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The study of cointegration in large systems requires a reduction of their dimensionality. To
achieve this, we propose to obtain the I(1) common factors in every subsystem and then analyze
cointegration among them. In this article, a new way of estimating common long-memory com-
ponents of a cointegrated system is proposed. The identification of these I(1) common factors
is achieved by imposing that they be linear combinations of the original variables X;, and that
the error-correction terms do not cause the common factors at low frequencies. Estimation is
done from a fully specified error-correction model, which makes it possible to test hypotheses
on the common factors using standard chi-squared tests. Several empirical examples illustrate

the procedure.
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If x, and y, are both integrated of order 1, denoted I(1),
so that their changes are stationary, denoted I(0), they are
said to be cointegrated if there exists a linear combination z,
=y, — Ax,, which is I(0). Several useful generalizations can
be made of this definition, but this simple form is sufficient
for the points proposed in this article. The basic ideas of
cointegration were discussed by Granger (1986) and in the
book of readings edited by Engle and Granger (1991). A
simple constraint that results in cointegration involves an I(1)

common factor f;:
»l_|A ¥i
El=fel)l o

where y, and %, are both 1(0). Clearly z, =y, — AX,, being
a linear combination of I(0) series, will never be I(1) and
usually will be I(0). The reverse is also true—if (x,,y,) are
cointegrated, there must exist acommon factor representation
of the form (1), as proved by Stock and Watson (1988).

A natural question that arises is how to estimate the
common factor f;, which might be an unobserved factor and
is the driving force that results in cointegration. It has been
suggested in the literature quoted previously that cointegra-
tion can be equated with certain types of equilibrium in that,
in the long-run future, the pair of series is expected to lie
on the attractor line x, = Ay,. Although much attention has
been given to estimation of the cointegrating vector (1, —A),
relatively little attention has been given to estimation of f.
Notice that when the long-run equilibrium is estimated, the
common factor f; is eliminated. There are several reasons
why it is interesting to recover f,—for example, situations
in which the model of the complete set of variables appears
very complex, although in fact, if we are interested in the

long-run behavior, a simpler representation, using a small set
of common long-memory factors could be adequate. This is
the case for cointegration in large systems. Economists often
conduct research on what might be considered to be natural
subdivisions of the macroeconomy. The analysis of the long-
run behavior of the whole macrosystem can be conducted by
first finding the common factors in every subdivision of the
economy and then studying cointegration among them. An-
other reason for singling out the f; is that the estimation of
this common factor allows one to decompose (y;,x;) into
two components (f;, (y,,%,)) that convey different kinds of
information. For example, policymakers may be primarily
interested in the trend (permanent component f;) behavior,
but those concerned with business cycles are more interested
in the cyclical component (transitory component). Moreover,
singling out the common factors allows us to investigate how
they are related to other variables. The final goal of any fac-
tor model is to be able to identify the common factors with
some observable variable. This article proposes a way of
achieving this.

The situation studied here has analogies with the decompo-
sition of an I(1) series into permanent and transitory compo-
nents, where these components are considered to be I(1) and
1(0), respectively. This question was considered by Quah
(1992). Because the sum of an I(1) and I(0) series is I(1),
it is easily seen that the question, as posed, does not com-
pletely identify the I(1) permanent components. To achieve
identification, a further condition has to be imposed, such as
maintaining that the permanent component is a random walk,
or requiring the two components to be orthogonal at all leads
and lags. In this article a different condition is used. This
is possible because the situation being studied here involves
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more than one series, and this extra dimension allows a dif-
ferent type of condition to be considered. Basically the con-
ditions imposed are that f: be a linear combination of (y,, x,)
and that the part that is left (y,,x,), not have any permanent
effect on (y,,x,). The first condition makes f, observable;
the second one makes f; a good candidate to summarize the
long-run behavior of the original variables. By these two
conditions, we identify f; up to a nonsingular matrix multi-
plication to the left. The linear combination is easily esti-
mated from a fully specified error-correction model (ECM).
This makes the suggested decomposition very convenient,
mainly because the ECM takes care of the unit-root problem
(see Johansen 1988; Phillips 1991), and therefore hypothesis
testing on the linear combination f; can be conducted using
standard chi-squared tests. Another advantage is that any ex-
tension (nonlinearities, time-varying parameters, etc.) that
could be incorporated in the ECM can be easily taken into
account in this decomposition.

