
Selection and Publication of Network Interface Cards in Multihomed Pervasive

Computing Devices

Alberto Cortés-Martı́n∗, Carlos Garcia-Rubio∗, Celeste Campo∗,

Estrella M. Garcı́a-Lozano∗ and Alicia Rodriguez-Carrion∗

∗Department of Telematic Engineering

University Carlos III of Madrid

Madrid, Spain

Email: {alcortes, cgr, celeste, emglozan, arcarrio}@it.uc3m.es

Abstract—Many modern devices come with several, het-
erogeneous, network interface cards (NICs). However, simple
operations like transferring data flows to the cheapest NIC or to
one with enough Quality of Service (QoS) are awkward tasks on
most Operating Systems. In this paper, we discuss the criteria
to select the proper NIC for a given data flow. We also present
a new Operating System service, called netqos, to publish data
and figures of merit for these criteria. The main objective of
netqos is providing relevant information to applications and
middleware about NIC selection criteria, isolating them from
the idiosyncrasies of the many QoS gathering tools and allowing
to choose the proper NIC to fit their needs. We have built this
new service as a synthetic file system for the Linux kernel. We
describe our experiences in using it in a real-world scenario
and the practical and inherent limitations of this approach.

I. INTRODUCTION

You just get home from work, and your wearable computer

tries to switch on the lights of your hall. Your device is

still using the GPRS NIC that it was using while you drove

there. However, it would be preferable to use your home

Wi-Fi instead: that way your connection to your hall lights

will circumvent your residential gateway firewall, save some

battery and may even be cheaper.

This simple example illustrates the main topic behind our

research: how do you select the proper NIC to use in a device

with several NICs?

Of course, straightforward solutions can solve some of

the problems easily: in the proposed scenario, a device that

just switches to your home Wi-Fi, whenever it is available,

will solve the problem. Actually, many modern smart phones

do this automatically. However, simple, hard-wired solutions

are not enough in scenarios that are more complicated:

As you approach your hall, your wearable computer

detects your home Wi-Fi connections and switches to it.

The device turns on the lights of your hall just fine, but

the download of your favorite sitcom is delayed, as your

son is saturating your home ADSL connection with his P2P

activity. Also, the upload of tomorrow’s travel plan to your

car is halted, as your car can only be reached through

Bluetooth while it is shut off.

Generic scenarios in pervasive environments require NIC

selection strategies based on diverse criteria, and the user

should not be bothered in the process. The main topics of this

paper are what NIC selection criteria are relevant and how to

expose them to the Operating System (OS), middleware, and

applications for easy automation of the selection process.

Multihomed devices are devices with several network

interface cards (NICs). In the past, a network router was

the classical example of a multihomed device. Nowadays,

all end-user mobile devices are usually multihomed; having

several, heterogeneous NICs allows an always-connected

approach to networking and opens the door for service

continuity through vertical handovers.

Operating Systems have a long tradition in supporting

several NICs, and provide convenient abstractions to isolate

applications from the number and nature of the available

hardware interfaces. However, these traditional infrastruc-

tures lack the dynamism, context-awareness and self-healing

capabilities required to support pervasive computing: the

responsibility of choosing what NIC to use for all com-

munications is laid upon the user, and on most OSs, some

expertise is required.

Using more advanced schemes to benefit from the plethora

of NICs in a device is almost impossible even for advanced

users. How to choose the best NIC for each network flow,

given your location and battery status? The common ap-

proach to NIC selection in mainstream OSs is too restrictive

and force pervasive middleware and applications to fight

against the OS multihoming support instead of taking ad-

vantage of it.

In pervasive computing environments, it is not feasible

to burden the user with these decisions [1]: automation

is needed. This means we need a comprehensive list of

NIC selection criteria and some OS API to access them

programmatically; in this paper, we present both.

