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Abstract— Soft computing methods, and Multi-Objective 
Evolutionary Algorithms (MOEAs) in particular, lack a 
general convergence criterion which prevents these algorithms 
from detecting the generation where further evolution will 
provide little improvements (or none at all) over the current 
solution, making them waste computational resources. This 
paper presents the Least Squares Stopping Criterion (LSSC), 
an easily configurable and implementable, robust and efficient 
stopping criterion, based on simple statistical parameters and 
residue analysis, which tries to introduce as few setup 
parameters as possible, being them always related to the 
MOEAs research field rather than the techniques applied by 
the criterion. 

I. INTRODUCTION 
he applicability of soft computing methods is still 
arguable in some domains, especially those related to 

high computational demands for each running generation. 
Actual industrial improvements often involve several 
parameters (which are usually in conflict) which require to 
be optimized jointly. These situations are known as Multi-
objective optimization problems (MOOPs) [1] The 
application of evolutionary algorithms (EAs) has achieved 
important accomplishments resolving these problems, 
classifying these applications as Multi-objective 
evolutionary algorithms [2] (MOEAs). 

There are a number of underlying factors regarding the 
applicability of such algorithms, where the lack of a 
convergence criterion was among the first ones which 
researchers had to deal with [3]. The traditional solution to 
this problem was the establishment of an a priori number of 
maximum generations for the algorithm [4], which, at least, 
managed to set a boundary for the algorithm’s running time. 
This need for a stopping criterion has already been stated 
and approached in general for EAs [5], [6]. 

This handicap is even more important in the case of 
MOEAs, where setting that a-piori value can be a 
particularly difficult task to be performed accurately. This 
issue is a MOOP itself, where the objectives are to maximize 
the quality of the optimal Pareto front (OPF) approximation 
while minimizing the number of generations, or, in general, 
the number of function evaluations. 
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In order to measure the quality of an approximation to its 
correspondent OPF several community accepted indicators 
have been introduced [7], even though it is also reported to 
be a particularly complex task [8]. These indicators have 
lead to algorithms which accomplish the first objective of 
the presented solution to the convergence criterion issue: 
maximizing the quality of the approximation to the OPF [9].  

This first approach to stopping criteria is usually defined 
as local (or iteration-wise) criteria, as only the knowledge of 
the current generation is used to determine if it has reached 
the stopping generation. They exhibit several handicaps: 
they require knowing the OPF a priori (in order to compute 
the indicator’s value) and they do not take into account the 
number of generations required to obtain the solution. 

There are, on the other hand, stopping criteria based on 
the evolution of the algorithm across different generations, 
defined as global (or execution-wise) criteria. In relation to 
the proposed solution for the convergence criteria issue, 
these algorithms can maximize the quality of the OPF 
approximation by measuring the progress towards that 
solution in a relative way, and, at the same time, provide a 
solution which can satisfy restrictions over the number of 
generations, by analyzing the amount of progress achieved 
in every new generation and setting the appropriate 
thresholds.  

Quality indicators, such as the hypervolume [10] or the 
epsilon indicator [11], can be used, as has been previously 
stated, as a mean to resolve convergence criteria in terms of 
approximation to the OPF (even though they were originally 
created as performance indicators). They can be, on the other 
hand, redefined as progress indicators [12] in order to be 
used as part of global criteria. With this reformulation, they 
will measure the improvement of the solution over a number 
of generations, instead of the quality of the Pareto front 
obtained (which eliminates the restriction of knowing the 
OPF beforehand, making them virtually applicable to any 
problem). 

There have been, as well, progress indicators specially 
designed for this purpose (instead of derived from quality 
ones), such as the mutual domination rate [13] (MDR), along 
with its associated stopping criterion, MGBM [14]. The 
main advantage of these synthesized progress indicators, 
opposed to the derived ones, is their low computational 
complexity. 

The balance between the quality of the solution of a 
MOEA and the number of the generations it has been 
running for can be found, as has been exposed, with the use 
of global stopping criteria, but there are, as in any MOOP, 
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some decisions which the user must take in order to 
determine which solution he wants to use (stating it simply, 
which grade of progress towards the solution per generation 
is worth to keep the algorithm running). It must be noted, as 
well, that the traditional approach is not always better, in 
terms of solution quality, as additional generations may 
degrade factors such as the population diversity by means of 
genetic drift [15]. This implies that, by choosing the right 
stopping generation, the user is not only saving 
computational resources, but may be also preserving the 
quality of the obtained solution. 

