end of a career. This
suggests that the incentives for human-capital accumulation are strongest
in the beginning of a career, and makes us expect that human-capital accu-
mulation is decreasing over segments.

I now proceed to characterize how the density n(τ, h) evolves given the
optimal local behavior of workers. Inside Sn, n must obey the following
PDE:

nτ (τ, h) + ḣ(τ, h)nh(τ, h) = −
[
δ + ḣh(τ, h)

]
n(τ, h), (6)

where the notation ḣh = ∂ḣ
∂h is used. This PDE says the following: when

following a worker’s optimal career path, the density thins out at the death
rate, δ, plus the divergence of the promotion paths, ḣh. Appendix A.4.1 pro-
vides a derivation of this equation.11 For a given boundary condition n(τ, 0) =
n0(τ) on τ ∈ [T0, T

∗] and given optimal policies ḣ, we may solve this PDE
throughout Sn.

To summarize, the HJB (2) with its boundary conditions characterizes
workers’ optimal strategies given wages. Equation (6) tells us how the re-
sulting decisions by workers in (3) translate into a density n (once we know

11The equation is the usual mass-transport equation for densities in a deterministic
context; it may be seen as a special (non-stochastic) case of the Kolmogorov forward
equation.
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how new-borns enter vintages). Optimality of firms’ decisions implies that
wages w on the support of n are given by the Frechet derivative of Y (τ)
with respect to n(τ, ·). Wages w then feed back again into workers’ HJB.

Formally, we can say that any equilibrium must be associated with two
functions n and V that are defined on a rectangle [0, T ∗] × [0, 1]. These
functions (n, V ) together with T ∗ must satisfy the system of PDEs given
by (2) and (6). The boundary conditions for V are V (T ∗, h) = W for
all h ∈ [0, 1] and V (τ, 0) = W for all vintages τ ∈ [0, T ∗] with positive entry,
i.e. those τ for which n(τ, 0) > 0. For n, we have the boundary condition
w(T ∗, h) = (β + δ − γ)W for all h ∈ [0, 1].12

Note that there is no explicit boundary condition on n(τ, 0) at career
entry (i.e. h = 0). However, this does not mean that n is irrelevant for the
career-entry decision. Indeed, n must induce a wage structure that makes
workers indifferent between entry into the different active vintages, which
shows up as a boundary condition on V (τ, 0).

Note that this system of PDEs is non-standard in the following respects:
first, wages are determined non-locally; they depend not only on the density
in the immediate (τ, h)-neighborhood of the worker but also on h-levels in
the same vintage that are far away from the worker. Second, the boundary
location T ∗ and the boundary value W are unknowns. These complications
make computation of equilibrium a challenging task since standard methods
cannot be used.

2.6 Sub-case: perfect substitutes

The next two subsections will be concerned with the characterization of the
wage structure and human-capital accumulation. Specifically, the follow-
ing objects are of interest: the skill premium inside a given vintage (i.e.
w(τ, h̄)/w(τ, h) for h̄ > h), the (vintage-)tenure premium (defined exactly
as the skill premium, but conditioning on vintage tenure instead of h as the
independent variable) and the intensity of skill accumulation ḣ(τ, h). I will
also study how these objects depend on technological growth by comparing
steady states for different values of γ, ceteris paribus.

We first turn our attention to the special case where different skill levels
are perfect substitutes: take the CES-aggregator (1) with ρ = 1 as the
production function. Then, wages are independent of the distribution of
workers across the skill hierarchy: w(τ, h) = e−γτf(h). Throughout this

12The boundary conditions are implied by lemmas 2.2 and 2.5. W is given in defini-
tion 2.3.
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section, we will assume a standard learning curve and require that f ′(h) > 0
and f ′′(h) < 0.

With a linear production function, the problem essentially reduces to one
of partial equilibrium: it is sufficient to solve a worker’s problem, let every
worker follow her optimal policy and collect the results in an equilibrium
density n.13 It is easy to show that the worker will then always switch to
the newest vintage when she relocates, see lemma A.2 in the appendix for
the formal statement. Also, by stationarity of the economy, it is optimal for
the worker to complete identical cycles of human-capital accumulation over
and over again.

We will now be concerned with the question how technological progress
(in the form of a change in γ) affects agents’ decisions. Using the solution
to the Euler equation (5), we obtain

Vh(t) =

∫ T ∗

t
e−(β+δ)(u−t)f ′

(
h(u)

)
du, (7)

where T ∗ is the optimal switching point to a new career. Since the wage
gains from human-capital accumulation are decreasing in h by the concav-
ity assumption on f , this entails that workers in a lower hierarchy position
have stronger incentives to learn ceteris paribus. Another consequence is
that a worker with a longer horizon accumulates human capital faster. Fur-
thermore, equation (7) shows that technological growth is inessential for
the inter-temporal incentives of human-capital accumulation while inside a
vintage – it only affects the optimal switching point T ∗

Now, define the (vintage-) tenure premium as the ratio of the wage of an
tenure-t worker in a vintage to the wage of a career starter. In a stationary
context, this equals pγ(t) = e−γtw(h(t))/w(h(0)), where the optimal path
h of course depends on γ through T ∗(γ). Using lemma A.3 (see appendix),
one can then show the following:

Proposition 2.8. (Shorter horizon lowers tenure premia) Assume Ỹ =
ỸCES with ρ = 1. Suppose that γ̃ 6= γ, but fix all other parameters. Then
T̃ ∗ > T ∗ implies pγ̃(t) > pγ(t) for all 0 < t ≤ T ∗.

This result says that with a linear production function, a shortening in
the life span of technologies must always be accompanied by a decrease in the

13Note that typically all agents will follow the same path and thus n would be a measure
that cannot be represented by a density function. However, this is unproblematic since the
production function (1) and the PDE (6) still make sense, the former as a linear functional
on measures and the latter in the weak sense.
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tenure premium. Figure 2 illustrates the intuition for the result. Workers
with a shorter planning horizon in their technology have fewer incentives
to invest in technology-specific knowledge and thus learn at a slower pace,
leading to a lower experience premium.

w

w̃

T ∗T̃ ∗

time

w
ag

e

p γ

p γ̃

Figure 2: Horizon effect under substitutability

To show that faster technological growth leads to faster scrapping of
technologies, define the discounted value of a career segment of length T by

K(T ) =

∫ T

0
e−ρt

[
w
(
hT (t)

)
− c
(
ḣT (t)

)]
dt, (8)

where hT (·) is the optimal skill-accumulation path for a career of length T .

Proposition 2.9. (Faster growth shortens careers and lowers tenure pre-
mia) Assume Ỹ = ỸCES with ρ = 1. Then, if the function K(·) in (8)
is twice differentiable, the following hold: T ∗(γ) is non-increasing in γ and
strictly decreasing whenever T ∗(γ) > 0; the tenure premium pγ(t) is decreas-
ing in γ for any 0 < t ≤ T ∗.

One may find this result somewhat counter-intuitive: it says that tech-
nological growth leads to less learning-intensive careers. This is in the sense
that for each given tenure, agents have accumulated less knowledge in the
high-growth than in the low-growth world.14 The following sections will

14Of course, agents in a high-growth world might still learn more in total since they
switch to new vintages more often.
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show that this result need not hold when different human-capital levels are
complementary and how it can indeed be overturned.

2.7 Wage structure under complementarity

In this section I will further characterize the wage structure for the case
where labor inputs of different skill levels are complementary and an Inada
condition holds, as is the case for ρ < 1 in the CES production function. I
start with the following observation:

Lemma 2.10. (Highest entry wage in vintage T ∗) If the Inada condition 2.1
holds, then w(T ∗, 0) ≥ w(τ, 0) for all 0 ≤ τ < T ∗.

Intuitively, entry wages have to be lower in young technologies for the
following reason: entering a new technology provides experience that will
be valuable in the future. So, barring any offsetting wage differential, all
workers would choose to enter new technologies. However, under the In-
ada condition some workers are also needed in low-skill tasks in the oldest
technologies. In order for both entry options to be equally attractive, entry
wages in young technologies have to be lower than in old technologies.

It turns out that on the top of the skill hierarchy, the converse is true:

Lemma 2.11. (Wage explosion for skilled in young technologies) If the
Inada condition 2.1 holds, then limτ→0w(τ, 1) =∞ and Y (τ) > 0 for all τ ∈
(0, T ∗).

The intuition behind the result is that people with high skills in young
technologies must have worked hard to acquire these skills. Thus, those
workers have to be compensated by high wages. Note that this is ensured
if only few people take such steep paths in young vintages. When scarce
enough a factor, the skilled in young technologies can then earn unbounded
returns.

Collecting the previous results yields:

Corollary 2.12. (Wage compression) Suppose the Inada condition 2.1 holds.
Then the wage difference between high-human-capital and low-human-capital
workers is highest in the youngest vintages and lowest in the oldest vintages,
i.e. w(τ, 1)− w(τ, 0)→∞ as τ → 0 and w(τ, 1)− w(τ, 0)→ 0 as τ → T ∗.

Intuitively, the wage structure is compressed over the life cycle of a
vintage because skill becomes less scarce. It is easier to acquire skills over a
long time than to master a technology that has barely been invented. With a
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view to tenure premia, note that wage compression opens the possibility that
a technological acceleration leads to an increase in tenure premia. Since the
wage structure is steeper in young technologies, a shortening of the vintage
horizon T ∗ can send more workers into steep earnings paths and increase
the average tenure premium.

Another consequence of the results above is the following:

Corollary 2.13. (Obsolescence/wage losses) There is a positive measure of
careers with dw(τ(t), h(t))/dt < 0 for some t. Furthermore, agents who quit
their vintage start their new career with a wage weakly lower than their last
wage in the old career.

Note that the first type of wage losses (those occurring during a career)
cannot occur when skills are perfect substitutes. These wage losses are
remarkable since they occur without depreciation of human capital — an
assumption often invoked in Ben-Porath-type models in order to obtain
downward-bending wage profiles for old workers. Here, agents do not lose
any of their skill over their vintage career; the reason for the wage losses
is that the relative price for skill falls over time, a phenomenon commonly
referred to as obsolescence.

Finally, note that the second type of wage loss, which stems from the loss
of vintage human capital due to a vintage change, is not due to an exogenous
shock (an assumption sometimes made in human-capital models), but stems
from an endogenous decision. The worker accepts a temporary wage loss in
order to obtain skills in a new technology which pay off later in his work
life.

