
Working Paper 99-52 Departamento de Estadfstica y Econometrfa 

Universidad Carlos III de Madrid 

Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (34-91) 624-9849 

Statistics and Econometrics Series 17 

June 1999 

Abstract 

ON THE ASYMPTOTIC THEORY OF SUBSAMPLlNG. 

Dimitris N. Politis, Joseph P. Romano and Michael Wolf. * 

--------------------------------------------------------
A general approach to constructing confidence intervals by subsampling was presented 

in Politis and Romano (1994). The crux of the method is based on recomputing a 

statistic over subsamples of the data, and these recomputed values are used to build up 

an estimated sampling distribution. The method works under extremely weak 

conditions, it applies to independent, identically distributed (LLd.) observations as 

well as to dependent data situations, such as time series (possible non stationary) , 

random fields, and marked point processes. In this article, we present some new 

theorems showing: a new construction for confidence intervals that removes a 

previous condition, a general theorem showing the validity of subsampling for data­

dependent choices of the block size, and a general theorem for the construction of 

hypothesis tests (which is not necessarily derived from a confidence interval 

construction). The arguments apply to both the Li.d. setting as well as the dependent 

data case. -------------------------------------------------------

Keywords: Confidence intervals; Data-dependent block size choice; Hypothesis Tests; 

Large sample theory; Resampling. 

*Politis, Department of Mathematics, University of California, San Diego, La Jolla, 

CA 92093-0112, USA; e-mail: politis@euclid.ucsd.edu; Romano, Department of 

Statistics Standford University, Standford, CA 94305 USA; e-mail: 

romano@stat.stanford.edu; Wolf, Departamento de Estadistica y Econometria, 

Universidad Carlos III de Madrid. Cl Madrid, 12628903 Getafe -Madrid-, Spain, e­

mail: mwolf@est-econ.uc3m.es. 



1 Introd uction 

A general theory for the construction of confidence intervals or regions was presented in Politis 
and Romano (1992, 1994). The basic idea is to approximate the sampling distribution of a 
statistic based on the values of the statistic computed over smaller subsets of the data. For 
example, in the case where the data are n observations which are independent and identically 
distributed, a statistic is computed based On the entire data set and is recomputed over all (~) 
data sets of size b. Implicit is the notion of a statistic sequence, so that the statistic is defined 
for samples of size nand b. These recomputed values of the statistic are suitably normalized 
to approximate the true sampling distribution. 

This approach based on subsampling is perhaps the most general theory for the construction 
of first order asymptotically valid confidence regions. In fact, under very weak assumptions 
on b, the method is valid whenever the original statistic, suitably normalized, has a limit 
distribution under the true model. Other methods, such as the boots trap, require that the 
distribution of the statistic is somehow locally smooth as a function of the unknown model. 
In fact, many papers have been devoted to showing the convergence of a suitably normalized 
statistic to its limiting distribution is appropriately uniform as a function of the unknown model 
in specific situations. In contrast, no such assumption or verification of such smoothness is 
required in the theory for subsampling. Indeed, the method here is applicable even in the 
several known situations which represent counterexamples to the bootstrap. To appreciate 
why subsampling behaves well under such weak assumptions, note that each subset of size b 
(taken without replacement from the original data) is indeed a sample of size b from the true 
model. Hence, it should be intuitively clear that one can at least approximate the sampling 
distribution of the (normalized) statistic based on a sample of size b. But, under the weak 
convergence hypothesis, the sampling distributions based on samples of size band n should be 
close. The bootstrap, on the other hand, is based on recomputing a statistic over a sample of 
size n from some estimated model which is hopefully close to the true model. 

The method has a clear extension to the context of a stationary time series or, more gen­
erally, a homogeneous random field. The only difference is that the statistic is computed over 
a smaller number of subsets of the data that retain the dependence structure of the observa­
tions. For example, if Xl, ... ,Xn represent n observations from some stationary time series, 
the statistic is recomputed only over the n - b+ 1 subsets of size b of the {Xi, XH I, ... , Xi+b-l}. 
The ideas extend to random fields and marked point processes as well. 

The use of subsample values to approximate the variance of a statistic is well-known. The 
Quenouille-Thkey jackknife estimates of bias and variance based on computing a statistic over 
all subsamples of size n - 1 has been well-studied and is closely related to the mean and 
variance of our estimated sampling distribution with b = n - 1. Mahalanobis (1946) suggested 
the use of subsamples to estimate variability in studying crop yields, though he used the name 
interpenetrating samples. Half sampling methods have been well-studied in the context of 
sampling theory; see McCarthy (1969). Hartigan (1969) has introduced what Efron (1982) 
calls a random subsampling method, which is based on the computation of a statistic over all 
2n - 1 nonempty subsets of the data. His method is seen to produce exact confidence limits in 
the special context of the symmetric location problem. Hartigan (1975) has adapted his finite 
sample results to a more general context of certain classes of estimators which have asymptotic 
normal distributions. But, even in this context, his asymptotic results assume the number of 
subsamples used to recompute the statistic remains fixed as n -+ 00, which results in a loss of 
efficiency. 

The jackknife and random subsampling methods are similar in that they both use subsets 
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of the data to approximate standard errors of a statistic, or perhaps even to approximate a 
sampling distribution. The method presented here retains the conceptual simplicity of these 
methods and is seen to be applicable under very minimal assumptions. 

Efron's (1979) bootstrap, while sharing some similar properties to the aforementioned meth­
ods, has corrected some deficiencies in the jackknife, and has tackled the more ambitious goal 
of approximating an entire sampling distribution. Shao and Wu (1989) have shown that, by 
basing a jackknife estimate of variance on the statistic computed over subsamples with d ob­
servations deleted, many of the deficiencies of the usual d = 1 jackknife estimate of variance 
can be removed. Later, Wu (1990) used these subs ample values to approximate an entire sam­
pling distribution by what he calls a jackknife histogram, but only in regular i.i.d. situations 
where the statistic is appropriately linear so that asymptotic normality ensues. In more broad 
generality, Sherman and Carlstein (1996) considered the use of subsamples as a diagnostic 
tool to describe the shape of the sampling distribution of a general statistic, though formal 
inference procedures, such as the construction of confidence intervals, are not delivered. Here, 
we show how these subsample values can accurately estimate a sampling distribution without 
any assumptions of asymptotic normality, by only assuming the existence of a limiting dis­
tribution. Moreover, the asymptotic validity of confidence statements follows. In summary, 
while the method developed in this work is quite related to several well-studied techniques, 
the simplicity of our arguments has lead to asymptotic justification under the most general 
conditions. 

In Section 2, the method is described in the context of i.i.d. observations. The basic 
theory is quickly reviewed, as the ideas and notation are used in the new results. A variation 
(Corollaries 2.1 and 5.1) of the basic confidence interval is presented which removes one of 
the original conditions. Although this condition is extremely weak, the new interval is more 
closely related to a construction presented in the next section on hypothesis testing. The use 
of subsampling in the context of hypothesis testing based on i.i.d. samples is described in 
Section 3. A general theorem proving consistency of subsampling using random or data-driven 
choices of the block size is presented in Section 4. Sections 5, 6, and 7 extend these ideas to 
the time series case. The same ideas apply, and the proofs only highlight the differences from 
the i.i.d. case. Section 8 presents an example and illustrates the idea of data-driven choice of 
the block size. The paper is summarized in Section 9. 

2 The Basic Theorem in the i.i.d. Case 

Throughout this section, Xl"'" Xn is a sample of n independent and identically distributed 
random variables taking values in an arbitrary sample space S. The common probability 
measure generating the observations is denoted P. The goal is to construct a confidence region 
for some parameter (}(P). For now, assume {} is real-valued, but this can be considerably 
generalized to allow for the construction of confidence regions for multivariate parameters or 
confidence bands for functions. 

