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1 An interval for 1/ j3 

In this paper, fixed-width, asymptotic confidence intervals are set for 1/(3 from the model 

(1) 

Intervals for 1/(3 are of the form 

(1/~T - h, 1/~T + h), (2) 

where T is an integer valued stopping time, /3T is the least squares estimator for (3 based on 
T-observations and h is the half-length. Stopping times Ta are derived so that these confidence 
intervals have coverage probabilities converging to a set value "y E (0,1) as h - 0 or as a - 00 

where 

(3) 
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and <I> is the distribution function for a N(O, 1) random variable. This coverage is uniform in 
1 

(3 E (0, (3~) where (3~ = (3-a 4 and (3* > 0. 
Furthermore, the predictors Xi may be chosen adaptively. That is Xi may be a function of 

(Xi-I, Yi-1), ... , (XI, Y1)' In particular, Xi may be a function of ~i-1 and hence may implicitly 
depend on the parameter (3. 

Sequential methods have previously been used by Lai and Siegmund (1983) to construct 
fixed-width, asymptotic confidence intervals for the parameter (3 of an AR(l) model, Yi = 
(3Yi-1 + E, uniformly for 1(31 ~ 1. The difficulty in this case is that for 1(31 = 1 the least squares 
estimator is no longer asymptotically normal. 

Assume the following assumptions on the errors. 

(E) The errors, ei are assumed to be independent, identitically distributed random 
variables with lEei = 0, lEel = (J2 > ° and for some p > 1, lEleil2p < 00. 

The estimators for (3 and (J2 are 

where n n n 
- -1 '" - -1 '" d t '" 2 Xn=n ~Xi,Yn=n ~Yi,an n=~Xi' 

i=1 i=1 i=1 
_1 

The least squares estimator for (J2 is modified by adding tn 2 to prevent stopping early. 
The stopping time T is motivated by the following. Assume 

This should hold under mild conditions by the martingale central limit theorem. Then by 
Slutsky's Theorem 

Fn(l 1) (1) an ~n - /3 => N 0, (34 . 

Hence 

(1 1 11) (-h(32 Fn) 1P ~n - /3 ~ h ~ 1 - 2<I> (J • 

This coverage should be at least I, a fixed value. Replace (3 and (J with their estimators to 
obtain 

and 

Hence 

It XiYil ~ at! ~ 
t=1 
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where a is defined in (3). Based on these calculations it's natural to consider the stopping 
time 

{ 

n ~ l} 
Ta = inf nln ~ 2, tn ~ to and ~ XiYi ~ at~ &J 

1=1 

(4) 

where to > 0 is a constant set by the experimenter. Theorem 1, below, shows that this stopping 
time produces fixed-width asymptotic confidence intervals as described in (2). 

Let l z J be the largest integer less than or equal to z and define f( a) = O(g( a)) as 

limsup If((a)) I < M 
a-oo 9 a 

for some positive constant M. 
Assume the following assumptions on the predictors: 

(PI) Xi = Xi((Xi-b Yi-J), ... , (XI, yd, Vi) where Vi, i ~ 1, are independent 
random variables such that {vd is independent of {ej}, 

(P2) 3k ~ p such that sUPo<t3<t3~ L:i=l IElxil2k = O(a), 
(P3) 3zo > 0 such that sUPo<t3<t3~ JP (suPn>a nt;;l > zo) = 0 (a- t ) . 

If the predictors are deterministic the assumptions simplify to 

(P2) 3k ~ p such that lim SUPn_oo n-1 L:!:l IXil2k < 00, 

(P3) 3zo > 0 such that lim SUPn-+oo nt;;] :s ZOo 

Let 

Assuption (P3) may be replaced by 

(P3') 3mx > 0 such that infi~l IE(xrIWi-d ~ m x • 

(5) 

Hence the assumptions are satisfied for predictors,xj, independent, identitically distributed 
such that {xd is independent of {ed,IEx~ > 0 and IEIXll2k < 00, for some k ~ p. 