2.8 The planner’s problem

To conclude the section of theoretical results, I show that the competitive
equilibrium characterized in the previous discussion is equivalent to the so-
lution of the following planner’s problem (a detailed formal discussion is
provided in appendix A.4). Let the planner weigh the utility of an agent
born at t with e−βt. The planner’s problem is to choose a density n(t, s, h)
to maximize ∫ ∞

0
e−βt

(
Y
(
n(t; ·)

)
− C(t)

)
dt,

where C(t) denotes the aggregate cost of human-capital accumulation at t.
In the first step, I restrict the density n to have support up to a given

vintage age T . In order to evaluate the planner’s criterion, we first need to
know the optimal human-capital-accumulation strategy for the planner to
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implement a given density n. It can be shown that the optimal accumulation
strategy is such that agents’ career paths inside a vintage never cross. This
characterization is sufficient to derive an expression for total human-capital-
accumulation costs in terms of n. Given this expression, one can then derive
the planner’s first-order conditions from a standard Lagrangian.

In the second step, I vary the maximal vintage age T to find the global
optimum. Denote by T ∗ the vintage age that is associated with the global
maximum of the planner’s criterion. For this T ∗, I show that the PDEs
arising from the planner’s first-order conditions are equivalent to system of
PDEs implied by competitive equilibrium (as described in subsection 2.5).

The following proposition establishes that the global solution to the plan-
ner’s problem is a competitive equilibrium and provides a partial converse
of this statement:

Proposition 2.14. (Equivalence of planner’s solution and competitive equi-
librium) The stationary (global) solution to the planner’s problem with T ∗

is a competitive equilibrium (CE). Any stationary CE is also a solution to
a planner’s problem for some T ≤ T ∗. There is no CE with T > T ∗.

The planner’s problem brings some insights that are not easily obtained
in competitive equilibrium. For example, a concavity argument ensures
uniqueness of the planner’s solution and a decomposition of the planner’s
criterion gives an empirically observable upper bound on the total cost of
human-capital accumulation in the economy, see appendix A.4 for details.

3 Calibration and quantitative results

In this section, I solve the model numerically and calibrate it to German
matched employer-employee data. The goals of the calibration are the fol-
lowing.

First, by taking the model to the data we can see if some sign restric-
tions imposed by the model are borne out in the data. A key prediction
of the model is that young technologies have higher premia on skill. This
prediction is confirmed in the data, both when identifying young vintages
by establishment age (subsection 3.3) and when identifying them by high
growth (subsection 3.6).

Second, it is not clear a priori if the model can fit both the wage structure
and the distribution of workers across vintages and skill levels. It turns out
that the model achieves a good qualitative and a reasonable quantitative fit,
but that it misses some specific quantitative features in the data.
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Third, the calibration will tell us about the importance of different
drivers of wage growth. The calibration indicates that earnings growth is
largely accounted for by human-capital accumulation, as opposed to vintage
productivity gains and the relative scarcity of skill. This result is due to the
fact that the production function is estimated to be close to linear.

Finally, the calibration yields results on comparative statics that go be-
yond the analytical results derived so far. Most importantly, the calibration
allows to sign the effect of an increase in γ on human-capital accumulation
for the case ρ < 1, which was ambiguous in the theoretical analysis. A
counterfactual exercise indicates that a technological acceleration leads to
an intensification in skill accumulation and a rise in tenure premia, meaning
that general-equilibrium effects more than outweigh the horizon effect.

3.1 Data

The model is calibrated to yearly data. I use the German IAB employment
sample (1975-2001), a large employer-employee-matched panel from admin-
istrative sources, see appendix C for details. The panel has information on
workers’ earnings, hours and other characteristics. Each worker is matched
to an establishment, for which we observe its founding date, the number of
workers and industry classification, among others. Since the data set starts
in 1977, the age of the establishment is not available for establishments
founded before 1978. In view of this limitation, I group establishments into
three age categories: young (founded in 1989 or later), medium-age (founded
between 1978 and 1988) and old (founded before 1978).

3.2 Calibration

I consider a cross section of workers in 2001, assuming that the economy is
in steady state. I identify vintage age in the model with the age of an estab-
lishment in the data. The underlying assumption is that new establishments
incorporate the newest available technology.15 For the production function,
I use the CES aggregator defined in (1). To allow for a learning curve
with diminishing returns, I choose the specification f(h) = 1+a1h+a2h

2 to
model returns to skill, where f(0) = 1 is chosen as a normalization. I impose
f ′(h) ≥ 0 and f ′′(h) ≤ 0 for all h ∈ [0, 1], i.e. returns to skill are assumed to
be positive and diminishing. For the cost of human-capital accumulation, I

15See subsection 3.6 for a discussion of this assumption and an alternative identification
strategy.
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choose a quadratic specification that is convenient because of its parsimony:
c(ḣ) = c̄max{ḣ, 0}2/2.

Finding a competitive equilibrium amounts to solving the system of
PDEs and integral equations described in section 2.5. The wage equation is
given by

w(τ, h) = e−γτf(h)

(
Ỹ (τ)

n(τ, h)

)1−ρ

. (9)

I propose a solution algorithm which uses a discretization scheme as in
standard lattice methods and attacks the problem of endogeneity of the
boundary values with an algorithm inspired by the way a real economy might
oscillate around a steady state under some inertia. Appendix B provides the
complete documentation of the algorithm.

Table 1 shows the calibrated parameters. A subset of parameters is
chosen outside the model. The death rate δ is set to 0.092; this number is
chosen to match the rate at which workers are displaced from establishments
in the data (6.7% yearly) plus the rate at which they leave the labor force
(2.5%, obtained from an expected labor-market participation of 40 years for
a 20-year old16).17 β is set to 0.015 to obtain a standard yearly discount
rate of β + 0.025 = 0.04, where 0.025 is the exit rate from the labor force.
Based on the results by Cummins & Violante (2002), I choose γ = 0.005
for vintage productivity growth. These authors report that in the second
half of the 20th century, one third of GDP growth was due to increases in
TFP and in the quality of capital. The rest came from increases in the
quantity of labor, the quantity of capital and growth of human capital. I
adopt the view that the increase in vintage productivity in the model equals
the increase in TFP plus increases in the quality of capital. GDP growth
in Germany was roughly 1.5% yearly in 1991-2011, from which I obtain
γ = 0.015/3 = 0.005.18

The remaining four parameters ρ = 0.89, c̄ = 2.2, a1 = 1.5 and a2 =
0.0 were chosen to minimize the mean squared deviation of the ten model
moments given in table 2 to their counterparts in the data. The rationale
for the choice of the calibration moments is as follows.

16I take the expected retirement age of 60 years for Germans from the German associ-
ation of retirement insurers, see www.deutsche-rentenversicherung.de.

17It is easy to see that a model where agents are displaced from a vintage with probabil-
ity δp and die at rate δd yields the same allocations as a model with death rate δ = δp+δd
— human-capital-accumulation decisions do not have any effect on a worker’s life after a
vintage-displacement shock.

18The German GDP data are from the German Bundesbank.
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Table 1: Calibration parameters

Group Parameter Explanation Value

β discount rate 0.015
chosen outside model δ exit rate from establishments 0.092

γ vintage productivity growth 0.005

ρ CES production function 0.89
chosen to c̄ cost of learning 2.2
match moments a1 slope of learning curve 1.5

a2 curvature of learning curve 0.0

The learning curve is specified as f(h) = a0 + a1h + a2h
2, where a0 = 1 is chosen as a

normalization. The restrictions f ′(h) ≥ 0 and f ′′(h) ≤ 0 for all h ∈ [0, 1] are imposed, i.e.
the permissible set is {(a1, a2) ∈ R2 : a1 ≥ 0, a2 ≤ 0 and a1 + 2a2 ≥ 0}.

In principle, the model has predictions on human-capital accumula-
tion (h, ḣ), the distribution of workers across vintages (n), the wage struc-
ture over vintages and skill (w) and the output across vintages (Y ). We
cannot observe vintage human capital h in the data, which restricts the
choice of calibration targets. Since labor is the only production input in the
model economy, I treat Y (τ) in the model as a prediction on the wage bill
of age-τ establishments, i.e. I exclude payments to the factor capital and
entrepreneurial profits. Since hours worked are not available in the data, I
only consider full-time workers and regard their earnings as equivalent to w
in the model.

As a measure of central tendency for the wage bill, I include median log
earnings by establishment category as a target. Since the model is homoge-
neous, the model results can be scaled by any constant. Thus, one normal-
ization has to be chosen. I equate median earnings in old establishments in
the model to those in the data and take the difference of median earnings
in young and medium-age establishments to those in old establishments as
the first two calibration targets.

I now turn to calibration targets 3 to 8, which capture the premium on
skill in the different vintages. The skill premium is linked to the learning
curve f(h), as can be seen from the wage function (9). Note that the es-
timation of the learning curve f(h) would be straightforward if we could
observe workers’ human capital h. Knowing h, one could obtain an esti-
mate for the density n and then directly back out the function f(h) from
wage data using log-differences of equation (9). Given that h is not observ-
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Table 2: Calibration targets
Moment Establishments Data Model

founded. . .

Difference of median log earnings to 1978-1988 −0.13 −0.16
establishments founded before 1978 1989-2000 −0.13 −0.45

before 1978 0.28 0.20
5-year tenure premium 1978-1988 0.34 0.27

1989-2000 0.41 0.36

before 1978 0.35 0.40
10-year tenure premium 1978-1988 0.41 0.50

1989-2000 0.47 0.64

Fraction of workers 1978-1988 0.13 0.33
entering establishments 1989-2000 0.55 0.56

The tenure premia are calculated from the predicted values of a censored regression (top-
coded data) of log earnings on a quartic in establishment tenure within the respective
group of establishments.

able, however, the best one can do is to keep track of workers’ tenure in
an establishment. Workers’ human capital is then obtained from the model
predictions on human-capital accumulation. In order to be able to identify
both the slope and the curvature of the learning curve f(h), I include both
the 5- and the 10-year premium on establishment tenure by establishment
category.

I use the raw establishment tenure premium, which I compute from the
predicted values of regressions of log wages on a quartic in establishment
tenure within each age category of establishments. I do not include labor-
market experience, occupation or industry tenure in these regressions. These
are highly correlated with establishment tenure and lead to problems in
identifying the contribution of establishment tenure, a common problem in
the empirical literature. I take the stand here that all human capital is
specific to technologies, just as is the case in the model. The idea is that a
worker’s skills can become totally obsolete when there is a disruptive change
to technology, even when the worker stays within her occupation or industry.
An example would be a worker in a photo laboratory that changes from the
physical development of films to digital technology, making the worker lose
any competitive advantage over outside workers. The fact that other forms
of human capital are not considered in the calibration is of course a limitation
to my approach. Since the model in its current form does not allow for other
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forms of human capital, however, this is probably the best that can be done.
I leave extensions in this direction to further research.

