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Abstract

Some stock exchanges, such as the Spanish Stock Exchange and
Euronext (Paris), allow traders to place orders in a `pre-opening' pe-
riod. Orders placed in this period are used to determine the opening
price, and can be cancelled at any moment and at no cost by the
traders. We consider a model in which noise traders can appear in the
market before or after the opening, and a strategic informed trader de-
cides her order strategy at the preopening and at the opening period.
We characterize the equilibrium of such a model, showing that at the
pre-opening there is a non-monotonic relation between the aggregate
quantity ordered and prices. Thus, the equilibrium at the preopening
stage is determined in a way which is fundamentally di®erent from the
equilibrium in the open market. We proceed to study the implications
of the existence of a pre-opening period on information revelation and
on the determination of the opening price. We present evidence from
the Spanish Stock Exchange that seem to support the theoretical pre-
dictions, showing a clear di®erence in behavior between the market
behavior before and after the opening of the market.

1 Introduction

Various stock exchanges (e.g. Madrid and Paris) have a phase of `price
discovery' in which agents place tentative orders and tentative prices are
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quoted. The orders placed in this phase are not binding, since they can be
cancelled at no cost at any point before the o±cial opening. The preopen-
ing phase is usually quite active and many of the orders placed turn out to
be serious orders (see Biais, Hillion and Spatt (1999) for evidence from the
Paris Bourse). It is usually thought that the preopening phase helps mar-
kets to `¯nd the right price' at the opening, making public the information
accumulated during the no-trade period. Yet, from the theoretical point of
view it is not clear why this should be the case. In particular, since orders
placed in the pre-opening phase are non-binding, the ¯rst question one has
to answer is: Why do agents bother to place orders at all? In particular,
it appears that informed agents should be reluctant to place any order that
could reveal their information.

One way to overcome the di±culty is to assume that an order placed
during the pre-opening period has a strictly positive probability, although

possibly very low, of being executed. This may occur either because the
opening time of the market is stochastic, so that there is always a positive
probability that an order will be the ¯nal one, or because problems in com-
munication may prevent the trader from cancelling the order. The approach
has ¯rst been proposed by Vives (1995a, 1995b), who considers competitive
models in which a continuum of traders place limit orders. Biais, Hillion and
Spatt (1999) and Medrano and Vives (2001) have introduced the presence of
a strategic informed trader, who takes into account the e®ect of her orders
on information disclosure. In this class of models, agents place orders in the
preopening phase because there is a positive probability that the order will
be the ¯nal one. Thus, in order to exploit their superior information, in-
formed traders place meaningful orders. However, their orders will be more
`restrained' than in the case in which trade occurs with probability 1. The
reason is that by placing orders an informed trader reveals information, and
this reduces future pro¯ts if trade does not occur in the current period.

In this paper we propose a di®erent approach, not relying on a random
opening time. Our basic intuition is that in a market in which both informed
and noise traders are present, the preopening period provides, as a minimum,
a signal on the extent of noise trading.

Consider a simple two period model, in which agents place orders at the
preopening period and at the `open market' period. Orders at the preopen-
ing period are essentially cheap talk, since they can be cancelled at no cost;
if not cancelled, they are executed when the market opens. Orders placed
when the market is open are executed immediately. Suppose now that noise
traders arrive randomly at the market, and that noise traders who place an

2



order at the preopening period do not cancel it. Can there be an equilibrium
in which the informed trader is not active at the preopening period? The
answer is no. If only noise traders appear at the preopening, then the order
°ow of the preopening provides a signal of the extent of noise trading, and
this signal is taken into account when setting the price at the opening. For
example, if a market maker observes a large demand at the preopening, then
she will be inclined to believe that a large demand in the open market is
mostly the result of noise, rather than the consequence of strategic behavior
on the part of the noise trader. This in turn makes the price less sensitive
to the order °ow. But this situation cannot be an equilibrium. An informed
trader who receives good news on the asset, so that she is likely to buy the
asset when the market opens, will want to increase the estimate of noise
trading made by the market maker. Thus, she places orders at the preopen-
ing. But this contradicts the original assumption that only noise trading is

active at the preopening.
The previous argument implies that any equilibrium must see the active

participation of the informed trader at the preopening period, even if there is
no positive probability that the market will execute the orders. This in turn
implies that the order °ow at the preopening provides a signal both about
the extent of noise trading and the value of the asset. It turns out however
that, di®erently from what happens when the market is open, the relation
between the order °ow at the preopening period and the value of the asset
is not monotonic. This is a consequence of the fact that at the preopening
period the informed trader has no incentive to reveal its information. The
only reason why she is in the market is to garble the message about liquidity
trading, revealing as little as possible of her information. We will show that
a monotonic strategy (that is, a strategy in which the informed agent places
higher orders when the value of the signal is higher) cannot be part of an
equilibrium, which in turn implies that the relation between the value of the

asset and the order °ow cannot be monotonic. To sum up, our theoretical
model predicts a quite di®erent behavior at the preopening phase and at the
open market, and a non-monotonic relation between the value of the asset
and the order °ow at the preopening.

We test the predictions of the theoretical model using data from the
electronic continuous market used in Spain for equity trading, known by the
Spanish acronym SIBE (Sistema de Interconexi¶on Bursatil Espa~nol). We
have limit order book data over a month for the 35 most actively traded
stocks in the market, both in the pre-opening phase and in the ¯rst 15
minutes of the open market. For each stock we can observe at each moment
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the equilibrium price and quantity as well as part of the demand and supply
curve. This data can be used to check whether market behavior is di®erent
before and after the preopening of the market. We also have closing prices
for stocks, that we can use to proxy for the value of the asset and check for
the relation between asset value and prices and volume at the preopening
phase. Results seem to support the theoretical predictions, showing a clear
di®erence in market behavior depending on the timing of propening and
after the opening of the market.

2 The Model

There is a risky asset which can take a ¯nite number of values:

V = fv1; : : : ; vKg

with vi < vi+1 for i = 1; : : : ;K¡ 1. The prior probability distribution of the
value of the asset is given by ¹ = f¹1; : : : ;¹Kg, with ¹i being the probability
that the asset will take value vi and ¹i > 0 each i.

We will assume that trading activity takes place over two periods, struc-
tured as follows:

Preopening period During this period agents place market orders. The
total orders are collected by a market maker, and the net amount is
made public. No trading takes place at this point. We will use the
subscript T (temporary) to refer to the preopening period.

