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Abstract This paper provides new insights into the solution of optimal stochastic
control problems by means of a system of partial differential equations, which char-
acterize directly the optimal control. This new system is obtained by the application
of the stochastic maximum principle at every initial condition, assuming that the op-
timal controls are smooth enough. The type of problems considered are those where
the diffusion coefficient is independent of the control variables, which are supposed
to be interior to the control region.

Keywords Optimal stochastic control · Itô’s formula · Hamilton–Jacobi–Bellman
equation · Semilinear parabolic equation

1 Introduction

Three major approaches in stochastic optimal control can be differentiated: dynamic
programming, duality and the maximum principle.

Dynamic programming obtains, by means of the optimality principle of Bellman,
the Hamilton–Jacobi–Bellman equation, which characterizes the value function; see
[1–5]. Under some smoothness and regularity assumptions on the solution, it is pos-
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sible to obtain, at least implicitly, the optimal control. This is the content of the so-
called verification theorems which appear in Fleming and Rishel [1] or Fleming and
Soner [3]. However, the problem of recovering the optimal control from the gradient
of the value function by means of solving a static optimization problem remains and
this can be difficult to do.

Duality methods, also known in stochastic control theory as the Martingale ap-
proach, have become very popular in recent years because they provide powerful
tools for the study of some classes of stochastic control problems. Martingale meth-
ods are particularly useful for problems appearing in finance, such as the model of
Merton [6]. Duality reduces the original problem to one of finite dimension. The
approach is based on the martingale representation theorem and the Girsanov trans-
formation. We refer the reader to Bismut [7, 8] and the monograph by Duffie [9] for
an account of the theory and the references therein.

The stochastic maximum principle has been developed completely in recent years
in Peng [10] and Yong and Zhou [5]. It is the counterpart of the maximum prin-
ciple for deterministic problems. The distinctive feature is the use of the concept
of forward–backward stochastic differential equations, which naturally arise, gov-
erning the evolution of the state variables and the corresponding adjoint variables.
Antecedents of the maximum principle are found in Kushner [11], Bismut1 [7] or
Haussmann [12]. Other developments, applicable to problems with differential equa-
tions with random coefficients can be found in Marti [13].

It is the aim of this paper to develop a new approach to stochastic control. The
novelty comes from the fact that we obtain a system of PDEs that a smooth Markov
control must satisfy and that also provides sufficient condition for optimality in the
spirit of the verification theorems. Although the system is obtained using classical
methods—the maximum principle applied to every initial condition—the authors
have not found any reference in the literature to the possibility of establishing a sys-
tem of PDEs to characterize the optimal control directly. The equations of this new
system are of a different type than the HJB. In the case considered in this paper, where
the control does not affect the diffusion coefficient in the state equation, both the HJB
and the equations of the new system are semilinear. There is an important difference,
however, because the nonlinearities in the first-order derivatives in the former equa-
tion can be very general, whereas in the latter they are always of quadratic type. This
fact can be used to establish the existence and uniqueness of smooth optimal Markov
controls as shown in Josa-Fombellida and Rincón-Zapatero [14].

Our approach has the following limitations:

(i) we consider only problems where the diffusion coefficient is independent of the
control variables;

(ii) the optimal control is interior to the control region;
(iii) controls are Markovian and of class C1,2;
(iv) the number of control variables is greater than or equal to the number of state

variables.

1The maximum principle, duality methods and the concept of forward–backward stochastic differential
equations have its roots in the work of Bismut, who gave a very complete and rigorous theory regarding
these topics
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It is worth noting that many control problems share these properties, specially some
important models arising in economics.

The idea to systematically obtain a system of PDEs for the optimal control dates
back to the paper by Bourdache-Siguerdidjane and Fliess [15] for deterministic
control problems. The method was later extended to differential games in Rincón-
Zapatero et al. [16] and Rincón-Zapatero [17].

The paper is organized as follows. In Sect. 2, we present the control problem and
the first hypotheses and notations. In Sect. 3, we find a system of partial differential
equations that a vector of optimal controls of class C1,2 must satisfy. Section 4 is
devoted to establishing sufficient conditions to guarantee that a vector of admissible
controls satisfying the system is an optimal control of the problem. Hence, Sects. 3
and 4 respectively, provide necessary and sufficient conditions for optimality. Con-
cluding remarks are stated in Sect. 5.