The main result is stated in the following theorem. 

Theorem 1 Assume (E) and (P1) - (PS). Then 

lim sup JP ( .;... - -f311 :s h) -11 = 0 
a-co o<t3<t3~ f3T o. 

and for 0 < p' < 4kp/(4k + 5p), 

( 1
1 11) 2p' ., sup IE f3 -,- - - = 0 (a- nun{P,2P }). 

O</3</3~ f3T o. f3 
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The proof of Theorem 1 will require some properties of the stopping time. At stopping 

T T ii 1 I>jYi = L Xjej + tTfj ~ ati- 0-; . 
i=1 i=1 

Setting 2.:[=1 Xjej = 0 and solving for tT yields 

Hence uniformity for fj down to zero is obtained by sampling untill tn is sufficiently large. Let 

Let d > 0 such that 

d < k2 /(k + 2) for k ~ 2 and d < min(k/2,p) for k > 2. 

The following theorem is required in the proof of Theorem 1. 

Theorem 2 Assume (E) and (Pl}-(P3). Then for fo > 0, 

For f > 0, 

Furthermore 

lim sup sup fdp (t; ~ 1 + f) = O. 
a-+O o<{3<{3~ f>fo 

lim sup lE It; - lid = o. 
a-+O O<{3<{3~ 

(6) 

The rate fd obtained in the first assertion of Theorem 2 leads directly to the bound for the 
expectation in the third assertion. 

The second assertion of Theorem 2 shows that the probability of stopping early is small. 
ii 1 

Stopping early means that the process, L:~1 XiYi, exceeds the boundary, at~o-J, for some time 
tn ~ (a/ fj)4(j2(1 - f). The main idea of the proof is to approximate the process 2.:i:1 XiYj = 
L:~1 Xjei + tnfj with W(tn) + tnfj where W(t) is a Brownian motion. Then the probability 
of stopping early is roughly the probability that W(t) + tfj exceeds the boundary ad (jt for 
some time t ~ (a/ fj)4(j2(1_ f). This probability is shown to be small in Keener and Woodroofe 
(1992). Note that the approximation is uniform for fj E (0, fj~). 

The strong approximation to Brownian motion is proved in Section 2. Theorems 1 and 2 
are proved in Sections 4 and 3 respectively. In section 5, it is shown that (P3) may be replaced 
by (P3'). 
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2 Strassen's Strong Approximation Result 

The strong approximation result here is almost a special case of a strong approximation result 
for martingales by Strassen, see Theorem 4.4, Strassen (1965). It requires a Skorohod type 
embedding for martingales by Jonas, see Theorem 4.3, Strassen (1965). 

Theorem 3 Let Yi be random variables such that 

where Ci = O'{Yi, ... , Y1 }. Then, without loss of generality, there exists a Brownian motion 
lV(t) and random variables ~i > 0 such that 

~i is measurable C: = 0' {Yi'''''Y1' W(s);O ~ S ~ t~j}, 
3=1 

w (t, (; + s) - w (t, (;) is independent of [~ for s > 0 

and 

Furthermore if IE(y;kICn _ 1 ) < 00 for some k > 1, then there exists a constant Lk, depending 
only on k, such that 

Here as in Strassen, the phrase, without loss of generality, means that there exist a probability 
space with a Brownian motion and random variables equal in distribution to the original 
random variables such that the relation is satisfied. 