Opening period During this period agents again place market orders. Or-
ders placed at the preopening period are considered valid orders, unless
explicitly cancelled. A market maker observes the total order °ow and
determines the price, setting it equal to the expected value of the asset.
Orders are executed, and each agent pays (receives) the price multi-

plied by the order placed. We will use the subscript F (¯nal) to refer
to the opening period.

There are two types of traders in the market. The ¯rst is an informed spec-
ulator. This speculator observes the value of the asset before the preopening
period. We denote by xT the order placed by the informed trader at the pre-
opening period, and by xF the order placed at the opening period1. We will

1For the sake of simplicity we assume that the informed trader cancels the order placed
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assume that orders have to belong to a ¯nite set X = fx1; : : : ; xng, where
each xi is an integer number. This is equivalent to assume that orders have
to bemultiple of a given minimum quantity, and there is a bound on the total
amount that can be ordered. We also assume 0 2 X and x1 < 0 < xn. We
denote by ¢n the n¡dimensional simplex, that is the space of all probability
distribution on X.

Beside the informed trader we have noise traders, who can place their
orders both at the preopening and at the opening period. The number of
noise traders is random, and each noise trader places a order of size 1 or ¡1.
The total amount ordered by noise traders at the preopening period can
be represented as a random variable euT, with support on the set of integers
Z = f: : : ;¡1;0;1; : : :g and probability distribution q = f: : : ; q¡1; q0; q1; : : :g,
with qi > 0 for each i 2 Z and

P+1
¡1 qi = 1.

Similarly, the order placed by noise traders at the opening is represented

by a random variable euF , with support on Z and probability distribution
w = f: : : ;w¡1;w0;w1; : : :g, with wi > 0 for each i 2 Z and

P+1
¡1wi = 1.

We will assume that noise traders who place an order at the preopening
period always con¯rm the order at the opening period2. The total noise
order placed at the opening period is therefore euT + euF . We will denote
by zT = xT + euT the order °ow observed at the preopening period and by
zF = xF + euT + euF the order °ow observed at the opening period.

Notice that the variable zT is publicly observed before the beginning
of the opening period, and the set of all possible orders observable at the
preopening period and at the opening period is the set of integers Z.

A rational expectation equilibrium of this game is given by:

² a price function p : Z £ Z ! [v1; vK], where p (zT; zF) is the price set
when the order °ow zT is observed at the preopening period and the
order °ow zF is observed at the opening period;

² a function » : Z £ Z £ V ! ¢n, where » (uT ; zT ; vi) denotes the
probability distribution on X adopted by the informed trader who has

at the preopening period and places a new order. Therefore, when the market is open the
contribution of the informed trader is simply xF . Equivalently, we could assume that the
preopening order is con¯rmed and the agent modi¯es it with an additional order ¢xF .
In this case the contribution to the order °ow in the open market is xT +¢xF . The ¯rst
formulation saves notation.

2This assumption is not essential. All we need is that there is a noise component in the
preopening period, and that this noise is not independent of noise trading at the opening
period.
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observed vi, an order zT at the preopening and a noise order uT at the
preopening period3;

² a function ± : V ! ¢n, where ± (vi) denotes the probability distribu-
tion on X adopted by the informed trader upon observing vi;

satisfying the following properties:

² The price function p(zT ; zF) is given by:

p (zT; zF) = E [evj xT + euT = zT ; xF + euT + euF = zF ]

that is p(zT ; zF) is the conditional expected value of the asset given
the observed order °ows, where the expectation is taken making use
of the probability distributions ± and »;

² for each triplet (uT ; zT ; vi) the probability distribution » (uT ; zT ; vi) =
(»1; : : : ; »n) is such that »i > 0 only if:

xi 2 arg max
xF2X

E [(vi ¡ p (zT ;xF + uT + euF ))xF ]

that is an order is placed with positive probability only if it maximizes
the expected pro¯t of the informed trader, where the expectation is

conditional on the informed trader's information (uT ; zT ; vi);

² for each vi, the probability distribution ± (vi) = (±1; : : : ; ±n) is such

that ±i > 0 only if:

xT 2 arg max
xT2X

E [(vi ¡ p (xT + euT ;xF (euT ;xT + euT; vi) + euT + euF))xF (euT ; xT + euT ; vi)]

where xF (xT + euT ; euT ; vi) 2supp» (uT ; xT + uT ; vi) for each triplet
(uT ;xT +uT; vi), that is an order xi is placed with positive proba-
bility only if it maximizes the expected pro¯t, taking into account
the optimal policy of the informed trader at the opening period and

conditioning on the known value vi.

We ¯rst show that a rational expectation equilibrium exists. The strategy
of the informed trader can be described as follows:

3The informed trader observe the preopening order °ow zT and knows the part of the
°ow due to its own order xT . She can therefore compute the demand coming from noise
traders as uT = zT ¡ xT .
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² The strategy at the preopening period is a collection (± (v1) ; : : : ; ± (vK)),
where for each vi, we have ± (vi) 2 ¢n. It can therefore be described
as an element of the set ¢n£K. We will adopt the notation ¡ = ¢n£K,
and we let ° denote a generic element of ¡.

² The strategy at the opening can be described as a collection

f» (uT ; zT ; vi)g(uT ;zT )2Z£Z , vi2V
where for each triplet (uT; zT ; vi) we have » (uT ; zT ; vi) 2 ¢n. Call

© the set of all possible collections, that is each element Á 2 © is
a (countable) list of probability distributions over X, one for each
possible triplet (uT ; zT ; vi) 2 Z £ Z £ V . The set © represents the
set of all possible strategies at the opening period. It is a convex and
compact set4.

Let ­ = ¡ £ © the strategy space of the informed trader, a compact and
convex set. De¯ne next the spaceP of all possible price functions, that is P is
the set of all sequences fp (zT ; zF )g(zT ;zF )2Z£Z such that p (zT ; zF ) 2 [v1; vK]
for each pair (zT ; zF ), and again observe that this is a compact and convex
set.

