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Abstract
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Key Words
Group Preferences, Multi-profile.

This paper is a revised version of two chapters of my thesis. I am grateful to J.F.
Mertens for many extremely helpful discussions. I am also indebted to my advisor, John
Hillas, and to C.d“Aspremont and P.Mongin for their comments. Part of this work was
done at C.O.R.E., Belgium, and I am grateful for their hospitality






1 Introduction

Arrow [1], as far back as 1963, considered the possibility of a resolution of the
social choice paradox by the use of a "broader concept of rationality,” mean-
ing thereby the use of the von-Neumann-Morgenstern axioms on preferences.
In this paper I provide an axiomatization of a Social Welfare Function, in the
sense of Arrow [1] called ” Relative Utilitarianism”, in a framework of pref-
erences over lotteries and using the vN-M axioms on preferences. Relative
Utilitarianism consists of normalizing individual utilities and then adding
them, and was introduced separately in Mertens and Dhillon [12]. This ap-
proach is not new, indeed impossibility results have already been proved in
the more general context of cardinal preferences of which v-NM axioms are
a special case (see e.g. Kalai and Schmeidler [10], Sen [15]). Chichilinsky [3],
studies the aggregation problem when intensities are taken into account, and
the SWF is assumed to be continuous,anonymous and to respect unanimity.
The result of this paper is however a positive one; I show that a SWF exists
and is unique under the axioms proposed.

These axioms are: the classical Anonymity axiom (see May [11]), a weak-
ened version (conceptually) of Arrow’s Independence of Irrelevant Alterna-
tives, Weak IIA*, and Extended Pareto. The collective choice problem is
usually viewed as a map from individual preferences to social preferences.
Most voting rules, on the other hand, are in "steps”, i.e. they first aggre-
gate preferences of individuals in smaller units and then use these "group”
choices to derive social choices. If one were to allow different ”groups” (or
coalitions) in society, what reasonable restrictions could we impose on them
and what do these restrictions imply for the social rule? A requirement that
arises quite naturally is the analog of Pareto for groups: this is what the
Extended Pareto axiom provides. Weak IIA* may be viewed both as one
way to adapt Arrow’s Independence axiom to the context of preferences over
lotteries, and as an axiom that leads to a formulation of the problem that is
quite similar to the bargaining problem without assigning special importance
to a disagreement point.

The main results include a characterization of the Extended Pareto ax-
iom in the context of vN-M preferences and an axiomatic characterization
of Relative Utilitarianism. The latter result is close to and may be consid-
ered a generalization of May’s [11] Theorem (on majority rule) to bigger sets




of alternatives? Indeed, as in May, we eschew the use of interpersonal com-
parisons as primitives. This paper provides an alternative axiomatization
of Relative Utilitarianism avoiding the use of Continuity as in Mertens and
Dhillon, an axiom that has no clear ethical interpretation, except on negative
considerations, i.e. ”it is only a test that some solution is unsatisfactory, but
does not tell us which are the specific equity considerations that force the
specific solution” (Mertens and Dhillon). ,

There has been, in recent years, a renewed interest in Harsanyi’s [9] Utili-
tarianism theorems (see e.g. Weymark [17], Mongin [13] Coulhon and Mongin
[4], Hammond [8]). This paper shares some of the features of the Harsanyi
model. In particular, the use of vN-M utilities for individuals and society
and the use of Pareto rules. While Harsanyi’s theorem is a single profile one
however, this paper uses the classical definition (Arrow) of the SWF. We
generalize Harsanyi’s single profile result, and the use of additional axioms
fixes the weights for individuals to be the inverse of the range of the utility
function for an individual.

The rest of the paper is organized as follows: Section 2 introduces nota-
tion, Section 3 discusses the axioms used, Section 4 gives the main results and
then the proofs of these, and also provides examples to show the necessity of
the axioms. Section 5 concludes.

2 Preliminaries

The set of individuals is denoted by N = {1,...,n,...} and there are #N
individuals in the society, with oo > #N > 3. I denote the set of alternatives
or pure prospects by A. Following Mertens and Dhillon [12], I consider a
framework of preferences over the set A(A) of all lotteries on A (finite),
which is interpreted as some set of ‘pure prospects’, and assume that all
such preferences have a von Neumann- Morgenstern utility representation. I
denote the set of preference orderings on AA by L. A preference ordering is
a reflexive, complete and transitive binary relation on AA x AA. The n-fold
cartesian product of £ is denoted by LN. We use the term preference profile
for an element of LV, and denote this by R". For each RN € LV, the ith
coordinate of RY is denoted by R; .

2see the heuristic proof in Mertens and Dhillon [12] for the one dimensional case which
is equivalent to having only two alternatives but which is not studied in this paper.
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The set of strict subsets of N is denoted by .

Definition 1: A social welfare function is a map @ : LN — L that associates
to any profile R € LN a social preference R € L.

Definition 2: A Group Aggregation Rule for a subgroup G is a map g :
LG — L where G € Q.

Definition 3: A Group Aggregation Rule satisfies Individualism iff whenever
all individuals in the subgroup are completely indifferent then so is the sub-

group.

For all G, we assume 1) satisfies Individualism. In addition, we assume:

Y6 = R; whenever G = {7}

For any preference relation R, I stands for the corresponding indifference
relation and P stands for the corresponding strict preference. Society’s pref-
erence ordering is denoted by R. For any subgroup G; C N the preferences
¥G,(RY) are represented by Rg, . S denotes the space of utility functions
on A, and an element of SV is denoted by 4.

3 The Axioms

Axiom 1: Extended Pareto.
For any profile of preferences R" € LV and for any 2 element par-
tition {G;,G:} of N, 3¢g,,v¥s, such that: for any pair of lotteries p
and ¢
PRgg 1=1,2
= pRq

And if further, pPg, g, then
pPq.
Remark. .
According to the axiom if there exist functions that aggregate preferences of

individuals in (disjoint) subgroups of society (e.g. states in a country of N
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individuals) then the Social Welfare Function should satisfy Pareto in terms
of the “aggregate preferences” of these subgroups. There are no restrictions
on the functional form of these Group Aggregation Rules except that they
depend only on the preferences of individuals in the subgroups and they
satisfy Individualism. In so far as the consequence of using this axiom with
the vN-M axioms goes, it is shown that in fact the Group Aggregation Rules
also satisfy the Extended Pareto axiom and are of the same functional form
as the SWF, hence the axiom seems to be the logical expression of what
is meant by aggregating preferences in a ”consistent” way. There is an ob-
vious difficulty in checking whether any given SWF satisfies this condition
(given that there may be many such Group Aggregation Rules): hence in
the specific framework of this paper Theorem 1 gives a characterization of
the axiom3. Given the assumptions on the Group Aggregation Rules we
have as a consequence of the Extended Pareto condition, a "multi-profile”
interpretation of the axiom using the equivalence between the Group Aggre-
gation Rule for a subgroup G and the SWF on the profile where N\G is
universally indifferent?. Then the axiom can also be written as : For any
partition of N into two subgroups G; and G5, and for any three profiles:
(RC,IC), (I¢,R%), and RN = (R®,R%): If for any pair of lotteries p
and ¢: '
pe(RE1,I%%)q,

and
pe(ITRC?)q,

= pp(RV)g

where

RN = (R®, R%)

This reconstruction of the axiom has the following interpretation: consider a
partition of the set of citizens of a country into group 1 and group 2. If the
social welfare function is such that it would choose lottery p over lottery ¢
whenever group 2 was unanimously indifferent between all alternatives, and
group 1 has some preferences given by R¢, that it would choose p over ¢

31t, should be noted here that there may exist SWF’s that satisfy the Extended Pareto
axiom but not the Continuity axiom used in Mertens and Dhillon ( e.g. choose the func-
tions F,,(u,) in Theorem 1 to be discontinuous in their sense.