Any stopping criterion following the previous 
considerations must try to get as close as possible to the 
optimal stopping generation, but that concept is, as well, a 
non-trivial issue. Figure 1 shows some examples regarding 
it. 

Fig. 1. Different possible stopping generations for a given indicator 
evolution. 

There is no clear choice regarding the best stopping 
generation in Figure 1. In a general case (the one which the 
default configuration of a stopping criterion should be trying 
to achieve) the optimal stopping generation would be 
number two, but there may be additional considerations. If 
the running time of each individual generation is very high, 
the user might try to stop the algorithm following stopping 
generation number one (after which, even if there is some 
improvement in the solution quality, it is very low), whereas, 
on the other hand, if extreme accuracy in the solution is the 
key factor in the algorithm, the user might prefer stopping 
generation three. This shows that stopping criteria must be 
able to adapt to the user’s needs. 

The idea proposed in this paper is to obtain a simple and 
yet robust stopping criterion based on global criteria, also 
requiring as little configuration from the user as possible, in 
order to facilitate the inclusion of the criterion in any 
MOEA. This criterion can be based on different progress 
indicators, which we will show by testing its results with the 
three examples mentioned in this introduction. In order to 
test its performance under different situations, results of its 
applications to different standard algorithms and problems 
will be shown. 

The second section of this paper will analyze the different 
situations that a convergence criterion must cover, being 

followed by a section introducing different quality indicators 
and their adaptation to progress ones. The fourth section 
introduces the difficulties faced while designing global 
stopping criteria and summarizes some of the current 
approaches, setting the required basis for the fifth section, 
where our proposed criterion is presented. Finally, the sixth 
section presents the results over the different experimental 
sets, leading to the conclusions on the seventh section. 

II. STOPPING CRITERIA IN MOEAS

In the introduction section of this paper we presented the 
idea that, in order to establish a stopping criterion over a 
MOEA, we require the information of an indicator in order 
to determine either the quality of our approximation to the 
OPF (in local criteria) or the progress towards the solution 
(in global criteria). An important consideration is that any of 
these indicators involves a dimensionality reduction, and this 
may lead to invalid conclusions [8]. 

There are four clear situations where a MOEA should be 
stopped [14], to which we may add a fifth one regarding the 
concepts we have already introduced: 

1. The amount of computation is sufficient.
2. A solution obtained so far is satisfactory.
3. The solution is not satisfactory, but a better one

is unlikely to be produced.
4. The method is not able to converge to a solution.
5. Additional computation will provide little or no

improvements in the current solution.
The first situation was the one covered by traditional 

approaches, where the amount of computation was measured 
in number of generations. There have been modifications 
based on the number of function evaluations (FE) and the 
introduction of modeling methods, as an approach to more 
complete convergence criteria, but they still needed a 
number of fixed FE, which could be high (30000-500000) 
when the key parameter was the quality in the approximation 
[16] or low (130-250), in the case of model-assisted 
approaches [17]. One of the handicaps of this approach is 
that it may be dependent on several different parameters, 
such as the population size, the selection technique, the 
complexity of the fitness functions, etc. 

The second situation is the one approached by quality 
indicators, which requires, as was pointed out in the 
introduction, to know the OPF a priori (in order to be 
applied automatically) or a decision maker which can 
estimate the quality of a given solution. The automatic 
application of this criterion involves the knowledge of the 
solution prior to the application of the algorithm, making it 
inapplicable to resolve new problems for which the OPF is 
not known (relegating this criterion to validation and 
comparison issues rather than using it as a general tool). On 
the other hand, a decision maker usually also requires a good 
knowledge over the expected solution in order to test the 
validity of a given Pareto front. 

The differences between the following three situations are 
very subtle. The third situation presents a scenario where the 
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solution value has converged but is not satisfactory, in the 
fourth one the solution is no able to converge, while the fifth 
implies that the evolution in the improvement over different 
solutions at different generations has become not significant 
for the algorithm.  

