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ABSTRACT: 

In this study, a novel algorithm to solve the position of a nematic liquid crystal molecular director 
inside a device has been proposed. The formulation for minimizing the Gibbs free energy, composed 
by the free energy deformation (Frank-Oseen equations) minus the electrical energy, has been 
established using a vectorial representation of the director. The three liquid crystal elastic constants 
have been considered. The differential equations involved have been solved by applying numerical 
methods, using an algorithm developed by the authors. It has been compared with other techniques 
and the main advantages are that the new algorithm is faster and more accurate than other previous 
methods such as finite difference method (FDT) or a boundary value problem solver of MATLAB 
(bvp4c). Simulation program is also a powerful tool for analyzing other liquid crystal properties such 
as refractive index and permittivity as a function of voltage. To validate the simulation results, they 
have been compared with some measurements of a nematic liquid crystal device manufactured for 
that purpose. The comparison of birefringences simulated and measured show results that are fairly 
in agreement. This work also aims to provide a software simulation tool easy to reprogram for more 
complex devices. 

Key words: Optoelectronics; Liquid Crystals; Liquid-Crystal Devices. 

RESUMEN: 

En este trabajo se propone un nuevo algoritmo para resolver la posición molecular del cristal liquido 
nemático (CLN) en un dispositivo afectado por un campo eléctrico. La formulación característica del 
CLN bajo la influencia de un campo eléctrico se compone de la energía libre de deformación de 
Frank-Oseen menos la energía eléctrica. Este resultado, considerado como energía libre de Gibbs, 
tiene un mínimo cuando el director molecular se encuentra en equilibrio. La minimización de esta 
energía ha sido establecida usando una representación esférica del director molecular. Se han 
considerado las constantes elásticas del CLN y se ha resuelto mediante métodos numéricos. Para ello 
se emplea un algoritmo desarrollado por los autores, que ha sido comparado con otros métodos 
propuestos en la literatura como el método de las diferencias finitas (FDT) o un método de 
resolución propietario de MATLAB conocido como bvp4c. Las comparativas realizadas muestran un 
comportamiento superior del algoritmo propuesto, siendo más rápido y preciso que los métodos 
anteriores. Una vez que se conoce la posición de las moléculas en el dispositivo, otros parámetros 
como índice de refracción y permitividad en función del voltaje, pueden ser determinados. Para dar 
una validez a los resultados de simulación, se ha fabricado y caracterizado un dispositivo monopixel 
de CLN. Las medidas experimentales de birrefringencia y permitividad para diferentes tensiones de 
alimentación muestran una gran concordancia con los resultados de simulación. Este trabajo 
pretende proporcionar una herramienta de simulación que puede emplearse en otros dispositivos de 
CLN más complejos en los cuales se conoce la distribución de tensión. 

Palabras clave: Optoelectrónica; Cristal Líquido; Dispositivos de Cristal Líquido. 
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1. Introduction 

Knowledge of the nematic LC (NLC) molecular 

directions inside a device is essential for 

predicting the electro-optic response as a 

function of external stimulus. Some recent 

applications such as optical filters, microwave 

phase shifters and filters, active zoom, and 

tunable lenses, among others, have been areas of 

interest for NLC simulations. Recently, some 

studies have tried to solve this problem 

analytically [1]. However, in order to obtain 

accurate results, numerical methods are 

required. Recent numerical simulations have 

focused on NLC in tumbling flows [2], nematic 

dynamics [3], and new algorithms [4]. The 

objective of these works is to find the position of 
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the NLC director inside the cell. In our study we 

propose a novel algorithm to solve the director 

equations under applied electric fields. 

In the NLC physics understanding, the most 

accepted theory is the continuum theory. In this 

theory the average local orientation of molecules 

is mathematically represented by a vector called 

director    . All directors that form a LC cell 

determine the anisotropy inside it. This vector 

can be represented in Cartesian            or 

spherical coordinates with          , see Fig. 

