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Abstract: We reviewed the canonical quantisation of the geometry of the spacetime in the cases of a
simply and a non-simply connected manifold. In the former, we analysed the information contained
in the solutions of the Wheeler–DeWitt equation and showed their interpretation in terms of the
customary boundary conditions that are typically imposed on the semiclassical wave functions. In
particular, we reviewed three different paradigms for the quantum creation of a homogeneous and
isotropic universe. For the quantisation of a non-simply connected manifold, the best framework is
the third quantisation formalism, in which the wave function of the universe is seen as a field that
propagates in the space of Riemannian 3-geometries, which turns out to be isomorphic to a (part of
a) 1 + 5 Minkowski spacetime. Thus, the quantisation of the wave function follows the customary
formalism of a quantum field theory. A general review of the formalism is given, and the creation
of the universes is analysed, including their initial expansion and the appearance of matter after
inflation. These features are presented in more detail in the case of a homogeneous and isotropic
universe. The main conclusion in both cases is that the most natural way in which the universes
should be created is in entangled universe–antiuniverse pairs.
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1. Introduction

Quantum cosmology is the application of the quantum theory to the universe as
a whole. However, it was clear from the beginning that the customary formalism of
the Copenhagen interpretation cannot be applied to the quantisation of the universe
because the Schrödinger equation and the measurement process on which the Copenhagen
formalism is based cannot be fundamental elements of a quantum theory of the spacetime.
Let us notice that if the quantum theory must represent the quantum state of the spacetime,
then, as Wheeler showed [1], its quantum state must be at the Planck length with a
superposition of spacetime geometries that is impossible to visualise or represent and
where one cannot even use the word “observation” at all (cf. [1]). However, as we approach
the macroscopic scale, the quantum state of the universe must represent the approximately
stable spacetime where we live and perform measurements of particles and other matter
fields. It means that the description of the universe that we observe must be an emergent
feature of the quantum representation of the universe.

In this article, we review the canonical formulation of quantum cosmology. We start
from the foliation of the spacetime into space and time that allows us to express the
Einstein–Hilbert action as a functional action of the components of the 3-metric of the
spatial sections of the spacetime. The evolution of the universe turns out to then be a
trajectory in the space of 3-Riemannian metrics, M, and its quantum state is represented by
a wave function that is the solution of the Wheeler–DeWitt equation, which, in principle,
contains all the information about the spacetime and the matter fields that propagate therein.
However, as we have already said, the full quantum state is a superposition of solutions
that correspond to different paths, i.e., different evolutions, in the space M. It is only in
the semiclassical regime where a particular kind of solution emerges by a decoherence
process1. This kind of solution includes the semiclassical solutions that represent a fixed
classical spacetime background with matter fields propagating therein and in which the
Schrödinger equation appears as an approximated equation at order h̄1. In particular, we
analyse the semiclassical wave function of a homogeneous and isotropic universe with
small inhomogeneities that can be treated as perturbations. In that case, explicit solutions
can be given for which it is easier to analyse the different boundary conditions that can be
imposed on the state of the universe. They give rise to different scenarios for the creation
of the universe, which are analysed in detail.

On the other hand, the space of 3-dimensional space-like metrics, M, defined at
any point in the space, turns out to be isomorphic to a 1 + 5 dimensional Minkowski
spacetime2. This analogy between the space M and the spacetime allows us to consider
the wave function of the universe as a field that propagates in M, and the Wheeler–
DeWitt equation as the field equation. In that case, a procedure of quantisation called
third quantisation can formally be performed in a similar way as it is done in a quantum
field theory. For instance, we can define quantum operators representing the creation
and annihilation of particular modes of the spacetime, i.e., different universes, and the
corresponding Fock space will then allow us to represent the quantum state of a multiply
connected spacetime manifold. It turns out to then be the appropriate framework to
describe the quantum state of the multiverse. Moreover, as it happens in a quantum field
theory, the isotropy of the background space implies that the creation of universes must
be in pairs with opposite values of the components of the momentum conjugated to the
configuration variables. We shall analyse the charge and parity relation between the matter
fields that propagate in one of these pairs to see that the matter content of one of the
universes must be CP inversely related with the content of the other universe. They thus
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form a universe–antiuniverse pair. We analyse this pair creation in detail in the case of
a homogeneous and isotropic universe where the period of reheating after inflation is
investigated. The decay of the inflaton field into the particles of the Standard Model is
produced in a CP-conjugated way in the two universes, so any excess of matter over
antimatter in one of the universes of the entangled pair is balanced with the excess of the
antimatter over matter in the partner universe, these two concepts (matter and antimatter)
always having a relative meaning, i.e., an internal observer in any of the universe always
interprets the content of his/her universe as matter.

This proposal is however still far from being directly testable. The effects of quantum
cosmology and, in particular, the effects of the existence of an entangled universe are
mainly restricted to the very early stage of the universe. Perhaps with future advances in
the detection of gravitational waves or of a cosmic neutrino background we will be able to
test the pre-inflationary stage of the universe where the effects of quantum gravity may
be significant. Moreover, the third quantisation formalism can also be a proposal for the
quantisation of the spacetime, and thus a better understanding of the formalism and its
application to other gravitational scenarios can provide us with a new line of research for
the search of a quantum theory of gravity.

2. Quantisation of a Simply Connected Spacetime Manifold
2.1. Quantisation of the Spacetime Geometry

Following the customary approach3, the spacetime can be foliated in space and time
by assuming a global time function t such that each surface t = constant is a spacelike
Cauchy hypersurface, Σt. The proper distance between the point x0 in Σt and the point
x0 + dx of Σt+dt is given by [7,8] (see, Figure 1)

ds2 = gµνdxµdxν =
(

NaNa − N2
)

dt2 + 2Nadxadt + habdxadxb, (1)

where NaNa = habNaNb and hab is the three-dimensional metric induced on each hypersur-
face Σt, with unit normal nµ, satisfying, nµnµ = −1. The functions N and Na are called the
lapse and the shift functions, respectively. They are the normal and tangential components
of the vector field tµ, which is the vector field that transport the point x0 from Σt to Σt+dt.

With the split of the spacetime in space and time, the spacetime can be seen as a
spacelike hypersurface evolving in time. The geometry of the hypersurface Σt at a given
time t0 is determined by the metric tensor hab(t0), so eventually the evolution of the
universe is encoded in the evolution of the metric hab(t). It is then remarkable that in the
end, as Wheeler says [9], Eintein’s geometrodynamics deals with the dynamics of 3-geometry, not
4-geometry! (emphasis his). From this 3 + 1 viewpoint of the spacetime, we can cast the
Einstein-Hilbert action4 [7]

SEH

∫
M

d4x
√
−g
(

4R− 2Λ
)
− 2

∫
∂M

d3x
√

hK, (2)

and the action of the matter fields5

Smatter =
∫
M

d4x
√
−g
(

1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ)

)
, (3)

into the standard Lagrangian form,

S =
∫

dt L(qi, q̇i, t), (4)

where qi and q̇i will be here the spatial metric, hab(x), the matter field(s), encoded in the
variable ϕ(x), and their corresponding velocities. In (2), 4R is the Ricci scalar associated to
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the 4-dimensional metric gµν, Λ is the cosmological constant, K = habKab, is the trace of the
extrinsic curvature, which can be written as,

Kab =
1

2N
(
ḣab − DaNb − DbNa

)
, (5)

where, Da is the covariant derivative on the spatial section Σt, and ∂M is the boundary of
the manifoldM. After some manipulation (see Ref. [7]), one finds that the Einstein–Hilbert
action (2) can be written as

SEH =
∫
M

dtd3xN
(

GabcdKabKcd +
√

h
(

3R− 2Λ
))

, (6)

where h is the determinant of the spatial metric hab, and

Gabcd =

√
h

2

(
hachbd + hadhbc − 2habhcd

)
, (7)

is the DeWitt’s metric [10]. The structure of the action (6) is very interesting. First, it is of
the standard form (4),

SEH =
∫

dt LEH =
∫

dtd3x LEH , (8)

with LEH the Lagrangian associated to the Einstein–Hilbert action (6) and LEH the La-
grangian density. Second, from (5) one can see that the extrinsic curvature Kab contains the
time derivative of the metric tensor hab, and 3R only depends on hab. Thus, the action (6)
presents the customary structure of a kinetic term that is quadratic in the velocities plus a
potential term. Furthermore, the supermetric (7) defines a metric structure on the space of
spacelike metrics, called the superspace6. Thus, the action (6) looks like the action of a par-
ticle that moves in a curved space; the coordinates of the ”particle” are the time-dependent
values of the components of the metric tensor, hab(t) and the curved space where this
particle moves in the space of symmetric Riemannian 3-metrics. That is, the evolution of
the universe can be seen as the trajectory in the superspace7 (see Figure 2).

Figure 1. Splitting the spacetime into space and time.

The momenta conjugated to the metric tensor components, hab, are given by [7]

pab ≡ ∂LEH

∂ḣab
= GabcdKcd =

√
h
(

Kab − Khab
)

. (9)

Thus, in terms of the momenta, the total action (the gravitational action plus the action of
the matter field) can be written as

S = SEH + Smatter =
∫

dtd3x
(

pab ḣab + pϕ ϕ̇− NH− NaHa

)
, (10)



Universe 2021, 7, 404 5 of 62

where the lapse and the shift functions act as Lagrange multipliers, with [7]

H = Gabcd pab pcd −
√

h
(

3R− 2Λ
)
+Hmatter, (11)

Ha = −2Db pb
a +
√

hJa, (12)

where [7], Ja ≡ hµ
a Tµνnν, and Gabcd is the inverse of the DeWitt metric (7),

Gabcd =
1

2
√

h
(hachbd + hadhbc − habhcd), (13)

with [10],

GabcdGcde f =
1
2

(
δa

e δb
f + δa

f δb
e

)
. (14)

Therefore, variation of the action (10) with respect to the lapse and the shift functions yields
the classical Hamiltonian and momentum constraints, respectively, i.e.,

H = 0 , Ha = 0. (15)

Let us now focus for a moment on the gravitational part of these constraints. The Hamil-
tonian constraint, H = 0, can be seen as the analogue of the momentum constraint of a
particle that propagates in the spacetime,

gµν pµ pν + m2 = 0, (16)

in which the mass is substituted by a non-constant potential (this analogy will be further
exploited in Section 3). On the other hand, the function Ha generates infinitesimal dif-
feomorphisms (change of coordinates) in the spatial hypersurfaces, Σ. Thus, the second
constraint in (15), Ha = 0, means that the Einstein–Hilbert action (6) is invariant under
such diffeomorphisms, which turns out to be like a gauge freedom [7]. Thus, the real con-
figuration space is the quotient space of all Riemannian 3-metrics, M ≡ Riem(Σ), in which
all three metrics related by diffeomorphisms correspond to the same class, i.e.

S(Σ) = M
Diff(Σ)

, (17)

which is called the superspace [7–10].

Figure 2. Left: the evolution of the universe can be seen as a path in the abstract space spanned by
the component of the spatial metric tensor, hab. Right: an example of evolution is depicted for the
case that the spatial metric is diagonal, i.e., given by, hab(t) = diag(h11(t), h22(t), h33(t)).

Following Dirac [11], the canonical procedure of quantisation consists in assuming the
quantum version of the classical constraints (15) by promoting the classical variables and
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their conjugate momenta into quantum operators and applying them to a wave function, φ,
that is defined in the configuration space,

Ĥφ = 0 , Ĥaφ = 0. (18)

The quantum version of the momentum constraint in (15), Ĥaφ = 0, assures that the wave
function φ is invariant under spatial diffeomorphisms in the 3-dimensional slices Σt [7].
For our purposes, much more interesting is the constraint, Ĥφ = 0, which under canonical
quantisation becomes the Wheeler–DeWitt equation [7,8,10],(

−h̄2∇ · ~∇+
√

h
(
− (3)R + 2Λ + T̂00

))
φ(hab, ϕ) = 0, (19)

where, ∇· and ~∇, are the divergence and the gradient, respectively, defined in the space of
3-dimensional Riemannian metrics, M, and for a scalar field T̂00 reads

T̂00 =
−h̄2

2h
δ2

δϕ2 +
1
2

hij ϕ,i ϕ,j + V(ϕ). (20)

The Wheeler–DeWitt Equation (19) is the keystone of the canonical formalism of quantum
cosmology. The solution, φ(hab, ϕ), is usually called the wave function of the universe [12] be-
cause it represents the quantum state of the spacetime and the matter fields that propagate
therein. This is usually applied to the case of a single universe. However, as we shall see
in Section 3, the whole spacetime manifold can present a more complicated structure and
represent something more than what is typically called a universe. In that sense, the name
can be misleading. However, for historical reasons we shall retain sometimes the name
wave function of the universe even in the cases where it may represent the state of many
different universes.

The Wheeler–DeWitt Equation (19) can be seen as a Schrödinger-like equation with no
time variable, which is a consequence of the invariance of the quantum state of the universe
with respect to the time variable. In that sense, there is no preferred time in the quantum
description of the universe (additionally, there are no preferred spatial coordinates because
the constraint,Ha = 0). It is then sometimes stated that there is no time evolution of the
quantum state of the universe. However, this is not true, or at least it is not accurate. As we
have already pointed out, the evolution of the universe can be seen as the trajectory in the
superspace. The spacetime coordinates are the parameters that parametrise the trajectory,
which is therefore invariant under reparametrisations, but that does not mean that there
is no evolution. It is similar to the description of the path followed by a particle in the
spacetime, which is independent of the parametrisation of the path, but that does not mean
that the particle does not move.

There is also a path integral approach to quantum gravity and quantum cosmology [7,8,12].
It is a generalisation of Feynman’s idea that the amplitude for a particle to go from one
to another point point is given by a functional integral that weighs all the paths that start
from the point x0 at time t0 and end in the point x1 at t1 (see Figure 3). Following a parallel
reasoning, Hartle and Hawking propose [12] that the amplitude for the universe to change
from the hypersurface Σ, in which the spatial geometry and the field configuration are
given by hab and ϕ, respectively, to the hypersurface Σ′, where they are given by the values
h′ab and ϕ′, is given by [12]

〈h′ab, ϕ′|hab, ϕ〉 =
∫

δg δϕ eiS[g,ϕ], (21)
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where the integral must be performed over all 4-geometries and field configurations that
match the given values on the two spacelike hypersurfaces [12], Σ and Σ′. Following that
approach, the wave function of the universe is then given by,

φ(hab, ϕ) = ∑
∫

C
δgδϕ eiS(g,ϕ), (22)

where C denotes the class of spacetimes and matter configurations that fulfil the boundary
requirements on the hypersurfaces Σ, and the sum is performed over all kind of topologies.
In order to make well defined the path integral in (22) one has to rotate to Euclidean time.
However, that does not remove all the technical problems, which we are not going to
deal with here. In practice, as it happens with the Wheeler–DeWitt equation, the path
integral can only be performed for spacetimes and matter field configurations with a
high degree of symmetry. Moreover, both formulations become equivalent because the
requirement of invariance of the wave function φ(hab, ϕ) under reparametrizations of
the time variable implies the constraint [12], δS

δN = 0, whose quantised version is the
Wheeler–DeWitt equation.

Regardless, the path integral formulation has two interesting points. First, the analogy
with the Feynman’s path integral formulation of the trajectory of a particle in spacetime
makes it very intuitive. As we have seen, the classical evolution of the universe can be seen
as a path in the superspace. Applying Feynman’s idea to gravity means that the quantum
state of the universe is given by a quantum superposition of all the paths that go from
one to another configuration of the spatial hypersurfaces. As it happens in the spacetime,
the classical path (i.e., the classical evolution) emerges in some specific limit because of the
constructive interference between the paths of the quantum superposition, and in the same
limit the non-classical paths suffer from a destructive interference or decoherence [3,4,13,14].
The second interesting point of the path integral approach is the following: let us assume
that we already know how to construct the quantum amplitude for the universe to go from
one to another given configuration of the spacelike section. Then, what is the amplitude
for the birth of the universe? What are the boundary conditions that one must impose on
the state of the universe to obtain the appropriate probability amplitude for the universe to
be created?

Figure 3. (Left): path integral in spacetime. (Right): path integral in quantum gravity.

2.2. Boundary Conditions

In classical mechanics, as well as in quantum mechanics, we usually work with some
given conditions that we know or assume for certain at some initial time. Then, knowing
the law of evolution, the initial conditions determine the state of the system at any later
time. In the universe the thing is a bit different. What we only know for certain is the
state of the observable universe, say from the inflationary period8 to the current stage of
accelerated expansion, and we have to make some guess about the initial conditions that
give rise to a universe like that. However, this is all classical cosmology. The question in
quantum cosmology is: what are the conditions at the quantum level that give rise to a
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specific initial boundary, Σ0, that is propitious to inflate? The probability for the creation
of such universe would be given by the modulus squared of the wave function of the
universe, when this is evaluated at the initial hypersurface9. From that point of view, one
can say that the initial state of the (classical) universe is the final state of the amplitude for
the universe to be created ... from what? That is actually the issue behind the question of the
boundary condition of the universe.

Using the path integral approach, Hartle and Hawking proposed [12] that the class
C over which the integral (22) has to be performed is the class of compact geometries
(in principle of all topologies) that have Σ0 as their only boundary [7,12] (see Figure 4)
and matter fields that are regular on those geometries. It means that the boundary of the
universe is that the universe has no boundary, or equivalently, that the boundary Σ0 is created
from nothing. We shall see later on that for the case of an inflationary spacetime, the
quantum state that results from the no-boundary condition is [7,12,15]

φNB ∝ exp
(

1
3V(ϕ)

)
cos

(
(a2V(ϕ)− 1)

3
2

3V(ϕ)
− π

4

)
, (23)

where V(ϕ) is the potential of the inflaton field and a is the scale factor, which goes from the
initial value, a0 = V(ϕ)−1/2, to infinity. It is important to notice that the wave function (23)
can be written as

φNB ∝ e
1

3V(ϕ)

(
eiS + e−iS

)
, (24)

where,

S =
(a2V(ϕ)− 1)

3
2

3V(ϕ)
− π

4
. (25)

We shall see in the next section that in terms of the same time variable, one of the two terms
in (24), say the branch with e−iS, describes an expanding universe, and the branch with eiS

describes a contracting universe. It means that the result of imposing the no-boundary
condition on the quantum state of the universe is that it is given by the linear combination
of two states: one representing an expanding universe and one representing a contracting
universe. Typically, one considers the expanding branch of the universe as representing our
universe and disregards the contracting branch for being unphysical. However, we shall see
that there is another interpretation. In terms of the physical time variable of each universe,
the two universes can both be seen as expanding universes but with their matter fields
being CP-conjugated. They can be interpreted then as an expanding universe–antiuniverse
pair (see Sections 2.5.3 and 3). From that point of view, the no-boundary proposal would
yield the creation of universes in entangled universe–antiuniverse pairs.

Figure 4. Left: the class C over which the path integral has to be performed is the class of com-
pact geometries that have Σ0 as their only boundary [12]. Right: the tunnelling proposal states
that the only modes that survive the quantum barrier are the “outgoing” modes that represent
expanding universes.
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Vilenkin’s tunneling proposal is quite different10. Perhaps more based on practical
grounds, he proposes that the only mode that survives the tunnelling from the Euclidean
region (the region located at, a < V(ϕ)−1/2) is the one that represents an expanding
universe. Imposing the tunnelling boundary condition, the resulting wave function of the
universe is

φT ∝ exp
(
− 1

3V(ϕ)

)
exp

(
−i

3V(ϕ)
(a2V(ϕ)− 1)

3
2

)
. (26)

The main difference with respect to the Hartle–Hawking wave function (23) is the negative
sign in the exponent of the exponential pre-factor, which may have important consequences.
Let us notice that the probability for the universe to be created from nothing is P ∝ |φ|2; so,
in the case of the no-boundary condition, we have

PHH ∝ e
2

3V(ϕ) , (27)

while in the case of the Vilenkin’s tunnelling condition, we have

PT ∝ e−
2

3V(ϕ) . (28)

One immediate consequence is that the Vilenkin’s condition seems to favour the creation of
a universe with a large value of the potential, which is a necessary condition for the initial
hypersurface Σ0 to inflate. That would in principle reject the Hartle–Hawking proposal
because, on the contrary, the no-boundary proposal seems to favour the creation of a
universe with a small (or zero) value of the potential (PHH → ∞, as V → ∞). However,
this result changes when high-order corrections are taken into account, so the result is not
conclusive [7].