Quality indicators are required in order to automatically 
determine if the solution is unsatisfactory, but at the same 
time, some analysis of the progress towards the solution is 
required to determine if a better one is likely to be obtained 
or not. With these requirements, knowing the OPF would be 
required as well, but looking at the fifth situation, the reader 
may consider whether it is needed to know if the current 
solution is satisfactory or not if no further improvement can 
be gained by the application of the algorithm. This point of 
view allows us to summarize the three final scenarios into 
obtaining the best solution possible without considerations 
about its quality, at least as part of the stopping criteria.  

The analysis of the previous stopping situations is not 
mutually exclusive. This means that, even if a global 
stopping criteria is applied, it is also recommended to set a 
maximum number of generations in order to limit the highest 
possible running time of the algorithm (even if better 
solutions could be obtained yet).  

III. QUALITY AND PROGRESS INDICATORS

Quality indicators measure the quality of the current 
approximation to the OPF. This measuring involves three 
factors [7]: 

1. Distance of the elements from the current Pareto
front to the OPF (determining how close our
solution is to the optima)

2. Distance from the OPF elements to their closest
one in the current solution (determining how well
the current solution covers the OPF)

3. Distribution of the elements in the current
solution and the OPF (determining the spread of
the elements on both sets)

From the factors above, we can determine that the main 
considerations in a quality indicator are distance and 
diversity. Among quality indicators, we will focus on binary 
ones [8], which compare two sets of solutions (in their 
original formulation, the current Pareto front and the OPF). 
The reason for this choice is the easy adaptation which can 
be performed over these quality indicators to convert them to 
progress ones. 

The basic idea behind the conversion of a binary quality 
indicator to its respective progress one is based on their 
ability to compare two sets of solutions. Instead of 
comparing the current solution to the OPF we will compare 
two different solutions provided at different generations of 
our MOEA, thus measuring the progress we are obtaining. 
This simple idea allows us to use well established quality 
indicators as part of a stopping criterion framework. 

We will describe next, even if only in a summarized way, 
the indicators which will be used in the experimental section 
of this paper. These indicators include two quality ones, 

hypervolume [10] and additive epsilon [7]), and an 
especially designed progress indicator, MDR [13]. All of 
them are based on the objective space, even though the 
applicability of global stopping criteria could be, in theory, 
based on decision variable space indicators as well. 

A. Hypervolume indicator 
The hypervolume indicator Ih(A) [10] computes the 

volume of the region H, delimited by a given set of points A, 
and a set of reference or nadir points N (points which 
dominate no other)  
I୦ሺAሻ ൌ  volumeሺڂ hypercubeሺa, nሻ׊ୟאA;׊୬אN ሻ  ሺ1ሻ 
corresponding larger values of the indicator to better 

solutions. The binary indicator derived from the 
hypervolume concept [18] can be calculated with (2) 
,ܣு஽ሺܫ ሻܤ ൌ

൜ܫ௛
ሺܤሻ െ ଶݔ׊ ݂݅ ሻܣ௛ሺܫ א ଵݔ׌ܤ א ଵݔ :ܣ ظ ଶݔ
ܣ௛ሺܫ ൅ ሻܤ െ ݁ݏܽܿ ݎ݄݁ݐ݋ ݕ݊ܽ ݊݅   ሻܣ௛ሺܫ

ሺ2ሻ

B. Epsilon indicator 
The epsilon indicators [7], [11], are a set of performance 

indicators which, relying on the dominance concept, 
measure how close our current Pareto front is to the global 
optimal one. They introduce the epsilon dominance concept, 
which can be defined in additive of multiplicative terms. 
According to additive terms, it is defined as follows: 

Having x1 and x2  ߳ D (decision variable space), x1 is said 
to ε-dominate x2 (expressed as ݔଵ ఌାع ଵሻݔଶ) if  ௝݂ሺݔ ൑ ߝ ൅
௝݂ሺݔଶሻ 

The additive epsilon indicator, Iϵ+, is a relative indicator 
that expresses the minimum value of ϵ necessary to make set 
A ϵ-dominate set B, that is: 

ఢାܫ ൌ
inf
ε א ܴሼݕ׊ א ,ܤ ݔ׌ א ݔ ݐ݄ܽݐ ݄ܿݑݏ ܣ கାع  ሽݕ ሺ3ሻ 

C. Mutual domination rate indicator 
The two previous indicators were, as we pointed out, 

reformulated to compare the solutions of two consecutive 
iterations. The main handicap of this approach is the high 
complexity of these indicators. The MDR indicator [13] is a 
specially created indicator to deal with this weakness. To 
simplify its definition, we will introduce a function ∆ሺܣ,  ሻܤ
that returns the set of elements of A that are dominated by at 
least one element of B.  