2 Control Problem

In this section the framework for the stochastic control problem to be considered
is presented. First, we introduce some useful notation. The partial derivatives are
indicated by subscripts and ∂x stands for total derivation; the partial derivative of
a scalar function with respect to a vector is a column vector; given a real vector
function g : R

n → R
m and a vector z ∈ R

n, gz is defined as the matrix (∂gi/∂zj )i,j ;
for a matrix A, A(i) denotes the ith column and Aij denotes the (i, j)th element;
the vector v ∈ R

n is a column vector and vi is the ith component; finally, T denotes
transposition.

Let a time interval [0, T ], with 0 < T ≤ ∞, and let (�,F,P) be a complete
probability space. Assume that, on this space, a d-dimensional Brownian motion
{w(t),Ft }t∈[0,T ] is defined with {Ft }t∈[0,T ] being the Brownian filtration. Let E de-
note expectation under the probability measure P.

The state space is R
n and the control region is some subset U ⊆ R

m, with m ≥ n.
This assumption will be explained later in Remark 3.2. A U -valued control process
{(u(s),Fs)} defined on [t, T ] × � is an Fs -progressively measurable map (r,ω) →
u(r,ω) from [t, s] × � into U , that is, u(t,ω) is Bs × Fs -measurable for each s ∈
[t, T ], where Bs denotes the Borel σ -field in [t, s]. For simplicity, we use u(t) for
u(t,ω).

The state process ξ ∈ R
n obeys a system of controlled stochastic differential equa-

tions of the form

dξ(s) = f (s, ξ(s), u(s)) ds + σ(s, ξ(s)) dw(s), s ≥ t, (1)

with initial condition ξ(t) = x. ξu is sometimes used to indicate the dependence of
the state variable with respect to the control u. An important feature of the above
system is that the noise coefficient σ is independent of the control variable u. Here,
σ = (σij ) is an n × d matrix.

Definition 2.1 (Admissible Control) A control {(u(t),Ft )}t∈[0,T ] is called admissi-
ble if:
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(i) for every (t, x), the system of SDE (1) with initial condition ξ(t) = x admits a
pathwise unique strong solution;

(ii) there exists some function φ : [0, T ] × R
n → U of class C1,2 such that u is in

relative feedback to φ, i.e. u(s) = φ(s, ξ(s)) for every s ∈ [0, T ].
Let U(t, x) denote the set of admissible controls corresponding to the initial condition
(t, x) ∈ [0, T ] × R

n.

According to the definition, we are considering Markovian controls. If φ is time
independent, the corresponding control will be called a stationary Markov control. u

and φ will sometimes be identified in the notation.
Given the initial data (t, x) ∈ [0, T ] × R

n, the criterion to be maximized is

J (t, x;u) = Etx

{∫ T

t

L(s, ξ(s), u(s)) ds + S(T , ξ(T ))

}
, (2)

where Etx denotes conditional expectation with respect to the initial condition (t, x).
In the following, the subscript will be eliminated if there is no confusion. The func-
tions f : [0, T ]×R

n ×U → R
n, σ : [0, T ]×R

n → R
n×d , L : [0, T ]×R

n ×U → R,
S : [0, T ] × R

n → R, are all assumed to be of class C2 with respect to (x,u) and
of class C1 with respect to t . The hypotheses established so far will be assumed
to hold throughout the paper. Given that our aim is to solve the problem for every
(t, x) ∈ [0, T ] × R

n, U will often be written instead of U(t, x).
In the specification of the problem, we have supposed m ≥ n, that is, the dimen-

sion of the control variable is greater than or equal to the dimension of the state
variable. This is a crucial assumption for the following developments. However, for
the sake of simplicity, the case m = n will be considered first and then we will show
in Remark 3.2 that the case m > n can be reduced to the equality situation.

With a view to applying the stochastic maximum principle as it is stated in Yong
and Zhou [5], an additional assumption will be imposed.

