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Abstract

The problem of combining different sources of information arises in several situa-
tions, for instance, the classification of data with asymmetric similarity matrices
or the construction of an optimal classifier from a collection of kernels. Often, each
source of information can be expressed as a kernel (similarity) matrix and, therefore,
a collection of kernels is available. In this paper we propose a new class of methods
in order to produce, for classification purposes, an unique and optimal kernel. Then,
the constructed kernel is used to train a Support Vector Machine (SVM). The key
ideas within the kernel construction are two: the quantification, relative to the classi-
fication labels, of the difference of information among the kernels; and the extension
of the concept of linear combination of kernels to the concept of functional (matrix)
combination of kernels. The proposed methods have been successfully evaluated
and compared with other powerful classifiers and kernel combination techniques on
a variety of artificial and real classification problems.
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1 Introduction

Support Vector Machines (SVMs) have proven to be a successful tool for the
solution of a wide range of classification problems since their introduction
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in [4]. The method uses as a primary source of information a kernel matrix
K(i,j), where K is Mercer’s kernel and i, j represent data points in the sam-
ple. K is a positive-definite symmetric matrix. SVM classifiers construct a
maximun margin hyperplane in a feature space nonlinearly related to an in-
put space. By the representer theorem (see for instance [26]), SVM classifiers
always take the form f(z) = 3, @; K (x,1). The approximation and generaliza-
tion capacity of the SVM is determined by the choice of the kernel K [6]. A
common way to obtain SVM kernels is to consider a linear differential operator
D, and choose K as the Green’s function for the operator D*D, where D* is
the adjoint operator of D [25]. It is easy to show that [|f[|* = ||Df]|7, [15].
Therefore, we are imposing smoothing conditions on the solution f. However,
it is hard to know in advance which particular smoothing conditions to im-
pose for a given data set. Fortunately, kernels are straightforwardly related to
similarity (or equivalently distance) measures, and this information is actually
available in many data analysis problems. In addition, working with kernels
avoids the need to explicitly work with Euclidean coordinates. This is particu-
larly useful for data sets involving strings, trees, microarrays or text data sets,
for instance. Nevertheless, using a single kernel may be not enough to solve
accurately the problem under consideration. This happens, for instance, when
dealing with text mining problems, where analysis results may vary depending
on the document similarity measure chosen [14]. Thus, information provided
by a single similarity measure (kernel) may be not enough for classification
purposes, and the combination of kernels appears as an interesting alternative
to the choice of the ‘best’ kernel.

The specific literature on the combination of kernels is rather in its beginnings.
A natural approach is to consider linear combinations of kernels. This is the
approach followed in [18], and it is based on the solution of a semi-definite
programming (SDP) problem to calculate the coefficients of the linear combi-
nation. The solution of this kind of optimization problems is computationally
very expensive [30]. Another difficulty regarding this method is the overfitting
due to lack of capacity control. A different approach is proposed in [2]. The
method, called MARK, builds a classifier (not the specific kernel matrix) by
a boosting type algorithm.

In this paper we describe several methods to build a kernel matrix from a
collection of kernels for classification purposes. As a previous step, we derive
a natural method to calculate a kernel matrix from an asymmetric similarity
matrix. We show that this method is equivalent to a particular method for the
combination of two kernels. Then, we provide two general schemes for combin-
ing the available kernels. The first framework is based on the quantification
of the difference of information among the kernels. The second framework is
based on the concept of functional (matrix) combination of kernels, which
extends the concept of linear combination of kernels.



The paper is organized as follows. A very intuitive method for the combina-
tion of kernels in an asymmetrical classification problem is discussed in sec-
tion 2. Section 3 describes the proposed methods for combining kernels using
the difference of information among kernels. Section 4 describes the proposed
methods based on the functional combination of kernels. The experimental
setup and results on artificial and real data sets are described in section 5.
Section 6 concludes.

2 Building Kernels from Asymmetric Similarities

In order to motivate the problem at hand, in this section we will consider
the classification of data whose similarity matrix is asymmetric. In this case,
each triangular part of the matrix provides a different source of information.
Examples of such matrices arise when considering citations among journals or
authors, sociometric data [31], or word association strengths [20]. In the first
case, suppose a paper (Web page) ¢ cites (links to) a paper (Web page) j, but
the opposite is not true. In the second example, a child ¢ may select another
child j to sit next in their classroom, but not reciprocally. In the third case,
word ¢ may appear in documents where word j occurs, but not conversely. To
be more specific, let S be an asymmetric [ x [ similarity matrix (corresponding
to a data set of [ individuals), that is, s;; # sj;. Usually, symmetrization is
Sij + Sji

2 )
that is K* = %(S + S7). In this way, the same importance is given to s;; and
sji, the two sources of information. This kernel is related to the decomposition
of a matrix into its symmetric and skew-symmetric parts:

achieved by defining the elements in the kernel matrix as K*(i, j) =

1 T 1 T
S:§w+5)+§w—5). (1)

In particular, the skew-symmetric part %(S — ST) is being ignored, which
implies a loss of information.

In order to take this information into account, the problem can be treated in
an alternative way. From a geometric point of view, the solution of a binary
classification problem is given by a hyperplane or some type of decision sur-
face. If it is possible to solve a classification problem in this way, then the
following topologic assumption must be true: Given a single datum, points in
a sufficiently small neighborhood should belong to the same class (excluding
points lying on the decision surface). As a consequence, if we are going to
classify a data set relying on a given proximity matrix, points close each other
using such proximities should in general belong to the same class.

Therefore, we should construct a similarity matrix K* such that K*(i, )



should be large for 7 and j in the same class, and small for 2 and j in different
classes. Since we have two (possibly non-equivalent) sources of information,
s;; and sj;, we should define K* (1, j) as a function f(s;j, s;;) that conforms to
the preceding rule. We will adopt a simple and intuitive choice:

max (s;;,S:;), if 2 and 5 belong to the same class,
K (i) = { 1 o) J belons 2)
min (s;;,s;;), if ¢ and j belong to different classes.

In this way, if i and j are in the same class, it is guaranteed that K*(i,j)
will be the largest possible, according to the available information. If 7 and j
belong to different classes, we can expect a low similarity between them, and
this is achieved by the choice K*(i, j) = min(s;;, sj;). Hence, the method tends
to move closer those points belonging to the same class, and tends to separate
points belonging to different classes. This kernel matrix K* is symmetric,
and K* = S when S is symmetric. Note that this kernel makes sense only
for classification tasks, since we need the class labels to build it. In order to
make this matrix utile for most classification techniques (including SVMs),
K* should be a positive-definite symmetric matrix.

