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1 An interval for 1/3

In this paper, fixed-width, asymptotic confidence intervals are set for 1/ from the model
yi = zif + e (1)
Intervals for 1/ are of the form
(1/8: = h,1/B, + 1), (2)

where 7 is an integer valued stopping time, B, is the least squares estimator for 8 based on
T-observations and h is the half-length. Stopping times 7, are derived so that these confidence
intervals have coverage probabilities converging to a set value y € (0,1)ash — Oorasa — c©
where
—1/1=
—'(F)

e e (3)



and @ is the distribution function for a N(0,1) random variable. This coverage is uniform in
B € (0,3;) where 37 = ﬂ"a‘&L and $* > 0.

Furthermore, the predictors z; may be chosen adaptively. That is z; may be a function of
(Zi=1,¥i=1)s---»(Z1,¥1). In particular, z; may be a function of Bi—1 and hence may implicitly
depend on the parameter f.

Sequential methods have previously been used by Lai and Siegmund (1983) to construct
fixed-width, asymptotic confidence intervals for the parameter # of an AR(1) model, y; =
Byi-1 + €, uniformly for |8] < 1. The difficulty in this case is that for || = 1 the least squares
estimator is no longer asymptotically normal.

Assume the following assumptions on the errors.

(E) The errors, e; are assumed to be independent, identitically distributed random
variables with IEe; = 0, Ee? = 02 > 0 and for some p > 1, E|e;|? < oo.

The estimators for # and o2 are

n n
o N -3
Bn=171Y ziyiand 63 = (n-1)7} [Z vl - tnﬂ,";] +tn

=1 i=1

where
n n n
= -1 - -1 _ 2
Ip="n E i Yo =1 E Vi, a,ndtn—z z;.
i=1 =1

i=1

-1
The least squares estimator for 02 is modified by adding ¢, to prevent stopping early.
The stopping time 7 is motivated by the following. Assume

Bn_ﬂ
mﬂN(O,l).

This should hold under mild conditions by the martingale central limit theorem. Then by

Slutsky’s Theorem
Vi (L 1) (1),
6n \B, B B

) =10 (LE0E).

This coverage should be at least 7, a fixed value. Replace § and o with their estimators to

Hence

obtain -
On
and 22
MV 5 g (122).
on 2

Hence

n 3

Z Ty;| 2 aty Von

N



where a is defined in (3). Based on these calculations it’s natural to consider the stopping
time

) n 21
Ty = mf{n(n > 2,t, > t°and Zm;yg > at,{&é} (4)

=1

where t° > 0 is a constant set by the experimenter. Theorem 1, below, shows that this stopping
time produces fixed-width asymptotic confidence intervals as described in (2).
Let [z] be the largest integer less than or equal to z and define f(a) = O(g(a)) as

lim sup

a—00

19y
g(a)
for some positive constant M.

Assume the following assumptions on the predictors:

(P1) 2; = zi((2i=1, Yi=1)s -+ (21, 1), v;) Where v;, ¢ > 1, are independent
random variables such that {v;} is independent of {e;},

(P2) 3k > p such that supocgegs 2i=1 E|z;|* = O(a),

(P3) 3z, > 0 such that supgcgeps P (supps, nt;l > 2,) =0 (a’%) .

If the predictors are deterministic the assumptions simplify to

(P2) 3k > p such that limsup,_,,, n™! T, |7:|% < o,
(P3) 3z, > 0 such that limsup,,_, nt;! < z,.

Let

Wo = 0{0,92} and W; = o{ei-1,..., €1, Viy...,v1 } fori > 1. (5)
Assuption (P3) may be replaced by
(P3’) Im, > 0 such that inf;>1 E(z}|Wi-1) > m,.

Hence the assumptions are satisfied for predictors,z;, independent, identitically distributed
such that {z;} is independent of {e;},IEz? > 0 and E|z;|?* < oo, for some k > p.
The main result is stated in the following theorem.

Theorem 1 Assume (E) and (P1) - (P3). Then

lim sup IP(.L_l Sh)-~,‘=0
=0 0<B< B2 ﬂ"a 8
and for 0 < p' < 4kp/(4k + 5p),
1 1N\ ' ;
ojgfﬁ; I (’8 _5: T3 ) =0 (a—mm{p,zp }) .




