
Empirical Study of a Stacking State-space

Agapito Ledezma, Ricardo Aler and Daniel Borrajo
Universidad Carlos III de Madrid

Avda. de la Universidad, 30
28911 Leganés. Madrid (Spain)

Email: ledezma@inf.uc3m.es, aler@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

Nowadays, there is no doubt that machine learning tech-
niques can be successfully applied to data mining tasks.
Currently, the combination of several classifiers is one of
the most active fields within inductive machine learning.
Examples of such techniques are boosting, bagging and
stacking. From these three techniques, stacking is perhaps
the less used one. One of the main reasons for this relates
to the difficulty to define and parameterize its components:
selecting which combination of base classifiers to use, and
which classifier to use as the meta-classifier. One could use
for that purpose simple search methods (e.g. hill climbing),
or more complex ones (e.g. genetic algorithms). But before
search is attempted, it is important to know the properties
of the search space itself. In this paper we study exhaus-
tively the space of Stacking systems that can be built by us-
ing four base learning systems: C4.5, IB1, Naive Bayes,
and PART. The results that have been obtained in this paper
will be useful for designing new Stacking-based algorithms
and tools.

1 Introduction

Nowadays, there is no doubt that machine learning tech-
niques can be successfully applied to data mining tasks. A
particularly successful approach is combine basic classifiers
to improve accuracy. The most important basic systems
that have been proposed are bagging [4], boosting [9], and
stacking [19]. Bagging uses majority vote to combine sev-
eral classifiers obtained from different subsets of the data
set. Boosting sequentially learns several classifiers, each
focusing on the data that was misclassified by the previ-
ous classifier. All the classifiers are combined by weighted
vote. Both bagging and boosting use the same learning al-
gorithm to generate the ensemble of classifiers. Stacking
learns how to combine the outputs of a set of classifiers that
have been obtained by different learning algorithms. There

are also many variants that are becoming increasingly so-
phisticated, such as LPboosting [2] in the boosting subfield.
There are also many variants of the basic stacking algo-
rithm [5, 6, 12, 14, 17].

The main problem of stacking and any AI tool that needs
to use it, is how to obtain the right combination of base clas-
sifiers and the meta-classifier. If the number of classifiers
and algorithms to use is small, this problem can be solved
by a simple method in a reasonable time: exhaustive search.
For instance, if the goal is to build a stacking system made
of three base classifiers and the meta-classifier, and there
are four available learning algorithms, then only 16 stack-
ing combinations need to be tested. If more classifiers are
needed, then sampling techniques or heuristic search could
be used instead of exhaustive search, in the same spirit as
the wrapper approaches for attribute selection [11].

However, before search is used as the core of automatic
configuration of stacking systems, it is important to know
the properties of the state-space of stacking systems. In
particular, it would be very useful to know the density of
“good” stacking systems in these spaces. We also want
to empirically test the following hypothesis. In principle,
the stacking meta-classifier can determine which base clas-
sifiers to take into account to reach the final decision (the
base classifier outputs are the inputs to the meta-classifier),
much in the same way as any learning algorithm can deter-
mine that some of its attributes are irrelevant (by not using
them in the final hypothesis). If this is the case, usingn� 1

base classifiers should make no difference to usingn clas-
sifiers, as the meta-classifier would learn that one of itsn

classifiers is irrelevant. We explore this issue in detail in the
experimental evaluation section.

In this paper, we carry out an exhaustive study on the
state-space of stacking systems with two, three, and four
base classifiers that have been chosen from four well-known
algorithms: C4.5 [16], IB1 [1], Naive Bayes [10], and
PART [8]. We could have chosen many other very use-
ful learning algorithms, such as neural networks. However,
each experiment is very time consuming, and we have to

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

Cita bibliográfica
Published in: Tools with Artificial Intelligence, 2001, p. 210-217

bound the number of classifiers to be used. Also, we have
used the WEKA tool [18] that did not incorporate until very
recently this type of classifiers. Since the results might be
dependent on the set of chosen classifiers, we will explore
in the future the effect of introducing other types of learning
algorithms. We believe that our results will be useful

This paper is organized as follows. Section 2 gives some
background on stacking and explains how to explore the
state-space of stacking systems. Section 3 describes the ex-
perimental setup and the experimental results, respectively.
Finally, Section 4 discusses those results, and Section 5
draws some conclusions.