This problem can be formulated as the combination of two kernels. Let K; and
K5 be two matrices defined, respectively, from the upper and lower triangular
parts of S, that is:

.. Sig 1fl§]7 .. Sjis leS'],
Kig)=9 7 T G =9 7
sji, if > 7, 55, if i > 7.

Note that K; and K, have the same diagonal elements. Equation (2) can be
stated as follows:

K ) max (K;(7,j), K2(i,7)), if i,j belong to the same class,
LJ]) =
min (K;(4,j), K2(i,7)), otherwise.

The problem of classifying data with the asymmetric similarity matrix S is
thus translated to the problem of combining the two kernels K and Ks, giving
rise to an output kernel matrix K*. This scheme can be expressed in a matricial
form. Let y denote the vector of labels, where for simplicity y; € {—1,+1}
(the extension to the multilabel case is straigthforward). Consider the matrix
Y = diag(y), whose diagonal entries are the y; labels. Taking into account



that

1 1
max(a, b) = §(a+b) + §|a—b|,

1 1
min(a, b) = §(a+ b) — §|a -0,
it is direct to show that (3) is equivalent to:
wr oo 1L . . 1 . .
K*(1,7) = §(K1(Za]) + K (i, 7)) + §yiyj|K1(27]) — K>(i, j)I (5)

and the method reduces to:
. 1 1

Note the similarity between this expression and the decomposition of an asym-
metric matrix shown in (1). In addition to the skew-symmetric information,
equation (6) takes into account the label information. In the following this
method will be refered as the ‘Pick-out’ method.

By analogy, in the next section we will derive kernel combinations of the form
1
K*:i(K1+K2)+TY9(K1—K2)Ya (7)

where g(K; — K3) is a function that quantifies the difference of information
between kernels K; and K, and 7 is a positive constant used to control the
relative importance of this difference. If K; and K5 tend to produce the same
classification results, then g(K; — K,) becomes meaningless and (7) yields
K* ~ K| ~ K5. Moreover, the methods will be generalized for the combination
of more than two kernels. In the following sections we will work with similarity
matrices (the transformation of a kernel matrix into a similarity matrix can
be made using, for instance, multidimensional scaling [5,3,23]).

3 Quantifying the difference of information among kernels: the
general case

Let Ky, Ks, ..., Ky be the set of M input kernels available (defined on a data
set X), and denote by K* the desired output combination. The extension of
(7) to the combination of more than two kernels is straightforward:

K" =K +71Yg(} (Ki— K;)Y, (8)

1<j



where K is the average of the kernels and g, as before, quantifies the difference
of information among the kernels involved. To alleviate the notation, in the
following let V' = g(X,;(K; — Kj)), so that equation (8) can be restated as:

K*=K+71YVY. (9)

Within this framework, we will propose several definitions for V', and we will
compare the different methods obtained from both the theoretical and the
practical points of view.

3.1 Average Kernel Method

If we do not take into account the difference of information among the kernels,
that is 7 = 0, then:

K'=K. (10)
In this way, the present point of view provides a new interpretation for an old
and intuitive method. This method will be refered in the following as AKM

(‘Average Kernel Method’).
3.2 Modified Average Kernel Method (MAKM)

Our first proposal builds K* by taking V = 1;17, where 1; is the l-dimension
vector of ones. Thus,

K*=K+71Y11]Y. (11)
For a pair of data points (4,7) in the sample, (11) takes the form:

K*(i,j) = K(i,7) + Ty:v; (12)
That is, if 7 and 7 belong to the same class, then the method adds an additional
quantity 7 to the mean of the kernels involved. On the other hand, if ¢ and j
belong to different classes then we substract that quantity. Since the expression

Y1,17Y is a kernel, so is K*. In the following, this method will be refered as
MAKM (‘Modified Average Kernel Method’).

The kernel K, = Y1;17Y is known as the ideal kernel [7]. If the classifica-
tion target function were known in advance, this would be the optimal kernel
function.

Given two kernels K and Kj, their empirical alignment [7] is defined as:

(Ki, K3)

A(Ky, Ky) = \/(KI,K1>(K2,K2> :

(13)




where (K, Ky) = ¥,y Ki(i,j)K3(i, j) denotes the Frobenius inner product
between matrices. The empirical alignment A(K;, K5) is a similarity measure
between kernels. It can be shown that if there is a high aligment between
the ideal kernel K, and a given kernel K, then the kernel K will have good
generalization properties [7]. Therefore, the search for kernel combinations
leading to a kernel with a high alignment with the ideal kernel is of special

interest.

In the next proposition we show that the MAKM method improves the AKM
method.

Proposition 1. The empirical alignment of the MAKM kernel (K*) with the
ideal kernel is higher than the empirical alignment of the AKM kernel (K )

with the ideal kernel if T > max(—%, 0).

Proof. The empirical alignments to compare are:

- (K, K,)
A(K,Ko): — — )
ViEo, Ko /(K, K)
and (K* K)
AK* K,) = A .
( ) V(Eo, K (K K7
Given that,

(K" K"y = (K + 7K, K +7K,) = (K, K) + 27 (K, K,) + 717,

it holds that

= ey (I K)
AR K= (K,K)’
AR K,) = ] 7<K,K0>1LTZ2 |
WK, K) + 27(K, K,) + 722

Using the Cauchy-Schwarz inequality it can be shown that |A(K, K,)| < 1,
and



(K, K,)<I\W/J(K,K).

Since 7 > 0,

T (K, K,) <tI*[I\/(K, K)],

and

UE, KWK, K + (K, K,) < 2\, K)] + UK, K)W(K, K),

Grouping terms,

(K, K)[IW(K,K) +1I*) <IW(K, K)(K, K,) + TI*].

Dividing by I\/(K, K)(\/(K,K) + 1),

(K, Koy _ (K Ky) + 712
WK, K) ,/(K,I’Q L2

and it follows that

_ (K, K, (K, K,) + Tl
W(E,K) " I(E,R)+7l)

g

IN

A(K, K,)

Given that

WK, K) +7l)? = (K,K) +2r\/(K,K) +7°1* > (K, K) + 27(K, K,) + %17,

it holds that

! 1

< Y

UK, KY + 71— WK, K) +2r(K, K,) + 7212
(K Ko)

and using that 7 > —2=72,

(K, K,) + 1l < (K, K,) + Tl

IV K) + 7))~ WK K) + 20 (K, K,) + 7212 =AK"K,). - (15)

From (14) and (15) it follows that



AK* K,) > A(K, K,).
]

Remark. Notice that the condition 7 > maz(— U_(l’f(") ,0) is not a restriction.

If (K, K,) <0, then the generalization ability of K is very low. On the other
hand, if (K, K,) > 0, then the positiveness of 7 implies that the MAKM
kernel will have an increased alignment (and a better generalization ability).
Similar results are obtained in [17] by using an alernative kernel K (7, j) = +1

if y; = y; and K(i,7) = 0 if y; # ;.