1. The equilibrium state is such that all the 

molecules are aligned parallel to each other in 

the direction of    . However, as a result of the 

external fields, this director is deformed. The 

continuum theory does not consider the NLC 

behaviour at a structural level because the 

lengths of these deformations (about 1 µm) are 

considerably shorter than the molecular length 

(Armstrong). The basis for the continuum theory 

model was proposed at the end of 1920’s by C. 

W. Oseen [5] and H. Zöcher [6]. The first one 

developed a NLC static theory; the second one 

successfully applied this theory to the 

Freedericksz transition. However, it was not 

completed until over thirty years later when F. C. 

Frank studied this theory and presented it as 

elasticity deformation theory [7], offering a 

direct formulation of the energy. These 

equations are usually employed in the static 

director simulations. The dynamic theory is 

attributed to Oseen [8], the formulation of 

general conservative laws to Erickseen [9] and 

the constitutive equations describing the 

mechanical behaviour to Leslie [10]; in fact, 

these equations are easily applicable to  
 

 

Fig. 1. Molecular director of a LC molecule, Cartesian and 
spherical coordinates. 

numerical simulations of the LC director 

dynamics. These theories are based on the study 

of two parameters: the Q tensor, which is related 

with S parameter (order parameter) [11] or 

director    . The molecular director     is more 

frequently used due to its mathematical 

simplicity, low computational cost and more 

accurate results [12]. 

Until now different approaches have been 

proposed to minimizing the free Gibbs energy, 

which is composed by the electrical energy plus 

free energy deformation (Frank-Oseen 

equations). These methods are based on Euler-

Lagrange equations. To solve these equations, 

one of the most employed techniques is the finite 

element method [13], this method is usually 

employed in complex structures; its 

programming involves a variational approach to 

the Frank-Oseen free energy formulation. The 

method also needs mesh grids that usually 

requires many lines of code. Another method is 

to solve the equations directly, employing 

numerical methods to solve the resulting 

differential equations. Several numerical 

methods have been proposed to solve this 

problem, finite difference [14], Bvp4c [15], etc. 

The finite difference method is a simple method 

but has to be precisely configured in order to 

work properly, the step constant is usually a 

difficult value to find (small values causes high 

computational costs and big values big errors). 

The Bvp4c is a MATLAB function; it is time-

consuming but the less erroneous [16], actually 

there have been advances on the algorithm 

through reduction in errors [17] but has more 

difficulties to converge. The main differences 

between them are the error and the 

computational cost. The aim of this work is to 

provide an easy tool to solve the molecular 

distribution. A simple, fast and reliable 

algorithm is proposed to solve these equations. 

 

2. Solving continuum theory 

Molecular alignment of a LC is deformed under 

mechanical stress. In nematic LC, three 

deformations can be considered: splay, twist and 

bend. 

The relation between deformation and stress, 

for each kind of deformation, is expressed as 
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splay elasticity, K11, twist elasticity, K22 and bend 

elasticity, K33, as shown in Fig. 2. The elastic 

constants for a LC are around 10-6, 10-7 dynes 

and therefore, much smaller than common 

solids. This fact makes modifications of 

molecules positions easy, due to electrical or 

magnetic external fields. Mathematically, if an 

external perturbation, such as an electrical field, 

is introduced in the system, the deformation of 

the molecular director can be estimated 

minimizing the Gibbs free energy density, FG. 

This energy is composed of the contribution of 

two energies: the deformation free energy, Fd, 

and the electrostatic free energy,   , 

          .    is the energy of the different 

deformation modes, as a function of the gradient 

of    , and is determined by the free energy 

formulation of Frank-Oseen: 

            
                

  

 
 
 

  

                   

(1) 

where     is the molecular director,     

           ,     are the elastic deformation 

constants and   is the pitch of a quiral helicoidal 

dopant (for twist purposes); in the simulation 

program this variable is called  . On the other 

hand,    is given by: 

    
 

 
           (2) 

following the Maxwell equations: 

                     (3) 

where the dielectric tensor for a nematic LC is: 

    

       
             

             
       

                   
 

    (4) 

   is the dielectric anisotropy and    the 

ordinary permittivity. The Gibbs free energy 

(WG), given by the integral of the free energy 

density      over the thickness, has a minimum 

in the equilibrium state. However, due to the 

high nonlinearity of the free energy and the 
 

 

Fig. 2. Deformations in nematics: a) Splay, b) twist, c) bend. 

coupling between deformation and electrical 

energies, a direct solution of the LC director 

deformation from the free energy equation is 

very difficult to obtain. Therefore, the modelling 

usually involves an iterative process, minimizing 

the Gibbs free energy to update the LC director 

profile. Also, the electric energy is minimized by 

solving Gauss's Law to up-date the potential 

profile interactively. 