The progress indicator Imdr(t) [1 ,1-] א contrasts how many 
non-dominated individuals of iteration t dominate the non-
dominated individuals of the previous one and viceversa:  

௠ௗ௥ሺܫ ௧ܲ
,כ ௧ܲିଵ

כ ሻ ൌ ԡ∆ሺ௉כሾ௧ିଵሿ,௉כሾ௧ሿሻԡ
ԡ௉כሾ௧ିଵሿԡ

െ ԡ∆ሺ௉כሾ௧ሿ,௉כሾ௧ିଵሿሻԡ
ԡ௉כሾ௧ሿԡ

ሺ4ሻ 

If Imdr=1, it means that the population of iteration t is 
completely better than the precedent one. If its value is 0, it 
implies that there has not been any substantial progress. If 
Imdr=-1, it indicates the worst possible case, where the 
iteration t deteriorates its predecessor’s solutions 
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IV. GLOBAL STOPPING CRITERIA

There is a recent concern about obtaining general stopping 
criteria which can be applied to a wide range of algorithms 
and problems [3], [12], [13], [14], [19], dealing especially 
with industrial applications [20]. There are, as well, different 
non-general approaches: design of special algorithms which 
can guarantee local optimality of solutions [21], using as 
well the gradient of the hypervolume to guarantee diversity 
and spread [22] (which may be considered a transformation 
of the hypervolume into a progress indicator), or the design 
of algorithm specific stopping criterion, based on values 
used by the selection criterion [23] (in this reference the 
authors use the crowding distance for an NSGA-II [24] 
based stopping criterion). While lacking the possibility of 
application to other algorithms, these criteria are very 
interesting due to the fact that the indicator value has already 
been calculated in the MOEA cycle, reducing the 
computational cost of the application of the stopping 
criterion.  

Basically, the most common approach for general 
solutions is to identify when the evolution of the indicator 
becomes linear, where the tendency of that evolution (or, in 
other words, the amount of improvement over the solution 
per generation) falls below a certain threshold. This 
threshold is used as an application of the stopping scenarios 
presented, and the linear check determines the validity of the 
obtained tendency. 

Obviously, the complete evolution of the indicator never 
follows that criterion (if it did, we would never reach an 
acceptable solution) so the name “global criteria” may be a 
misleading one, due to the fact that the algorithm will only 
be looking at a local portion of the indicator evolution each 
generation. This analysis window usually covers the value of 
the indicator for a certain amount of previous generations 
(which may change its value dynamically). Figure 2 shows 
this process: 

Fig. 2. Example of the local information analysis performed by global 
stopping criteria in order to determine the stopping generation. 

In the example in Figure 2, the evolution of the indicator 
is clearly non-uniform in the considered window, and thus 
the criterion would probably determine that the MOEA must 
continue running. That idea can also lead us to some 
considerations about the window size these algorithms must 

have in order to prevent inaccurate stops.  

Fig. 3. Example of problematic situations for global criteria in the presence 
of local optima 

The example in Figure 3 considers a window of the same 
size as Figure 2 (40 generations). With this size, regardless 
of the concrete technique applied, probably any generation 
from 65 to 75 would be considered to stop, even though, 
seeing the whole indicator evolution, we may notice that 
there are improvement chances after that stagnation of the 
indicator value. A bigger window size (depending on the 
technique applied, probably for 55 or more generations) 
would have been able to determine that the indicator, even 
though it had become very stable, was improving again. This 
situation shows that, if the problem is known or suspected to 
have local optima or different situations (such as neutral drift 
scenarios) where the indicator may reach a stagnation 
situation, the considered window size must be considerably 
larger, in order to be able to determine correctly if the 
improvement over the indicator value has stopped 
permanently. 