Theorem 4 Let e ~ IRk, for k a positive integer, 8 E e and ea ~ e such that ea' ~ ea 
for all a' ~ a. Assume {eil satisfy (E), Xi = Xi( 8) are such that Xi is indpendent of ej for all 
j 2: i and 

a 
sup 2:IElxil2k = O(a). 
e i=l 

Then, without loss of generality, there exist Brownian motions Wet) = We(t) such that for 
"I > ~, ~ < "I' < "I, "I' ~ (6k - 2 + p)/4p and f > 0, 

SUPfPJP·(supn-'Y 10'-1 tXiei - W(t n ) > f) = 0 (a-(2'Y'-t)P). 
e n>a i=l 

The proof of Theorem 4 requires two lemmas. The first lemma is a strong law for martingales. 
The lemma is adapted from a result by Brunk and Chung (see Chow and Teicher, Corollary 
2, pg. 397 and Theorem 3, pg. 345). 
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Lemma 1 Let di = di( 8) be martingale differences, Sn = Li=l dj, k > 1, 4> > t and 

a 

sup L lEldilk = O(a). 
e i=l 

(7) 

Then 

and for f > 0 

Proof. By Burkholder's inequality (see Chow and Teicher, Corollary 1, pg. 397), Holder's 
inequality and Jensen's inequality 

sup lE sup ISjlk < 
e l$j$a 

where Bk is a known constant. This proves the first assertion. By Doob's submartingale 
inequality (see Chow and Tiecher, Theorem 8, pg. 247) 

sup fk]p (sup n-4>ISnl ~ f) 
e n>a 

< lim sup fk]p ( sup n-c/lkISnl k ~ €k) 
M-oo e LaJ$n$M 

< .J~oo s~p [lark<l>lElSLaJ Ik + t n-<I>k (lElSnlk -lEISn_llk)] 
e n= LaJ +1 

M 
< 0 (a-(<I>-t)k) + lim L ((n - 1)-<I>k - n-<I>k) sup lE\Sn_llk 

M-oo e n=LaJ+2 
+ lim M-<I>k sup lElSMlk 

M-oo e 
00 

< 0 (a-(<I>-t)k) + 0(1) L n-tPk-1(n - 1)f 
n=LaJ+2 

o 
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Lemma 2 

Proof. By Holder's inequality, Jensen's inequality and (P2) 

o 
Proof of Theorem 4. For each 8 E 0, apply Theorem 3, a Skorohod type embedding, to 

the random variables 0-l Xi €i. Then for each 8, there exists a probability space (Oe,Ae,JPe) 
supporting r.v.s, €i(8) and xi(8), equal in distribution to €i and Xi, a Brownian motion We 
and r. v.s ~i( 8) such that 

Suppose that the result holds on each of these probability spaces, uniformly in 8, that is 

By Theorem lA, de Acosta (1982), there exists a new probability space, (0·, A·, JP.). This new 
probability space supports r.v.s, €i(8) and xi(8), equal in distribution to €i and Vi, Brownian 
motions Wo and r.v.s ~i(8), for all 8 E 0. In addition, (8) holds with these new random 
variables and JP 11 replaced by JP •. The probability space (0·, A·, JP.) is the new probability 
space referred to in the phrase, without loss of generality, in the statement of the theorem. 
For ease of exposition, assume (0·, A·, JP.) is the original probability space and ommit * and 
8 from the notation. 

It's sufficient to show (8) holds. Let I' E (i,/). A preliminary step is to establish 

(9) 

Let 

(10) 
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By Theorem 3 and smoothing, define 

n n n 

Vn = LIE (~il£'i-d = LIE (a-2x~e~l£i_1) = LIE (IE (a-2x~e~IXi_1) l£i-1) 
i=1 i=1 i=1 

n n 

LIE (x~IE (a-2e~IXi_1) l£i-1) = LIE (X~I£i-1)' 
i=1 i=1 

where £i and £i are defined in Theorem 3. Then 

n n 
L~i - Vn = L [~i - IE(~il£'i-1)] 
i=1 i=1 

with the filtration £1 n is a martingale. By Jensen's inequality for conditional expectations 

Then by Theorem 3 

By Lemma 1, 

Similarly, 

a a 

sup L IE I~i - IE(~il£'i-1W < 
e i=1 

2sup LIE~f 
e i=1 

a 
< 2Lp sup L IEla-1xieil2p 

e i=1 
a 

2Lpa-2PIEle112p sup L IEl xil 2p 

e i=1 
= O(a). 