2.a. Isolating variables 

In order to simplify the problem, the molecular 

director orientation is described with two 

angles:  , defined as the director tilt angle 

measured from the device surface, and  , 

defined as the twist angle measured from the 

alignment direction (See Fig. 1): 

                               (5) 

With this simplification, considering Eq. 2, and 

one dimension, the electrostatic free energy 

results: 

    
 

 
                 

  

  
 
 

   (6) 

At this point, and considering the Gibbs free 

energy as: 

   
 

 
          

 

 

   (7) 

where   is the LC thickness, the minimum 

energy solution (subject to boundary 

conditions), produced in the nematic 

equilibrium state, is equivalent to solve the 

Euler-Lagrange equations. Those equations, 

which are in one dimension and spherical 

coordinates, are: 

   

  
 

 

  
 
   

   
      (8a) 

   

  
 

 

  
 
   

   
      (8b) 

This tedious task can be easily solved with 

symbolic software, e.g. MUpad (MATLAB) or 

MAPLE. In the MAPLE case, the software has 

implicit functions that solve the Euler-Lagrange 

equations with only two lines of code: 

>>EL:=remove(has, EulerLagrange(Wg,z,[θ(z),φ(z)]),K) 

>>(Thetadif,Phidif):=selectremove(has,EL,diff(diff(theta(z),z

),z)) 
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The result is the Eqs. (8) expanded. To isolate 

the second order differential parameter and 

achieve the following functions, 

                                  (9a) 

                                  (9b) 

These equations relate the tilt and twist angles 

and the applied voltage with the position, being 

the key to solve the NLC director orientation by 

numerical methods. In order to obtain Eqs. (9), a 

simple instruction is used, solve: 

______________________________________________________________________________ 

>>solve(Thetadif, diff(diff(θ(z), z), z))) 

      

   
                    

 

          
              

       
   

(10) 

with 

      
     

  
 

 

     

     

  
         

        
     

  
 

 

  

      
     

  
 

 

  
     

  
 

 

             
     

  
 

 

   
     

  
 

 

    

(11) 

>>solve(Phidif, diff(diff(φ(z), z), z))) 

      

   
 

          
     
  

     
  

         
                        

        

                    
              

        
  

(12) 

______________________________________________________________________________ 

In parallel, the electrical field change across 

the cell, as a function of the anisotropy, must be 

taken into account. For potential profile 

estimation, Gauss's law is solved: 

           (13) 

Electrical displacement can be expressed by the 

applied potential    , see Eq. (3). Then, 

considering the permittivity tensor in z direction 

(Eq. (4)) and isolating the second order 

differential equation of electrical field  , the 

code is as follows: 

>>ez:=eo+ince∙(n[3]) 

>>solve(diverge(e0∙ez∙E,[z]), diff(diff(V(z), z), z))) 

      

   
  

 
                      

     
  

     
  

                
   

(14) 

Finally, we have a system of three second order 

differential equations              , Eqs. (10), 

(12), and (14). This system has two boundary 

conditions, corresponding to the two glass plate 

voltages, then, it can be expressed as: 

                               (15) 

where   and   are vectors (3×1) with   

solutions at the extreme points 0 and  , 

respectively. The analytical resolution is very 

complex, but numerical methods can define 

approximations to the solution. The latter 

equation, as well as being a boundary value 

problem (BVP), is non-linear reducing the 

possible methods to solve it. 

2.b. Proposed algorithm 

Firstly, the algorithm transforms the BVP into an 

initial value problem. 