2 Stacking

Stacking is the abbreviation to refer to Stacked Gener-
alization [19]. The main idea of stacking is to combine
classifiers from different learners such as decision trees,
instance-based, bayesian or rule-based learners. Since each
one uses different knowledge representation and different
learning biases, the hypothesis space will be explored dif-
ferently, and different classifiers will be obtained. Thus, it
is expected that their errors will not be correlated, and that
the combination of classifiers will perform better than the
base classifiers.

Once the classifiers have been generated, they must be
combined. Stacking uses the concept of meta learner. The
meta learner (or level-1 model) tries to learn how the deci-
sions of the base classifiers (or level-0 models) should be
combined to obtain the final classification. More formally,
given a data setS, stacking first generates a subset of train-
ing setsS1; :::; ST and then follows something similar to
a cross-validation process: it leaves one of the subsets out
(e.g.Sj) to use later. The remaining instancesS � Sj are
used to generate the level-0 classifiers by applyingK dif-
ferent learning algorithms,k = 1; :::;K, to obtainK clas-
sifiers. After the level-0 models have been generated, the
Sj set is used to make the training set for the meta learner
(level-1 classifier). Level-1 training data is built from the
predictions of the level-0 models over the instances inS j .
Level-1 data hasK attributes, whose values are the pre-
dictions of each one of theK level-0 classifiers for every
instance inSj , and the target class; i.e. the right class for
every particular instance inSj . Once the level-1 data has
been built from all instances inS after the internal cross-
validation process, any learning algorithm can be used to
generate the level-1 model. To complete the process, the
level-0 models are re-generated from the whole data setS

(this way, it is expected that classifiers will be slightly more
accurate). To classify a new instance, the level-0 models
produce a vector of predictions that is the input to the level-
1 model, which in turn predicts the class.

There are many ways to apply the general idea of stacked

generalization. Ting and Witten [17] use probability outputs
from level-0 models instead a of class prediction as inputs
to the level-1 model. LeBlanc and Tibshirani [12] analyze
the stacked generalization with some regularization (non-
negative constraint) to improve the prediction performance
on one artificial dataset. Other works on stacked general-
ization have developed different focus [5, 6, 7]. However,
none of them have explored the state-space of classifiers for
analyzing the effects of automatically defining the “best”
classifiers setup.

One of the main difficulties in applying this technique
consists on identifying which learning techniques to use in
the 0- and 1-levels. In this paper, the whole state-space of
stacking systems withi = 2, 3, and4 base classifiers will be
studied. Base classifiers are chosen from a set that contains
C4.5, IB1, PART, and Naive Bayes. The 1-level classifier
is selected from the same set. Once built, each resulting
stacking system is tested with a testing set. In general, ifb

base classifiers can be chosen fromn learning algorithms,
the number of stacking systems that can be built isN =

(nb) � n. In this paper, three sets of experiments have been
carried out, withn = 4, andb = 2, b = 3, andb = 4,
resulting in 24, 16, and 4 combinations, respectively. This
is the space of stacking systems we are going to explore in
this article.