The proof of Theorem 1 will require some properties of the stopping time. At stopping
T T 3 1
Zziyi = inei + 1,8 > at167.
=1 =1
Setting Y_7_, z;e; = 0 and solving for ¢, yields
4
2

a
t, & —02.
g7

Hence uniformity for 3 down to zero is obtained by sampling untill ¢,, is sufficiently large. Let

. _ B
="
Let d > 0 such that
d < k*/(k+ 2) for k < 2 and d < min(k/2,p) for k > 2. (6)

The following theorem is required in the proof of Theorem 1.

Theorem 2 Assume (E) and (P1)-(P3). Then for ¢, > 0,

lim sup sup€elP(t:>1+¢)=0.
a—000<ﬁ<5; €o

For e > 0,
lim sup P(t;<1-¢)=0.
a—=00<3<p2
Furthermore
lim sup Ejtz-1/%=0.
a—00<p<p2
The rate ¢? obtained in the first assertion of Theorem 2 leads directly to the bound for the
expectation in the third assertion.
The second assertion of Theorem 2 shows that the probability of stopping early is small.
3 1

Stopping early means that the process, Y i—; z;¥i, exceeds the boundary, at} 67, for some time
t, < (a/B)*0?(1 — €). The main idea of the proof is to approximate the process 3 7_; z;y; =
S zie; + to 3 with W(t,) + t,8 where W(t) is a Brownian motion. Then the probability
of stopping early is roughly the probability that W(t) 4+ t8 exceeds the boundary atio? for
some time t < (a/B3)%*0?(1—¢). This probability is shown to be small in Keener and Woodroofe
(1992). Note that the approximation is uniform for 8 € (0, 5;).

The strong approximation to Brownian motion is proved in Section 2. Theorems 1 and 2
are proved in Sections 4 and 3 respectively. In section 5, it is shown that (P3) may be replaced
by (P3’).



2 Strassen’s Strong Approximation Result

The strong approximation result here is almost a special case of a strong approximation result
for martingales by Strassen, see Theorem 4.4, Strassen (1965). It requires a Skorohod type
embedding for martingales by Jonas, see Theorem 4.3, Strassen (1965).

Theorem 3 Let Y; be random variables such that
]E(Y,',E,'_l) = 0, ]E(Y,-zlﬁ,'_l) < oo and IE(Y,)l[,,‘_I) > 0,

where L; = o{Y;,...,Y1}. Then, without loss of generality, there ezists a Brownian motion
W (t) and random variables £; > 0 such that

zn:Y,- =W (En: fi) a.s.,
=1

=1

& is measurable L. = o {Y,-,...,Yl,W(s);O <s< ij} ,

7=1

w (Z &+ s) -W (Z f,-) is independent of L. for s >0
1=1

1=1

and
E(&|Li-y) = E(Y?|Li-1)-

Furthermore if IE(Y,2¥|L,—1) < 0o for some k > 1, then there ezists a constant Ly, depending
only on k, such that

E(¢F|C;y) < LE(Y*|Cizh).

Here as in Strassen, the phrase, without loss of generality, means that there exist a probability
space with a Brownian motion and random variables equal in distribution to the original
random variables such that the relation is satisfied.

Theorem 4 Let © C IRX, for k a positive integer, § € © and O, C O such that O, C O,
for all ' < a. Assume {e;} satisfy (E), z; = z;(0) are such that z; is indpendent of e; for all
j>iand
a

supZ]E|:t:,-|2’c = O(a).

© =1
Then, without loss of generality, there ezist Brownian motions W(t) = Wy(t) such that for
T> 5 $<7 <77 <(6k=-2+p)/4p and € > 0,

o~} Z zie; — W(ty)

=1

> o) =0 (o).

sup €’IP | supn™”
(C] n>a

The proof of Theorem 4 requires two lemmas. The first lemma is a strong law for martingales.
The lemma is adapted from a result by Brunk and Chung (see Chow and Teicher, Corollary
2, pg. 397 and Theorem 3, pg. 345).