Assumption A1 There exists a constant C > 0 and a modulus of continuity ω̄ :
[0,∞) → [0,∞) such that, for ψ = f, σ, L, S, we have

|ψ(t, x,u) − ψ(t, x̂, û)| ≤ C‖x − x̂‖ + ω̄(‖u − û‖),
|ψx(t, x,u) − ψx(t, x̂, û)| ≤ C‖x − x̂‖ + ω̄(‖u − û‖),
|ψxx(t, x,u) − ψxx(t, x̂, û)| ≤ ω̄(‖x − x̂‖ + ‖u − û‖),

∀t ∈ [0, T ], x, x̂ ∈ R
n, u, û ∈ U,

|ψ(t,0, u)| ≤ C, ∀(t, u) ∈ [0, T ] × U.

Consider a control satisfying property (ii) of Definition 2.1. Then, the Lipschitz
and linear growth conditions on f and σ postulated in Assumption A1 imply that
the control also satisfies (i), that is, it is admissible; see Yong and Zhou [5], p. 114.
However, the assumptions are quite stringent and will only be used in the derivation of
the quasilinear system as a necessary condition for optimality. Sufficiency conditions,
which will be established in Sect. 4, do not make use of Assumption A1.
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The backward evolution operator associated with (1) is given by

AφW(t, x) = Wt(t, x) + WT
x (t, x)f (t, x,φ(t, x)) + (1/2)Tr

{
(σσ TWxx)(t, x)

}
,

with W : [0, T ] × R
n → R

n of class C1,2 and where

Tr{σσ TWxx} := (
Tr{σσ TW 1

xx}, . . . ,Tr{σσ TWn
xx}

)T
.

The value function is defined as V (t, x) = supu∈U(t,x) J (t, x;u). An admissible
control û ∈ U is optimal if V (t, x) = J (t, x; û) for every initial condition (t, x).

The standard approach adopted in the literature to determine an optimal control is
to solve the HJB equation

Vt (s, x) + max
u∈U

{
L(s, x,u) + Vx(s, x)Tf (s, x,u)

+ (1/2)Tr
{
(σσTVxx)(s, x)

}} = 0, (3)

V (T , x) = S(T , x), t ≤ s ≤ T , x ∈ R
n. (4)

3 Necessary Conditions

Our purpose in this section is to find a system of PDEs that an optimal control must
satisfy. Let L2

F ([0, T ];R
n) be the set of all processes X(·) with values in R

n adapted
to filtration {Ft }t≥0 such that

E
∫ T

0
‖X(t)‖2 dt < ∞.

As previously stated, Assumption A1 allows us to apply the stochastic maximum
principle so that, if given the initial condition (t, x), the pair (ξ, u) is optimal, with
u ∈ U(t, x), then there exist processes p ∈ L2

F ([0, T ];R
n), q ∈ (L2

F ([0, T ];R
n))d

satisfying for s ∈ [t, T ] the first-order adjoint equations

dp(s) = −
(

Hx(s, ξ(s),φ(s, ξ(s)),p(s)) +
d∑

i=1

σ (i)
x (s, ξ(s))Tq(i)(s)

)
ds

+ q(s) dw(s), (5)

p(T ) = Sx(T , ξ(T )), (6)

where H(t, x,u,p) = L(t, x,u) + pTf (t, x,u) is the deterministic Hamiltonian
function, corresponding to the associated deterministic problem, with σ ≡ 0. A more
precise notation for the adjoint processes is p(s; t, x) and q(s; t, x) with s ∈ [t, T ],
though in the following, we suppress the dependence with respect to the initial con-
dition (t, x).

Furthermore, the following maximization condition:

H(s, ξ(s),φ(s, ξ(s)),p(s)) = max
u∈U

H(s, ξ(s), u,p(s)) (7)

holds for every s ∈ [t, T ], P-a.s.
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For the next result, which establishes a necessary condition of optimality in terms
of a new system of PDEs, we define

	(t, x,u) := −f −T
u Lu(t, x,u), (8)

and 
T := diag(σ T σ T∂x	 (φxσ )T). Ĥ{·} will denote H{·} once (8) is substituted
into it.