n n 

a-2 L x~e~ - Vn = L [a-2x~e~ - IE(X~I£i-d] 
i=1 i=1 

with the filtration £n is a martingale and 

a a 

sup L IE la-2x~e~ - IE(X~I£i-1)IP < (1 + a-2PIEle112P) sup L IElxil 2p = O(a). 
e i=1 e ;=1 

By Lemma 1, 

sup JP (sup n-2-y' la-2 t x~e~ - vnl > () = (-PO (a-(2-y'-t)P) . 
e n>a ;=1 

Finally, since 
n n 

tn - a-2 L x~e~ = L [x~(1- a-2e~)] 
i=1 i=1 

8 
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with the filtration Xn is a martingale, 

a a 

s~p 2:)E IXf(l- u-2el)IP < (1 + u-2PlEleI12P) sup LlElxil2p = O(a). 
e t=1 e i=1 

By Lemma 1, 

(13) 

The first preliminary result (9) follows from (11), (12) and (13). By Lemma 2 the second 
preliminary result is 

sup Ekp (sup t: > E) 
e n>a n 

< L n-4k sup lEt~ ~ L 0 (n-3k) = 0 (a-(3k-I)) . 
n>a e n>a 

(14) 

Define the set 

Since " ~ (6k - 2 + p)/4p then (3k - 1) ~ (2,' - !)p and by (9) and (14), 

(15) 

Hence it is sufficient to consider 

supP (supn--Y u-1 tXiei -We(tn)1 > E'Aa) 
e n>a i=l 

sup p (sup n--Y Iwe (t ~i) -we(tn)1 > E, Aa) 
e n>a i=1 

< LP (sup {n--Y IW(e) - W(t)l; 0 ~ t ~ n4E, t ~ e ~ t + n2-Y'E} > E) 
n>a 

rn4 fl+l 
< L L [2P(sup{n--YIW(m)-W(t)l;m-1~t~m}>i) 

n>a m=I 

+P (sup {n--Y IW(e) - W(m)l; m-I ~ e ~ m} > i) 

+ P ( sup { n --y I W ( e) - W ( m ) I ; m ~ e ~ m + n 2-y' E} > i)] . (16) 

For a sufficiently large, the first and second probabilities are less then the third probability. 
By Levy's inequality (see Lemma d, pg. 243, Loeve 1977) and Mills' inequality (see Lemma b 
pg. 241, Loeve 1977) the third probability is 

P (sup {n--Y IW(m) - W(e)l; m < c < m + n2-y' E} > ~) 
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Hence 

< 21P (n--Y IW(m) - W(m + n2-y' f)1 > ~) 

< 211' (IN(O,l)1 > ,In;-") 

sup 1P (sup n--Y 0'-1 t Xiei - W6(tn )1 > f,Aa) 
e n>a i=1 

< 0(1) L rnE+
1 

1 1 I exp [_~ (ftn;--yl )2] 
n>a m=1 f2 n-Y--Y 

< 0(1) n4-(-y-" )f2 exp - dn. 100 I 1 (ft n2(-y--yI)) 
n=LaJ 8 

(17) 

Integration by parts shows that this bound goes to zero geometrically as a goes to infinity. 
Then (8) follO\vs by (15) and (17). 0 

3 Results for the Stopping Time, 7 

For the remainder of the paper assume (E) and (PI )-(P3). The following lemma is used 
frequently. 

Lemma 3 

For <p > ~ and E > 0, 

Proof. The sum Li=1 Xiei with the filtration Xn , defined in (10), is a martingale such that 

a a 
sup LlElxieil2P = lEle112p sup LlElxil2P = O(a) 

o<~<~~i=1 o<~<~~i=1 

the conditions of Lemma 1 are satisfied and the results follow. 0 
For d in (6), choose h> 0 such that 

h < min{l, 2k/(k + 2)}, d < k6 /2, and d < ph. 