From a purely theoretical point of view, it seems that the Hartle–Hawking proposal is
more fundamental in the sense that these authors put the focus on the natural condition
that one should impose on the Euclidean region of the spacetime. As a consequence,
they obtain that the universe is represented by two branches, one corresponding to an
expanding universe and the other describing a contracting branches. These two branches
can be considered independently once they suffer a process of decoherence, so in practice
they may represent two different universes. Vilenkin’s proposal seems to be more practical
(although it is also based on a parallelism with some processes of quantum mechanics).

2.3. Semiclassical Quantum Gravity

The first thing that the quantum state of the spacetime must provide us with is a
consistent explanation of how the classical background can emerge from the full quantum
state of the spacetime. Fortunately, not only can this be done in a beautiful manner but it is
in fact one of the greatest achievements of quantum cosmology.

Again, the path integral formulation of the spacetime supplies a clear picture of how it
can be obtained. At some appropriate limit, which is generally a large length or mass scale
compared with their corresponding Planck values, the contribution of most of the paths in
the integral vanishes because of their destructive interference. The only paths that survive
the interference are those that are in phase, i.e., those for which δS ≈ 0. These are actually the
trajectories of the superspace given by the classical constraints. Therefore, much in a similar
way as the classical trajectory of a particle emerges from the constructive interference in the
path integral approach of the quantum mechanics of a particle, the classical background
spacetime emerges as the constructive interference among the paths in the superspace.
In the quantum mechanics of a particle that we can then compute the quantum corrections
to the trajectory of the particle in terms of quantum uncertainties. We shall see in this section
that the quantum corrections to the classical background of the universe are caused by the
matter fields.
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Following the customary approach [5,7,8,15], let us consider the following semiclassi-
cal wave function [5],

φ(hab, ϕ) = ∆(hab)e±
i
h̄ S0(hab)ψ(hab, ϕ), (29)

where ∆ and ψ are slowly varying functions of the metric tensor hab, and S0(hab) is the
classical action for gravity alone, given by (2). Essentially, the wave function (29) contains
two parts: one that only depends on the geometric variables of the spacetime and another
part that contains all the matter degrees of freedom in the wave function ψ. The basic
idea is that we expect that the quantum fluctuations of the spacetime will weaken more
rapidly than the quantum fluctuations in the state of the matter fields. In that case, we shall
find a regime where the spacetime behaves nearly classically with quantum matter fields
propagating therein. That is exactly what we need to describe the universe we observe.
Also notice the presence of the Planck constant in (29). It means that the classical behaviour
of the spacetime will be present whenever the gravitational action is large with respect to
the Planck constant.

Now, insert the semiclassical wave function (29) into the Wheeler–DeWitt Equation (19)
and solve it order by order in h̄ in the geometrical degrees of freedom. At order h̄0, one finds

Gabcd
δS0

δhab

δS0

δhcd
−
√

h
(

3R− 2Λ
)
= 0, (30)

which is the gravitational part of the Hamiltonian constraint (11) if we make the identification,

pab =
δS0

δhab
. (31)

At first order in h̄, neglecting second derivatives of the slowly varying terms with respect
to the 3-metric, two equations are obtained. The first equation [5]

Gabcd
δ

δhab

(
∆2 pcd

)
= 0, (32)

is actually the condition for the function ∆(hab) to be a slowly varying function. In other
words, whenever (32) is satisfied (or to the extent it is satisfied) the wave function (29) can
be a good candidate to describe the observable universe. Equation (32) is also the equation
of the conservation of the probability current, ∆2 pcd. The other equation that is obtained at
order h̄ is

∓ 2iGabcd
δS0

δhab

δψ

δhcd
+
√

ĥ̂T00 = 0, (33)

where the ∓ signs correspond to the ± signs of the exponent of (29). It suggests the
identification of a time variable t, given by

∂

∂t
= ±2Gabcd

δS0

δhab

δ

δhcd
. (34)

In that case, (33) becomes the Schrödinger-like equation of the matter fields

i
∂ψ

∂t
=
√

h T̂00(ϕ,−i∂/∂ϕ)ψ. (35)

Therefore, in the semiclassical regime we obtain at order h̄0 the classical behaviour of
the spacetime and, at first order in h̄, the quantum evolution of the matter fields. Thus,
the semiclassical wave function (29) contains all the physical information of the observable
universe. One could say that recovering the classical equations for the spacetime degrees
of freedom and the Schrödinger equation for the matter fields does not add anything to
what we already knew before the quantisation of the universe. That is true; these two
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features are nothing more than a test of consistency for quantum cosmology. After all,
the recovering of the classical spacetime must not be surprising. We started the process
of quantisation from the classical action of the spacetime and the matter fields, and the
quantisation procedure consists basically in promoting the classical variables to non-
commuting quantum operators, [ĥab, p̂ab] ∝ h̄. Then, it should not be surprising that in the
limit h̄→ 0 we recover the classical behaviour (this is the essence of the correspondence
principle) and something similar for the quantum behaviour of the matter fields.

The canonical quantisation of the whole universe that we have seen in this section is
interesting for several reasons. First, it suggests that the quantisation processes that leads
to the wave function of the universe is consistent and, in that case, one can assume that the
wave function of the universe, φ(hab, ϕ), would contain in principle all the physical (classi-
cal and quantum) information of all the degrees of freedom of the universe. Any physical
process should be describable within the formalism of quantum cosmology. Of course, this
reductionist point of view is not practical at all, but from the conceptual point of view it
results appealing. A more interesting feature is that it allows us to analyse higher-order
corrections to the semiclassical universe, and this should give novel features that cannot be
foreseen in the classical scenario. It might help us to go beyond the quantum description of
matter fields in a classical spacetime background. In particular, it can help us to find some
exclusive features of the quantum regime of the spacetime, i.e., small deviations from the
known behaviour caused by the high-order corrections of quantum gravity [17–20].

Another interesting feature of quantum cosmology is the appearance of time. From the
point of view of the superspace, time is just the parameter that parametrises the curve that
describes a particular trajectory. In the picture given by the path integral, the quantum
state of the universe is given by the set of all paths that join together the initial and final
states. If the quantum wave-packet is spread, no definite time variable can be chosen
mainly because there is no definite curve that describes the evolution of the universe. It
is only when the wave-packet is peaked around a particular solution (ideally becoming
a delta function) when we have a definite curve, the classical evolution of the universe,
that it can therefore be parametrised in terms of a parameter that we can call time11. It
therefore appears as the result of a decoherence process between the different histories of
the universe [3–5,21].

Furthermore, quantum cosmology relates the two concepts of time of contemporary
physics: the one of the theory of relativity and the one of quantum mechanics. This is a
very subtle point. Both the theory of relativity and the quantum theory work with a time
variable, say tr and tq, respectively. We usually assume that both time variables are the
same, tr = tq = t, but this is an assumption that is not guaranteed from the beginning.
Of course, they (must) coincide in the Newtonian limit of both theories, but in general, they
only coincide if the time variable of theory of relativity would be measured with an actual
clock, which is made of matter fields. However, the theory of relativity deals with “ideal
clocks,” and the consideration of an actual clock may entail some problems12.

2.4. Minisuperspace Model

Despite its conceptual importance, it is not hard to see that the Wheeler–DeWitt equa-
tion found in the previous chapter is very difficult if not impossible to solve for a general
configuration of the spacetime and the matter field(s). In order to make computations, one
generally has to assume some symmetries in the underlying spacetime of the universe. This
process, called symmetry reduction [7], reduces the number of variables of the superspace
and the so-reduced superspace is called minisuperspace13.

Furthermore, a minisuperspace model is not necessarily an unrealistic model. On the
contrary, the observational data indicates that for most of the history of the universe the
spacetime presents a high degree of symmetry. Even more, if the initial hypersurface
Σ0 from which the universe starts evolving is large enough compared with the Planck
length, a minisuperspace model could describe the whole history of the universe14. In other
cases, it can be taken as a toy model from which we can obtain relevant information about
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some (classical and quantum) aspects of the universe like, for instance, the creation of the
initial hypersurface Σ0 or the quantum-to-classical transition and the appearance of time,
among others.

They can also allow us to study the effect of small deviations from the symmetric
picture. For instance, we shall consider later on small departures from the homogeneous
spacetime and the matter field in the form of gravitons and matter particles, respectively.
These are local perturbations of the otherwise homogeneous and isotropic background.
The picture then becomes quite realistic and allows us to analyse potentially observable
effects like the kind of correlations between the modes of the matter fields in different
regions of the spacetime or the quantum gravitational corrections to the Schrödinger
equation of the matter fields. In all those cases, the study of the minisuperspace model
turns out to be justified.

Therefore, let us consider the minisuperspace that is obtained from the foliation
of a 4-dimensional spacetime with closed homogeneous and isotropic spatial sections.
The geometry of the spacetime is then characterised by a Freedman–Robertson–Walker
(FRW) metric

ds2 = −N2(t)dt2 + a2(t)dΩ2
3, (36)

where dΩ2
3 is the line element on the unit three sphere. The foliation of the spacetime

into space and time is in that case parametrised by just two functions, the scale factor
a(t) and the lapse function N(t). The geometry of the spatial sections, hab, is then fully
characterised by the scale factor a(t) that parametrises the variation in the distance between
two fixed points of the space along the evolution of the universe. It parametrises therefore
the expansion or the contraction of the universe. On the other hand, the lapse function
N(t) determines the time parametrisation of the foliation. Different values of N(t) entail
different time variables (i.e., different time parametrisations), with some special cases.
For instance, if N = 1, the time variable t is called cosmic time, and if N = a(t), t is
customarily renamed with the Greek letter η and is called conformal time because in terms
of η the metric becomes conformal to the metric of a closed static spacetime. We know that
the evolution of the universe is invariant under the choice of time reparametrisation, so,
at the end of the process, we can take the preferable time variable15.

The line element of the spacetime is then fully determined by these two functions, a(t)
and N(t). The total action, i.e., the Einstein–Hilbert action (2) plus the action of the scalar
field (3), can be written as [7]

S = SEH + Sm =
1
2

∫
dtN

(
− aȧ2

N2 + a− Λa3

3
+

a3 ϕ̇2

N2 − 2a3V(ϕ)

)
, (37)

where an integration over the spatial variables has been performed and absorbed with a
definition of units in which, 2G/3π = 1, and the rescalings, ϕ→ ϕ/

√
2π and V → V/2π2.

The total action has been simplified considerably. The only dynamical degrees of freedom
are the scale factor, a(t), and the scalar field, ϕ(t), which according to the homogeneity
condition must only depend on the time variable. The superspace has then been reduced
to a two dimensional space. Now, we can proceed as described in the preceding sections.
The momenta conjugated to the configuration variables are,

pa ≡
δL
δȧ

= − aȧ
N

, pϕ ≡
δL
δϕ̇

=
a3 ϕ̇

N
, (38)

and the Hamiltonian then reads

H = NH =
N
2

(
−1

a
p2

a +
1
a3 p2

ϕ − a +
Λa3

3
+ 2a3V(ϕ)

)
. (39)

The momentum constraint is automatically satisfied by the symmetries of the spacetime,
and the Hamiltonian constraint, δH

δN = 0, then becomes, H = 0. Promoting the mo-
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menta into quantum operators and applying the quantum version of the Hamiltonian
constraint, H = 0, to the wave function of the universe, φ(a, ϕ), which depends now on
the two variables of the minisuperspace, a and ϕ, we obtain the Wheeler–DeWitt equation,
Ĥφ(a, ϕ) = 0.

2.4.1. Inflationary Universe

Let us first analyse the initial stage of the universe where the scalar field is assumed to
be approximately constant on the small time scale in which the universe rapidly undergoes
an inflationary expansion [25], ϕ̇ ≈ 0 and ϕ0 � 1. In that case, the kinetic term of the scalar
field in (37) can be neglected and the potential turns out to be approximately constant,
V(ϕ0). From (37), it can be seen that a constant value of the potential is equivalent to a
cosmological constant term, so the universe effectively behaves like a DeSitter spacetime.
Then, we can write (37) as

S =
1
2

∫
dtN

(
− aȧ2

N2 + a− H2
0 a3
)

, (40)

where, H2
0 = 2V(ϕ0), in the case of the inflationary universe or, H2

0 = Λ/3, in the case
of a “pure” DeSitter spacetime, or the sum of both in a general case. The corresponding
Hamiltonian constraint turns out to be

H = −1
a

p2
a − a + H2

0 a3 = 0, (41)

which is nothing more than the Friedmann equation expressed in terms of the momentum
conjugated to the scale factor, pa. In terms of the time derivative of the scale factor, using
pa = aȧ (in cosmic time16, with N = 1 in (38)), the Hamiltonian constraint (41) can be
written as

ȧ =
√

H2
0 a2 − 1, (42)

whose solutions can easily be obtained,

a(t) =
1

H0
cosh H0t. (43)

If t ∈ (−∞, ∞), the scale factor (43) describes a universe that starts shrinking from an
infinite volume, bounces at the minimum value, a0 = H−1

0 , and ends up in an eternal
expansion (see, Figure 5 Left). However, it does not seem quite plausible that the universe
is created with an infinite volume, so the most reasonable possibility consist in restricting
ourselves to the domain, t ∈ (0, ∞), which describes a “bubble” of spacetime that is created
with radius a0 = H−1

0 at t = 0 (the origin of time), and starts expanding exponentially in
an inflationary like expansion. If the length scale of the initial “bubble” is some orders of
magnitude greater than the Planck scale, i.e., H−1

0 >> lP, then, the quantum fluctuations
of the spacetime would be small, and the homogeneous and isotropic picture described
here could reasonably represent the creation of a universe like ours17.
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Figure 5. Left: the closed DeSitter spacetime describes a universe that starts shrinking from an
infinite volume, bounces at the minimum value, a0 = H−1

0 , and ends up in an eternal expansion.
Right: the value a0 can be seen as a barrier where the incoming waves are reflected and converted
into outgoing waves.

Let us now analyse the solutions of the corresponding Wheeler–DeWitt equation.
Making the substitution, pa → −ih̄∂a, and leaving aside the ambiguity of the factor
ordering, the Hamiltonian constraint (41) can conveniently be written as

h̄2 d2φ(a)
da2 + ω2(a)φ(a) = 0, (44)

where,

ω(a) =
√

H2
0 a4 − a2. (45)

Written in this way, the Wheeler–DeWitt Equation (44) resembles the equation of a harmonic
oscillator with time-dependent frequency (such parallelism will be further exploited in
Section 3). Equation (44) is not exactly solvable. However, far from the turning point,
a0 = H−1

0 , we can approximate the solutions by the WKB wave functions

φ±(a) =
N±√
ω(a)

e±
i
h̄ S(a), (46)

where N± is a normalisation constant and S(a) is given by

S(a) =
∫

da ω(a) =
(

H2
0 a2 − 1

) 3
2

3H2
0

. (47)

The two wave functions φ± in (46) represent incoming and outgoing wave functions. Let
us see it by inserting them into the Wheeler–DeWitt Equation (44). In that case, at order h̄0

the Hamilton–Jacobi equation is obtained(
∂S
∂a

)2
+ a2 − H2

0 a4 = 0, (48)

which corresponds to the Hamiltonian constraint (41) if one makes the identification

pa = ±
∂S
∂a

. (49)

In fact, let us note that at leading order in h̄ it is satisfied

− aȧ ≡ pa ≈ 〈φ±| p̂a|φ±〉 = ±
∂S
∂a

+O(h̄1). (50)

Therefore, it is obtained

ȧ = ∓ω(a)
a

= ∓
√

H2
0 a2 − 1, (51)
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which is the Friedmann Equation (42), with two signs: the − sign that corresponds to φ+

and the + sign that corresponds to φ−. Thus, φ− describes an outgoing wave, i.e., a wave
that travels towards greater values of the scale factor—it thus represents an expanding
universe—and φ+ an incoming wave, i.e., a wave that travels towards smaller values of the
scale factor, which corresponds therefore to a contracting universe. Let us notice however
that the interpretation of φ± in terms of incoming and outgoing waves must be taken
carefully [26]. The Friedmann Equation (41) is invariant under the time reversal change,
t → −t, and in terms of −t (ȧ → −ȧ), φ+ would represent the expanding universe (i.e.,
an outgoing wave) and φ− the contracting universe (i.e., an incoming wave). Clearly, it
depends on the (time) parametrisation. The important thing is that the general quantum
state of the universe (far from the turning point) can be written as

φ(a) = A0 φ+(a) + B0 φ−(a), (52)

which represents a quantum superposition of incoming and outgoing waves, irrespective
of the particular wave function that represents each one. Another important feature that is
worth noticing is that the minimum value a0 constitutes a classical barrier below which the
universe cannot go through. Let us notice that for a value a < a0, there is no real solution
of the Friedmann Equation (51), so an incoming wave function representing a contracting
universe is classically reflected (bounced) into an outgoing wave (see Figure 5 Right).

2.4.2. Small Perturbations and Backreaction

Let us now consider a more realistic scenario by introducing two important changes.
First, we shall not neglect the kinetic term of the scalar field in the action (3), and we shall
consider a general form (i.e., not necessarily a constant) for the potential V(ϕ). Contrary
to what may be thought, that will not introduce qualitative changes. In return, it will
allow us to represent other stages of the evolution of our universe as well as many other
types of universes. The second change that we are going to make is the introduction of
small perturbations around the homogeneous and isotropic background spacetime. This
will help us to analyse several phenomena like the behaviour of the matter fields in the
semiclassical universe or the appearance of a physical time variable.

Regarding the last question, we can assume that except for the very beginning, the
inhomogeneities of the universe are relatively small18. Therefore, to a good order of ap-
proximation, the universe can be represented by a homogeneous and isotropic background
with relatively small inhomogeneities propagating in the background. In that case, it
seems reasonable to expand the variables of the spacetime and the matter fields around
the homogeneous and isotropic values and study the inhomogeneities as perturbations
of the homogeneous and isotropic background. We can still consider the 3 + 1 splitting
of the spacetime given in (1). However, the idea is now to expand the configuration vari-
ables (hab, N, Na and ϕ) around their homogeneous and isotropic values and retain just the
first-order terms. Then, let us consider the following expansions [6,27]

hab(t, x) = a2(t)Ωab + a2(t)∑
n

2dn(t)Gn
ab(x) + . . . , (53)

ϕ(t, x) =
1√
2π

ϕ(t) + ∑
n

fn(t)Qn(x), (54)

where Ωab is the metric on the unit three-sphere, ϕ(t) is the homogeneous mode of the scalar
field, Qn(x) are the scalar harmonics on the three-sphere, and Gn

ij(x) the transverse traceless
tensor harmonics [27], with, n ≡ (n, l, m). More harmonics can be present in (53). However,
we shall only focus on the tensor modes, dn, as the representative of the perturbation
of the spacetime. Eventually, these modes will represent gravitons propagating in the
background spacetime, and, analogously, the perturbation modes fn will represent the
particles of the scalar field(s). The lapse and shift functions must also be expanded in
terms of the spherical harmonics. Then, all these perturbed functions are inserted in the
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action (10). The configuration variables are now the scale factor a(t), the homogeneous
mode of the scalar field ϕ(t), and the infinite number of modes dn(t) and fn(t), denoted
generically by xn(t). The minisuperspace is then the infinite dimensional space spanned
by the variables (a, ϕ, xn), and the time evolution of the universe is represented by a
parametrised trajectory in that space, (a(t), ϕ(t), xn(t)). We should have included the
modes of the perturbed lapse and shift functions. However, as it happens with their
homogeneous counterparts, they are not dynamical variables but Lagrange multipliers
that generate a set of constraints that can be used to simplify the equations [27]. After a
cumbersome computation, one arrives at the Hamiltonian constraint

H = H0 +Hm = 0, (55)

where the Hamiltonian H0 contains only degrees of freedom of the homogeneous and
isotropic background, andHm is the Hamiltonian density that contains also the degrees of
freedom of the perturbation modes.