De¯ne now the correspondence:

p : ­ ! P

as:
p! (zT ; zF ) = E! [evj exT + euT = zT; exF + euT + euF = zF ]

that is, for each element ! = (°; Á) the function p selects, for each pair
(zT ; zF ) the expected value of v given that the informed agent uses the strat-
egy described by ° at the pre-opening period and the strategy described by
Á at the opening period. Notice that since both euT and euF have support
on Z and the set X of orders by the informed trader is ¯nite, every pair
(zT ; zF ) has positive probability under any strategy !, so that the condi-

tional expectation is always well de¯ned.
Given a price function p, the expected pro¯t for the informed trader who

has observed (uT; zT; vi) and chosen xF is given by:

¦(xF ; pj (uT; zT ; vi)) =
X

j2Z
wj (vi ¡ p (zT; uT + j +xF))xF

4See e.g. Royden (1988), chapter 7, exercise 30.
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where wj = Pr(uF = j). Let » 2 ¢n be a probability distribution over X,
with » (xF ) denoting the probability of choosing xF . De¯ne:

¦ (»;pj (uT ; zT ; vi)) =
X

xF2XF
» (xF)¦ (xF ; pj (uT ; zT ; vi)) .

Let Á = f» (uT ; zT ; vi)g(uT ;zT )2Z£Z;vi2V 2 © represent a policy followed by
the informed trader at the opening period. For a given policy Á we set

¦(Á;pj (uT ; zT ; vi)) = ¦(» (uT ; zT ; vi) ; pj (uT ; zT ; vi))

Next, de¯ne the function ¦¤ (xT; Á;pj vi) as:

¦¤ (xT ;Á; pjvi) =
X

j2Z
qj¦(Á; pj (j;xT + j; vi))

where qj = Pr(uT = j). For a probability distribution ± = (±1; : : : ; ±n) over
X we de¯ne:

¦¤ (±; Á; pjvi) =
nX

k=1

±k¦ (xk; Á; pjvi)

where ±k is the probability of choosing xk. De¯ne the collection ° =
(±v1; : : : ; ±vK ), where ±vi denotes the probability distribution over X cho-
sen at the preopening when the observed value of the asset is vi. We de¯ne:

¦ (°;Á;p) =
KX

i=1

Pr (vi)¦(±vi ;Á;pjvi)

and setting ! = (°; Á) we are going to use the more compact notation
¦(!; p). We now de¯ne the correspondence:

µ : P ! ­

as:
µ (p) = arg max

!2­
¦ (!;p)

For each price function p the correspondence µ selects the set of pro¯t-
maximizing trading strategies for the informed trader.

We can now prove the existence of a rational expectations equilibrium.

Proposition 1 A rational expectation equilibrium exists.
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Proof. Since ¦(p; !) is continuous in (p;!), the theorem of the maximum
ensures that the correspondence µ is u.h.c. and compact-valued. Linearity
in ! ensures that the correspondence is convex-valued. Similarly, the map-
ping p is continuous, convex and compact valued. Therefore, by Kakutani's
theorem, the mapping:

µ £ p : ­ £P ! ­ £ P

has a ¯xed point. Given the de¯nitions of µ and p, the ¯xed point is a
rational expectations equilibrium.

2.1 Characterization of the equilibrium

Once the existence of the equilibrium has been established, we can proceed
to characterize its properties. We remind the reader that a function f (x; t)
satis¯es increasing di®erences if whenever t0 > t, the di®erence f (x; t0) ¡
f (x; t) increases in x. Consider now the function ¦ (»; pj (uT ; zT ; vi)). For
a given price function p and observation (uT ; zT ) this can be seen as a
function of » and vi. The variable » belongs to ¢n, the space of probability
distributions over X. Weorder ¢n using the criterion of ¯rst order stochastic
dominance (FOSD), that is » º »0 if

Pr
i=1 » (xi) � Pr

i=1 »0 (xF) for each
r � n. We have the following result about the strategy of the informed
trader at the opening.

Lemma 1 For a given price function p and observation (uT; zT ) let »vi be
an optimal strategy chosen when the observed value of the asset is vi. Then
the strategy of the informed trader at the opening is increasing in vi in the

sense of ¯rst order stochastic dominance.

Proof. Take as given p and (uT ; zT ), and de¯ne f (»; vi) = ¦ (»;pj (uT ; zT ; vi)).
The objective function of the informed trader is given by:

f (»; vi) =
nX

j=1

»j [vi ¡ E (p (zT ; uT + euF + xj))] xj

where the expectation is taken over euF . Therefore, if we take vk > vi we
have:

f (»;vk) ¡ f (»; vi) = (vk ¡ vi)
nX

j=1

»jxj
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Since vk ¡ vi > 0, this di®erence is increasing in ». Since the objective
function satis¯es increasing di®erences, the optimal action » (vi) is non-
decreasing in vi.

We can use lemma 1 to provide a ¯rst characterization of the price func-
tion.

Lemma 2 In each rational expectations equilibrium the price function p (zT ; zF )
is non-decreasing in zF for each given zT .

Proof. For each given euT , lemma 1 implies E [vj zT ; z0F ; euT] ¸ E [vj zT ; zF ; euT]
whenever z0F > zF . This in turn implies:

p
¡
zT ; z 0F

¢
= EeuT £

E
£
vj zT ; z0F ; euT

¤¤ ¸ EeuT [E [vj zT ; zF ; euT]] = p (zT ; zF)

The properties of the price function described in lemma 2 are standard.
The informed trader wants to increase the size of its order when she obtains
better information, so that the market maker interprets an increase in the
order °ow as a noisy signal of the value of the assets. This leads to a function
p increasing in zF .

The more interesting part however is the characterization of the equi-
librium at the preopening stage. We start observing that in general at the
preopening stage the informed trading must be active, meaning that she
chooses di®erent strategies in dependence of di®erent observed values of the
asset.

Lemma 3 There is no equilibrium in which the informed agent follows a
constant policy at the preopening period.

Proof. Suppose ¯rst that the informed agent always selects the same quan-

tity x¤ for each value vi, and assume that x¤ > x1, where x1 is the lowest
possible order. This implies that for every order °ow zT at the preopening
period the market maker is able to infer exactly he amount of noise trading
as uT = zT ¡x¤.

Consider now the informed agent who has observed v1, the lowest pos-
sible value of the asset. This trader will only post negative orders at the
opening period, since p(zT ; zF) ¸ v1 for each realization (zT ; zF). This im-
plies that in this case the informed agent wants to obtain a price at the
opening which is as high as possible. This in turn implies that she wants to
convince the market maker that the demand at the opening comes mostly
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from the informed trader, and liquidity demand is low. Finally, this implies
that upon observing v1 the informed agent can pro¯tably deviate from x¤

to x1, the lowest possible order.
If x¤ = x1 then we can apply a similar argument to show that the

informed trader has a pro¯table deviation when the highest possible value
vK for the asset is observed.