Although the numberN of stacking systems in the state-
space grows fast, it is interesting to know that the effort to
compute all the base classifiers needed to build all the stack-
ing systems is linear. An estimation in terms of the number
of examples to be processed follows (this is quite appro-
priate, as all the learning systems used here are linear in
the number of examples processed). The basic algorithm
of stacking carries out a training cycleJ times. This cy-
cle consists of training all the base classifiers with(J�1)

J
of

the data, and training the meta-classifier with the remaining
1
J

of the data. Finally, all the base classifiers are trained
again with the whole training set. Even if a base classi-
fier obtained from the same learning algorithm (like C4.5)
appears in different stacking systems, it is still the same
classifier, and has to be generated just once. In that case,
if d is the number of training examples, then the number
of examples to be processed to build the base classifiers is
n(J�1

J
� J � d + d) = Jnd. Also, let us suppose that each

stacking system is tested usingW cross validation. In that
case, the number of examples to be processed for training
the base classifiers isWJnd. This quantity grows linearly
in all its parameters.

3 Experiments and results

¿From the many alternatives for inductive techniques,
in this work we have used the algorithms implemented
in the Waikato Environment for Knowledge Analysis,

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

WEKA [18]. This software includes all the learning algo-
rithms that we have used to build the base classifiers and an
implementation of Stacked Generalization (stacking) that
use probability outputs from level-0 models instead a sim-
ple class prediction as inputs to the level-1 model [17]. We
selected four learning algorithms to build the stacking sys-
tem:1

� C: C4.5 [16]. We used the version that generates deci-
sion trees.

� R: PART [8]. It generates a decision list from pruned
partial decision trees generated using the C4.5 heuris-
tic.

� N : A probabilistic Naive Bayesian classifier [10].

� I : IB1. Aha’s instance based learning algorithm [1].

For the experimental test of the stacking system config-
uration we have used five data sets from the well known
repository of machine learning databases at UCI [3]. This
data sets have different sizes and configurations. Table 1
shows the data sets characteristics. In all the experiments
we do ten-fold cross-validation. Thus, all results shown in
this paper are the average of the cross-validation process.

The results obtained in the first set of experiments are
shown in Table 2. In this set of experiments we used two
base classifiers, thus obtaining 24 stacking systems by the
combination of the four learning algorithms available. The
best results in terms of accuracy are given in bold face.
And as shown later in Table 5 most best results in Table 2
have more accuracy than the base classifiers (four out of five
datasets).

In the second set of experiments we increased the num-
ber of base classifiers from two to three, resulting in 16
stacking systems. Table 3 shows the results obtained from
this set of experiments. Also, in four of the five best stack-
ing systems, we found the same configuration of level-0
learning systems, Naive Bayes, IB1 and PART.

In the last set of experiments we used four base clas-
sifiers. The results obtained from these experiments are
shown in Table 4. Except for one domain, the stacking
systems with three base classifiers have better results (Ta-
ble 5) than the stacking systems with four base classifiers.
Table 5 also provides results for the four algorithms used as
standalone learning algorithms. C4.5-Bagging and C4.5-
boosting results are also given for comparison purposes.
The number of classifiers in bagging and boosting systems
was set to 10 (boosting and bagging of C4.5 with this set-
tings has shown good results in the literature [15]).

1For experimental purposes only default setting for all learning algo-
rithms have been used.

4 Discussion

In order to draw conclusions from the experiments per-
formed in Section 3, Table 6 summarizes the best results ob-
tained by each of the three main groups of classifiers used
in this paper: base classifiers, stacking combinations, and
bagging/boosting (actually, Table 5 shows that boosting is
always better than bagging, so only results for boosting are
displayed). Also, the difference between the best and worst
results in the table is shown in the fourth column.

The data collected in the previous section points to the
following conclusions:

1. As it was expected, the best results are always obtained
by the ensemble of classifiers systems (either stacking
or boosting) against the single inductive learning tech-
niques. Differences between the three kinds of systems
are never large (3.34% is the largest, 1.7% on average).