Let en = en(XI , ... , Xn) be an estimator of {}(P). It is desired to estimate or approximate 
the true sampling distribution of en in order to make inferences about {}(P). Nothing is 
assumed about the form of the estimator, though it is natural in the i.i.d. context to assume 
en is symmetric in its arguments (but even this is not necessary). 

Define In(P) to be the sampling distribution of Tn(en - {}(P)) based on a sample of size n 

from P, where Tn is a normalizing constant. Also define the corresponding cumulative distri-
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bution function: 

Essentially, the only assumption that we will need to construct asymptotically valid confi­
dence intervals for ()(P) is the following. 

Assumption 2.1 There exists a limiting law J(P) such that In(P) converges weakly to J(P) 
as n -t 00. 

This assumption will be required to hold for some sequence Tn. It will be necessary, however, 
that Tn is such that the limit law J(P) is nondegenerate. This assumption is clearly satisfied 
in numerous examples, and it is hard to conceive of a theory where this assumption fails. 

To describe the method studied in this section, let Yl,." ,YNn be equal to the N n = G) 
subsets of size b of {Xl, ... , X n }, ordered in any fashion. Of course, the Yi depend on band n, 
but this notation has been supressed. Only a very weak assumption on b will be required. In 
typical situations, it will be assumed that bin -t 0 and b -t 00 as n -+ 00. Now, let On,b,i be 
equal to the statistic Ob evaluated at the data set Yi. The approximation to In(x,P) we study 
is defined by 

(1) 

The motivation behind the method is the following. For any i, Yi is a random sample 
of size b from P. Hence, the exact distribution of Tb(On,b,i - ()(P)) is Jb(P), The empirical 
distribution of the N n values of Tb(On,b,i - ()(P)) should then serve as a good approximation 
to In(P). Of course, ()(P) is unknown, so we replace ()(P) by On, which is asymptotically 
permissible because Tb(On - ()(P)) is of order Tb ITn -t O. These heuristics lead to the following 
theorem, first proved in Politis and Romano (1992). We include much of the proof because all 
subsequent proofs will expand upon the argument, as well as make use of the same notation. 

Theorem 2.1 Assume Assumption 2.1. Also assume TblTn -t 0, b -t 00, and bin -t 0 as 
n -t 00. 

(i) If x is a continuity point of J(., P), then Ln,b(X) -+ J(x, P) in probability. 

(ii) If J(., P) is continuous, then 

sup ILn,b(X) - In(x, P)I -t 0 in probability. 
x 

(iii) Let 
en,b(l - a) = inf{x : Ln,b(X) ~ 1 - a}. 

Correspondingly, define 

c(l- a,P) = inf{x: J(x,P) ~ 1- a}. 

If J(., P) is continuous at c(l - a, P), then 

Probp{Tn[On - ()(P)] ~ Cn,b(l - an -t 1 - a as n -t 00. 

Therefore, the asymptotic coverage probability under P of the confidence interval 
11 = [On - T;len,b(l - a), (0) is the nominal level 1 - a. 
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(iv) Assume Tb(en - 8(P)) -7 ° almost surely and, for every d > 0, Ln exp{ -d(n/b)} < 00. 
Then, the convergences in (i) and (ii) hold with probability one. 

Proof. Let 
Nn 

Un{x) = Un,b{X,P) = N;;l L l{Tb[On,b,i - 8{P)] ~ x}. (4) 
i=l 

Note that the dependence of Un(x) on b and P will now be supressed for notational convenience. 
To prove (i), it suffices to show Un{x) converges in probability to J{x, P) for every continuity 
point x of J(x, P). To see why, 

Ln,b{X) = N;;l L l{Tb[On,b,i - 8{P)] + Tb[8{P) - On] ~ x}, 
i 

so that for every E > 0, 

Un{x - E)l{En) ~ Ln,b{x)l{En) ~ Un{x + E), 

where l{En) is the indicator of the event En == {TbI8{P) - enl ~ E}. But, the event En has 
probability tending to one. So, with probability tending to one, 

for any E > 0. Hence, if x + E and x - E are continuity points of J{., P), then Un{x ± E) -7 
J{x ± E, P) in probability implies 

J{X - E,P) - E ~ Ln,b{X) ~ J{x + E,P) + E 

with probability tending to one. Now, let E -7 0 so that x ± E are continuity points of J{., P). 
Therefore, it suffices to show Un{x) -7 J{x, P) in probability for all continuity points x of 
J{., P). But, Un{x) is a U-statistic of degree b. Also, ° ~ Un{x) ~ 1 and E[Un(x)] = Jb{X, P). 
By an inequality of Hoeffding (1963) (see Serfling (1980), Theorem A, p.201): for any t > 0, 

(5) 

One can obtain a similar inequality for t < 0 by considering the U-statistic -Un (x). Hence, 
Un{x) - Jb{X,P) -70 in probability. The result (i) follows since Jb{X,P) -7 J{x,P). 

To prove (ii), given any subsequence {nk}, one can extract a further subsequence {nkj} 
so that Lnk.{x) -7 J{x,P) almost surely. Therefore, Lnk.{x) -7 J{x,P) almost surely for all 

] ] 

x in some countable dense set of the real line. So, Lnk . tends weakly to J{x, P) and this 
J 

convergence is uniform by Polya's theorem. Hence, the result (ii) holds. 

The proof of (iii) is very similar to the proof of Theorem 1 of Beran (1984) given our 
result (i). 

To prove (iv), follow the same argument, using the added assumptions and the Borel­
Cantelli Lemma on the inequality equation (5) .• 

Remark 2.1 The assumptions bjn -7 ° and b -700 need not imply TbjTn -70. For example, 
in the unusual case Tn = log(n), if b = n'Y and'Y > 0, the assumption TbjTn -70 is not satisfied. 
In regular cases, Tn = n 1/ 2 , and the assumptions on b simplify to bjn -7 0 and b -7 00. The 
further assumption on b in part (iv) of the Theorem will then hold, for example, if b = n'Y for 
any 'Y E (0,1). In fact, it is easy to see that it holds if blog(n)jn -7 0. 
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Remark 2.2 The assumptions on b are as weak as possible under the weak assumptions of the 
theorem. However, in some cases, the choice b = O(n) yields similar results; this occurs in Wu 
(1990), where the statistic is approximately linear with an asymptotic Gaussian distribution 
and Tn = n 1/ 2• This choice will not work in general. 