The argument can be directly extended to mixed strategies. If the same
mixed strategy is being used by the informed trader for each vi then the
order °ow zT is considered by the market maker as a noisy signal of uT ,
with no information about the value of the asset. Then the informed agent
who has observed v1 can pro¯table deviate to x1, while the informed agent
who has observed vK can pro¯table deviate to xn.

The lemma implies that in every equilibrium there is non-trivial action
at the preopening stage by the informed trader. By this we mean that

the informed trader intervenes at the pre-opening stage selecting di®erent
strategies depending on the information possessed.

The next observation is that in a rational expectations equilibrium the
informed trader does not select a monotonic strategy at the preopening
period.

Lemma 4 There is no equilibrium in which the informed agent adopts a
monotonically increasing policy at the preopening period.

Proof. (Sketch) Suppose that the informed agent selects a monotonically
increasing strategy, so that ±vi dominates ±vj in the sense of ¯rst order
stochastic dominance whenever vi > vj . We ¯rst observe that in this case,
given two order °ows z0T > zT , the conditional probability distribution of
v given z0T ¯rst-order stochastically dominates the conditional probability
distribution of v given zT . This follows from the fact that zT is a noisy
signal of xT , which in turn is a noisy signal of v.

Next we observe that the informed trader who has observed vK, the
highest possible value, prefers that the conditional distribution of the market
maker be as low as possible in a FOSD sense, while the informed trader

who has observed v1 has preferences which are exactly the opposite. The
reason is that the only way in which it can be worse for type vK that the
market maker has a lower estimate of v is that in this case the market maker
forecasts a more aggressive bidding by the informed trader, so that the price
function is more sensitive to zF . This would prevent the informed trader
from placing larger orders at the opening. But a more aggressive belief
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cannot be self-con¯rming, because in this case the informed trader would be
less aggressive.

This implies that type vK will want to deviate and adopt at the pre-
opening stage a strategy adopted by lower types, in order to induce a lower
price at the opening. An analogous deviation is available for type v1

What are the empirical predictions of the model presented in this sec-
tion? The existence of the preopening period provides information which is
valuable for the determination of the price at the opening, since it provides
a signal on the extent of liquidity demand. The informed trader tries to
manipulate this signal, taking advantage of the fact that the orders placed
in this phase are basically `cheap talk' and can be cancelled at no cost.

In equilibrium however the relation between the total order °ow and the
extent of liquidity trading cannot be monotonic. If this were the case, an
informed trader who has a high probability of being on the buying side at the
opening (which happens when a high value of v is observed) would place a

high order, so to convince the market maker that most of the demand comes
from liquidity traders. However, in a rational expectation equilibrium this
maneuvering cannot occur, since the market maker would consider a high
level of demand at the preopening as a signal of a high value of the asset.

If a price is computed at the pre-opening stage, and the price is set
equal to expected value of the asset, then the preopening price will not
have a monotonic relation with the asset's value. The monotonic relation
is restored when the market opens, since in this case orders are executed
and the only way in which an informed trader can take advantage of her
information is by following an order strategy monotonically related to the
asset value.

3 Empirical Analysis

In this section we provide a description of the institutional features of the
Spanish stock market and of the data we plan to use for the empirical anal-
ysis.

3.1 Institutional Organization of the Spanish Stock Market

The market for equities in Spain (SIBE) is organized as an electronic contin-
uous market. It is a nationally uni¯ed market, in which a single order book

12



exists for each stock. During the period object of the analysis (November
1999) a day of trade was divided into three parts:

1. Preopening period, from 9:00 am to 10:00 am. In this period mod-
i¯cations, cancellations and introduction of limit orders are allowed.
Depending on demand and supply on every stock the system calculates
in real time a preopening price; when there are multiple equilibrium
prices, the one that maximizes the volume traded is chosen.

At 10:00 am the system determines the opening price. Orders entered
previously and not cancelled are now executed. Priority is ¯rst by
price and then by time of introduction.

2. Open Market period, from 10:00 am to 17:00 pm. In this period limit
and market orders are introduced and if a counterpart is found they
are automatically executed. If not, the order remains in the book until
an incoming order ¯ts it, or the order is cancelled. In this period prices
of the stocks are changing in real time depending on the °ow of buy
and sell orders.

3. Special Operations period, from 17:30 pm to 20:00 pm. During this
period pre-agreed block trades are reported.

The market is still organized in this way, but now the preopening period
runs from 8:30 am to 9:00 am and the open market period runs from 9:00
am to 17:30 pm.

The open market is an order driven market. De Jong, Nijman and RÄoell
(1996), among others, point out that trading mechanism operating in mar-
kets driven by orders can be formally described by the ideal electronic open
limit order book framework proposed by Glosten (1994). Glosten (1994) the-
oretical model show how information °ow cause price revisions by trading

throughout the limit order book mechanism. Glosten develops both average
and marginal price functions from the point of view of the agent providing
liquidity. These functions are supply and demand functions. From the em-
pirical point of view Martinez, Rubio and Tapia (2000) and Blanco (1999)
discusses similar functions, and construct supply and demand functions.
These analysis are developed in an open market situation but give us in-
sights about the information that should be present in supply and demand
functions.

The pre-opening period is similar to the open market trading mechanism,
with the important di®erence that during the pre-opening period there is no
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transaction and orders are left unmatched. However, during the preopening
period the Exchange uses the order to determine in real time the equilibrium
price and the quantity traded at that price. So, whenever an order is can-
celled, modi¯ed or a new order arrives the equilibrium price and quantity
are changed. The opening price is set at 10:00, and the transactions are
actually carried on.

3.2 Data and Methodology

The open limit order book contains information about the ¯ve best prices
on the selling and buying side for all assets.

Table 1 here

Table 1 shows the situation for one asset at two successive moments right be-
fore the opening of the market and right after the opening of the market on
November 1, 1999. The book (including prices, volume of shares outstand-
ing at that price and number of orders which supports such volume) was
observable by market participants at every moment during the preopening
and the open market period. Investors were also able to observe the equi-
librium price. Furthermore, whenever a new order is entered the limit order
book shows the new values of the variables, while the time stamp indicates
exactly the time of this change (approximated by tenths of a second).