The different current general online convergence criteria 
accomplish (or try to accomplish) this objective in different 
ways. In [13] a new progress indicator was introduced 
(MDR), along with a specific stopping criteria (MGBM) 
based on the analysis of the residue of a Kalman Filter [25]. 
To deal with the Gaussian noise sources (which, in fact, 
determine the distance to the measured values, and thus, the 
residue value) they chose fixed a priori values for the 
Kalman noise matrices (basically eliminating these sources). 

In [12] Kalman filtering is used again, but, instead of 
analyzing the residue value, they focus on the corrections 
made by the filter in its update phase. This means that, 
assuming a uniform model, they set a maximum threshold 
for the corrections made by the model and track the value of 
those corrections, determining the stopping generation when 
they fall below the chosen boundary. The idea of using 
several progress indicators is also introduced, along with the 
possible application of data fusion architectures [26] for this 
purpose. 

Focused on statistical testing, [3], [19], [20] determine the 
stopping criterion as a linear combination of the values of 
different indicators, using statistical tests for the analysis of 
the variance and the trend of their considered window over 
the different indicators’ values. 

4



An interesting parameter the commented general 
convergence criteria is the analysis of the computational 
complexity added by the stopping criterion used. The 
complexity of the indicators used is usually high enough to 
clearly exceed (and thus eliminate in the typical complexity 
order analysis) the one added by the stopping criterion. This 
is especially true when dealing with quality indicators. 

V. LSSC: INTRODUCING A SIMPLE INTUITIVE STOPPING 
CRITERION

The reasons for the stop of a MOEA have already been 
discussed thoroughly, along with some state-of-the-art 
approaches to this task. The objective of the Least Squares 
Stopping Criterion (LSSC) proposed in this paper is to 
introduce a stopping criterion which can be easily 
implemented in any programming language (to facilitate the 
task of incorporating it to any MOEA) and easily configured 
by parameters related to MOEA’s research (instead of those 
related to the particular techniques applied by the criterion). 

The underlying idea is to determine when our progress 
indicator has reached a stagnation situation. To achieve this, 
we will base our criterion on two different considerations: 
the adjustment to a uniform model (by means of a least 
squares approximation, which gives its name to our 
criterion) and the value of the slope of that uniform model. 

Simple Least Squares [27] is a basic linear regression 
method which approximates a variable according to the 
following model:  

    y ൌ a ൅bx  ሺ5ሻ 
It introduces some key assumptions, among which some 

of the most important are zero mean error and constant 
variance in the indicator value. These assumptions, which 
make this approach inapplicable to some real problems, fit 
our stopping needs (these are the circumstances under which 
we would like our algorithm to stop). Representing y the 
indicator value and x the generation number, a and b can be 
calculated with the following matrix-based formula: 

ቂܾܽቃ ൌ ൤∑ݔ௜
ଶ ∑ ௜ݔ

∑ ௜ݔ ݈_ݓ
൨
ିଵ

כ ൤
∑ ௜ݔ כ ௜ݕ
∑ ௜ݕ

൨ (6)

where w_l is the length of the chosen window. Once we 
have determined the values of the parameters for our linear 
regression, we need to define the normalized residue value: 

ݏ݁ݎ ൌ   ∑ ሺ௬೔ିሺ௔ା௕௫೔ሻ೔ ሻమ

௪_௟
~ ఞమ

௪_௟
ሺ7ሻ

As shown in (7) the obtained residue follows a chi-square 
distribution which has w_l-n degrees of freedom, where n=2 
in our case (as we are imposing two linear restrictions, a and 
b parameters). This distribution has known mean and 
variance (presented normalized): 

ߤ  ൌ 1 െ ଶ
௪_௟

ሺ8ሻ

ଶߪ   ൌ   ଶ
௪_௟

െ ସ
௪_௟మ

ሺ9ሻ 
With the values in (8), (9), we may use Chevichev’s 

inequality [26] to determine a threshold leaving bellow the 
99% residue values coming from a uniform distributions. 

ݏ݁ݎ݄ݐ ൌ ߤ  ൅ ߪ3 ൌ 1 െ ଶ
௪_௟

൅ 3 כ ට ଶ
௪_௟

െ ସ
௪_௟మ

ሺ10ሻ 

When the value of the residue shown in (7) falls below the 
threshold exposed in (10) we can consider that the evolution 
of the indicator has started to be uniform. This is a needed 
restriction to stop the algorithm’s evolution, but not 
sufficient, as shown in Figures 4 and 5. 