Theorem 3.1 (Necessary Conditions) Let Assumption A1 on the coefficient func-
tions be satisfied. Let φ ∈ U be an interior optimal Markov control such that
detfu(t, x,φ) �= 0 for all (t, x) ∈ [0, T ] × R

n. Then, φ satisfies

0 = Ĥut + ĤT
uxf + ĤT

up

(
−Ĥx −

m∑
i=1

σ (i)
x (∂x	 σ)(i)

)
+ ĤuuAφφ + 1

2
Tr{

T∇2Ĥu}

(9)

and the final condition

Lui (T , x,φ(T , x)) + Sx(T , x)Tfui (T , x,φ(T , x)) = 0, i = 1, . . . , n. (10)

Proof Since by assumption the maximizing argument is interior to U , (7) implies

Hui (s, ξ(s),φ(s, ξ(s)),p(s)) = 0, ∀s ∈ [t, T ], P -a.s., (11)

for all i = 1, . . . , n. Assuming that fu is invertible for all (t, x, u) ∈ [0, T ]× R
n ×U ,

it is possible to obtain the unique solution of the above linear system in the adjoint
variable p,

Lu + f T
u p = 0,

as

p = −f −T
u Lu. (12)

An obvious consequence of (11) is dHui (s, ξ(s), u(s),p(s)) = 0 a.s. For an admis-
sible feedback φ, Itô’s rule is applicable to u(s) = φ(s, ξ(s)); hence, omitting the
arguments and in differential notation,

dui = dφi = φi
t dt + φi

xdξ + (1/2)dξTφi
xxdξ, i = 1, . . . , n. (13)

Applying again Itô’s rule to Hui for i = 1, . . . , n, we have

0 = dHui = Huit dt + ∇Hui

⎛
⎝ dξ

dp

dφ

⎞
⎠ + 1

2
(dξT dpT dφT)∇2Hui

⎛
⎝ dξ

dp

dφ

⎞
⎠ , (14)

where ∇ and ∇2 denote the gradient and the Hessian matrix operators respec-
tively, with respect to the variables (x,p,u). Substituting (1, 5, 13) in the equality
(14) and taking into account that Huipp = 0 for all i, because the Hamiltonian is
linear in p, the following system of stochastic differential equations holds along
(s, ξ(s), u(s),p(s)) a.s.:
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0 =
(
Huit + HT

uix
f + HT

uip

(
−Hx −

m∑
i=1

σ (i)
x q(i)

)
+ HT

uiu
Aφφ

+ 1

2
Tr

{


T∇2Ĥu

})
ds + (

HT
uix

σ + HT
uip

q + HT
uiu

φxσ
)
dw(s). (15)

Therefore, both the drift term and the diffusion coefficient of this system of SDEs
must be identically null a.s. In order to obtain a system of PDEs for the optimal con-
trol, we must eliminate the adjoint vector p by means of (12). Equating the diffusion
coefficient to zero, we get

q = −f −T
u (Ĥuxσ + Ĥuuφxσ ) a.s., s ≥ t .

In fact, q can be expressed as

q = (∂x	)σ. (16)

The possibility to write q as shown in (16) follows from the identities

Huip = fui , 	x = −f −T
u Ĥux, 	u = −f −T

u Ĥuu.

The drift term in (15) also vanishes a.e.; hence, after substitution of (12) and (16),
the system of PDEs (9) characterizing an admissible optimal control is obtained. Note
that (9) and (16) are valid a.s. along the optimal trajectory, but that at (t, ξ(t)) = (t, x),
(9) holds with certainty.

The stochastic maximum principle also provides a boundary condition at time T

for the system of PDEs, which is given implicitly by (10). This follows from (6) and
(12) evaluated at t = T ; we will suppose that it is possible to obtain φ(T , x) := ϕ(x)

for a function ϕ sufficiently regular. This is enough to check if the hypotheses of the
implicit function theorem are fulfilled. �

Some comments about the structure of the system and comparison with the HJB
equation (3) are pertinent here. The system is semilinear because the terms involv-
ing the second-order derivatives of φ are independent of the solution. Furthermore,
assuming the invertibility of Ĥuu, the system is weakly coupled; that is, the second-
order derivatives of φi appear only in equation i. The first-order derivatives are cou-
pled and appear in a nonlinear way derived from the quadratic-type terms

Tr
{
φxσ(φxσ )TĤuuu

}
and Tr

{
φxσ(φxσ )TĤupu(−f −T

u Ĥuu)
}
.