Lemma 1 Let d; = d;(8) be martingale differences, S, = =1 di,k > 1, ¢ > 2 and

Then

and for ¢ > 0

sup 3" Eldif* = O(a). (7)
© i=1

supE sup |5;|* =0 (ag)
® 1<i<e

sup 1P (sup n'¢|5n| > c) =0 (a—(¢-%)k) .
© n>a

Proof. By Burkholder’s inequality (see Chow and Teicher, Corollary 1, pg. 397), Holder’s
inequality and Jensen’s inequality

la] ]2
supIE sup |S;|¥ < BfsuwpE de]
)

1<5<a Li=]

(V12

IN

sl o) F* (Zldzl")

=1

IA

B} sup aJ 7 Z]Eld |

- o)

where B is a known constant. This proves the first assertion. By Doob’s submartingale
inequality (see Chow and Tiecher, Theorem 8, pg. 247)

sup €' IP <sup n=%|S,| > e)
[C] n>a

<

IA

IA

IA

lim sup ek]P( sup n %S, |F > ek)
M=o @ la)<n<M

hm sup []_a_] k"’]ElSHIk+ Z n=¢k (]EIS |¥ — IE|Sp-1] )
n=|a|+1

M
0 (@) 4 lim 3 ((n=1)7 ~n ") sup RS,
n=|_a]+2
+ lim M~ ** supE|Sy|*
M—oo ©
0 (D) +00) ¥ W i(n -1t

n=a]+2
0 (a‘(‘”"})k) .



Lemma 2
ko _ k
sgp]EtM = (a )
Proof. By Holder’s inequality, Jensen’s inequality and (P2)

la) \*
supEtF , = supE 2
G)P la) G)P (g x:)

k

IA

1
ey [l *
supE | [a] * Z|:c,-|2k
(]

=1

la]
= |a] k=1 sup Z E|z;|?*
©

=1
= 0 (ak) .

Proof of Theorem 4. For each 6 € O, apply Theorem 3, a Skorohod type embedding, to
the random variables 0~1z;e;. Then for each 6, there exists a probability space (¢,.4¢, Pg)
supporting r.v.s, €;(#) and z;(6), equal in distribution to e; and z;, a Brownian motion Wy
and r.v.s &;(#) such that

O

o~! ixi(o)e,-(e) =Wy (zn: gi(e)) a.s.
1=1 =1

Suppose that the result holds on each of these probability spaces, uniformly in 6, that is

0! Z 2:(8)e;(8) — Wa(ta(8))| > e) =0 (a=v'=5)p), (8)

=1

sup IPge€? (sup n~"
©

n>a
By Theorem 1A, de Acosta (1982), there exists a new probability space, (£2*,.4*,P*). This new
probability space supports r.v.s, €;(8) and z}(6), equal in distribution to e; and v;, Brownian
motions Wy and r.v.s £7(6), for all § € ©. In addition, (8) holds with these new random
variables and IP, replaced by IP*. The probability space (2*,.4*,1P*) is the new probability
space referred to in the phrase, without loss of generality, in the statement of the theorem.
For ease of exposition, assume (Q2*,.4%,IP*) is the original probability space and ommit * and

@ from the notation.
It’s sufficient to show (8) holds. Let 7' € (%,7). A preliminary step is to establish

n
sup IP (sup n=2" ZEi —tn| > e) =¢e?0 (a'(”"%)”) . (9)
o n>a i=1
Let
Ao = o{v;} and &; = o{e;, ..., €1, Tig1, ..., 21} fore > 1. (10)



By Theorem 3 and smoothing, define

n

v = S E(&[Lo) Z]E( 2e§|c,-_,)=§:E(m(a-2z3e§|x,-_l)m,-_l)

=1 i=1 =1
= S (SE (07 ) [£is) = L (216ica)
i=1 1=1

where £; and L are defined in Theorem 3. Then

n

Y obi—vn =) [6 - E(&IL )]

=1 =1

with the filtration £’ is a martingale. By Jensen’s inequality for conditional expectations

& = E(&IL"i-1)[" < €8 + E(E]|Li-1).
Then by Theorem 3

supZ]E|£1 E(&IL-)f < 2supZ]E§p
1=1 1=1
< 2L supZ]EIa lrie|P
=1
= 2L,0 2’”]E|el|2"supZIE|:1¢1|2"’
=1
= O(a).
By Lemma 1,
supP | supn~2 i —Un| > €| =€P0O a—(%"%)p .
ar (sup 7 [56 -n]> ) = 0 (a0
Similarly,

n

ot el = = 2o ol - Bl

=1
with the filtration £, is a martmgale and

sup Z]E |a 2p2e? — ]E(zzlﬁ,_l)l (1 + a"zp]EIellzp) supZ]Elz,P” = 0(a).

i=1
By Lemma 1,

o 22.1: Y — Un

=1

> e) =¢P0 (a'(z""%)”) .

sup P (sup n~2

n>a

Finally, since
n

tn— 02 zn:a:?e? = Z [z?(l - a"ze?)]