2. In the stacking state-space there are systems that
achieve comparable results to boosting: the average
accuracy difference between stacking and boosting
gives +0.26% in favor of stacking (the same compar-
ison between stacking and the best base classifier re-
sults in +1.51%). Moreover, in those domains where
stacking does better than boosting, it does so quite fre-
quently. For instance, in theDNA domain, S3/S2 find
10/10 stacking systems that are better than boosting
(the proportions are 0.4167/0.625, respectively). Simi-
larly, in theHEART domain, S4/S3/S2 find 2/9/8 stack-
ing systems (out of 4/24/16, respectively) that are bet-
ter than boosting. Also, in these two domains, the best
base classifier does very well (better than boosting, for
instance). Probably, stacking is taking advantage of
this fact.

3. S3 seems to obtain the best results most frequently
(four out of five). Therefore, merely increasing the
number of base classifiers does not always pay off in
terms of accuracy. Also, the meta-classifier in S4 was
unable to determine that one of its base classifiers was
not required (it could have done this by just ignoring
the appropriate base classifier). Otherwise, in all do-
mains, there would be a S4 system that would always
be at least equal to the best of the S3 systems, and this
is not the case.

4. Tables 2, 3, and 4 show that Naive Bayes is the best
meta-classifier in all domains and all combinations
(except in the S2/MUSK case).

The previous analysis refers mainly to the best results
only. Cumulative probability graphs, shown in Figures 1,
2, 3, and 4, and to 5, summarize the behavior of the whole

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

Table 1. Descriptions of the used datasets.
DATASET ATTRIBUTES ATTRIBUTES TYPE INSTANCES CLASSES

HEART 13 NUMERIC-NOMINAL 303 2
SONAR 60 NUMERIC 208 2
MUSK 166 NUMERIC 476 2
IONOSPHERE 34 NUMERIC 351 2
DNA 60 NOMINAL 3190 3

Table 2. Accuracies rates of stacking systems with two base classifiers (S2).
MC BC DNA SONAR HEART MUSK IONOSPHERE

C C-R 93.25 79.04 77.67 81.46 90.88
I-C 93.83 79.52 78.00 86.67 90.03
I-R 92.82 80.00 77.33 85.00 89.17
N-C 95.40 76.19 83.33 82.08 90.88
N-I 94.80 78.57 83.00 86.25 90.03
N-R 95.21 76.19 82.33 81.46 89.74

I C-R 91.91 75.23 73.00 79.58 90.60
I-C 92.94 77.61 71.33 85.21 91.17
I-R 91.81 75.23 76.00 85.00 86.89
N-C 94.58 66.66 74.67 76.25 88.03
N-I 93.89 73.33 78.67 81.88 86.89
N-R 94.20 70.00 76.67 74.58 85.19

N C-R 93.35 79.04 79.67 81.46 91.17
I-C 94.05 80.47 80.67 85.00 90.31
I-R 93.26 79.52 78.33 84.79 91.74
N-C 95.81 78.09 82.67 82.29 90.88
N-I 95.59 79.52 83.00 86.25 88.89
N-R 95.81 75.23 83.67 81.67 91.17

R C-R 93.95 79.04 78.00 81.46 90.88
I-C 93.29 79.04 78.00 86.46 90.03
I-R 92.72 77.61 77.00 85.00 90.03
N-C 95.72 77.61 83.33 82.08 90.03
N-I 94.58 76.66 83.33 86.25 89.74
N-R 95.18 76.66 82.33 81.46 90.03

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

Table 3. Accuracy rates of stacking systems with three base classifiers (S3).
MC BC DNA SONAR HEART MUSK IONOSPHERE

C C-I-R 94.24 80.00 77.00 85.83 91.17
C-N-R 95.37 77.14 82.67 82.08 92.02
N-I-C 95.65 79.04 83.00 86.88 90.60
N-I-R 95.37 79.04 83.33 86.46 89.74

I C-I-R 92.13 76.19 72.33 85.83 91.17
C-N-R 94.87 72.85 74.67 77.92 88.60
N-I-C 94.49 75.71 75.00 84.58 89.17
N-I-R 94.43 74.76 77.33 85.63 86.04