Fig. 4. Example of stopping generation vs indicator value based only on 
residue analysis (window size = 30) 

Fig. 5. Example of stopping generation vs residue value based only on 
residue analysis (window size = 30) 

The complimentary restriction is the slope value, which 
will allow us to stop our evolution not only when it has 
become uniform, but also when the amount of that evolution 
per generation has become insufficient. Thus, the complete 
stopping criterion is defined with the following formula: 

݌݋ݐݏ ൌ  ∑ ሺ௬೔ିሺ௔ା௕௫೔ሻ೔ ሻమ

௪_௟
൏  ݏ݁ݎ݄ݐ ٿ ܾ ൏ min୮୰୭୥     ሺ11ሻ 

The process to choose the ݉݅݊௣௥௢௚ value is rather simple: 
the researcher chooses a number of examples, determines 
which would be the ideal stopping generation for them and 
tunes the value of the ݉݅݊௣௥௢௚ parameter to guide the 
stopping criterion to stop at the chosen generation. This 
parameter value can then be applied to new problems and/or 
algorithms without requiring any modification in it (as it will 
be shown in the experimental section). 

For the given example in Figures 4 and 5, which shows 
hypervolume indicator applied over a NSGA-II MOEA to 
the DTLZ3 problem, we have chosen an absolute value for 
the ݉݅݊௣௥௢௚ parameter of 0.002 (in fact this will be the used 
value for the parameter in the experimental section 
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whenever we are using the hypervolume indicator, 
regardless of the problem or the algorithm). Figures 6 and 7 
show the behavior of the stopping criterion in (11) 

Fig. 6. Full stopping criterion example (stopping generation vs indicator 
value, window size = 30) 

Fig. 7. Full stopping criterion example, absolute slope value evolution  

The chosen value for the slope is fairly conservative, 
trying to stop only when future improvements would be 
marginal ones. Some users may prefer higher values, 
sacrificing small indicator improvements in favor of faster 
results. The dependency with the window size parameter, in 
absence of problematic local situations such as the ones 
presented in the global stopping criteria section, is not 
strong, only increasing, according to its value, the final 
stopping generation once the evolution of the indicator’s 
value starts to satisfy the criterion conditions 

It is important to remember that this stopping criterion is 
not necessarily applied on its own for a given algorithm: 
very usually, along with it, the user will add a different one 
regarding the maximum computation allowable for the 
algorithm (either in time, number of generations or number 
of function evaluations). 

A. Computational complexity 
At every generation (excluding the first w_l-1) we have to 

obtain the following values: the linear regression parameters 
(a, b), the threshold value (thres) and the residue value (res). 
It is useful to invert the order in which the conditions are 
checked in (11), in order to obtain the res value only if 
necessary. For a fixed window size, the threshold value only 
has to be computed once, applying the same value for all the 
comparisons. Using standard libraries, both the regression 

parameters and the residue value can be obtained in O(w_l), 
being this the complexity order of the criterion.  

In (6) we intentionally presented the required formula for 
the calculation of the two required linear regression 
parameters, due to the fact that, being composed of different 
summations which only differ in one term for consecutive 
generations, once the initial parameters have been 
calculated, the rest can be obtained with a constant order 
complexity: 

൤ܾ௜| ௜ܾିଵ
ܽ௜|ܽ௜ିଵ

൨ ൌ

ቈ
ሺ∑ݔ௜ିଵଶ ሻ െ ௜ି௪_௟ଶݔ ൅ ௜ଶݔ ሺ∑ ௜ିଵሻݔ െ ௜ି௪_௟ݔ ൅ ௜ݔ
ሺ∑ ௜ିଵሻݔ െ ௜ି௪_௟ݔ ൅ ௜ݔ ݈_ݓ

቉
ିଵ

כ

൤
ሺ∑ ௜ݔ כ ௜ሻݕ െ ௜ି௪_௟ݔ כ ௜ି௪_௟ݕ ൅ ௜ݔ כ ௜ݕ

ሺ∑ݕ௜ିଵሻ െ ௜ି௪_௟ݕ ൅ ௜ݕ
൨ (12)

This does not change the worst case complexity order of 
the stopping criterion (the res value still has to be calculated 
in O(w_l)) but, by checking the ݉݅݊௣௥௢௚ condition first, it 
allows the criterion to run in O(1) most generations, without 
requiring a complex implementation, and becomes specially 
interesting and advisable when the progress indicator is also 
required by the selection criterion (and thus integrated in the 
MOEA’s usual cycle) or computationally inexpensive to 
calculate (such as MDR). 