Remark 2.3 The proof of consistency of the subsampling distribution Ln,b(X) boils down to 
proving consistency of the related U-statistic Un(x). Rather than using Hoeffding's exponential 
inequality as done in the proof, it may be instructive to show the variance of Un(x) tends to zero 
as follows. Suppose k is the greatest integer less than or equal to nib. For j = 1, ... ,k, let Rn,b,j 
be equal to the statistic rh evaluated at the data set Bb (Xb(j-l)+1 , X b(j-l)+2,"" Xb(j-l)+b) and 
set 

k 

Un(x) = k-1 L l{Tb[Rn,b,j - O(P)] ~ x}. 
j=l 

Clearly, Un{x) and Un(x) have the same expectation. But, since Un(x) is the average of k 
i.i.d. variables (each of which is bounded between 0 and 1), it follows that 

- 1 
Var[Un(x)] ~ 4k -+ 0 

as n -+ 00. Intuitively, Un(x) should have a smaller variance than Un(x), because Un(x) uses 
in the ordering in the sample in an arbitrary way. Indeed, the fact that Un(x) has a smaller 
variance than Un(x) can be argued by a sufficiency argument using the Rao-Blackwell theorem. 
Simply note that we can write 

Un(X) = E[Un{x)IXn], 

where Xn is the collection of the order statistics {X(l),"" X(n)}' 

Remark 2.4 In fact, one can remove the assumption that Tb/Tn -+ 0 if the goal is to construct 
an asymptotically valid confidence interval for ()(P), but at the small expense of bypassing 
consistent estimation of I n (-, P). To see how, let 

un,b(l- a,P) = inf{x: Un,b(X,P) ~ 1- a}, 

where Un,b(', P) is defined in (4). Under continuity assumptions on J(., P), the proof of 
Theorem 2.1 shows Un,b(X, P) converges in probability to J(x, P); it follows that un,b(l- a, P) 
converges in probability (under P) to c{l - a, P). Moreover, the assumption Tb/Tn -+ 0 is not 
used. Note, however, that u n,b(l-a, P) is not an estimator since it depends on P. Nevertheless, 
with P fixed, the event 

(6) 

has an asymptotic probability of 1-a under P (assuming J(., P) is continuous at c(l- a, P)). 
But, 

un,b(l - a, P) = Cn,b(l - a) + Tb(On - ()(P)). (7) 

Hence, the event (6) is exactly the same as the event 

(8) 

or equivalently, 
{(Tn - Tb)(Bn - ()(P) ~ Cn,b(l - a)} (9) 

By solving for O{P), the following nominal level 1 - a confidence interval is obtained: 

~ 1 
[()n - (Tn - Tb)- Cn,b(l - a), 00). (10) 
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This interval (10) can be computed without knowledge of P, it has asymptotic coverage 
probability under P of 1- a, and the assumption rb/rn -t 0 was not needed. Clearly, the only 
difference between this interval (10) and the interval presented in Theorem 2.1 is the factor 
(rn - rb)-l here replaces the factor r;l there. This discussion leads to the following corollary. 

Corollary 2.1 Assume Assumption 2.1. Also, assume b -t 00 and bin -t 0 as n -t 00. 

If J(., P) is continuous at c(l - a, P), then the interval (10) contains O(P) with asymptotic 
probability 1 - a under P. 

In fact, the interval (10) can be viewed in the following way. Rather than approximate In(x, P) 
by Ln,b(X, P), consider the distribution 

(11) 

so that the correction factor (rn - rb)/rn is employed. Then, the 1 - a quantile of Ln,bO is 
just rn . Cn,b(l - a)/(rn - rb). Hence, solving for O(P) in the inequality 

{rn(l~n - O(P)) ~ L~~(1- a)} , 

leads to the interval (10). 

Remark 2.5 The interval It defined in (iii) of Theorem 2.1 corresponds to a one-sided hy­
brid percentile interval in the bootstrap literature (e.g., Hall, 1992). A two-sided equal-tailed 
confidence interval can be obtained by forming the intersection of two one-sided intervals. The 
two-sided analogue of It is 

~ -1 ~-1 
I2 = [On - rn Cn,b(l - a/2), On - rn Cn,b(a/2)]. 

h is called equal-tailed because it has approximately equal probability in each tail: 

Probp{O(P) < en - r;lcn,b(l - a/2)} ~ a/2 

and 
~ . 1 

Probp{O(P) > On - r; cn,b(a/2)} ~ a/2. 

As an alternative approach, two-sided symmetric confidence intervals can be constructed. 
A two-sided symmetric confidence interval is given by [en - e, en + cl, where e is chosen so 
that Probp{IOn - O(P)I > e} ~ a. Hall (1988) showed that symmetric bootstrap confidence 
intervals may enjoy enhanced coverage and, even in asymmetric circumstances, can be shorter 
than equal-tailed confidence intervals. To construct two-sided symmetric subsampling intervals 
in practice, we follow the traditional approach and estimate the two-sided distribution function 

In,I'I(x, P) = Probp{ rn/en - O(P)/ ~ x}. 

The subsampling approximation to In,I'I(x, P) is defined by 

Nn 

Ln,b,I'I(x) = N;l L l{rb IOn,b,i - enl} ~ x}. 
i=l 

An approximate 1 - a symmetric confidence interval is then given by 
~ -1 ~-1 

ISYM = [On - rn Cn,b,I'I(l - a), On + rn Cn,b,I'I(l - a)], 

where cn,b,l-l(l - a) is a 1- a quantile of Ln,b,I'I(·). 

By Theorem 2.1 and the continuous mapping theorem, the asymptotic validity of two-sided 
symmetric subsampling intervals easily follows. 
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3 Hypothesis Testing in the i.i.d. Case 

In this section, we consider the use of subsampling for the construction of hypothesis tests. 
As before, Xl' ... ' Xn is a sample of n independent and identically distributed observations 
taking values in a sample space S. The common unknown distribution generating the data is 
denoted by P. This unknown law P is assumed to belong to a certain class of laws P. The null 
hypothesis Ho asserts P E Po, and the alternative hypothesis HI is PEP!, where Pi C P 
and poUP! = P. 

There are several general approaches one can take for the construction of asymptotically 
valid tests, depending on the nature of the problem. In the special (but usual) case where the 
null hypothesis translates into a null hypothesis about a real- or vector-valued parameter 8(P), 
one can construct a confidence region for 8(P)-by subsampling, bootstrapping, asymptotic 
approximations, or other methods-and then exploit the usual duality between the construction 
of confidence regions for parameters and the construction of hypothesis tests about those 
parameters. This is the approach taken in Politis and Romano (1996), and the details are left 
to the reader. 

Of course, not all hypothesis testing problems fit nicely into the aforementioned framework. 
An alternative bootstrap approach can be based on bootstrapping from a distribution obeying 
the constraints of the null hypothesis; see Beran (1986) and Romano (1988, 1989). None of 
the above approaches easily handles the following example, taken from Bickel and Ren (1997), 
but we will see that an appropriate simple subsampling scheme applies here as well. Bickel 
and Ren (1997) consider the related bootstrap with smaller res ample size. 

Example 3.1 (Goodness of Fit for Censored Data) Suppose that Ul, ... , Un are i.i.d. 
random variables with cumulative distribution function F. The null hypothesis Ho asserts 
F = Fo, where Fo is some specified distribution. In this problem, however, we do not neces­
sarily observe the full data Ul, ... ,Un because the observations Ui are left and right censored. 
Specifically, assume (Yi, Zi) are independent and identically distribution pairs with Zi < Yi 
(with probability one), and the (Yi, Zi) pairs are independent of Ul , ... Un. Define 

and 

if Zi < Ui ~ Yi; 
if Ui > Yi; 
if X' < z· ~ - ~ 

The actual observations available are Xi = (Vi,8i). Let Fn be the nonparametric maxi­
mum likelihood estimator of F based on Xl, ... Xn; this can be computed numerically by the 
algorithms described in Mykland and Ren (1996). Now, consider the Cramer-von Mises test 
statistic given by 

100 ~ 2 
Tn = n -00 [Fn{X) - Fo{x)] dFo{x). 

Under suitable conditions and when F is the true distribution for Ui, n l
/

2 [FnO - F(.)], 
viewed as a process on D[-oo,oo], converges weakly to a mean zero Gaussian process with 
covariance depending on the joint distribution of (Zi' Yi); see Gine and Zinn (1990) and Bickel 
and Ren (1996). Hence, Tn possesses a limiting distribution as well, both under the null hy­
pothesis and against a sequence of contiguous alternatives; the notion of contiguity is presented 
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in Bickel, et al. (1993, Section A.9). The difficulty that the bootstrap has in trying to approx­
imate this limiting distribution is that Yi and Zi are never observed together for any i, so that 
any information on the joint distribution is not available. Note, however, in the right censoring 
case (with Zi = -(0), Fn is the Kaplan-Meier estimator, and the distribution of the censoring 
variables can be estimated and the bootstrap offers a viable approach. 