1=1 i=

8

(11)

(12)



with the filtration &, is a martingale,

21 - a“2e?)]p < (1 +0o 2”’]E|f21|27’) suleE[:c,l” = O(a).
=1 =1

By Lemma 1,

tn — o2 Z 2262

sup P (sup n~2"
i=1

n>a

o) = 70 (ti-7). (13)

The first preliminary result (9) follows from (11), (12) and (13). By Lemma 2 the second
preliminary result is

sxép 1P (7511;;; :l—'; > e) < Z n- sup Etk < E 0 ( ‘3”) 0, (a_(ak'l)) . (149

n>a n>a

Define the set

A, {sup—<esupn 27|Z£—t|<€}

=1

Since 7' < (6k — 2 + p)/4p then (3k — 1) > (29’ — £)p and by (9) and (14),

suplP (A;) = €70 (a‘(z""%)p) . (15)
©

> €, .A)
>e,A,,)

< Z]P(sup{n"’|Wc - (t)|;0$t§n4e,t§c$t+n2"'e}>e)

n>a

Hence it is sufficient to consider

o IZze - Wy(tn)

1=1

Wy (Ze,) — Wi(tn)

i=1

sup P (sup n~"

n>a

= sup]P (supn v

[nie]+1

> Z [QIP(Sup{n"7|W(m)—W(t)|;m_1Stsm}>%)

n>a m=

+IP (sup {(n™Y |W(e)-W(m)im—-1<c<m} > %)

IA

+P (sup {n"’ (W(c)-W(m)|jm<e<m+ nz""e} > %)] . (16)

For a sufficiently large, the first and second probabilities are less then the third probability.
By Levy’s inequality (see Lemma d, pg. 243, Loeve 1977) and Mills’ inequality (see Lemma b
pg. 241, Loeve 1977) the third probability is

P (sup {n'”’ [W(m)-W(c)jm<e<m+ nwc} > %)



< 2P (n TIW(m) - W(m+n2"€)l )
ny=Y
< 21P<N(01)|> 5 )
1
<

1 ()’
ex .
52 - P 2 2
>e,.A,,)

Hence

o lz:c e; — Wy(ty)

sup IP (sup n~"
=1

© n>a

[rfe]+1 Lo\ 2
oz B e (E5)
n>a m=1
oo , $n20-v")
< 0(1) el =02 exp (_@8_-) dn. (17)

Integration by parts shows that this bound goes to zero geometrically as a goes to infinity.
Then (8) follows by (15) and (17). O

3 Results for the Stopping Time, 7

For the remainder of the paper assume (E) and (P1)-(P3). The following lemma is used
frequently.

Lemma 3
2p
=0 (a?).

> i

=1

sup IE sup
0<B<B; 1<n<a

For¢>%ande>0,

sup €PP (sup n~¢
0<B<0; n>a

zn: z;e;l > 6) <0 (a—(¢—%)2p) .
=1

Proof. The sum Y, z;e; with the filtration X, defined in (10), is a martingale such that

sup Z]E|a: ei|’” = Ele;|? sup E]E|:c,|2” = 0(a)

0<B<B; i=1 0<B<h; i=1

the conditions of Lemma 1 are satisfied and the results follow. O
For d in (6), choose & > 0 such that

§ < min{1,2k/(k+2)}, d < k6/2, and d < pé.
For € > 0 define the stopping time n* = n*(a, 4, 3,¢) by

= inf {n > 2lt, > (a/B)'0*(1 + e)‘s} .

10



Define the set
B, = {a <n* < n%(a/B)o?(1 4 6)6 < toe < (a/B)*(1+ e)}

where
n® = [2z,(a/B)0*(1+ €)°] (18)
and z, is defined in (P3). On the set B,
n R
{t, > (a/B)%0%(1 + e)} C {Z zie; + iy < atl. ‘j.} (19)
=1

Lemma 4 states that IP (BS) tends to zero, Lemma 5 shows that 2. converges to ¢? and
Lemma 6 uses (19) and Lemmas 4 and 5 to prove the first assertion of Theorem 2.