4Proved in Lemma 1.



when the situation is reversed, i.e. group 1 was unanimously indifferent be-
tween p and ¢, and group 2 has preferences given by R, then it must be
true that then society must still prefer p to ¢, when preferences are given by
(R, RG?). The restrictions it imposes on the SWF are a kind of separabil-
ity in group preferences and monotonicity with respect to these preferences.
In the framework of interpersonal comparibility with translation invariance
(which is not a primitive in this paper), utilitarianism is an obvious candi-
date for a SWF that satisfies Extended Pareto, since it is both separable
in terms of the preferences of any subgroup and monotonic with respect to
them. However weighted utilitarianism where the weights depend on the
whole profile would not satisfy this axiom (example given in the last section
of this paper).

In the case of two individuals, the axiom is equivalent to Pareto and to a
form of Monotonicity (or Positive Association) (a proof of the equivalence of
a form of Monotonicity and Extended Pareto is given in the appendix).

Axiom 2 : Anonymity
Any permutation of the profile of preferences leaves the social pref-
erences unchanged.

This axiom is standard and discussions can be found in the literature (e.g.
May [11], also Sen [15]).

Axiom 3: Weak ITA*

Consider any two profiles R and R', such that they coincide on
lotteries on a subset A’ of A, and in addition that every lottery on
A\A’ is unanimously indifferent to some lottery on A’, for each of
the two profiles. Then social preferences also coincide on AA'.

Axiom 4: Neutrality expresses that the names of the alternatives
do not matter. Formally, at least when A(A) consists of all lotteries
with finite support, any permutation 7 of A induces a permutation
of the space of preferences: R — R, where pR,¢q iff porRgon. Then

¢[(R)"] = (#l(R])x

Remark on Weak ITA*:




This axiom is weaker (conceptually®) than Arrow’s Independence of Irrel-
evant Alternatives. Formally however it is difficult to compare the two as
one would need a version of IIA suitable to the framework at hand i.e. of
preferences over lotteries. Since it is impossible to change preferences over
a subset of lotteries on A without also changing preferences over all other
lotteries when underlying preferences over A have changed, the difficulty of
finding an obvious analog to IIA is clear. The axiom is in the spirit of Neu-
trality, but in addition it implies e.g that the problem where alternative a is
unanimously indifferent to b and the one where it is unanimously indifferent
to ¢ should not have different solutions, everything else fixed. Together with
Pareto Indifference (and vN-M preferences) the axiom implies that one can
restrict one’s attention to convex sets in utility space, quite similar to the
bargaining problem. The difference between the bargaining problem and the
social problem lies only in the additional datum of the disagreement point.
This is proved in the form of Proposition 2 below.

A note on the dimension condition.
By Pareto, (cf.Proposition 0 Appendix), social preferences are represented
by (vN-M) utility functions that satisfy:

U= E /\n((ﬂ)nEN)un+ﬂ (1)
neN
where )\, is a strictly positive real number. Let the number of alternatives
be m and the number of individuals be %.

Thus if we view the social utility, U, as an m x 1 vector it is equal by
equation (1) to the product of a “coefficient” matrix of dimension m x k + 1
and the vector A of dimension £+ 1 x 1 then the system has a unique solution
in X iff the coefficient matrix has full rank. Thus the rank of the coefficient
matrix is the number of linearly independent non-constant utility vectors in
the profile. Equivalently, in case A is of infinite dimension, we look at the
dimension of the smallest affine subspace containing the convex set

{<unp>|pe AA}C RY

This is the dimension d(@) or sometimes d referred to in the rest of the
paper.

5Because of the additional requirement on profiles that can be compared using the
axiom.



4 The Results

In this section I present the results of the paper. Proofs are presented in the
next section. Proposition 0 is basically a multi-profile version of Harsanyi’s
Aggregation Theorem [9] wherein it was shown that vN-M preferences and
Pareto Indifference imply that social utility must be a weighted sum of in-
dividual utilities. Proposition 0 simply modifies this result to the case of a
SWF, the difference being only that now social utility is a weighted sum of
individuals utilities, the weights being functions of the profile, and satisfy-
ing (given ordinality of the representations) suitable homogeneity properties
and translation invariance. What Extended Pareto accomplishes in addition
to Strong Pareto as used in Proposition 0 is to add the restriction that the
weight of each person n depends only on R, and not the whole profile.

Proposition 0 (Proposition 1, Mertens and Dhillon [12]): The social welfare
functions  that satisfy the Pareto aziom are those which can be represented
by a map X from SN to RN such that

1. \(@) >0, Vn, ¥(@) e SN.

2. If Vn € N, wu, is a representation of R,, then Y, cn An(%).u, is a
representation of o(RN)

3. e A (1@) is translation invariant, i.e.,
if vp = U, + an, Vn, with a, € R, then A\, (%) = A, (9)

o ). (%) is positively homogeneous of degree zero in ux, Vk # n
and if u, is not constant, of degree minus one in u,, t.e., tf v, =

Brun, Vn, with 8, > 0 then A, () = B\, (1)

The first result I have is a characterization of the Extended Pareto Axiom
in the framework of vN-M preferences. In the theorem below the restriction
on the number of alternatives arises because of the dimension condition,
the result has been proved only for profiles with dimension greater than
two. If a dummy axiom is added, it would be true for all profiles, as it
is trivially true if dimension equals one and all individuals have the same
preference, while the case where all individuals have one preference or its
exact opposite can be proved as well, using the heuristics in Mertens and
Dhillon [12]. The only case that is problematic is the dimension two case.
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The number of individuals is assumed to be bigger than four because in case
of two individuals Extended Pareto does not give any stronger restriction
than Pareto, and we need more than three individuals if anonymity is not
assumed. The proof is by construction of an appropriate function.

Theorem 1:

(AYIf#A >4 and #N > 4 , a SWF satisfies the Eztended Pareto aziom iff
it can be represented by :

U= u,(Rn), whenever d(@) > 2, (2)
neN

where U is a vN-M utility representation of social preferences , and each u,,
is a (unique, upto the function F,) representation of individual preferences,

such that
' un(a) = (h(un)(a))/Fa((h(un)(-))), (3)

where h(u,) = u, — mingea un(a), is a utility function in R4, and F, :
R* — IR, is positively homogeneous of degree 1 (if u, is not constant) and
translation invariant® . If u, is constant define F,(u,) = 1.

(B) There ezists only one function Fn(u,) from the space of bounded utility
functions S to IRy, that yields with equation (3) above, the given SWF for
profiles with d(@) > 2 (upto multiplication by a positive constant independent
of u, or of the profile).

Proposition 1 then shows that with Anonymity the functions A,(u,) are the
same functions for all n € N.

Proposition 1:

For a fized set of alternatives A, with #A > 4, and #N > 3,d(d) > 2 the
social welfare functions @ that satisfy the Extended Pareto ariom and the
Anonymity aziom are those that satisfy equation (2) of Theorem 1 and in
addition the functions F(n, u) are independent of individual n.

The third result is a characterisation of the Weak ITA* axiom with Pareto
Indifference in the framework of vN-M utilities.