3.3 The squared matriz (SM) method

Next we propose a method that generalizes (7) for the combination of more
than two kernels. A natural extension is to consider g(3;.;(K; — Kj)) =

Zi Z]>z(Kz — KJ)Q in (8) Since Zz Z](Kz — Kj)2 X an\{:l(Km — K)2, in (9)
we can take:

V= fj (K,, — K)*. (16)

m=1

Notice that (16) is a variability measure. This suggests that expression (8) can
be generalized as:

K+1Yg(Var(Ky, Ky, ..., Ky))Y, (17)

where Var(K, Ko, ..., K)r) is a measure of the variability within the kernels.
If all the kernels are equal, the previous expression (17) reduces to the average
K.

Using (16), the combination formula now becomes:

M
K'=K+71Y > (K,— K)*Y, (18)

m=1

where 7 plays the same role as in the previous method. In the following, this
method will be refered as SM (‘Squared Matrix’ method).

Proposition 2. The matriz K* in (18) obtained using the SM method is
positive definite.

Proof. Let A,, = K,, — K. A,, is symmetric since K,, and K are symmetric.
Then, there exists an orthogonal matrix @,, such that A,, = QL A,,Q,,, where
A, is a diagonal matrix whose elements are the eigenvalues of A,,. Now,



A2 = ApA, = QL ALQnQLALQ, = QL A2Q,,, that is, A2, is positive
semidefine. Since YAZY = YQT A2 Q,,Y = (Qm )TAfn(Qm ) =V.IA2V,,
Y A2Y is positive semidefine too. This means that the second term in (18) is
positive semidefinite, and therefore, this method provides a matrix K* arising
from a Mercer’s kernel.

O

In the next proposition we show that the SM method improves the AKM
method.

Proposition 3. The empirical alignment of the SM kernel with the ideal ker-
nel s higher than the empirical alignment of the AKM kernel with the ideal
kernel if T is such that T[S(V)?=12S(V?)] > 21*(K,YVY)—2S(V)(K, K,) and
T Z max(_<gé‘1§;> ) 0)7 where S(V) = Zi,j:l V(ZJJ) = Zﬁ',j:l Z%:I(Km - K)2

Proof. The empirical alignments to compare are:

[ <K7 Ko> <K7 Ko>
A(K,Ko): — — — ——
VK KWK, Ky L/(KK)
and
) (K*, K,) (K", K,)
AK* K,) = = .
VU KWK K"y LK)
Given that
(K*,K,) = (K +7YVY, K,)
=(K,K,) +T(YVY,K,)
=(K,K,) + (Y VY, Y1,1]Y)
=(K,K,) +71IV1,
=(K,K,) +15(V),
and

(K* K*Y=(K +7YVY,K + 1Y VY)

= (K,K) 4+ 2r(K,YVY) 4+ 72(YVY,YVY)
JK) 4+ 27(K,YVY) +125(V?),

it holds that

(K,K,) +71S(V)

AR Ko) = WK, K) +2r(K,YVY) +725(V2)

10



The proof follows as in proposition 1:

(K,K,) <l\/(K,K),
(K, Ko)mS(V) <W(K,K)rS(V),
UK, KWK, K) + (K, K,)rS(V) <W/(K, R)rS(V) + UK, K)W/(K, K)
| <W(R, K)[(K, K,) +1S(V)]

and

_ (KK, (K, K,) +7S(V)
A Ko) = (K, K) : (K K)+15()]

(19)

Now, using that 7 > 0 and the first assumption in proposition 2,

T[S(V)? —2PS(V?)] > 2I3(K,YVY) - 2S(V)(K, K,),
TS(V)? + 2S(V)< K,) > 2K, YVY)+1I*S(V?),
;—jsw)? + QZ—ZS(V)(K, K,) >21(K,YVY) +725(V?),
;—ES(V)Z + 2SR R) 2 0m K YVY) 4 72517,
KR + ;—jsw)? + 2TTS(V) (K. K) > (K, ) + 20 (K, YVY) + 728(V2)

V(R R) + 2SO > (B, K) +2r(R,YVY) + 75(V?),

and it holds that

V(K E) +25(V)] WK, K) +2r(K,YVY) +725(V2)

Using that 7 > — (I§£§;>,

[ (I_(,I_(>+§S(V)]Sl\/<[_(,f(>+27([_( YVY >+T2S(V2).

Since

11



(K,K,y+1S(V)

A(K" Ky) = ——— = : (20)
WK, K) +2r (K, YVY) +725(V?)
from (19) and (20) we have:
A(K* K,) > A(K,K,).
O

3.4 The absolute value (AV) method

An alternative to (16) to measure the variability within the kernels consists
in following the L; approach by considering V =" _ |K,, — K| in equation
(9). Thus, the desired output K* is built through the formula:

M
K*=K+71Y > |K,-K|Y, (21)

m=1

where 7, as before, is a positive constant to control the relative importance
given to the difference of information among kernels. Equation (21) constitutes
the true generalization of equation (6). In the following, this method will be
refered as AV (‘Absolute Value’ method).

Proposition 4. The empirical alignment of the AV kernel with the ideal kernel
s higher than the empirical alignment of the AKM kernel with the ideal kernel
if T is such that T[S(V)? — 2S(V?)] > 23K, YVY) — 2S(V)(K,K) and

T > mam(_%ao); where S(V) = Zi,j:l V(iaj) = Zé,j:l Z%:l |Km(i7j) -

K (i, )l
Proof. Similar to the proof of proposition 3. O

Notice that the AV method does not guarantee positive definiteness of K*. Sev-
eral solutions have been proposed to face this problem [23]: A first possibility is
to replace K* by K*+ A\I, with A > 0 large enough to make all the eigenvalues
of the kernel matrix positive (a choice for A is any value larger than the ab-
solute value of the minimun of the eigenvalues of the kernel matrix). Another
direct approach uses Multidimensional Scaling (MDS) to represent the data
set in an Euclidean space: Consider the spectral decomposition K* = QAQ”,
where A is a diagonal matrix containing (in decreasing order) the eigenvalues
of K*, and () is the matrix of the corresponding eigenvectors. Assume that A
has at least p positive eigenvalues. We can consider a p-dimensional represen-
tation by taking the first p columns of Q): K* = QpApQg. An alternative is

12



to use both positive and negative eigenvalues of K* to represent the data set
in a pseudo-Euclidean space (we will denote this decomposition by PSEUDO)
[12]. The matrix K* is then defined as K* = Q|A|Q™. The last possibility we
will consider is the definition of a new kernel matrix as K*" K* [27]. Notice
that, in this case, the new kernel is: K* = QA2Q7.