The last two calibration moments are related to the distribution n of
workers across vintages. Since the model has all workers stay in their vin-
tage until the vintage dies (or until they are exogenously displaced, as is
assumed for the purpose of the calibration), the entry density into vintages
together with the maximal vintage age T ∗ completely determine the num-
ber of workers with a given tenure in a vintage. I thus use only data on
entry into establishments by age category to capture information about the
distribution n.

3.3 Model fit and equilibrium properties

A grid search is used to minimize the mean squared distance of the model
moments to the targets. Table 2 shows that that the model is qualitatively
in line with the main features of the earnings distribution in the data: on
average wages are higher in older vintages, but the tenure premium is lower
in old vintages. These two facts also imply that entry wages are highest in
old vintages. The model can also capture the fact that the bulk of entry
occurs for establishments of young age. Vintages survive for T ∗ = 65 years
for the calibrated parameters.19

The overall quantitative fit is reasonable, but there are some shortcom-
ings. The model exaggerates the difference of median wages between young
and old establishments. Furthermore, the model generates 5-year tenure
premia that are slightly too low and 10-year tenure premia that are some-
what too high. Also, the model assigns too few entrants to young vintages.
Finally, the model has one stark prediction that is likely not to be met
in the data (although it cannot be rejected formally since establishment is
right-censored in the data): the skill premium is zero in the dying vintage.

Figure 3 shows characteristics of the selected model. Since there is sub-
stantial entry into old vintages, the data reject a production function with

19Note that most workers do not stay in their vintage until its demise since they die
or are displaced from the vintage. Since this is a perpetual-youth model, workers’ age
does not affect vintage choice upon entry. If workers had different time horizons, as is
the case in reality, we would expect sorting by age, however: old workers should prefer
older technologies since their horizon is too short to cash in on skill investments in young
technologies. In the data, indeed I find that such sorting takes place: only 14% (48%) of
workers in old establishments are below 30 years (40 years), whereas this number is 19%
(57%) in medium-age and 21% (58%) in young establishments. The correlation between
establishment age and worker age is 0.104, which is highly significant.
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perfect substitutability of skills.20 ρ is estimated to be close to unity, how-
ever, thus complementarities between skills are weak. The career lines in
the upper-left panel show agents’ equilibrium trajectories through the (τ, h)-
space. The line starting in the lower left corner refers to workers who enter
the youngest vintage, the line starting at τ = 60 and h = 0 refers to a
worker entering the vintage of age 60. We can see that there is entry into
all vintages. Agents in young vintages make the hardest efforts to climb
the skill hierarchy. This is in line with value differentials in the hierarchy
being highest in these vintages, as the value function in the lower-left panel
shows.21

The lower-right panel in figure 3 illustrates that wage compression is a
process that happens all the way from the newest to the oldest vintages. The
skill premium is highest in the youngest vintages and continuously shrinks
as the vintage ages. The density function in the upper-right panel is in
line with wages: workers with high experience in young technologies are
relatively scarce, whereas skill becomes more abundant in old vintages as
workers press up in the skill hierarchy from below.

The estimate a1 = 1.5 implies that the learning curve has substantial
slope. Together with the estimate a2 = 0.0, it implies that the highest-skill
workers are 2.5 times more productive than the lowest-skill workers if the
number of workers was equalized across skill levels. As for the curvature of
the learning curve, the best fit to the data is obtained at the zero lower bound
for a2, implying that the learning curve has no curvature. At first glance, this
may seem at odds with the diminishing returns to establishment tenure that
we see in the data: the 5-year tenure premium is more than half as high as
the 10-year tenure premium for all establishment categories. However, note
that the learning curve is only one of three forces that determine the returns
to tenure in the model. As seen before, workers also slow down the rate of
human-capital accumulation as they accumulate tenure in a vintage, and

20Recall that all workers enter the newest vintage if ρ = 0, see lemma A.2.1.
21A note is in order on why the trajectories in the upper-left panel of figure 3 do not

have infinite slope although ρ < 1. Note that ρ < 1 implies that the Inada condition
holds and that thus all positions on the skill ladder should be occupied in all vintages, as
shown in lemma 2.3. This does not occur in the numerical implementation because the
algorithm builds up the number of grid points one-by-one for the youngest vintages. This
is done for reasons of computational stability. I have experimented with an algorithm that
immediately starts with the full skill ladder for the youngest vintage, but this algorithm
proved unstable. As the number of grid points is increased, the errors from leaving out
grid points in the upper-left corner go to zero. This is due to the facts that (i) the density
of workers goes to zero for high skills in the youngest vintages and (ii) no input is essential
for production in the parameter range ρ ∈ [0, 1]. For a detailed discussion see appendix B.
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Figure 3: Equilibrium (I)

the relative scarcity of skill matters. We will later see that human-capital
accumulation is the major force behind wage growth, and its deceleration
over careers is sufficient to generate the diminishing returns to tenure we see
in the data.

Figure 4 shows more variables of interest. In the upper-right panel, we
see that entry into vintages is hump-shaped and strictly greater than zero
even for the oldest vintages.22 As apparent in figure 3, late entrants are
compensated for learning the least useful skills by the highest entry wages.
The upper-left panel illustrates that despite positive entry, total employment
is decreasing in vintage age after some point because incumbent workers are
displaced at a faster rate than new workers enter. A similar pattern is
evident for output, see the lower-left panel.

The lower-right panel in figure 4 shows (average) labor productivity by
vintage age. The pattern is reminiscent of the hump-shaped, back-loaded
return profiles that are typical for organization-capital models (see Atkeson
& Kehoe, 2005, for example). Young vintages are unproductive because they
have an unbalanced mix of labor inputs; marginal returns to the different
skill levels are far from equalized since high-skill labor is scarce. In older

22The entry density is given by m(τ) = n(τ, 0)/ḣ(τ, 0).
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Figure 4: Equilibrium (II)

vintages, human-capital accumulation leads to gradual equalization of skill
returns. However, the returns from skill-return equalization wear off over
time and the negative TFP effect eventually dominates.23

How does the model perform when it comes to moments that were not
targeted in the calibration? Table 3 compares measures of the uncondi-
tional wage distribution and the worker distribution from the model to the
data. The model does quite a good job matching the middle of the wage
distribution, but it does not generate enough dispersion in the tails. This is
maybe not surprising since the model has no other source of heterogeneity
than vintage human capital. As for the distribution of workers, we see that
the model only slightly understates the number of workers in young estab-
lishments. However, it is hard for the model to generate the substantial
numbers of workers in old establishments, as was already the case for entry.
The most likely culprit here is that the model misses a selection mechanism
as in firm-dynamics models: successful establishments grow faster, are likely
to survive longer and thus retain more workers. Including such a mechanism

23When plotting a vintage’s productivity over time, however, it is steadily increasing,
flattening out towards the end. Recall that a vintage reaches maximal productivity only
upon its death.
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into the model thus looks like a promising avenue for further research.

Table 3: Non-targeted moments
Moment Data Model

Quantile differences in unconditional log-wage distribution

10-50 -0.50 -0.37
25-50 -0.21 -0.24
75-50 0.24 0.19
86.25-50 0.48 0.27

Worker distribution: fraction of workers in establishments founded. . .

before 1978 0.56 0.39
1978-1988 0.14 0.36
1989-2000 0.31 0.25

13.75% of wages are top-coded, I thus choose 86.25% instead of 90% as the highest quantile
in the wage distribution.

3.4 Determinants of wages

Figure 1 shows wages following a cohort of vintage entrants over time as they
accumulate human capital in their vintage. We see that workers entering
different vintages have vastly different tenure-earnings profiles. The curve
that extends farthest to the right refers to workers who enter the frontier
technology; the shorter the curves become, the later the respective workers
enter the vintage.

An interesting feature of the wage profiles generated by the model is
that they have heterogeneous slopes and curvature. In Ben-Porath-type
models, heterogeneity in shape is usually generated by assuming hetero-
geneous learning ability, see for example Guvenen & Kuruscu (2007) and
Huggett, Ventura & Yaron (2006). In contrast to these models, agents here
are ex-ante equal and all heterogeneity is ex-post. In fact, heterogeneity in
earnings profiles is essential in order to give workers the incentives to enter
all existing vintages and to ensure that all vintages have an efficient skill
mix.

Another topic from the labor literature addressed by the model is “over-
taking”. Hause (1981) defines overtaking as the fact that two wage profiles
with different slopes and the same present value have to intersect at a cer-
tain point. The model has precise predictions on when this overtaking point
occurs for different pairs of agents in the economy. In the calibrated model,
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overtaking happens throughout the first decade of workers’ careers, as is
evident from figure 1.

To understand which forces are at work in workers’ tenure-earnings pro-
files, it is useful to decompose wage growth into its different components.
Divide both n(τ, h) and Ỹ (τ) in equation (9) by the total number of work-
ers N(τ, 0) in vintage τ . Then take logarithms and consider infinitesimal
changes in the log-wage along a career {h(t), τ(t)}, recalling that wages in-
crease at rate γ over time in stationary equilibrium:

d lnw

dt

∣∣∣∣∣
τ(t),h(t)

= ḣ(τ, h)
f ′(h)

f(h)
+ (1− ρ)

(
∂ ln Ỹ (τ)

N(τ,0)

∂τ
−
d ln n[τ(t),h(t)]

N [τ(t),0]

dt

)
. (10)

The three terms on the right-hand side have a clear economic interpretation:
I term them (from left to right) the skill effect, the organization-capital effect
and the relative-scarcity effect.

The skill effect captures returns from human-capital accumulation. This
is the only effect present when skills are perfect substitutes (ρ = 1). In
figure 3 we see that human-capital accumulation ḣ is always positive but
decreasing over careers. Since the learning curve f was assumed to be in-
creasing and concave, this means that the skill effect is always positive but
wears off over the course of a career.

The innovation in the model presented here with respect to the models
in the literature lies in the terms that are switched on when lowering ρ below
unity. These are stemming from relative factor supply. The second term is
proportional to the growth of labor productivity Ỹ (τ)/N(τ, 0) in the vintage.
This term is positive for all vintages in the calibration.24 It represents the
gains from joint learning and the equalization of factor returns, which are
positive throughout the vintage’s lifetime. I call this term the organization-
capital effect.