In November 1999 the SIBE included approximately 150 assets. We
analyze the behavior of the 35 most actively traded stocks5. Our sample

period covers all trading days of November 1999. For each trading day we
consider the time period between 9:30 AM and 10:00 AM, comprising the
last half hour of the preopening period.

The empirical analysis is intended to answer two questions.

1. Are the supply and demand functions observed at the preopening pe-
riod di®erent at the end of preopening period?

2. Does same day volatility a®ect this behavior?

The predictions of the model spelled out in section 2 are that the relation
between the prices observed at the preopening and the value of the asset
should be non-monotonic, and that we should observe structurally di®erent
behavior for the supply and demand functions before and after the opening

5Activity is measured by mean e®ective volume six months before the sample period.
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of the market, especially for stocks exhibiting a high degree of asymmetric
information.

In order to answer these questions and test empirical implications of
the model, we use the limit order book (LOB) and we calculate two slopes
for demand and two slopes for supply. As we mentioned, we consider time
period between 9:30 AM and 10:00 AM (preopening period).

3.3 Slopes in the Preopening Period

During the preopening period, additionally to demand and supply LOB pro-
vides equilibrium price and quantities. The market calculates these equilib-
rium variables. Suppose that you observe the complete LOB at a given
moment, and the equilibrium price P¤ and volume Q¤ at the same moment.

Table 2 here

With this LOB we can build a complete Demand and Supply functions.

Insert Figure 1

Additionally, we su®er a transparency problem because we only observe
best ¯ve levels of LOB instead of complete LOB. Given this degree of trans-
parency we observe:

Bid Ask
Qbid1

Qbid2

Qbid3

Qbid4

Qbid5

Pbid1
Pbid2
Pbid3
Pbid4
Pbid5

Qask1
Qask2
Qask3
Qask4
Qask5

Pask1
Pask2
Pask3
Pask4
Pask5

Slopes A and B are given by:

If P¤ > Pkj !
Ak = P ¤¡Pk1

Q¤¡Qk1 8j > 1

Bk = P ¤¡Pk5
Q¤¡

P5

j=1
Qkj

where k represent ask or bid prices and j represent level of prices of the
limit order book. See an example: suppose that you observe the LOB of
Table 1, an equilibrium price of P ¤ = 15:65, and an equilibrium quantity of
Q¤ = 35634.
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Bid Ask
14094

77
700

12695
5000

17:99
17:90
17:50
17:00
16:75

13:31
14:00
15:00
15:40
15:44

19235
2260
1120
3000
350

Then bid side slopes are given by:

Abid =
P¤ ¡ Pbid1
Q¤ ¡ Qbid1

=
15:65 ¡ 17:99

35634 ¡ 14094
= ¡0:01086351

Bbid =
P ¤¡ Pbid5

Q¤ ¡P5
j=1Qbidj

=
15:65 ¡ 16:75

35634 ¡ 32566
= ¡0:03585398

And ask side slopes by:

Aask =
P¤ ¡Pask1
Q¤ ¡Qask1

=
15:65 ¡ 13:31

35634 ¡ 19235
= 0:01426916

Bask =
P¤ ¡Pask5

Q¤ ¡P5
j=1Qaskj

=
15:65 ¡ 15:44

35634 ¡ 25965
= 0:00217189

These slopes give us information about sensitivities of demand and supply
and information asymmetries. Not surprisingly, in order to calculate A and
B slopes, we need two Demand (Supply) prices higher (lower) than the
equilibrium price.

4 Results

We calculate slopes in the preopening when it is possible, that is when there
is an equilibrium and we observe at least two prices in order to be able to
compute the slopes. We are interested in the question of whether the A
slopes are di®erent from the B slopes, so that we calculate one additional
measures: Log(AB )

This measure will capture di®erences between slopes. When Log(AB) is
greater (lower) than 0 A is greater (lower) than B. this variable will permit

to observe changes in both slopes. Given degree of transparency, it could
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be the case that observed quotes are not closest prices from equilibrium
price (like the example). In order to match theory, and avoid this problem,
we select from the whole sample observations where equilibrium price is
between best ¯rst and ¯fth level of LOB. additionally, we eliminate extrem
observations of our sample. So, results are derived from the restricted simple
without extrem values. An observation is considered an extreme one if it
exceeds three times standard deviation.

In order to separate di®erent e®ects, we will use two di®erent variables.
First is time to preopening to end. To capture seasonality e®ects we divide
our sample in three di®erent periods, one for each ten minutes interval. It is
well known the last minutes of the preopening period tend to be more active
(see Biais et al (1999) for evidence on Paris and Sola (2000) for Madrid).
Additionally, one consequence of the model is that the behavior of investors
is di®erent in preopening depending on the time before the end. Both e®ects

should be present in the level and changes of slopes.
Second e®ect is cross section e®ect. Although, we only consider 34 assets,

Spanish stock exchange is a concentrated market. Over 132 ¯rms, selected
34 ¯rms represent more that 90% of e®ective volume of the whole sample.
Additionally, we divide our 34 sample into 5 activity groups. Next table
show group e®ective volume a month before the study. We can observe that
subsamples are so di®erent.

Group Group EV/Total Sample EV Group EV/Market EV
BB 82.1% 74.8%

BM 10.6% 9.6%
MM 4.1% 3.8%
MS 2.0% 1.8%
SS 1.4% 1.3%

Table 3 shows some descriptive statistics about the sample

Insert Table 3

There is no clear relationship between number of observations and group
classi¯cation. as expected given the way we used to select the sample most
actively traded stocks have less number of observations than other groups.
Looking at median measures, we observe that BM and MM groups have
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higher values of slopes both on Ask and Bid. As a consequence we do not
observe important di®erences in Log(A/B) variable.

Contrary to previous result, we ¯nd greater number of observations as
the end of preopening period comes closer. In general, looking at Log(A/B)
results it seems that ask and bid side di®er in their behavior. On one hand,
Ask side show a median rising value at least if we compare ¯rst ten minutes
with the rest of the sample. This results implies that A slope on the ask
side becomes greater (between 2 and 3 times) than B or B is more elastic.
This implies that prices close to equilibrium are more liquid.

On the other hand, Bid side median log(A/B) variable becomes closer
to cero. As in the Ask side, A is greater than B but contrary to Ask result
di®erences between both slopes are decreasing and both slopes are becoming
more inelastic.