For E > 0 define the stopping time n* = n*(a,h,j3,f) by 

n* = inf {n ~ 21tn ~ (a/ f3)4O'2(1 + ft} . 
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Define the set 

Ba = {a < n* $ nO, (aj,B)4(12(1 + f)O $ tn. < (aj,B)4(12(1+f)} 

where 

nO = r2zo(aj,B)4(12(1 + f)Ol 

and Zo is defined in (P3). On the set Ba 

{t, ~ (af fl)'a'(! + ,) } s:; {t. x,e, + tn • fl < at!. u!. } 

(18) 

(19) 

Lemma 4 states that IP (B~) tends to zero, Lemma 5 shows that u;. converges to (12 and 
Lemma 6 uses (19) and Lemmas 4 and 5 to prove the first assertion of Theorem 2. 

Lemma 4 For f > 0, 

Proof. Note that 

lim sup fdIP (B~) = O. 
a-+oo o<{3<{3~ 

B~ ~ {a ~ n"}U{nO < n"}U{tn• ~ (aj,B)4(12(1+f),n" $ nO}. 

Since tn is nondecreasing, 

{a ~ n"} ~ {tLaj ~ tn.} ~ {tLaj ~ (aj,B)4(12(1 + f)o} 

and by Lemma 2 and Markovs inequality 

sup IP (a ~ n") $ sup (4 2f4 )o)k lEtraj = (1 + f)-koO (a- 2k ). 
O<{3<{3~ O<{3<{3~ a (1 1 + f 

Since n" is a stopping time 

and by (P3) 

sup lP(n">nO) $ sup lP(~>zo)= sup o ((nO)-2P) = (1 + f)_k26 0 (a- tk ). 
o<{3<{3~ o<{3<{3~ tno o<{3<{3~ 

Since tn.-l < (aj,B)4(12(1 + f)O then 

tn. - (aj,B)4(12(1 + f) $ x;. - (aj,B)4(12 [(1 + f) - (1 + f)o] $ sup x; - (aj,B)4(12(1 + t5)f 
2~n~nO 

and 

sup IP (tn• ~ ~: (12(1 + f), n" $ no) < sup ( ,B4 ) k f: lElx 12k 
O<{3<{3~ fJ O<{3<{3~ a4(12( 1 + t5)f n=2 n 

= f-(k-o)O (a-3(k-l)) . 

Note that t5 < min{l, 2kj(k + 2)} implies k - t5 ~ kt5j2 ~ d. 0 
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Lemma 5 For Eo > 0, 

For E > 0, 

lim sup JP (inf a-~ < (1 - E) 0'2) = o. 
a ..... oo o<f3<f3: n>a 

Proof. Note that 

• 2 nCT2 2:£-1 (e~ - 0'2) 2:£-1 Xiei - t 
0' n = -- + - + tn • n - 1 n - 1 (n - 1 )tn 

Choose m = m(Eo,b) > 0 such that for E ~ Eo, (1 + E)O ~ (1 + ~)O + 2mfo. On the set 
_1 4 2 ° 1. 3 _1. ° 2 Ba, tn•2 

::; [(aj,8) 0' (1 + E) r. = O(a-i) then for a sufficiently large, tn•2 
- mE 0' < 0 and 

< sup JP (sup ~ If)e~ -0'2)1> miCT2
) 

o<f3<f3: n>a n - i=l 

E-POO (a-~) 

The bound follows by applying Lemma 1 to the martingale differences (er - 0'2). For the second 
assertion note that for a sufficiently large 

[(
2:i-1(er - 0'2) ECT2) (n (2:£-1 Xiei)2 ECT2)] < sup - - + - - - . - n>a n-1 4 tn n(n-1) 4 