Finally, the relative-scarcity effect is key for understanding why earnings
profiles are decreasing for most workers towards the end of their careers.
This third term is related to the relative abundance of workers of a given
skill, n[τ(t),h(t)]

N [τ(t),0] . As a vintage ages and more agents enter it, once-scarce skills
become more common as workers from the lower ranks press up in the skill
hierarchy. A real-world example for this might be an HTML-programmer
whose skills commanded high returns when the internet was in its infancy
but saw his wages dwindle as more and more other programmers learned
HTML and his knowledge became less scarce. Proposition 2.13 shows that

24Recall that Ỹ (τ) = eγτY (τ).
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if ρ < 1 this effect must override the other two for some workers and lead
to earnings losses.

Table 4 decomposes wage growth in the calibrated economy according to
equation (10), averaging over all workers in the vintage-age categories from
before. We see that the skill effect is quantitatively most important. The
other two effects are less pronounced because ρ is estimated to be close to
unity. Especially workers in young technologies accumulate skill fast and
experience strong wage growth through the skill effect. The organization-
capital effect is weaker than the skill effect and wears off as the vintage ages.
Finally, we see that the relative-scarcity effect indeed becomes negative for
workers in old technologies as their skills become obsolete.

Table 4: Wage-growth decomposition
Establishments Skill Organization Relative
founded. . . capital scarcity

before 1978 0.021 0.001 −0.005
1978-1988 0.045 0.003 0.000
1989-2000 0.056 0.004 0.010

Effects in wage-growth decomposition from equation (10) by age category of establish-
ments.

3.5 Technological acceleration

I now return to the question on how a technological acceleration impacts
the economy. To do this, I increase γ from 0.005 to 0.006 and keep the other
parameters at their values from the baseline calibration.

Higher frontier productivity growth gives incentive to abandon old vin-
tages earlier; the maximal vintage age T ∗ drops from 66 to 63 years. More
workers enter young technologies: entry into young vintages is up to 62%
from 56%.

As for human-capital accumulation, the theoretical analysis indicated
that an increase in γ had two competing effects: a shorter vintage horizon
discourages skill accumulation; however, faster productivity growth lures
more workers into learning-intensive young vintages. Indeed, I find that
different effects dominate for different kinds of workers. In medium-age
and old vintages there is less human-capital accumulation; the skill effect
in table 4 goes slightly down to 0.044 and 0.019, respectively. In the young
vintages, however, the average skill effect rises to 0.059, since more workers
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enter the frontier technologies. On the whole, the rise in learning in the
young vintages dominates and there is more human-capital accumulation
in the economy. Tenure premia follow the same pattern: the 5-year tenure
premium increases to 0.37 for young vintages, stays the same for medium-age
vintages and decreases to 0.19 for old vintages. The results for the 10-year
tenure premium are similar.

There is almost no change in the organization-capital and relative-scarcity
effects. The gap in median log wages from young vintages versus old ones
decreases to 0.43, but remains almost the same for medium-age vintages.
This is because young technologies have now a larger TFP advantage over
old ones. For the same reason, the right side of the hump in the cross-vintage
productivity profile in figure 4 becomes steeper.

3.6 More evidence

Note that the identification strategy pursued so far has relied on the as-
sumption that new establishments, and only new establishments, operate the
frontier technology. For large firms, this assumption is reasonable enough:
new plants should usually incorporate the latest available technology. Old
plants are more likely to be stuck with old technologies due to switching
costs, but some of them will also upgrade to the newest vintage. For small,
one-establishment firms, the case is less clear-cut. There are surely many
new, small firms that are not on the technological frontier. Also, new firms
have been shown to have high exit rates, which is at odds with young vin-
tages having the longest life expectancy in the model. We would still expect
small entrants to operate newer technologies than incumbents on average,
but identifying vintages by establishment age may be probematic in quan-
titative terms.

In view of these shortcomings, I will now turn to the implications the the-
ory has on vintage growth. Suppose that a certain industry has plants that
are predominantly of new vintages. Then the model makes us expect higher
tenure premia and lower average wages in this industry than in an industry
mainly comprised of old-vintage plants. The same should be true for oc-
cupations or even establishments: occupations/establishments which make
heavier use of new vintages should display higher tenure premia and lower
mean wages. Also, note from figure 4 that young vintages grow strongly
in both employment and output, whereas older vintages are contracting;
so industries/occupations/establishments (IND/OCC/EST) with predomi-
nantly new vintages grow faster according to the model. To summarize,
we would expect high tenure premia and low mean wages in fast-growing
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IND/OCC/EST.
Table 5 shows the results of a regression of cross-sectional earnings on

workers’ (IND/OCC/EST-)tenure, IND/OCC/EST growth and quadratic
and interaction terms of the two. The interaction terms are all positive, as
predicted by the model: faster growing IND/OCC/EST have higher tenure
premia. The coefficients on growth (g) have the expected negative sign for
IND and EST, but a positive sign for OCC: faster-growing IND/OCC/EST
have lower mean wages. So qualitatively, the regression results support the
model’s predictions.25

Table 5: Regressions on growth and earnings structure

Category N const ten ten2/100 g g2/100 ten× g
Industry 208,986 4.930 .055 -.141 -.113 .065 .023
Occupation 209,721 4.923 .060 -.164 .189 -.221 .027
Establishment 152,383 5.043 .039 -.098 -.005 .007 .006

Model: vintage .060 -.078 -.225 .007 .036

Censored regression (top-coded data) of log earnings on a second-order polynomial in
IND/OCC/EST tenure and IND/OCC/EST growth, both referring to the respective cat-
egory. IND/OCC/EST-growth g is calculated as lnM(2000)− lnM(1995), where M is the
number of workers in the respective category. Tenure and earnings data are from 2000.
All coefficients – except for the one on g for EST – are significantly different from 0 at
the 1%-level.

The magnitude of the effects is considerable: an IND (OCC, EST) that
grows by 1% on a yearly basis has a 5-year tenure premium that is 0.58 (0.67,
0.14) percentage points higher than that of a stagnant one. In an IND (OCC,
EST) that grows by one standard deviation faster than a stagnant one, the
5-year tenure premium is 2.38 (2.42, 1.92) percentage points higher than in
stagnant one.26

25These empirical patterns are in line with Michelacci & Quadrini’s (2004) results from
Finnish matched-employer-employee data. They find that in fast-growing firms returns to
tenure are highest and starting wages are lowest. Their model explains this phenomenon
by financial constraints that are especially severe for fast-growing firms, inducing firms to
“borrow” from their workers by offering back-loaded tenure-earnings profiles.

26The x-year tenure premium in an IND with growth g is tpx(g) = βtenx+βten2x2/100+
βten/indxg. Thus, the difference in the x-year premium between an industry with growth
g1 and g0 is ∆tpx = βten,indx(g1 − g0). Setting x = 5, g0 = 0 and g1 = 0.05 (note that
g is calculated over a 5-year period in the data, so yearly growth of 0.01 translates to
g = 0.05) we obtain 0.0058 for IND. The standard deviations for g are 0.206 (IND), 0.181
(OCC) and 0.514 (EST), which yield the second set of numbers.
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The last line in the table shows the regression results from the calibrated
model. The coefficients are not too far away from their estimated counter-
parts, but the model somewhat over-predicts the interaction term between
tenure and growth, i.e. it generates too steep tenure-earnings profiles in the
fast-growing vintages. Furthermore, the coefficient on growth is lower than
in the data, meaning that the model exaggerates the differences in average
wages between fast-growing and slow-growing sectors. This problem was
already mentioned when discussing the fit of the baseline calibration.

4 Conclusions

This paper has studied a model of vintage-human-capital accumulation that
matches key facts on the tenure-earnings distribution in a German data set.
It provides a promising avenue for understanding the systematic variation
in the earnings structure across establishments, industries and occupations.
In the following, some potential applications of the framework are briefly
discussed.

A first proposed application is a macroeconomic one: the model relates
the rate of embodied technological growth to the earnings structure, both
at the industry and the economy-wide level. Previous versions of the paper
had focused on this point, arguing that the steepening of age-earnings pro-
files and the concomitant rise in cross-sectional and time-series variance of
earnings in many industrialized countries over the last decades could have
been caused by a technological acceleration.

A second aspect worth mentioning, which has only been touched upon
in the previous discussion, is the productivity profile of a vintage over time
(see the lower-right panel of figure 4). It displays the typical back-loaded
shape that is often posited in an ad-hoc fashion for organization capital (see
Atkeson & Kehoe, 2005, for example). In fact, the model presented here can
be construed as a micro-foundation for the way an organization increases its
productivity over time and how it shares these productivity gains among its
members.

Finally, one could study the riskiness of human capital and technology
choice for workers by introducing a stochastic component into the frame-
work.

33



References

Atkeson, A. & Kehoe, P. J. (2005), ‘Modeling and measuring organization
capital’, Journal of Political Economy 113, 1026–1053.

Boucekkine, R., de la Croix, D. & Licandro, O. (2006), Vintage capital, Eco-
nomics Working Papers ECO2006/8, European University Institute.

Burdett, K. & Coles, M. (2003), ‘Equilibrium wage-tenure contracts’, Econo-
metrica 71(5), 1377–1404.

Chari, V. V. & Hopenhayn, H. (1991), ‘Vintage human capital, growth,
and the diffusion of new technology’, Journal of Political Economy
99(6), 1142–65.

Cummins, J. G. & Violante, G. L. (2002), Investment-specific technical
change in the US (1947-2000): Measurement and macroeconomic con-
sequences, Finance and Economics Discussion Series 2002-10, Board of
Governors of the Federal Reserve System (U.S.).
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A Proofs

A.1 General setting

This subsection contains the proofs for the statements in section 2.4, where no
additional assumptions are imposed on the production function.

A.1.1 Bounded resources

Lemma A.1. (Bounded resources) There is a uniform bound ȳ <∞ on Ỹ (n),
∫
n ≤

1. Thus, resources in the economy are bounded for each fixed t.

Proof. Let ∆ = {n :
∫
n = 1} be the unit simplex. By weak concavity of Ỹ (·),

the set B = {(n, Y ) : n ∈ ∆, Y ≤ Ỹ (n)} is convex and has non-empty interior.
Now, fix some interior point n̄ ∈ ∆, say n̄(·) = 1. By the separating-hyperplane
theorem, there is a bounded linear functional f on ∆ such that Y (n) ≤ f(n) for
all n ∈ B; in other words, all points in B must be in the half-space below the
hyperplane {(n, Y ) : n ∈ ∆, f(n) = Ỹ (n̄). Since f is bounded, we must have
Ỹ (n) ≤M ||n|| = M} for all n ∈ ∆ for some M <∞ (the norm of f), where we use
the norm ||n|| =

∫
|n| for the functions n.
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A.1.2 Proof of lemma 2.3: all jobs filled in producing vintage

Proof. Y (τ̄) > 0 implies that some open ball Bε(τ̄ , h̄) lies in the support of n for
some h̄ ∈ (0, 1). If there was some h′ such that (τ̄ , h′) did not lie in the closure
of n’s support, then there would be a ball Bε′(τ̄ , h

′) with ε′ ≤ ε in which wages
must be infinity — if not, firms should optimally choose to employ some workers
there. But then, any career segment passing through Bε′(τ̄ , h

′) would yield infinite
wages yet could be reached with a finite cost, implying that W =∞. This is clearly
impossible since resources in the economy are bounded, see lemma A.1.