In practice, there seems not to be a universally best method to solve this
problem [24]. In [13] and [22] SVM classifiers with non-positive definite kernel
matrices are discussed, but further analysis is required.

3.5 Generalization of the ‘Pick-out’ method

Next we show how to generalize (3) for the combination of more than two
kernels. The generalization is straightforward by considering:

max K, (i,7), if i and j belong to the same class,
K+ (i) = { == (22)

 Jpin Kn(i,7), ifiand j belong to different classes .

In this way, if ¢ and j are in the same class, it is guaranteed that K*(i,j)
will be the largest possible according to the available information. If ¢+ and j
belong to different classes, we can expect a low similarity between them, and
this is achieved by the choice of the minimum kernel value. It can be shown
that the AV method reduces to the Pick-out method when two kernels are

being combined and 7 = £ in (21). This is not true in the general case M > 2.

3.6 The squared quantity (SQ) method

Our next proposal is a compromise between the two previous ones. In this
case, the variability in (17) will be measured element by element (as in the
AV method) by squaring (as in the SM method) the difference of elements
K (i,7) — K(i, 7). Therefore, in this case:
M —
V(Za]) = Z(Km(iaj)_K(iaj))2a (23)
m=1
and the element (i, j) of the output matrix K* is:
— M —
K*(i,j) = K(i,5) + Ty > (Kn(i, 5) = K(i,5))*, (24)

m=1

13



where 7 plays the same role as in the previous methods. In the following,
this method will be refered as SQ (‘Squared Quantity’ method). Figure 1
shows, for M = 2, the effect of different values of 7 in the second term of the
previous expression. The straight lines correspond to the AV method. Notice
that this is the upper limiting case of the SQ method. The lower limiting case
is represented by the z-axis line, corresponding to the use of (K 4+ K>). Note
that the SQ curves are differentiable everywhere.

As in the previous case, positive semidefiniteness is not assured and the same
comments apply.

Proposition 5. The empirical alignment of the SQ kernel with the ideal kernel
is higher than the empirical alignment of the AKM kernel with the ideal kernel
if T is such that T[S(V)? — 2S(V?)] > 22(K,YVY) — 2S(V)(K,K) and
7> maz (=35, 0), where S(V) = £, V(i j) = ko Sy (K (i, ) —
K(i, )%

Proof. Similar to the proof of proposition 3. O

4 ‘Weighting Methods

In this section, we will propose several new combination methods based on
the concept of functional (matrix) combination of kernels, which extends the
concept of linear combination of kernels. To motivate the approach, consider
the situation in Figure 2. It is a two-class problem where the data in each class
are grouped in two clusters. Suppose we have two linear kernels, K; and Ko,
that induce two linear classifiers fi(z) and fo(z), as illustrated in the figure.
We seek the best linear combination X' = A\ K; + A\ K5. The induced SVM
classifier will take the form:

f(.'L’) = ZOZZ'K(I, .'L’Z) = )\1 ZaiKl(x, IIIZ)"—)\Q ZOZZ'KQ(IL’,Ii) = )\1f{(1‘)‘|‘)\2fé(l’) s

thus, also a linear classifier (a straight line since K; and K5 are linear kernels).
Hence, it is clear that do not exist constants A\; and A\, to solve the classification
problem. However, if the \; are functions of the form );(z,y), the solution is
straightforward: simply take A\i(x,y) = 1, A2(z,y) = 0 for data points in
the A and B clouds on the left hand side of the figure, and \o(z,y) = 1 ,
A1(z,y) = 0 for data points in the A and B clouds on the right hand side of
the figure.

In the general case, for the set of kernels Ky, Ko, ..., Kjs, consider the follow-

14



ing (functional) weighted sum:

M

m=1

where ‘®’ denotes the element by element product between matrices (Hadamard
product), and W,, = [w,(i,j)] is a matrix whose elements are nonlinear

functions wy, (7, j), with ¢ and j data points in the sample. We assume that

K,(i,7) € [0,1] V i,j,m (otherwise they can be scaled). Notice that if

Wy (i, 7) = pm, where p,,m = 1,... M are constants, then the method re-

duces to calculate a simple linear combination of matrices:

M
K=Y pmKn. (26)
m=1

As mentioned in Section 1, in [18] a method is suggested to learn the coeffi-
cients p,, of the linear combination by solving a semi-definite programming
problem. So, it is clear that the formulation used in [18] is a particular case
of the formula we use. Taking ji,, = 77, the average of the kernels (AKM) is
obtained.

Regarding our proposals, consider the (i, j) element of the matrix K* in (25):

K*(i,) = 3~ wml(i, j) K (i, 5) (27)

m=1

This is the general formula of our approximation.

Next we will show how to calculate the weighting functions w,, (7, j). To this
aim, we will make use of conditional class probabilities. Consider the pair (i, y;)
and an unlabeled observation j. Given the observed value j, define P(y;|j) as
the probability of 7 being in class y;. If 7 and j belong to the same class this
probability should be high. Unfortunately, this probability is unknown and it
has to be estimated. In our proposals we will estimate it by P(y,]j) = 2,
where n;; is the number of the n-nearest neighbours of j belonging to class y;.
Notice that each kernel induces a different type of neighborhood. Hence, it is
advisable to estimate this probability for each kernel representation, that is,

for the kernel K, we will estimate the conditional probabilities Py, (y;|7).

As in the k-nearest neighbour classifier, the appropriate size of the neighbour-
hood to estimate the conditional class probabilities could be determined by
cross validation or using the optimal value k = [+ (see [29]), where [ is the
number of observations, and d is the dimension of the problem. Nevertheless,
we propose a dynamic alternative method: given two points 7 and j, we look
for the first common neighbour. For each data point (i and j), the size k of the
neighbourhood will be determined by the number of neighbours nearer than
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the common neighbour. To be more specific, let
R(i,n) = {n-nearest neighbours of i},

then

k = argmin,{R(i,n) N R(j,n) # 0} .
Obviously, the size k of the neighbourhood depends on the particular pair of
points under consideration.

4.1 The kernel weighting scheme (‘KWS’)

To motivate our first weighting method, consider the example in Figure 3. It
represents the first two coordinates obtained using multidimensional scaling
for one single kernel over a training data set.

The weight w,,(i, 7) that should be assigned to this kernel in (27) depends on
the pair of points (i,j) we are taking into account. For most pairs (i,j) the
kernel suits well, but there are three points clearly surrounded by points in
the other class. The four possible situations are represented in Figures 4(a) to

4(d):

(a) Two points, both in different classes, but surrounded by points in
their own class. In this case the kernel is working properly. The two
points under consideration belong to different classes and the simi-
larity between them, respect to all the other similarities, is such that
they are clearly in different areas of the space. We are interested in
a method that assigns a high value to w,,(4, 7).