Lemma 4 Fore> 0,

lim sup €IP(BS)=0.
2= 0<B<Bs

Proof. Note that
B: ¢ {a2w}U{n* < U{tw 2 (a/B)'0?(1 4 ©),n" < n°} .
Since t, is nondecreasing,

{a 20} C {tga) 2 tar} € {tia) 2 (a/B)'0*(1 4 &)}

and by Lemma 2 and Markovs inequality

ﬂ4

k
“'71‘?3%‘) By = (14970 ().

sup P(a>n") < sup (
0<B<B2 0<B<B2

Since n* is a stopping time

4 4 4,0 0
x 0 a’ , ) n 18 n {n }
—_— 0 C—> ——7—7C{—
{n">n°} C {ﬁ40 (1+¢€)° >ty } - {tno > 0402(1_!_6)6} C >
and by (P3)
o
sup P(n">n°) < sup P (_n_ > zo) = sup O ((n°)'2”) =(1+ e)”%ﬁO (a‘%k) .

0<6<0; 0<B<B; n° 0<B<B;
Since tpe—q < (a/B)%0%(1 + ¢€)® then

te = (a/B)'0*(14+ ) S 2% — (a/B)'0® (14 = (1+ 9] < _sup 2%~ (a/B)'a?(1+ )¢

and
Pt >-a402(1 +¢),n* < n°) < sup ( ik )k i": E|z,|*
su o> — ,n* < < S AR—
0<ﬁ<pﬁ; T 0<pepy \@io2(1+8)e) = "

= k9o (0'3("'1)) .

Note that § < min{1,2k/(k + 2)} implies k — 6 > k6/2 > d. O

11



Lemma 5 Fore, > 0,

lim sup sup P (62. > (1+¢€) 0%, B,) =0.
Jim, sup sup (62 > 1+’ 0% B,)

Fore> 0,
fim sy P (1152 < - 0%) =
Proof. Note that
on = nni Lln(ef T ) (z,:,?z_lf)i:: +4nt,

-1 -1
Ba, .2 < [(a/B)0?(1 + €)]]"% = O(a™%) then for a sufficiently large, ¢, — mefo? < 0 and

Choose m = m(e,,6) > 0 such that for € > €, (14 €)° > (1+ £)° + 2me’. On the set

n
sup TP (&,21. > (14 6)602,Ba) < sup P (sup 1 2‘4(6,2 -a?)| > me‘sa?)
0<B<B; 0<p<py  \r>e 1 g
= PO (a"g)

The bound follows by applying Lemma 1 to the martingale differences (e? — 0'2). For the second
assertion note that for a sufficiently large

G ) si) N (_R_M _ ﬁ)]

1_ 2_.2 < =i e
sup [(1- 90" - 1] < i‘;‘i[( n—1 4 tn n(n-1) 4

The result follows by applying (P3) and Lemmas 1 and 3. O
Lemma 6 Fore, > 0,

lim sup supe?P(t:>1+¢) =0.
a—0oo 0<ﬁ<0; 5>€o

[
) s
C, = {w|ag. < (1 + %) a%,s,,}.

lim sup sup €?lP(CS) = 0.
a—+00 0<ﬁ<ﬂ; €o

Proof: Define the set

By Lemmas 4 and 5,

Choose M = M(e,,6) > 0 such that for € > ¢,

Nion

s
(14 e)f [(1+ %)’ —(1+e)%] < —Mék.
On the set Cq, (a/B)*0%(1 + €)® < tns < (a/B)*0*(1 + ¢€) and so
31 3 ) i 1
ath 0l —tpsB < 1 [aor5 (1 + —) - ;./3} <0,

2

12



which is maximized with t,. = (a/8)%?%(1 + €)°. Hence
i
at%&% — i < (1+€)4 ( £>4—(1+e)%
n*Yn* n = ﬂs 2
< —a’% mM(n")ile%

where m > 0 is such that m < inf0<g<5;(a}a/ﬂ\/2zo). By (19) and Lemma 3,

sup IP (¢ >—021+€C < sup P ze+t-ﬂ<at.a.
0<ﬁ<ﬂ; (T ,64 ( ) 0<ﬁ<pﬁ' ; 1+ n n n*sva
< sup ]P( sup (n°)” 3 }:xe, >a -{ M'g')
0<B<B2 2<n<n° i=1

= 6_2'}0 (a'”) .