A.1.3 Proof for lemma 2.4: finite support of technologies

Proof. Since there exists τ such that w(τ, 0) > 0 (by the assumptions on Ỹ and w̃),
there is a strictly positive flow value ε > 0 that a worker can secure by working
continuously in (τ, 0). Now, we will argue that in very old vintages, this value cannot
be provided to workers since TFP eventually goes below any positive bound.

Now, fix some old vintage S. Note that in equilibrium, the value of every career
segment l′ (which may be of finite or infinite length, and where we cut off parts
in vintages younger than S) spent in vintages above S must exceed the value of
working for ε — if not, the worker should certainly replace the segment by ε:

ṽ(l′) ≡
∫ l1

l0

e(γ−β−δ)tw(t− s′(t), h′(t))dt ≥
∫ l1

l0

e(γ−β−δ)tεdt

The inequality must hold since since l′ also includes non-negative human-capital-
accumulation costs.

Now, observe that the value of all discounted career segments in vintages older
than S has to be lower than total discounted wages and thus production in those
vintages. Integrate the above inequality over all career segments of type l′ in the
economy:∫

all l′
ṽ(l′) ≤

∫ ∞
0

e(γ−β−δ)t
∫ t−S

−∞

∫ 1

0

n(t, s, h)w(t, s, h)dhdsdt ≤

≤ ȳe−γS
∫ ∞

0

e(γ−β−δ)t
(∫

s,h

n(t, s, h)

)
dt,

where in the last step I used that the upper bound on production for vintages even
older than S is at most e−γS ȳ for some ȳ <∞, see lemma A.1) for a proof.

On the other hand, we know that each agent must weakly prefer working in an
old vintage to working for ε — again, integrating up over all segments we get:∫

all l′
ṽ(l′) ≥ ε

∫
e(γ−β−δ)t

(∫
s,h

n(t, s, h)

)
dt

But combining the above inequalities yields a contradiction: by choosing S large
enough, we can make e−γS ȳ < ε, making it impossible that very old vintages provide
enough value to be attractive to workers.
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A.1.4 Proof of lemma 2.7: no holes in vintage space

Proof. Suppose there was some τ ′ ∈ (τ0, τ1) for which Y (τ ′) = 0. Then there must
be a positive measure of career segments ending on [τ0, τ

′) and the final wages of
these segments must be equalized, which implies that all agents leave the vintage at
once for some τe = sup{τ : Y (τ > 0)} and that w(τe, h) = e−γτe ȳ = (β + δ − γ)W
for all h. But this contradicts the fact that w(T ∗, h) = e−γT

∗
ȳ = (β + δ − γ)W

since T ∗ ≥ τ1 > τ ′.

A.2 Substitutability in production function: ρ = 1

This subsection contains the proofs for the statements in section 2.7, throughout
which the production function is assumed to be linear.

A.2.1 Always enter newest vintage

Lemma A.2. (Always enter newest vintage under substitutability) If Ỹ = ỸCES
with ρ = 1, then for any optimal life h(t) = 0 implies τ(t) = 0 at the beginning of
segments and τ(t) = 0 almost everywhere on non-segments.

Proof. Suppose the worker chose a career segment with s(t1) > t1 on t ∈ [t1, t2).
Then this career is strictly dominated by choosing the same career in s(t1) = t1.
Obviously, the same holds true for choosing s(t) > t and h(t) = 0 on non-segments
of positive measure.

A.2.2 Paths cross at most once

Lemma A.3. (Paths cross at most once) Assume Ỹ = ỸCES with ρ = 1. Suppose
that γ̃ 6= γ, but fix all other parameters. Let h(·) and g(·) be optimal careers given
productivity growth γ and γ̃, respectively. Then we have:

h(t) ≥ g(t) and ḣ(t) < ġ(t) ⇒ h(s) > g(s) for all s < t.

Proof. Suppose that the paths crossed again and denote by s the first crossing
point, i.e. s = maxu<t{u : h(u) ≤ g(u)}. Together with h(t) ≥ g(t) this implies

h(t)− h(s) ≥ g(t)− g(s)⇒
∫ t

s

ḣ(u)du ≥
∫ t

s

ġ(u)du, (11)

i.e. h must grow by at least as much as g over the interval to end up above g. By
the assumption on the wage function, wh(h) is a decreasing function in h. Using
the FOC (3), this implies that for all u ∈ (s, t), we have

c′
(
ḣ(u)

)
=

∫ t

u

e−βvwh[h(v)]dv + e−β̃(t−u)c′
(
ḣ(t)

)
<

<

∫ t

u

e−β̃vwh[g(v)]dv + e−β̃(t−u)c′
(
ġ(t)

)
= c′

(
ġ(u)

)
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since by assumption ḣ(t) < ġ(t) and wh[h(v)] ≤ wh[g(v)] point-wise; the inequality
follows from c′ being increasing. This again implies ḣ(u) < ġ(u) for all u, which in
turn contradicts (11).

A.2.3 Proof of proposition 2.8: shorter horizon lowers tenure
premia (ρ = 1)

Proof. Without loss of generality, take two optimal career segments h̃ and h in
vintage s = 0 starting with h̃(0) = h(0) = 0 and T̃ ∗ > T ∗. Now suppose that

h̃(T ∗) ≤ h(T ∗). First, note that ḣ(T ∗) = 0 but
˙̃
h(T ∗) > 0 by equation (7) and

the fact that c′(ḣ) = Vh. By lemma A.3, the two paths cannot cross again for any
0 ≤ t > T ∗. But this is a contradiction to h(0) = h̃(0) = 0. By the same argument,
the two paths cannot intersect at any other point 0 < t < T ∗(γ). So we must have
h̃(t) ≥ h(t) and so w(h̃(t)) ≥ w(h(t)), which implies the desired result.

A.2.4 Proof of proposition 2.9: faster growth shortens careers
and lowers tenure premia

Proof. Let Z(γ) be the value of being an inexperienced worker at time 0 given
vintage productivity growth γ. The worker’s problem is then to choose the switching
time T when to leave the vintage to maximize

Z̃(γ, T ) = K(T ) + e−(β−γ)TZ(γ),

where K(·) is given in (8). Invoking the assumption that K(·) is twice differentiable,
the derivatives are computed as

Z̃T (γ, T ) = K ′(T )− (β − γ)e−(β−γ)TZ(γ) (12)

Z̃TT (γ, T ) = K ′′(T ) + (β − γ)2e−(β−γ)TZ(γ), (13)

The FOC for the optimal career length T ∗(γ) is Z̃T (γ, T ∗(γ)) = 0, the SOC is
Z̃TT (γ, T ∗(γ)) < 0.

I will now state the problem in slightly different terms, which will enable us to
derive how Z∗(γ) ≡ Z(γ, T ∗(γ)) changes as γ changes. Note that since the worker’s
problem is recursive, we can write his value as Z̃(γ, T ) = K(T )/(1 − e−(β−γ)T ).
T ∗(γ) maximizes the function Z̃(γ, T ) for a given γ — indeed, the first-order con-
ditions yield just the same result as in the problem above when maximizing Z̃(γ, ·).
But the formulation here is much more handy to see what happens to the agent’s
value when we change γ:

∂Z∗(γ)

∂γ
=
dZ(γ, T ∗(γ))

dγ

∣∣∣∣∣
γ,T∗(γ)

=
e−(β+γ)T∗

1− e−(β−γ)T∗
T ∗Z(γ, T ∗)

where the envelope condition Z̃T (γ, T ∗(γ)) = 0 is used.
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Now, re-state the first-order condition for T ∗(γ) from (12):

K ′
(
T ∗(γ)

)
= (β − γ)Z∗(γ)e−(β−γ)T∗(γ)

Take the total derivative of this equation with respect to γ and use (13) to obtain

dT ∗

dγ
Z̃TT

(
γ, T ∗(γ)

)︸ ︷︷ ︸
<0 by SOC (13)

= (β − γ)e−(β−γ)T∗(γ)Z∗(γ)︸ ︷︷ ︸
>0

[
T ∗(γ)

1− e−(β−γ)T∗(γ)
− 1

β − γ︸ ︷︷ ︸
≡Φγ(T∗)

]

(14)
We see that if T ∗ is large, also Φγ grows large, implying that also the effect dT ∗/dγ
is negative and large in absolute value. When taking T ∗ → 0 and using L’Hopital’s
rule, one finds that Φγ → 0, implying that the effects on T ∗ become very small.

The derivative of Φγ in T ∗ is

Φ′γ(T ∗) =
1− 1+(β−γ)T∗

e(β−γ)T∗

(1− e−(β−γ)T∗)2
.

Note that in the numerator, 1 + (β − γ)T ∗ is nothing but the first-order Taylor
expansion of the function e(β−γ)T∗ in T ∗ around 0, which always stays below the
function itself since the exponential function is convex. This implies that the frac-
tion in the numerator is always smaller than one, implying that Φγ is globally
increasing. This in turn implies Φγ > 0 (recall that limT∗→0 Φ(T ∗) = 0), which
tells us we have dT ∗/dγ < 0 for all γ > 0.27

There may exist values of γ where T ∗(γ) = 0; in this case, the statements in
the proposition are trivial.

Finally, since T ∗(γ) is a decreasing function it follows from proposition 2.8 that
pγ(t) is decreasing in γ for any fixed t > 0.

A.3 Complementarity in production (ρ < 1)

This subsection contains the proofs for the statements in section 2.7, throughout
which an Inada condition is invoked on the production function.

A.3.1 Proof of lemma 2.10: vintage T ∗ has highest entry wage

Proof. By corollary 2.6, w(T ∗)/(β + δ − γ) = W , i.e. always working in the oldest
vintage as an unskilled worker is an optimal strategy. Suppose w(τ, 0) > w(T ∗, 0)
for some τ . Then always working in position (τ, 0) would give value (β + δ −
γ)w(τ, 0) > W , which contradicts W being the maximal attainable value for a
career starter.