This article is organized as follows. Section 1 describes the
factor model (1) for p variables and proposes a way to identify
the common long-memory factors f;. Section 2 shows how
to estimate the linear combinations that form the common
factors and how to test hypotheses on these linear combina-
tions. Section 3 is an application of the method. Section 4
concludes. Proofs of the main results are in the Appendix.

1. FACTOR MODEL

Let X, be a (p x 1) vector of I(1) time series with mean 0,
for simplicity, and assume that the rank of cointegration is r
[there exists a matrix a,, of rank r, such that o'X, is I(0)].
It follows that

1. The vector X, has an ECM representation

AX,= v o'X,_1+ ) TiAX,_ +€, )}

pPXrrXp i=1

where A =1 — L, with L the lag operator.

2. Theelements of X, can be explained in terms of a smaller
number (p — r) of I(1) variables, f;, called (common) factors
plus some 1(0) components

X, =A f +X, 3)

pxl  pxkkxl pxl
where k=p —r.

In the standard factor analysis, mostly oriented to cross-
section data [for time series, see Pefia and Box (1987)], the
main objective is to estimate the loading matrix A; and the
number k of common factors from (3). In our case, these two
things are already known once the cointegrating vectors, a,
have been estimated: k = p — r and A, is any basis of the null
space of a’(a’A, = 0). The goal of this article is to estimate
fi- In factor analysis this is done from (3), after imposing
constraints on f; and X, that are not adequate in time series.
Even dynamic factor analysis (see Geweke 1977) needs the
assumption of stationarity that does not hold here. As will
be shown in Section 2, the common factors can be estimated
from the ECM (2) instead of from (3).

One of the conditions that will identify the common
factors, f;, is to impose that £, be linear combinations of the
variables X;:

fi =B X, . (C))

kx1 kxppxl1
This condition not only helps to identify £, but also to associate
the common factors with some observable variables, which
is always advisable in factor analysis. The other condition
that will identify f; (up to a nonsingular matrix multiplication
to the left) is to impose that A, f, and X, form the perma-
nent and transitory components X,, respectively, according
to the following definition of a permanent—transitory (P-T)
decomposition [part of this definition follows Quah (1992)].

Definition 1. Let X, be a difference-stationary sequence.
A P-T decomposition for X, is a pair of stochastic processes
P,, T, such that

1. P, is difference stationary and 7, is covariance station-

ary,
2. var (AP,) and var (T,) > 0,
3. X,=P,+T,
4. welet
AP, 7]
Ht L t = Pt 5
PX(P)[ T, ] ["T':I ®

be the autoregressive (AR) representation of (AP,, T,), with
up; and ur, uncorrelated, then

aE:(Xt+h)

@ hllvn:o Oup, #0
and
(b) 111’1’1 aEl(X»h) = 0’
h—o00 auTl

where E, is the conditional expectation with respect to the
past history.

According to Condition 4, the only shocks that can affect
the long-run forecast of X, are those coming from the innova-
tion term, up,, of the permanent component, P,. Condition (4)
is not included in Quah’s definition, and it is this that makes
P, and T, permanent and transitory components, respectively.
The next proposition clarifies this condition.

Hy(L) Hyo(L)| | AP | |uy ©)
Hy(L) Hy(L) T, Uy

be the AR representation of (AP,,T,). Condition (4) in
Definition 1 is satisfied iff the total multiplier of AP, with
respect to 7, is 0; equivalently

H;;(1)=0. Q)

Proposition 1. Let

Apart from the instantaneous causality between the in-
novations (uy,, uy) of both components that is likely to
occur in economics because of temporal aggregation (see
Granger 1980), Condition (4) says that T, does not Granger-
cause P, in the long run or at frequency O [see Geweke
(1982) and Granger and Lin (1992) for a formal definition
of causality at different frequencies]. Let us consider the



following example:

X, =P +T, ®
where
AP, =a\T,_| + a;AT,_| + uy, )
and
T, = b, AP,_; + uy,. (10)

This is a P-T decomposition according to Definition 1 iff
a; = 0. When a; # 0, even though T, is I(0), this term cannot
be called transitory because it will have a permanent effect on
X, (i.e., an effect on the long-run forecast of X,). Notice that
changes in the permanent component can affect the transitory
component and also that changes in the transitory component
could have an impact on the changes of the permanent com-
ponent (a transitory impact on the levels of P, and therefore
on X)).