Let us first consider the Hamiltonian of the background spacetime, which is given by
the Hamiltonian density of (39),

H0 =
1
a

(
−p2

a − a2 +
1
a2 p2

ϕ + 2a4V(ϕ)

)
= 0. (56)

After canonical quantisation, the Wheeler–DeWitt equation reads(
h̄2 ∂2

∂a2 −
h̄2

a2
∂2

∂ϕ2 + a4H2(ϕ)− a2

)
φ0(a, ϕ) = 0, (57)

where, H2(ϕ) ≡ 2V(ϕ), is not necessarily constant now. Let us consider the semiclassi-
cal solutions,

φ±0 (a, ϕ) = ∆(a, ϕ)e±
i
h̄ S(a,ϕ), (58)

where ∆(a, ϕ) is a slow varying field of the scale factor. Inserting the wave function (58)
into the Wheeler–DeWitt Equation (57), as we did in the previous section, and disregarding
second-order derivatives with respect to the background variables, one obtains at order h̄0

the Hamilton–Jacobi equation [6]

−
(

∂S
∂a

)2
+

1
a2

(
∂S
∂ϕ

)2
+ a4H2(ϕ)− a2 = 0. (59)

Following the semiclassical development of the previous sections, let us define a WKB-time
parameter tw as [6]

∂

∂t±w
≡ ±

(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
, (60)

in terms of which,

ȧ2 =
1
a2

(
∂S
∂a

)2
, ϕ̇2 =

1
a6

(
∂S
∂ϕ

)2
, (61)

and the Hamilton–Jacobi Equation (59) turns out to be

ȧ2 + 1− a2
(

ϕ̇2 + 2V(ϕ)
)
= 0, (62)

which is the Friedmann equation of the background spacetime. The WKB wave functions
φ±0 describe universes with a background spacetime that evolves according to the Fried-
mann Equation (62). The wave function φ0 may thus represent the quantum state of a
large variety of classical models of the universe. The two signs in (60) are irrelevant at the
classical level because the Friedman Equation (62) is invariant under the reversal change of
the time variable. However, they will play an important role at the semiclassical level.
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Let us now consider the complete Hamiltonian constraint (55). The corresponding
Wheeler–DeWitt equation is (

Ĥ0 + Ĥm
)
φ(a, ϕ; xn) = 0, (63)

where Ĥ0 is the Hamiltonian of the background that we have already seen (56) and (57),
and Ĥm is the Hamiltonian of the perturbation modes, which for the moment we do
not need to specify. The wave function of the universe can be separated in two factors,
the wave function φ0(a, ϕ) of the background (58) and another wave function that contains
the matter degrees of freedom19. Therefore, the semiclassical wave function can be written
now as

φ±(a, ϕ; xn) = ∆(a, ϕ)e±
i
h̄ S(a,ϕ)ψ±(a, ϕ; xn), (64)

If we insert the wave function (64) into the Wheeler–DeWitt Equation (63) and we solve it
order by order in h̄, it at order h̄0 the Hamilton–Jacobi Equation (59) is obtained. Therefore,
the wave function (64) still describes the background spacetime that evolves according
to (62). On the other hand, at order h̄1 inH0, one obtains

± ih̄
(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
ψ± = Ĥmψ±. (65)

Here comes a subtle but crucial point of the semiclassical regime. In terms of the initial
proper time, t, the two branches of the universe represent an expanding and a contracting
universe because, from (38),

− a
da
dt

= pa ≈ 〈φ±0 | p̂a|φ±0 〉 ∼ ±
∂S
∂a

, (66)

so φ−0 describes a universe whose spacetime background is expanding and φ+
0 a universe

whose background spacetime is contracting. In that case, in order for the WKB-time (60) to
represent the proper time variable t in the two branches, we have to choose for the branch
φ− the WKB-time variable t− defined by

∂

∂t−
≡ −

(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
, (67)

in which case,
∂a

∂t−
=

1
a

∂S
∂a

, (68)

which represents an expanding universe. For the WKB-time variable in the φ+ branch, we
must choose

∂

∂t+
≡ −1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ
, (69)

in terms of which,
∂a

∂t+
= −1

a
∂S
∂a

, (70)

describes a contracting universe. It is worth noticing that this assignation is somehow
arbitrary [26,28]. If we would have started with a time variable, t→ −t, then, φ+

0 would
represent the contracting universe and φ−0 the expanding one, and the assignations of the
WKB-time variables would have been the other way around. However, in terms of the
definitions (69) and (67), the Equation (65) reads,

ih̄
∂

∂t±
ψ±(t±, ϕ) = Ĥmψ±(t±, ϕ), (71)
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where ψ±(t±, ϕ) ≡ ψ±[a(t±), ϕ], evaluated in the background solutions of (70) and (68).
Therefore, we have ended up with two universes, one contracting and another expanding,
both filled with matter.

There is however a different interpretation. One may assume that the physical time
variable, i.e., the time variable measured by actual clocks that are made of matter, is the time
variable that appears in the Schrödinger equation. In that case, it is worth noticing that the
physical time variable of the two universes is reversely related, t+ = −t−. Let us assume
that we fix the time variable by fixing the time that a particular observer measures and
consider thus t− as the physical time. Then, in terms of the time variable t− the evolution
of the scale factor is given by (70) so the two wave functions, φ+ and φ−, represent both
with a universe with an expanding background spacetime, i.e from the point of view of
this hypothetical observer both universes are expanding. The Schrödinger Equation (65) in
the observer’s universe becomes,

ih̄
∂

∂t−
ψ−(t−, xn) = Ĥmψ−(t−, xn). (72)

However, the Schrödinger equation for the fields of the partner universe is

− ih̄
∂

∂t−
ψ+(t−, xn) = Ĥmψ+(t−, xn), (73)

for the wave function ψ+. The ”wrong sign” in (73) is not problematic. It is only indicating
that (73) is the Schrödinger equation of the complex conjugated wave function ψ∗+ with a
CP-transformed Hamiltonian [26]. Let us notice that (73) can be written as

ih̄
∂

∂t−
ψ−(t−, x̄n) = Ĥm(x̄n)ψ−(t−, x̄n). (74)

It is therefore the Schrödinger equation for the antimatter fields of the observer’s universe.
In this case, we have ended up in the description of two universes, both expanding but
one filled with matter and the other filled with antimatter20. The two interpretations raised
here for the linear combination of incoming and outgoing wave look very similar to the two
interpretations made in QED of an electron–positron pair (see Figure 6). In Section 3.2.4,
we shall interpret this combination as the creation of a universe–antiuniverse pair.

Figure 6. An electron–positron pair can equivalently be seen as either an electron propagating
backwards in time, bouncing, and then propagating forward in time or as a particle–antiparticle pair
propagating forward in time.

Let us now specify the Hamiltonian of the perturbation modes. If we restrict to small
linear perturbations, the different modes do not interact, andHm turns out to be the sum
of the Hamiltonian of a set of harmonic oscillators [4,29]

Hm = ∑
n
Hn, (75)

with

Hn =
1

2M
p2

xn +
Mω2

n
2

x2
n, (76)
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where, M(t) = a3(t), and [6]

ω2
n =

n2 − 1
a2 , (77)

for the tensorial modes of the spacetime (xn ≡ dn), and

ω2
n =

n2 − 1
a2 + m2, (78)

for the perturbation modes of the scalar field (xn ≡ fn). Thus, for small perturbations,
the Hamiltonian of the modes turns out to be the Hamiltonian of a set of uncoupled
harmonic oscillators with time-dependent mass, M(t) = M[a(t)], and frequency given by,
ωn(t) = ωn[a(t)], where a(t) is the solution of the Friedmann equation of the background
spacetime (possibly including the backreaction).

The Schrödinger Equation (71) of the perturbation modes is then the Schrödinger
equation of a set of uncoupled harmonic oscillators, whose general solution can be written
as [4,6,30]

ψ± = ∏
n

ψn(t±, xn), (79)

where the function ψn(t, xn) is the wave function of a harmonic oscillator with time-
dependent mass and frequency, which can be written in terms of the wave function of
a harmonic oscillator with constant mass and frequency [31–34]. The general solution
of ψn(t, xn) can then be expanded in the basis of number eigenstates of the invariant
representation, ψN,n, as

ψn = ∑
N

cN ψN,n, (80)

where cN are constants coefficients, and the wave function of the invariant number state,
ψN,n, is given by [32,35]

ψN,n(a, φ; xn) ≡ 〈a, φ; xn|Nn〉 =
1

σ
1
2

exp
{

iM
2

σ̇

σ
x2

n

}
ψ̄N

( xn

σ
, τ
)

(81)

where ψ̄N(q, τ) is the customary wave function of the harmonic oscillator,

ψ̄N(q, τ) =

(
1

2N N!π
1
2

) 1
2
e−i(N+ 1

2 )τe−
q2
2 HN(q) (82)

with HN(q) the Hermite polynomial of order N, q ≡ xn
σ ,

τ(t) =
∫ t 1

M(t′)σ2(t′)
dt′, (83)

and σ(t) is an auxiliary function that satisfies the non-linear equation [31,32]

σ̈ +
Ṁ
M

σ̇ + ω2
nσ =

1
M2σ3 , (84)

plus some boundary condition [36]. The interesting property of the invariant representation
is that once the field21 is in a number state of the invariant representation, it remains in
the same state along the entire evolution of the field. For instance, let us assume that the
perturbation modes are in the vacuum state of the invariant representation, |0〉 = ∏n |0n〉.
In that case, the mean value of the energy of the perturbations reads22

〈Hm〉 = ∑
n

h̄ωn

(
〈N̂n〉+

1
2

)
= ∑

n

h̄ωn

2
→ h̄

2

∫ nmax
dn n2 ωn, (85)
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where ωn is given by (77) and (78) for matter particles or spacetime gravitons, respectively.
The sum in (85) diverges and some cut-off nmax must be taken. The energy 〈Hm〉 is the
backreaction of the perturbations on the homogeneous and isotropic background that
would induce a modification of the Friedmann Equation (62),(

ȧ
a

)2
= 2ρϕ −

1
a2 +

〈Hm〉
a3 , (86)

where, ρϕ = 1
2 ϕ̇2 + V(ϕ) is the energy of the homogeneous mode of the matter field and

〈Hm〉 ∝ a−1 for the massless tensor modes or 〈Hm〉 ∝ m for the perturbations of the
scalar field.

2.5. Paradigms for the Creation of the Universe in Quantum Cosmology

In the preceding section we ended up with a Friedman equation that was corrected by
the backreaction of the perturbation modes of the spacetime. We shall see in this section
that such a term may induce important consequences in the way in which the universes
can be created. However, for historical reasons, instead of considering the backreaction of
the perturbation modes, we shall consider the model of a massless scalar field conformally
coupled to gravity and a cosmological constant, which eventually raises the same term in
the Friedmann equation, so the two models effectively entail similar effects. Later on, we
shall briefly comment on the nature of this term. The conformally coupled massless scalar
field is the field used by Hartle and Hawking in Ref. [12] to describe the quantum state of
the universe and the process of quantum creation. Besides, it will also help us to introduce
different paradigms for the creation of the universe.

Therefore, let us consider the following action for the spacetime and the massless,
i.e., V(ϕ) = 0, scalar field,

S = SEH + Sm =
1
2

∫
dtN

(
− aȧ2

N2 + a− Λa3

3
+

a3 ϕ̇2

N2 −
1
6

a3 4Rϕ2
)

, (87)

where the last term represents the conformal coupling of the scalar field, and 4R is the
Ricci scalar. Then, with the change, χ = aϕ, and after an integration by parts, the total
action (87) can be written as [12]

S = SEH + Sm =
1
2

∫
dtN

(
− aȧ2

N2 + a− H2
0 a3 +

aχ̇2

N2 −
χ2

a

)
, (88)

where H2
0 can be a pure cosmological constant, H2

0 = Λ/3, or the constant value of
the potential of an auxiliary inflaton field (different from the scalar field ϕ that we are
considering in (88)). In any case, it will be assumed that it is a constant. Now, the momenta
conjugated to the scale factor and the conformally coupled massless field χ can be easily
obtained, and the Hamiltonian constraint associated to the action (88) reads

H = NH =
N
2a

(
−p2

a − a2 + H2
0 a4 + p2

χ + χ2
)
= 0, (89)

which, taking into account that p2
χ + χ2 is nothing more than (twice) the energy of the

scalar field [36], 2E, can also be written as

1
2

p2
a + U (a) = E, (90)

with
U (a) =

1
2

(
a2 − H2

0 a4
)

. (91)
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which is formally similar to the energy equation of a particle that propagates under the
action of the potential (91). The first term of the l.h.s. of (90) would be the kinetic energy,
the second term would be the potential energy, and E would be the total energy23

Quantum-mechanically, the wave function of the universe, φ(a, χ), is the solution of
the Wheeler–DeWitt equation associated to the Hamiltonian constraint (89),(

∂2

∂a2 + H2
0 a4 − a2 − ∂2

∂χ2 + χ2
)

φ(a, χ) = 0, (92)

which can be solved by the method of the separation of variables. Making, φ(a, χ) =
ξ(χ)ψ(a), the Wheeler–DeWitt Equation (92) can be split into the two following equations,(

− d2

dχ2 + χ2
)

ξ(χ) = 2Eξ(χ), (93)

d2ψ(a)
da2 +

(
H2

0 a4 − a2
)

ψ(a) = −2Eψ(a). (94)

The first of these equations is the equation of a quantum harmonic oscillator with unit mass
and frequency. It can be solved in terms of Hermite polynomials, Hn(x),

ξ(χ) ≡ ξn(χ) =
1√
2nn!

(
1
π

) 1
4
e−

χ2
2 Hn(χ), (95)

with a quantised energy given by

E ≡ En = (n +
1
2
). (96)

On the other hand, Equation (94) can be written as

1
2

d2ψ(a)
da2 + (E−U (a))ψ(a) = 0, (97)

with U (a) given by (91). Equation (97) is formally similar to the Schrödinger equation of a
particle of energy E moving under the action of the potential U (a) (see Figure 7). For the
value E ∈ (0,Umax), where Umax is the maximum value of the potential, we can distinguish
three regions: two classically allowed regions (regions I and I I I in Figure 7) separated by a
classically forbidden region (region I I). We have already analysed in the preceding section
the behaviour of the wave function in region I. There are incoming and outgoing waves
that represent a contracting universe that shrinks to the minimum value of the scale factor
a+ (see, Figure 7) and bounces (or it is reflected), becoming an expanding universe. In the
other classically allowed region, region I I I, we shall see that there are also incident and
reflected waves that represent a universe that is confined to oscillate between a = 0 and
the maximum value a−.

In the case of a particle moving under the action of a similar potential, the particle
that is placed in the region I I I is classically confined to move in that region like the
universes in our example. However, we know that quantum-mechanically there is a non-
zero probability for the particle to tunnel though the quantum barrier and appear in the
region I. Something similar happens with the universe. If E > 0, the small oscillating
universe of region I I I can tunnel out through the Euclidean barrier appearing in region
I as a new-born universe. The universe is then said to be created from something. In the
limiting case, E = 0, which was the case analysed by Hartle and Hawking [12,37–39] and
by Vilenkin [40–42] for the creation of the universe, there is no region I I I from which to
tunnel out to region I. The universe appears in region I from a pure tunnelling phenomena
(like the creation of particles from the quantum vacuum). In that case, the universe is said
to be created from nothing24. Let us analyse the two cases separately.
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Figure 7. Potential U (a). For E > 0, there are three regions: two Lorentzian regions separated by an
Euclidean one. Compare it with the case E = 0 analysed in Figure 5.

2.5.1. Creation of the Universe from Nothing

Let us first analyse the creation of the universe from nothing, i.e., E = 0 in (90).
In that case, in terms of the time derivative of the scale factor, pa = −aȧ, the Hamiltonian
constraint (90) reduces to the Friedmann Equation (42) already studied in Section 2.4.1,

ȧ =
√

H2
0 a2 − 1, (98)

which yields the well-known solution,

a(t) = a0 cosh H0t, (99)

with, a0 = H−1
0 . If we restrict ourselves to the “expanding branch,” t ≥ 0, the scale

factor (99) represents a universe that starts expanding from the initial boundary Σ(a0) until
infinity. For values a < a0, there is no real solution, and the value a = a0 constitutes a
classical barrier for the universe (see Figure 5). However, one can perform a Wick rotation
into Euclidean time, t = −iτ, in terms of which the Friedmann Equation (98) becomes

daE
dτ

=
√

1− H2
0 a2

E. (100)

Now, the Euclidean Equation (100) has the solution

aE(τ) = a0 cos H0τ, (101)

where τ ∈ (− π
2H0

, 0). Let us notice that, in Euclidean time, −dt2 → +dτ2, the line element
turns to be

ds2 = dτ2 + a2
E(τ)dΩ2

3, (102)

which is the line element of a 4-sphere of radius 1/H0 embedded in a 5-dimensional flat
Euclidean spacetime. The ”spatial section” starts expanding from a single point of the
sphere (at τ = −π/2H0) until it reaches the value H−1

0 at the Euclidean time, τ = 0 (see,
Figure 8). It is called a DeSitter instanton, and it gives the maximum contribution to the
tunnelling wave function (it is the extremal solution of the Euclidean action [12]). At the
boundary hypersurface Σ(a0), it appears in the Lorentzian region as a new born DeSitter
universe that starts expanding exponentially.
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Figure 8. Left: a DeSitter instanton can be seen as a 4-dimensional sphere in the 5-dimensional
Euclidean flat spacetime. Right: the creation of a DeSitter spacetime from a DeSitter instanton of the
Euclidean sector of the spacetime.

Quantum-mechanically, the situation is the following. The initial boundary Σ(a0)
separates the Lorentzian region of the spacetime (see, Figure 8), where classical solutions
are allowed, from the Euclidean region, where only tunnelling solutions can exist. The wave
function that represents a classical spacetime in the Lorentzian region is given in terms of
the oscillatory wave functions e+iS and e−iS, where S is given by (47)

S(a, ϕ) =
(H2a2 − 1)

3
2

3H2 . (103)

In the Euclidean sector, a < a0, the wave function of the universe, can be written in terms
of the tunnelling wave functions, eI and e−I , where I is given by the integral (47) with ω(a)
being replaced by |ω(a)|, i.e.,

I(a, ϕ) =
(1− H2a2)

3
2

3H2 . (104)

The picture is then similar to the problem of a wave-particle tunnelling through a quantum
barrier. The oscillatory wave functions e±iS can be seen as the incoming and the reflected
waves that may represent a photon or another quantum mechanical particle. Classically,
the boundary Σ(a0) acts as a barrier that cannot be crossed (see Figure 9). Quantum-
mechanically, however, there is a non-null probability of penetrating into the barrier,
although the amplitude is exponentially suppressed in the Euclidean region. Analogously,
one can say in cosmology that there is a non-zero probability for the universe to appear from
nothing, i.e., from the Euclidean barrier of the spacetime. An essential difference is that here
the tunnelling is not from another classically allowed region of the spacetime. It is therefore
more similar to the creation of virtual particles from the quantum vacuum in a quantum
field theory. In a quantum field theory, the pair of virtual particles can only exist at a small
amount of time compatible with Heisenberg’s uncertainty relations, otherwise the principle
of energy conservation would be violated. In the universe, however, the energy is zero
(the negative gravitational energy balances the positive energy of the matter fields) so the
creation of the universe from nothing does not violate the conservation of energy.

From the above reasoning it is clear that the name ”creation from nothing” does
not refer to the absolute meaning of nothing, i.e., to something to which we can ascribe
no properties. As we have seen, the Euclidean region of the spacetime has geometrical
properties. In the standard literature (see, for instance, Refs. [7,8,16,37,38,40]), it usually
refers to two meanings. One, perhaps the most consistent, is that the universe is created
from a region of the spacetime where nothing real exists; in particular, there is no actual
time (i.e., time measured by clocks). In that sense, there is nothing. Another sense with
which the term “nothing” is used in the creation of the universe is that the universe, in the
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paradigmatic case of the creation of a DeSitter spacetime from the Euclidean instanton (101),
begins from a single non-singular point of the Euclidean 4-sphere (which is geometrically
equivalent to any other point in the sphere). In that case, the single point is meant to
be “nothing”.