We now return to the general setup of testing the null hypothesis Ho that P E Po versus the 
alternative hypothesis HI that PE PI. The goal is to construct an asymptotically valid test 
based on a given test statistic, 

Tn = Tntn(X1, ••• , X n), 

where, as before, Tn is a fixed nonrandom normalizing sequence (though even this assumption 
can be weakened; see Bertail, Politis and Romano (1999)). Let 

Gn(x, P) = Probp{Tntn(X1, ••• , Xn) ~ x}. 

At this point, not too much is assumed about Tn , though it is certainly natural in the 
i.i.d. case presented here that tn(X1 , ... , Xn) is symmetric in its arguments. As before, we 
will be assuming that Gn {-, P) converges in distribution, at least for P E Po. Of course, 
this would imply (as long as Tn -+ (0) that tn(X1, ••• , Xn) -+ 0 in probability for P E Po· 
Naturally, tn should somehow be designed to distinguish between the competing hypotheses. 
Our next theorem will assume tn is constructed to satisfy the following: tn(X 1,··., Xn) -+ t(P) 
in probability, where t{F) is a constant which satisfies t{F) = 0 if P E Po and t(P) > 0 if 
PE PI. This assumption can be made to hold in every conceivable example. 

To describe the test construction, let Y1 , .•• , YNn be equal to the N n = (~) subsets of 
{X 1, ... , Xn}, ordered in any fashion. Let tn,b,i be equal to the statistic tb evaluated at the 
data set Yi. The sampling distribution of Tn is then approximated by 

Nn 

Gn,b(X) = N;;l L 1 {Tbtn,b,i ~ x}. (12) 
i=l 

Using this estimated sampling distribution, the critical value for the test is obtained as the 
1 - a quantile of Gn,b (.); specifically, define 

9n,b(1 - a) = inf{x : Gn,b{X) ~ 1 - a}. (13) 

Finally, the nominal level a test rejects Ho if and only if Tn > 9n,b(1 - a). 

The following theorem gives the consistency of this procedure, under the null hypothesis, 
the alternative hypothesis, and a sequence of contiguous alternatives. 

Theorem 3.1 

(i) Assume, for P E Po, Gn(P) converges weakly to a continuous limit law G(P), whose 
corresponding cumulative distribution function is G(·, P) and whose 1 - a quantile is 
9(1 - a, P). Assume bin -+ 0 and b -+ 00 as n -+ 00. If G(·, P) is continuous at 
9(1 - a, P) and P E Po, then 

9n,b(1 - a) -+ 9(1 - a, P) in probability 

and 
Probp{Tn > 9n,b{1 - an -+ a as n -+ 00. 
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(ii) Assume the test statistic is constructed so that tn(X1 , ••. ,Xn) -+ t(P) in probability, 
where t(P) is a constant which satisfies t(P) = 0 if P E Po and t(P) > 0 if P E PI. 
Assume bin -+ 0, b -+ 00, and liminfn(TnITb) > 1. Then, if P E PI, the rejection 
probability satisfies 

Probp{Tn > gn,b(l - o:)} -+ 1 as n -+ 00. 

(iii) Suppose Pn is a sequence of alternatives such that, for some Po E Po, {P;:} is contiguous 
to {Pan}. Assume bin -+ 0 and b -+ 00 as n -+ 00. Then, 

gn,b(l - 0:) -+ g(l - 0:, Po) in P;:-probability. 

Hence, if Tn converges in distribution to T under Pn and G(·, Po) is continuous at 
g(l - 0:, Po), then 

P::{Tn > gn,b{l - o:)} -t Prob{T > g{l - 0:, Po)}. 

Proof. To prove (i), note again that Gn,b(X) is a U-statistic of degree b, with expectation under 
P equal to Gb(X, P). An argument analogous to the one used in the proof of Theorem 2.1 (but 
easier because there is no centering) shows that Gn,b(X) -+ G(x, P) in probability. Indeed, the 
variance of the U-statistic tends to zero by the same exponential inequality. It follows that 
gn,b(l- 0:) -+ g(l - 0:, P) in probability. Thus, by Slutsky's theorem, the asymptotic rejection 
probability of the event Tn > gn,b(l - 0:) is exactly 0:. 

To prove (ii), rather than considering Gn,b(X), just look at the empirical distribution of the 
values of tn,b,i (not scaled by Tb); so define 

Nn 

G~,b(X) = N;;l 2:= l{tn,b,i ~ x} = Gn,b(TbX). 
i=l 

But, by a now familiar argument, G~,b is a U-statistic with expectation 

and so G~,bO converges in distribution to a point mass at t(P). It also follows that a 1 - 0: 
quantile, say g~ b(l- 0:), of G~ b(·) converges in probability to t(P). But, our test rejects when 
(TnITb) . tn(X1 , ~ .• , Xn) exceeds g~,b(l - 0:). Since liminfn{TnITb) > 1 and tn(X1 , ••• , Xn) -+ 
t(P) in probability (with t(P) > 0), it follows by Slutsky's theorem that the asymptotic 
rejection probability is one. 

Finally, to prove (iii) , we know that gn,b(l - 0:) -t g(l - 0:, Po) in probability under Po; 
contiguity forces gn,b(l - 0:) -+ g(l - 0:, Po) in probability under Pn .• 

Remark 3.1 Consider the special case of testing a real-valued parameter. Specifically, sup­
pose 0(·) is a real-valued function from P to the real line. The null hypothesis is specified 
by Po = {P: O(P) = Oo}. Assume the alternative hypothesis is one-sided and specified by 
{P: O(P) > Oo}. Suppose we simply take 

tn(X1 , ••• , Xn) = On(X1 , ••• , Xn) - 00 . 

Then, it can be checked that the test construction accepts the null hypothesis if and only if the 
confidence interval (10) contains the value 00. Thus, in this special case, the test construction 
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presented in this section has an exact duality with the interval presented in (10). This is not 
surprising, because the argument leading up to (10) was based on the relationship (7) and the 
asymptotic coverage probability of the event (6). Moreover, in the testing context, {}(P) = (}o 

is fixed and known under the null hypothesis, in which case un,b(a, P) in (7) can be computed, 
at least under the null hypothesis. 

In addition, if en is a consistent estimator of {}(P), then the hypothesis on tn in part (ii) of 
the theorem is satisfied (just take the absolute value of tn for a two-sided alternative). Thus, 
the hypothesis on tn in part (ii) of the theorem boils down to verifying a consistency property 
and is rather weak, though this assumption can in fact be weakened further. The convergence 
hypothesis of part (i) is satisfied by typical test statistics; in regular situations, Tn = n 1/ 2 • 

Remark 3.2 In Example 3.1, simply take 

Then, tn (under reasonable conditions) will converge to 

t(F) = i: [F(x) - Fo(x)]2dFo(x), 

if F is the distribution of Uj. Clearly, t(F) = 0 if and only if the null hypothesis is true. 

Remark 3.3 The interpretation of part (iii) of the theorem is the following. Suppose, instead 
of using the subsampling construction, one could use the test that rejects when Tn > gn (1 -
a, P), where gn(l- a, P) is the exact 1-a quantile of the true sampling distribution Gn(·, P). 
Of course, this test is not available in general because P is unknown and so is gn (I-a, P). Then, 
the asymptotic power of the subsampling test against a sequence of contiguous alternatives 
{Pn} to P with P in Po is the same as the asymptotic power of this fictitious test against the 
same sequence of alternatives. Hence, to the order considered, there is no loss in efficiency in 
terms of power. 