There are decompositions that do not satisfy Condition (4).
For instance, in the decomposition proposed by Aoki (1989),
based on a dynamic factor (state-space) model, the I(0) com-
ponent may have a permanent effect on the levels of the I(1)
component and therefore on X,. Another example is the de-
composition of Kasa (1992):

X, =ai(a o) 'f+ad ) 'z, an

where f; = ¢/, X, and z, = &/X,. In general (see the proof of
the next proposition) X, = aa’a) 'z, will not be “transitory”
according to Condition (4) in Definition 1.

The next proposition shows that the two conditions re-
quired for the common factors are enough to identify them
up to a nonsingular transformation.

Proposition 2. 1In the factor model (2) the following
conditions are sufficient to identify the common factors f;:

1. f; are linear combinations of X,.
2. A, f; and X, form a P-T decomposition.

Substituting (4) in (3), we obtain X, = (I-AB)X,=Aa'X,
= Ayz,, where z, = &'X,. Then, from the ECM (2), it is clear
that the only linear combinations of X, such that )~(, has no
long-run impact on X, are

fi=7 X, (12)
kxppxl
where 7| v = 0 and k = p — r. These are the linear combi-
nations of AX, that have the “common feature” (see Engle
and Kozicki 1990) of not containing the levels of the error
correction term z,_, in them.
Once the common factors ; are identified, inverting the ma-
trix (y., @)’, we obtain the P-T decomposition of X, proposed
in this article:

X, = A| ’YfL X,+A2 a' X,, (13)

px1l  pxkkxp pXrrxp
where A, = a; (v, 1) ' and A; = y(a/y)~".

In the next proposition, it is shown when this common
factor decomposition (13) exists.

!

Proposition 3. If the matrix II = ~,,,a/,, has no
more than k = p — r eigenvalues equal to O0—that is, if
det(a’y) # O—then (y,,a)’ is nonsingular and the factor
model (13) exists.

Even though f; is not estimated from the factor model (3),
the assumptions made to identify the common factors imply
certain constraints on the P-T components that are the coun-
terpart of assumptions imposed in standard factor analysis.

Proposition 4. The factor model
X, =Aifi + Az, (14

where f; = 7, X, and z = X, satisfies the following
properties:

1. The common factors f; are not cointegrated.

2. Cov(Afy,2,-)=00G=1,...,k;j=1,...,p—k;s >
0), where Af; = Af, — E(Af, | lags(AX,_,)) and Z, = z;, —
E(z; | lags(AX,_1)).

The first property follows from Proposition 3 and the
second from the ECM (2). This second property is another
way of expressing that z, does not cause f; in the long run.

Properties (1) and (2) are equivalent to the assumptions
made in standard factor analysis on the uncorrelatedness of
the factors and the orthogonality between the factors and the
error term (A,z,).

As mentioned before, most of the P-T decompositions
have been designed and used in a univariate framework.
Stock and Watson (1988) proposed a common-trends decom-
position that basically extends the univariate decomposition
proposed by Beveridge and Nelson (1981) to cointegrated
systems. The next proposition shows the connection between
the common-trends decomposition of Stock and Watson and
decomposition (14).

Proposition 5. The random-walk component (in the
Beveridge—Nelson sense) of the I(1) common factor f; in the
decomposition (14) corresponds to the common trend of the
Stock—Watson decomposition.

The advantage of our decomposition with respect to the
common-trends model of Stock and Watson is that in our case
itis easier to estimate the common long-memory components
and to test hypotheses on them, as is shown in Section 2.

Notice that alternative definitions of f, will vary only by
1(0) components and therefore will be cointegrated.

In the univariate case, part of the literature has been
oriented to obtaining orthogonal P-T decomposition (see Bell
1984; Quah 1992; Watson 1986). To the best of our knowl-
edge, nothing has been written about the multivariate case.
From the factor model (14) an orthogonal decomposition can
be obtained such that the corresponding Af; and z, are uncor-
related at all leads and lags. First, project z, on Af,_, for all
s and get the residuals

Z =12 — Plz, | &f,-Vs). 15)
Then define the new I(1) common factors;‘, as

fi= AA)TAIX, - AZ). (16)



It is clear that A and Z, are uncorrelated at all leads and lags,
but notice that, unless the 7, are linear combinations of current
X, f; will not be a linear combination of contemporaneous X,.
This is what is lost if orthogonality is required. To obtain an
orthogonal P-T decomposition (according to Definition 1),
one has to allow the common factors to be linear combinations
of future, present, and past values of X,.

2. ESTIMATION AND TESTING

In this section it is shown how to estimate and test
hypotheses on 7,. Most of the proofs in this section are
based on Johansen and Juselius (1990).