Proposition 2:
A map ¢ satisfies the Pareto Indifference and Weak IIA* aziom iff the maps

6Note that Fy((h(un)(-)) = Fn((un)(*)) by translation invariance.
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A of Proposition 0 satisfy in addition that A(%) = )\(J’), whenever

F = {([< un,p >lnenlp € A(A))} = {([< v, P >nenlp’ € A(4))}

Finally I define Relative Utilitarianism, and state the main theorem which
gives necessary and sufficient conditions for Relative Utilitarianism.

Definition 4: Relative Utilitarianism:
Let

plun) = max un(a) — min un (@)

Foru € SV,

U= o
n:p§>0(})(u"))

represents a social preference over lotteries which is independent of the utility

representations of individual preferences.

Theorem 2:

For a fized set of alternatives A such that #A > 4 and for all N such that

#N > 3 and for all profiles such that d(%) > 2, a SWF o((Rn)nen) satis-

fies Extended Pareto, Anonymity, Weak IIA*, if and only if it is “Relative

Utilitarianism”.

Remarks

1. The result may be more meaningfully viewed as a representation result
than a characterisation of Utilitarianism. As this issue has been adequately
addressed in the literature on Harsanyi’s Theorems [4] (see, e.g. Weymark
[17]), I will not comment on this here, however, it could be observed vis-a-
vis Sen’s [14] objection that the use of vN-M utilities is arbitrary, that any
monotonic transform of individual (vN-M) utilities is compatible with the
same social ordering as long as the same transform? is used for all individuals.
Thus, in this framework, it would seem that utilities have meaning only as
measures of preferences.

2. Observe that we begin with no interpersonal comparibility but end up
with full comparibility. Which are the axioms therefore that give us this
comparibility? The answer to this is not obvious. All the axioms together

"transforms different across individuals would violate the vN-M postulates for society.




imply interpersonal comparibility, but if any one of the axioms has to be
isolated, it must be Anonymity, since it is this axiom that rules out the use
of different scaling for different individuals.

3. Finally as remarked by Sen [14], the lack of full comparibility in the Nash
solution is absorbed by the fact that origins get subtracted out while the
units simply change the scale of the product without changing the ordering,
even if the origins and units change differently for different individuals. In
our solution this is done in the reverse direction, i.e., changes in origins get
subtracted out, while changes in units are absorbed by compensating changes
in the weights.

4.1 Proofs

Proofs are presented in this section.

Proof of Proposition 0: See Appendix.

Proof of Theorem 1

Observe that if i is taken as the restriction of the SWF to the profile on
subgroup G (hence having the same representation) any SWF which has
the above representation satisfies Extended Pareto. Thus we now prove the
converse .

The structure of the proof is as follows: Lemma 1 proves that all )¢ that are
induced by a SWF that satisfies Extended Pareto must themselves satisfy
Extended Pareto (appropriately defined for G). Lemma 2 then shows that
any such g, and indeed even ¢ must be a weighted sum of utilities of
elements of the partition of G or N. Lemma 3 provides the characterization
result for a subgroup of three individuals in the case of a full dimensional
profile. We know such a profile exists because of the conditions imposed. This
has two corollaries, (1) the result for any full dimensional profile with #G
individuals and (2) the result for a subgroup of two individuals. Next Lemma
4 proves that if the result holds for subgroups with number of individuals

#G and dimension d, then it holds for subgroups with number of individuals

#G + 2 and profiles of dimension d — 1, whenever # N > 4 and d(%@) >
2. Lemma 5 proves that if the result holds for subgroups with number of
individuals #G and profiles of dimension d then it holds as well for subgroups
of number #G — 1 and profiles of dimension d — 1, whenever #G > 3 and
d(@) = 2. Lemmas 4 and 5 are used to prove the result for all G using
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induction.
Finally the case of an arbitrary N > 4, and profiles of dimension bigger than

two is solved using the solutions for the subgroups and Lemma 4 applied to
N.

The lemmas are now presented.

Lemma 1:
If 3 a SWF that satisfies Extended Pareto w.r.t. any functions ¥ then all
such functions for any G € S must satisfy:

¥6(R%) = p(R®,IM\%)

where RC,IN\C represents the profile RN whenever there is total indifference
VYn € N\G.

Proof
Assume there exists a SWF that satisfies Extended Pareto w.r.t some %g;.
Consider any partition of N into 2 subgroups G;,G; € & and any such
functions g, = 1,2. Consider the profile on N where all individuals in
the subgroup G, are completely indifferent between all alternatives. Then
by Individualism g, is total indifference. The result follows from Extended
Pareto.

&
Corollary :
If 3 a SWF ¢ that satisfies Extended Pareto, then,

1. The functions Y induced by ¢ satisfy Extended Pareto.
2. o(RN) satisfies Eztended Pareto with respect to any such Y and for
any partition of N; in particular ¢ satisfies Pareto.

Proof
1. Consider a partition of N into two subgroups: G; and Gj;. Since ¢ satisfies
Extended Pareto, by Lemma 1 one must have:

"abG.' = ‘P('R’Gi 3 IN\Gi)

Now consider a further partition of G into two subgroups G;; and Gy;. We
need to show that 1, satisfies Extended pareto w.r.t these two subgroups.
We are given: for any p, ¢ € AA,

p ¢G1i(’R’G“)q, t= 1,2
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but we can rewrite ¢g,, (by Lemma 1) as:
LP(RGII ,IN\Gn )
and vg,, as:
p(RE1z, TN\G1z)
Noting then that

LP(RGH , I'N\Gn) = SO(RGIzUGz , IGH )

we can use Extended Pareto for the partition {G11, N\G11} to conclude
that:

pQO(RG“ , RGnUGz)q

which in turn is equivalent to:
Pp(R%,I%)q

where ((R®,Z%) is nothing but tg,. One can show this for any further
finite partitions of Gy;.

2. This follows from 1.
&

Note. Henceforth the Group Aggregation Rules referred to in the rest of
the proof are the ones “induced” by a SWF satisfying Extended Pareto as
shown above.

Lemma 2:

A SWF (respectively Group Aggregation Rule) satisfies Extended Pareto for
any partition of N(respectively G): m iff it can be represented as:

U= Z ,BG.',W([})UG.' (4)
1=1,2,3...
respectively .
Us = Z :BG.',GJ(U)UG" (5)
§=1,2,3...

where U represents the SWF (unique upto positive monotonic transforma-
tions), Ug represents the preferences of the subgroup G, Ug, represents the
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preferences of the subgroups G;,1 = 1,2,3,4....
Brc; € Ryy and U represents the “profile” of utility functions (which can
be for any partitions of N).

(To simplify notation here we drop the argument = whenever the partition
is the trivial one. We also drop the argument G, as in equation (4) above,
whenever U is a representation of a SWF. )

Proof

First it is obvious that if a SWF (respectively group Aggregation Rule) can
be represented by the above, then it must satisfy Extended Pareto. We now
prove the converse.

Observe that by part (2) of the Corollary to Lemma 1, Extended Pareto
implies Pareto. We also assume that individual and social preferences (and
hence by part (1) of the corollary to Lemma 1 also group preferences) satisfy
the vN-M axioms. Hence, Proposition 0 applies to both the SWF and to
group preferences and both can be represented by a weighted sum of utilities
of individuals in the society/group. It remains to prove that social/group
preferences can be represented as in equation 4 and 5 respectively, in the
specific cases where subgroups are not individuals. The proof of Proposition 0
goes through just replacing individual vN-M utilities by group vN-M utilities,
and profiles of individual preferences by profiles of group preferences.