VI. EXPERIMENTAL VALIDATION

To ease the comparison process, the proposed stopping 
criterion is going to be tested with the algorithms and 
problems used in [12], [14]. The algorithm’s set will include: 
NSGA-II [24], SPEA2 [28] and PESA [29], whereas the 
problems’ set includes DTLZ3, DTLZ6 and DTLZ7 [30]. 
Both sets are considered to be representative enough for the 
validation purposes of this section. The details of the 
configuration of these algorithms and problems can be found 
in [14], whereas the actual data used are available online1. 

A. Criterion configuration 
For the optimum configuration of the stopping generation 

factors such as the cost of running additional generations or 
the required accuracy in the final solution may be 
considered, but only the progress indicator used is required 
to be analyzed in order to determine the right slope value. 
Results regarding the three different presented progress 
indicators will be shown in this section, so three different 
slope values need to be configured. The chosen values are 
0.002 (hypervolume) 0.0004 (epsilon) and 0.00002 (MDR).  

These values have been chosen according to the process 
explained in the method’s presentation section. Intuitively, 
these values can be related to the different ranges which the 
indicator exhibit. The window size will be constant 
regardless of the indicator used, and fixed at 30 generations. 
To determine the quality of the stopping generation 
obtained, we will compute the hypervolume difference 

1http://www.giaa.inf.uc3m.es/miembros/lmarti/_media/papers%3Bmarti-
et-al-stop-crit-data.zip 
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compared to an a priori fixed generation (which will be 
chosen based on the problem’s difficulty). 

B. Results presentation 
Each experiment has been run thirty times. We provide 

the statistical values of mean, standard deviation, minimum 
and maximum obtained (both for the stopping generation 
and the hypervolume difference with the a priori stopping 
generation), to verify the criterion performance. 

The chosen values for the slopes were quite conservative, 
in order to obtain very accurate results. This can be observed 
in that the maximum hypervolume difference in mean value 
is 0,14, whereas in maximum value is 0,331 (both obtained 
for the hardest problem, DTLZ7). Even so, we have 
managed to obtain a stopping generation whose value is 
about 2/3 of its respective a priori one, with significantly 
similar performance results over the different indicators. 

The comparison with the different alternatives proposed in 
the literature is difficult, due to the different use of 
algorithms, test problems and the lack of a clear optimal 
choice for the stopping generation. That is the reason why 
this results presentation in centered in the consistency and 
quality of the criterion presented in this paper. 

1) DTLZ3
TABLE I 

STOPPING GENERATION FOR DTLZ3 PROBLEM 

Alg. / Indicator 
Stopping generation 

Mean Min Max Std. D. A priori 

NSGA-II - epsilon 204,733 193 215 5,9186 300 

NSGA-II - hypervolume 196 184 207 5,79536 300 

NSGA-II- MDR 219,233 202 233 7,93371 300 

PESA - epsilon 203,733 188 213 6,10219 300 

PESA - hypervolume 210,533 194 223 7,394 300 

PESA - MDR 200,367 185 212 6,58359 300 

SPEA2 - epsilon 178,267 165 188 4,63073 300 

SPEA2 - hypervolume 174,033 166 182 4,27892 300 

SPEA2 - MDR 174,567 167 184 3,92765 300 

TABLE II 
HYPERVOLUME DIFFERENCE FOR DTLZ3 PROBLEM 

Alg. / Indicator 
Hypervolume difference 

Mean Min Max Std. D. 