If we take into account the whole sample, assets with the larger level of

activity (BB) are the ones with most observations. However, if we only look
at restricted sample, then the group with more observations is SS. Addi-
tionally, the number of observations is not monotonic in the capitalization.
In fact, MM ¯rms have a greater number of slope observations than the any
other activity classi¯cation except SS.
As expected, the number of observations computed in a given time interval
during the preopening period increases as the time approaches the opening
period.

4.1 Seasonality and Cross-sectional E®ects

The ¯rst analysis we carry out is about seasonality. In order to capture
seasonality e®ects we construct 3 dummy variables in the preopening period,
one for ten minutes interval. We run one regression. Results are in table 3.

yit = ® + ¯2D2 +¯3D3+ "it

Insert table 3

where yit refers to either slope A, B or Log(AB ) and to either bid or ask.
We can observe some important di®erences between slopes and between

ask and bid side. Looking at ask results, table shows that preopening ending
implies that market ask side becomes more elastic and as a consequencemore
liquid, that is equilibrium price is less sensitive to changes in order °ow.This
increase in liquidity is higher in A slopes so higher improvement of liquidity is
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far away from equilibrium price. This result implies lower insider camou°age
opportunities near equilibrium price. However, this result is not con¯rmed
by Log(A/B).

When we look at bid results A slope does not signi¯cantly change. We
observe the opposite result in B slope. B slope changes are signi¯cant and
negative. This implies more liquidity around equilibrium price. Given the
value of Log(A/B) for the bid side, A slope is greater than bid slope close
to equilibrium price.

Comparing ask with bid slopes, bid slopes show higher degree of season-
ality. One possible explanation of this results is that November 1999 was
a period of bull market, and as a consequence, activity should be re°ected
mostly on ask side.

We calculate cross-sectional e®ects in the same way. we construct 5 dif-
ferent dummy variables, one for each group considered. Given the di®erences

among groups, we should expect di®erent degree of asymmetric information
and as a consequence di®erent slope behaviour. We run one regression.
Results are in table 5

yit = ® +¯BMDBM + ¯MMDMM + ¯MSDMS +¯SSDSS + "it

Insert table 5

where yit refers to either slope A, B or Log(AB ) and to either bid or ask.
Ask side show signi¯cant di®erences among di®erent activity groups.

Groups of lowest activity show more elastic A and B slopes. This result is

similar on the bid side. So, highest and lowest levels of activity are more
liquid than the rest of groups. This e®ect is specialy important for B slopes.
Although Log(AB) variable present similar idea, we observe that on ask side
constant is not statistically di®erent from zero and yes it is on bid side. Both
sides, ask and bid, present greater di®erences between SS and BB activity
groups. This result is especially important in the ask side.

4.2 Volatility e®ect

The volatility of asset prices is in°uenced by the rate at which new informa-
tion arrives and by the rate at which private information is disclosed. Since
the predictions of our model depend on the presence of informed traders,
it is useful to see how volatilty in°uences the preopening slopes of Demand

and Supply curves.
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We calculate volatility from ¯fteen minutes returns:
Daily volatility proxy is a mean average of absolute value of returns.
Given that we try to detect di®erences in asymmetric information level

we divide each volatility variable by mean sample volatility.
In addition we detect two most volatile days and build a dummy variable

for those volatile days. First analysis we carry out is a regression analysis
with these dummy variable. We regress each variable on this dummy in
order to detect if slopes calculated this volatile days are di®erent.

Firs we sholud construct a volatiliyt measure. Based solely on Anderse
et al (199,****) we construct daily volatility measure. we ¯rst de¯ne returns
as:

r (j; t) = Log (S (j; t)) ¡ Log (S (j ¡ 1; t))

where S is the price of asset on day t between j and j-1 time interval.
Second, daily volatility proxy is a mean average of absolute value of returns.

¾2S =
1

N

hX
abs (r (j; t))

i

Third, given that we try to detect di®erences in asymmetric information
level we calculate a ratio between each volatility variable by mean sample
volatility of the sample included.

R
¡
¾2S

¢
=

¾2S
1
N [

P
¾2S]

In addition we detect two most volatile days and build a dummy variable
for those volatile days. First analysis we carry out is a regression analysis
with these dummy variable (D90) which takes value 1 if R

¡
¾2S

¢
belongs to the

top decile and 0 otherwise. These observations in which D90 = 1 correspond
to days and assets in which important movements occur from preopening
to closing price, presumably because of information disclosure. We run the
next regression for each side and each variable.

yit = ® +¯D90+ "
Insert table 6

Results can be summarize indicating that arrival information days ex-
hibit di®erent behavior in preopening slopes. Slopes are greater or equal
than days of lower volatility that is more inelastic. This result implicates
that before higher volatility days we can detect higher asymmetric informa-
tion level and as a consequence more inelastic demand and supply curves.
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Looking at Ask slopes, A slope is more inelastic and B is not di®erent. Con-
trary to this result Log(A/B) is lower on volatility days. When we observe
Bid side, slopes become greater in absolute value. This change is greater in
B slope. Log(A/B) does not signi¯cantly change.

Given the important role of Dummy variable we look at interactions
between time dummy and volatility dummy in order to capture di®erent
behavior those volatile days. We run the next regression.

yit = ® + ¯2D2 +¯3D3+ ¯90D90+ °290 (D2 ¤ D90) + °390 (D3 ¤ D90)+ "it

Insert table 7

Looking at results interaction have a di®erent sign that direct e®ects.
This e®ect is specially important in Ask Log(A/B) variable. Although
volatile days exhibit higher liquidity this e®ect is more than compensated
with interaction variables. Similar can be found in B slope on the Bid side
but not on Log(A/B) variable. Additionally, dummy coe±cients are not so
much di®erent than previous estimated ones.