&

Lemma 3 now proves the result for a subgroup of three individuals and a
profile of preferences with dimension three.

Lemma 3:

Let #N > 4, #A > 4. For all G € S s.t. #G = 3 and for all profiles on
N such that u; = 0(or constant),Vi € G; g satisfies Extended Pareto iff
3F. 6(un) € R4+ such that v can be represented by Ug : A — IR such that:

(1) .
UG = Z m(un - 1;%1}41 un(a)) (6)

n€G * n.G
whenever d(@) = 3.

(2) ~
Fag() = F6(),¥G, G €8,

s.t. L
ne€GneQqG.
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where u,, Ug € R*, and #G = 3.

Proof :
Since it is clear that if each Ug is represented as in equation(6), it satisfies
Extended Pareto in terms of any subgroups, we now prove the converse.

(1) Let the 3 individuals be {7, j, k}. Let @ represent the profile of utilities of
the 3 individuals, and u, v, w represent utility functions for the 3 individuals
t, J, k respectively. g;;(u, v) denotes a function which depends on the
individuals ¢, j and the utility functions u and v. Note that the order of the
profile is maintained in the proof, although the particular notation used is
to show clearly that the first coordinate of the function refers to the utility
function of the individual ¢ who'is first in the order g;;.
Claim 1.
There exists a function g;; defined for all (u, v) € S% which satisfy d(u, v) =
2, and for every ordered pair {i, j} of 2 different individuals such that

(a) gij(u, v) = Jj—l V (@) € S° such that @; = w;,@; = u; with 3
individuals in G s.t. 7 and j belong to G and d(@) = 3.

(bl) gi;(u, v).g;i(v, u) =1, whenever d(u, v) = 2.

(b2) gij(u, v).gjk(v, w).gri(w, u) =1 whenever the functions g are well-
defined.

Proof:

Since #N > 3, and #A4 > 4,3 G' C G,s.t. G' = {4, j} and a profile where
N — 2 individuals are completely indifferent and d(u, v) = 2. By Lemma 1,
Y¢ satisfies Pareto, and by Lemma 2, it is represented by :

UGr = Z )\n‘cl(ﬁ)un. (7)

neG’

where ), satisfies the properties of Proposition 0. Define the function

gi; = %—i—:—(:——’:— By the above, this function is well-defined whenever i # j

and d(u, v) = 2. Now we can prove (a):

By Lemma 1 3 satisfies Extended Pareto. Therefore by Lemma 2 we have,
for G, = {1,j}, G2 = {k}, for any ordered set G = {3, j, k}, and for the
partition m; = {Gy, G2},

Us = a6,,6,m (U, v, w)(Aie (w,v)u+ Aje (v, u)v) + akgm(w, u, v)w.
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and for G, = {i1},G; = {j},G3 = {k} :
Us = Xy, v, w)u+ Xjg(v, v, wv + A g(w, v, w)w.

where the coeflicient vectors a, and A are strictly positive. By the uniqueness
of the coefficients in this full-dimensional case we have:

A,',Gl(u, v) _ )\,"G(u, v, w)
AJ"GI(U, u) Ajv(;(v’ u, w).

(8)

(note the 7 argument is dropped as by the above argument we also show the
independence of g;; from the partition. The argument for the subgroup G’ is
also dropped from now on since g;; depends on this (fixed) subgroup and on
a fixed partition.)

(bl) is obvious by using the definition of the function g;;.

(b2) If d(%&) = 3 then by part(a) the result follows.

Otherwise 3 @, 4, ¥ such that d(u, v, W) = d(v, w, @) = d(u, w, 0) =
d(a, v, w) = d(u, 0, w) =d(4d, v, W) = d(d, 0, w) =3 (since #A4 > 4, by
assumption) , such that, using Claim 1(a), equation (8):

gij (¥, v) = gir(u, W)gk;(w, v)

Similarly:

gjk(v’ w) = g;i(v, 'a)gik('&’ w)
And:

gki(w, u) = grj(w, 0)g;i(d, u)

Substituting for the functions g in equation (b2) of Lemma 3, and using
successively the equivalence proved in Claim 1(a) we get:

gii(u, v)gix(v, w)gki(w, u) = gix(u, W)gi;(D, 0)g;i(d, u)
Which is equivalent by Claim 1(a) to:
gij(U, 9)9;'1'(9, u)

And using (bl) the above expression equals 1.

Claim 2.
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There exists a function G;;(u, v) : $2 — IR, defined for any non- constant
u,v and any 2 individuals ¢, j such that
(a)
Gij(u, v) = gij(u, v) .9
whenever d{u, v) =2 and ¢ # j
(b)
Gij(u, v).Gjk(v, w).Gri(w, u) =1. (10)
always, for any 7, j, k € G.
Proof.
First we construct the function G;.
Define Gi;(u, v) = gix(u, w)gr;(w, v). Observe that this function is well-
defined because given any pair of individuals ¢ and j and any pair of non-
constant utility functions u, of 7, and v of j we can find an individual %, and
a utility function w for this individual such that d(u, w) = d(v, w) = 2 and
hence the functions g;x(u, w), and gx;(w, v), are well-defined. It remains to
show that the function G;;(u, v) is independent of the utility function w and
the individual &.
Note that #A4 > 4, and #G > 3 thus for any pair u, v of non-constant
utility functions we can find w € R* , k € {4, j} C G such that d(u, w) =
d(v, w) =2.
If i #jand if d(u, v)=2:
then it is possible to choose w such that d(u, v, w) = 3, and therefore we
can prove the independence using the equivalence in Claim 1(a).

I d(u, v) #2,and @ # j:

we only have to prove that :

gik(u, w).gxj(w, v) = gik(u, ®).gx;(D, v). (11)
whenever d(u, w) = d(w, v) = d(u, W) = d(v, W) = 2 and whenever
k#1i, k#3.

This can be done by proving the equivalence of each side of equation (11) to
gir(u, W)gr; (@, v)

It is sufficient to prove this for one side of equation (11):
Thus choose % such that:




This is possible given domain conditions.
Choose u;, u;, ux to satisfy:

d(u, uj, w) =d(w, u, v)=d(u, u;, ®) =d(u;, W, v)=3
(this is possible by the domain assumption.) Thus we have:
gik(u, w)gki(w, v) = gi;(u, u;)gir(uj, w)gki(w, ui)gi;(wi, v)
which is equivalent by application of Claim 1 (a) and Claim 1 (b2) to:
gir (u, wr)ghs(uk, v)

Similarly for the LHS of equation (11) and choosing ¥ = ux, we have proved
(11).
If i = j and d(u, v) # 2 : We need to prove:

gik(u, w)gki(w, v) = gij(u, W)g;i(0, v),

whenever the functions g(-) are well defined.
This is equivalent by Claim 1 (bl) to proving:

gji(lf), U)gz’k(U, w) =9ji(u7, U)gik(v, w)

But this is proved already in the case ¢ # j with the names of the individuals
permuted.
Proof of (a):
If d(u, v) =2, i# jthen by definition, Gi;(u, v) = gij(u, v).
Proof of (b)
First the equivalence is proved for ¢ # j # k :
By definition:
Gij(u, v) = gir(u, w)gki(w, v)

Hence choosing the 3 utility functions @, 9, @ such that:
d(u, w) = d(w, v) =d(v, @) =d(d, w)=d(w, 0) =d(0, u)=2
proving equation (10) is equivalent to proving:
gir(t, W)gi;(, v)g5i(v, d)gar(d, w)gri(w, 0)g; (0, v) =1, (12}
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By the domain assumption (#A > 4)we can choose @, ¥, W to satisfy as
well:
d(t, v, w) =d(4, 9, w)=d(4, 0, ) =3

By successive applications of Claim 1(a), (11) is equivalent to proving:
gir(u, W)gkj(d, 0)g;i(d, u) =1
Which is true by Claim 1(b2).
Ifi=j:
Equation (12) above becomes:

gik(u, W)gri(W, v)gi;(v, 0)gk(d, w)gkj(w, 0)gsi(0, ) =1,  (13)

This is equivalent using Claim 1(a) to:
9ir (1, B)grj (1, 0)g5i(0, u) =1
Which is true by Claim 1(b2).
fi=j=k
Equation (12) becomes:

gik(u, W)gri(W, v)gi;(v, 0)g;i(0, w)gix(w, D)gri(d, u) =1,  (14)

This is equivalent (using Claim 1(a))to:

gik(ua 'Lb)gkj( b, i})gji(i}a u) =1
Which is true by Claim 1(b1).