27Note that these calculations fail to provide us with any upper bound on dT ∗/dγ, so
in principle this change can be arbitrarily large.
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A.3.2 Proof of lemma 2.11: wage explosion for the skilled in
young technologies

Proof. First, I show that the cost C(∆h,∆t) of accumulating human capital ∆h in
a time interval ∆t goes to infinity for fixed ∆h when letting ∆t → 0. By Jensen’s
inequality, the minimal cost of accumulating ∆h within ∆t is by setting a constant
ḣ = ∆h/∆t throughout ∆t. Then C(∆h,∆t) ≥ c(∆h/∆t)∆t → ∞ if ∆t → 0 by
our assumption on c(·).

By lemma 2.7, Sn must be a rectangle (T0, T
∗) × [0, 1]. Now, suppose there

was no singularity for w in the upper left corner and w(T0, 1) < ∞. Then, by
continuity of w, for each ε there is a ball Bδ(T0, 1) in which wages deviate not more
than ε from w(T0, 1). So the parts of any career segment contained in Bδ(T0, 1)
yield bounded wage payments. But we can definitely find a sequence of careers for
which learning costs inside the ball exceed any bound. To see this, set ∆h = δ, take
a sequence ∆τ → T0 and note that the cost of reaching (T0 + ∆τ, 1) inside B must
go to infinity. Note also that a positive measure of workers must take such paths
since no region is empty by lemma 2.3. But then, those workers cannot behave
optimally and should change their h-path through the ball B, which is inconsistent
with equilibrium.

This also implies that T0 = 0. If this was not the case, then workers with
careers in Bδ(T0, 1) should reach those by choosing flatter careers entering at τ = 0,
which would imply that those careers could achieve unbounded value by the above
argumentation. This contradicts W <∞.

A.3.3 Proof for corollary 2.12: wage compression

Proof. The first statement follows from w(τ, 0) ≤ w(T ∗, 0) for all τ < T ∗ (see
lemma 2.10) and w(ε, 1) → ∞ (see lemma 2.11). The second statement follows
from corollary 2.6.

A.3.4 Proof for corollary 2.13: obsolescence/wage losses

Proof. The first statement follows from the reasoning laid out in lemma 2.11: there
is a positive measure of agents with high human capital h ∈ [1 − ε, 1] in young
vintages τ ∈ (0, ε] with a high wage w(τ, h) > M , M large, which must experience
wage losses once they leave the high-wage region. The second statement is an
obvious consequence of lemma 2.10 and corollary 2.6.

A.4 Planner’s problem: formal analysis

Consider a social planner who weighs the utility of an agent born at t with e−βt.
Since it costs the planner e−δ(u−t) units of time-u output to supply one unit to each
surviving member of a cohort born at t and since utility is linear for all agents, it is
easy to see that the planner’s criterion is then to choose a function n(t, s, h) (which
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we require again to be C1 on a given support Sn) to maximize

J(n) =

∫ ∞
0

e−βt
(
Y
(
n(t; ·)

)
− C(t)

)
dt,

where C(t) denotes the aggregate cost of human-capital accumulation at t. First, I
will derive an expression for C(t) given the optimal strategy to implement a given
density n.

A.4.1 Optimal promotion strategy

It turns out that the optimal promotion strategy is such that agents’ career paths
inside a vintage never cross. Intuitively, if a positive measure of agents crossed each
other’s way, then one could improve upon the strategy by maintaining the ordering
inside the vintage, making agents go shorter paths and hence lowering total cost
for the planner.

Lemma A.4. (No-crossing measure is optimal) For a given density n(t, s, h), it is
optimal for the planner not to let career paths cross when implementing the density.
This means that the planner makes workers follow paths h(t+u) for any given t, any
vintage s and any u ∈ (0, T−t) such that N [t+u, s, h(t+u)] = exp(−δu)N [t, s, h(t)].

Proof. I will proceed constructively to engineer the optimal measure on life paths by
a discrete approximation procedure. Cut time and vintages into intervals of length

2−kT ∗ for k = 1, 2, . . . to obtain grids {t(k)
i }∞i=1 and {s(k)

i }
Ns
i=1. For human capital,

slice such that the points {h(k)
i }

Ns
i=1 yield intervals of length 2−k. Approximate

every path by connecting the middle of the interval [hi, hi+1] it passes through at ti
for t = 0, 2−k, . . . with straight lines. For every given measure µ on lives, summing
up the costs over all possible promotion paths weighted by the densities induced by
the measure µ gives us an approximation Ck(µ) for the total cost of human-capital
accumulation for this µ.

Now, we will construct a lower bound C∗k on this cost for a fixed iteration k
in the algorithm. Note that it is enough to consider the task of moving workers
between ti and ti+1 for each point in time. It does not matter how we combine
these path segments sequentially later, any such combination must obviously yield
the same value.

Without loss of generality, consider the case k = 1 for t1 = 0 and t2 = 1 for the
vintage s = 1 (note that the case s = 0 is trivial). The claim is that it cannot be
optimal to choose a promotion scheme under which the paths of a positive measure
of agents cross. Suppose we chose a promotion scheme under which a positive
measure of agents crossed, i.e. a measure ε̄ went from h̄0 to h1 and a measure
ε > 0 from h0 to h̄1, where all the mentioned h-levels are center points of the
approximation grid, and where h̄j > hj . Now, set ε′ = min{ε, ε̄} and consider the
alternative of moving ε′ agents from h̄0 to h̄1 and the measure ε′ from h0 to h1. This
would dominate the original allocation because of the following argument: take z
to be the intersection of the lines h̄0 to h1 and h0 to h̄1. Then, clearly the process
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of sending everybody to z but then exchanging the flows to keep workers positions
in the hierarchy fixed is just as cheap as the original policy. However, notice that
this new policy must be weakly inferior to sending workers on the direct line h̄0 to
h̄1 and h0 to h1, since this is the cost-minimizing strategy by Jensen’s inequality.

Also, notice that there always exists a policy which does not make any worker
flows cross: first, fill the uppermost interval at t = 1 with the uppermost workers
from t = 0; proceed by filling the second interval with the uppermost workers left at
t = 0 after the first step, and so forth. It is also clear that any process that does not
follow these rules must make some workers cross and that any such process can be
rendered into the proposed no-crossing algorithm by a finite number of improving
operations; this shows that the no-crossing mechanism is optimal for a fixed k.

Obviously, the values C∗k converge to the value of implementing the no-crossing
measure µnc. Now, observe that no other measure µ′ can yield a cost strictly lower
than this: if we approximate µ′ by the above scheme, by the above argument it must
be that Ck(µ′) ≥ Ck(µnc). This precludes C(µ′) = limk→∞ Ck(µ′) < limk→∞ C∗k =
C∗.

It remains to prove that the lines of the no-crossing measure follow the proposed
law. By the algorithm above, it is clear that an agent who at t had N(t, s, h)
workers above himself (position h) in vintage s and survives until t + u will have
exp(−δu)N(t, s, h) workers above himself at t+u if none of the other workers crosses
his path. This proves the second claim of the statement.

In the following, it will prove useful to work with the anti-cdf N(t, s, h) ≡∫ 1

h
n(t, s, h̃)dh̃. In a scheme where agents’ paths do not cross, this function must

decrease at the death rate δ when we evaluate it along an agent’s path staying in
a fixed vintage s. A first-order approximation following a career line {h(t), τ(t)}
yields:

Nt(t, s, h) + ḣ(t, s, h)Nh(t, s, h) = −δN(t, s, h), (15)

where we note that Nh = −n. Taking the h-derivative of the above and imposing
stationarity yields the PDE for the evolution of n, which we already know from
competitive equilibrium, see equation (6).

Re-arranging equation (15) gives us an expression for the career slope ḣ that
the planner should choose given that she wants to implement a given n:

ḣ(t, s, h) =
Nt(t, s, h) + δN(t, s, h)

n(t, s, h)
. (16)

In order to aggregate costs over all agents, we have to weigh the cost of ḣ by the
mass of agents across the (t, s, h)-space and obtain C(t) =

∫
s,h
n(t, s, h)c[ḣ(t, s, h)].

A.4.2 The planner’s first-order conditions

The strategy to obtain the first-order conditions (FOCs) for the planner’s problem
is as follows: I will first allow the planner to to choose any – possibly time-varying
– density n(t, s, h). I then look for a stationary distribution which solves this
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unrestricted problem. This ensures that the planner would not want to deviate
from the stationary density n(τ, h) although she could do so. I will first restrict Sn
to the entire rectangle below a maximal vintage age T and then let T vary to find
the optimal support T ∗.

It turns out that it is useful to introduce the variable u(t, s, h) ≡ nt(t, s, h) and
connect it to the functions n, N and Nt with equality constraints. The Lagrangian
is then28

L =

∫ ∞
0

e−βt

[∫ t

t−T
Y (t, s)− eγs

(∫ 1

0

c
[
ḣ(t, s, h)

]
n(t, s, h)dh

)
ds

]
dt+

+

∫
t,s,h

e−(β−γ)t

[
ν(t, s, h)

(
ḣ− Ṅ + δN

n

)
+

+ λ(t, s, h)

(
n0(s, h) +

∫ t

0

u(t̃, s, h)dt̃− n(t, s, h)

)
+

+ η(t, s, h)

(
Ṅ(t, s, h)−

∫ 1

h

u(t, s, h̃)dh̃

)
+

+ ξ(t, s, h)

(
N(t, s, h)−

∫ 1

h

n(t, s, h̃)dh̃

)
+

+ µ(t)

(
1−

∫ t

t−T

∫ 1

0

n(t, s, h)dhds

)
dt

]
,

where the Lagrange multipliers are scaled by e−(β−γ)t to render them stationary.
The set of constraints linked to the multipliers ν is taken from equation (16). The
constraints connected to µ enforce that total population not exceed the bound 1.
The rest of the constraints link the various variables related to the density n.

The FOC with respect to Ṅ(t, s, h), ḣ(t, s, h) and N(t, s, h) immediately tell us
that η is the marginal cost of human-capital accumulation, and that ν and ξ are
closely linked to η:

η(t, s, h) = e−γτ c′
(
ḣ(t, s, h)

)
(17)

ν(t, s, h) = e−γτ c′
(
ḣ(t, s, h)

)
n(t, s, h)

ξ(t, s, h) = δe−γτ c′
(
ḣ(t, s, h)

)
.