Consider a finite ECM with Gaussian errors,

Hi:AX, =TIX,_,+T1AX,_,
+o+ T AX g te, t=1,...,T, (17)
where €, ..., er are IIN,(0, A), X_.1, ..., X, are fixed, and
O=+va. (18)
pxp  pXrrxp

Following Johansen (1988), we can concentrate the model
with respect to I, eliminating the other parameters. This is
done by regressing AX, and X, on (AX,_,,...,AX,_zu).
This gives residuals Ry, and R;, and residual product matrices

T
S;=T"Y R,  i,j=0,1. (19)
=1

The remaining analysis will be performed using the concen-
trated model

Ry, =va'Ry, +¢,. 20)
The estimate of « is determined by reduced-rank regression

in (20) (see Ahn and Reinsel 1990; Anderson 1951; Johansen
1988) and is found by solving the eigenvalues problem

l/\Su - Sms&)lsml =0 (¥2))

for eigenvalues Xl >0 > Xp and eigenvectors V= vy
¥,). The maximum likelihood estimators are given by a =
(v\h e 1/‘;r)v 7 = SOVlay and A= S()() - %\,-

Finally the maximized likelihood function becomes

L™ = [R] = |Sw| [J(1 = %)

i=1

-1
p
= |So0.1] [H(l - A.-)] , 2)
i=r+l
where S()()_l = S(x) - SmSﬁ'Sw.
The next theorem shows how to estimate 7, .

Theorem 1. Under the hypothesis of cointegration H,: I
= o, the maximum likelihood estimator of «y, is found by
the following procedure: First solve the equation

,/\Sno - Smsﬁlsm| =0, (23)

giving the eigenvalues x> > :\1, and eigenvectors M
= (M, ..., m,), normalized such that M’SM = I. The

choice of 7, is now
:Y\.L = (;ﬁﬂlv s );;’p)) (24)
which gives the maximized likelihood function (22).

Notice, as Johansen (1989) pointed out, the duality
between v, and c.. This is the idea of the proof of the preced-
ing theorem. Both estimates come from the canonical corre-
lation analysis between Ry, and R,. They are the canonical
vectors and can be found by solving the following equations:

—ASo  Sur m;| _ .
[ Sio -—/\iSu] [Vi] =0 i=L....py (29

with the normalizations M "Soo M= I, and V's”l‘/ =1,
From (25) and the preceding normalizations, it is clear that

771,{501;’\:‘ =0, P #]. (26)

Because & = (v,...,%,) and ¥ = Sy @, then 5, =
(;ﬁnlv RS ;ﬁp)

If for any reason « is not estimated by maximum likelihood
or simultaneous reduced-rank least squares [see Gonzalo
(1994) for different methods of estimation], the way to esti-
mate v, is the following: Insert the estimate of o, &, into the
ECM (17), use this to estimate ¥, and then solve

Aw—7 7 | =0, 27
PXrrxp
giving the eigenvalues Xl > > Xn (X,+,- =0,j=1,...,p—
r) and eigenvectors M = (my, . ..,m,) normalized such that
M'Spy M = I. The choice of 7, is now ¥, = (41, . . -, M,);
the eigenvectors corresponding to the eigenvalues equal 0.
To find the asymptotic distribution of 7, it is convenient
to decompose 7', as follows: 5, = v,d + ~va, where d
=Y 7)™ YL A, anda= (v AL
Theorem 2. When T — oo,
T'*@ud™" = 71) = NO, V), 28)

where = means convergence in distribution, V = v (7' (Zp
- NN 'Yy, Ay, and Ty var (A X, | AXy,...,
A Xl-—q+l)~

As mentioned earlier, one of the advantages of our
decomposition is that one can test whether or not certain
linear combinations of X, can be common factor. Johansen
(1991) showed how to test the hypotheses on & and 7:

Hy:a=J 0, r<s<p
PXr  pXssXr
and
Het v = Q ¥, r<n<p.

pPXr pXnnXr
In the next theorem it is shown how to test the hypotheses
ony:

Hap:vr=G 8

pxk  pxmmXk

with k=p—randk <m <p.