Section II of this document describes the abstractions,

infrastructure, and criteria used by mainstream OSs to decide

what NIC to use in multihomed devices, and emphasize

their limitations for pervasive computing. Section III of this

document list and discuss several new NIC selection criteria

1

Cita bibliográfica
Published in: 8th IEEE International Workshop on Middleware and system support for pervasive computing. (Seattle, USA, march 21-25, 2011), p. 239-244

that should be taken into account on pervasive computing

environments, along with the difficulties we met trying

to consider them. Section IV presents a new Operating

System service to publish NIC selection criteria for the

benefit of middleware and applications. We explain design

decisions, along with its practical and underlying limitations

in pervasive environments.

II. THE COMMON APPROACH TO NIC SELECTION

The most common approach to NIC selection is the

routing table. The routing table is a kernel data structure

that holds what destinations are reachable through each NIC,

among other things. There are three types of routing table

entries according to how many hosts they stand for:

• Host routes or point-to-point routes; tell which NIC to

use for single, unique, destinations.

• Subnetwork routes; associate all destinations in a

subnetwork to a certain NIC.

• Default routes are used when all other entries failed

to match a destination address.

To keep the routing table small, a few subnetwork routes,

or even a default route, is preferred over many host routes,

whenever the network topology allows it.

If more than one NIC fulfill all Layer 3 requirements

to reach certain destination, most Operating Systems use

simple solutions like the following ones:

• Use the route with the smallest metric (i.e. number of

hops to destination). This is the old UNIX and current

Windows approach (Windows 2000 and successors [2]).

The metric concept only makes sense for point-to-point

routes, as each destination in a subnetwork route may

have a different number of hops; therefore, the con-

cept of metric is becoming a catchall placeholder that

reflects the degree of preference the host administrator

has when many routes to destination are possible. Some

Linux routing daemons still use this metric concept

to reflect what they know about the network topology

([3]).

• Use the most specific entry to the destination, that is,

choose host routes over subnetwork routes, and just use

default routes as a last resort. This is the current practice

in modern UNIX/Linux systems ([3], [4]).

• Use the first route that comes up in the table, ignoring

the rest. This is what Windows NT does ([5]).

Any of these three approaches are quite naive for mul-

tihomed devices in pervasive scenarios. We would like to

consider additional criteria for NIC selection, like price,

QoS, security or user preferences.

A. Common alternatives to routing tables

Routing tables lack the necessary expressive power to

cover all these new criteria, some of them are not even Layer

3 concepts. Proposed alternatives, like the ones in [6]–[10],

share a common workflow pattern:

1) Measure and compile relevant data and traces, like the

bandwidth and loss rates of a Wi-Fi interface.

2) Process and calculate figures of merit with enough

expressive and comparison power, like quality of ex-

perience on a video streaming.

3) Handle external events to allow for some kind of

context awareness, like knowing when the device is

disconnected from the power plug and starts using the

battery.

4) Interpret some kind of policy description language that

will drive the final decision

5) Use an expert system to apply the policies from step

4 to the data gathered in steps 1, 2 and 3.

Operating Systems services are especially apt for storing

data and traces from step 1 and the notification of the events

from step 3.

However, mainstream OSs lack services to store data and

traces from step 1, therefore middleware has to build such

services from scratch. Applications and measure programs

are thus coupled and dependant on this middleware. A

modular approach will speed up development, and make

applications more portable, avoiding ad-hoc solutions in

userspace.

III. SURVEY OF NEW NIC SELECTION CRITERIA

In multihomed devices, more than one NIC can fulfill the

Layer 3 requirements to reach a destination. Currently, the

OS routing table resolves this conflict with simple policies

ignoring several important factors:

• Link Layer information: Like signal to noise ratio,

maximum bandwidth or battery consumption. As an

example, it will be interesting to discard the NICs

that cannot offer the minimum bandwidth required by

an application, or discard NICs with a high power

consumption while in battery mode.

We recommend a certain degree of isolation from the

particular details of each link Layer; processing these

data should not require a deep understanding of each

NIC low-level details to allow an easily comparison of

these values between different NICs.

Many of these data will depend on how the device

is used, for example, battery consumption of wireless

NICs depends on the send-receive ratio or the presence

of other devices nearby. Many of these details, as they

are difficult to predict, may be replaced by standard

figures from common scenarios.