                               (16) 

The value of   is a 3×1 vector with the applied 

voltage    , the pretilt angle      and the twist 

angle     . The value of the boundary condition, 

 , that is also a vector, has to be determined for 

 ’. A simple algorithm can do this, by a trial-

error iterative process, starting with one 

arbitrary ν value, and solving the initial problem 

in the       range. If the solution is       , the 

estimated initial condition     is right, if not, the 

process starts again. However, this simple 

method is very inefficient. So, an improvement 
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has been made by solving the problem of the 

unknown initial condition as a root of the 

following equation: 

               (17) 

where   is the residual, that is, the difference 

between the estimation of the solution in d (with 

the initial condition  ) and the solution in     . 

This equation has been solved with the Newton-

Raphson method, because it is simpler and faster 

than other methods such as the Brent or 

bisection algorithm. In addition, it is the best 

method for nonlinear equations. The differential 

equations are solved by an adaptive fourth order 

Runge-Kutta algorithm. The three second order 

equations system has been transformed to a six 

first order equations system by substitution 

                                   

in order to be able to use the Runge-Kutta 

algorithm. 

          

 
 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 
 

 

 
 
 
 
 
 
  

   
  

   
  

     
 
 
 
 
 

  (18) 

The complete algorithm, to solve the system, is 

depicted in the Fig. 3, and it is described by the 

following steps: 

1. Two initial conditions for each equation of 

the system are set. For the     equation, the 

pretilt; for    , the twist, and for    , the 

voltage corresponding to the current step. 

For the unknown parameters          an 

approximation is made:           , 

                 , and             , 

(   =sample thickness). 

2. The initial condition   takes the value of the 

previous      . 

3. Eq. (17) is solved by the Newton-Raphson 

method, giving the initial condition,  , which 

produces the minimum residual,     . 

4. Once these values are known the differential 

equations are solved and the results are 

obtained. 

5. The step,  , is reduced by one, such that 

voltage is increased one portion.  

 

Fig.3. Algorithm flow chart. 

 

6. The process is repeated until     and the 

initial voltage has its final value. For this 

voltage the solution is               . 

The algorithm solves the two angles     and 

the voltage across the dimension  . With these 

solutions, parameters such as birefringence or 

permittivity can be easily estimated. Once the 

angles are known, the estimation of the effective 

permittivity in each position can be made with 

the following equation: 

       
          

      (19) 

To determine the permittivity as a function of 

voltage an integral is made: 

          
 

 
            

 

 

  (20) 

For the effective refractive index, the previous 

angles are also considered [18]: 

        
 

 
       

  
  

       
  

 

  
(21) 

And finally, the birefringence can be easily 

solved by integration [19]: 
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  (22) 

The predicted parameters can be compared with 

measurements in a monopixel cell. In addition, 

they can be used for other devices if the voltage 

at different positions is known. 

 

3. Comparison with previous 
methods 

The proposed algorithm has been compared 

with two other methods: the classic FDM, with 

central approximation, and the proprietary 

algorithm of MATLAB, Bvp4c. As noted above, 

the last algorithm is known for its minimal error 

in BVP solutions. So, the comparison between 

the three methods has been done in terms of 

computational cost and errors, taking as 

reference the Bvp4c results. A device with 

parallel alignment has been chosen for the 

comparison; this configuration is one of the most 

used in the newest experimental applications 

(optical filters, microwave devices, active zoom, 

etc.). The twist angle is 0º and the elastic 

constant K22 is not taken into account. The LC 

chosen is MDA-98-1602 (Table I) with a device 

of 6.5 μm thickness and 5º of pretilt caused by 

the alignment. 

The previous parameters are considered for 

a 589.3 nm wavelength and 1 kHz frequency AC 

electrical signal and are extracted from the 

datasheet provided by Merck. The three 

algorithms have been programmed in MATLAB. 

The calculation of the voltage and the angle 

profiles has been made with: 20 steps for the 

shooting and Bvp4c methods and an incremental 

number (104-102) for the FDM method. Both 

profiles are shown in Fig. 4. It is advertised that, 

for different voltages (2V, 4V and 6V), the 

number of errors is very small to distinguish 

between methods in the graphs. 