Vilenkin’s vs. Hartle–Hawking’s Versions

The general quantum state of the universe is therefore given in the region I by the
linear combination

φI(a, ϕ) = AI
1√

ω(a)
e+

i
h̄ S(a) + BI

1√
ω(a)

e−
i
h̄ S(a), (105)

and in the tunnelling region I I by

φI I(a, ϕ) = AI I
1√
|ω(a)|

e+
1
h̄ I(a) + BI I

1√
|ω(a)|

e−
1
h̄ I(a). (106)

The particular combination of WKB wave functions in the Lorentzian and in the Euclidean
regions of the spacetime, i.e., the particular values of the constants AI,I I and BI,I I , depend
on the boundary condition that we impose on the state of the universe.

Hartle and Hawking [12,37,39] propose as the boundary condition that the path
integral must be performed over compact Euclidean geometries that fit with the “final”
values25 a0 and ϕ in the boundary Σ(a0) (see Figure 8). In the homogeneous and isotropic
minisuperspace, it is equivalent to the conditions [15]

a(τ0) = 0 ,
da
dτ

(τ0) = 1 ,
dϕ

dτ
(τ0) = 1. (107)

The wave function obtained for the Euclidean sections is e−I , with

I =
∫ a

0
da a (1− H2a2)

1
2 =

−1
3H2

(
1− (1− H2a2)

3
2

)
. (108)

It yields [7,12,15]

φI I
HH(a, ϕ) =

1

(1− H2a2)
1
4

exp
(

1
3H2

(
1− (1− H2a2)

3
2

))
. (109)

From the matching conditions of the WKB method, the Hartle–Hawking wave function
(109) implies a linear combination of oscillatory wave functions in the Lorentzian region
(a > a0) [7,12,15],

φI
HH(a, ϕ) =

1

(H2a2 − 1)
1
4

exp
(

1
3H2

)
cos

(
(H2a2 − 1)

3
2

3H2 − π

4

)
. (110)
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Figure 9. Hartle–Hawking “no-boundary” boundary proposal vs. Vilenkin’s tunnelling boundary
proposal. The H–H state implies a linear combination of expanding and contracting wave functions in
the Lorentzian region, where the tunnelling wave function corresponds only to expanding universes.

On the other hand, Vilenkin [40–42] proposes as the boundary condition, in an analogy
with the tunnelling process of quantum mechanics, that the only modes that survive
the quantum barrier are the “outgoing” modes, i.e., those that represent an expanding
universe26. It means that in the region I, the wave function of the universe is given
by [7,15,41,43]

φI
T(a, ϕ) =

AI(ϕ)

(H2a2 − 1)
1
4

exp

(
−i

(H2a2 − 1)
3
2

3H2

)
, (111)

where AI(ϕ) is a normalisation “constant” that can be found by imposing the regularity
conditions [15], ∂φ/∂ϕ→ 0 as a→ 0. Then, AI(ϕ) = exp

(
−1/3H2), for which φT ∼ e−

1
2 a2

,
that is regular at a → 0 for any value of the scale factor. By following the same WKB
procedure of matching conditions, we found in the Euclidean sector [15]

φI I
T (a, ϕ) =

1

(1− H2a2)
1
4

(
eI − i

2
e−I
)
≈ 1

(1− H2a2)
1
4

eI , (112)

where I is given by (108). Except for the values of the scale factor close to a0, the second
term in (112) is exponentially smaller than the first, so it is usually neglected.

Besides their conceptual meaning, the main difference between the wave function
of the two proposals is the different sign in the exponent of the pre-factor, exp

(
−1/3H2),

in the case of the tunnelling wave function, and exp
(
1/3H2), in the case of the no-boundary

wave function. The probability measures are different in both cases. Because the similarity
of the Wheeler–DeWitt equation with the Klein–Gordon equation, Vilenkin proposes to
use the probability current27 [43,44]

J =
i
2
(φ∗∇φ− φ∇φ∗), (113)

which is conserved because in virtue of the Wheeler–DeWitt equation it satisfies ∇ · J = 0.
The Hartle–Hawking wave function is real, so the probability measure (113) would yield
zero. These authors propose instead to use the customary probability measure of quan-
tum mechanics,

J = |φ|2. (114)

With these two choices, the probability for the creation of the universe reads [15]

P = J · dΣ ≈ exp
(
± 2

3H2(ϕ)

)
dϕ, (115)
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where the + sign is for the no-boundary wave function and the − sign for the tunnelling
wave function. Thus, as we have already noticed in Section 2.2, the no-boundary proposal
seems to favour small values of the potential (PHH → ∞ for H(ϕ)→ 0), and the tunnelling
proposal seems to favour the creation of universe with a large value of the potential (PT → 0
for H(ϕ)→ 0). Therefore, it is usually stated that Vilenkin’s tunnelling condition fits better
with the inflationary scenario [25,43].

2.5.2. Creation of the Universe from Something

Let us now analyse the case E ∈ (0,Umax) in (90). The corresponding Friedman
equation is obtained by substituting the value, pa = −aȧ, in (90). It yields(

ȧ
a

)2
= H2

0 −
1
a2 +

2E
a4 . (116)

We can see that the conformally massless scalar field can reproduce the effect of a radiation
content of the universe (ρ ∼ a−4, 〈Hm〉 ∝ a−1 in (86)). The Friedman Equation (116) can
also be written as

ȧ =
H0

a

√
(a2 − a2

+)(a2 − a2
−), (117)

with [26,45]

a2
± =

1
2H2

0

(
1±

(
1− 8EH2

0

) 1
2
)

. (118)

For the value, 1
8H2

0
= Umax > E > 0, the two Lorentzian regions are located at a > a+ and

a < a−, respectively. These two sectors represent two separated regions where the universe
may exist. In between, there is the Euclidean sector, which is a classically forbidden region.
We have therefore two different types of universes separated by a quantum barrier (see
Figure 7). In region I I I, the solution of (117) can be written as [36]

a(t) =
(

a2
− cosh2 H0∆t− a2

+ sinh2 H0∆t
) 1

2 , (119)

where, ∆t = t− t0, with

t̃0 =
1

H0
arctanh

a−
a+

. (120)

It represents a small universe that starts in a big-bang-like singularity at t = 0, expands
to the maximum value a−, at t = t̃0, and then re-collapses to a big-crunch-like singularity,
at t = 2t̃0. For a value H0 � 1, the evolution of this type of universe is like the evolution
of a radiation-dominated universe (see Figure 10). This kind of universes are called baby
universes [46], which are typically associated with quantum fluctuations of the spacetime.

Figure 10. The universes of region I I I are cyclic universes that start from a big-bang singularity and
end in a big-crunch one. In region I, the universe effectively behaves like a closed DeSitter spacetime.
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On the other hand, the solution of (116) in region I can be written as [36]

a(t) =
(

a2
+ cosh2 H0∆t− a2

− sinh2 H0∆t
) 1

2 , (121)

with ∆t ∈ (−∞, ∞). It represents a universe that contracts from infinity to the minimum
value a+, reached at ∆t = 0, and then, it expands again to infinity (see, Figure 10). This so-
lution is essentially very similar to the closed DeSitter universe. In fact, it can continuously
be transformed into the customary solution of the closed DeSitter spacetime in the limit
E→ 0, for which a− → 0 and a+ → 1/H0.

In between, there is a tunnelling region, where the solution of the Euclidean version
of the Friedman equation is the Euclidean instanton (102) with the scale factor given by

aE(τ) =
(

a2
+ sin2 H0∆τ + a2

− cos2 H∆τ
) 1

2 , (122)

where a± is given by (118), a ∈ (a−, a+), and

∆τ = τ − τ0 ∈ (0,
π

2H0
). (123)

The Euclidean instanton with scale factor (122) connects the maximum expansion hyper-
surface Σ(a−) of the baby universes of region I with the initial hypersurface Σ(a+) of the
large parent universe in region I (see Figure 11). It therefore connects the two regions,
and it also provides the first-order contribution to the probability of crossing the quantum
barrier and appearing in region I as a new-born universe (see, Ref. [36]). The universe is
then said to be created from something.

Figure 11. The creation of a large parent universe from a baby universe.

Gott and Li: The Universe Is Its Own Mother

The question of whether the universe is created from nothing or from something seems
to be rooted in the value of the energy E in the Friedman Equation (90). If E = 0, the
universe must be created from nothing, and if E > 0, the universe must be created from
something. However, the value E = 0 is controversial because from (96), E = n + 1/2,
so the value E = 0 would violate the uncertainty principle of quantum mechanics [45].
In their original study [12], Hartle and Hawking suggested that this term might be cancelled
by some renormalisation procedure. However, Gott and Li [45] argue that there is no
expectation for such an exact cancellation, and in fact, Barvinsky and Kamenshchik [47–49]
computed the renormalisation corrections and not only is the energy term not cancelled
but new similar terms appear. Even more, we have seen that the backreaction of the
perturbation modes of the spacetime produces a similar term in the Friedmann equation
(their energy density is given by 〈Hm〉/V ∝ a−4, where 〈Hm〉 ∝ a−1 in (85) for the
perturbations of the spacetime). Therefore, a term with E > 0 seems to be unavoidable.
One may argue that it can be effectively small, and thus it could be neglected. However,
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regardless of how small it can be, we have seen that the consequences for the creation of
the universe are very important.

A conceptual problem arises however if the universe is created from “something”
because then we need the existence of that “something” prior to the creation of the universe,
i.e., if the universe is created from the tunnelling of a quantum fluctuation of a pre-existing
spacetime, then, one should explain how the first spacetime has been created from which
the rest of the universes have subsequently been generated. Gott and Li give an apparently
exotic although quite interesting explanation. They argue and show [45] that in region I I I
there can exist closed temporal curves (CTC’s). In that case, the spacetime fluctuations
of a large parent spacetime can travel through a CTC and become the baby universe that
“tunnelled out” through the Euclidean barrier to give rise to the parent universe in an
atemporal process in which terms like “after” or “before” become meaningless. They are
only meaningful within the large parent regions of the spacetime where CTCs do not exist.
Thus, according to these authors, the universe could be its own mother.

2.5.3. Creation of Universes in Pairs

There is a way out of this paradoxic explanation. Even with the value E > 0 in (116),
there is still room for the universes to be created from nothing, i.e., from the Euclidean
region without the need of a pre-existing spacetime. However, as we have seen, the process
cannot be the one studied in Section 2.5.1 for the creation of a single universe from the
single Euclidean instanton (101). Instead, one has to consider more elaborated instantons.
For instance, one can consider the double Euclidean instanton that is formed by joining
together two single Euclidean instantons through their minimal hypersurfaces Σi(a−) (see,
Refs. [47,48] and Figure 12). The result is the creation from nothing of a pair of entangled
universes in the region I [50–52] (see Figure 12).

Figure 12. (Left) a double Euclidean instanton can be formed by matching two single Euclidean
instantons. (Right) The creation of a pair of entangled universes from nothing, i.e., from a double
Euclidean instanton.

Let us notice that, in terms of the same time variable, one of the universes of the
entangled pair is a contracting universe, and the other is an expanding universe so the
situation is very similar to the case of coexisting incoming and outgoing waves. The wave
function φ(a, χ) can therefore be written as

φ(a, χ) = φ+(a, χ) + φ−(a, χ), (124)

with φ±(a, χ) given by [36]

φ±(a, χ) =
N√
ωDS

e±
i
h̄
∫

ωDS(a)da ξ±(η±, χ), (125)
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where ωDS is the potential of the Wheeler–DeWitt equation for the DeSitter spacetime,

ωDS =
√

H2a4 − a2, (126)

and
ξ±(η±, χ) ≡ ξ(a = a(η), χ) = ∑

n
cne−

i
h̄ (n+

1
2 )η±ξn(χ), (127)

where ξn(χ) are the eigenfunctions of the harmonic oscillator28. As we have already seen
in Section 2.4.2, the two newborn universes can also be interpreted as two expanding
universes filled with matter and antimatter, respectively. Let us notice that if one inserts
the wave functions (125) into the Wheeler–DeWitt Equation (92), it is obtained at order h̄1

± 2ih̄ωDS
∂ξ

∂a
− h̄2 ∂2ξ

∂χ2 + χ2ξ = 0, (128)

which is the time -dependent Schrödinger equation

ih̄
∂

∂η±
ξ(η±, χ) =

1
2

(
−h̄2 ∂2

∂χ2 + χ2
)

ξ(η±, χ), (129)

provided that one identifies the (conformal) time variable of the background spacetime of
the two universes, φ±, by

∂

∂η±
= ∓ ωDS

∂

∂a
⇒ η± = ∓

∫ da
ωDS

= ∓
∫ dt

a
. (130)

If we assume that the physical time variable is the variable measured by real clocks, which
are made up of matter, and thus that it is the time that appears in the Schrödinger equation,
then, in terms of the physical time of an observer in one of the universes, the Schrödinger
equation for the fields in the partner universe turns out to be the Schrödinger equation of a
field ϕ̄ that is CP-conjugated with respect the field in the observer’s universe (see Section 3).
The two universes form then a universe–antiuniverse pair. The process can be compared
with the creation of an electron–positron pair (see Figure 1 of Ref. [40], and Figure 6), which
can be seen as the creation of an electron moving backward in time and an electron moving
forward in time. Here, the “time” variable is the scale factor, so “moving forward in
time” means an expanding universe, and “moving backward in time” means a contracting
universe. Therefore, the creation of a contracting–expanding pair of universes can be
paralleled with the creation of an electron–positron pair.

3. Third Quantisation Formalism
3.1. Historial Review

There was a great excitation in the 1980s with the formulation of the third quantisation
formalism and the associated description of topology change in quantum gravity [28,46,53–58].
At that time, the cosmological paradigm was a universe in a decelerating expansion with
a zero value of the cosmological constant. The third quantisation formalism, which was
initially proposed [53] as an analogue to the second quantisation formalism of a quantum
field theory, fit well with the description of the quantum fluctuations of the spacetime.
As a consequence of the interaction with the fluctuations of the spacetime, it turns out
that the coupling constants become dynamical functions, and this was seen as a possible
explanation for the expected vanishing value of the cosmological constant.

On the other hand, general relativity is a (local) geometrical theory, and therefore
it does not account for the global topology of the spacetime manifold. However, it may
perfectly happen that the foliation of the spacetime gives rise, at some given value t, to
a collection of simply connected spatial sections (see Figure 13 (Left)). From the point of
view of the evolution of the universe, the topology change represented in Figure 13 (Middle)
can be seen as the creation of a universe (universe B) from the pre-existing one (universe
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A). In fact, the process is formally similar to the QED process depicted in Figure 13 (Right),
which represents the creation of a photon from the propagation of an electron. As we
know from QED, this kind of process is better explained in the formalism of quantum field
theory where we can define the creation and annihilation operators of particles. Therefore,
it seems reasonable to develop a field theoretical approach too to describe the creation (and
annihilation) of the universe(s).

Figure 13. (Left) The foliation of a given spacetime can give rise, at some value t0, to two disconnected
spatial sections. (Middle) Schematic representation. (Right) Creation of a photon from the scattering
of an electron.

As an introductory example, let us consider the Wheeler–DeWitt equation of a closed
DeSitter spacetime (see (44)), which can be written as

φ̈ + ω2(a)φ = 0, (131)

where, φ = φ(a), φ̇ ≡ dφ
da , and

ω2(a) =
H2

0 a4 − a2

h̄2 , (132)

with H2 = Λ/3. Clearly, (131) is the equation of a harmonic oscillator with the scale factor
a playing the role of the time variable. One can assume then that (131) is the result of the
variational principle of the action of a harmonic oscillator with time-dependent frequency,

S3 =
∫

da
(

φ̇2 −ω2φ2
)

, (133)

from which one can obtain the conjugate momentum, Pφ = φ̇, and construct a the corre-
sponding Hamiltonian,

H3 =
1
2

P2
φ +

ω2

2
φ2. (134)

The third quantisation procedure consists in promoting the variables φ and Pφ to quantum
operators in the usual way, φ̂→ φ and P̂φ → −ih̄∂φ, and describing the quantum state of
the whole spacetime manifold by the use of a new wave function, Ψ(φ), constructed as

Ψ(φ) =
∫

δφe
i
h̄ S3 , (135)

in the path integral approach, or via the Schrödinger equation,

H3|Ψ〉 = ih̄
∂|Ψ〉

∂a
. (136)

One can also define the ladder operators, b̂ and b̂†, of this particular harmonic oscillator in
terms of the operators φ̂ and P̂φ, as usual, and construct the state of the whole spacetime
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manifold, whatever the topology it has29, in terms of the eigenstates of the number operator,
|N, a 〉, so

|Ψ〉 = ∑
N

CN |N, a 〉. (137)

The number states, |N, a 〉, would represent N universes with a scale factor a, and the
state of the whole spacetime manifold, |Ψ〉, would be a quantum superposition of different
number states (see Section 5). Classically, these N universes are disconnected, and therefore
one should just consider one of them as representing our universe and disregard the rest
as being physically irrelevant. However, from the quantum mechanical standpoint, new
phenomena may appear as quantum correlations and other collective behaviour, so it
seems interesting, at least in principle, to analyse the quantum description of the whole
many-universe state.

Parent and Baby Universes: The Hybrid Action

The third quantisation formalism was mainly applied in the 1980s–1990s to the descrip-
tion of the quantum fluctuations of the spacetime. Let us notice that the quantum gravity
of multiply connected spacetime manifolds can be applied to two well-distinguished cases:
one that accounts for the properties of large regions of the spacetime, called parent uni-
verses30, and another that focus on a local region of the spacetime where small pieces of
length of the order of the Planck length can branch off and disconnect from the parent
spacetime and become small baby universes [46]. In both cases, the spacetime manifold
under study turns out to be non-simply connected. However, in the 1980s–1990s, the idea
of a multiverse was not seriously considered, and the main problem at that time was to
explain the supposedly zero value of the cosmological constant31.

Then, from the point of view of the third quantisation formalism, our universe can then
be seen as a large parent universe propagating in a plasma of baby universes. The effects
of the baby universes could be measured by their influence on the observable properties
of the parent universe, and the most representative picture of the baby–parent universe
interaction becomes the hybrid action [46], in which the parent universe is described by
a second quantised wave function, φp(qa), and the baby universes are described by the
third quantised wave functions, φ̂b, i.e., the behaviour of the spacetime is assumed to be
classical, and its fluctuations are seen as small particles propagating in the parent spacetime.
The total action is then given by

ST = S0(a, ϕ) + Sb(φ̂b) + SI(a, ϕ; φ̂b), (138)

where S0(a, ϕ) is the Einstein–Hilbert action of the homogenous and isotropic parent
spacetime with scale factor a, and matter field ϕ, Sb(φ̂b) is the third quantised action of the
baby universes, while SI is the action of interaction,

SI(a, ϕ; φ̂b) =
∫

dtN ∑
i
Li(t,~x)φ̂i

b =
∫

dtN ∑
i
Li(t,~x)(b̂+i + b̂−i ), (139)

where the index i labels the different modes of the baby universe field (i.e., it labels different
species of baby universes), and Li(t,~x) is called the insertion operator at the nucleation
event [46]. It defines the space–time points of the parent universe in which the baby
universes effectively nucleate.