The second analysis related with information arrival use some informa-
tion variables in order to explain the behavior of slopes. Now instead of
preopening observations we summarize slopes information in two di®erent

measures. First measure is a mean of slopes values for each asset each day.
Second measure is a dispersion ones. Also, it is well known that We de¯ne

yS;MaxMin = Max(yS;j) ¡ Min(yS;j)

To carry out this analysis we will use daily observations and exoge-
neous variables are dispersion variables of each of the slopes, volatility and
three di®erent activity variables. These are natular log of volume in shares
(VS;j¡1), e®ective volume in euros (EffVS;j¡1) and number of trades for
each day and each asset. We include these four variables with a lag. We
run two di®erent regressions to capture exogeneous lagged e®ects and con-
temporary dispersion measures e®ec. The regressions we run are given by:

yit = ®+°1R
³
¾2S;j¡1

´
+°2Log (VS;j¡1)+°3Log(EffVS;j¡1)+°4Log(NTranS;j¡1)+"it

yit = ®+ °1R
³
¾2S;j¡1

´
+ °2Log (VS;j¡1) +°3Log(EffVS;j¡1) +°4Log(NTranS;j¡1)

+°AAMaxMin +°BBMaxMin+ °LogLog(A=B)MaxMin + "it
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Insert table 8

Results show that greater volatility ¯gures becomes in no change except
if we look at Log(A=B) variable. Additionally, the efects of volatility are
di®erent if we see the ¯gures of ask and bid side. Reason behind this result
is November bull market. Looking at activity e®ects, higher shares volume
implies higher liquidity on the preopening. contrary to this result, higher
e®ective volume implies lower liquidity. This result is natural given that
higher price implies lower liquidity. Number of transactions is representing
similar intuition that e®ective volume. If we use average transaction size
in shares and average transaction size in euros we obtain similar results in
terms of signs and signi¯cance.

As we mention, a complementary analysis is given by analyzing if con-
temporary volatility measure with yS;MaxMin a®ect slope behavior. Results
are included in table 9.

Insert table 9

Looking at results we observe that contemporary dispersion measures
a®ect mean slopes. Both measures of slope dispersion do less liquid the

market. This e®ect is specially important in B slopes. That is B slopes
are more sensitive to contemporaneous volatility. Another important aspect
is that ask and bid side results are quite similar in signs and signi¯cance.
Log(A/B) con¯rm these e®ects.

5 Conclusions

We can consider at least three reason why preopening is an important period.
Protocol procedure is di®erent from open market period,, it provides price
discovery, and investors use it as an important part of the market. In SSE
preopening can cross between 20 and 30% of daily e®ective volume.

Our model implies that a rational expectation equilibrium exists with the
active participation of the informed trader and uninformed traders. An im-
portant theoretical result is that informed trader selects di®erent strategies

depending on the information possessed.
The empirical part is based on the study of behavior of LOBslopes. Main

results indicate behavior of investors is di®erent depending where they put
the orders, close or not to the equilibrium price. the way they introduce.
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Additionally, some variables as time to preopening to expire or activity a®ect
slopes.

Information arrival days exhibit di®erent behavior in preopening slopes
but if we look at activity measures instead of volatility. Higher shares volume
implies higher liquidity on the preopening. contrary to this result, higher
e®ective volume implies lower liquidity. This result is natural given that
higher price implies lower liquidity. Number of transactions is representing
similar intuition that e®ective volume. If we use average transaction size
in shares and average transaction size in euros we obtain similar results in
terms of signs and signi¯cance.These results are consistent with our model.
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Table 1  
LOB at 9:59:59 

Bid Ask 
14094 17.99 13.31 19235 

77 17.90 14.00 2260 
700 17.50 15.00 1120 

12695 17.00 15.40 3000 
5000 16.75 15.44 350 

 
LOB at 10:00:10 

Bid Ask 
151 15.54 15.70 2534 
1537 15.53 15.71 1336 
835 15.50 15.72 1200 
1300 15.48 15.73 504 
3000 15.47 15.74 3307 

 
Table 2 

LOB at 9:59:59 
Bid Ask 

14094 17.99 13.31 19235 
77 17.90 14.00 2260 
700 17.50 15.00 1120 

12695 17.00 15.40 3000 
5000 16.75 15.44 350 
3068 16.50 15.60 9669 
2000 14.00 15.70 1000 
5673 12.00 17.00 3345 

P*=15,65 
Q* =35634 
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Table 3 
Descriptive Statistics 

 
This table contains Descriptive Statistics of slopes in preopening. (AASK , BASK , Log(A/B)ASK , ABID, BBID, 
Log(A/B) BID). 

 
Panel A: Slope Classification by Activity 

Ask 
  A B Log(A/B) 
 Obs. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. 

BB 634 0.239 0.098 0.412 0.768 0.118 2.544 -0.126 0.017 1.985 
BM 866 1.263 0.197 4.997 1.724 0.061 13.646 1.121 0.967 1.847 
MM1037 0.485 0.205 0.743 0.867 0.050 3.036 1.127 1.226 2.270 
MS 620 0.186 0.070 0.305 0.212 0.019 0.744 1.135 1.145 1.938 
SS 1184 0.229 0.088 0.437 0.224 0.024 1.039 1.109 1.021 1.607 

Bid 
  A B Log(A/B) 
 Obs. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. 

BB 512 -0.152 -0.074 0.300 -0.425 -0.030 4.054 0.416 0.575 2.444 
BM 795 -1.263 -0.178 3.741 -3.139 -0.185 11.265 0.186 0.083 2.219 
MM1039-0.438 -0.217 0.594 -0.766 -0.174 2.168 0.366 0.222 1.778 
MS 675 -0.250 -0.095 0.658 -0.289 -0.052 0.942 0.642 0.553 1.812 
SS 1228-0.203 -0.078 0.344 -0.420 -0.031 1.737 0.848 0.651 1.662 

 
Panel B: Slope Classification by Minute 

Ask 
  A B LOG(A/B) 

Min. Obs. Mean Median Std. Dev. Mean Median Std. Dev. MeanMedian Std. Dev. 
0-9 932 0.866 0.141 4.618 1.820 0.061 13.277 0.769 0.675 2.138 

10-191544 0.549 0.160 1.281 0.586 0.050 2.331 1.058 0.942 1.903 
20-291865 0.257 0.084 0.581 0.362 0.034 1.429 0.926 0.859 1.953 

Bid 
  A B LOG(A/B) 

Min. Obs. Mean Median Std. Dev. Mean Median Std. Dev. MeanMedian Std. Dev. 
0-9 768 -0.389 -0.144 0.789 -0.419 -0.035 1.118 0.942 0.889 2.018 

10-191592-0.526 -0.120 1.747 -0.935 -0.067 4.147 0.487 0.447 1.896 
20-292014-0.513 -0.118 1.979 -1.308 -0.101 6.890 0.414 0.320 1.935 
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Table 4 
Dummy Time Regression  