4 Data-dependent Block Size in the i.i.d. Case 

The basic theorems we have presented so far prove that subs amp ling works under weak con­
ditions. In particular, the conditions on the choice of block size b are quite weak. Inevitably, 
the choice of block size will be data-driven and higher order asymptotic considerations will 
come into play. At this point, we are not concerned with an optimality result (and it seems 
doubtful there will ever exist a universal prescription for choice of block size anyway). Rather, 
we present a result which shows subsampling works quite generally even with a data-driven 
choice of block size. 

Theorem 4.1 Assume Assumption 2.1. Let 1 ~ jn ~ kn ~ n be integers satisfying jn -700, 

kn/n -7 0, Tkn/Tn -7 0, and, for every d > 0, kn exp( -dlk: J) -7 ° as n -7 00. Also, assume 
{Tn} is non decreasing in n. 

(i) If x is a continuity point of J(., P), then 

sup ILn,b(X) - J(x,P)I-7 ° in probability. 
jn<b<kn 
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(ii) Hence, if {bn} is a data-dependent sequence (that is, a measurable function of Xl, ... , Xn), 
and 

then 
Ln,b

n 
(x) -+ J(x, P) in probability. 

(iii) If J(., P) is continuous, then 

In fact, 

(iv) Let 

sup IL b" (x) - J(x, P)I -+ 0 in probability. 
x n,n 

sup sup ILn,b(X) - J(x, P)I -+ 0 in probability. 
jn~b~kn x 

c " (1 - a) = inf {x : L " (x) ~ 1 - a}. n,bn n,bn 

Then, if J(., P) is continuous, 

as n -+ 00. Therefore, the asymptotic coverage probability under P of the confidence 
interval [en - T;lcn b (1- a), (0) is the nominal level 1 - a. 

,n 

Proof. Let en,b,i be equal to the statistic eb evaluated at the i-th of the G) data sets of size 
b; any ordering of these G) values will do. As in the proof of Theorem 2.1, define 

Here, the notation Un,b(X) clearly includes the dependence on b since, unlike Theorem 2.1, we 
are considering simultaneously a range of b values. First, we claim that, for each continuity 
point x of J(., P), 

But, 

sup jUn,b(X) - J(x, P)I -+ 0 in probability. 
jn~b~kn 

sup IJb(X, P) - J(x, P)I -+ 0, 
jn<b<kn 

(14) 

because, if this convergence failed, there would exist {bn} with bn E [in, knJ such that Jbn (x, P) 
does not converge to J(x, P), which is a contradiction since bn ~ in -+ 00. So, to show the 
convergence (14), it suffices to show 

But, for any t > 0, 

sup jUn,b(X) - Jb(x, P)I-+ 0 in probability. 
jn9~kn 

k n 

~ l:= Probp{jUn,b(X) - Jb(X, P)I ~ t} 
b=jn 

~ kn sup Probp{IUn,b(X) - Jb(X, P)I ~ t} 
jn<b<kn 
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~ 2kn sup exp{-2L1Jt2}, 
in<b<kn 

making use of Hoeffding's inequality as in the inequality (5). But this last expression is 
bounded above by 2kn exp{-2lt Jt2

}, which tends to zero by assumption on {kn }. Thus, the 
convergence (15) holds, as does (14). Now, note that 

Fix any E > ° so that x ± E are continuity points of J(., P). Then, 

Un,b(X - E)I(En,b) ~ Ln,b1(En,b) ~ Un,b(X + E), (17) 

where l(En,b) is the indicator of the event En,b == {TbIB(P) - Onl ~ E}. By the monotonicity of 
{Tn}, 

I(En,kn) ~ I(En,b) ~ I(En,jn) 

and Tkn/Tn -+ ° implies Probp(En,kn) -+ 1. So, 

Ln,b(x)l(En,kn) ~ Un,b(X + E). 

Thus, on the set En,kn' 

sup Ln,b(X) - J(x, P) ~ sup Un,b(X + E) - J(x, P) 
in'Sb'Skn in'Sb'Skn 

~ sup IUn,b(X + E) - J(x + E, P)I + J(x + E, P) - J(x, P). 
in <b<kn 

But, by (14), it follows that, for every 8> 0, 

sup Ln,b(X) - J(x, P) ~ 8 + J(x + E, P) - J(x, P) 
in9'Skn 

with probability tending to one. Similarly, replacing x + E by x - E and using the first inequality 
in (17), we get, for every TJ > 0, 

sup ILn,b(X) - J(x,P)1 ~ TJ 
in<b<kn 

with probability tending to one, which is equivalent to statement (i) of the theorem. Part (ii) 
is obvious. The rest of the theorem is proved as in the proof of Theorem 2.1. • 

Remark 4.1 In some cases, one finds that an optimal choice of b = bn should satisfy 

bn/nP -+ ~(P), 

for some p E (0,1), where e(p) is a constant typically depending on the unknown probability 
mechanism P. In an ad hoc way, one can sometimes estimate e(p) consistently by en (say by 
a plug-in approach), which leads to the choice of block size 

bn = l~nnPJ. 

Such a construction for bn will easily satisfy the conditions of the theorem. Simply take 
jn = lmPJ and kn = lnP/EJ for small enough E. Moreover, the condition Tkn/Tn -+ ° will 
be satisfied in the typical case Tn is proportional to nf3 for some f3 E (0,1). In practice, the 
parameter e(p) may be difficult to estimate, and even if consistent estimation is possible, 
the resulting estimator may have poor finite-sample performance. The point of this section 
is to show subsampling has some asymptotic validity across a broad range of choices for the 
subsample size. 
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Remark 4.2 The monotonicity assumption on {Tn} can be replaced by the condition 

as the proof essentially shows. Actually, the assumption can be removed altogether by the 
modification leading to Corollary 2.1. 

Remark 4.3 The convergence in probability statements in the theorem can be strengthened 
to be almost sure convergences, provided Tkn [en - 8(P)] -t 0 almost surely, and for every d > 0, 

00 n I: kn exp( -dLk J) < 00. 
n=l n 

The last condition holds whenever kn can be taken to be O(nP) with p < 1. 

5 The Time Series Case 

Suppose { ... ,X- l , X o, Xl,"'} is a sequence of random variables taking values in an arbitrary 
sample space S, and defined on a common probability space. Denote the joint probability 
law governing the infinite sequence by P, which we assume to be stationary. By stationarity, 
all finite-dimensional marginal distributions are shift-invariant; that is, for any integer m the 
joint distribution of Xb X k+1,"" X k+m does not depend on k. The goal is to construct a 
confidence interval for some real-valued parameter 8(P), on the basis of observing Xl, .. ' ,Xn . 

The sequence {Xt } will be assumed to satisfy a certain weak dependence condition. To make 
this condition precise, we introduce the concept of strong mixing coefficients. The original 
definition, due to Rosenblatt (1956), applies to stationary sequences. 

Definition 5.1 Given a random sequence {Xt }, let F;:" be the (j-algebra generated by {Xt, n S; 

t S; m}, and define the corresponding a-mixing sequence by 

ax(k) = sup sup IP(A n B) - P(A)P(B)I, (18) 
n A,B 

where A and B vary over the (j-fields F::.oo and F~k' respectively. (Note that in case the se­
quence {Xd is strictly stationary, the sUPn in this definition becomes redundant.) The sequence 
{Xt} is called a-mixing or strong mixing ifax(k) -t 0 as k -t 00. 