(b) Two points, both in different classes, and surrounded by points in
the other class. In this case the kernel is clearly not working because
1 and j belong to different classes and they lay in the wrong area of
the space. The neighbours of point 7 belong to the class of point j
and the neighbours of point j belong to the class of point i. We are
interested in a method that assigns a low value to w,, (i, 7).

(c) Two points, both in the same class, and surrounded by points in their
own class. The kernel is working right for this pair of points, therefore,
we are interested in a method that, in this situation, assigns a high
value to wy,(1, 7).

(d) Two points, both in the same class, but surrounded by points in the
other class. The two points under consideration belong to the same
class, but their neighbourhoods belong to the other class. We are
interested in a method that assings a low value to w, (i, 7).

We have to define a method that integrates all the available information,
namely: the kernel K,,(i, j), the neighbourhood of the points i and j, and the
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label information.

Let
Pm(l,]) = 5 J = ]2n I (28)

The weighting scheme we propose is:

Wi (i, §) = YK (i, )7 20 G (29)

where 7 is a positive constant, and + is introduced to guarantee that the sum
of the weights will be 1. In the following, this method will be refered as KWS
(‘Kernel Weighting Scheme’).

This weighting scheme increases the weight of K, (7, j) if py,(,7) is high and
i and j belong to the same class, or if p,,(7,7) is low and i and j belong to
different classes. On the other hand, the weight w,,(i,j) will be low if the
points under consideration belong to the same class but p,,(i, ) is low, or if
they belong to different classes but p,, (4, j) is high.

Notice that if p,,(i,j) = 0.5, then w,,(i,j) = 1, that is, no modification is
made on the kernel value K, (i, 7). This situation leads to the average of the
kernels, the AKM method (10).

Regarding 7, it is obvious that 7 = 0 reduces the KWS method to the AKM
method. On the other hand, high values of 7 make w,, (i, j) approach extreme
values, that is, either close to 0 or close to 1.

Given that K™ is not necessarily a linear combination of kernels, positive
definiteness of K* is not guaranteed and the comments in the previous sections

apply.
4.2 The probability weighting scheme (‘ProbWS’)

This method builds K* by defining w,,(7, 7) in (27) as:

wm(iaj) = Vp:n(iaj) X (Pm(yz|]) + Pm(yjﬁ))T ) (30)

where « is introduced to assure that Y, w,,(i,7) = 1, and 7 is a positive
constant. If 7 = 0 the method becomes to the AKM method. Within this
setting, the weights quantify the relative importance of each kernel: If 7 and
7 belong to the same class (say y;), the proportion of the nearest neighbours
of 7 belonging to y; should be high. Hence, the method favours the kernel
whose induced neighbourhood shows the highest agreement with the data
label information. In the following, this method will be refered as ProbW'S
(‘Probability Weighting Scheme’).
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As before, positive definiteness of K* is not guaranteed.

4.3  The exponencial and polynomial weighting scheme methods

The next two methods are influenced by the ideas in [21,8], where the variables
are weighted according to their relative discrimination power. We make use of
similar ideas to raise the weight of kernels with expected good classification
performance and, analogously, to diminish the influence of less informative
kernels.

Let u
Plib) = 37 3 Puul), 3
and )
rn(ig) = L@ = pmlG D)) (33)

pm (1, 7)
where r,,(7,7) is designed to measure the ability of the kernel m to predict
p(i, 7). The value of rp(i,7) will be inversely related to the discrimination
power of K, with respect to the whole set of kernels: The numerator in (33)
approaches zero when the information conveyed by K,, tends to be similar to
the information collected by the entire set of kernels.

Now, we construct w,, (7, j) as a function of r,,(i, 7). The relative relevance of
kernel K, can be evaluated by:

wn (i, §) = 7 exp <T ! ) | (34)

Tm (1 7)
We call this method ‘Exponential Weighting Scheme’ (ExpWS). The param-
eter v assures that the sum of the weights over the number of kernels is 1. The
parameter 7 is used to control the influence of r,, (4, j) on wy,(i, ). If 7 =0,
this influence is ignored, and the method reduces to the AKM method. On the
other hand, for large values of 7, changes in r,, will be exponentially reflected
in wy,.

A different choice to quantify the relative importante of K, is given by:

i) = ) (3)

Tm (7, J)

where v and 7 play the same role as before. Using 7 = 1,2 we have linear
and quadratic weighting schemes, respectively. We will refer to this method
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as ‘Polynomial Weighting Scheme’ (PolyWS).

4.4 The ‘MazMin’ method

This method produces a functional combination of two kernels, namely, the
maximun and the minimun of the ordered sequence of kernels, being 0 the
weight assigned to the rest of the kernels:

K (i, j) = p(i, ) Kpan (i, 7) + (L= p(i, 7)) K (2, 5) - (36)

If 7 and j belong to the same class then the conditional class probabilities
p(i,7) will be high and the method guarantees that K*(i,7) will be large.
On the other hand, if 7 and j belong to diferent classes the conditional class
probabilities p(i, j) will be low and the method will produce a value close to
the minimun of the kernels. In the following, this method will be refered as
MaxMin.

If we fix p(i,7) = 1 when i and j belong to the same class, and p(i, j) = 0 when
i and j belong to different classes, then the MaxMin method (36) reduces to
the Pick-out method (22). Therefore, the ‘Pick-out’ method is the limiting
case of the ‘MaxMin’ method.

4.5 The percentile methods

To end, we propose two methods whose assignation of positive weights wy, (i, 7)
is based on the order induced by the kernels. Consider the ordered sequence:

min Km(ZJJ)ZK[I](Zaj) <K[2}(27])<<K[M](Zaj): max Km(laj)

1<m<M 1<m<M

The two new methods build each element of K* using, respectively, the fol-
lowing formulae:

K*(i,7) = K » (37)
vl 1
K, 5) = 5 (K[P(yil o]+ K[P(yji)MO : (38)

We will denote these methods by ‘Percentil-in’ method and ‘Percentil-out’
method, respectively.

If the class probabilities P(y;|j) and P(y;|j) are high, we can expect a high
similarity between i and j and both methods will guarantee a high K*(i, j). If
the class probabilities P(y;|j) and P(y;|j) are both low, K*(i, j) will be also
low.
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5 Experiments

To test the performance of the proposed methods, a SVM has been trained
on several real data sets using the kernel matrix K™ constructed. The value of
the parameter 7 has been assigned via cross-validation. For the methods based
on quantifying the difference of information among kernels (MAKM, SQ, AV,
and SM methods), the value of 7 has been choosen taking as a reference the
bounds in Propositions 1, 3, 4, and 5.