NSGA-II - epsilon 0,027 0,011 0,057 0,012 

NSGA-II - hypervolume 0,040 0,016 0,073 0,015 

NSGA-II- MDR 0,015 0,004 0,038 0,008 

PESA - epsilon 0,049 0,016 0,108 0,021 

PESA - hypervolume 0,046 0,015 0,096 0,020 

PESA - MDR 0,055 0,027 0,110 0,022 

SPEA2 - epsilon 0,024 0,007 0,056 0,013 

SPEA2 - hypervolume 0,032 0,015 0,059 0,012 

SPEA2 - MDR 0,027 0,011 0,060 0,014 

2) DTLZ6
TABLE III 

STOPPING GENERATION FOR DTLZ6 PROBLEM 

Alg. / Indicator 
Stopping generation 

Mean Min Max Std. D. A priori 

NSGA-II - epsilon 208,233 192 220 6,1346 300 

NSGA-II - hypervolume 199,567 183 211 6,22389 300 

NSGA-II- MDR 225,033 205 239 9,7432 300 

PESA - epsilon 207,333 194 222 6,61937 300 

PESA - hypervolume 213,467 203 231 5,74596 300 

PESA - MDR 205,633 198 215 4,25468 300 

SPEA2 - epsilon 183,767 176 193 4,11627 300 

SPEA2 - hypervolume 179,367 174 186 3,36804 300 

SPEA2 - MDR 177,1 166 185 4,24548 300 

TABLE IV 
HYPERVOLUME DIFFERENCE FOR DTLZ6 PROBLEM 

Alg. / Indicator 
Hypervolume difference 

Mean Min Max Std. D. 

NSGA-II - epsilon 0,026 0,010 0,054 0,012 

NSGA-II - hypervolume 0,045 0,017 0,081 0,015 

NSGA-II- MDR 0,017 0,004 0,048 0,011 

PESA - epsilon 0,053 0,020 0,101 0,023 

PESA - hypervolume 0,044 0,018 0,087 0,017 

PESA - MDR 0,057 0,024 0,094 0,020 

SPEA2 - epsilon 0,020 0,006 0,044 0,009 

SPEA2 - hypervolume 0,032 0,014 0,053 0,009 

SPEA2 - MDR 0,030 0,014 0,049 0,010 

3) DTLZ7
TABLE V 

STOPPING GENERATION FOR DTLZ7 PROBLEM 

Alg. / Indicator 
Stopping generation 

Mean Min Max Std. D. A priori 

NSGA-II - epsilon 302,733 279 322 12,4123 425 

NSGA-II - hypervolume 296,8 263 316 11,583 425 

NSGA-II- MDR 332,233 300 368 16,3532 425 

PESA - epsilon 301,067 264 322 12,956 425 

PESA - hypervolume 313,867 288 337 12,125 425 

PESA - MDR 310,433 276 335 12,7135 425 

SPEA2 - epsilon 262,6 243 275 8,47145 425 

SPEA2 - hypervolume 265,567 245 294 10,8522 425 

SPEA2 - MDR 268,5 246 279 8,88916 425 
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TABLE VI 
HYPERVOLUME DIFFERENCE FOR DTLZ7 PROBLEM 

Alg. / Indicator 
Hypervolume difference 

Mean Min Max Std. D. 

NSGA-II - epsilon 0,094 0,033 0,181 0,041 

NSGA-II - hypervolume 0,113 0,049 0,215 0,041 

NSGA-II- MDR 0,047 0,004 0,109 0,027 

PESA - epsilon 0,140 0,052 0,331 0,065 

PESA - hypervolume 0,134 0,073 0,244 0,039 

PESA - MDR 0,113 0,045 0,257 0,051 

SPEA2 - epsilon 0,082 0,039 0,153 0,034 

SPEA2 - hypervolume 0,093 0,025 0,170 0,035 

SPEA2 - MDR 0,069 0,030 0,107 0,023 

VII. CONCLUSIONS

The Least Squares Stopping Criterion is presented in this 
paper with the following attributes: easily configurable, 
(with only two required parameters, the acceptable amount 
of indicator variation per generation and the considered 
window), easily implementable (involving, basically, 
calculating least squares parameters and an Euclidean 
distance), robust (the same configuration of a progress 
indicator can be applied, as seen in the experimental section, 
to a wide range of different MOEAs and problems) and 
efficient (it can be implemented to run, for most generations, 
in constant time, or O(n) in the worst generations), which we 
believe to be covered. Future lines involve the consideration 
of several progress indicators jointly, the application to 
different sets of problems and application to indicators based 
on the decision variables space. 
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