This is a very interesting feature that has been used by the authors in Josa-Fombellida
and Rincón-Zapatero [14] to study an economic model of determining the optimal
consumption subject to stochastic returns. With respect to the HJB equation, it is also
of semilinear type, but the nonlinearity with respect to φx can be much more general
and not only of quadratic type. On the other hand, it must be pointed out that the HJB
equation is a single equation, whereas we have obtained a system of n PDEs, but with
a simpler structure.

It would be possible to replace the smoothness assumption on φ for a weaker one.
Given that all that is needed is to apply Itô’s rule, Theorem 3.1 is true if the class of
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Markov controls is (W
1,2
l, loc([0, T ] × R

n))n, l ≥ 2, the space of functions such that the
weak partial derivatives of order 1 with respect to time and order 2 with respect to x

are in (Ll
loc([0, T ] × R

n))n; see Krylov [2]. Note that the hypotheses imposed imply

that Hu belongs to W
1,2
l, loc([0, T ] × R

n).

Remark 3.1 There is in the literature a different but closely related system of PDEs
which characterize the vector of adjoint variables under some regularity assumptions,
see (17) below. This system was obtained for the first time in Bismut [7] and later in2

Elliot [18]. It is important to note that the system below depends also on the optimal
control and for this reason it appears with a simple structure. To obtain the system
for the adjoint variables, we can proceed as follows. Let us suppose the existence of a
vector function γ of class C1,2 depending of the variables (s, y) and such that p(s) =
γ (s, ξ(s)), where p is the adjoint variable of the problem with initial condition (t, x).
Applying Itô’s rule to γ (s, ξ(s)), we have

dγ =
(

γt + γxf + 1

2
Tr{σσ Tγxx}

)
ds + γxσ dw. (17)

Once the validity of the maximum principle is established, by the uniqueness of the
solutions of (5), we can match the diffusion terms and drift terms in the expressions
(5) and (17) to obtain q = γxσ and

−
(

Hx +
n∑

i=1

(σ (i)
x )Tq(i)

)
= γt + γxf + 1

2
Tr{σσ Tγxx}.

Of course, the first equality is nothing but (16). Therefore, we find that the second
identity is transformed into

γt + γxf + Hx +
m∑

i=1

(σ (i)
x )Tγxσ

(i) + 1

2
Tr{σσ Tγxx} = 0. (18)

For the derivation of this identity, the equal dimension condition between the state
and control variables is not needed. Furthermore, the equality q = γxσ allows sit-
uations to be handled where the diffusion parameter σ depends also on the control
variables u. In this case, the elimination of the optimal control variables is not so
straightforward. As already observed, the system (18) depends also on the unknown
vector of optimal controls. Supposing that it is possible to obtain a sufficiently reg-
ular function ũ(t, x, z) such that φ̂(t, x) = ũ(t, x, γ (t, x)), that is, ũ is the inverse
function of 	 with respect to its third component for all (t, x), then by substituting in
the previous system of equations, we obtain a system of PDEs that truly characterize
the vector of adjoint variables. However, writing the system for the optimal control
does not require the inverse function ũ to be found, which can be hard or impossi-
ble to do, even in scalar problems. Under the conditions contemplated in this paper,

2In Elliot [18], a misprint is registered making the equation shown different from that appearing in Bismut
[7] and in (18) of the present paper
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it is only necessary to solve the linear system (12) to obtain γ (t, x) = 	(t, x,φ(t, x))

and by substituting in (18), to arrive at the desired PDE system for φ. Of course, this
is simply the system (9).

Remark 3.2 Case m > n. When the number of control variables is greater than the
number of state variables, m > n, the linear system in p is overdeterminate. Because
the maximum principle holds, the existence of a solution to the overdetermined sys-
tem is assured. This solution can be obtained as follows. Suppose that fu has rank n

for all t, x, u; then f T
u fu has full rank n; hence, from (11),

p = −(fuf
T
u )−1fuLu.