• Additional information from the IP Layer. Other IP

Layer elements can be taken into account to classify

a communication; For example, the encapsulated trans-

port protocol, differentiated services or the traffic class

and flow label from IPv6. For example, route all data

from VoIP applications through certain NIC.

• Information about the session and application

Layer. For example, route all HTTP traffic through a

2

public network and all SSH traffic through your office

corporate network. Getting this kind of information

about the session and application Layer is not always

possible, due to encryption or the use of non-standard

ports. Applications can help by issuing explicit notifi-

cations about their data flows.

• Information about the service provider: cost, AAA

policies, port filtering, firewalls, usage policies or con-

tractual bandwidth; As for example, route all pod-

cast downloads through a cheap service provider.

[6] describes some security issues about how service

providers can publish their usage restriction guidelines.

• Security. Some physical and link Layers are more

insecure than others are, or they provide too much infor-

mation about the sender. Using cryptography, protocol

obfuscation and steganography in Layer 3 protocols and

above, may not be enough; the simple fact of revealing

your presence, approximate location or the statistical

pattern of your traffic can be a threat on certain high

security scenarios. There are also political considera-

tions about routing your data through certain countries

or organizations. [11] includes a brief description of

these problems in military scenarios.

• Link reliability is an important consideration for some

applications, as civil emergency alert systems or police

force communications. Even if multihomed devices

could handle path failures seamlessly, the downsides

of a handover can discourage the use of non-reliable

links.

• Content distribution networks. Paid subscriptions to

content distribution networks may be only accessed

through certain service providers. Applications using

these services should only use interfaces from where

the service can be reached.

• QoS criteria for applications have a strong end-to-

end component, so they can be hard to collect. If the

bottleneck is not in the access network, end-to-end QoS

parameters will not be related to QoS on the first hop.

• User and application preferences. User and applica-

tion preferences are generally expressed as policies, as

they often combine several of the already mentioned

criteria. On multiuser devices, similar data flows may

be routed differently due to different user policies. OS

administrators may impose restrictions on how NICs

are used through these same user policies. Very high-

level policies should be easy to issue, for example,

“use the cheapest interface for all present and future

communications”.

It is quite complex to extend the functionality of the

current routing tables to make them aware of all these

criteria and policies. Routing tables simply do not have

the required expressive power. The description of user or

application policies is a complex topic by itself, and the

.

|−− figures/

| |−− bw/

| | |−− eth0

| | |−− eth1

| | |−− ...

| | ‘−− units

| |−− loss/

| | |−− eth0

| | |−− eth1

| | ‘−− units

| | |−− ...

| ‘−− ...

| | ‘−− preferred

| ‘−− ...

‘−− version

|−− policies/

| |−− on_battery/

; tree /sys/kernel/netqos

Figure 1. Partial file listing of the netqos file system.

decision mechanisms must understand the language used

to express the policy rules. [12] and [13] describe two

languages for the definition of routing policies of data flows

in multihomed devices.

IV. A FILE SYSTEM TO PUBLISH NIC SELECTION

CRITERIA

We believe that publishing criteria for NIC selection must

be an OS service. From the point of view of applications,

there are two immediate ways to take advantage of such a

service:

• Applications can choose which NIC is best for their

needs, and request the OS to route their traffic through

it. This is the main target of the service.

• Applications can adapt to current NIC capabilities if no

better NIC is found.

We propose a synthetic file system1 to store and publish

NIC selection criteria.

The contents of the files in this new file system are

data and figures of merit that middleware and applications

can read or write. We organize these files in a hierarchical

structure using regular directories. The name of these files

and directories are straightforward representations of the

kind of data they store and to which NIC they belong. We

have named this new OS service netqos2.

Once mounted, the netqos file system looks like in Fig-

ure 1. The figure shows a (partial) file listing form our test

system, which has several NICs (eth0, eth1. . .). From

now on, we will refer to the files and directories form our

1see section IV-D
2The name is misleading, but we still use it for historical reasons

3

Measurement

Daemons
Applications

Policy

Daemons

netqos

Kernel

write

read

read/write

Figure 2. Processes that use netqos and the operations they typically
perform.

synthetic file system by its relative path to its mounting

point.