Using these equalities, the FOC with respect to n(t, s, h) becomes

λ(t, s, h) =w(t, s, h)− e−γτ c
(
ḣ(t, s, h)

)
+ e−γτ ḣ(t, s, h)c′

(
ḣ(t, s, h)

)
−

− µ(t)− δ
∫ h

0

η(t, s, h̃)dh̃. (18)

28See Luenberger (1973) for necessary conditions of constrained-optimization problems
in infinite-dimensional spaces.
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where we recognize in the terms involving c(·) the Hamiltonian from the value
function (2) in the worker’s problem. The last remaining derivative is the one with
respect to to u(t, s, h), which will prove crucial to obtain the PDE that is equivalent
to the HJB (2): ∫ T

τ

e−(β−γ)(τ̃−τ)λ(τ̃ , h)dτ̃ =

∫ h

0

η(τ, h̃)dh̃. (19)

At a stationary solution, we require that the density fulfill n(t, s, h) = n̄(τ, h).
As a consequence wages grow at rate γ: w(t, s, h) = eγtw̄(τ, h). The Lagrange
multipliers must also be time-independent, i.e. ν(t, s, h) = ν̄(τ, h), µ(t) = µ̄ and so
forth. Again, I drop the bar-notation in the following.

When substituting the expressions for the Lagrange multipliers (17) and (18)
into (19) and imposing stationarity, one obtains∫ T

τ

e−(β−γ)(τ̃−τ)
[
w(τ̃ , h)− e−γτ̃ c

(
ḣ(τ̃ , h)

)
+ ḣ(τ̃ , h)c′

(
ḣ(τ̃ , h)

)
− µ−

−δ
∫ h

0

η(τ̃ , h̃)dh̃
]
dτ̃ =

∫ h

0

e−γτ c′
(
ḣ(τ, h̃)

)
dh̃ ≡ Λ(τ, h). (20)

We will now see that Λ(τ, h) is an “excess-value function”: it tells us what the value
of an agent to the planner in position (τ, h) is in excess of the unconditional value
µ of an additional unskilled agent.

Directly from (20), we can get the following insights: First, when τ → T , the
left-hand side and with it the marginal cost of human-capital accumulation c′(ḣ),
and hence ḣ itself, go to zero. This says that one should not accumulate human
capital anymore just before the vintage shuts down, which also implies that w(T, h)
must be weakly increasing in h by non-negativity of the multipliers η. Second,when
we let h → 0, the right-hand side of (20) goes to zero and we see that λ(τ, 0) = 0
for all τ . This says that for all entry jobs the value function must be equalized.
Third, when we let both τ → T and h → 0 and use the insights from above, we
obtain w(T, 0) = µ. This says that w(T, 0) is the reference wage of the economy: it
does not provide any valuable experience, so it has to be just as attractive per se
as any other career (in flow terms).

Now, take the derivatives of Λ in (20) in both dimensions to see how this
excess-value function behaves on the interior:

Λh(τ, h) = e−γτ c′
(
ḣ(τ, h)

)
(21)

−Λτ (τ, h) = w(τ, h)− e−γτ c(ḣ) + e−γτ ḣc′(ḣ)− µ− (β + δ − γ)Λ(τ, h). (22)

When adding an agent’s value at the start of a career segment W = µ/(β + δ − γ)
to Λ by defining V = Λ +W , we obtain

−Vτ (τ, h) = w(τ, h)− e−γτ c(ḣ) + ḣVh − (β + δ − γ)V (τ, h), (23)

where we use Vh = Λh = c′(ḣ). When imposing the boundary conditions V (τ, 0) =
V (T, h) = 0 for all τ and for all h, this system is the same as the agent’s HJB (2) and
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its boundary conditions in the decentralized problem. The proof for proposition 2.14
in section A.4.6 will discuss equivalence of the planner’s problem to the competitive
equilibrium more carefully; before, it is useful to analyze the effects of variations
in T .

A.4.3 Uniqueness

A fundamental concavity argument allows us to establish uniqueness of the plan-
ner’s solution:

Proposition A.5. (Solution to planner’s problem is unique) If Ỹ
(
nt,s(·)

)
is strictly

concave in nt,s(h)29, then J(n) is strictly concave in n and there is at most one
density n(t, s, h) that maximizes J(n).

Proof. Suppose there were two maximizers n1 and n2. Clearly, a convex combina-
tion nλ = λn1 + (1 − λ)n2 would also be feasible. Implementing nλ in terms of
promotion costs would be at least as cheap as implementing λn1 and (1−λ)n2 sep-
arately and adding up the costs. Output, however, will be strictly larger for each
fixed pair (t, s) by the concavity assumption on Ỹ (·), which implies the desired
result.

It is worthwhile to note that this argument does not hinge on the assumption
of n being continuous or differentiable, nor on any restriction on Sn.

If Y is not strictly concave, matters are slightly more complicated. Take the
example from subsection 2.6 with a linear production function: uniqueness of the
planner’s problem depends on uniqueness of the partial-equilibrium solution for the
agent. If the agent’s problem has a unique solution for any starting value of h, then
the solution to the planner’s problem is unique.

Existence of equilibrium is not a problem computationally, but could not be
established formally without making an equicontinuity assumption on the function
space for n; see the following section for a discussion.

A.4.4 Existence of solution to the planner’s problem

In order to reap the benefits of compactness, we may restrict ourselves to seek a
maximand n in the planner’s problem that satisfies the following conditions: we re-
parameterize the density from n(t, s, h) to n(t, τ, h), which ensures that the partial
derivative nt → 0 everywhere as t→∞ for any n that converges to a stationary dis-
tribution. Then, compactify the t-dimension using an increasing concave transform
that maps [0,∞) → [0, 1) and define limt→∞ n(t, τ, h) as ñ(1, ·). We then impose
a Lipschitz condition uniformly on the entire family of ñ in which we look for a
maximand (This essentially means that the modulus of continuity for the original
n becomes always stricter in the t-direction as t increases; the “wiggling” in n has
to become smaller as t grows).

29For the CES case, this is equivalent to assuming ρ < 1.
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If we further assume that n is point-wise bounded – which is unproblematic –
, equicontinuity allows us to employ the Arzela-Ascoli theorem which tells that
such a family of functions ñ is a compact set; see Rudin (1973) for a statement of
the theorem. The computational exercises indicate that indeed the optimizer n∗

satisfies a Lipschitz condition; decreasing the grid size to allow for always steeper
functions n does not significantly alter the solution after some point. However, it
is hard to prove that the solution really satisfies such a Lipschitz condition.

A.4.5 Varying T

So far, we had fixed the maximal vintage age T and imposed it on the planner;
we will now be concerned with varying T and finding the optimal T ∗ under the
assumption that Ỹ is strictly concave. By the concavity argument in lemma A.5,
there is at most one T ∗ for which the planner’s criterion is maximized. An argument
analogous to the proof for 2.4 shows that T ∗ < ∞. However, it is very hard to
further characterize T ∗. Computationally, it may be found by finding the optimal n
for each fixed T and then pick the value T ∗ that yields the highest value to the
planner. The following discussion describes regularities and problems that arose in
this process.

First, for T < T ∗, the simulations usually yield the wage structure is not flat in
the last vintage yet. In this case, an argument along the lines of corollary 2.6 shows
that it is preferable for the planner to extend the vintage horizon T marginally;
marginal productivities for different h-levels are not aligned yet and there is room
for further gains through human-capital accumulation.

Second, for T > T ∗ computational problems may arise because of the follow-
ing issue: the problem of finding the optimal n given T will usually not have a
maximand in the space of continuous differentiable functions. To see this, suppose
there was such a maximand n∗(T ). Since J(n∗(T ∗)) > J(n∗(T )), by concavity also
J(nλ) > J(n∗(T )) where we define nλ = λn∗(T ∗) + (1−λ)n∗(T ) for any λ ∈ (0, 1).
In turn, any nλ may be approximated arbitrarily well by any continuous, differ-
entiable n with support until T . So there is a sequence of densities for which J
converges to the global optimum, but the global optimum is not in the space we
are considering since its support only extends to T ∗ < T and is discontinuous at
this point.

A.4.6 Proof for proposition 2.14: equivalence of CE and plan-
ner’s problem

Proof. I will first show that the global solution to the planner’s problem constitutes
a CE. Set wages w(τ, h) = ∂Y (τ)/∂n(τ, h) for τ ≤ T ∗ and w(τ, h) = w(T ∗, 0) = µ
for all τ > T ∗, all h. This implies that firms optimally choose not to produce
for τ > T ∗ since even the cost-minimizing input combination leads to losses. For
τ ≤ T ∗, n(τ, h) is an optimal input choice and profits are zero. For agents, the
HJB (23) and its boundary conditions imply that any career segment which fulfills
ḣ = Vh everywhere is an optimal strategy with starting value µ. This weakly
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dominates any career segment in vintages (T ∗,∞). One may then insert agents into
careers to engineer the entry density n(τ, 0) since agents are indifferent between all
careers. Equation (6) ensures that the density n reproduces itself given the optimal
decisions of agents.

Second, I prove that any CE is a solution to the planner’s problem for some T ≤
T ∗. To start, note that the worker’s HJB (2) and the corresponding optimal pol-
icy (3) in competitive equilibrium have their exact counterparts in equations (23)
and (22) for the planner’s problem. Equation (20) follows by integrating from the
boundary over τ and h, which in turn is equivalent to (19). Since the first-order
conditions (17) and (18) can be used to define the Lagrange multipliers, equa-
tion (19) already ensures that all first-order conditions for the Lagrangian hold for
any competitive equilibrium.

This means that any competitive equilibrium is a stationary point of the La-
grangian.30 However, there can be at most one stationary point for a given T since J
is a concave function and the set of permissible n is convex. Hence this stationary
point must be the global maximum of the planner’s problem corresponding to the T
induced by the respective CE. As the discussion in A.4.5 showed, no such maximizer
exists for T > T ∗, which means that there cannot be any CE with T > T ∗.

It is hard to formally rule out competitive equilibria with T < T ∗. If there is
such a CE, then it must be that µT > µT∗ since these multipliers equal wages in the
last vintage. This seems to suggest that JT > JT∗ , which would be a contradiction
to T ∗ being associated with a global maximizer. However, as the discussion in A.4.7
will show, J also includes the excess value for agents already born at t = 0 starting
with h(0) > 0, which is not comprised in the multiplier µ.31

A.4.7 Decomposing the planner’s criterion

Thinking along the lines of the planner’s problem also proves useful in assessing
vintage productivities. First, note that we can decompose the planner’s criterion
by integrating over the single agents’ values:

J =
w(T, 0)

β + δ − γ
+

∫
τ,h

Λ(τ, h)︸ ︷︷ ︸
≡Λ̄

+

∫ ∞
0

e−(β−γ)tδ
w(T, 0)

β + δ − γ
dt =

w(T, 0)

β − γ
+ Λ̄

where the first equality decomposes the value for the measure one of agents alive
at t = 0 according to V = W + Λ and uses the fact that Λ = 0 for all agents
born later. We can juxtapose this decomposition and the decomposition of J into

30A stationary point is defined as a point where the Frechet-derivative is zero in all
directions, see Luenberger (1973) — this is the equivalent to the gradient being zero in
Rn.