Claim 3

There exist functions Fg(n, u), defined on N x S*, where S* is the set of
non-constant utility functions, such that

Gij(ua v) _ FG(j’ v)

FG(ia u)

For all n € G, the function Fg(n, u) is translation invariant, and positively
homogeneous of degree 1 in u € IR*.

Proof:

18




Observe that Claim 2(b) yields :

-first ¢ Gii(u, u) =1 (thecasei=j=kandu=v=w.)
-next Gi;(u, v)Gji(v, u) =1 (the case i = k and u = w.)
-Finally: Yu, ve€ S

G,'J'(u, v) = G;k(u, w)ij(w, v)

(Since Gj; = GL,.-’ using the definition of the function G;; and Claim 1(b1).)
Now fix some non-indifferent individual kg and some ux, € S* Then

G;J-(u, ‘U) = %”z; (15)

where we define:
Fo(n, i) = Gion(uf, @),

Translation invariance of Fg(n, u) follows from the translation invariance
of A,( Claim 1) and from Claim (2) and Proposition 0; so do the homogeneity
properties.

(Note In the above G refers to the subgroup whenever it is a subscript and
otherwise it refers to the function Gi;(u, v).)

Claim 4. End of the proof of Lemma 3.
Note that, by Claim 2(a) we have

Gij(uir uj) = gij(wis ;)
whenever d(u;, u;) = 2 and ¢ # j. And by Claim 1(a):

/\i(uia Uj, uk)

gij(uiauj)’: /\j(uia u;, uk)

whenever
d(u,-, uj, uk) = 3

Thus in the full-dimensional case we must have:
Fo(g, uj)-Aj(ui uj,ue) = Fa(t, ui)-Ai(ui, uj, ur)

-using here Proposition 0 and the definitions of g;; and G;; from Claims 1
and 2, — i. e. the product is independent of the individual and is only
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a function of the utility profile, say ®(u;,u;,ux). We can then normalise to
®(u;, u;, ux) = 1 without changing social preferences(dividing the vector A -
and hence U - by ®) . Substituting for A\,((un)nen) in equation (5) of Lemma
2

’ 1 Ll 1
i R kT,

F,-(u,-) J Fj(’u_,') Fk(uk)
Subtracting from each u, the value min,eq un(a) leaves social preferences
unchanged. This gives for each non-indifferent individual n € N, a uniquely
(upto the function F) defined map u/(R,) from his set of possible pref-
erences to utility representations of those, (subtracting from an arbitrary
representation u, the value minsea(u.(a)), and dividing by F(n,u) -if not
0)- such that for any {i, j, k}, and whenever d(%) = 3, subgroup preferences
are represented by

U=u

U = ui(Ri) + uj(R;) + ui(Rx)

as desired.

[ )

The next part of the proof extends the result of Lemma 3 to all sets G.
Corollary 1 to Lemma 3:

Lemma 8 holds for all subgroups G € S such that #G > 3 and d(@) = #G
on all profiles where N — G individuals are completely indifferent.

Proof

Since the same proof goes through for any G as long as there are at least 3
individuals in the subgroup, it suffices to show that the function Fg(n, u) is
independent of the subgroup G.

Thus we need to prove:

FG(Tl, u) = FG:(n, u),
whenever n € G and n € G'. By definition of the function Fg(n, u) it is

sufficient to prove that Gy n(uk,, u) is independent of any i & {ko, n}.
This is equivalent to proving:

gik (u, w)gkj(wa v) = gi(u, w)glj(wa v), (16)
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whenever the functions g;;(-) are well defined and whenever there exists an
individual I € G such that | & {3, j, k}. But this is equivalent to showing:

9 (D, u)gik(uv w) =glj('li1, 'U)gjk('v, w) (17)
choosing w, W such that :
d(u, w, ) =d(v, w, W) =3

Then each side of equation (17) equals g (W, w), using Claim 1.

)

Corollary 2 to Lemma 8:

Lemma 8 holds for any subgroup G with #G = 2, d(¥) < 2, whenever #N >
4, #A>4.

Proof

Claim 1

Lemma 3 holds for any subgroup G with #G = 2 whenever #N >4, #A >
4.

Proof: Let the subgroup G = {7, j}. Since # N > 4 and #A > 4, there
exists a profile where N — 2 individuals are totally indifferent and d(%@) = 2.
Similarly there exists a profile where N — 3 individuals are totally indifferent
and d(7@) = 3. By Lemma 3 the case G = 3, d(%) = 3 is already solved. Hence
take a partition of the 3 individuals into G; and G such that G; = {i, j} .
By Lemma 2 we have, for s = {G,G,}:

Usg = an.s(')UGl + 602,3(')U02

and by Lemma 3 we have:

Us = Z u:z(Rn)

neGi1UG,

By the uniqueness of the coefficients for ¢, 5 we get:

!
Us, = ag,s 3 ul,
neG,

which can be normalised to:

Ug, = Z ul,

neG,
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as desired.

Claim 2

Lemma 3 holds for all subgroups G with #G = 2 and d(%) < 1, whenever
AN >4, #A>4 _
Proof.

Observe that, by Pareto, the statement is trivially true for any such G when-
ever d(Z) = 0 or the 2 individuals in G do not have opposite preferences.
Hence it is sufficient to prove the Claim for 2 individuals with opposite pref-
erences. Let the 2 individuals be ¢, j. Let u be some fixed representation of
R;. Then, by Lemma 2, social preferences are given by Mu, where M € RR.
Let w, W represent the utility functions of 2 individuals k, I, k # [ such that
d(w, @) = 2 and d(u, —u, w, W) = 3 (noting that this profile exists and
two such individuals exist such that k, [ € {1, j}).

The preferences of the group G = {k, [} are given (Claim 1) by

Ug = w’('Rk) + 'lI)’(RI)
Now if we partition the set N into {G} and {N\G}, we get the following:

U = a(w'(Ri)+3'(R)) + B.(Mu)
= o, (W' (Ri) + ¥ (Ry)) + B (' (R1) + (—u)'(R:))
(18)

since the case G = 2,d(@) = 2 has been solved already. This implies by the
condition d(u, w, w') = 3, that

Q, = ﬂr = O
We obtain then:

Bs(Mu) = a,[u'(Ri) + (—u)Ri] = a5 3 up(Ra)

neG

and normalising to a, = 1 gives the same social preferences as before.