N C-I-R 94.20 80.95 81.33 87.29 90.31
C-N-R 95.97 79.52 82.33 82.71 92.02
N-I-C 96.19 81.42 84.00 88.33 90.60
N-I-R 95.94 81.90 84.33 88.54 92.31

R C-I-R 93.89 76.66 77.00 85.63 85.47
C-N-R 95.75 77.61 82.67 82.08 92.31
N-I-C 95.81 77.14 81.67 86.67 90.60
N-I-R 95.37 70.47 84.33 86.46 91.74

Table 4. Accuracy rates of stacking systems with four base classifiers (S4).
MC BC DNA SONAR HEART MUSK IONOSPHERE

C C-I-R-N 95.13 80.00 83.00 86.67 90.60
I C-I-R-N 95.24 77.14 73.00 85.83 88.89
N C-I-R-N 96.06 80.48 83.33 87.29 92.88
R C-I-R-N 95.87 73.33 81.00 86.67 90.31

stacking state-space in each of the 5 domains. These graph-
ics give the probability (y-axis) of obtaining a stacking sys-
tem with a testing accuracy equal or better than some value
(in the x-axis). The accuracies for the best base classifier
(BC), boosting, and bagging are displayed as vertical lines.
The most remarkable regularities found in these figures are:

� Even though S3 usually finds the best stacking system
in four of the five domains, S4 has a better chance of
finding good enough stacking configurations: S4’s cu-
mulative curve is mostly over S3’s in all domains, Ac-
tually, this ordering is also true for S3 and S2 (S3>
S2).

� S4 configurations display a smaller variation than both
S2 and S3: the worse S4’s stacking configuration is
usually much better than the worse S3’s and S2’s sys-
tems, except in theHEART domain. This result has
to be qualified, because, in S4, there are only 4 con-
figurations, corresponding to the four different meta-
classifiers (the base classifiers are always the same).
Perhaps results would vary more if there were more

0

0.2

0.4

0.6

0.8

1

66 68 70 72 74 76 78 80 82 84

P
ro

ba
bi

lit
y

Accuracy (%)

S2
S3
S4

boosting
bagging

Best BC(IB1)

Figure 1. Cumulative probability in the SONAR

domain.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

Table 5. Accuracy rates of base classifiers and the best stacking systems.
DOMAIN C4.5 IB1 NBAYES PART
SONAR 78.57 79.52 67.14 76.67
HEART 80.33 78.67 84.00 77.67
DNA 94.14 76.44 95.37 93.29
MUSK 81.88 86.25 73.54 81.67
IONOSPHERE 90.31 86.89 83.19 91.17

BEST S2 BEST S3 BEST S4 BAGGING/BOOSTING

(WITH C4.5)
SONAR 80.47 81.90 80.48 80.00/82.86
HEART 83.67 84.33 83.33 77.00/82.00
DNA 95.81 96.19 96.06 94.49/94.58
MUSK 86.46 88.54 87.29 88.75/89.38
IONOSPHERE 91.74 92.31 92.88 90.88/93.73

Table 6. Best results from the three following groups: base classifiers, stacking combinations, and
boosting/bagging with C4.5.

DOMAIN BEST BEST BOOSTING DIFFERENCE

BASE CLASSIFIER STACKING (C4.5) BEST/WORSE

SONAR IB1 (79.52) S3 (81.90) (82.86) 3.34
HEART BAYES (84.00) S3 (84.33) (82.00) 2.33
DNA BAYES (95.37) S3 (96.19) (94.58) 1.61
MUSK IB1 (86.25) S3 (88.54) (89.38) 3.13
IONOSPHERE PART (91.17) S4 (92.88) (93.73) 2.56

0

0.2

0.4

0.6

0.8

1

70 72 74 76 78 80 82 84 86

P
ro

ba
bi

lit
y

Accuracy (%)

S2
S3
S4

boosting
bagging

Best BC (NB)

Figure 2. Cumulative probability in the HEART

domain.

base classifiers to choose from.