The maximum tilt angle estimated is also 

similar between algorithms (Table II). However, 

the CPU time consumption has been measured 

on the basis of the three alternative methods of 

simulation (Table III). The results demonstrate 

that the proposed algorithm is faster than Bvp4c 

and FDM (for low voltages), with the accuracy of 
 

TABLE I 

MDA-98-1602 nematic LC characteristics 

Elastic 
Constants 

Birefringence Permittivity 

K11=15.7 pN ne=1.7779   =16.2 
K22=8 pN no=1.5113   =12 

K33=13.6 pN Δn=0.2666 Δ =4.3 

 

 

Fig. 4. Simulations of LC director with three different 
methods: a) 2 V, b) 4 V and c) 6 V. 

 

the proprietary algorithm of MATLAB, Bvp4c. 

FDM shows good behavior for high voltages, 

when the critical angle is almost ninety degrees. 

On the other hand, FDM has a clear problem 

to find the optimal step size. There is a critical 

compromise between error and time 
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TABLE II 
Voltage dependence of maximum tilt angle estimation 

Voltage Shooting Bvp4c FDM 
2 Vrms 65.11° 65.12° 61.55° 
4 Vrms 88.10° 88.10° 87.14° 
6 Vrms 89.93° 89.95° 89.73° 

 
TABLE III 

Voltage dependence of CPU time consumption 

Voltage Shooting Bvp4c FDM (Steps) 
2 Vrms 2.09 s 6.55 s 6 s (5×104) 
4 Vrms 1.80 s 7.53 s 1.8 s (104) 
6 Vrms 2.60 s 7.37 s 0.3 s(2×103) 

 
consumption. The number of steps in the 
proposed algorithm is always 20, demonstrating 
ease of use (there is no need to estimate the step 
for different supply voltages). 
 
4. Experimental setup 

In order to demonstrate the algorithm 
performance, a monopixel cell has been 
manufactured and characterized. The main 
parameters are: NLC MDA-98-1602, thickness 
6.5 μm and surface 5 cm2. Two different 
characterizations have been carried out. The 
process to obtain the birefringence is based on 
transmittance between parallel and crossed 
polarizer, measured by spectroscopy. The 

dielectric anisotropy is based on a Wheatstone 
bridge setup taking into account the electrical 
equivalent circuit at 1 kHz (a resistance parallel 
capacitor). 
4.1. Birefringence 

One of the most important LC characteristics is 
its optical anisotropy or birefringence. This 
feature, which can be tuned by an external AC 
square voltage, has been chosen to validate the 
presented algorithm. For an experimental 
measurement the set up of Fig. 2 is employed. 

The experimental set-up was comprised of an 
AvaSpec-128 fiber optic spectrometer from 
Avantes with 4nm of resolution in a range of 
360-890nm. Driving signal was a 1 kHz AC 
square signal from 0.1 to 6 Vrms (steps of 0.005 
Vrms). The cell is supplied by a square 
alternating signal of 1 kHz, with RMS voltage 
from 0.1 to 6Vrms with a resolution of 
0.005Vrms. Theoretically, optical transmittances 
between parallel  and crossed polarizer  
are [20]: 

 (23) 

where  is the intensity of the input light and Φ 
the phase shift. From Eq. (23), the phase shift 
can be extracted as: 
 

______________________________________________________________________________ 

 (24) 

______________________________________________________________________________ 
 

 
Fig. 5. Experimental set up for transmittance measures, between crossed and parallel polarizer. 

 



ÓPTICA PURA Y APLICADA. www.sedoptica.es 

Opt. Pura Apl. 46 (4) 327-336 (2013) - 335 - © Sociedad Española de Óptica 

where  is the number of maximums and 
minimums in the transmittance profile. The 
transmittance profiles are processed by 
MATLAB, particularly concerned with the 
calculus of the phase as a function of voltage 
following Eq. (24). The result is a set of 
birefringence values as a function of voltage for 
various wavelengths (dispersion). 
4.b. Dielectric anisotropy 

In order to characterize the dielectric response, 
impedance spectroscopy analysis is usually used. 
Notwithstanding, this technique is mainly valid 
for low voltages, when non-linear effects can be 
deprecated. In this case, and considering a 
specific frequency range where an equivalent 
electrical circuit of LC is known, a classic 
Wheatstone bridge is used. 