Theorem 3. Under the hypotheses H,,: v, = G8, one can
find the maximum likelihood estimator of -y, as follows:
First solve

|AG'S0G — G'SpiS'S10G| = 0 29



Table 1. Consumption and GNP Regressions (Cochrane 1991)
Right variable
Left
variable const. cC_1—-Yi—1 Doy Acz  Ay-1  Ayp_o R2
1. Vector autoregression
Act coeff. —-.43 -.02 .07 -.02 .09 -.02 .06
t stat. —.49 -1.23 .90 -.19 191 —.40
AVt coeff. 5.19 .08 52 .16 22 14 27
t stat. 3.49 3.45 3.81 1.12 2.74 1.89

2. P-T decomposition
7L =Q,050 =(1,-1).

ENOED

where f; = ‘Y:L(Cf, y[)’ =ctand z; = a’(C[,yf), =Ct — Y-

NOTE: y; denotes real GNP and c; denotes log (nor + services cor ption). A denotes first differences, A yr =y — y;—1-
Data sample: 1947:1-1989:3.
for Agp1 > -+ > Agp.m and Myp = (igp.y, - . - , Migp.m) nOrmzlized 3. APPLICATIONS
! ! -
by My, (G'SG) My = 1. Choose In the first two examples (consumption and gross national
Omx(p—r) = (Msp.msty=(p=r)s - + - » Map.m) product (GNP), dividends and stock prices), it is shown how
and 7, = Gb. (30) to obtain the common factors directly from an ECM. The third

The maximized likelihood function becomes
-1
14
L;;/T(g{«tb) = |Sn0.1l ( H(l - A4b‘i+(m—p))) ) (31)
i=r+l
which gives the likelihood ratio test of the hypothesis Hy, in
H, as

P
=2In(-; Hap in 30) = =TY_In{(1 = Mapisim-p)/(1 = N}

r+l

(32

Finally one may be interested in estimating o and v, under
H; and H,,. The way to proceed is to convert Hy, into H,,.
Notice that Q (the matrix in J,,) is formed by the p — m
eigenvectors of GG’ corresponding to the eigenvalues equal
to 0. Following theorem 3.1 of Johansen (1991), & and -y can
be estimated under H; and JH,,. Once + is estimated, we are
in the situation described in (27).

2
~ X(p—nx(p—m*

application (interest rates in Canada and the United States)
shows, step by step, how to estimate the common factors
and how to decompose these variables into permanent and
transitory components.

3.1 Consumption and GNP, Dividends and
Stock Prices

The (vector autoregression) VAR (ECM) models of
Tables 1 and 2 are reproduced from Cochrane (1991). Focus-
ing our attention in the consumption—-GNP example, it can be
seen from the VAR of Table 1 that the error-correction term
(ci=1 — y:-1) does not appear to be significant in the con-
sumption equation; therefore, v’ = (0, 1) and v/, = (1,0). In
other words, the I(1) common factor (permanent component)
in our decomposition is

- Ce
ft - (laO) [yl:| L

Table 2. Dividend and Price Regressions (Cochrane 1991)

Right variable
Left
variable const. O—1—Pr—1 Ad,_, Adi_,  Api_y Apy_» R2
1. Veector autoregression

Ad: coeff. 20.01 .038 .046 -.06 -.08 —.04 .038
t stat. .78 A7 25 34 —-.65 .32

Apt coeff. 78.65 225 .06 —-.08 114 -.09 14
t stat. 2.34 2.11 .25 -.36 .68 —.55

2. P-T decomposition
YL =01,0a=(1,-1).

HRINE S

where f; = d; and z; = d; — p;.

NOTE: d, denotes log dividends and p; denotes log price ;

A denotes first differences; Ap; is the log return. Data sample: 1927-1988. i

on the val igl New York Stock Exchange portfolio.
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Figure 1. Canada Interest Rates (1969:1-1988:12): ——,
Short-Term (ST); ...., Medium-Term (MT); —- —., Long-Term (LT).

a multiple of the consumption variable. This means that, if
consumption is kept fixed, any change in the income is going
to affect (c,,y,) only through z, (the transitory component)
and therefore will only have transitory effects (see the factor
model in Table 1). This is exactly the conclusion reached by
Cochrane (1991) through the impulse-response functions:

GNP’s response to a consumption shock is partly permanent but also partly
temporary. More importantly, GNP’s response to a GNP shock holding
consumption constant is almost entirely transitory. This finding has a natural
interpretation: If consumption does not change, permanent income must not
have changed, so any change in GNP must be entirely transitory. (p. 2)

The same kind of conclusion is obtained in the second
example with dividends and stock prices in Table 2. From
the factor model it can be seen that a shock in dividends
has a permanent (long-run) effect in prices and dividends,
but a shock in prices, with no movements in dividends, is
completely transitory.