&

Lemma 4: Let the dimension of a profile be denoted by d, and [g, d] represent
profiles of g individuals and d dimension where d < g. Whenever #N > 4
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and #A > 4 Theorem 18 holds for any [g,d], d > 2 whenever it holds for
any profiles [g — 2,d — 1]. V

Proof

For #G > 3, we can partition G into 2 groups: s = {m,!} C G and G’ =
{G\s} with m # I. We have by Lemma 2 (since the case G —2 is fully solved
by assumption and the case G = 2 is solved by the Corollary to Lemma 3:

U = as(up(Rm) + w(R1)) + Ba( 2 un(Rn) — up(Rm) — ui(Ry))

neG

with both a, and f; strictly positive.
—lLe.

U=(a, - ﬁs)(u:n(km) + u(R)) + Bs(D_ up(Ry))

neG

We need to show that for some s,
o, — ﬂs = 0
Suppose Vs, (a, — B;) # 0 Then, we have Ym # |

v + Z Uy, (Rn). B,

as—ﬁs neEN as_ﬂs

Up (Rm) + w(Ry) =

Adding the above equations for {m, [} = {1, j} and subtracting for {m,{} =
{j,k} and for {m, 1} = {7, k} we get:

Wj(R;) = 8U + p 3 (un(Rn))

neG

—1i.e. eachu] (R,) is a linear combination of < 2 linearly independent vectors
contradicting d(@) > 2.
Thus we have , choosing s such that a, = S,

U=8,3 un(Rn)

neG

for some B, > 0, as desired.

8 Appropriately interpreted for subgroups.
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Lemma 5 Let the dimension of a profile be represented by d. Then for all
profiles with #G > 3,d(@) 2 2, Theorem 1 holds for any subgroup [g,d] if it
holds for the case [g+ 1, d + 1]. .

Proof Let the subgroup be G and the dimension of the profile be d. By
hypothesis the case G + 1, d(@) = d + 1 is already solved. Hence add a
non-indifferent individual i to G. Consider now the following partitions of
the G + 1 individuals. If G; = G and G, = {i} denoting G; U G; by G2 :
By Lemma 2 we have:

UGu = asUG1 + ﬂsUcz
and by hypothesis (Theorem 1) we have:

UGu = E u;(RN)

n€Gi2

By the uniqueness of the coefficient for the (non-indifferent) individual in G,

we get:
!
Ug = a, E U,
neG

where a, > 0, as desired.

é
Claim 5 proves the result for all subgroups G, whenever the conditions of the
theorem are satisfied.
Lemma 6: For all profiles with #N > 4 and #A > 4, the theorem holds for
any G C N, and all profiles with d > 2 except the profile [N-1, 2].
Proof Observe that the case #G = 3, d(¥) = 3 and #G = 2 are completely
solved and that the full-dimensional case for all G is solved by the Corollary
1 to Lemma 3. It remains to prove therefore the cases #G > 3, 2 < d < #G,
where d denotes the dimension of the preference profile.
We do this using the following induction steps:
Let the number of individuals in the subgroup be g and the dimension be d.
By the Corollary to Lemma 3, the case [g, g] is solved. (The second co-
ordinate denotes the dimension). It remains to prove [g, g — z], where g—z >
2.
Observe that by Lemma 4, the cases [g, g] imply the result for all [g+2, g+1],
with starting point of [2, 2]. Hence all cases [g, g — 1], will be solved by this
for all ¢ > 4. It also implies that all cases [g, g — 2] will be solved for all G
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such that #G > 6 and that all cases [g, g — 3] will be solved for G such that
#G > 8 and so on.

In the next step observe that we can use Lemma 5 to solve the case [3,2]
(since we cannot use Lemma 4 to solve cases of dimension 2). Similarly we
can solve [5,3] using Lemma 5 on [6,4] and hence [4,2]. One can then use
Lemma 4 again to solve all cases [G, G — 3] for all G such that #G > 6. This
implies by Lemma 5 the case [5,2]. Again, use Lemma 4 to solve all cases
[g, g — 4] for all G such that #G > 7 and so on.

The idea is to use Lemma 4 and Lemma 5 successively, Lemma 4 can be used
for solving cases of dimension greater than 2 and Lemma 5 for the cases of
dimension 2.

L)

Now we can prove Theorem 1.

Proof of Theorem 1 Part (A):
Step 1

The statement is true for all profiles such that # N > 4 and d(@) = #N.
Proof

Observe that the domain conditions of Lemma 3 are true in this case.
Therefore we can use the method of Lemma 3 to construct functions F(n, u)
for any n € N. For any n choose any set of 3 individuals containing indi-
vidual n, and any profile ¥ which fulfills the dimension conditions.

Claim 1 of Lemma 3 can now be read :

Ai(4)
g1 u) v) = ol
J( ) AJ(U)
whenever the profile @ has full dimension (i.e. d(@) = N). (By the same
proof).
L
Step 2

The statement is true for any N > 4, for all profiles such that d(@) > 2
Proof

It is sufficient by Step 1 to prove the result for the less than full dimen-
sional case. For this we need Lemma 6.

For an arbitrary N > 4, d(@) > 3, observe that the theorem holds for all

G, with d > 2 except the case [N-1, 2] by Lemma 6. Use therefore Lemma-
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4 and cases of #N — 2 individuals to solve all profiles [# N, #N — z] where
#N -z > 2.

Proof of Part B. Fix a SWF that satisfies Extended Pareto. Then by Part
(A) of the proof, we know that it can be represented as:

U=} up(Ra) | (19)

n€EN

for some functions F(n, u) (see equation (2}).
It is sufficient to prove this for the profile where G = 3 and d(@) is full, since
this was the starting point of the proof of Part A (Lemma 3).
Suppose that there exists a g such that there are 2 functions F(n,u) and
F'(n,u) such that equation (19) holds for both. Since by hypothesis the
SWF, hence g, is fixed, the representation U’ with the functions F'(n,u)
must be such that:

U = BUc + v

with 8 > 0. Since we are in the full dimensional case we have by the unique-
ness of the coefficients that:

1 1
BF’(n, w)  F(n,u)’

as desired.

&

Proof of Proposition 1:
It is clear that whatever be the map F, the above SWF satisfies our axioms.
Now we prove the converse.
It is sufficient to prove that the functions F(n,u) of Theorem 1 are such that
F(n,u) = F(u), the rest follows from the proof of Part 1.
Fix a representation of individual and social preferences. Since the SWF
satisfies Extended Pareto, by Part (1) Theorem 1, the representation of the
SWF is as given by equation (2). Thus for any full-dimensional case we have
that whenever the preferences (utility functions) of any 2 individuals are
permuted then by Anonymity the social preferences (and hence the utility
function up to a positive affine transformation) must remain the same. This
implies by the full-dimensionality that F(n,u) = F(u).

&
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Proof of Proposition 2 is in the Appendix.

Proof of Theorem 2:

It is obvious that "Relative Utilitarianism” satisfies the axioms above.
Thus we now prove the converse. .
Fix an SWF satisfying Extended Pareto, Weak IIA*, Anonymity. We need
to show that then it can be represented by:

U=Y3 a(Rn)
neN

un(a)—mingg 4 un(a)

where 4 = YO _
It is sufficient to show that if the SWF satisfies Weak IIA* in addition to the
other axioms then F(u) = p(u), where p(u) = max,e4 u(a) — mingea u(a),
for all subgroups of 2 individuals with full dimension, since this implies the
result for all other profiles, if we show that this implies that the case G = 3
is solved®. This is easy to see using Extended Pareto, and different combi-
nations of the three individuals in subgroups.