Throughout this section, we will assume the sequence is strictly stationary, but this condition 
can be relaxed somewhat, as in Politis, Romano, and Wolf (1997). 

Let en = en(Xl , ... ,Xn) be an estimator of 8(P) E JR, the parameter of interest. 

The crux of the subsampling method is to approximate the sampling distribution of a 
statistic by recomputing it on subsamples of smaller size of the observed data. In the context 
of independent data, subsamples of size b < n are generated by sampling b observations without 
replacement from the original data sequence of size n. Since this approach does not take the 
order of the original sequence into account, it generally fails for time series data. The key, 
therefore, is to only use blocks of size b of consecutive observations as legitimate subsamples, 
the first one being {Xl, X2, ... , X b}, and the last one being {Xn-b+l, X n-b+2, ... , X n }. Note 
that there are q = n - b + 1 such blocks. Obviously, n - b + 1 < < (~), the number of available 
subsamples in the independent case. 
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Define On,b,t = Ob{Xt , ... ,XtH-d, the estimator of 8{P) based on the subsample {Xt, ... ,Xt+b-t}. 
Let Jb{P) be the sampling distribution of 

Tb(On,b,l - 8(P)), 

where Tb is an appropriate normalizing constant. Also define the corresponding cumulative 
distribution function: 

Jb{X,P) = Probp{Tb{On,b,l - 8{P)) ::s; x}. (19) 

For convenience, denote In(P) = In,l{P), the sampling distribution of Tn(On - 8(P)). 

Essentially, the only assumption that will be needed to consistently estimate In{P) is the 
following. 

Assumption 5.1 There exists a limiting law J(P) such that In{P) converges weakly to J{P) 
as n --+ 00. 

This means that the estimator, properly centered and normalized, has a limiting distribution. 
It is hard to conceive of any asymptotic theory free of such a requirement. 

In order to describe our method, let Yt be the block of size b of the consecutive data 
{Xt, ... , Xt+b-d. Only a very weak assumption on b will be required. Typically, bin --+ ° and 
b --+ 00 as n --+ 00. The approximation to I n (x, P) we study is the analogue of (1) for the i.i.d. 
case and defined by 

(20) 

The motivation behind the method is the following. For any t, yt is a true subsample of 
size b from the true model P. Hence, the exact distribution of Tb{On,b,t - 8{P)) is Jb{P). By 

stationarity, the empirical distribution of the n - b + 1 values of Tb {On,b,t - 8{P)) should serve 
as good approximation to In(P), at least for large n. Replacing 8(P) by On is permissible 
because Tb(8n - 8(P)) is of order Tb/Tn in probability and we will assume that Tb/Tn --+ 0. 

The following theorem could be coined "a general asymptotic validity result under minimal 
conditions". It states sufficient conditions under which the subsampling method will yield 
asymptotically valid results for very general statistics. No equivalent theorem is available for 
resampling methods, such the moving blocks bootstrap or the stationary bootstrap. Instead, 
such methods require a much more difficult case by case analysis. 

Theorem 5.1 Assume Assumption 5.1 and that Tb/Tn --+ 0, bin --+ 0, and b --+ 00 as n --+ 00. 

Also, assume that ax(m) -+ ° as m --+ 00. 

(i) If x is a continuity point of J(., P), then Ln,b(X) --+ J(x, P) in probability. 

(ii) If J(., P) is continuous, then sUPx ILn,b(X) - J(x, P)I --+ ° in probability. 

(iii) For a E (0,1), let 

. cn,b,{1- a) = inf{x : Ln,b{X) ~ 1 - a}. 

Correspondingly, define 

c(l- a,P) = inf{x: J(x,P) ~ 1- a}. 
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If J(., P) is continuous at c(l - a, P), then 

Probp{Tn[On - O(P)] ::; Cn,b(l- an -+ 1 - a as n -+ 00. 

Thus, the asymptotic coverage probability under P of the interval 
It = [On - T;len,b(l - a), (0) is the nominal level 1 - a. 

Remark 5.1 In most examples, the rate of convergence satisfies Tn = s(n)n'Y, for some 'Y > 0, 
and the assumptions on b simplify to bin -+ ° and b -+ 00. 

Remark 5.2 For reasons analogous to those stated in Section 2, the conditions on the block 
size b are in general not only sufficient, but also necessary. For the scenario of dependent 
observations, it is even more clear that keeping the block size fixed will result in failure of the 
method. On the other hand, for the case of the sample mean, Lahiri (1998) showed explicitly 
how subsampling (and block bootstrap methods) fail when the block size grows at the same 
rate as the sample size. In the case bin -+ A E (0,1), the subsampling approximation has a 
random limit on the space of all probability measures on the real line. In the case bin -+ 1, 
the approximation collapses to a point mass at zero. By linearization, his results carry over to 
statistics that can be approximated by smooth functions of means. 

Remark 5.3 Note that, besides the mixing condition, the main difficulty in applying the 
theorem lies in checking whether the properly standardized estimator has a nondegenerate 
limiting distribution, whose shape, however, does not have to be known. Much more work is 
typically necessary to demonstrate the validity of bootstrap methods. 

Remark 5.4 When two-sided confidence intervals are desired, both equal-tailed and symmet­
ric intervals are available. The ideas are analogous to the i.i.d. case; see Remark 2.5. 

Proof of Theorem 5.1. Without loss of generality, we may think of b as a function of n. 
Therefore, the notational burden can be reduced by omitting the b-subscripts. For example, 
LnO == Ln,b(·), cn(a) == cn,b(a), etc .. To simplify the notation further, introduce q == qn == 
n - b + 1. Let 

It suffices to show that Un(x) converges in probability to J(x, P) for every continuity point 
x of J(., P), because the rest of the argument is then identical to the proof of Theorem 2.l. 
Since E(Un(x» = Jb(X, P), the pro reduces by Assumption 5.1 to showing that Var(Un(x» 
tends to zero (as n tends to infinity). Define 

Then, 

Ib,t = 1{ Tb[On,b,t - O(P)] :::; x}, t = 1, .. , q, 

1 q-h 
Sq,h = -q L COV(Ib,t, Ib,Hh). 

t=l 

1 q-l 

- -(Sq,O + 2 L Sq,h) 
q h=l 

1 b-l q-l 

- -(Sq,O + 2 L Sq,h + 2 L Sq,h) 
q h=l h=b 

_ A* +A, 
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where A* = ~(Sq,O + 2 I:~:i Sq,h) and A = ~ I:h==~ Sq,h' 

It is readily seen that IA*I = O(bjq). To handle A, we apply the well-known mixing 
inequality of Davydov (1970) (which states that the covariance between two variables bounded 
in absolute value by one and separated in time by at least k units is bounded above by 4 times 
the kth mixing coefficient of the sequence). Thus, for h ~ b 

and therefore, 
8 q-b 

IAI ~ - L ax(h). 
q h=I 

By the mono tonicity of mixing coefficients, ax(m) -t 0 (as m -t 00) and therefore M-I ~~=l ax(m) -t 
o (as M -t 00), which implies that A converges to zero. Thus, both A and A* converge to 
zero, which completes the proof. _ 

Just as in the i.i.d. case, the assumption that Tb/Tn can be removed if the interval is 
modified appropriately. The argument is the same, except that Un is analyzed as in the proof 
of Theorem 5.1, rather than Theorem 2.1. Hence, the following is true. 

Corollary 5.1 Assume Assumption 5.1. Also, assume b -t 00 and bin -t 0 as n -t 00. If 
J(., P) is continuous at c(l - a, P), then the interval [en - (Tn - Tb)-ICn,b(l - a), 00) contains 
O(P) with asymptotic probability 1 - a under P. 