The file version holds the file system version number;

processes using our file system must check this file to avoid

compatibility issues between versions.

Directories like figures/bw/ or figures/delay/,

store files hosting the corresponding information for each

available NIC. Each of these files is named after their

corresponding NIC.

The files figures/*/units hold the measurement

unit that the rest of the files in the given directory are using.

The information shared by netqos is quite raw: a string

representation of the last value of several NIC selection

criteria for each enabled NIC. Complex decisions and

strategies need derived figures: for example, systems with

history or hysteresis thresholds. They can be implemented

by external policy modules that feed from netqos and fetch

their own digested figures to applications through their

policy/*/preferred file.

A. What processes use netqos

Figure 2 shows what type of processes might use netqos.

• Measurement daemons that gather data about NIC

selection criteria figures. They will write their mea-

surements to the files served by netqos. For exam-

ple, a daemon measuring the delay of the network

interface eth0 once by second will write values onto

figures/delay/eth0 each second.

• Applications that use NIC selection criteria. They will

read the files served by netqos. For example, a video

stream server could adapt the quality of the video being

served to the bandwidth available on the NIC it is using

or may ask the kernel to route its packets through a

more capable NIC.

• Policy daemons monitor several figures, and calcu-

late complex figures of merit to identify the pre-

ferred NIC. They publish their results through its

policy/*/preferred file. For example a pol-

icy daemon that recommends the cheapest NIC will

read all figures/price/* files and write onto

policy/cheapest/preferred.

B. An example of use

Data read from the netqos files will be a user readable

string representation of the internal data values and will

include an ending ’\n’ for better user experience.

Data written to netqos does not need to end in ’\n’, but

it will do no harm either. A user can read or write files from

netqos using any of the commands available to access the

file system.

; cd /sys/kernel/netqos/

; cat figures/loss/eth0

0.003

; cat figures/loss/units

% of packets loss

; echo 2.34 > figures/loss/eth0

; cat figures/loss/eth0

2.34

Of course the file system can also be read and written

programmatically through the standard file system API of

your OS (open(2), read(2), write(2), close(2)).

C. Why a file system?

There are several communication interfaces between the

kernel and userspace processes that can be extended to sup-

port this new service: new system calls, new ioctl variations,

asynchronous notification using signals, netlink or ordinary

sockets and synthetic file systems.

We have chosen to use a synthetic file system because

its developer API is simple and universally well know (just

read and write files). This makes application integration

extremely easy while keeping the service portable to any

OS with file system support.

From a user point of view, there is also a long tradition

of well-known applications that can handle the file API: for

example, ls(1), cat(1), or shell IO redirections. This

allows easy scripting of the service and quick prototyping

of new applications.

D. Implementation

We have built netqos as a module for the Linux ker-

nel 2.6.29, using sysfs ([14]) support for synthetic file

systems. The full source code of netqos is available at

https://github.com/alcortes-uc3m/netqos.

Sysfs is a virtual file system that exports Linux kernel

information about devices and drivers to userspace. These

in-memory files may be accessed with the same system calls

or utility programs as regular files and directories on disk. It

is the equivalent of procfs ([15]) for devices and drivers.

A synthetic file system is the generic denomination for a

hierarchical interface to non-file objects and information that

appear as if they were ordinary files. Sysfs is particularly

apt for building synthetic file systems.

4

The core of the implementation is finished and working,

although the current figures of merit and organization of the

hierarchical representation is intentionally open and flexible.

We are interested in receiving feedback to include whatever

figures may be interesting, and to adapt the hierarchical

representation to make it simple and useful.

The current NIC selection criteria used by netqos has

been chosen to fulfill the requirements of the CELTIC

“Easy Wireless 2” international research project3. The main

scenario of the project involves the continuity of service of

a video streaming to a user terminal while it is roaming

between heterogeneous wireless technologies using vanilla

video streaming applications ([16]).