The result follows by applying (P3) and Lemmas 1 and 3. 0 

Lemma 6 For Eo > 0, 

Proof: Define the set 

By Lemmas 4 and 5, 

Choose M = M( Eo, b) > 0 such that for E > Eo, 

(1+<)1 [(1+~)I_(1+,)I] $-M,!, 

On the set Ca, Ca/ ,8)40'2(1 + E)O :::; tn- < (aj ,8)40'2(1 + E) and so 

~ 1. ~ [ 1 ( E)f 1.] at~.a-;_ - tn -,8 ::; t~. aCT 2 1 + 2 - t~.,8 < 0, 
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which is maximized with tn. = (a/ /3)4(72(1 + fl. Hence 

~ 1 a
4 

II [( f) ~ t] at~.&~. - tn·/3 < /33(72 (1 + f)· 1 + 2" - (1 + f)· 
< -a-tmM(nO)t f ! 

where m > 0 is such that m S; info<i3<i3~(at(7//3J2zo). By (19) and Lemma 3, 

< sup JP (f: Xiei + tn· /3 < at!. &~., Ca) 
O<i3<i3~ i=l 

< sup JP ( sup (nO)-t Itxieil ~ a-fmMf!) 
O<i3<i3~ 2:$;n:$;no i=l 

= f-¥O (a- tp). 
o 

Consider the second assetion of Theorem 2. For a sufficiently large, define the random 
variable n. = n.( a, /3, f) as 

Then 

Lemma 8 proves the first set on the r.h.s. of (20) tends to zero. Lemma 10 uses Theorem 4, 
the strong approximation, to rewrite the second set on the r.h.s. of (20) in terms of a stopping 
time for Brownian motion. This new set is shown to tend to zero in Lemma 9. 

Lemma 7 For f > 0, 

8 
Proof. Let B = (2/3*)-:3 define the event 

By Lemma 2 

sup JP(V~) = sup JP(tLaJ>a2B)S; sup (a 2B)-klEttaJ=O(a-k). (21) 
o<i3<i3~ o<i3<i3~ o<i3<i3~ 

On the set Va n {tn ~tO} and for /3 E (0, /3~), 

sup t! (t! /3 - a) 
2:$;n:$;a 

< 
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_1 ~ ~ 

Since &; ~ tn 2 then atri ~ ~ at~ and by Lemma 3 

sup 1P(tr::; tLaJ' 'Da)::; sup 1P ( sup t Xiei + tnf3 - at! ~ 0, 'Da, tn ~ to) 
o<{3<{3~ o<{3<{3~ 2$n$a i=l 

< sup 1P(sup tXiei~(tO)i~) 
o<f3<{3~ 2$n$a i=l 2 

= 0 (a- P) • (22) 

The result follows from (21) and (22). 0 

Lemma 8 Let Wet) be a standard Brownian motion, c = c(a) > 0 such that lima _ ac = 00, 

a--1---I ac ( 1) 
- to Jacto and 7lV = inf {tit ~ to and Wet) + tJ.l ~ act f }. 

Then for ac > e4 and 0 < J.l ::; a', 

where <I> and <p are the distribution and density functions of a N (0,1) random variable. 

After rescaling for c this lemma is the second result in Proposition 2.3 of Keener and Woodroofe 
(1992). Note that the bound tends to zero geometrically as a --. 00. 

Lemma 9 For E > 0, 

Proof. Define the event 

I
II 

where ~n = 10--12::£=1 Xiei - W(t n ) . Let E' > 0 such that (1- ~)4 ::; (1- ~)i - E'. Then 

c 

and by Lemma 5, (P3) and Theorem 4 with, = ~ and " = i, 
lim sup 1P (£~) = o. 
a-co O<{3<{3~ 

14 
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On the set fa, for (3 E (0, (3~) and a sufficiently large, define R as 