6 Hypothesis Testing in the Stationary Case 

In Section 3, it was discussed how to use subsampling for hypothesis testing when the null 
hypothesis does not translate into a null hypothesis on a parameter and thus the duality 
between hypothesis tests and confidence regions cannot be exploited. The discussion was 
limited to i.i.d. observations but the problem, of course, also exists for dependent observations. 
Goodness of fit tests are one of many examples. The approach presented here will be analogous 
to the one of Section 3. To provide a general framework, assume that Xl"'" Xn is a sample 
of stationary observations taking values in a sample space S. Denote the probability law 
governing the infinite, stationary sequence ... ,X-I, X o, Xl, ... by P. This unknown law P is 
assumed to belong to a certain class of laws P. The null hypothesis Ho asserts P E Po, and 
the alternative hypothesis HI is PEP!, where Pi C P and Po Up! = P. The goal is to 
construct an asymptotically valid test based on a given test statistic, 

where, as usual, Tn is a fixed nonrandom normalizing sequence (but this assumption could be 
relaxed). 

Let 
Gn(x,P) = ProbP{Tntn(XI"" ,Xn) ~ x}. 

As before, we will be assuming that Gn(·,P) converges in distribution, at least for PE Po. The 
theorem we will present will assume tn is constructed to satisfy the following: tn(XI,'" ,Xn) -t 
t(P) in probability, where t(P) is a constant which satisfies t(P) = 0 if P E Po and t(P) > 0 
if PE PI. 
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To describe the test construction, let tn,b,j be equal to the statistic tb evaluated at the block 
of data {Xj, ... , Xj+b-d. The sampling distribution of Tn is then approximated by 

~ 1 n-b+1 
Gn,b(X)=n_b+l ;:: l{Tbtn,b,j~X}. 

)=1 

(21) 

Given the estimated sampling distribution, the critical value for the test is obtained as the 
1 - a quantile of Gn,b(·); specifically, define 

gn,b(l- a) = inf{x : Gn,b(X) 2:: 1- a}. (22) 

Finally, the nominal level a test rejects Ho if and only if Tn > gn,b(l - a). 

The following theorem gives results analogous to the ones of Theorem 3.1. 

Theorem 6.1 

(i) Assume, for P E Po, Gn(P) converges weakly to a continuous limit law G{P), whose 
corresponding cumulative distribution function is G(·, P) and whose 1 - a quantile is 
g{l - a, P). Assume bin --7 0 and b --7 00 as n --7 00. Also, assume that ax{m) --7 0 

as m --7 00, where ax{-) is the mixing sequence corresponding to {Xt }. If G(·,P) is 
continuous at g(l - a, P) and P E Po, then 

gn,b{l - a) --7 g{l - a, P) in probability 

and 
Probp{Tn > gn,b(l - an --7 a as n --7 00. 

(ii) Assume the test statistic is constructed so that tn(X1, ... , Xn) --7 t{P) in probability, 
where t{P) is a constant which satisfies t{P) = 0 if P E Po and t{P) > 0 if P E PI. 

Assume bin --7 0, b --700, and TblTn --7 0 as n --7 00. Also, assume that ax(m) --70 as 
m --7 00, where ax(-) is the mixing sequence corresponding to {Xt }. Then, if P E PI, 

the rejection probability satisfies 

Probp{Tn > gn,b(l - an --7 1 as n --7 00. 

(iii) Suppose Pn is a sequence of alternatives such that, for some Po E Po, {pAn1} is contiguous 

to {pJn1}. In this notation, pAn1 denotes the law of the finite segment Xl,.·. ,Xn when 
the law of the infinite sequence ... , X-1, X o, Xl, ... is given by Pn. The meaning of 

{pJnl} is analogous. Assume bin --7 0 and b --700 as n --7 00. Then, 

gn,b{l - a) --7 g(l - a, Po) in pAn1-probability. 

Hence, if Tn converges in distribution to T under Pn and G(·, Po) is continuous at 
g(l - a, Po), then 

PAnl{Tn > gn,b(l - a)} --7 Prob{T > g(l - a, Po}. 

Proof. The proof mimicks the proof of Theorem 3.1, with the differences being analogous to 
the differences of the proofs of Theorems 2.1 and 5.1. The details are left to the reader .• 

Remark 6.1 Remarks 3.1 and 3.3 also apply here. 
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7 Data-dependent Block Size in the Stationary Case 

Theorem 4.1 can be generalized to the stationary time series case as well. Indeed, one can 
show that subsampling with a general data-driven choice of block size is consistent. In order 
to support this claim, one must show the convergence of Ln,b(·) to J(., P) is uniform in a 
broad range of b values, say in ::; b ::; kn (as expressed in Theorem 4.1). As in the proof of 
Theorem 4.1, let Un,b(X) be the Un(x) considered in the proof of Theorem 5.1, but now the 
dependence on b is made clear. So, 

where qn,b = n - b+ 1. Then, the proof in the i.i.d. case goes through as long as we can bound 

(23) 

by something tending to zero; see equation (16). The simplest strategy would be to apply 
Chebychev's inequality, which was used in the proof of Theorem 5.1 (but we did not have to 
worry about the kn or the sup in front). The resulting bound is of order 

Hence, if kn is assumed to satisfy kn = o(nl/2), the proof of Theorem 4.1 goes through. 
Unfortunately, this assumption on kn is much stronger than the one used in the LLd. case 
(where it was essentially assumed that kn = o(n)). Note, however, that the restriction to kn 
satisfying kn = o(n l / 2 ) means b cannot be too large, and this is substantiated by simulations 
and higher order considerations. On the other hand, one can essentially recover the LLd. result 
at the expense of a slightly stronger mixing condition. To do this, we appeal to an exponential 
type inequality for mixing sequences, as provided in Theorem 1.3 of Bosq (1996). Then, one 
can obtain uniform consistency over bin {b : jn ::; b::; kn} under the assumption kn = o(n) if 
one is willing to slightly strengthen the mixing assumption. The result is the following. 

Theorem 7.1 Let Xl, ... , Xn be observations from a stationary model with mixing coefficients 
ax(·). Assume Assumption 5.1. Let 1::; in::; kn ::; n be integers satisfying in --+ 00, kn/n --+ 0, 
and Tkn/Tn --+ 0, as n --+ 00. Assume, for some f3 > 1, 

Also, assume {Tn} is nondecreasing in n. 

(i) If x is a continuity point of J(·,P), then 

. sup ILn,b(X) - J(x,P)I--+ ° in probability. 
In <b<kn 

(ii) Hence, if {bn } is a data-dependent sequence (that is, a measurable function of Xl' ... ' X n ), 

and 

then 

Ln,bJX) --+ J(x,P) in probability. 
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(iii) If J(., P) is continuous, then 

In fact, 

sup IL b" (x) - J(x, P)I -+ 0 in probability. 
x n, n 

. sup sup ILn,b(X) - J(x, P)I -+ 0 in probability. 
In:;;b:;;kn x 

(iv) Let 
Cb" (l-a)=inf{x:L b" {x)~l-a}. n,n n,n 

Then, if J(., P) is continuous, 

Probp{ Tn[en - O(P)] ~ c b" (1 - a)} -+ 1 - a n, n 

as n -+ 00. Therefore, the asymptotic coverage probability under P of the confidence 
interval [en - T;l cn,bn (1 - a), (0) is the nominal level 1 - a. 

Proof. For the proof, we just need to bound (23) because the rest of the argument from 
Theorem 4.1 carries over. Note that Un,b(X) is an average of the variables l{Tb[en,b,t - O(P)]} 
as t ranges between 1 and n - b + 1. Moreover, as t varies between 1 and n - b + 1, these 
variables form a stationary sequence of random variables, each between ° and 1, and with 
mixing coefficients an,bO satisfying 

an,b(j) ~ ax[max(O,j - b + 1)]. 