Now, the argument runs as shown above, obtaining a system of n PDEs for m >

n unknowns. These equations can be complemented with an algebraic relationship
between the controls, which is obtained from the fact that the system Hu = 0 admits
a solution in p. In this way, m − n control variables can be formally expressed by
means of n of them.

In the case m < n, elimination of p is not so straightforward. Now, the procedure
to obtain a system of PDEs for the control would be to take n−m+1 Itô differentials
in the identity Hu ≡ 0. This leads to PDE equations for the optimal control of higher
order and of a very different nature than (9); hence, this case will not be pursued in
this paper.

4 Sufficient Conditions

The main objective in this section is to show that a solution of class C1,2 of (9, 10),
maximizing the Hamiltonian function for all (t, x) and satisfying some additional
assumptions, is an optimal Markov control for problem (1, 2). This result is, therefore,
similar to the verification theorems in Fleming and Rishel [1] or Fleming and Soner
[3]. The applicability of Theorem 4.1 established in this section has been shown in
an economic model studied in Josa-Fombellida and Rincón-Zapatero [14].

The process ξ depends on the initial condition (t, x). In the following, ξ
j

xi will
denote the partial derivative of ξj with respect to xi .

We consider the following assumption.

Assumption A2

E

{∫ T

t

(γ jσ
(j)

xl + q(j))ξ
j

xi dw(s)

}
= 0, for every i, j, l = 1, . . . , n.

The following result establishes that the adjoint process p(s) = γ (s, ξ(s)) is the
gradient with respect to x of the objective functional. This result, of independent
interest, is a previous step in the formulation of the sufficiency theorem that will be
stated later.

Recall from the previous section that 	 denotes f −T
u Lu and γ (t, x) =

	(t, x, φ̂(t, x)), where φ̂ is an admissible Markov control solving the semilinear sys-
tem. The proof of the following result can be found in Josa-Fombellida and Rincón-
Zapatero [14].
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Proposition 4.1 (Shadow Price) Let φ̂ ∈ U be a solution of (9, 10) such that
Assumption A2 is satisfied and fu(t, x, φ̂) is invertible for all (t, x) ∈ [0, T ] × R

n.
Then,

Jx(t, x; φ̂) = 	(t, x, φ̂(t, x)) = p(t),

Jxx(t, x; φ̂)σ (t, x) = q(t),

for every (t, x) ∈ [0, T ] × R
n.

Once we have identified the vector of adjoint variables with the gradient of the
objective functional, the system (9) can be expressed in conservative form. Since γ is
the gradient with respect to the variable x of the function J (t, x; φ̂), which is of class
C3, γ i

xj = γ
j

xi is satisfied for every i, j = 1, . . . , n, because the crossed second-order

partial derivatives of the function J coincide. By the same argument, γ i
xrxj = γ r

xj xi

for all i, j, r = 1, . . . , n. On the other hand, after some tedious calculations, we find
that

(Tr{σσTγx})xr = Tr{σσ Tγ r
xx} + 2

m∑
i=1

(σ
(i)
xr )T

(
n∑

j=1

γ
j
x σ ji

)
,

and substituting this expression in (18), we obtain

γt + ∂x

(
L + γ Tf + 1

2
Tr{σσ Tγx}

)
= 0, (19)

where the fact that Hu = 0 holds at the optimal control has been used. It is interesting
to compare the structure of (19), which is expressed in conservative form, with that
of (18), which appears in nonconservative form.

In terms of 	(t, x,φ), (19) can be rewritten as

∂t	(t, x,φ(t, x))

+ ∂x

(
H(t, x,φ(t, x)) + 1

2
Tr

{
σ(t, x)σ (t, x)T∂x	(t, x,φ(t, x))

}) = 0, (20)

with

H(t, x, u) := H(t, x,u,	(t, x,u)).

Taking total derivatives, a system of partial differential equations of second order
arise, which is the same as (9). Expressing the system in conservative form is useful,
because it allows us in the next theorem to establish a sufficient result of optimality.
It also makes possible to obtain the value function from the control, as will be shown
in the following section.