Two main problems were addressed in the 1980s using the third quantisation formal-
ism: the dynamical value of the coupling constants and the loss of quantum coherence
(decoherence) produced by the plasma of baby universes.
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As an example of the former, let us consider a universe with a matter field ϕ(t) that
is coupled to the spacetime through the interaction with the baby universes. The parent
universe two point function becomes [46]

G(ϕ f , ϕi) ∝ 〈φ̂b, 0|φp(ϕ f )φp(ϕi)|φ̂b, 0〉

= 〈φ̂b, 0|
∫ ϕ f

ϕi

dϕ(t)
∫ ∞

0
dN eiSp+iSI |φ̂b, 0〉,

(140)

where SI is given by (139) (for simplicity, let us assume just one specie of baby universes).
Now, suppose the baby universes are in a wave function eigenstate |α〉 , with φ̂b|α〉 = α|α〉,
where α satisfies (

∇2
q + m2

b

)
α = 0. (141)

In that case, the function (140) becomes

G(ϕ f , ϕi) ∝
∫ ϕ f

ϕi

dϕ(t)
∫ ∞

0
dN eiS̃p , (142)

where

S̃p =
∫

dtNa3
(

1
2N2 ϕ̇2 −V(ϕ)− κα

)
. (143)

The effects of the baby universes are thus encoded in an addition of an ordinary potential to
the second quantised action. The new term is dynamical in the sense that it must satisfy the
dynamical Equation (141). That was used as an argument for a possible mechanism for the
vanishing value of the cosmological constant, which was the expected value at that time.

The other question addressed with the third quantisation formalism was the loss of
quantum coherence of the matter fields caused by their propagation in the plasma of baby
universes. Basically, the argument was the following [54]. Let us suppose the composite
state between a matter field ϕ and the baby universes. Let |ϕ, n〉 be the state in which the
matter field is in the state |ϕ〉 and there are n baby universes. Then, the initial state is

|in〉 = |ϕin, 0〉, (144)

where |ϕin〉 is the initial state of the matter field. If we do not measure the state of the baby
universes, and we therefore integrate out their quantum state from the composite state
(144), then, the initial state is described by the density matrix [54]

ρin = |ϕin〉〈ϕin|. (145)

After the interaction with the baby universes, the final state becomes a linear combination
of the states of the fluctuations and the corresponding states of the matter field that come
out from the interaction with the |n〉 states. For simplicity, let us consider just two |n〉
states, |0〉 and |1〉. The composite state after the interaction would be

|out〉 = |ϕ0, 0〉+ |ϕ1, 1〉, (146)

where ϕ0 and ϕ1 are in general different, and the linear combination in (146) can be
weighted accordingly. Then, the reduced density matrix that describes the state of the
matter field alone becomes after the interaction

ρout = |ϕ0〉〈ϕ0|+ |ϕ1〉〈ϕ1|. (147)

The field turns out to be in a statistical mixture of two states. The initial state was a pure
state, i.e., a state of total information with zero entropy, S = 0. The final state, instead,
becomes a mixed state with entropy, S > 0, so information (quantum coherence) has been
lost. Coleman’s argument was that the operators of the baby universes must be independent
of the coordinates of the parent spacetime, and thus, the coupling with the matter fields is
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independent of their evolution. In that case, the state of the field does not change along the
time evolution because the states of the baby universes do not change in time32. However,
counterarguments were also given for the loss of quantum coherence [60,61].

3.2. Quantum Field Theory in M ≡ Riem(Σ)
3.2.1. Geometrical Structure of M

We have seen in Section 2 that the evolution of the universe can be seen as the
time evolution of the 3-dimensional metric that is induced on the spatial hypersurfaces
by the 4-dimensional metric that is the solution of the Einstein’s equations. Therefore,
the evolution of the universe is a trajectory in the space of Riemannian symmetric 3-metrics
with components, hab. Let us call it M. With the DeWitt metric (7), M becomes a metric
space, where we can define the line element as

ds2 = Gabcddhabdhcd. (148)

However, not all of the hab components are independent. A symmetric 3-metric has only 6
independent components, so it turns out that M is isomorphic to R6. Thus, we can make
the following choice for the coordinates33 in M,

qA = {h11, h22, h33,
√

2h23,
√

2h13,
√

2h12}, (149)

in terms of which the line element (148) can be written

ds2 = GABdqAdqB, (150)

where GAB is a 6-dimensional metric tensor that is related to the components of DeWitt’s
metric, Gabcd. The signature of M is (−,+,+,+,+,+), which is easy to check for the case
of the flat metric, hab = δab, and because the signature remains invariant under a change
of coordinates, it holds then for the general case too. Thus, DeWitt showed [10] that the
6-dimensional space M is indeed a 5 + 1 dimensional space with a 1 time-like dimension
and an orthogonal 5-dimensional space-like subspace. As the coordinate of the time-like
subspace, it is appropriate to take the coordinate τ defined by [7,10,62]

τ =

(
32
3

) 1
2
h1/4, (151)

where, h = dethij, which essentially represents the volume of an infinitesimal volume
element of the spatial sections of the spacetime (V ∝

∫
dx3
√

h). The hypersurfaces of
constant τ are the space-like sections of M, labelled by M̄ [10]. Then, in terms of the
variables, qµ = {τ, q̄A}, where q̄A, with A = 1, . . . , 5, are the five coordinates in M̄, the line
element (150) becomes

ds2 = −dτ2 + h2
0τ2ds̄2 = −dτ2 + h2

0τ2ḠABdq̄Adq̄B, (152)

where, h2
0 = 3/32, and ds̄ is the line element in M̄, with [10]

ḠAB = tr
(

h−1h,Ah−1h,B

)
≡ hij ∂hjk

∂q̄A hkl ∂hli
∂q̄B . (153)

The metric (153) is invariant under a conformal transformation of the metric, and in
particular, it is invariant under the change, hab → ξ(h)hab, so it is convenient labelling the
points of M̄ with the five independent components of the transformed metric,

h̄ab = h−
1
3 hab, (154)
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which has a unit determinant. Furthermore, M̄ is noncompact and diffeomorphic to
Euclidean 5-space [10], with the Ricci tensor R̄AB given by34

R̄AB = −3
4

ḠAB, (155)

and scalar curvature
R̄ = −15

4
≡ k

a2 , (156)

with k = −1. M̄ is then an “Einstein space” of constant negative curvature. In a homoge-
neous universe, the time-like variable τ represents the volume of the spatial sections of the
universe, and the five coordinates, h̄ab, represent the shape of a unit volume. A fixed point
in M̄ represents therefore the evolution of a universe that scales the volume of the spatial
sections without changing their shape, and lines of constant τ represent different shapes
of the spatial sections of the universe with a fixed given volume. Thus, the line element
(152) reveals the space M as a set of “nested” 5-dimensional submanifolds, all having the same
intrinsic shape [10]. From that point of view, the 5-dimensional submanifold M̄ can be seen
as a proper realisation of what is called the “shape space” [63].

On the other hand, the space M with the metric (152) has the same formal structure of
a Friedmann–Robertson–Walker spacetime with the hyperbolic 5-space H5 as the “spatial”
section. In particular, it has the same formal structure as the Milne spacetime35. Therefore,
one can find a set of coordinates (χ, θ, φ, ψ, ζ) in M̄ in terms of which the metric (152) can
be written as36

ds2 = −dτ2 + τ2
(

dχ2 + sinh2 χdΩ2
4

)
, (157)

where, χ ∈ [0, ∞), and dΩ2
4 is the line element on the 4-sphere of unit radius

dΩ2
4 = dθ2 + sin2 θ

(
dφ2 + sin2 φ(dψ2 + sin2 ψdζ2)

)
. (158)

The Milne spacetime is a particular coordination of part of the Minkowski spacetime. It
does not cover the whole Minkowski spacetime but only the interior of the upper (or the
lower, with a time reversal change) light cone of the Minkowski spacetime. Something
similar occurs in M. Let us introduce the variables

T = τ cosh χ , R = τ sinh χ, (159)

in terms of which the line element (157) becomes

ds2 = −dT2 + dR2 + R2dΩ2
4, (160)

with 0 < T < ∞ and 0 < R < ∞. The metric (160) is nothing more than the metric
of a 6-dimensional Minkowski space, and the Milne space only covers the upper light
cone (see Figure 14). The interior of the lower light cone is covered by a time reversal
change of coordinates, τ → −τ (let us notice that the metric (152) is invariant under this
change). However, although the manifold M̄ is geodesically complete, the manifold M is
not. The scalar curvature of M,

R = −20
τ2 (161)

presents a singular frontier of infinite curvature, located at τ = 0, where all geodesics
in M eventually hit [10]. It means that the upper and the lower light cones of the 6-
dimensional Minkowski space must be considered independently. They represent two
time-reversed copies of the universe, i.e., two universes related by a time reversal change
of the time (volume) variable. We shall see that, quantum-mechanically, this can be seen as
a universe–antiuniverse pair.
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Figure 14. The space of three metrics, M, turns out to be a particular coordination of upper (lower)
light cone of a 6-dimensional Minkowki space. Every point in the T, R plane is a four-sphere of unit
radius. Lines of constant τ are lines of constant volume of the spatial sections of the spacetime (with
different shapes). Lines of constant χ correspond to different volumes of the same shape (a scaling
universe). Something similar occurs in the lower light cone, which would represent a time-reversed
copy of the universe.

3.2.2. Classical Evolution of the Universe

Let us now analyse the evolution of the universe in the space, M ≡ Riem(Σ). From a
geometrical point of view, the evolution of the universe is the trajectory that extremizes the
Einstein–Hilbert action (6), which can conveniently be written as37[7]

SEH =
1
2

∫
M

dtd3xN
(

1
N2 Gabcd ḣab ḣcd −m2(hab)

)
, (162)

where the rescale, Gabcd → 1
32πG Gabcd, was madewith G the Newton’s constant, and the

potential terms of the Einstein–Hilbert action have been gathered in a mass term

m2(hab) =

√
h

8πG

(
2Λ−(3) R

)
. (163)

In term of the variables, qA = (τ, q̄A), the action (162) can be written

SEH =
1
2

∫
M

dtd3xN
(

1
N2 GAB q̇A q̇B −m2(qA)

)
, (164)

where GAB, is given by (152) or (157). The Einstein–Hilbert action has been written in the
form of (164) to make clear the formal resemblance with respect to the action of a particle
that moves in the spacetime,

S[xµ(λ)] =
1
2

∫ ( 1
N2 gµν ẋµ ẋν −m2

)
Ndλ, (165)

with ẋµ = dxµ

dλ , for which the trajectory is given by the geodesic equation,

ẍµ + Γµ
αβ ẋα ẋβ = 0, (166)

with

Γµ
αβ =

1
2

gµν

(
∂gαν

∂xβ
+

∂gβν

∂xα
−

∂gαβ

∂xν

)
. (167)
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The case of the universe is formally similar. The evolution of the universe is a trajectory
in M. The only difference is the trajectory is not a geodesic38 because of the non-constant
potential, m2(hab). Instead, it is given by

q̈A + ΓA
BC q̇B q̇C = −GAB ∂V(q)

∂qB , (168)

where q̇A = dqA

dt and 2V = m2(hab), and the Christoffel’s symbols, are defined analogously
in terms of the metric components as

ΓA
BC =

1
2

GAD
(

∂GDC
∂B

+
∂GBD

∂C
− ∂GBC

∂D

)
. (169)

In terms of the variables (τ, qA), the Equation (168) turn out to be

τ̈ + h2
0τḠAB ˙̄qA ˙̄qB =

∂V
∂τ

, (170)

¨̄qA +
2τ̇

τ
˙̄qA + Γ̄A

BC ˙̄qA ˙̄qB = − 1
h2

0τ2
ḠAB ∂V

∂q̄B , (171)

As we have seen in the preceding section, a geodesic in M eventually hits the singular
frontier located at τ = 0 (the zero volume hypersurface). However, because of the potential
term, which may also include the Lagrangian of the matter fields, the universe does not
follow a geodesic in M and may thus avoid the singular frontier. The paradigmatic case is
the closed DeSitter spacetime. In addition to (170) and (171), one can use the Hamiltonian
constraint (11), which in terms of the (τ, q̄A) coordinates reads,

τ̇2 = h2
0τ2ḠAB ˙̄qA ˙̄qB + m2 = h2

0τ2 ˙̄s2 + m2. (172)

In the case that the right hand side of (171) is zero, it can be shown that [10], ˙̄s = α/τ2,
with α a constant of integration39, and then

τ̇2 =
h2

0α2

τ2 + m2. (173)

In the case for which, Λ� 3R, the potential is proportional to τ, m2 = h2
0H2

0 τ2, and

τ̇2 = h2
0

(
α2

τ2 + H2
0 τ2
)

, (174)

whose solutions are given by

τ2(t) = α sinh(2H0∆t̃− ln H0α), (175)

for α 6= 0 and
τ(t) ∝ eH0∆t̃, (176)

for α = 0 (FRW spacetime) with ∆t̃ = h0∆t. From (175) and (176), one can see that,
as expected, for a universe stage in which Λ� 3R the expansion of the volume element
is exponential.

3.2.3. Quantum Field Theory in M

As we have seen above, the third quantisation40 procedure consists in promoting the
field φ(hab) and its conjugate momentum to quantum operators. One can then pose another
wave function, Ψ, as in (135)–(137), and work with the corresponding Schrödinger equation
(see, (136)). However, it turns out to be much more interesting to develop and study the
quantum field theory (QFT) of the field φ(hab) propagating in the 6-dimensional space M.
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Let us first notice that, in terms of the coordinates qA = {τ, q̄A} (see Equation (152)),
the Hamiltonian constraint (11) can be written as

H = GAB pA pB + m2(q, ϕ) = 0, (177)

where GAB is the inverse of (152), and in m2(q, ϕ) we have also included the Hamiltonian of
the matter fields (which for simplicity have not been considered so far) that can generically
be encapsulated in a variable ϕ,

m2(q, ϕ) = m2
g(q) + 2Hm(q, ϕ), (178)

with, m2
g(q), given by (see, Equation (163))

m2
g(q) =

h2
0τ2

8πG

(
2Λ− 3R(q)

)
, (179)

and
Hm =

1
2h2

0τ2
p2

ϕ + . . . + h2
0τ2V(ϕ), (180)

where the dots indicate terms that contain spatial derivatives of the matter fields, which for
simplicity we shall consider negligible.

Under canonical quantisation of the momenta in the Hamiltonian constraint (206), one
obtains the Wheeler–DeWitt equation, which, with an appropriate choice of factor ordering,
can also be written as, (

−h̄2�q + m2(q, ϕ)
)

φ(q, ϕ) = 0, (181)

where φ(q, ϕ), is the wave function of the universe [12], and

�q = ∇~∇ =
1√
−G

∂

∂qA

(√
−G GAB ∂

∂qB

)
, (182)

where G = det GAB; we have used the customary definitions of the gradient and the
divergence in a curved space,

~∇φ = GAB ∂φ

∂qB , ∇ · ~F =
1√
−G

∂

∂qA

(√
−GFA

)
. (183)

With these definitions, the Wheeler–DeWitt Equation (181) can be obtained from the varia-
tional principle of the third quantised action

S(3) =
1
2

∫
dq
√
−G

(
−h̄2~∇φ · ~∇φ−m2(q)φ2

)
, (184)

Variation of (184) with respect to the wave function φ gives rise to the wave Equation (181).
Now, following the analogy with a QFT, we can define a conserved current in the super-
space,

~J = ih̄
(

φ∗~∇φ− (~∇φ∗)φ
)

, (185)

from which it can easily be checked that ∇ ·~J = 0 and the following inner product

(φm, φn) = ih̄
∫

d~Σ
(

φ∗m~∇φn − (~∇φ∗m)φn

)
, (186)

where d~Σ is the future-oriented surface element of the 5-dimensional spacelike subspace.
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The procedure of field quantisation consists in promoting the wave function φ(q) to
an operator and expanding it into modes that are orthonormal with respect to the inner
product (186). Then [56]

φ̂(q) = ∑
n

φn(q)Ân + φ∗n(q)Â†
n, (187)

where φn(q) is a complete set of orthonormal solutions of the Wheeler–DeWitt Equa-
tion (181), the index n symbolises the particular set of quantum number associated to
that state [56], and Â†

n and Ân are the creation and annihilation operators of modes φn,
respectively, satisfying the customary commutation relations,

[Ân, Â†
m] = δnm , [Ân, Âm] = 0 = [Â†

n, Â†
m]. (188)

In terms of the variables (τ, q̄), the label n of the modes φn in (187) can be associated to
the 5-dimensional spacelike momentum of the particles that propagate in the space M.
In particular, we have seen that M has the geometrical structure of a 5 + 1-dimensional
Friedmann–Robertson–Walker universe, so we can use this information to develop the
quantisation of the field φ(q). In terms of the coordinates qA = (τ, q̄A), the Laplace–
Beltrami operator (182) can be written as,

�q = − 1
τ5

∂

∂τ

(
τ5 ∂

∂τ

)
+

1
τ2�q̄, (189)

where �q̄, is the corresponding 5-dimensional Laplacian (that with �q̄ is given by (182)
with the 5-dimensional metric ḠAB instead of GAB and without the minus sign in the
square roots). In conformal time, λ = ln τ, and with the rescale, φ(q) = e−2λφ̃(λ, q̄), the
wave Equation (181) (i.e., the Wheeler–DeWitt equation) becomes [75]{

∂2

∂λ2 −�q̄ +

(
m2

h̄2 e2λ − 4
)}

φ̃(λ, q̄) = 0. (190)

However, the ”mass” of the field (260) is not a constant. Even considering just the geometri-
cal degrees of freedom, it continues being a non-constant function of the components of the
metric tensor hij (or, equivalently, of the variables qA) through the dependence on the 3R
curvature (see (179)). In that case, the space M turns out to be a dispersive medium for the
wave function of the universe. It does not invalidate the formalism, but it becomes more
complicated from a technical point of view. For that reason, let us focus on the case for
which 3R� 2Λ, which, on the other hand, is a very plausible condition for the initial state
of the universe41, and consider only the geometrical degrees of freedom plus the constant
Λ. We can then assume the value42

m2
g(q) ≈

h2
0Λ

4πG
τ2 ≡ h̄2m2

0e2λ, (191)

in the Wheeler–DeWitt Equation (181). In that case, the mass (260) only depends on the
time variable τ, and we can perform the quantisation of the field φ in the customary way
(see, for instance, Refs. [76,77]). Then, we can decompose the wave function of the universe
φ(q) in normal modes as

φ(q) =
∫ ∞

0
dk ∑

~j

[akuk(q) + a†
ku∗k(q)], (192)

where, k = (k,~j),
uk(q) = e−2λχk,J(λ)YJ, ~M(q̄), (193)
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and Yk,~j(q̄) are the eigenfunctions of the Laplacian defined on the 5-dimensional hyper-
boloid, which satisfy [78]

�q̄Yk,~j(q̄) = −(k
2 + 4)Yk,~j(q̄), (194)

with 0 < k < ∞, and ~j denotes the four indices that distinguish the four components
of the generalisation of the angular momentum on the four spheres43. Thus, the wave
Equation (181) (i.e., the Wheeler–DeWitt equation) reduces to

χ′′k +
(

m2
0e2λ + k2

)
χk = 0, (195)

where χ′ ≡ dχ
dλ . One interesting thing is that the frequency squared of the oscillator (195),

ω2
k(λ) ≡ m2

0e2λ + k2, is never negative. The other interesting thing is that (195) is readily
solvable in terms of Bessel functions. With the customary normalisation condition

χk∂λχ∗k − χ∗k ∂λχk = i. (196)

we easily find two set of orthonormal modes given by [75]

χ̄k(τ) =

(
2
π

sinh(πk)
)− 1

2
J−ik(m0τ), (197)

χk(τ) =

√
π

2
e

kπ
2 H(2)

ik (m0τ). (198)

3.2.4. Boundary Conditions and the Creation of the Universes in Pairs

In order to choose the particular set of modes, we have to impose some boundary
condition. For this, we shall consider the multiverse as a really closed system, so no external
influence is expected to modify its state. Therefore, it seems appropriate to describe the
state of the multiverse in a representation that is invariant under the evolution of the
third quantised Hamiltonian, which is an extension of the invariant representation used in
quantum mechanics [31–33,79–86].