31In the numerical exercises, however, enforcing T < T ∗ always led to an increasing
wage structure at T which is not compatible with a CE according to corollary 2.6.
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production and promotion costs:

Y − C = (β − γ)J = w(T, 0) + (β − γ)Λ,

where we write Y = Y (0) and C = C(0). Since Λ ≥ 0 and C ≥ 0, this equation
says that labor productivity in the last vintage w(T, 0) is lower than average labor
productivity Y in the overall economy. Furthermore, it gives us upper bounds for
both C and Λ that can be empirically assessed by observing productivity in dying
vintages and average productivity in the economy:

C ≤ Y − w(T, 0), Λ ≤ Y − w(T, 0)

β − γ
.

B Computational algorithm

The following method discretizes the state space into a finite number of vintages
and a finite number of rungs in the skill ladder. The algorithm can be interpreted as
introducing a random element to skill accumulation (see Kushner & Dupuis, 1992,
on the approximation of continuous-time models by discrete-time Markov chains).
The algorithm is not only useful compute an approximation to the equilibrium,
but also to form some intuition about the value function, agent’s paths and other
objects of the (continuous) model. The death probability δ is set to zero to simplify
the exposition; of course, all arguments presented here also apply to the case δ > 0.
Throughout, we only consider stationary allocations, i.e. variables depend only on
(τ, h) but not on t.

First, construct a discrete grid on the rectangle (0 ≤ τ ≤ T, 0 ≤ h ≤ 1 as follows:
divide the vintages into S sub-intervals (of equal size ∆τ) and the experience levels
into h sub-intervals (of equal size ∆h). The center points of these intervals are
denoted by {τi}Ti=1 and {hj}Sj=1.

To approximate skill approximation choices ḣ, we linearly interpolate the value
function between adjacent cells. If the grid is such that workers climb less than ∆h
over a time interval of ∆τ in all cells, than linear interpolation is equivalent to the
following “stochastic careers”: set the probability p(τi, hj) that the agent moves
one box up (from hj in vintage τi to hj+1 in vintage τi+1, that is) such that the

expected slope of his career equals ḣ(τi, hj), but that it does not exceed one:

p(τi, hj) = min

{
ḣ(τi, hj)

∆τ

∆h
, 1

}
This means that in order to be able to replicate very steep slopes in this fashion,
we need to make the slope ∆h/∆τ become successively greater as k grows. I will
make the following limiting argument: if we have an infinite sequence of discrete
approximations as described above, choose the number of grid points as Sk = kS0

and Hk = k3/2H0 (the reason for this choice will become clear later). Now, since
the number of grid points for the hierarchy grows faster than the number of grid
points for vintages, the maximal possible slope ∆hk/∆τk will grow to infinity, so
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any slope ḣ will be covered from some k on, and all points in the upper-left corner
of the rectangle will be reached by some mass from some k on. Of course, for each
given grid size there still might be some cells in which the bound 1 is reached.

Consider now how the density of workers evolves on the grid:

n(τi+1, hj) =
[
1− p(τi, hj)

]
n(τi, hj) + p(τi, hj−1)n(τi, hj−1).

Now, introduce the (upward-) difference operators ∆hf(τi, hj) = f(τi, hj+1) −
f(τi, hj) and ∆τf(τi, hj) = f(τi+1, hj) − f(τi, hj) for arbitrary functions f(·, ·).
Then we can re-write the above as

∆τn(τ, h) =−∆h

[
n(τ, h− 1)p(τ, h− 1)

]
= −n(τ, h− 1)∆hp(τ, h− 1)

− p(τ, h− 1)∆hn(τ, h− 1)−∆hn(τ, h− 1)∆hp(τ, h− 1).

Note that the last term on the right-hand side will become small compared to the
others when the grid becomes very fine. In the limit, the equation becomes equiv-
alent to the mass-transport PDE (6) that describes the behavior of the density n.

Production in a vintage Ỹ (excluding the TFP term e−γτi) is calculated as

Ỹ (τi) =
[∑

(f(τj)n(τi, hj))
ρ

∆h
]1/ρ

,

where again the function f is evaluated in the middle of the corresponding box
(τi, hj). This expression converges to Ỹ (n(τi, ·)) (under mild conditions) for a given
function n(·) as δh→ 0.

The discrete counterpart for wages is

w(τi, hj) = exp[−γτi]fj

(
Ỹ (τi)

n(τi, hj)

)1−ρ

. (24)

Note that this gives the wage rate per unit of time. If we want to calculate the
counterpart to wage payments over time a worker spends inside a box (τi, hj), of
course we have to multiply this wage rate by ∆τ .

The discrete counterpart of the value function is

V (τi, hj) = w(τi, hj)∆τ + e−(β+δ−γ)∆τV (τi+1, hj)+ (25)

= max
ḣ

{
− c

2
ḣ2∆τ + ḣ

∆τ

∆h︸ ︷︷ ︸
=p

e−(β+δ−γ)∆τ∆hV (τi+1, hj)

}
.

Since agents only move upward in equilibrium, we take the upward-difference to
approximate the h-derive of V in the spirit of upwind-differencing.

Solving for the optimal policy gives us

ḣ∗(τi, hj) =
e−(β+δ−γ)∆τ

c

∆hV (τi+1, hj)

∆h
, (26)
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which converges to the optimal policy from the agent’s first-order condition in the
continuous case. Plugging back in, we obtain the Bellman equation

V (τi, hj) = w(τi, hj)∆τ + e−(β+δ−γ)∆τV (τi+1, hj) + e−2(β+δ−γ)∆τ 1

c

(
∆hV (τi+1, hj)

∆h

)2

∆τ.

When dividing this equation by ∆τ and taking the limit as ∆τ → 0, we obtain the
Hamilton-Jacobi-Bellman equation (HJB) (2) for the continuous case.

I solve the system for a given rectangle with length T using an algorithm that
is inspired by how a real economy might converge to a steady state under adaptive
expectations, assuming some inertia in agents’ actions. Given a distribution of
agents nk (where k indexes the iterations of the algorithm) over the grid, one can
calculate the resulting wages from (24). Using the fact that the marginal value of
skill is zero when the vintage dies (i.e. ∆hV

(k)(τT+1, hj = 0 for all j), we can back
out the value function recursively going from τT back to τ1 using (25), which also
yields optimal policies ḣ∗(k) from (26).

As for the promotion efforts ḣ, we now mix some of the optimal policies into the
existing ones: ḣ(k+1) = αḣk + (1− α)ḣ∗(k). As for the entry decisions, I send more
mass into the starting points with higher value and less mass into those with higher
value. Since wages are inversely related to the density, this algorithm drives the
system towards an equilibrium if the tuning parameters are chosen right. Further
work is required to prove that this algorithm is indeed a contraction.

To find T ∗, the vintage horizon that is optimal from the planner’s point of
view, I vary T and find a density nT by the algorithm above. I then choose T ∗ as
the horizon T that maximizes the planner’s criterion described in the beginning of
section 2.8.

The algorithm performs well for a 30-by-10 grid on (τ, h)-space. Increasing the
mesh size from this point on leads to almost identical numerical results but has a
large computational cost.

The complete Matlab code used in the calibration and more detailed documen-
tation are available from the author upon request.

C Data

This study uses the weakly anonymous IAB Employment Sample (years 1975-2001).
Data access was provided via on-site use at the Research Data Center (FDZ) of the
German Federal Employment Agency (BA) at the Institute for Employment Re-
search (IAB) and remote data access, see Drews, Hamann, Köhler, Krug, Wübbeke
& Autorengemeinschaft ’ITM-Benutzerhandbücher’ (2006) for an excellent docu-
mentation of the IAB Employment Sample. The data set is a 2% random sample
of all Germans covered by the mandatory public unemployment-insurance (UI)
scheme. The sample does not include tenured public-sector employees and the self-
employed; these groups are not overwhelmingly large so that the data set can be
regarded as fairly representative of the German labor market.
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Every individual holding a job that fell under the UI scheme for at least several
weeks at any point of the period 1975-2001 was at the same 2% risk of being sam-
pled. For every sampled individual, all available employment spells were collected
and included in the data set.

Available worker characteristics are gender, age and a measure of education32.
For each employment spell of the worker, we observe pre-tax earnings, a 3-digit
occupation code and have an identifier of the employer’s establishment. For es-
tablishments, we have a 3-digit industry classification and some information that
was obtained from aggregates over the original set of administrative data before
the 2%-sample was drawn. These data include 3-digit-level industry classification,
number of employees in the establishment in the respective year, and the first and
last date between 1975 and 2001 in which the establishment hired a worker subject
to UI contributions. I take the first date that the establishment hired a worker as
the establishment’s founding date.

As is common in the literature, I restrict the sample to males who work full
time and are between 20 and 61 years old. For consistency reasons, only workers
born in former West Germany are considered. The following paragraphs provide a
more detailed description of the data and the exclusion restrictions.

I only consider spells coming from the BeH, the database for work relationships
– all spells stemming from LeH, the database for UI payments, are automatically
excluded from the sample. Also, I consider only full-time employees (stib< 8). Fur-
thermore, all spells that are marked as “geringfügige Beschäftigung” (tax-exempt
part-time employment) are dropped. Note that apprentices and interns are in-
cluded in the sample. This is a deliberate choice; since these employees constitute
arguably a considerable fraction of the labor force that has no job-specific skills yet,
it would not be desirable to discard this information in a study on human-capital
accumulation.

Also, I only consider individuals whose first employment is with an establish-
ment located in former West Germany. This is done since reunification in 1990 was
a major disruption for the careers of East Germans; it is not clear how this event
affected these workers’ human-capital-accumulation choices. Furthermore, some
quality checks are performed on the data: spells of individuals for whom more than
one full-time job is declared are discarded. Also, spells with unreasonably low daily
earnings are deleted (below 7 Euros in 2000 Euros per day).

Earnings are adjusted for inflation using the consumer price index for West
Germany provided by the Bundesbank (the German Central Bank).

Stata programs and documentation on how the moments in section 3 were
obtained in detail are available from the author upon request.

32This education measure is only filled for employment contracts where education infor-
mation is necessary to determine UI contributions or benefits, so its information content
is limited.
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