� The probability that a stacking system is better than
the best base classifier in the domain is usually not very
large. Table 7 summarizes the relevant values. S2 max-
imum probability is 0.2083. S3 maximum is 0.5625,
and this is the only value over 0.5. S4 is slightly bet-
ter, because it is able to find frequently (>=50%) a
stacking system better than any of the base classifiers
at least in 3 of the 5 domains. If we consider S2[S3[
S4 as the whole state-space, the maximum probability
is 0.3409, which is not very large.

� It is also interesting to know whether a stacking con-
figuration is able to get results equal or better than its
best base classifier. Table 8 displays the probability
that a stacking system is as good (or better) than the
best base classifier in the domain, when that classifier
is used by the stacking configuration. It is surprising
that this probability is often quite low. For instance,
when S2[S3[S4 is considered, 42.86% of stacking
configurations that make use of the best domain base
classifier will be less accurate than it, and this is the
best case (dna domain). This reinforces the idea that it

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

91.5 92 92.5 93 93.5 94 94.5 95 95.5 96 96.5

P
ro

ba
bi

lit
y

Accuracy (%)

S2
S3
S4

boosting
bagging

Best BC (NB)

Figure 3. Cumulative probability in the DNA

domain.

Table 7. Probability of finding a stacking sys-
tem equal or better than any of the base clas-
sifiers.

S2 S3 S4 S2[S3[S4
Sonar 0.2083 0.3125 0.50 0.2727
Heart 0.0000 0.1875 0.00 0.0682
dna 0.2083 0.5625 0.50 0.3636
Musk 0.2083 0.4375 0.75 0.3409
Ionosphere 0.1667 0.4375 0.25 0.2727

is very important to be able to obtain the right combi-
nation of classifiers in the stacking mix.

Table 8. Probability that a stacking configura-
tion that uses the best domain base classifier
is better than it.

S2 S3 S4 S2[S3[S4
dna 0.41667 0.7500 0.50 0.5714
Sonar 0.41667 0.4167 0.50 0.4286
Heart 0.00000 0.2500 0.00 0.1071
Musk 0.41667 0.5833 0.75 0.5357
Ionosphere 0.16670 0.5833 0.25 0.3571

5 Conclusions

The aim of this paper was to systematically study the
state-space of hetereogeneous stacking systems. Here, we
have studied empirically the state-space of stacking systems
with 2, 3, and 4 base classifiers, that can be built using C4.5,
PART, Naive Bayes, and IB1. As this state-space is not too

0

0.2

0.4

0.6

0.8

1

74 76 78 80 82 84 86 88 90

P
ro

ba
bi

lit
y

Accuracy (%)

S2
S3
S4

boosting
bagging

Best BC (IB1)

Figure 4. Cumulative probability in the MUSK

domain.

large, it can be studied exhaustively. The most important
and better confirmed conclusions of this paper are:

� The stacking state-space contains systems which are
comparable to boosting. This is important, because
even though the computational effort of searching for
the best stacking configuration is larger than for boost-
ing, the state-space defined in this paper is small
enough to be explored in a reasonable time. Also, only
a few base classifiers are needed to get comparable re-
sults to boosting.

� However, the density of good stacking systems is not
always high. For instance, it is usually more likely
than not that a stacking configuration randomly chosen
will perform worse than the best base classifier for a
domain. What is worse, even if the best domain base
classifier is used by the stacking configuration, there is
a significant probability that the configuration will do
worse than it.

� Therefore, if larger state-spaces are to be searched (be-
cause we want to use more base classifiers, for in-
stance), heuristics will be needed to do so efficiently.
For instance, our systematic study suggests that Naive
Bayes seems to be the most appropriate meta-classifier.
Also, simple heuristic methods like hill-climbing, sim-
ulated annealing, or genetic algorithms could be used.
We have used genetic algorithms with good results
in [13].