An invariant representation can be given in terms of creation and annihilation opera-
tors, b̂k and b̂†

k, defined as [83]

b̂k =
i√
h̄

(
ξ∗k p̂φ − (ξ∗k )

′φ̂
)

, b̂†
k = − i√

h̄

(
ξk p̂φ − (ξk)

′φ̂
)
, (199)

where, φ̂ and p̂φ, are the operator version of the wave function and the conjugate momen-
tum, respectively, and ξk is a solution of the wave Equation (190), or equivalently with
(195), the orthonormality condition (196), which ensures the usual commutation relations,

[b̂k, b̂†
k] = 1. (200)

The operators b̂k and b̂†
k in (252) are time-dependent operators, but the dependence is such

that the the eigenstates of the corresponding number operator, N̂k = b̂†
kb̂k, remain invariant

under the action of the third quantised Hamiltonian. It means, for example, that once the
multiverse is in the vacuum state of an invariant representation it remains in the same
vacuum state irrespective of the internal histories of the connected pieces of the whole
spacetime manifold. From this point of view, the multiverse does not evolve in a proper
sense, although the time dependence of the vacuum state makes that the vacuum state
at (conformal) time, λ0, is functionally different than the vacuum state at λ1, being both
however the same vacuum state of the same invariant representation.

The conditions (196)–(252) do not fix the vacuum state. There is in fact an infinite
number of solutions that fit with (196)–(252), each of which define a particular represen-
tation and the associated vacuum state. For instance, the modes (259)–(264) define two
vacuum states, |0̄k0̄−k〉 and |0k0−k〉, respectively. The modes (259) can be identified with
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the Hartle–Hawking no-boundary condition, first, because they are regular at the Euclidean
origin44, τ → iτ → 0, and, second, because that holds for large values of the variable
τ, χ̄k(τ) ∝ cos m0τ, which essentially matches with the result (23). On the other hand,
Vilenkin’s tunnelling wave function can be identified with the mode (264), because at
large values of τ it reads, χk(τ) ∝ e−im0τ , which represent, in terms of the time variable t,
an expanding universe (see, Sections 2.2 and 2.3). One can also follow the analysis made in
Ref. [76] to conclude that the state |0̄k0̄−k〉 is the conformal vacuum state and that the state
|0k0−k〉 is the vacuum state of the 6-dimensional Minkowski space, M.

Regardless, these two set of modes are related by a Bogolyubov transformation,

χ̄k = αkχk + βkχ∗k, (201)

where (see, for instance, Ref. [76])

αk =

[
eπk

2 sinh(πk)

] 1
2

, βk =

[
e−πk

2 sinh(πk)

] 1
2

, (202)

with, |αk|2 − |βk|2 = 1. It means that the vacuum state of the χ̄k modes, |0̄k0̄−k〉 can be
written as [75,77]

|0̄k0̄−k〉 = ∏
k

1
|αk|1/2

(
∞

∑
n=0

(
βk
αk

)n
|nkn−k〉

)
, (203)

with a number of universes in the no bar representation given by

Nk = |βk|2 =
1

e2πk − 1
, (204)

which corresponds to a thermal distribution with generalised temperature

T =
1

2π
. (205)

Then, one can state that, in this case, the Hartle–Hawking no-boundary version of the
vacuum state is full of (Vilenkin’s) universes (and antiuniverses) [75]. This result is very
interesting because it implies that the consideration of universe–antiuniverse pairs seems
to be quite unavoidable. It is formally similar to what happens in the quantum field theory
of a matter field in an isotropic background spacetime, where the isotropy of the space
makes that the particles are created in pairs with opposite values of the field modes, k and
−k (see (203)), and in the case of a complex field in particle–antiparticle pairs with opposite
momenta. In the third quantisation formalism, the space-like subspace M̄ is homogeneous
and isotropic. Therefore, if the potential of the Wheeler–DeWitt equation is also isotropic
in M̄, i.e., invariant under rotations in M̄, the universes should be created in pairs with
opposite values of the 5-dimensional k (≡ k̄ab) modes. This is not the most general case,
but it is a quite plausible one provided that we assume a high value of the potential
of the inflaton field, which can be identified at the initial stage of the universe with Λ,
or equivalently, a small value of the spatial curvature 3R of the newborn universe. In both
cases, the potential term of the Wheeler–DeWitt equation can be approximated by (191),
and small deviations can be treated as perturbations, which should not significantly violate
the isotropy of the space M̄.

This could be confirmed as well from a more geometrical point of view. Let us notice
that the Milne spacetime can separately cover the interior of the upper and the lower
light cones of the Minkowski spacetime. These two sections of the full light cone can be
seen as the regions of the spacetime where future-oriented particles and past-oriented
particles, or antiparticles, are propagated, which turn out to be entangled [87]. One
would expect something similar in the case of the space M, which also covers the upper-
and lower-half light cones of the 6-dimensional Minkowski space. These two regions
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would describe expanding and contracting universes (created in pairs as we have seen
above), which are equivalent to the future- and past-oriented particles in Minkowski
spacetime. Thus, much in a similar way as particles propagating backwards in time can be
interpreted as antiparticles propagating forward in time [88], we have seen in Section 2,
and we will see it again in the next section, contracting universes can be seen as expanding
antiuniverses with a time variable that is reversely related with respect to the time variable
of the partner universe. It means that the fields that propagate in one of the two entangled
universes appear, from the point of view of an hypothetical observer in the partner universe,
as moving backward in time. This is an illusory effect created by the relative definition
of the time variables in the two universes, i.e., internal observers always define the fields
that propagate in their universes as matter and the fields that propagate in the partner
universe as antimatter. Furthermore, the value of each mode of the Fourier decomposition
in (192) is proportional to the momentum conjugated to the components of the scaled
metric tensor. It means that any change that is produced by the momentum associated to
+k̄ab in the shape of the universe with metric h̄ab is being also produced in the shape of the
partner universe with opposite sign, −k̄ab, so it is the parity of the two spatial sections tat
is reversely related too, and so it is the relative parity of the fields that propagate in the
two universes. In the next section, we shall see that the fields that propagate in the two
universes are also charge-conjugated as a consequence of the reversely relation of their
time variables. It turns out therefore that the field of the two universes is CP-conjugated.
One can then conclude that, quite generally, the universes of the multiverse are created in
symmetric universe–antiuniverse pairs whose composite quantum state is also expected to
be entangled [50,89,90].

3.2.5. Semiclassical Regime

If one takes into account the matter fields, the total Hamiltonian constraint (206) can
be written as,

ĤTφ =
(

ĤG + ĤSM
)
φ = 0, (206)

where ĤG is the Hamiltonian operator that yields the WDW equation of the spacetime
geometry alone (181) with Λ related to the constant part of the potential of the field that
drives the inflationary period, 2Λ = 2V0 ≡ H2

0 , and ĤSM (Hm in (260)) is the Hamiltonian
operator of the matter fields, which essentially are the fields of the Standard Model (SM)
with their corresponding potentials and interactions. Following the procedure described
in Section 2.3, the wave function of the universe can be written as the product of two
components, a wave function φ0 that depends only on the gravitational degrees of freedom
and the value of the constant Λ and a wave function that contains all the dependence on
the fields of the SM, collectively denoted by the variable, ϕ, i.e

φ±(hij, Λ; ϕ) = φ±0 (hij, Λ)ψ±(hij, Λ; ϕ), (207)

where the two signs have been introduced for later convenience and φ+ = (φ−)
∗. The wave

function φ0 is the solution of the WDWE of the geometrical degrees of freedom, computed
in the preceding section. In general, it can be written in the semiclassical approach as

φ±0 (hij, Λ) ∝ e±
i
h̄ S(hij ,Λ). (208)

If one introduces the wave function (207) into the complete WDW equation and use the
classical constraint (30) one obtains, at order h̄1, the following equation (see (33))

∓ 2ih̄~∇S · ~∇ψ± = HSMψ±, (209)
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where ~∇ is the gradient in M, and the negative and the positive signs correspond, re-
spectively, to φ+ and φ− in (207). The Schrödinger equation for the matter fields is then
obtained if one defines the (WKB) time parameter t through the condition,

∂

∂t
= ∓2~∇S · ~∇ ≡ ∓2Gαβ ∂S

∂qα

∂

∂qβ
, (210)

where qα = (τ, q̄A), and q̄A are the coordinates of M̄ given in (152). We have now two
choices. Typically, the positive sign in (210) is chosen for the spacetime represented by
the wave function φ−0 and the negative sign for the spacetime represented by the wave
function φ+

0 . With these choices, the Schrödinger equation in the two branches turns out
to be

ih̄
∂ψ±
∂t±

= HHSM(ϕ)ψ±, (211)

where it can now be written ψ± = ψ±(t±; ϕ). From (210), one easily gets

∂τ

∂t±
= ±2

∂S
∂τ

, (212)

so the wave functions ψ± represent two universes, one expanding and one contracting
(recall that the variable τ is proportional to the volume of the space), which from (211)
are both filled with matter. An alternative although equivalent interpretation is to choose
the positive sign in (210) for both universes, i.e., t ≡ t+. In that case, both wave functions
represent expanding universes, but then the corresponding Schrödinger equations for the
internal fields are given by

ih̄
∂ψ+

∂t
= HHSM(ϕ)ψ+, (213)

−ih̄
∂ψ−
∂t

= HHSM(ϕ)ψ−, (214)

respectively. The last of which can be written as,

ih̄
∂ψ+

∂t
= HHSM(ϕ̄)ψ+, (215)

where we have used that ψ∗−(ϕ) = ψ+(ϕ̄). It is therefore the Schrödinger equation of a field
that is charge-conjugated with respect to the field given in (213). The wave functions φ+

and φ− represent then two expanding universes, but, from the point of view of the same
time variable, one is filled with matter and the other with antimatter, these two concepts
having always a relative meaning.

Let us focus on the wave function of the matter fields in one of the universes, say, ψ+.
If we consider that the modes of the field are decoupled, then, the Schrödinger equation
for the scalar field ϕ+, which generically denotes any of the polarisations of the W± and Z
bosons, can be written as the product of the wave functions of the modes, i.e.

ψ+(t, ϕ) = ∏
k

ψ
(k)
+ (t, ϕk), (216)

where ψ
(k)
+ (t+, ϕk) is the solution of the Schrödinger Equation (213) for each mode, whose

general solution can be expressed in the basis of number eigenfunctions of the time-
dependent harmonic oscillator [35].

The wave function in the time reversely symmetric universe, ψ−(t, ϕ̄), can be obtained
from the relation ψ−(ϕ̄) = ψ∗+(ϕ), so the eigenfunctions of the basis for the state of the
boson fields in the symmetric universe turn out to be given by (283) with the replacements,
t → −t and ϕk → ϕ̄k. Thus, the field ϕ that represents the matter content of one of the
universes is the charge conjugated of the field ϕ̄ that represents the matter content of the
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partner universe. We have seen in the preceding section that their parity is also reversely
related, so ϕ̄ turns out to be a CP-conjugated field of the field ϕ. Thus, the matter content
of one of the universes is the CP conjugated of the matter in the partner universe, and
they form thus a universe–antiuniverse pair. It does not necessarily mean that one of the
universes is completely made up of matter and the other is made up of antimatter. In fact,
the two universes can contain matter as well as antimatter but exactly in the opposite
ratio; so, from the global point of view, the total amount of matter in the two universes is
balanced with the total amount of antimatter.

3.3. Minisuperspace Model
3.3.1. Geometrical Structure of the Minisuperspace

Let us now apply the third quantisation formalism to the case of the minisuperspace
of homogeneous and isotropic metrics with small perturbations that represent the matter
content of the universe. The formalism greatly simplifies, and one can still obtain a clear
picture of the scenario described by the third quantisation formalism. On the other hand,
we have seen that the minisuperspace description of the universe, although not complete, is
a good approximation for most of the evolution of the universe provided that the universe
is created with a length scale of some orders of magnitude above from the Planck length.
In that case, the small deviations from the homogeneity and the isotropy of the universe
can be treated as perturbations described as particles propagating in the homogeneous and
isotropic background.

Let us therefore consider the homogeneous and isotropic Friedmann–Robertson–
Walker (FRW) metric as the background spacetime (36)

ds2 = −N2(t)dt2 + a2(t)dΩ2
3,

where a(t) is the scale factor, and dΩ2
3 is the line element on the three sphere45. We saw in

Section 2 that the lapse function is not a dynamical variable, so the only dynamical variable
turns out to be the scale factor, a(t). In this case, all the components of the spatial metric
are fixed except for the value of the scale factor. M̄ turns out to then be a 0-dimensional
space, where the spatial sections of the universes are represented by single points and their
evolution by (curved) lines in the 1 + 0-dimensional space M.

This picture can easily be extended by considering as well the homogeneous mode
of some matter fields, represented by a set of scalar fields, ~ϕ(t) = (ϕ1(t), . . . , ϕn(t)),
minimally coupled to gravity. We will see that these fields enter as space-like variables
in the configuration space. For simplicity, we shall consider only one single scalar field
representing the matter of the universe, so the configuration space, M, will be a 1 + 1-
dimensional space. In addition, one can also consider the inhomogeneous modes of these
fields, so the total configuration space would be the 1 + n ·∞-dimensional space spanned
by the variables, (a(t), ϕ1,k(t.x), . . . , ϕn,k(t, x)). For simplicity, we shall only consider46 the
homogeneous mode of a single scalar field, ϕ, and its inhomogeneities will be treated as a
perturbation described by particles propagating in the spacetime. Therefore, by now let us
consider the 1 + 1-dimensional configuration space M of coordinates, qA ≡ (a, ϕ).

The total action, i.e., the Einstein–Hilbert action of gravity plus the action of the scalar
field, given by (37), can be written as

S = Sg + Sm =
1
2

∫
dtN

(
GAB

q̇A q̇B

N2 − V(q)
)

, (217)

where, qA = (a, ϕ), with the supermetric Gabcd in (13) given now by [7]

GAB = diag(−a, a3), (218)
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from which one can clearly see that the scale factor (i.e., the first component) is a time-like
variable and the scalar field (the second component) is a space-like variable. The potential
term, V(q) in (221), reads

V(q) ≡ V(a, ϕ) = −a + 2a3V(ϕ). (219)

The first term in (219) comes from the closed geometry of the three space, and V(ϕ) is
the potential of the scalar field. The case of a spacetime with a cosmological constant, Λ,
is implicitly included if we consider a constant value of the potential of the scalar field,
V(ϕ) = Λ/6. As we showed in Section 3.2.2, the evolution of the universe can be seen as a
parametrised trajectory of the superspace with the variable τ ∝

√
h formally playing the

role of a time variable. In the case of the minisuperspace,
√

h = a3; but it is interesting to
change to a conformal scale factor, α = ln a, in terms of which the metric GAB turns out to
be conformal to the 2-dimensional Minkowski space,

GAB = e3αηAB, (220)

and the action (221) can be written as,

S = Sg + Sm =
1
2

∫
dtNe3α

(
ηAB

q̇A q̇B

N2 −
(

H2(ϕ)− e−2α
))

, (221)

where e3α = a3 is essentially the volume of the spatial sections, and H2(ϕ) = 2V(ϕ)
is the Hubble function. From the signature of (220), it can be seen that the scale factor
formally plays the role of the time variable and the matter field(s) the role of the space-like
component(s), and the minisupermetric (220) provides the minisuperspace with a complete
metric structure with a line element given by

ds2 = GABdqAdqB = −ada2 + a3dϕ2 = e3α
(
−dα2 + dϕ

)
. (222)

It also allows us to define the usual machinery of a geometric manifold. For instance,
we can define the Christoffel symbols associated to the minisupermetric GAB, defined as
usual by

ΓA
BC =

GAD

2

{
∂GBD

∂qC +
∂GCD

∂qB −
∂GBC

∂qD

}
, (223)

which, in terms of the variables (a, ϕ), the non-zero values are

Γa
aa =

1
2a

, Γa
ϕϕ =

3a
2

, Γϕ
ϕa = Γϕ

aϕ =
3
2a

, (224)

or in terms of the variables (α, ϕ),

Γα
αα = Γα

ϕϕ = Γϕ
ϕα = Γϕ

αϕ =
3
2

. (225)

In any case, we could compute other geometrical properties of the minisuperspace like the
corresponding Riemann tensor, the curvature scalar, etc. (see Ref. [10]).

From the geometrical point of view, the evolution of the universe can be seen as a
trajectory in the minisuperspace (see Figure 15), with a(t) and ϕ(t) being the parametric
coordinates of the universe along the worldline of the universe, and the time variable t is the
parameter that parametrises the trajectory. From that point of view, it is easy to see that the
evolution of the universe, i.e., the trajectory of the universe in the minisuperspace, cannot
depend on the particular choice of time variable, i.e., the trajectory must be independent of
the parametrisation used to describe it.
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Figure 15. (Left): the evolution of the universe can be seen as a trajectory in the minisuperspace.
(Right): a trajectory in the minisuperspace that is positively oriented with respect to the scale factor
component describes an expanding universe. Similarly, a negatively oriented trajectory describes a
contracting universe.

However, because of the presence of the potential V(a, ϕ) in the action (221), the tra-
jectory of the universe along the minisuperspace manifold is not a geodesic. It is instead
given by the equation

q̈A + ΓA
BC q̇B q̇C = −GAB ∂V

∂qB , (226)

which, with the help of (224), yields the customary field equations (see, for instance,
Refs. [7,25])

ä +
ȧ2

2a
+

3a
2

ϕ̇2 = − 1
2a

+ 3aV(ϕ) , ϕ̈ + 3
ȧ
a

ϕ̇ = −∂V(ϕ)

∂ϕ
. (227)

The fact that the curve (a(t), ϕ(t)) is not a geodesic is not a big deal. As we have said,
the trajectory of the universe is invariant under reparametrisations of time, so we can make
the following change of time variable

dt̃ = m−2V(q)dt, (228)

where m is some constant. Now, if we also perform the following conformal transformation
of the minisupermetric

G̃AB = m−2V(q)GAB, (229)

the action (221) becomes

S =
1
2

∫
dt̃N

(
1

N2 G̃AB
dqA

dt̃
dqB

dt̃
−m2

)
, (230)

which is a similar action but with a constant potential. The new time variable, t̃, turns out to
be the affine parameter of the minisuperspace geometrically described by the metric tensor
G̃AB, and the trajectory of the universe in this minisuperspace is given by the geodesic
equation

d2qA

dt̃2 + Γ̃A
BC

dqB

dt̃
dqC

dt̃
= 0. (231)

Thus, the classical trajectory of the universe can equivalently be seen as either a geodesic
of the minisuperspace geometrically determined by the minisupermetric G̃AB or a non-
geodesic of the minisuperspace geometrically determined by GAB.

We can also define the momenta conjugated to the minisuperspace variables

p̃A ≡
δL

δ
dqA

dt̃

, (232)
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and the Hamiltonian constraint associated to the action (230) turns out to be

G̃AB p̃A p̃B +m2 = 0, (233)

or in terms of the metric GAB and the time variable t,

GAB pA pB +m2
ef(q) = 0, (234)

where for convenience we have written m2
ef(q) = V(q), with V(q) given by (219). It is

worth noticing that the phase space does not change in the transformation {GAB, t} →
{G̃AB, t̃}, because

p̃A = G̃AB
dqB

dt̃
= GAB

dqB

dt
= pA, (235)

where pA = {pa, pϕ} and qA ≡ {a, ϕ}, and the Hamiltonian constraints (233) and (234) are
related by the inverse of the conformal transformation (229),

G̃AB =
m2

V(q)GAB. (236)

The field equations given either by (226) or by (231) are invariant under the reversal
change in the time variable, t→ −t. From the geometrical point of view, it only changes
the direction along which the curved has travelled, i.e., the direction of the tangent vector
∂
∂t . It means that for any given solution a(t) and ϕ(t), one may also consider the symmetric
solution, a(−t) and ϕ(−t).

In our case the momenta conjugated to the variables of the minisuperspace, given in
(235), turn out to be

pa = −
aȧ
N

, pϕ =
a3 ϕ̇

N
, (237)

in terms of which the Hamiltonian constraint (234) reads

− 1
a

p2
a +

1
a3 p2

ϕ + m2
eff(a, ϕ) = 0, (238)

which is the Friedmann equation expressed in terms of the momenta instead of in terms of
the time derivatives of the minisuperspace variables. As pointed out before, the geodesic
equation and the momentum constraint (238) are invariant under a reversal change of the
time variable. Let us notice however that the momenta (237) are not invariant, but they
turn out to be reversely changed, pa → −pa and pϕ → −pϕ. Nevertheless, they appear
squared in the Hamiltonian constraint (238), so it is not affected by the change.