Netqos will support asynchronous polling through the

standard poll(2) and select(2) system calls. Pro-

cesses will be able to subscribe to the files they are interested

in and receive asynchronous notifications about changes in

their data. This allows applications to react easily to changes

in the capabilities of the NIC they are using or to request

the OS to change their flows to other NICs.

E. Limitations

Dynamic interfaces. Netqos does not support dynamic

interfaces as it only builds files and directories for the NICs

present when the module is loaded. When a new NIC is

enabled or an old one is disabled, netqos will not notice it.

We will solve this fundamental limitation in future releases

by making the module aware of kernel notifications about

modifications in NICs status. A high-level events file

could be useful to notify applications about hierarchical

modifications in the file tree.

Userspace policy modules. NIC selection policies must

be keep out of the kernel. The current implementation of

netqos only provides a single publication point for userspace

policy modules, through a high-level preferred file.

Netqos will be extended to support dynamic inclusion of

userspace policies.

Multiple Network Namespaces ([17]) are not supported.

The file system only considers the default network names-

pace. Multiple Network Namespaces support is still recent

and not commonly used. We have not address this problem

yet, but a good solution may be to have different netqos for

each network namespace using the new sysfs support for

network namespaces.

End-to-end NIC selection criteria. Netqos is not useful

for publishing end-to-end NIC selection criteria: for exam-

ple, the available bandwidth on the path to a particular video

streaming server.

The collection of end-to-end NIC selection criteria is

more complex than collecting internal data about the device,

and sometimes needs the collaboration of the corresponding

endpoint. On top of that, a service for publishing end-to-end

figures must be

3http://www.celtic-initiative.org/Projects/EW-2/default.asp

1) Highly dynamic. As communication endpoints comes

and goes quickly in the life of a device.

2) Extremely scalable. The number of endpoints can

grow insanely high.

We think that a file system is not the right tool for such

requirements.

V. CONCLUSIONS

The work presented in this paper is based on our experi-

ence working with multihomed devices. We have described

a comprehensive list of NIC selection criteria and the

lessons we have learned by struggling to use some of them

for mobility support in real-world scenarios with vanilla

applications in mainstream OSs.

We have developed a new OS service, netqos, to overcome

current OS limitations and to improve pervasive applications

support and creation. This new service exposes some NIC

selection criteria through the well-known file system inter-

face.

Netqos proved to be useful and facilitated the development

and integration of third-party applications and middleware.

However, netqos is far from complete; it only supports the

most relevant NIC selection criteria in our current research

scenarios. We are openly looking for contributions and

recommendations to cover more generic scenarios.

We are also currently working to add support for dynamic

interfaces and asynchronous notification to applications, as

they are fundamental features for widespread acceptance.

We plan to improve netqos support for the dynamic

inclusion of policy daemons, allowing third-party modules

to implement their own policies in userspace.

Our most pressing concern is netqos limitations to expose

end-to-end figures. The file system interface seems to lack

the required dynamism and scalability to present end-to-end

figures. We plan to conduct further research on this topic.

ACKNOWLEDGMENTS

Our research has been made possible thanks to the

CELTIC “Easy Wireless II” project. This work was par-

tially founded by UC3M and DGUI in the framework of

the project CCG10-UC3M/TIC-4992, and by the Spanish

Ministry of Science and Innovation within the framework

of the project TEC2010-20572-C02-01 “CONSEQUENCE”.

Our thanks and appreciation to our assigned shepherd for his

patience, and valuable guidance.

REFERENCES

[1] M. Weiser, “The Computer for the Twenty-First Century,”
Scientific American, vol. 265, no. 3, pp. 94–104, 1991.

[2] M. Tulloch, Windows 2000 Administration in a Nutshell,
1st ed. 1005 Gravenstein Highway North, Sebastopol,
California, USA, CA 95472: O’Reilly & Associates, Inc.,
2001.

5

[3] C. Hunt, TCP/IP Network Administration (3rd Edition;
O’Reilly Networking). O’Reilly Media, Inc., 04 2002.