Given a non-labelled data point z, K*(z,) has to be evaluated. We can cal-
culate two different values for K*(z, 1), the first one assumming x belongs to
class +1 and the second assumming = belongs to class —1. For each assump-
tion, all we have to do is to compute the distance between x and the SVM
hyperplane, and to assign = to the class corresponding to the largest distance
from the hyperplane.

In the following, for all the data sets, we will use 80% of the data for training
and 20% for testing.

We have compared the proposed methods with the following classifiers: Mul-
tivariate Additive Regression Splines (MARS) [9], Logistic Regression (LR),
Linear Discriminant Analysis (LDA), k-Nearest Neighbour classification (k-
NN) and SVMs using a RBF kernel K (z;,z;) = e lei-wilP/e with ¢ = 0.5d,
where d is the data dimension (see [28] for details).

5.1 Artificial data sets

5.1.1 The two-servers data base.

The data set contains 300 data points in R?. There are two groups linearly
separable. This data set illustrates the situation that happens when there are
two groups of computers (depending on two servers) sending e-mails among
them. Denote by d,, (7, j), m = 1,2 the time that a message takes to travel from
computer i to computer j. We have defined two kernel matrices K; and K5 re-
spectively by: K, (i,7) =1 —dn,(4,j)/ max{d,,(i,7)}, m = 1,2, where d,(i, j)
denotes Euclidean distances, and we have corrupted the entries of the matri-
ces at random: for each pair (i, j), one element of the pair (K;(7,j), K2(i, 7))
has been substituted by a random number in [0, 1]. Therefore, some entries in
K, and K, are randomly corrupted, but taking the correct information from
each matrix the problem would be perfectly solvable. Thus, it is not possible
to find a kernel K* = \{ K| + A\, K5 that modelizes the problem correctly. The
difference between K (i,7) and K5(i,j) is explained by the different ways in
which the information may travel between ¢ and j. Usually, the saturation in a
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computer network implies that the quickest path is not the shortest path and,
therefore, it is not sistematically true that d; (i, j) < da(i,j) (or the opposite).
The randomness has been introduced to simulate this phenomenon.

Since we are introducing information about labels in the proposed methods,
we expect that our constructed kernels will be useful for data visualization.
To check this conjecture, we represent the first two coordinates obtained us-
ing MDS on the kernels. The result is shown in Figure 5, and confirms our

supposition. The best graphical separation between groups is achieved by the
AV and the Pick-out methods.

In order to compare the performance of the methods, the average results over
10 runs of each technique are shown in Table 1. We use MDS to solve the
problem of building a positive definite kernel matrix. In this case we have
taken into account only the two highest eigenvalues, so we work on a two-
dimensional space.

The ProbWS and PolyWS method achieve the best performance (a test error
of 2.0 %). Notice that SDP can not be tested here because at least two kernels
matrices are needed to use it. Since we corrupt both matrices at random, they
are not, in most cases, kernel matrices. The results of the MAKM and the
Pick-out methods improve those obtained by using the AKM method (a test
error of 6.5 % vs. 9.7 %), achieving the Pick-out method the smallest number
of support vectors (4.2 % vs. 16.8 % in MAKM).

5.1.2 A false two-groups classification problem.

A natural question is whether our methods will separate any data set with
arbitrary labels. They should not. To test this hypothesis we have generated a
normal spherical cloud in R?, and assigned random labels to the data points.
In this case there is no continuous classification surface able to separate the
data in two classes. As expected, the classification error rates are close to 50
% for each of the proposed methods.

5.1.3 Two kernels with complementary information.

This data set consists of 400 two-dimensional points (200 per class). Each
group corresponds to a normal cloud with mean vector p; and diagonal co-
variance matrix o?l. Here py = (3,3), po = (5,5), o1 = 0.7 and o5 = —0.9.
We have defined two kernels from the projections of the data set onto the
coordinate axes. The point in this example is that, separately, both kernels
achieve a poor result (a test error of 15 %).

Although out of the scope of this paper, we have used this data set to compare
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the different approaches to solve the problem of building a positive definite
matrix. Table 2 shows the results obtained with the diverse combination meth-
ods. The AKM, MAKM, and SM methods do not appear on this table because
the output matrices obtained using these methods are, in fact, kernel matrices.
Using KT K as kernel involves significantly less support vectors than using the
other methods. On the other hand, adding a quantity to the diagonal of the
eigenvalue matrix increases the percentage of support vectors. Looking at our
experimental results, the use of MDS or K7 K seems to be a reasonable choice
(see Table 2 for the details).

Table 3 shows that the best results, in general, are obtained using our combi-
nation methods. In particular, the ExpWS and KWS methods attain the best
overall results (test error of 3.8 % and 4.0 % respectively). In this case, the de-
fined kernel matrices (being defined from projections) convey less information
about the data set than the original Euclidean coordinates. The k-NN, LR,
LDA, MARS and SVM methods start from the original data points coordi-
nates (not from the previously defined kernel matrices). Nevertheless, most of
our methods achieve very similar results to those obtained using these classical
methods, and improve the alternative methods that use the same information,
SDP and MARK-L (test error of 12.9 % and 8.4 % respectively).

5.2 Real data sets

5.2.1 Cancer Data Set

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Breast Cancer data set [19]. The data set consists of 683
observations with 9 features each. For this data set we have combined three
kernels: a polynomial kernel K;(z,y) = (1 + 27y)?, a RBF kernel Ky(z,y) =
exp(—||z — y||?) and a linear kernel K3(z,y) = z”y. We have normalized the
kernel matrices so that their entries belong to the [0, 1] interval: K(x,y) =
(K(z,y) — min(K))/(max(K) — min(K)).

The results, averaged over 10 runs, are shown in Table 4. All our methods im-
prove the best individual SVM performance (achieved using a linear kernel).
The MAKM method shows the best overall performance (a test error of 2.8
%). Our methods improve the alternative methods that combine kernel infor-
mation, SDP and MARK-L (test error of 6.2 % and 4.2 % respectively). All
our combination methods provide better results than the SVM with a single
RBF kernel (a test error of 4.2 %), using usually significantly less support
vectors. The lowest percentage of support vectors (2.9 %) is associated with
the AV method, being the percentage of support vectors 3.1 %.
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5.2.2  An alternative to parameter selection.