Claim 1 Let u be a utility function on A’, and P a set of lotteries on A’. Then
uP € S is defined as follows: u”(a) = u(a) for all a € A’, and Vao € A\A/,
uP(ag) = (pay, u), for some p,, € AA". Let A(u') = F(uF}- Then for every
pair of lottery sets P and () on A’, and for every non-constant u,

Auf) = A(u?).

Proof

Observe that N > 3, and #A > 4. Take any subgroup of 2 individuals, such
that if u and v represent their utility functions on A’, d(u, v) = 2 (this is
possible since #A > 4). For any set of lotteries P on A’, let u and »P

represent the corresponding utilities on A. Let ¢(P,u) = A(u’). By Weak
ITA*, for every 2 sets P and Q:

38 >0, %,

such that:
Va € A,

t(P,u)u(a) + t(P,v)v(a) = B(¢(Q,u)u(a) + t(Q,v)v(a)) + v
Formally: G = 2,d(@) = 2= G =3,d(@) =3
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By the linear independence of u and v, we get:

t(Pu)  t(Pv)
t(Q,u)  t(Q,v)

whenever u and v are linearly independent. This is true as well whenever
u, v are non-constant, since there exists some w € S, which is linearly
independent of both u and v and it is easily shown that equation (20) holds
for both u and v with w.

Thus we can fix v non-constant, at ¥ and we define a function H(P) =
t(P,v), VP. Hence we have:

t(P,u) _ tH(Q,u)
H(P)  H(Q)

, VP,Q ~(20)

Vu € §* and VP, Q on A’ (21)

This ratio is therefore independent of P and we can define G(u) = %%‘5)1, for
any fixed set Q on A’. Hence,

MuP)=Gu)H(P) VP € AAandVue §*

Next, we show that the function H(P) is constant. From the above equa-
tions we know that H(P) = H(Q) whenever the hypothesis of Weak IIA* is
satisfied by two profiles u” and u?. Thus, it is sufficient to show that there
exist such profiles for any two sets P, Q. This is equivalent to requiring the
existence of profiles of dimension at least two. This is guaranteed by our
assumptions.

This means that the function H(P) is constant. Thus for all non-constant
u, H(P) is constant and therefore A(uf) is independent of P.
Claim 2

Au) = %J

Proof. Note that Claim 1 implies that A(u”) is independent of P and hence .

of u(ap) for all ap that satisfy the condition that 3p,, € AA’ such that
(U, pay) = u(ag), i.e. that mingea(u) < u(ag) < maxgear(u). This implies
that A(u) depends only on max,e 4 u(a), minge 4+ u(a). Translation Invariance
of A(u) then implies the result.

)
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Axiom 4: Neutrality expresses that the names of the alternatives
do not matter. Formally, at least when A(A) consists of all lotteries
with finite support, any permutation r of A induces a permutation
of the space of preferences:

R — R, where pR,q iff po7mRqor. Then

¢[(R)"] = (¢l(R])

Neutrality is obviously satisfied by "Relative Utilitarianism.”

4.2 Necessity of the Axioms

The Independence Axiom

We assume the vN-M axioms are satisfied for individuals but we relax the
vN-M axioms for society in particular the Independence axiom or the sure
thing principle.

V= L teen(un (@) — mimoea(un(@)

where the utilities for individuals are the usual vN-M utilities. This example
is due to Epstein and Segal [6].
Continuity of preferences

An example that violates the vN-M axioms of continuity of preferences
is the leximin rule ( Sen [15]) that lexically chooses the (normalized) utility
of the worst off individual for a given alternative as the social utility.
Extended Pareto

Since Extended Pareto implies Monotonicity (Mertens and Dhillon, [12]),
the e.g. used here is the same as for Monotonicity, i.e. take the gradient of
the Nash product for the non-dummy players at the maximising point (in
the closure of C(u)), when [min,e4 u(n)|n € N]is taken as the disagreement
point. The weight of the dummy players is arbitrary.

Anonymity.
Otherwise use 3, A -—“ﬂ—) with A, > 0 - as social utility.
Neutrality. Otherwise use 3°, &5, where pn = 3-,¢ 4 w(a)un(a), and g(u,) =

\/Z w(a)un(a) — pa)? (if not zero) - with w(a) >0, X, w(a) = 1.
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If one chooses all w(a) equal, one obtains an example satisfying in addi-
tion neutrality, but not Weak I.I.A.* '

5 Conclusion

This paper introduced the Extended Pareto axiom in a framework of pref-
erences over lotteries. It was shown that if the von-Neumann-Morgenstern
axioms on preferences are satisfied by individuals and by society then this
axiom implies that the SWF is a weighted sum of utilities where the weights
for each individual depend only on his utility function in the profile. The
axiom thus implies additive separability in the SWF in this sense!® . The ax-
iom may be viewed as an analog (in the context of ordinal preferences) of the
separability condition (Fleming [7], Arrow[2], and discussed by d’Aspremont
[5]) which is imposed in the context of cardinal and fully comparable pref-
erences, except that in addition it embodies Pareto. With two additional
axioms, Anonymity and Weak IIA* a SWF, Relative Utilitarianism, was
characterized for all profiles of preferences where the corresponding utility
vectors were of dimension.two at least. The Anonymity axiom is standard
while Weak IIA* was motivated by Arrow’s IIA applied to a framework of
preferences over lotteries.

The results used quite strongly the mathematical structure imposed by
the vN-M axioms. In principle, these results can be extended to the case
where we do not directly use the vN-M axioms. Harsanyi’s theorem e.g. has
been extended in this way by Coulhon and Mongin [4], and in Mongin [13]
using the more general notion of mizture sets. Mongin [4] has a section on
Algebraic Preliminaries which would be directly relevant if we do not restrict
ourselves only to lotteries over a set of A, but are concerned with (more
generally) convex subsets of vector spaces, and affine functions on these.

APPENDIX :
Consider Monotonicity:

Axiom 0 (Axiom 5' [12]. Assume R is total indifference, and
R; = Rk Vk # n. Then

10Note however that it does not imply the usual form of additive separability since in
principle the weights for each alternative are not separable; indeed they depend on the
utility function.

30




pI.q
. = pI
P } »Ig

and

pPrg
w ¢ =>pP
qu} pPq

It is easy to see that Extended Pareto implies this form of Monotonicity.
In the other direction, a weak form of Extended Pareto is implied by this
Monotonicity axiom where only partitions of this type are permitted, and
moreover where the role of the one individual subgroup is priveleged relative
to the other (see the latter part of the axiom). It is obvious that they are
both-equivalent to Pareto in the case of two individuals.

&

Proposition 0. The social welfare functions ¢ that satisfy the Pareto aziom
are those which can be represented by a map A from SN to RYN such that

a) A (@) >0 Vn,Vi € SV,

b) If Vn € N,u, is a representation of R,, then 3, A, (&). u, is a repre-
sentation of ¢ (R).

c) o A\, (@) is translation invariant, i.e.

if v, = up + @ Vn, with a, € R, then A\, (@) = A,.(9).

o A\, (T) is positively homogeneous of degree zero in ux Vk # n and, if u,
is not constant, of degree minus one in u,, i.e.

if v, = Bnun Vn, with 8, > 0, then A, (7) = 871 A.(T).

Proof. Let us first show the “single profile” result of Harsanyi. For # € SV,
U is a corrsponding social utility satisfying Pareto.