( 

1. )4 a4 2 a(l- .t)4ya (j 
t < -(j (1 - () < 2 - ~ = R. 
n. - (34 - (3 V (j 

Then 

{tlaJ < tT ~ tn. Ja} c {t Xiei + tn(3 ~ at!~, for some a < n ~ n*, fa} 
1=1 

~ {W(tn) + tn~ ~ at!(j-1~ - ~n' for some a < n ~ n*,£a} 

C {w(t.) + t.~ ~ at!u-t (1- ~) i ,forsomea < n:5: n'} 

{ 
(3 ~ _1. ( () t } C W(t)+t;~at4(j 2 1- 2 ,forsometO~t~R 

c {rw ~ R} 

where 1W is the stopping time defined in Lemma 7 with 

Hence by Lemma 7, 

The result follows by (23) and (24) . 0 

1. (3 (3*a 4 
and J.l = - ~ --. (j (j 

lim sup JP (rw ~ R) = O. 
a-oo 0<(3<(3: 

(24) 

Proof of Theorem 2. Lemmas 6, 7 and 9 imply the first and second assertions of Theorem 
2. Consider the third assertion of Theorem 2. Choose ( E (0,1) and d' such that d' < d. Then 
by the first and second assertions of Theorem 2, 

sup lE It; -11 d' 

0<6<(3: 

sup [lE (It; - lld' ; 0 ~ t~ ~ 1 - () + lE (It~ - lld' ; It~ - 11 ~ () 
0<(3<(3: 

+ lE (I t; - lld' ; 1 + ( ~ t~ ~ 2) + lE (( t; - II ; t~ ~ 2)] 

< sup [JP (t; ~ 1 - () + (d' + JP (t; ~ 1 + () + f: JP ((t; - II ~ n)] 
0<(3<(3: n=l 

< <+ ,d' + <+ 0(1) (~n-;i\ ) 
< 4 max{ (, (d'}, 

for a sufficiently large. Since ( was arbitrary the result follows. 
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4 Proof of the Main Result, Theorem 1 

In this section let nO = l4zo(aj,8)40'2J. It was previously defined slightly differently in (18). 
For £ E (0,1), define the set 

Fa {It; -11 < £anda < r ~ nO}. 

Lemma 10 For £ E (0,1), 
lim sup lP (F~) = o. 
a-+O o<f3<l3~ 

Proof. Consider 

By Theorem 2 the probability of the first set tends to zero uniformly for 0 < ,8 < ,8:. Since 

{a 2: r,t; > 1- £} ~ {tLaj 2: t,.,t; > 1- £} ~ {tLaj 2: (a/f3)40'2(1- £)} 

then by Lemma 2 the probability of the second set is 

sup lP(a2: r,t;>I-£) ~ sup (4 2~; ))klEtLaj=O(a-2k). 
0<13<13~ 0<13<13~ a 0' - £ 

Since 

{r> nO, t; < 1 + £} ~ {iT 2: tno, t; < 1 + £} ~ {tno ~ (ajf3)40'2(1 + £)} ~ {nOt~J > zo} 

then by (P3) the probability ofthe third set is 

sup lP(r>nO,t;<I+£) = sup O((nort)=O(a-~k). 
0<t3<{3~ 0<13<13~ 

o 

Lemma 11 For £ > 0, 

lim sup lP (1,83 ~:0'2 - 112: £, Fa) = o. 
a-oo 0<13<13. i=l XiYi 

Proof. It's sufficient to consider 

sup lP (1,832:r=12
Xi Yi -112: 2£'Fa) 

0<13<13~ a 0' 

< sup lP (I ~3 2 tXiei + t; -112: 2£) 
0<13<13~ a 0' i=l 

< sup [lP ( sup Itxieil2: a:~2 €) +lP(lt; -112: £,Fa)] 
0<13<13~ l$n$nO i=l fJ 

< sup (2~,8)2P (nO)P 
0<13<13~ a 0'£ 
O(a-P ). 

o 
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Lemma 12 Let W( t) = Wi3 be the Brownian motion given in Theorem 4. Then for /'I, E (0,1) 

lim sup JP (a2 (.!. _ .;.) _ ~2 W (a4~2) ~ /'1" Fa) = O. 
0,-+00 0<13<13. f3 f3T a (J f3 

Note S;2 Wi3 (a~~2) '" N(O, 1). 