� We have also found out that merely increasing the
number of base classifiers does not always pay off in
terms of accuracy. The best configurations obtained by
S3 (three base classifiers) are better than those of S2,
but also better than the best ones from S4.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

85 86 87 88 89 90 91 92 93 94

P
ro

ba
bi

lit
y

Accuracy (%)

S2
S3
S4

boosting
bagging

Best BC (PART)

Figure 5. Cumulative probability in the IONO-
SPHEREdomain.

� Therefore, it seems that the meta-classifier is not al-
ways able to find which base classifier outputs are ir-
relevant, so it seems a good idea to try to determine
in advance which base classifiers are more appropriate
(or to carry out some wrapper-style search [11]).

References

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based
learning algorithms. Machine Learning, 6(1):37–66, jan
1991.

[2] K. Bennett, A. Demiriz, and J. Shawe-Taylor. A column
generation algorithm for boosting. In P. Langley, editor,
Proceedings of the Seventeenth International Conference on
Machine Learning, pages 65–72. Morgan Kaufmann, 2000.

[3] C. Blake and C. Merz. Uci repository
of machine learning databases. databases
http://www.ics.uci.edu/ mlearn/MLRepository.html,
1998.

[4] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[5] P. Chan and S. Stolfo. A comparative evaluation of vot-
ing and meta-learning on partitioned data. In M. Kaufmann,
editor, Proceedings of Twelfth International Conference on
Machine Learning, pages 90–98, 1995.

[6] D. Fan, P. Chan, and S. Stolfo. A comparative evaluation
of combiner and stacked generalization. InProccedings of
AAAI-96 Workshop on Integrating Multiple Learning Mod-
els, pages 40–46, 1996.

[7] D. Fan, S. Stolfo, and P. Chan. Using conflicts among mul-
tiple base classifiers to measure the performance of stack-
ing. In Proceedings of the ICML-99 Workshop on Recent
Advances in Meta-Learning and Future Work, pages 10–17,
1999.

[8] E. Frank and I. Witten. Generating accurate rule sets without
global optimization. InProceedings of the Fifteenth Inter-

national Conference on Machine Learning, pages 144–151.
Morgan Kaufmann, 1998.

[9] Y. Freund and R. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting.
In Springer-Verlag, editor,Proceedings of the Second Euro-
pean Conference on Computational Learning Theory, pages
23–37, 1995.

[10] G. John and P. Langley. Estimating continuous distribution
in bayesian classifiers. In M. Kaufmann, editor,Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345, 1995.

[11] R. Kohavi and G. John. Feature subset selection using
the wrapper method: Overfitting and dynamic search space
topology. InProceedings of the First International Confer-
ence on Knowledge Discovery and Data Mining (KDD-95),
1995.

[12] M. LeBlanc and R. Tibshirani. Combining estimates in re-
gression and classification. InTechnical Report 9318. De-
parment of Statistic, Univesity of Toronto, 1993.

[13] A. Ledezma, R. Aler, and D. Borrajo.Data Mining: a
Heuristic Approach, chapter Heuristic Search Based Stack-
ing of Classifiers. Idea Group Publishing, 2001. Accepted
for publication.

[14] C. J. Merz. Using correspondence analysis to combine clas-
sifiers.Machine Learning, 36:33, 1999.

[15] J. Quinlan. Bagging, boosting, and c4.5. InProceedings of
the Thirteenth National Conference on Artificial Intelligence
and the Eighth Innovative Applications of Artificial Intelli-
gence Conference, pages 725–730. AAAI Press / MIT Press,
1996.

[16] J. R. Quinlan.C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA, 1993.

[17] K. Ting and I. Witten. Stacked generalization: when does it
work? InProceedings of the International Joint Conference
on Artificial Intelligence, 1997.

[18] I. Witten and E. Frank. Data mining: practical machine
learning tools and techniques with Java implementations.
Morgan Kaufmann, 2000.

[19] D. Wolpert. Stacked generalization.Neural Networks,
5:241–259, 1992.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 14, 2009 at 07:37 from IEEE Xplore. Restrictions apply.