O
Consider the second assetion of Theorem 2. For a sufficiently large, define the random
variable n. = n.(a,f,¢) as

n. = sup {n > altx < (a/B)*0*(1- €)}.
Then
{t <(a/8)y'0(1- 0} € {° <t <ty U{ta) <t- <t} (20)

Lemma 8 proves the first set on the r.h.s. of (20) tends to zero. Lemma 10 uses Theorem 4,
the strong approximation, to rewrite the second set on the r.h.s. of (20) in terms of a stopping
time for Brownian motion. This new set is shown to tend to zero in Lemma 9.

Lemma 7 Fore> 0,
sup P (t° <1, <tjq) =0(a™?).
0<B< Bz ( L J) ( )

Proof. Let B = (Qﬂ’)‘% define the event

D, = {t[aJ < a2B} .

By Lemma 2
-k
sup P(D) = sup P{¢, >a’B) < sup (a’B IEtka =0 (a%). 21)
0<B<B8; (Da) 0<8<B2 (H ) 0<ﬁ<ﬁ;( ) le] ( ) (

On the set D, N {t, >t°} and for B € (0, 5;),

2 /32 0 a o2 @
sup tp (taf—a) < sup té (t8a45 —a)<(t )8 3¢ < —(t%)8=.
2<n<a to<t<a?B 2

13



_1 3 5
Since 62 > t, 2 then ati/6, > ati and by Lemma 3

n 5
sup P(t; <to,De) < sup P ( sup Za:,-e; +t,8—aty, >0,D,, ty, > t")

0<8<B2 0<B<Br  \2<n<e i
n sa
< sup P( suip Saier > ()32
0<B<B: \2sn<aizy 2
= 0(a7?). (22)

The result follows from (21) and (22). O

Lemma 8 Let W(t) be a standard Brownian motion, ¢ = ¢(a) > 0 such that lim,_, ac = oo,

) and Tw = inf {t|t >t°and W(t) +tp > act%} .

== (1 -
Tote Vacte

Then for ac > e* and 0 < p < @,

P(rwg (%C—\/%) ) <11 (1- & (Vac) ) + 4acg (vac - 1),

where ® and ¢ are the distribution and density functions of a N(0,1) random variable.

After rescaling for c¢ this lemma is the second result in Proposition 2.3 of Keener and Woodroofe
(1992). Note that the bound tends to zero geometrically as a — oo.

Lemma 9 Fore >0,

ale{.xo ojgfﬁ;]P (tLaJ <tr < zn_) =0.

Proof. Define the event

3 3 }
£, = {inf [aa”ltﬁ\/a— An] - [aa_%t,‘; ( - 5)4] > O}

n>a 2

where A, = |o7! T, zie; — W(t,)|. Let ¢ > 0 such that (1 — %)}4’ <(1- ﬁ)% — €. Then

L
1 -3 €\ 4
S, = {inf 67 —alotn i A, < oF (1-—§> }

n>a

€ _3 3 _2
{inf &;‘; < o? <1 - Z)} U {sup n%tn‘ > 28 } U {supn'%An > aa‘%e'zo ‘}

n>a n>a n>a

N

and by Lemma 5, (P3) and Theorem 4 with y = 2 and 4’ = 3,

lim sup P (&) =0. 23
Hm, S (&2) (23)
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On the set &,, for 8 € (0, ;) and a sufficiently large, define R as
a* a(l-£)i/o 7\
tn, € moX(l-e) < [V 2) ~p
g g B
Then

n
{tm <t, < tn_,Sa} - Zm e +1,8 > atn \/0r, forsomea < n < n* Sa}

1=1

N

C {W (tn) + tn— > atna'l\/an A,, forsomea < n < n",c‘,'a}

1
W(t,) + tn -§->atna'2 (1-—%)4,forsomea<n$n‘}

N

1
{W t)+t— > atio~% (1-—%)4 , forsomet®° <t < R}
C {rw < R}

where 7y is the stopping time defined in Lemma 7 with

1 1
i €\* B _ Bat
= - = E< .
¢ 2 (1 2) and p = p- G
Hence by Lemma 7,
lim sup P (t[a_] <t < tn,,&,) < hm sup P(rw < R)=0. (24)
4= X 0<p< 82 *®0<B<6s