3.2 Interest Rates in Canada and the United States

The main purpose of this application is to find the perma-
nent component that is driving the interest rates of Canada
and the United States in the long run. To do that, three in-
terest rates with different maturities have been considered
in each country—short-term, medium-term, and long-term
interest rates. In Canada (see Fig. 1), the short-term rate

%
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Figure 2. U.S. Interest Rates (1969:1-1988:12): , Short-
Term (ST); ...., Medium-Term (MT); —- —-, Long-Term (LT).

Table 3. Augmented Dickey~Fuller Statistics for Tests of a

Unit Root

ADF(0) ADF(1) ADF(2) ADF(3) ADF(4)
x1ct —1.46 -2.18 -2.10 -1.97 -1.93
x2¢; -1.67 -1.93 -1.80 -1.86 -1.63
x3c; -1.64 -1.75 -1.67 -1.73 —-1.6
x1uy -2.05 -2.7 -2.17 -2.15 -2.07
x2u; -1.72 -2.35 -1.78 —1.83 -1.79
x3uy -1.55 -1.88 -1.60 —1.66 -1.62

NOTE: ADF(q)isthe t statistic of & in the regression Ax; = c+6x,_ 1+ 2;‘.’_1 SiAX_j+6p.
The critical values (from Mackinnon 1991) for n = 240 are 1% (—3.46), 5% (—2.87), and
10% (—2.57). xij; denotes the i term interest rate in country j at time ¢, for i = 1 (short),
i = 2 (medium), i = 3 (long), j = ¢ (Canada), and j = u (U.S.). Data are from the IMF.
Sample period: 1969:1-1988:12.

is the weighted average of the yields on successful bids for
three-month treasury bills (x,.), the medium-term rate refers
to government bonds with original maturity of 3 to 5 years
(x2.), and the long-term rate refers to bonds with original
maturity of 10 years and over (x;.). Ity the United States
(see Fig. 2), the short-term rate is an annual average of the
discount rate on new issues of three-month treasury bills
(x1,), the medium-term rate refers to 3-year constant ma-
turity government bonds (x,,), and the long-term rate refers
to 10-year constant-maturity bonds (x3,). The data consist of
240 monthly observations from 1969:1 to 1988:12 and were
obtained from the IMF data base.

To show the potential of our decomposition as adimension-
reduction method, two different approaches have been fol-
lowed to obtain the common permanent component of the
whole set of interest rates. In the first approach, the interest
rates are considered within countries, and in each country
the I(1) common factor is estimated. The common perma-
nent component between these two I(1) country factors will
be the factor that is driving the whole system of interest rates
in the long run. In this process the number of variables in-
volved at every step is at most 3. This is what makes this
first approach very convenient for analyzing cointegration in
big systems.

Table 4. Testing for Cointegration

H, Trace Trace(.90) Amax Amax(.90)
Canada
r<2 3.52 6.50 3.52 6.50
r<i 25.22 15.66 21.70 12.91
r=0 56.63 28.71 31.40 18.90
United States
r<2 3.98 6.50 3.95 6.50
r<i 29.18 15.66 25.23 12.91
r=0 61.98 28.71 32.79 18.90
Canada and United States
r<5s 3.79 6.50 3.79 6.50
r<4 16.49 15.66 12.70 12.91
r<3 36.59 28.71 20.10 18.90
r<2 68.89 45.23 32.29 24.78
r<i1 104.11 66.49 35.23 30.84
r=0 153.87 90.39 49.75 36.35

NDTE: The critical values have been obtained from Osterwald-Lenum (1992). Test statis-
tics for the hypothesis H, are for several values of r versus r + 1 (A max) and versus general
alternative H; (trace) for Canadian and U.S. interest rates data (1969:1-1988:12).



Table 5. Estimation of the Cointegration Structure

Canada United States

Canada and United States

Eigenvalues X

(123, .086, .014)

(.128, .10, .016)

(.187, .136, .126, .080, .051, .016)

Eigenvectors va

xlc  —.066 .009 .008 x1u .091  —.045

x2¢ 109 -.149 -.031 x2u -275 —-.004 —-.062

x3c  —.030 .148 .051 x3u 191 .046

x1c .008 -.007 .068 -.019 —-.041 .001
x2¢ .037 .046 —.100 181 —.022 .015
x3¢ -—-.081 -.074 -.075 -.239 .007 —.008
xiu  —-.083 .073 -.053 -.011 .023 .012
x2u 075 -.275 101 -.014 .019  —.063
x3u .032 242 .039 .089 .030 .070