 
This table contains the time series coefficients of slopes in preopening. The dependent variable is one of 
the slope variable (AASK , BASK , Log(A/B)ASK , ABID, BBID, Log(A/B) BID). The explanatory variables are 
two dummy variables that capture time till the end of the preopening period effect. *(**) indicates 
significance at 5%(10%). White standard errors are used 

jj DDy εββα +++= 3322  

 
 Ask Bid 

 A  B  Log(A/B)  A  B  Log(A/B)  
α  0.454 * 0.457 * 0.868 * -0.370 * -0.395 * 0.905 * 

2β  -0.039  0.040  0.172 * -0.019  -0.273 * -0.441 * 

3β  -0.218 * -0.110* 0.051  0.003  -0.191 * -0.426 * 
 

Table 5 
Activity Effect Regression  

 
This table contains the Activity influence on slopes in preopening. The dependent variable is one of the 
slope variable (AASK , BASK , Log(A/B)ASK , ABID, BBID, Log(A/B) BID). The explanatory variables are four 
dummy variables that capture Activity or Size effect. *(**) indicates significance at 5%(10%). White 
standard errors are used 
 

jSSSSMSMSMMMMBMBMj DDDDy εββββα +++++=  

 
 ASK BID 
 A  B  Log(A/B)  A  B  Log(A/B)  
α  0.239 * 0.552 * -0.096  -0.403*-0.553 * 0.522 *

BMβ  0.344 *-0.081  1.210 *-0.263*-0.521 * -0.240 *

MMβ 0.246 * 0.129  1.258 *-0.035  -0.134** -0.138  

MSβ  -0.053*-0.339 * 1.231 * 0.166 * 0.289 * 0.126  

SSβ  -0.010*-0.328 * 1.205 * 0.200 * 0.191 * 0.335 *
 

Table 6 
Volatility Dummy Regression  

 
This table contains volatility influence on slopes in preopening. The dependent variable is one of the 
slope variable (AASK ,  BASK , Log(A/B)ASK ,  ABID,  BBID, Log(A/B) BID). The explanatory variable is a 
Dummy variable that reflect higher volatility day. *(**) indicates significance at 5%(10%). White 
standard errors are used 

jj Dy εβα ++= 9090  

 
 Ask Bid 

 A  B  Log(A/B)  A  B  Log(A/B)  
α  0.349 * 0.429 * 0.969 *-0.367 * -0.557 * 0.560 *

90β  0.062**-0.009  -0.212 *-0.068**-0.177 * 0.018  
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Table 7 
Time of Preopening and Volatility Dummy Regression  

 
This table contains Time of Preopening, Activity and Volatility influence on slopes in preopening 
including interaction effects. The dependent variable is one of the slope variable (AASK , BASK , 
Log(A/B)ASK ,  ABID,  BBID, Log(A/B) BID). The explanatory variables are Dummy variables that reflect 
Time of Preopening, Activity and higher volatility day and interaction among them. *(**) indicates 
significance at 5%(10%). White standard errors are used 
 

( ) ( )
jj DDDDDDDy εγγβββα ++++++= 903

3
90903

2
9090903322 **  

 
 Ask Bid 
 A B Log(A/B) A B Log(A/B) 

α  0.458 * 0.435 * 0.949 * -0.358 * -0.418 * 0.892 * 

2β  -0.051  0.077  0.098  -0.024  -0.208 * -0.436 * 

3β  -0.231 * -0.088  -0.039  -0.003  -0.145 * -0.401 * 

90β  -0.048  0.209  -0.804 * -0.089  0.164 * 0.092  
2
90γ  0.139  -0.400 * 0.726 * 0.037  -0.492 * -0.033  
3
90γ  0.145 * -0.217  0.920 * 0.019  -0.413 * -0.219  

 
Table 8 

Volatility Regression.  
 

This table contains volatility influence on slopes in preopening. The dependent variable daily average of  
one of the slope variable (AASK , BASK , Log(A/B)ASK , ABID, BBID, Log(A/B)BID). The lagged explanatory 
variables are volatility measure as Anders en et al (1998), natural logarithm of volume in shares, effective 
volume in Euros and Number of transaction. *(**) indicates significance at 5%(10%). White standard 
errors are used. 

jjtjtjtjtj NTranLogEffVLogVLogy εγγγσγα +++++= −−−− )()()( 14131211  
 

 Ask Bid 
 A  B  Log(A/B)  A  B  Log(A/B)  

α  0.727 * 0.152  4.943 * -0.629 * -0.996 * 1.287  
1γ  -0.018  -0.001  -0.312 * -0.011  0.070  0.233 ** 

2γ  -0.355 * -0.298 * -0.161  0.220 * 0.417 * 0.296 * 

3γ  0.180 * 0.164 * 0.028  -0.162 * -0.236 * -0.111 ** 

4γ  0.062 * 0.125 ** -0.446 * 0.057 * -0.016  -0.273 * 
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Table 9 
Volatility Regression.  

 
This table contains volatility influence on slopes in preopening and measures of dispersion of each of the 
variables considered in the analysis. The dependent variable is one of the slope variable (AASK , BASK , 
Log(A/B)ASK , ABID, BBID, Log(A/B) BID) as an average of each variable. The lagged explanatory variables 
are volatility measure as Andersen et al (1998), natural logarithm of volume in shares, effective volume in 
Euros and Number of transaction and maximum less minimum of the data estimated for each day and 
each asset. We estimate Volatility using Andersen et al (1998) approach. *(**) indicates significance at 
5%(10%). White standard errors are used 
 

jMaxMinLogMaxMinBMaxMinA

jtjtjtjSj

BALogBA

NTranLogEffVLogVLogRy

εγγγ

γγγσγα

++++

++++= −−−−

)/(

)()()()( 1413121,1  

 
 Ask Bid 
 A  B  Log(A/B)  A  B  Log(A/B)  

α  0.533 * 0.179  4.775 * -0.439 * -0.033  1.876 * 
1γ  0.008  -0.068  -0.255 ** 0.019  0.057 ** 0.205 ** 

2γ  -0.262 * -0.139 * -0.180 ** 0.082 * 0.127 * 0.170 ** 

3γ  0.131 * 0.062 * 0.048  -0.046 * -0.092 * -0.076  

4γ  0.053 * 0.090 ** -0.435 * 0.022 * -0.042  -0.272 * 

Aγ  0.484 * -0.027  0.381 * -0.552 * 0.109  0.395 * 

Bγ  0.040 * 0.547 * -0.273 * -0.043 * -0.674 * -0.453 * 

Logγ  -0.065 * -0.093 * 0.015  0.023 * 0.075 * 0.035  
 