The result follows by (23) and (24) . O

Proof of Theorem 2. Lemmas 6, 7 and 9 imply the first and second assertions of Theorem
2. Consider the third assertion of Theorem 2. Choose € € (0,1) and d’ such that d’' < d. Then
by the first and second assertions of Theorem 2,

sup IE|t; — 1|dl
0<8<82

= s [E(lt-190<6<1-¢ +E(l6 - 117516 -1<¢)
0<B<Bs *

+E (1 - 151+ e <t <2) + B (55 - )58 > 2)]

o0
< sup |[PE2<1l-+e +P{:>1+6)+ ZIP((t;— 1)% > n)]
0<B<B;s | n=1

e+ e’ +e+0(1) (Z n'%)

n=1

IN

< 4max{e, e},

for a sufficiently large. Since € was arbitrary the result follows.
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4 Proof of the Main Result, Theorem 1

In this section let n° = |42,(a/B)*0?]. It was previously defined slightly differently in (18).
For € € (0, 1), define the set

Fo = {|ti -1 <eanda <7 <n%.

Lemma 10 For e € (0,1),

lim sup PP (F{)=0.
e=00<3<82

Proof. Consider
Fo = {lt;-1>eu{r<at;>1-€eU{r>n°t; <1+4¢€}.
By Theorem 2 the probability of the first set tends to zero uniformly for 0 < 8 < S;. Since
{0276 > 1= C it 2 tn 8 > 1= € € {114 2 (a/B)'0%(1 - )
then by Lemma 2 the probability of the second set is
4 k
O(s;(pﬁ; Pa>rt;>1-¢ < 0(8;1&; (&#-)-) lEt’faJ =0 (a—2k) )

Since

{T>n%t; <14+€e C{t: 2tho,t;<1+¢€} C {tno < (a/B)*o?*(1+ e)} - {n"t;ol > zo}
then by (P3) the probability of the third set is

sup P(r>n°t;<14¢) = sup O ((n")'%) =0 (a'%k) .
0<B<Bs 0<B8<p:

D

Lemma 11 Fore > 0,

alo?

S A——

>e¢,F, ) =0.
ﬂS ZZ:] Y - )

lim sup IP(
e 0<p<pr

Proof. It’s sufficient to consider

35T s
sup IP ( Qf{lg—z‘-& -1 2> 26,.7-'a)
0< 3062 a‘o
3 T
< sup Pl|==) ziei+t;-1 _226)
0<B<B2 ( ato? ; T
= a‘o?
< sup |IP| sup Zz;e; > —¢| +P(|t7 -1 2 €, F,)
0<A<By 1<n<ne {2 B
278\
< sup (_\/{—o_ﬂ.) (n°)P
0<p<py \ A70€

= 0(a™?).
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_>_n,.7-')-0

Lemma 12 Let W(t) = Wy be the Brownian motion given in Theorem 4. Then for k € (0,1)
lim sup PP (
7 0<p<pe

i ,i - ﬁ.w a‘o?
’8 ﬁf alo ,84
Note ;g;yWﬁ (%) . N(O, 1)

Proof. Let k > 0. Choose € > 0 in the set F, such that ¢ < x3/8. Since
(1oL} () (<

BB a2o | \ B¢
a‘o? 32 12 g2 2
’(m) (%) (;Ex,e,) - (E) w (,3_4)

2 4 2 T
< ﬂ ) [ 233161 I%Z:Eiei - W(t«r)
=1

IA

a‘o?
By Ty o & +|W(t,)—W( B )]

it’s sufficient to consider the following three probabilities. By Lemma 11 and the first assertion
of Lemma 3, the first probability is

sup P (
0<6<B;

alo?