However, by conservation of the momenta, one would expect that the cosmological
solutions should come in symmetric pairs with opposite values of the associated momenta.
From (237) and (238), it is easy to see that in terms of the cosmological time (N = 1), the
two symmetric solutions are given by

a
da
dt

= −pa = ±
√

1
a2 p2

ϕ + am2
eff(a, ϕ). (239)

It clearly reminds to the solutions of the trajectory of a test particle moving in the space-
time [66]. For instance, in Minkowski spacetime47, the time component of the geodesics
satisfies

dt
dµ

= −pt = ±
√
~p2 + m2, (240)

where µ is an affine parameter and pt = ±E, with E the energy of the test particle. The two
solutions are eventually associated to particles and antiparticles in a quantum field theory.

In the case of the universe, the two solutions given in (239) also represent two uni-
verses: one universe moving forward in the scale factor component and the other moving
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backward in the scale factor component (see Figure 16). In the minisuperspace, however,
moving forward in the scale factor component means evolving with an increasing value of
the scale factor, so the associated solution represents an expanding universe, and moving
backward in the scale factor component means evolving with a decreasing value of the
scale factor, so the symmetric solution represents a contracting universe. Therefore, the two
symmetric solutions form an expanding–contracting pair of universes (see Figure 16).
However, we have already showed in previous sections that an expanding–contracting
pair filled with matter can also be interpreted as two expanding universes, one of them
filled with matter and the other filled with antimatter [26,91], i.e., it can be interpreted as a
universe–antiuniverse pair [90,91].

Figure 16. A contracting and an expanding universe, both made of matter, can also be seen as a
pair of expanding universes, one of them made up of matter and the other made up of antimatter,
i.e., they can be seen as a universe–antiuniverse pair.

3.3.2. Field Quantisation of a FRW Spacetime

As we have already seen, the procedure of third quantisation parallels that of a second
quantisation in a curved spacetime (see Section 3.2.3). Now, the field is the wave function
φ(a, ϕ) that satisfies the corresponding Wheeler–DeWitt equation, which is now seen as
a wave equation. With the minisupermetric (220) in (181), the Wheeler–DeWitt equation
turns out to be

a
∂

∂a

(
a

∂φ

∂a

)
− ∂2φ

∂ϕ2 + a2ω2(a)φ = 0, (241)

where,
ω2(a, ϕ) = H2a4 − a2, (242)

with H2 = V(ϕ0) evaluated at the moment of the creation of the (inflationary) universe,
where it can be approximated by a constant. In that case, following the procedure shown
in Section 3.2.4, we can decompose the wave function φ(a, ϕ) in Fourier modes,

φ(a, ϕ) =
∫ dK

2π
eiKϕφK(a), (243)

where φK(a) must satisfy

φ̈K +
1
a

φ̇K + ω2
K(α)φK = 0, (244)

with [50,89]

ω2
K(a) = H2a4 − a2 +

K2

a2 . (245)

Let us notice that the inner product turns out to be here by (186) with [92], dΣA = nAdΣ,
where nA = (a−

1
2 , 0) is a timelike unit vector, and dΣ = dϕ, which defines the orthogonal

hypersurfaces (one dimensional curves) of constant a. It then becomes [50,92]

(u1, u2) = −i
∫ +∞

−∞
dϕ a

(
u1(a, ϕ)

↔
∂ au∗2(a, ϕ)

)
. (246)
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We can now define the operator version of the field, φ̂, and write it as

φ̂(a, ϕ) =
1√
2

∫ dK
2π

(
eiKϕv∗K(a)Â−K + e−iKϕvK(a)Â+

K

)
, (247)

where Â+
K and Â−K are the creation and annihilation operators, respectively, of universes

with momentum K conjugated to the scalar field; and the modes are normalised according
to the condition

dvK
da

v∗K − vK
dv∗K
da

=
2i
a

. (248)

We can now define the ground state of the invariant representation, Â+
K and Â−K , by

|0〉I = ∏
K
|0K, 0−K〉I , (249)

where |0K〉I (|0−K〉I) is the state annihilated by the operator Â−K (Â−−K). An excited state,
i.e., a state representing different number of universes with momenta K1, K2, . . ., is then
given by [92]

|mK1 , nK2 , . . .〉 = 1√
m!n! . . .

[(
Â+

K1

)m(
Â+

K2

)n
. . .
]
|0〉I , (250)

which represents m universes in the mode K1, n universes in the mode K2, etc. In the case
of a field that propagates in a homogeneous and isotropic spacetime, the value of the mode
k represents the value of the spatial momentum of the particle. In a homogeneous and
isotropic minisuperspace, the value of the mode K labels the eigenvalues of the momentum
conjugated to the scalar field ϕ, which formally plays the role of a spacelike variable in the
minisuperspace. In that case, the values K1, K2, . . ., in (250), label the different initial values
of the time derivatives of the scalar field in the universes. Thus, the state (250) represents m
universes with a scalar field with ϕ̇ ∝ K1, n universes with a scalar field with ϕ̇ ∼ K2, etc.
They represent different energies of the matter fields, which would correspond to different
numbers of particles in the universes. The general quantum state of the field φ, which
represents the quantum state of the spacetime and the matter fields, all together, is then
given by

|φ〉 = ∑
m,n,...

Cmn...|mK1 nK2 . . .〉I , (251)

which represents therefore the quantum state of the multiverse [93] in the model of the
minisuperspace that we are considering.

Here, it follows the subtle subject of the boundary conditions in quantum cosmology.
From a QFT we know that the vacuum state of a given representation may contain a
certain number of particles of another representation, so the question then asks which
representation is the appropriate one. We have already imposed that the representation of
the field that represents the state of the multiverse should be an invariant representation
because, in that case, once that field is in a given state, it will then remain in the same
state along the entire evolution of the universe. Furthermore, one would expect that the
field would be in the ground state of such an invariant representation provided that we
assume that no external force is exciting the state of the multiverse. However, that condition
does not completely fix the state of the field φ because there are many different invariant
representations. In general, an invariant representation, Â+

K and Â−K , can be defined as [83]

Â−K =
i√
h̄

(
v∗K p̂φ − v̇∗Kφ̂

)
, (252)

Â+
K = − i√

h̄

(
vK p̂φ − v̇Kφ̂

)
, (253)

where φ̂ and p̂φ are the operator version of the wave function and the conjugate momentum
in the Schrödinger picture, respectively, and vK is a solution of the wave Equation (244) sat-
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isfying the orthonormality condition (248), which ensures the usual commutation relations,
[Â−K , A+

K ] = 1. However, there are many different solutions of the wave Equation (244)
satisfying the orthonormality condition (248), so any of them provides an invariant rep-
resentation. In fact, we have seen in Section 3.2.4 that the Hartle–Hawking’s boundary
condition and the Vilenkin’s boundary condition provide two sets of solutions.

One might say that the Hartle–Hawking boundary condition has a more fundamental
character because it is rooted on a more ontological reasoning. It essentially rests on the
idea that the boundary conditions of the universe are that it has no boundary [39], i.e., that the
universe, and therefore the multiverse as well, comes from no prior configuration of the
space. In that case, it seems consistent to impose or to assume that the multiverse is always
in the ground state of the Hartle–Hawking invariant representation. However, single
universes are better represented by the representation obtained by imposing the Vilenkin’s
tunnelling condition. In fact, this boundary condition is specifically imposed to assure that
it describes single universes created in the Lorentzian region of the (mini)superspace (see
Section 2.5.1). In that case, as we have seen in Section 3.2.4, it turns out that the multiverse
is full of Vilenkin’s universes [50], which due to the isotropy of the superspace should come
in universe-antiuniverse pairs [75] (see, Section 3.2.4, and the next section). Thus, it seems
quite unavoidable to assume that our universe has been created in an entangled pair.

3.3.3. Reheating and the Matter–Antimatter Content of the Entangled Universe

In Section 3.2.5, we saw that the matter fields of the two universes of an entangled pair
are CP reversely related and that the two universes thus form a universe–antiuniverse pair.
Let us now apply the same semiclassical formulation to the period after inflation called
(p)reheating (see, for instance, Ref. [94]), where the inflation field48, χ, eventually decays
into the particles of the Standard Model (SM). In that period, the spacetime can largely be
considered homogeneous and isotropic, and the inhomogeneities of both the matter fields
and the spacetime can be analysed as small perturbations propagating in a homogeneous
and isotropic background.

We are not going to repeat the development of Section 3.2.5 but only to present a
particular and detailed example that will show the consequences of the complex conjugated
relation between these two wave functions. It is worth noticing that the CP conjugated
relation between the matter fields of the universe–antiuniverse pair is based on the fun-
damental considerations described in Section 3.2.5, and it is therefore independent of the
model chosen for the reheating scenario after inflation, so similar steps can be followed
in any other reheating scenario. For concreteness, we shall describe this period in the
appealing model of the Higgs-inflaton [22,23], in which the field that drives the inflationary
expansion of the space decays after inflation into the particles of the Standard Model (SM).
The idea rest on the form of the potential of the Higgs inflaton field. At high energy scales,
during the first stages of the inflationary period, the functional form of the potential can be
approximated by an exponential, and it can thus drive inflation. When the field has rolled
down the exponential slope of the potential, it finds a minimum around which it starts
oscillating. Then, inflation ends and the Higgs-inflaton field behaves like the rest of fields
of the SM, with interactions that allow the decays of the Higgs-inflaton into the particles of
the SM (see below). Finally, in the low-energy regime, the functional form of the potential
can be approximated by the customary double-well potential of the Higgs that gives the
expected masses to the particles of the SM [22,23].

Therefore, after the inflationary period, the potential of the inflaton field, V(χ), can
no longer be considered a constant. However, we saw in Section 2.4.2 that this does not
introduce a large qualitative change. The solutions of the Wheeler–DeWitt equation are
still expected to come in pairs, φ = φ+ + φ−, with conjugate complex phases that are the
solutions of the Hamilton–Jacobi Equation (59). In the semiclassical regime, they are given
by (64), i.e.,

φ±(a; χ, ϕ) = ∆(a)e±
i
h̄ S(a)ψ±(a; χ, ϕ), (254)
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where χ is the inflaton field, and ϕ collectively denotes all the fields of the SM. Following
the development of Section 2.3, the complex phase in (254) determines the dynamics of
the homogeneous and isotropic background spacetime, and the wave functions of the
matter fields in the two universes, ψ±(χ, ϕ), satisfy the Schrödinger equation of two sets of
CP-conjugated fields. They are related by the condition ψ∗−(χ, ϕ) = ψ+(χ, ϕ̄).

As we have said, at the end of the inflationary period, the Higgs-inflaton field χ has
slow-rolled down the potential, and it then approaches the minimum of the potential
located at χm, for which V′(χm) = 0. The expansion rate of the spacetime also slows
down, and the field starts oscillating around the minimum like a weakly damped harmonic
oscillator with mass m2 = V′′(χm). The total Hamiltonian constraint can be written during
this period as (206), with a gravitational part given by

HG = − 1
2M2

P
p2

a −
M2

Pa2

2
+ B(a), (255)

where B(a) contains the backreaction of the Higgs-field and eventually the backreaction of
the rest of fields of the SM that will contribute to the dynamics of the background spacetime.
It may also contain some residual constant term, which is expected to be subdominant at
least until the advent of the dark-energy period. The Hamiltonian of the Higgs-SM sector,
HSM in (206), can now be written as

HHSM = Hχ + HSM, (256)

with
Hχ =

1
2a3 p2

χ +
1
2

a3M2χ2 + ∆V(χ), (257)

where [23] M2 = λM2
P/3ξ2 with ξ a coupling constant of the theory, pχ is the the mo-

mentum conjugated to the Higgs-inflaton field, pχ = a3χ̇, and ∆V(χ) contains high-order
correction terms that can be neglected in a first approach [23]. The interactions between the
Higgs and the matter and gauge fields of the SM have been included in the Hamiltonian
HSM. The Klein–Gordon equation of the Higgs field can then be written,

χ̈ + 3
ȧ
a

χ̇ + M2χ = 0, (258)

where we assumed that the Higgs is essentially in the zero mode. For instance, for a power-
law evolution of the background spacetime, a(t) ∝ tp, Equation (258) is a Bessel equation
that can be solved analytically. With the appropriate boundary conditions, and assuming
Mt� 1 and p ≈ 2/3, it can be written as [23]

χ(t) =
χend
Mt

sin(Mt), (259)

where χ(t = 0) = χend is the value of the Higgs field at the end of the inflationary period,
which coincides with the beginning of the appearance of the (p)reheating mechanisms
(t = 0).

Different channels can now be considered for the decaying of the Higgs field into
the particles of the SM (see Refs. [23,95] for the details). It turns out that the perturbative
decay of the Higgs field is only effective when the amplitude of the Higgs is below a
critical value that depends on the mass of the final particles. This, together with the time
dependence of the decay rate of the Higgs into the particles of the SM, makes it that
the Higgs needs to oscillate a large number of times before decaying into the massive
gauge bosons and fermions and many more times to decay into the less massive fermions,
so the perturbative decay becomes ineffective during the first oscillations of the Higgs.
In that period, the most effective channel turns out to be the parametric resonance [23,95].
However, this channel is enhanced by the effect of Bose stimulation, so the production of
fermions through this channel is highly restricted. These will be mainly produced later
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on through the perturbative channel or through the subsequent decay of the intermediate
bosons into fermions.

Therefore, for the purpose of the present analysis, it is enough to focus on the produc-
tion of the intermediate gauge bosons, W± and Z. In the customary SSB mechanism, the
fields of the SM acquire a constant value of their masses. However, during the reheating
period, the potential still depends on the value of the Higgs field, χ, and thus the mass
acquired from the interaction with the Higgs depends on its value. In that period, it can be
approximated by [23]

m2
W '

g2
2|χ|

4
√

6ξ
, m2

Z '
m2

W
cos2θW

, m f '
y2

f |χ|

2
√

6ξ
, (260)

where g2 is the coupling of the intermediate gauge bosons, θW is the weak mixing angle,
and y f are the Yukawa couplings of the fermion sector [23]. Eventually, after the period of
reheating, in the low-energy regime, the potential takes the customary form of a double-
well potential, and the masses of the particles of the SM become the customary ones [23].
Thus, in the low-energy limit, the Higgs-inflationary scenario is indistinguishable from the
Higgs scenario of particle physics, as expected. However, it is in this mid-energy regime,
during the reheating period, when the basic components of matter are created in the two
universes and the one in which we are mainly interested now.

On the other hand, the quantisation of the intermediate gauge bosons W± and Z
followed as usual by decomposing them into normal modes as

ϕ̂(t, x) =
∫ d3k

(2π)3/2

(
e−ikx ϕk(t)b̂k + eikx ϕk(t)b̂†

k

)
, (261)

where ϕ ≡W±, Z, and b̂k, and b̂†
k are the annihilation and creation operators. As we saw

in Section 2.4.2, the inhomogeneous modes of the matter fields can be treated as particles
propagating in the background spacetime. The mode amplitude ϕk(t) satisfies

ϕ̈k + 3
ȧ
a

ϕ̇k + ω2
k(t)ϕk = 0, (262)

with (see (78))

ω2
k =

k2

a2 + m2
ϕ(t), (263)

where mϕ is now given by (260) with the value of the Higgs given in (259). In terms of the
number of times that it crosses zero, j = Mt

π , the field (259) can be written as

χ(j) =
χend
jπ

sin(π j), (264)

so that the frequency (263) turns out to be

ω2
k(j) =

k2

a2 +
m̃2

0 sin(π j)
π j

, (265)

where m̃0 is the effective mass of the gauge bosons at the beginning of the first oscillation
(j = 0). The time-dependence of the frequency entails the production of particles from two
different sources. The first one is the expansion of the background spacetime, which can be
neglected during the first oscillations of the Higgs. The other one is the time-dependence of
the Higgs field. The Bogolyubov transformation that relates the creation and annihilation
operators of the j-crossing, b̂j and b̂†

j , with those of the initial oscillation b̂0 and b̂†
0 is

b̂j = α b̂0 + β b̂†
0 , (266)

b̂†
j = α b̂†

0 + β b̂0, (267)
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where

α =
1
2

(
a3/2

j

√
ωj

ω0
+ a−3/2

j

√
ω0

ωj

)
, (268)

β =
1
2

(
a3/2

j

√
ωj

ω0
− a−3/2

j

√
ω0

ωj

)
, (269)

with |α|2 − |β|2 = 1, and aj = a(j)
a(0) is the ratio between the value of the scale factor at

the initial oscillation and the value of the scale factor at the oscillation j. The number of
particles is then

nj = |β|2 =
1
4

(
ωj

ω0
+

ω0

ωj
− 2

)
, (270)

where we have neglected the expansion of the universe during the first part of the re-
heating period. From Figure 17, it can be seen that the production of particles is resonant
near the points where the Higgs crosses zero. This is why this channel is called narrow
resonance [95].

Figure 17. Particle production (270) in terms of the number of crossings of zero, j = Mt
π . Dashed line

accounts for the expansion of the universe, with a(t) = t
2
3 , which can be neglected in the first few

oscillations. The production of particles is resonant in the points where the Higgs crosses zero (left).
If the expansion of the background spacetime is neglected, the production of particles in the peaks
rapidly tends to a constant value. However, when the expansion is taken into account, the number of
particles in the peaks scale with the scale factor (right).

During the first few oscillations, and mainly in the adiabatic regime, the influence of
the expansion of the background spacetime can be neglected, and the number of particles
at the peaks, which coincide with the value for which the Higgs crosses zero, rapidly tends
to the constant value np(a = 1), given by

np(a = 1) =
1
4

√ k2

k2 + m̃2
0
+

√
k2 + m̃2

0
k2 − 2

. (271)

However, when the expansion of the background spacetime is taken into account, the num-
ber of particles created at the peaks scales with the scale factor, as (see Figure 17, Right.)

np(t) ≈
m̃0

4k
a(t)− 1

2
. (272)

In that case, the contribution to the production of intermediate bosons W± and Z is much
more enhanced, and the expansion of the spacetime cannot be neglected.
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From the very beginning, the intermediate gauge bosons start decaying into the
fermions of the SM through their mutual interaction given by the Hamiltonian [23]

HI = −
g2√

2

(
W+

µ J−µ + W−µ J+µ
)
− g2

cos θW
Zµ Jµ

Z, (273)

where J−µ ≡ d̄LγµuL and J+µ ≡ ūLγµdL are the charged currents that couple to the boson
W+ and to the boson W−, respectively, and the neutral current

Jµ
Z ≡ κ1ūLγµuL + κ2d̄LγµdL, (274)

with,

κ1 =
1
2
− 2 sin2 θW

3
, κ2 =

1
2
− sin2 θW

3
. (275)

These interactions lead to the charged decays

W+ → u + d̄ , W− → ū + d, (276)

and the neutral decays

Z → u + ū , Z → d + d̄, (277)

where d and u stands= for the down- and up-type quarks, respectively, and similar decays
can also be considered for the rest of quarks. Analogously, we can consider the following
decays in the lepton sector

W+ → e+ + νe , W− → e− + ν̄e, (278)

as well as the neutral decays

Z → e− + e+ , Z → νe + ν̄e, (279)

all of them with their respective decay widths, ΓW± ,Z→i. Let us then notice that an asym-
metry in the decay of the Higgs into the intermediate gauge bosons would entail the
asymmetry in the production of quarks and leptons and therefore an asymmetry in the
creation of primordial matter during the reheating period without the need of any other
mechanism49.