Now, we are in position to establish the following sufficient condition for optimal-
ity.

Theorem 4.1 (Verification Theorem) Let φ̂ ∈ U be a solution of (9, 10) such that
Assumption A2 is satisfied and fu(t, x, φ̂) is invertible for all (t, x) ∈ [0, T ] × R

n.
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Suppose further that the following maximization property holds for all (t, x) ∈
[0, T ] × R

n, for every admissible Markov control u:

H(t, x, φ̂,	(t, x, φ̂)) ≥ H(t, x,u,	(t, x, φ̂)). (21)

Then, φ̂ is an optimal Markov control for the problem (1, 2).

Proof Let u be any admissible Markov control and let ξu be the associated process
with initial condition (t, x). We will omit the dependence of ξu on the initial condition
in order to facilitate the exposition. Let u(s) be u(s, ξu(s)). Applying Itô’s rule to
J (s, ξu(s);u), s ≥ t , we have

dJ (s, ξu(s);u) =AuJ (s, ξu(s);u)ds + Jx(s, ξ
u(s);u)Tσ(s, ξu(s)) dw(s). (22)

On the other hand, as shown in Yong and Zhou [5], we can write the objective
functional as

J (s, ξu(s);u) = E

{∫ T

s

L(r, ξu(r), u(r)) dr + S(T , ξu(T )) |F t
s

}
,

∀s ∈ [t, T ], P -a.s., (23)

where {F t
s }s≥t is the filtration of the σ -fields generated by Brownian motion in the

interval [t, s]. The process

m(s) = E

{∫ T

t

L(r, ξu(r), u(r)) dr + S(T , ξu(T )) |F t
s

}
, s ∈ [s, T ],

is a square-integrable {F t
s }s∈[t,T ]-martingale; hence, by the martingale representation

theorem, we have

m(s) = m(t) +
∫ s

t

M(r) dw(r),

with M ∈ (L2
F (t, T ;R

n))d . Let us observe that m(t) = J (t, x;u). Therefore,

m(s) = J (t, x;u) +
∫ s

t

M(r) dw(r). (24)

By (23) and (24), we have

J (s, ξu(s);u) = m(s) − E

{∫ s

t

L(r, ξu(r), u(r)) dr

}

= J (t, x;u) − E

{∫ s

t

L(r, ξu(r), u(r)) dr

}
+

∫ s

t

M(r) dw(r).

It then follows that

dJ (s, ξu(s);u) = −E{L(s, ξu(s), u(s))}ds + M(s)dw(s). (25)

11



We get, from (22) and (25),

E

{
Js(s, ξ

u(s);u) + L(s, ξu(s), u(s)) + J T
y (s, ξu(s);u)f (s, ξu(s), u(s))

+ 1

2
Tr

{
(σσ T)(s, ξu(s))Jyy(s, ξu(s);u)

}} = 0.

This equality holds for all admissible u ∈ U , for all s ∈ [t, T ]. In particular, it holds
for φ̂; hence,

0 = E

{
Js(s, ξ

u(s); φ̂) + H(s, ξu(s), φ̂, Jy(s, ξ
u(s); φ̂))

+ 1

2
Tr

{
(σσ T)(s, ξu(s))Jyy(s, ξ

u(s); φ̂)
}}

≥ E

{
Js(s, ξ

u(s); φ̂) + H(s, ξu(s), u, Jy(s, ξ
u(s); φ̂))

+ 1

2
Tr

{
(σσ T)(s, ξu(s))Jyy(t, ξ

u(s); φ̂)
}}

,

because Jy ≡ 	, an identity which is proven in Proposition 4.1, and because of (21).
Expanding the Hamiltonian function we find that the latter inequality is equivalent to

E{L(s, ξu(s), u(s)) +AuJ (s, ξu(s); û )} ≤ 0.