Eigenvectors M?

xlc —.016 .018 .079 xiu  —-.100 -.079

x2¢ .058  —.380 .004 x2u 324 123 -.189

x3c .095 —.466 .059 x3u  -.179 273

x1c .034 .015 .035 —-.040 -—-.143 -.006
x2c —.160 076  —.202 296  —.099 .034
x3c 225 —-.023 031  —-.417 .189  —.003
xiu -.110 —-.053 —-.045 —.047 .029 112
x2u .033 270 221 -.026 128 —-.220
x3u 095 -.276 .004 190 —-.103 .260

NOTE: The Eig X and Eigy
4The first r columns form &,
PThe last p-r columns form 7 .

The second approach consists of analyzing the cointegra-
tion of the whole system (6 variables) without any a priori
partition. This second way becomes unfeasible when the
number of variables is large (greater than 10). The con-
clusion obtained by these two different approaches matches
perfectly. There is only one common long-memory factor in
the whole system formed by the six interest rates, and that
factor is the U.S. common permanent component.

To reach the preceding conclusion these steps have been
followed:

1. Unit-root tests (Table 3): Using the augmented Dickey—
Fuller test, the null of the unit root is not rejected for any of
the six interest rates.

%
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Figure 3. Canada: P-T Decomposition of Short-Term Interest
Rates (xic); f; = —.006X;c + .034X5c — .003%3: + . 112X, — .22X2y

+.26X3y; Z; = .008X1c + .037Xzc — .081X3c — .083X1y + .075%2, +
.032x3y; Z7 = —.007X1c + .046X2; — .074X3. + .073%1y — 275Xz +
.242%3,; 23 = .068X1c — .100Xzc — .075X3c — .053x1y + . 101Xz +
.039%3,; 24 = —.019%;c + 181X — .2839%3 — .011xy, —
.014x2y + .089X3y; Z5 = —.041X;c — .022X5c + .007X3: + .023%1, +
.019X2u + 030X3u,' Pxic = 786f1, TX1C =-3.58z; — 6A9222 +4.52z;
+ 1.831z4 — 18.1625: A PSRN , Pxge; =+ —- —, , TXqe.

, M based on the normalizations ¥Syy V = / and MSgoM = / for Canada and U.S. interest rate data (1969: 1-1988:12).

2. Cointegrations tests (Table 4): Using the Johansen
likelihood ratio (LR) test, for a VAR of order 3 (order sug-
gested by the Akaike information criterion), it is found that
Canada, as well as the United States, has two cointegrating
vectors, and the whole system has five cointegrating vectors.
Therefore there is one common I(1) factor in each country,.
and they are cointegrated, implying that there is only one
common permanent component in the whole system.

3. Estimation of the cointegration structure: In Table 5 we
provide the estimates of the cointegrating vectors and of the
linear combinations that define our common permanent com-
ponents. From these estimates, following Section 1, all in-
terest rates can be decomposed into permanent and transitory
components. Some examples are shown in Figures 3 and 4.

4. Testing hypotheses on the long-memory common fac-
tors: From Table 5, the I(1) common factor of the whole sys-
tem is f; = —.006x,. + .034x,, — .003x3, + .112x, — .22xp, +
.26x3,. Following Theorem 3, we tested that the U.S. interest
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Figure 4. United States P-T Decomposition of Long-Term In-
terest Rates (x1,); See Definitions of Variables in Figure 3. Px;, =
5.91f1; Txyy = 6.012; — 2,812, +.25225 — 1.2724+ 1.7925. :
Xauyoonn- , PXay; — =+ =, . TX3y.




rates are the only variables driving the whole system in the
long run; that is,

g’(:4b: YL = GO with G=

(=N ool
- O OO
Ll ==« i)

0

Under Hy, 9 = (.2,—.25,.27). This hypothesis is not
rejected with a p value of .86. The same conclusion was
obtained when the analysis was done by countries. The com-
mon long-memory factor in Canada is f;. = .08x,, + .004x,, +
.06x;., and in the United States fi, =.11x;, — .19x,, + .24x;,,.
These two common factors are cointegrated, and the hypoth-
esis tests that in the long-run the driving force of these two
common factors is f, has a p value of .45.

Results in more detail can be found in the paper by Gonzalo
and Granger (1992).