Clearly

C = { [((unsP) = (tns @))nen » (U:9) = (U,1)] | p € A(A), g € A(4) } is sym-
metric (around zero) and convex, and C N [RY x Ry] = {0}. So F =
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Us>o(AC) is a vector subspace, with F N [R) x R,] = {0}. Hence, by Fa-
rkas’ lemma, there exists A\, > 0 and g > 0 such that Y \,z, + py < 0 for
(z,y) € F, and hence equality since F is a vector space, i.e.,

ZA"(unap) - an(unaq) = /‘(Uap) - /‘(Ua Q)

for all p, g € A(A).
Hence, dividing A, by g, we obtain

(U’p) = ZAn(un,p) + IB 9 Vp € A(A)

with 8 = (U, q) — ¥, A (un, q) for some ¢ € A(A).
Consider now, for every (R) € L, the corresponding utility profile (u, )nen
where each u, is normalised such as to have max, u,(a) = 1, min, u,(a) =
0 or up(a)=0 Va € A.

Let also U be a similarly normalised representation of ¢ [(R)].

Let A = {(A)nen|An > 0,U — ¥, Anu, is constant }.

Let M =inf{y, A|A €A} +1and A°={) € A|, )\, < M}.

Then A% is, by the above, non-empty, and is convex and bounded.

So the barycenter A® of A° exists, and belongs to A°. This yields a map
from preference profiles to N-tuples of positive numbers.

Define now A(@) for any utility profile @ from its values for the normalised
profiles by using (c). Then clearly (a), (b) and (c) hold.

Conversely, it is clear that any map A satisfying (a) and (c) defines
through (b) a map from preferences to preferences that satisfies Pareto.

&
Proof of Proposition 2:
Observe that the proof of Proposition 0 does not use Strong Pareto; any
form of Pareto, even Pareto Indifference is sufficient, given the vN-M axioms.
The only difference due to using different forms of Pareto is in the signs of
the coefficients (see e.g Mongin [13]) i.e. the vector A. Thus in particular,
Pareto Indifference with the vN-M axioms implies that social welfare can be
represented as an affine function on the set F.
Second, if the sets F' are equal, they will be equal even after normalising
utilities, and the homogeneity properties of A imply that if A\(¥) = )\(J’)
holds for the normalised problem, it holds too for the original problem. Thus
we can assume the utilities are normalised.
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It suffices to prove that the set C' of Proposition 0 is the same in both
problems, since the vector A constructed there depends only on this set C.
This will follow from the equality of the two sets F' if we prove that U and
U’ are the same affine function on F| since by Pareto Indifference we know
that they are affine functions on F. Note that the hypothesis of Weak IIA*,
implies that

F = {([< #,p >lnenlp € A(A))} = {([< u, P’ >]nenlp’ € A(A))}.

where A’ C A. That the set F contains the latter set (call it F’) is obvious.
In the other direction, for any lottery in the set F'\F’' by the hypothesis of
the axiom, there exists a lottery in F' to which all individuals are indifferent.
To prove Proposition 2, we distinguish two cases: (I) in which the extreme
points of the convex hull of the set of alternatives in utility space (AA’) are
the same, and (II) in which they could be different. It is convenient and
sufficient to prove this for the case #G = 2 and d(@) = 2, since this implies
the result for the case of three individuals and a full dimensional profile.

In the first situation, we can use Weak IIA* directly to conclude that (nor-
malised) social utilities must be the same on the set F” for the two profiles
and by Pareto Indifference every lottery in F\F' is socially indifferent to
some lottery in F'. This being true for both profiles, the set C is equal in the
two cases, and hence the conclusion that A\(@) = A(u').

There remains to show the proof for the case II. We can show that Weak IIA*
and Pareto Indifference implies Neutrality in this framework, and hence one
can permute the profile to reach the situation of (I) again in a finite number
of steps. Thus consider two profiles of normalized utilities @ and u’, which
satisfy the requirement that F' = F". Since the number of alternatives is more
than 4, there is at least one alternative p that is unanimously indifferent to
some lottery on the others.Thus one can move this alternative up or down
in the individual ranking without changing the vector A as proved above.
One can also use Pareto Indifference to derive the social preferences for an
alternative which is unanimously indifferent to another. Consider w.l.o.g that
we need to permute an alternative a to an alternative d. If these alternatives -
are extreme points in the convex hull F' then we can construct intermediate
profiles where we use Weak IIA* and Pareto Indifference to permute the
two. In the first instance therefore move p to be unanimously indifferent to
a without changing the vector A. We can then use Pareto Indifference to
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derive the social preferences with respect to p and in the next step move a
to be unanimously indifferent to d. Next move d to the position of p without
changing the vector A and use Pareto Indifference to derive preferences for
the permuted profile. Since there is a finite number of alternatives this can be
done in a finite number of steps. In case either a or d or both are not extreme
points of the convex hull, the proof proceeds in the same way, without using
P now.

Hence the set C is equal for any two such profiles, hence also the SWF when
viewed as a linear functional on F.

é

34




REFERENCES

Arrow, K.J. (1963), Social Choice and Individual Values, Yale University
Press (Cowles Foundation Monograph 12).

Arrow, K.J. (1977), Extended Sympathy and the Possibility of Social
Choice, American Economic Review, 67 (1).

Chichilinsky, G. (1985), Von Neumann-Morgenstern Utilities and Cardi-
nal Preferences, Mathematics of Operations Research, Vol. 10, No.4,
November 1985.

Coulhon,T. and Mongin,P.(1989), Social Choice Theory in the case of von
Neumann- Morgenstern utilities, Social Choice and Welfare 6.

‘d’Aspremont, C. (1985), Axioms for Social Welfare Orderings, in Social
Goals and Social Organizations, L. Hurwicz, D. Schmeidler and H.
Sonnenschein, eds., Cambridge University Press.

Epstein, Larry G., and Uzi Segal (1992), Quadratic Social Welfare Func-
tions, Journal of Political Economy Vol. 100, no.4.

Fleming, M. (1952), A Cardinal Concept of Welfare, The Quarterly Jour-
nal of Economics, 66:366-384.

Hammond, P., Harsanyi’s Utilitarian Theorem: A Simpler Proof and Some
Ethical Connotations, unpublished mimeo.

Harsanyi, J.C. (1955), Cardinal Welfare, Individualistic Ethics and Inter-
personal Comparisons of Utility, Journal of Political Economy, 63:309-
321

10 Kalai,E. and D.Schmeidler (1977), Aggregation Procedure for Cardinal
Preferences, Econometrica [45)], 1431-1438.

11 May, K.O. (1952), A set of Independent, Necessary and Sufficient Con-
ditions for Simple Majority Decision, Econometrica, 20.

12 Mertens, J.F. and A. Dhillon (1993), Relative Utilitarianism, CORE Dis-
cussion Paper 9348. '

35




13 Mongin, P. (1993), Harsanyi’s Aggregation Theorem: Multi-Profile Ver-
sion and Unsettled Questions, forthcoming in Social Choice and Wel-
fare.

14 Moulin, H. (1988), Axioms of Co-operative Decision Making, Cambridge
University Press.

15 Sen, A.K. (1970), Collective Choice and Social Welfare, Holden - Day,
Inc.

16 Sen, A.K. (1977), On Weights and Measures: Informational Constraints
in Social Welfare Analysis, Econometrica 45:1539-1572.

17 Weymark, J.A., (1992), A Reconsideration of the Harsanyi-Sen debate
on Utilitarianism., in Jon Elster and John Roemer, eds, Interpersonal

Comparisons of Well Being, CUP.

36