Integrating and exchanging expectation and integration, we have

E

{∫ T

t

(L(s, ξu(s), u(s)) +AuJ (s, ξu(s); φ̂)) ds

}
≤ 0. (26)

Given that, by the assumptions made,

∫ T

t

Jx(s, ξ
u(s); φ̂)Tσ(s, ξu(s)) dw(s)

is a martingale, the application of the Dynkin formula to (25) leads to

E{S(T , ξu(T ))} − J (t, x; φ̂) = E

{∫ T

t

AuJ (s, ξu(s); φ̂) ds

}
. (27)

Substituting (27) into (26), we obtain

E

{∫ T

t

L(s, ξu(s), u(s)) ds

}
≤ J (t, x; φ̂) − E{S(T , ξu(T ))}, (28)

that is, J (t, x;u) ≤ J (t, x; φ̂). �
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Remark 4.1 Condition (21) holds automatically when φ̂ is interior to the control set
U and the Hamiltonian function is concave with respect to u for every t, x,p. To see
this, note that

Hu(t, x, φ̂,	(t, x, φ̂)) = 0

is trivially fulfilled by the definition of 	; hence, φ̂ is a critical point of the concave
function u 
→ H(·, ·, u, ·), so φ̂ is a global maximum of H . On the other hand, it
is worth noting that the full strength of (21) is not really needed in the proof. It only
suffices that, for every initial condition (t, x) and for every admissible Markov control
u, the following holds:

E
{
H(s, ξu(s),	(s, ξu(s), φ̂), φ̂)

} ≥ E
{
H(s, ξu(s),	(s, ξu(s), φ̂), u)

}
, (29)

where ξu is the state variable process associated to u.

Remark 4.2 (Infinite Horizon) Proposition 4.1 can be extended to the infinite-horizon
case, T = ∞, when the following transversality condition holds:

lim
T →∞ E

{
γ T(T , ξ(T )) ξx(T )

} = 0. (30)

By Proposition 4.1, (30) is the same as

lim
T →∞ E{∂xV (T , ξ(T ))} = 0,

for every initial condition (t, x), that is, the long run behavior of the expected value
function along the optimal trajectory is independent of the initial condition x, for
every x. With respect to Theorem 4.1, two assumptions about the limit of J (t, x; φ̂) as
t → ∞ must be added to the hypotheses, in order to assure the optimality of φ̂. One of
them is (30), which assures the equality between pi and Jxi (t, x; φ̂), for i = 1, . . . , n.
The other one is obtained by substituting E{S(T , ξu(T ))} by J (T , ξu(T ); φ̂) in (28),
given that, in the infinite-horizon problem, there is no residual function S. Taking
limits when T tends to infinity in the expression (28), if the conditions

lim sup
T →∞

J (T , ξu(T ); φ̂) = lim sup
T →∞

V (T , ξu(T )) ≥ 0 (31)

and

lim
T →∞ E

{∫ T

t

L(s, ξu(s), u(s)) ds

}
= E

{∫ ∞

t

L(s, ξu(s), u(s)) ds

}
< ∞

hold for all admissible control u, then

J (t, x;u) ≤ J (t, x; φ̂).

The latter equality simply means that the cost functional of the infinite-horizon prob-
lem makes sense for the class of admissible controls.
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Remark 4.3 In the deterministic case, σ ≡ 0, the system of partial differential equa-
tions (9) is of course of first order and quasilinear. The system for this case was first
derived in Bourdache-Siguerdidjane and Fliess [15]. Clearly, the results remain valid
now for C1 solutions and Assumption A2 is not needed. In Rincón-Zapatero et al.
[16] and Rincón-Zapatero [17], an extension to differential games is provided.

5 Conclusions

This paper provides an alternative method for the analysis of stochastic optimal con-
trol problems to the classical ones based on dynamic programming, duality, and
the maximum principle. The novelty of the approach that we propose in this pa-
per does not consists in the tools that we use in the construction of the theoretical
framework—which heavily depend on dynamic programming concepts and the max-
imum principle—but in the optimality conditions, necessary and sufficient, that are
obtained. These are entirely new. We do not pretend to convey to the reader the idea
that our approach is superior to the existing ones—we have remarked the limitations
of the method in the Introduction—but to provide a different perspective, based in a
system of PDEs which characterize directly the optimal controls, without resorting to
the value function. A useful feature of the system of PDEs introduced in the paper is
that the gradient of the optimal control enters in a quadratic way. In contradistinction,
the gradient of the value function in the HJB equation enters in a nonlinear way.
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