[4] M. A. Brown. Guide to ip layer network administration with
linux. [Online]. Available: http://linux-ip.net/

[5] Microsoft Inc., Ed., Microsoft Windows NT Resource Kit.
Redmond, Washington, USA, 98052-6399: Microsoft Press,
1995, vol. 2.

[6] J. Ylitalo, T. Jokikyyny, A. J. Tuominen, and J. Laine,
“Dynamic network interface selection in multihomed mobile
hosts,” in Hawaii Intl. Conf. on System Sciences (HICSS’03),
vol. 9. Washington, DC, USA: IEEE Computer Society,
2003, p. 315.

[7] A. Peddemors, H. Eertink, and I. Niemegeers, “Communica-
tion context for adaptive mobile applications,” in PERCOMW
’05: Proceedings of the Third IEEE International Conference
on Pervasive Computing and Communications Workshops.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
173–177.

[8] P. Pawar, B. van Beijnum, A. Peddemors, and A. van
Halteren, “Context-aware middleware support for the
nomadic mobile services on multi-homed handheld mobile
devices,” in Proceedings of the 12th IEEE Symposium
on Computers and Communications, ISCC 2007. IEEE
Computer Society, July 2007, pp. 341–348. [Online].
Available: http://doc.utwente.nl/64494/

[9] K. Wac, “Towards qos-awareness of context-aware mobile
applications and services,” in On the Move to Meaningful
Internet Systems 2005: OTM Workshops, ser. Lecture Notes
in Computer Science, Meersman, Robert and Tari, Zahir and
Herrero, Pilar, Ed. Springer Berlin / Heidelberg, 2005, vol.
3762, pp. 751–760.

[10] J.-Z. Sun, J. Sauvola, and J. Riekki, “Application of
Connectivity Information for Context Interpretation and
Derivation,” in Proceedings of the 8th International Conf.
on Telecom, ConTEL’05, vol. 1, June 2005, pp. 303 –
310. [Online]. Available: http://dx.doi.org/10.1109/CONTEL.
2005.185880

[11] J. Palet, M. Diaz, C. Olvera, A. Vives, E. Fleischman,
and D. Lanciani, “Analysis of IPv6 Multihoming
Scenarios,” Internet Engineering Task Force, Internet-
Draft draft-palet-multi6-scenarios-00.txt, Jul. 2004, work
in progress. [Online]. Available: http://tools.ietf.org/id/
draft-palet-multi6-scenarios-00.txt

[12] K. Mitsuya, K. Tasaka, R. Wakikawa, and R. Kuntz,
“A Policy Data Set for Flow Distribution,” Internet
Engineering Task Force, Internet-Draft draft-mitsuya-
monami6-flow-distribution-policy-04.txt, Aug. 2007, work
in progress. [Online]. Available: http://tools.ietf.org/id/
draft-mitsuya-monami6-flow-distribution-policy-04.txt

[13] C. Larsson, M. Eriksson, K. Mitsuya, K. Tasaka,
and R. Kuntz, “Flow Distribution Rule Lan-
guage for Multi-Access Nodes,” Internet Engineer-
ing Task Force, Internet-Draft draft-larsson-mext-flow-
distribution-rules-01, Jul. 2008, work in progress.
[Online]. Available: http://www.ietf.org/internet-drafts/
draft-larsson-mext-flow-distribution-rules-01.txt

[14] P. Mochel, “The sysfs filesystem,” in Proceedings of the
Annual Linux Sumposium, vol. 1, Jul 2005, pp. 203 –
207. [Online]. Available: http://www.linuxsymposium.org/
archives/OLS/Reprints-2005/mochel-Reprint.pdf

[15] T. J. Killian, “Processes as files,” in Proceedings of the
USENIX Summer 84 Conference. USENIX Association,
1984.

[16] VLC: Open-Source Multimedia Framework, Player and
Server. [Online]. Available: http://www.videolan.org/vlc/

[17] J. Corbet. Network namespaces. [Online]. Available: http:
//lwn.net/Articles/219794/

6