It is well known that the choice of kernel parameters is often critical for the
good performance of SVMs. Combining kernels provides a solution that min-
imizes the effect of a bad parameter choice. Next we illustrate this situation
using a collection of RBF kernels on the cancer data set. Let {K7,..., Ko} be
a set of RBF kernels with parameters ¢ =0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100 respectively. We use MDS to solve the problem of building a positive
definite matrices. Table 5 shows the performance of the proposed methods
when combining all these kernels. Again, the results have been averaged over
10 runs. The MaxMin method, the Percentil-in method, and the Percentil-out
method improve the best RBF kernel under consideration (test errors of 2.8
% for the three methods vs. 3.1 %). This results are specially significant be-
cause these three methods are parameter free, and they could be used as an
alternative to the RBF parameter selection. In particular, the results provided
by all the combination methods are not degraded by the inclusion of kernels
with a bad generalization performance.

5.2.83 A handwritten digit recognition problem.

The experiment in this section concerns a binary classification problem: the
recognition of digits ‘7’ and ‘9’ from the Alpaydin and Kaynak database [1].
The data set is made up by 1128 records, represented by 32 x 32 binary
images. We have employed three different methods to specify features in order
to describe the images. The first one is the 4 x 4 method: features are defined
as the number of ones in each of the 64 squares of dimension 4 x4 . The second
method was introduced by Frey and Slate [10]: 16 attributes are derived from
the image, related to the horizontal /vertical position, width, height, etc. The
last method under consideration was designed by Fukushima and Imagawa
[11]: features are defined as a collection of 12 different representations in a 4 x4
square. This is a typical example with several different sources of information
and probably complementary. We have used these representations to calculate
three kernels using the Euclidean distance. When K* is not positive defininite,
K* + A\I has been used as a kernel, with A equaling the absolute value of the
minimun eigenvalue of K* multiplied by 1.01.

The classification performance for all the methods is tabulated in Table 6.
For each classical method we have chosen the individual representation that
provides the best results, and then we check if the combination methods are
able to achieve the same performance. In particular, we have taken the 4 x 4
representation to train the k-NN, MARS, LR and LDA methods. To train the
SVM we have taken the Fukushima and Imagawa representation.

The Percentil-in method achieves the best results among the methods based on
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the use of kernels (test error of 1.1 %). Furthermore, the AV, SM, Percentil-out,
MaxMin, Pick-out, SQ, and KWS combinations improve the results obtained
using the rest of the techniques except k-NN. The excellent performance of
k-NN is unsurprising, since this method is specially efficient when working
with sparse data sets in high dimensional settings.

5.2./ A text data base

To check the methods in a high dimensional setting, we will work on a small
text data base with two groups of documents. The first class is made up of 296
records from the LISA data base, with the common topic ‘library science’. The
second class contains 394 records on ‘pattern recognition’ from the INSPEC
data base. There is a mild overlap between the two classes, due to records
dealing with ‘automatic abstracting’ . We select terms that occur in at least
10 documents (obtaining 982 terms). Labels are assigned to terms by voting on
the classes of documents in which these terms appear. The task is to correctly
predict the class of each term. Following [20], we have defined the kernel K

by Ki(i,j) = "”T;\T” = Zk‘gn(‘zi[m"k)‘, where |z;] measures the number of
(2 k 2

documents indexed by term 7, and |x; A ;| the number of documents indexed

by both ¢ and j terms. Similarly, Ky = %ﬁ” Therefore, K;(i,j) may be

interpreted as the degree in which the topic represented by term i is a subset
of the topic represented by term j. This numeric measure of subsethood is due
to Kosko [16]. The task is to classify the database terms using the information
provided by both kernels. Note that we are dealing with about 1000 points
in 600 dimensions, and this is a near empty set. This means that it will be
very easy to find a hyperplane that divides the two classes. Notwithstanding,
the example is still useful to guess the relative performance of the proposed
methods. Following the scheme of the preceding examples, Table 7 shows the
results. In this case, we have used K*" K* as kernel to solve the problem of
building a positive definite matrix.

Our proposal of methods for the combination of kernels clearly outperforms
the rest of the methods. In particular, the AV method achieves the best per-
formance (test error of 0.8 % vs 1.4 % of SDP).

6 Conclusions

In this work we have proposed several techniques for the combination of ker-
nels within the context of SVM classifiers. The proposed framework is based
on the natural idea that individuals belonging to the same class should be
similar. This is supported by the fact that the suggested methods compare
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favorably theoretically and computationally to other well established classifi-
cation techniques (and also to other techniques for the combination of kernels)
in a variety of artificial and real data sets.

Within the group of new techniques proposed in this paper, there is not an
overall best method, but using a score over the experiments the three best
schemes are the MaxMin, Percentil-in and AV methods. Regarding the com-
parison with other techniques, consistently the best method in the experiments
belongs to this new class of techniques.
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Table 1

Classification errors for the two-servers database.

Method Train error Test error Support vectors
AKM 6.8 % 9.7 % 50.2 %
MAKM 4.1 % 6.5 % 16.8 %
SM 4.4 % 6.3 % 224 %
AV 3.1 % 6.0 % 8.2 %
Pick-out 1.5 % 6.5 % 4.2 %
SQ 3.5 % 6.3 % 8.9 %
KWS 5.5 % 6.3 % 51.4 %
ProbWsS 2.1 % 2.0 % 14.2 %
ExpWS 2.2 % 2.3 % 19.0 %
PolyWS 2.1 % 2.0 % 14.2 %
MaxMin 2.3 % 3.5 % 13.3 %
Percentil-in 2.3 % 3.0 % 4.9 %
Percentil-out 2.2 % 3.0 % 6.7 %
MARK-L 4.0 % 4.5 % 0.8 %
Table 2

Classification errors for the kernels with complementary information, using several
methods to solve the problem of building a positive definite matrix (Train error %,
Test error %, Support Vectors %). The best solution for each method is marked in

bold font.

Method Adding M\ MDS PSEUDO K"K

AV (64,65 ,35.4) (4.4,4.3,21.5) (64,65,354) (6.4,6.5,35.4)
Pick-out (0.1,8.1,60.1) (4.4,4.3,21.5) (59,12.0,194) (59,6.9,3.7)
SQ (1.8,54,533) (5.9,5.6,339) (54,53,334) (3.8,4.2,15.1)
KWS (2.6 ,5.7,49.5) (6.0,5.6,340) (5.9,56,33.8 (3.8,4.0,15.4)
ProbWs (6.4,6.5,35.4) (6.4,6.5,354) (6.4,6.5,354) (6.4, 6.5, 35.4)
ExpWS$S (6.4,6.5,35.4) (6.4,6.5,354) (4.0,4.0,341) (3.6, 3.8, 16.7)
PolyWsS (6.4,6.5,35.4) (6.4,6.5,354) (48,4.8,36.3) (4.1,4.1,19.4)
MaxMin (0.4 ,6.4,453) (4.9,5.0,26.5) (44,55, 24.8) (4.6 , 5.8 ,9.8)
Percentil-in (0.0, 7.8, 68.4) (4.8 ,4.9,24.4) (5.3,6.5,22.0) (4.7 , 6.5 , 8.0)
Percentil-out (0.5, 5.4,55.0) (5.0,5.2,25.9) (6.3,7.5,25.3) (5.1,6.4,9.9)
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Table 3
Classification errors for the kernels with complementary information.