4. CONCLUSION

The results of this article have implications on three fronts.
In the first place, they provide a new form of estimating the
I(1) common factors that ensure that a set of variables are
cointegrated, thus allowing us to gain more understanding of
the nature of economic time series. Second, they show a new
method for estimating the permanent component (“trend”)
of a time series using multivariate information, and third,
they provide a new way of studying cointegration in large
systems by using the common long-memory factors of every
“natural” subsystem.

Further research needs to be done on the small-sample
properties of 5, and on how to incorporate different charac-
teristics of the ECM (nonlinearities, time-varying parameters,
etc.) in the estimation of the common factors and therefore
in the estimation of P-T decompositions.
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APPENDIX: PROOFS OF THE MAIN RESULTS
Proof of Proposition 1. Inverting (6),
AP, H''(L) H“(L
[ ol w]
T, H*(L) H®(L)| | ua
we obtain the moving average representation of AP,
AP, = H"(Duy, + H2(Duy,
+(I = L{H"Lyu, + H* (D), (A2)

where

HY(L)=H"()+ (I - DH"L),  j=1,2, (A3)

and u, = (uy,uy) is a vector white noise with covariance

matrix
E — 211 2]2 )
)321 E22

Assuming that u;, and u,, are not perfectly correlated, they
can be decomposed as

Uy, = Up,y and Uy = 21_11221111, + ug. (A4)
From (A.2) and (A .4),
OE(p..,
tim 2P _ gy giysois, (AS5)
h— o0 uPI
and E
lim 2P _ gy (A.6)
h—o0 auTx

Noticing that
klim E/(X) = hlim E\(P.1), (A7)

(P,, T,) will be P-T decomposition according to Definition 1
iff H'*(1)= Hﬁl(l)le(l) [Hy(1)H(1)7 ' Hiz(1) — Hp(1)] !
=0. In other words, iff the total multiplier of AP, with respect
toT,is 0,

H'(DH (1) = 0. (A.8)

Proof of Proposition 3. If ya' has only p — r eigenvalues
equal to 0, then rank(a’«y) = r. Taking determinants on the
right side of the matrix multiplication

a/ (11,Y al,7
[,J[v n}=[ ,L}, (A9)
o 0 v

it follows that this matrix has full rank and therefore

al
rankof | , | =p.
[7] P

4

(A.10)

Proof of Proposition 5.  In this proof, for simplicity it is
assumed that X, follows an AR(g) as in (17).

Multiplying the ECM (17) by «/, and substituting X, =
A, f, + Ayz, into (17), we get the AR representation of the
common factors f;

q—1 q—1
Af, =Y Y\ TADf i+ Y ViTiAAz_; + v, 6 (All)
i=1 i=1
From (A.11), the random-walk part [in the Beveridge—Nelson
(1981) sense] of £, is

q-1 -1
(I—Z'yil‘,-A,) v d - L) e,
i=1

The common trend decomposition of Stock and Watson
(1988) is obtained from the Wold representation of AX,,

AX, = C(L)e, = C(1e, + AC(L)e,, (A.13)

(A.12)

where

C()=a (v Ya, ) 'y, (A.14)
with

¥ =mean lag matrixin H, =/ —--- =T, +II. (A.15)



Therefore,

c = al(7iaL)_l

q-1 -1

!

x |I— ’YizriaL OlJ.(’YiaL)—l Yi-

i=1

(A.16)
The result follows from noticing that A; = ay (v, e )™".

Proof of Theorem 1. Johansen (1989) showed that the
likelihood function of Model (20) can be expressed as

Lo2™ = [Soo. |17 Soov /] (Soo — Son Sy Si0) ve |- (A17)
Therefore L is maximized by maximizing
1Y (So0 — Sor S S10) Vo | /7L So0 V-

This is accomplished by choosing <y, to be the eigenvectors
corresponding to the p — r smallest eigenvalues of Sp.S7;'Sio
with respeet to Sy and the maximal value is

P
[Ta-%.

i=r+l

The result follows from substituting (A.19) in (A.17).

(A.18)

(A.19)

Proof of Theorem 2.  The proof follows from proposition
3.11 of Johansen and Juselius (1990).

Proof of Theorem 3. Substituting v, by G in (A.17),
it is clear that 6 can be estimated as the eigenvectors corre-
sponding to the ( p — r) smallest eigenvalues of G'SuSH'S1G
with respect to G'SyG.

The distribution of the LR test follows from proposition
(3.13) of Johansen and Juselius (1990).

[Received February 1992. Revised December 1993.]
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