This set-up is composed of the same LC cell 
previously used , placed in one branch. On 
the left side are the variable components  for 
tune purposes. In order to simplify the 
measurements, two equivalent impedances are 
placed in the lower branches (Eq. (25)). This is 
why  is a potentiometer. This bridge 
configuration produces null voltages between BC 
when the following equation is reached: 

 (25) 

If all of the lower branch components are equal, 
, the bridge is in equilibrium when BC 

voltage is equal to zero , in other words, 
when . As commented above, this EEC is 
valid only for a certain range of frequencies (100 
Hz - 10 kHz). In this case the EEC is simply a 
capacitor parallel to a resistance (dielectric 
losses). For better precision, an operational 
amplifier (AD620) with ×100 factor gain is 
placed in BC points. The experiment take 
measurements of resistance and capacitance 
 

 
Fig. 6. Wheatstone bridge for measuring the LC dielectric 
permittivity of MDA-98-1602 in a voltage range. 

 when , for a range of voltages from 0-
6 Vrms (frequency=1 kHz). 
 

5. Experimental and simulated 
results 

The experimental results have been compared 
with simulations, of the same LC cell employed 
in these set-ups, using the proposed algorithm. 
5.a. Birefringence 

Following Eq. (21), the birefringence as a 
function of voltage can be determined. The 
voltage dependence of the effective 
birefringence of a monopixel cell, with the same 
characteristics as the experimental set-up, was 
simulated following the proposed algorithm. 
Experimental birefringence profiles were 
obtained, for a set of wavelengths, using the 
procedure described in section 4.A. Figure 7 
shows the comparison between the simulated 
and experimental results of the LC cell 
birefringence. 

Upon comparing experimental data to those 
obtained in simulation, we found extremely 
close results. For high voltages birefringence 
tend to zero due to the perpendicular position of 
the molecules with respect to the cell surface. 
When the voltage is lower than the threshold the 
molecules are aligned parallel to the surface and 
the birefringence is the highest. The model 
shows a small discrepancy for high voltages 
mainly caused by convergence problems when 
the angle tends to ninety degrees. 
Notwithstanding, these similar results validate 
the proper operation of the proposed algorithm. 
 

 
Fig. 7. Simulated and experimental birefringence as a 
function of voltage. 
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Fig. 8. Capacitance     and conductance         of NLC 
MDA-98-1602 as a function of voltage and frequency. 

 

5.b. Dielectric anisotropy 

The result of the experimental set-up shown in 

Fig. 6 is the LC cell equivalent capacitance and 

resistance (Fig. 8). 

The capacitance and conductance are 

increasing with voltage. This is caused by the 

homogeneous alignment of molecules, as in the 

case mentioned above. In this case the 

permittivity considered in the relaxed position is 

the ordinary one. With cell dimensions and 

classic capacitor equation, permittivity is easy to 

calculate from this measure. Once the 

permittivity is extracted, a simulation with the 

same cell parameters is carried out. Eq. (19) is 

used for effective permittivity estimation, and 

then, Eq. (20) is used for permittivity estimation 

as a function of voltage. These results are shown 

in Fig. 9. 

This example also validates the behavior of the 

proposed algorithm. The slight differences 

between data could be caused by experimental 

measurement errors. In the case of imaginary 

permittivity extracted from conductance, the 

simulations cannot be carried out due to lack of 

this data in the LC data sheet. 

 

Fig. 9. Theoretical and experimental permittivity as a 
function of voltage. 

 

6. Conclusions 

The minimization of Gibbs free energy has been 

solved for a LC molecular arrangement. A novel, 

accurate, fast and reliable algorithm has been 

proposed and the initial prediction compared 

with experimental data has been presented. The 

comparison between experimental and 

simulated data shows close results. These 

simulations can be easily extended to other 

experimental devices where voltage distribution 

is known. 
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