Proof. Let /'I, > O. Choose f > 0 in the set Fa such that f ::; /'1,3/8. Since 

it's sufficient to consider the following three probabilities. By Lemma 11 and the first assertion 
of Lemma 3, the first probability is 

for a sufficiently large. Taking, = ! and " = ~ in Theorem 4 the second probability is 

By Levy's Inequality (see Lemma d, pg. 243, Loeve 1977) the third probability in is 

17 



< K. 

Since K was arbituary the result follows. 0 

The first assertion of Theorem 1 follows from Lemmas 10 and 12. 
Proof of the second assertion of Theorem 1. Claim for k' < k, 

sup lE ((~)!sf j T > a) = sup lE (sup (!!:...)!sf j tn ~ to) = 0(1). (25) 
o</3</3~ tr O</3</3~ n>a tn 

By (P3), for m ~ 1 and z ~ zo, 

(26) 

k k 
If z > (am+1 Ita) then the probability in (26) is zero. If z :S (am+! /to) then (to)-' z-' > 
a-f(m+l). Hence 

Summing m over the positive integers yields 

sup JP (sup nt:;;I > z, tn ~ to) = z-fO (-1 l( )) 
O</3</3~ n>a og a 

and (25) follows. At stopping 

". 3 5 L XiYi ~ ad yf&; ~ at~ . 
i=l 

Then 

S· I < ~ then k > ~ ~ + ~ Choose p" such that p' < p" < p and lllce p 5pHk 4(p-p') - 4 4(p-p') • 
~ 5(p')2 5p'p" H Id 'I l' k > 4 + 4(p"-p') = 4(p"-p')' By 0 er s nequa lty 

I ( 
1 1) 12

P
' sup lE /3 -. ._-

O</3</3~ /3". /3 

( 
2

P

') ( 2

P

') 
"._ Xiei :_ Xiei 

sup lE L, \. j T :S a + sup lE L,_\. j T > a 
O</3</3~ at~ O</3</3~ at~ 
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sup • a-2p'(t~)-tP'lE (sup tXiei 2
P
';T::; a) 

O<{3<{3a 2:5 n :5 a i=l 
< 

+ sup a-2p'lE (sup n - t t Xiei 2p' (!...) tp' ; T > a) 
O<{3<{3~ n~a i=l tT 

sup a-2P'(t~)-tp' [lE sup (tXiei)2P] ~ [JP(T::; a)(/ 
O<{3<{3~ 2:5n:5a i=l 

< 

+ sup a- 2p' [lE sup n - t t Xiei 2
P
"] f, [lE sup (!...) 4(~~::~J) ; T > a] p'~il 

o<{3<{3~ n>a i=l n>a tT 

i.. E::i. < a-2p' [0 (aP)] P [0 (a-P)] p + a-2P'o(1)0(1) 

o (a- min{P,2P'}) . 

The bounds on the first two expectations follow from Lemma 3, the rate on the probability is 
calculated in Lemma 8 and the last expectation is bounded by (25). 0 

5 Assumption (P3') 
Lemma 13 Suppose the predictors satisfy (Pi), (P2) and (P3') then (P3) holds. 

Proof. Assumption (P3') implies 

By (P2) and Jensen's inequality for conditional random variables 

a 

sup LlE\x; -lE(x;\Wi_d\k = O(a). 
O<{3<{3~ i=l 

By Lemma 1 and for Zo > l/mx , 

sup JP (sup nt:;;l > zo) 
o<{3<{3~ n>a ( In 1) sup JP sup-- LX~ >--

O<{3<{3~ n>a n i=l Zo 
< 

sup JP (sup .!.[t x; -lE(X;\Wi_l)[ > mx - ..!..) 
O<f3<f3~ n>a n i=] Zo 

< 

= O(a-~). 

o 
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