Also, E[Un,b(X)] = Jb(X, P). Then, according to Bosq (1996), Theorem 1.3, for any q in [1, }] 
and any t> 0, the expression (23) is bounded above by 

kn 4exp( -t2q/8) + kn22(1 + ~) 1/2q ax([n - 2b + 1]). 
t q 

Let p = ({3 - 1)/({3 + 1) and choose q = n P• The first term in the last expression is bounded 
above by 4nexp(-t2nP/2) -+ O. Letting Ct = 22(1 + i)1/2, the second term is bounded above 
by 

C k nPa ([n - b + 1]) < C knnP+la ([n - kn + 1]) 
t n X 2nJ> - t n x 2nJ> ' 

which is bounded above by 

Ct knnP+lax([nl-P /4]) 
n 

as soon as kn/n ~ 1/2. Letting mn = n1- p and noting that {3 = (1 + p)/(l - p), this bound 
becomes 

k .liE k 
Ct~mA-P ax([mn/4]) = Ct~m~ax([mn/4]), 

n n 

which tends to zero by assumptions on the mixing coefficients and the fact that kn/n -+ 0. 

8 An Example 

The goal of this section is to illustrate the idea of data-dependent choice of block size by 
presenting a heuristic algorithm and a small simulation study. Our algorithm is based on 
the fact that for the subsampling method to be consistent, the block size b needs to tend 
to infinity with the sample size n but at a smaller rate, satisfying bin -+ O. Indeed, for b 
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too close to n all subsample statistics (en,b,i or en,b,t) will be almost equal to en, resulting in 
the subsampling distribution being too tight and in undercoverage of subsampling confidence 
intervals. Lahiri (1998) makes this intuition precise by proving, in the context of mean-like 
statistics, that for bin -+ 1, the subsampling approximation collapses to a point mass at zero. 
On the other hand, if b is too small, the intervals can undercover or overcover depending on 
the state of nature; e.g., see Table 1. This leaves a number of b values in the 'right range' 
where we would expect almost correct results, at least for large sample sizes. Hence, in this 
range, the confidence intervals should be 'stable' when considered as a function of the block 
size. This idea is exploited by computing subsampling intervals for a large number of block 
sizes b and then looking for a region where the intervals do not change very much. Within this 
region, an interval is then picked according to some reasonable criterion. 

While this method can be carried out by 'visual inspection', it is desirable to also have some 
automatic selection procedure, at the very least when simulation studies are to be carried out. 
The procedure we propose is based on minimizing a running standard deviation. Assume one 
computes subsampling intervals for block sizes b in the range of bsmall to bbig. The endpoints of 
the confidence intervals should change in a smooth fashion, as b changes. A running standard 
deviation applied to the endpoints determines the volatility around a specific b value, and the 
value of b associated with the smallest volatility is chosen. Here is a more formal description 
of the algorithm. 

Algorithm 8.1 (Minimizing confidence interval volatility) 

1. For b = bSmall to b = bbig compute a subsampling interval for 8(P) at the desired confi­
dence level, resulting in endpoints h,low and h,up. 

2. For each b, compute a volatility index V Ib as the standard deviation of the interval 
end points in a neighborhood of b. More specifically, for a small integer k, let V Ib be 
equal to the standard deviation of the endpoints {Ib-k,low, ... , Ib+k,low} plus the standard 
deviation of the endpoints {h-k,up, .. ·, h+k,up}. 

3. Pick the value b* corresponding to the smallest volatility index and report [Ib- ,low,!b- ,up] 
as the final confidence interval. 

Remark 8.1 The range of b values, determined by bsmall and bbig, which is included in the 
minimization algorithm is not very important, as long as it is not too narrow. In the ter­
minology of Sections 4 and 7, we can think of bsmall as corresponding to in and of bbig as 
corresponding to kn . Of course, the dependence on n has been suppressed in the notation 
here. 

Remark 8.2 The algorithm contains a model parameter k. Simulation studies have shown 
that the algorithm is not very sensitive to the choice of this parameter. We typically employ 
k = 2 or k = 3. 

Using a simulation study, we can compare the performance of this data-driven choice of block 
size with that of the best fixed block size, which in practice is unknown. Performance will be 
measured by empirical coverage probability of nominal 95% symmetric confidence interval for 
the univariate mean. As the data generating process, a simple AR(l) model is used given by 
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where the Et are i.i.d. standard normal or (centered) exponential with mean 1. The closer the 
AR(l) parameter p is to one in absolute value, the stronger is the dependence of the {Xt } 

sequence. The values of p included in the study are p = 0.2, 0.5, 0.8, 0.95, and -0.5 and the 
sample size considered is n = 250. We compare the fixed block sizes b = 4, 8, 16, and 32 with 
the above data-dependent choice of block size using bsmall = 4 and bbig = 40. The results are 
presented in Table l. 

One can see that the best fixed block size changes significantly with the AR(l) parameter p 

and the larger is p in absolute value, the larger is in general the optimal block size. This 
is not surprising, since bigger block sizes should be needed to capture stronger dependence 
structures. For positive p, the intervals tend to undercover and, again not surprising, the 
performance decreases for larger p. For the negative value p = -0.5, the intervals overcover 
for small block sizes, but undercover eventually (which is a consequence of the formerly stated 
theoretical results). The data-driven method of choosing the block size does about as well as 
the best fixed block size. This is encouraging, since the data-driven method is feasible while 
the optimal block size is unknown in practice. 

9 Conclusions 

In this paper, the basic notions of subsampling in the context of Li.d. and time series data were 
presented. Some general consistency theorems were stated and proved, validating our state­
ments that subsampling presents a viable approach to inference under very weak conditions. 
Indeed, subsampling works in a first order asymptotic sense under weaker conditions than the 
boots trap. First, we presented the basic theory of subsampling for i.i.d. data, and removed the 
condition Tb/Tn -+ 0 in Corollary 2.1. Next, we presented a general test construction based on 
subsampling which avoids having to relate the hypotheses to a parameter and merely requires 
recomputing a test statistic over subsamples. In Section 4, a general theorem asserts that 
subsampling is consistent, even accounting for a data-dependent choice of subsampling size. 
Sections 5, 6, and 7 extend these ideas to the time series case. The same ideas apply, and the 
proofs only highlight the differences from the LLd. case. An example, illustrating the idea of 
data-dependent choice of subsampling size was presented in Section 8. 
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10 Tables 

Table 1: Univariate mean, AR(l) model, n = 250. 
Estimated coverage probabilities of nominal 95% symmetric confidence intervals for the uni­
variate mean. The estimates are based on 1000 replications for each scenario. 

Gaussian innovations 

Parameter b=4 b=8 b = 16 b = 32 Data-driven 

p= 0.2 0.93 0.92 0.91 0.89 0.93 
p = 0.5 0.87 0.90 0.89 0.88 0.92 
p= 0.8 0.74 0.84 0.87 0.87 0.87 
p = 0.95 0.41 0.53 0.64 0.73 0.74 
p = -0.5 0.97 0.95 0.94 0.92 0.93 

Exponential innovations 

Parameter b=4 b=8 b = 16 b= 32 Data-driven 

p= 0.2 0.92 0.92 0.92 0.89 0.92 
p = 0.5 0.88 0.90 0.90 0.88 0.91 
p= 0.8 0.70 0.81 0.86 0.86 0.90 
p = 0.95 0.44 0.57 0.67 0.74 0.72 
p = -0.5 0.97 0.95 0.93 0.91 0.94 
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