ﬂ3 Zr"l i yl

= alo? ato? \
< su P su zie;| > +P 1> & F
0<B£ﬁ‘: [ (zsnspno ; - ﬂzh) (ﬂS z....l LY ’ a)]
2p

B2k o K
< Py
= 0<Sll31<pﬁ; <a2a2 (n°)F + 5
< K

for a sufficiently large. Taking v = % and v’ = g. in Theorem 4 the second probability is

o1 Zx e; — > K .7-')
o~} inei - W(t,)
o~! Ez e;— W(ty)| >

1=1

sup PP (
0<B<B;

sup IP{ sup
0<B<62 a<n<n®

IA

< sup IP{supn” 3
0<B<B; n>a

< 0 (a‘f).

By Levy’s Inequality (see Lemma d, pg. 243, Loeve 1977) the third probability in is

’32 02
0<sp1{1<pﬁ.lP(a2 W( 5 )‘W(tv) Zﬁ,fa)
32 ado? ato? K
< o:;lfﬁ;‘“’( ( - f>) ( “*”) 2 W)

17



IA

)

< K.

Since k was arbituary the result follows. O
The first assertion of Theorem 1 follows from Lemmas 10 and 12.
Proof of the second assertion of Theorem 1. Claim for k' < k,

14 K
sup E (L) ‘ ;T>al = sup E|[sup (P—) ) it 2 t°] = 0(1). (25)
0<B<B} tr 0<B<Bs n>a \1n
By (P3),for m > 1 and z 2 2z,

- _km
sup P sup  nt;l > 2,1, > t°) =0 (a 2 ) . (26)
0<B<8; am<n<am+!

Lt

If z > (a™*!/t°) then the probability in (26) is zero. If z < (a™*!/t°) then (t")'%z'
a~$0m+1) Hence

2

k ko
sup IP sup nt;l > z,t, > t°) =2"40 (a‘4(m 1)) .
0<B<Bz  \am<n<am+l

Summing m over the positive integers yields

k 1
sup IP (su ntol > z,t, > t") =240 (—-—-—-)
ochaps \nsa om0 log(a)

and (25) follows. At stopping

T 3 5
Y wiyi > atf /5, > atf.
=1

Then
3 1 _ l) _ Bt - X T | Xzt
B, B D=1 TiY - at,%

. 4k 5p' _ 59 5(p')? 1" 7 1
Since p’ < 571% then k& > RPL-};T) =+ 4 44“,—_-)’7). Choose p” such that p’ < p” < p and

. é&l 5 pl 2 _ 5 11 ) .
k> 4 —(—)—4(p,,_p,) = 4—(’)%575. By Holder’s Inequality

2p’
1.1
sup IE |8 (.— - —>
0<B<B2 ‘ g, B
, 2p' . 2p'
Ty T i€
= sup IE ____21_15” iT<al+ sup E —————z"li” T>a
0<B<Bs at? 0<B<p3 at?

18



n 2p'
—9n! 2.7
< sup a” P (t5)"PE| sup Ziiei iTLa
0<B<B; 2<n<ea ;o
n 20 29
ol _5 T\ 7
+ sup o %E |supn BZziei (—) iT>a
0<B<B2 n>a i=1 tr
' 5./ n 2}) % EL'
< sup @7 (15)73 |E sup | D aie P(r<a) >
0<B<B 2<ngae \;=1
’ "_ 1
no e [ o\ =
—2p' _2 4(p"-
+ sup a”% [Esup|n ﬂz:c,-e,' ]Esup(—) TTPr>a
0<B<Bz n>a i=1 n>a \lr

< @@ OE@)F [0 @INF +aFo(1)0()
- 0 (a— mjn{p,?P'}) .

The bounds on the first two expectations follow from Lemma 3, the rate on the probability is
calculated in Lemma 8 and the last expectation is bounded by (25). O

5 Assumption (P3’)
Lemma 13 Suppose the predictors satisfy (P1), (P2) and (P3’) then (P3) holds.

Proof. Assumption (P3’) implies

1 n
= S E(z]|Wis1) 2 m.

=1

By (P2) and Jensen’s inequality for conditional random variables

sup 3 E|e} - E(z}|Wi)* = 0(a).
0<B<B: =1

By Lemma 1 and for z, > 1/m,,

1 & 1
sup IP (sup nt;! > zo) < sup P (sup -=Y"zi> -—-—)

0<3<B8: n>a 0<B< B2 n>a T T %o
1S 1
< sup P (sup= |3 a? ~ E(&HWir)| > me - —
0<B<B2 n>a M |75 Z,

0 (a'g).
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