In the scenario of universes created in correlated pairs (see Section 3), the two universes
can be seen as expanding universes with the wave functions of their matter fields CP-
conjugated. Let us focus on one of the two wave functions, say, ψ+(ϕ). If we consider
that the modes of the expansion (261) are decoupled, then, the Schrödinger wave function
for the scalar field, ϕ, which generically denote any of the polarisations of the W± and Z
bosons, can be written as the product of the wave functions of the modes, i.e.,

ψ+(t, ϕ) = ∏
k

ψ
(k)
+ (t, ϕk), (280)

where ψ
(k)
+ (t, ϕk) is the solution of the Schrödinger equation

ih̄
∂ψ

(k)
+

∂t+
= Hϕk ψ

(k)
+ , (281)

with

Hϕk =
1

2a3 p2
ϕk

+
a3ω2

k
2

ϕ2
k , (282)
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where a = a(t) is the scale factor of the background spacetime, and ωk = ωk(t) is given by
(263). The general solution of the Schrödinger Equation (281) can then be expressed in the
basis of the number eigenfunctions given by [35]

ψ+,Nk (t, ϕk) =
e−i(N+1/2)τ
√

2N N!π1/4
√

σ
e−

Ω
2 ϕ2

k HN(ϕk/σ), (283)

where HN(x) is the Hermite polynomial of degree, N ≡ Nk, which is the number occupa-
tion of the mode k, and τ = τ(t) is given by

τ+(t) =
∫ t 1

a3σ2 dt, (284)

the function Ω is given by

Ω =
1
σ2 − i

a3σ̇

σ
, (285)

and σ is a real function that satisfies the auxiliary equation [35]

σ̈ + 3
ȧ
a

σ̇ + ω2
k σ =

k2

m2σ3 . (286)

The wave function in the time reversely symmetric universe is given by (see Section 3.2.5)
ψ+(t, ϕ̄) so the eigenfunctions of the basis for the state of the boson fields in the symmetric
universe turns out to be given by (283) with the replacement ϕk → ϕ̄k. Therefore, if the
scalar field ϕ represents the boson field W− in one of the universes, then ϕ̄ represents the
boson field, W̄− = W+, in the symmetric universe50. The decay of the Higgs into the boson
W+ and W− can then be produced separately in the two symmetric universes.

Then, one can make the hypothesis that the intermediate gauge boson W+ and W− are
created in different universes, or at least at different rates in the two universes, without vio-
lating the global matter–antimatter asymmetry, an appealing scenario that is also suggested
in [71,96]. It is not mandatory that the asymmetry is complete, but a small asymmetry in
the decay of the Higgs into the W+ and W− bosons in the two universes would eventually
derive into an asymmetry in the production of fermions in the two universes due to the
different decays of the W± bosons into fermions (see (276) and (278)). In the universe in
which the boson W+ predominates, there would be an excess of the up-quark with respect
to the up-antiquark, and accordingly, there would be an excess of protons over antiprotons,
and matter would therefore dominate over antimatter. From the global picture of the two
correlated universes, the total amount of matter is always balanced with the total amount
of antimatter, so there is no global matter–antimatter asymmetry. It is worth noticing that
the creation of a universe–antiuniverse pair does not assure that the content of one of the
universes is completely matter and that the content of the partner universe is completely
antimatter. It is not therefore a mechanism for creating the matter–antimatter asymmetry
but a mechanism to restore or explain the apparent asymmetry [91]. In a multiverse sce-
nario, one may expect a whole range of matter–antimatter distributions along the pairs of
universes in the multiverse. In some of them, there would be the needed asymmetry to
form matter and therefore galaxies and planets like in our universe, without violating any
physical law.

4. Observable Effects of Quantum Cosmology

Testing the predictions of a theory with the observational data is a fundamental
keystone of any physical proposal. However, it is not the unique consideration, theoretical
consistency must also be taken into account, and, in fact, it may help us to break through
new paradigms. Well-known examples in contemporary physics are the study of the
unobservable black holes from the theoretical consistency of the perturbed motion of an
observable companion or the prediction of the charm quark from symmetry consistencies
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of the Standard Model of particles physics, not mention the unobserved “dark matter,”
which is basically supported by consistency arguments. Furthermore, observability and
falsifiability are not the same thing, as has been clearly argued51 in Ref. [97] (see also
Ref. [98] for a recent review).

Nevertheless, any theory must eventually be tested. In principle, the effects of quan-
tum gravity are expected to be relevant at a very small length, or equivalent to very large
scale of energy, and that makes them to be hardly measurable. For that reason, it is quite
difficult to propose practical tests in quantum cosmology. However, we may expect some
quantum corrections or deviations from the classical behaviour due to quantum cosmologi-
cal effects that, at least from a theoretical point of view, could be detected. Among these
effects, let us here briefly mention two: the pre-inflationary stage induced by the backreac-
tion of the perturbation modes and the corrections due to the high-order terms in the WKB
approximation [17–19].

In Section 2.4.2, we saw that the vacuum state of the perturbation modes possesses
an energy that permeates the whole universe. In principle, that backreaction energy is
expected to be a small correction to the energy of the unperturbed background spacetime.
However, despite being small, it might produce some observable effects. Let us notice that
the effective value of the Hamiltonian constraint, which is obtained by tracing out from
(55) the degrees of freedom of the perturbation modes, is,

H = H0 + 〈Hm〉 = 0, (287)

which in terms of the time derivative of the scale factor yields the modified Friedmann equation,

ȧ2

a2 = H2(ϕ)− 1
a2 +

〈Hm〉
a3 , (288)

where H2(ϕ) is here the energy of the homogeneous mode of the scalar field, which for
simplicity we shall consider constant, and

〈Hm〉 ∝ m n3
max, (289)

for the particles of the matter fields, and

〈Hm〉 ∝
n4

max
a

, (290)

in the massless case. In the former case, the last term in (288) represents a matter-like
content in the universe (∼a−3), and in the latter it mimics a radiation energy content
(∼a−4). In both cases, it can be shown [99–101] that a matter- or radiation-predominated
pre-inflationary period might, under some conditions, leave some observable imprints
in the power spectrum of the CMB. However, it is sometimes considered [3,4,102] that
nmax ≈ Ha, which means accounting only for the backreaction of the superhorizon modes.
In that case, the back reaction becomes equivalent to a cosmological constant that effectively
shifts the value of the potential [89] (see also Refs. [102–104]),

ε =
H4

8

{
1− m2

H2 log
b2

H2 +

(
1 +

m2

H2

)(
1− b2

H2

)}
, (291)

where terms of higher order have been disregarded. The energy shift (291) can be seen as a
correction to the effective value of the potential of the scalar field, an effect that is expected
to produce observable imprints in the properties of the CMB [105–107].

A different effect from quantum cosmology can be obtained by considering higher-
order terms in the WKB wave functions (64). Following [17–20], let us assume a WKB
wave function

φ(q; xn) = C(q)e±
i
h̄ S(q)ψ

(1)
± (q; xn), (292)
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with,

S(q) = S(0)(q) + h̄2S(2)(q) + . . . , (293)

ψ
(1)
± (q; xn) = ψ

(0)
± (q; xn)eih̄S(2)

n +..., (294)

where q is the variable of the background, and xn are the perturbation modes. The first-
order terms give rise to the corresponding Hamilton–Jacobi of the background spacetime
and a modified Schrödinger equation for the corrected wave function of the perturbation
modes, ψ

(1)
± , which can be written as the Schrödinger equation for a set of uncoupled

harmonic oscillator with a perturbed frequency with respect to the unperturbed frequencies
(77) and (78) that can be written as

ω2
n → ω̃2

n = ω2
n +Fn, (295)

where Fn = Fn(t) is a time-dependent function. A term like that is expected to produce
a variation in the power spectrum of the perturbation modes that would be in principle
measurable [18–20,35]. However, the effect is too small to be distinguishable from the
statistical uncertainty implied by cosmic variance [19,20].

Perhaps the application to different inflationary models or the expected advances in
the field of astronomical detectors and associated space missions, with the detection and
analysis of gravitational waves or the :cosmic neutrino background” (CNB), might make
directly testable in the future the deviations from classicality predicted from quantum
cosmology. Nevertheless, even though they may be difficult to be observed these effects
may have important conceptual consequences. For instance, we saw in Section 2.5 that
an energy term like the one produced by the backreaction in the Friedman Equation (288)
might drastically change the way in which the universes can be created.

On the other hand, the creation of the universe in entangled pairs52 may also add
new features to be tested in the future. For instance, in an entangled universe, the fields
of the matter content in the two universe stop being a vacuum state. If one computes the
state of the matter field in one single universe of the entangled pair by tracing out from
the composite state the degrees of freedom of the matter in the partner universe, then
the resulting state turns out to be a quasi-thermal state with a temperature that depends
on the degree of entanglement (which eventually depends on the size of the universe).
In Ref. [89], the ratio between the fluctuations of the perturbation modes of a field that is
initially in a thermal state and those corresponding to a initial vacuum state was computed,
yielding [89]

δφth
n

δφI
n

=

√√√√1
2

(
1 +

x2

(1 + x2)(1 + m2

H2x2 )

)
, (296)

with,

x ≡ n
Ha

=
nph

H
∼ H−1

Lph
, (297)

where Lph is the physical wave length, and H−1 is the distance to the Hubble horizon.
The large modes (x � 1) are in the vacuum state, and then δφth

n ≈ δφI
n. However,

the departure is significant for the horizon modes, x ∼ 1. This would be a distinctive
effect of the creation of the universes in entangled pairs, and it should leave an observable
imprint in the properties of the CMB.

5. Conclusions

Quantum geometrodynamics provides us with a consistent framework for the quan-
tum description of the universe in terms of a wave function that contains, at least in
principle, all the information about both the spacetime and the matter fields that propagate
therein. In the semiclassical regime, the complex phase of the wave function contains the
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information about the dynamics of the background spacetime, and the wave function of the
matter fields satisfy a Schrödinger equation that depends on the geometry of the subjacent
spacetime. The dynamics of the spacetime turns out to be invariant under the complex
conjugation of the semiclassical wave function. That gives rise to two different solutions
that have been typically interpreted as representing the expanding and the contracting
branches of the universe, both filled with matter. We have seen that a different, more
consistent interpretation is that the two solutions represent expanding universes with their
matter contents being CP reversely related, so from the point of view of an internal observer
of any of the universes, the partner universe is always made up of antimatter, these two
terms having therefore a relative meaning.

On the other hand, the Wheeler–DeWitt equation can be seen as the wave equation of
a field that propagates in the space of Riemannian 3-dimensional geometries, M, where we
can describe the evolution of the universe as a trajectory parametrised by a parameter that
we can call time. The quantum mechanical counterpart is a quantum field that, following
the customary approach of a quantum field theory, can be expressed in terms of creation
and annihilation operators that satisfy the usual commutation relations. These operators
represent the creation and the annihilation of modes for the spatial sections of the universe.
Thus, the third quantisation formalism allows us to describe the quantum state of a whole
spacetime manifold that can, in general, be a disconnected collection of simply connected
manifolds. It is thus an appropriate framework to describe a multiverse scenario, in which
the most natural boundary condition turns out to be that the field that represents the whole
spacetime manifold remains in the ground state of an invariant representation along the
entire history of the universes. This boundary condition implements the idea that the
multiverse is the true isolated system, and therefore no external interaction may excite
its quantum state. However, as we have seen, this invariant boundary condition does
not fix completely the quantum representation of the universe and, in fact, the ground
state of one invariant representation is, in general, full of pairs of universes in another
invariant representation. For instance, we have seen that the Hartle–Hawking no-boundary
condition can be seen as more fundamental because it is based on a more ontological
argument. In that case, one may assume that the field that represents the multiverse is in
the ground state of the invariant Hartle–Hawking representation. Because the invariance
of the invariant representation, the field remains then in this ground state irrespective of
the evolution of the universes. However, in terms of the invariant representation associated
to the Vilenkin’s tunnelling boundary condition, which represents the state of single
universes, it turns out that the ground state of the Hartle–Hawking no-boundary state is
full of Vilenkin’s pairs of universes. It means that the ground state of the multiverse is
full of pairs of universes whose matter contents turn out to be CP-conjugated. The charge
conjugation comes from the complex conjugation relation between the Schrödinger wave
functions of the matter fields in the two universes, and the reversely parity relation comes
from the opposite signs of the momentum conjugated to the geometrical variables of the
spatial sections of the spacetime. The two universes form thus a universe–antiuniverse pair.

We have seen all these features in a general model but particularly in the model of a
homogeneous and isotropic spacetime with particles and matter fields propagating therein,
where explicit examples can be analysed. In particular, we have seen that there are three
main paradigms for the creation of the universe in quantum cosmology. The universes
can be created from nothing, i.e., from no preexisting spacetime. However, it requires a
precise fine-tuning that seems to be quite unnatural. The other possibility is then that
the universe is created from the quantum fluctuation of the spacetime of a preexisting
spacetime. However, to then be consistent, one should also give an explanation for the
creation of the first spacetime. We have seen that Gott and Li’s explanation is that a vacuum
fluctuation of our spacetime can travel back along one of the closed temporal curves that
are allowed to exist in the vacuum state of the gravitational field to become the seminal
spacetime from which our spacetime has been created. From that point of view, the universe
would be the mother of itself. There is yet another possibility that avoids this paradoxical
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conclusion. The universes can be created from nothing, i.e., with no need of any prior
spacetime, but they must then be created in pairs, from double Euclidean instantons. That
turns out to be the most natural and self-consistent way in which the universes can be
quantum mechanically created.

We have also seen in a very specific model that the creation of matter after the period
of inflation would be correlated in the two universes of an entangled pair. The decay of
the inflaton field into the particles of the Standard Model after inflation in the reheating
period is produced in such a way that the matter and antimatter of the two universes is
perfectly balanced. The matter–antimatter asymmetry observed in our universe would
only be therefore an apparent asymmetry, and, in fact, it might be considered as evidence of
the existence of an entangled companion of our universe that would contain the amount of
antimatter that is left in our universe. However, the observational test of this and other
quantum cosmological hypothesis seems to be still far from the current state of observation
as the effects of an entangled partner would be in the domain of quantum gravity or at
least in a pre-inflationary stage of the universe. Perhaps in the future the advances in the
detection of primordial gravitational waves or a possible cosmic neutrino background may
shed some light onto these intriguing questions.
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Notes
1 We shall not deal here with such processes of decoherence, which can be seen in thebibliography [2–6].
2 More exactly, it is isomorphic to a Milne spacetime, which is a particular coordination of the light cones of the Minkowski

spacetime.
3 I shall closely follow Refs. [7,8].
4 Following Ref. [10], we are going to use throughout units in which, h̄ = c = 16πG = 1, although we will leave the constant h̄ in

some expressions to remark their quantum character.
5 For the matter fields we shall generally consider a scalar field.
6 We shall be more precise later on.
7 Spacetime becomes a ’trajectory of spaces’, cfr. p. 107, Ref. [7].
8 Let us assume that the period of inflation is fully supported by the current observational data.
9 Let us notice however that the creation of this initial boundary hypersurface Σ0 is not a process occurring in time but it

corresponds to the creation of the spacetime itself [7], actually.
10 There is also the so-called DeWitt’s boundary condition that states that the wave function of the spacetime must be zero as the

curvature approaches the initial singularity [7,10], which might have some interesting properties on the cosmic entanglement [16].
11 A classical path of the superspace is invariant under reparametrisations so by time we mean any time variable.
12 For instance, the march of a material clock would be given by the matter fields that are solutions of Einstein’s equations, in a

circular argument.
13 Sometimes it is distinguished between minisuperspace and midisuperspace models depending on the number of variables of the

reduced superspace.
14 In some cosmological scenarios [22–24], the length scale of the initial hypersurface can be some orders of magnitude greater than

the Planck length, enough for the fluctuations of the spacetime to be subdominant.
15 Unless otherwise indicated we shall always use cosmic time, t, for which N = 1.
16 Recall that after doing the variation with respect to N we can fix any particular value.
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17 However, one would generally expect that the creation of the universe comes from a quantum fluctuation of the spacetime
and therefore be of order of the Planck scale, H−1 ∼ lP. In that case, new elements should be incorporated, although the picture
described here and in the next section would still be instructive.

18 This is especially clear in the case of the cosmic microwave background radiation (CMB), in which the relative scale of the energy
fluctuations in the last scattering surface are of order 10−5.

19 By ’matter degrees of freedom’ we mean the perturbation modes that can represent matter, radiation or even fluctuations of the
gravitational field (gravitons).

20 In terms of t+ we would have ended up with two contracting universes, one made of matter and the other made up of antimatter.
However, that case is not interesting because the two newborn contracting universes would rapidly delve into the spacetime
foam from which they came up

21 Here, the field is the Schrödinger wave function ψn.
22 In Ref. [29] it is shown that the distribution of a large number harmonic oscillators becomes highly peaked around its average

value.
23 Let us note however that this is only a formal analogy. In fact, the Hamiltonian constraint (89) indicates is that the total energy of

the universe is zero, i.e., the (negative) energy of the spacetime exactly balances the (positive) energy of the matter fields.
24 Let us note however that this process does not violate the conservation of the energy because the total energy, i.e., the gravitational

energy plus the energy of the matter fields is, as we have already said, balanced.
25 These are the final values of the Euclidean regime. From the point of view of the Lorentzian sections, these are the “initial” values.
26 As we have seen, it is somehow arbitrary determining which solution describes an expanding universe and accordingly there is

an ambiguity in determining which modes are the ’outgoing’ modes.
27 In Section 3.3 we shall define more concretely the operator ∇ in the minisuperspace.
28 In the superposition (127) it should appear ξ±n , with (ξ+n )∗ = ξ−n . However, the eigenfunctions of the harmonic oscillator are real

functions so, ξ+n = ξ−n ≡ ξn.
29 In general, a non simply connected manifold can be divided into N simply connected parts [59] and this N parts can be seen as

N classically independent universes.
30 Typically, large regions of order of the Hubble length of our universe.
31 In the 1980s–1990s, the paradigm was a universe in a non-accelerated expansion.
32 It means that the state (146) would actually be,

|out〉 = |ϕ0〉(|0〉+ |1〉).

In that case, when we trace out the state of the baby universes, the state of the field remains unaffected in the initial state,
ρout = |ϕ0〉〈ϕ0|

33 We have followed the normalisation applied in Ref. [10].
34 This result is corrected from the one given in Ref. [10] by a factor 1

2 , which is already noted in Ref. [62].
35 For the Milne spacetime, see Ref. [64]
36 A rescale, χ→ aχ, θ → aθ, . . ., has been made to absorb the constant a.
37 Assuming the value, Ni = 0.
38 The fact that the trajectory is not a geodesic is not really determinant. In fact, using a generalisation of the Maupertuis principle [65,66],

one can compute the metric where the trajectory of the universe is a geodesic. Let us consider the reparametrisation given by,
dt̃ = m2(hab)dt and Gabcd → G̃abcd = m2(hab)Gabcd. In that case, the action (162) turns out to be

SEH =
∫
M

dt̃d3xN
(

1
2N2 G̃abcdh′abh′cd − 1

)
, (298)

where, h′ab = dhab
dt̃ . In the superspace determined by the supermetric G̃abcd the evolution of the universe turns out to be a geodesic.

39 For a FRW spacetime, α = 0 (because, ˙̄s = 0).
40 For recent works on the third quantisation, see Refs. [67–74].
41 Let us notice that the condition, 3R� 2Λ, does not assume that the universe is homogeneous.
42 The factor h̄2 has been introduced for later convenience.
43 In the 2 sphere,~j = {l, m}.
44 There is here no Euclidean region because we have assumed, 2Λ�3 R, in (191). Otherwise, the condition 3R > 2Λ defines an

Euclidean region where, in the no-boundary proposal, the universe would be created from nothing (see Section 2).
45 We are considering geometrically closed spatial sections.
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46 The inhomogeneities of the spacetime can also be considered as fields propagating in the spacetime (see Section 2).
47 A similar procedure can be followed in a curved spacetime.
48 We shall use now the variable χ to represent the inflaton field and leave the variable ϕ to represent collectively the rest of fields

of the SM.
49 Although other mechanisms of baryon asymmetry can simultaneously be present.
50 Typically, ϕ would represent a linear combination of the W+ and W+ fields. In that case, ϕ̄ would represent the corresponding

conjugated combination.
51 Tegmark poses the following example: a theory stating that there are 666 parallel universes, all of which are devoid of oxygen, makes the

testable prediction that we should observe no oxygen here, and is therefore ruled out by observation, cfr. Ref. [97], p. 105.
52 And, in general, the creation of universes in N-entangled states, see [36,108].
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