Method Train error Test error Support vectors
AKM 6.4 % 6.5 % 35.4 %
MAKM 2.2 % 4.4 % 11.3 %
SM 6.4 % 5.8 % 332 %
AV 4.4 % 4.3 % 21.5 %
Pick-out 4.4 % 4.3 % 21.5 %
SQ 1.8 % 5.4 % 52.4 %
KWS 3.8 % 4.0 % 15.4 %
ProbWsS 6.4 % 6.5 % 35.4 %
ExpWS 3.6 % 3.8 % 16.7 %
PolyWS 4.1 % 4.1 % 19.4 %
MaxMin 4.9 % 5.1 % 26.5 %
Percentil-in 4.8 % 4.9 % 24.4 %
Percentil-out 5.0 % 5.2 % 25.9 %
kE-NN 3.4 % 4.0 %

MARK-L 8.1 % 8.4 % 1.0 %
MARS 3.4 % 3.9 %

LDA 7.5 % 7.8 %

LR 7.6 % 77 %

SDP 12.0 % 12.9 % 43.3 %
SVM 3.6 % 3.9 % 26.5 %
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Table 4

Classification errors for the cancer data.

Method Train error Test error Support vectors
K:Polynomial 0.1 % 7.8 % 8.3 %
K7:RBF 0.0 % 10.8 % 65.6 %
Kj3:Linear 2.6 % 3.7 % 71 %
AKM 1.3 % 3.3 % 31.1 %
MAKM 1.1 % 2.8 % 31.1 %
SM 1.2 % 3.1 % 35.3 %
AV 21 % 3.1 % 29 %
Pick-out 24 % 3.2 % 5.9 %
SQ 1.3 % 3.0 % 40.6 %
KWS 0.6 % 3.1 % 72.7 %
ProbWSs 22 % 29 % 37.8 %
ExpWS 2.3 % 2.9 % 25.3 %
PolyWS 2.0 % 29 % 34.2 %
MaxMin 0.7 % 29 % 25.3 %
Percentil-in 1.8 % 3.4 % 59.1 %
Percentil-out 0.0 % 3.1 % 55.4 %
kE-NN 2.7 % 3.4 %

MARK-L 2.0 % 4.2 % 9.2 %
MARS 2.9 % 3.1 %

LDA 3.8 % 3.9 %

LR 132 % 13.0 %

SDP 0.0 % 6.2 % 65.5 %
SVM 0.1 % 4.2 % 49.2 %
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Table 5
Classification errors for the cancer data using a battery of RBF kernels.

Method Train error Test error Support vectors
Best RBF 2.3 % 3.1 % 13.6 %
Worst RBF 0.0 % 24.7 % 74.0 %
AKM 1.6 % 3.4 % 21.7 %
MAKM 1.6 % 3.3 % 21.7 %
SM 1.6 % 3.3 % 222 %
AV 3.1 % 3.1 % 6.5 %
Pick-out 2.5 % 3.4 % 77 %
SQ 3.0 % 3.1 % 10.2 %
KWS 2.9 % 3.1 % 9.3 %
ProbWSs 3.0 % 3.1 % 10.5 %
ExpWS 3.0 % 3.1 % 10.5 %
PolyWS 3.0 % 3.1 % 10.5 %
MaxMin 0.1 % 2.8 % 14.2 %
Percentil-in 1.9 % 2.8 % 7.8 %
Percentil-out 0.2 % 2.8 % 19.2 %
MARK-L 0.0 % 3.6 % 18.3 %
SDP 0.0 % 3.2 % 41.5 %

.t 9]

K-K,

Fig. 1. Different choices of g(K; — K3) for different values of 7. The straight lines
correspond to the AV method. The curves correspond to the SQ method.
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Table 6

Classification errors for the handwritten digit data set.

Method Train error Test error Support vectors
4 x4 0.0 % 3.6 % 3.6 %
Frey-Slate 5.5 % 11.1 % 9.8 %
Fukushima 0.0 % 4.5 % 7.0 %
AKM 0.0 % 4.5 % 6.1 %
MAKM 0.0 % 4.5 % 5.9 %
SM 2.5 % 1.7 % 8.8 %
AV 0.1 % 1.4 % 48.8 %
Pick-out 0.0 % 3.1 % 38.0 %
sQ 0.0 % 3.1 % 29.4 %
KWS 0.0 % 3.1 % 32.8 %
ProbwWs 0.0 % 4.5 % 6.1 %
ExpWS 0.0 % 3.6 % 67.9 %
PolyWS 0.0 % 3.6 % 68.1 %
MaxMin 0.0 % 1.9 % 34.2 %
Percentil-in 0.0 % 1.1 % 35.1 %
Percentil-out 0.0 % 1.7 % 32.8 %
k-NN 0.0 % 0.6 %

MARK-L 0.0 % 4.2 % 13.0 %
MARS 0.1 % 3.9 %

LDA 0.4 % 5.0 %

LR 0.0 % 3.6 %

SDP 0.0 % 3.6 % 6.2 %
SVM 0.0 % 3.6 % 60.9 %

32



Table 7

Classification errors for the term data base.

‘

” indicates non convergence of the

method.

Method Train error Test error Support vectors
AKM 0.0 % 1.4 % 13.4 %
MAKM 0.0 % 1.4 % 10.2 %
SM 0.0 % 1.4 % 13.2 %
AV 0.0 % 0.8 % 8.0 %
Pick-out 0.1 % 14 % 6.0 %
SQ 0.0 % 1.2 % 10.1 %
KWS 0.0 % 1.4 % 13.4 %
ProbWSs 0.0 % 14 % 13.4 %
ExpWS 0.0 % 1.4 % 13.4 %
PolyWS 0.0 % 1.4 % 13.4 %
MaxMin 0.0 % 1.2 % 6.9 %
Percentil-in 0.1 % 1.1 % 5.9 %
Percentil-out 0.0 % 1.3 % 6.9 %
kE-NN 128 % 14.0 %

MARK-L - % - % - %
MARS - % ~% -~ %
LDA 0.0 % 31.4 %

LR - % - %

SDP 0.0 % 1.4 % 13.4 %
SVM 23.8 % 23.9 % 63.2 %
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Fig. 4. Possible situations: the considered pair of points in each situation are marked
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Fig. 5. Multidimensional scaling (MDS) representation of the output kernels and
SVM hyperplane for the two-servers data base.
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