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Resumen en castellano

Los órdenes estocásticos constituyen un tema de investigación consolidado pero que a la vez
ofrece multitud de ĺıneas abiertas de investigación. En situaciones en las que modelos es-
tocásticos realistas son demasiado complejos, los órdenes estocásticos proporcionan métodos
de aproximación y cotas valiosas. También resultan de utilidad cuando sólo se conocen las
distribuciones de los modelos parcialmente. Algunos campos de aplicación de los órdenes
estocásticos son, entre otros, economı́a, teoŕıa de colas, teoŕıa de fiabilidad, f́ısica, estad́ıstica,
epidemioloǵıa y el campo actuarial.

La función de vida media residual es un concepto muy utilizado en el contexto de fiabi-
lidad. Esta función caracteriza la distribución que la origina, lo que ha sido explotado en la
literatura. Sin embargo, la estimación con la versión muestral de la función de vida media
residual presenta algunos inconvenientes si existen datos censurados o si la distribución
subyacente es asimétrica o de cola pesada. Una alternativa robusta a la función de vida
media residual es la función de vida mediana residual o, de forma más general, la función de
vida cuant́ılica residual cuya estimación es factible y su interpretación más lógica en muchos
casos. Un inconveniente es que, a diferencia de la función de vida media residual, la función
de vida cuant́ılica residual no caracteriza la distribución, sino una familia de distribuciones.

Dadas las ventajas que presenta la función de vida cuant́ılica residual a nivel práctico, en
el Caṕıtulo 2 de la tesis presentamos los órdenes de vida cuant́ılica residual. Fijado γ ∈ (0, 1),
dos variables aleatorias están ordenadas en el sentido del orden de vida γ-cuant́ılica residual
si sus correspondientes funciones de vida γ-cuant́ılica residual están ordenadas. Estudiamos
sus propiedades de clausura, sus relaciones con otros órdenes existentes en la literatura y
sus posibles aplicaciones en diversas disciplinas. En concreto, el orden de vida mediana
residual supone una alternativa al orden de vida media residual que, al estar basado en la
comparación de funciones de vida media residual, resulta más dependiente de la distribución
subyacente. Por lo que hemos comentado anteriormente de que la función de vida cuant́ılica
residual no caracteriza a la distribución de partida, los órdenes de vida cuant́ılica residual
son relaciones binarias que no verifican la propiedad antisimétrica; es decir, no son órdenes
sino preórdenes. Esto también pasa con los órdenes definidos en el Caṕıtulo 3, que comparan
las funciones de vida cuant́ılica residual, no en todo el soporte de la distribución, pero para
todos los posibles valores de los cuantiles desde un cierto instante t0 dado. Los órdenes
definidos en el Caṕıtulo 4 de la tesis también están basados en la comparación de funciones
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vi Resumen

de vida cuant́ılica residual y śı son propiamente órdenes. Estas ordenaciones comparan las
funciones de vida cuant́ılica residual hasta t0 para todos los posibles valores de los cuantiles.
En estos dos caṕıtulos se ilustran algunas aplicaciones de estos órdenes, como la comparación
de productos una vez vencido su periodo de garant́ıa o durante este periodo, y la comparación
de art́ıculos de segunda mano.

Otro concepto muy importante en fiabilidad es la noción de envejecimiento. ‘No enveje-
cimiento’ significa que la edad de una componente no tiene ningún efecto en la distribución
de su vida residual. ‘Envejecimiento positivo’ describe la situación en la cual la vida resi-
dual tiende a decrecer, en algún sentido probabiĺıstico, cuando la edad de la componente
aumenta. Esta situación es muy común en ingenieŕıa, cuando las componentes tienden a
empeorar debido al desgaste. Por otra parte, el ‘envejecimiento negativo’ tiene un efecto
opuesto en la vida residual. Aunque esto es menos común, cuando un sistema supera ciertos
tests y mejora, existen clases de distribuciones que se ajustan a este fenómeno en el que
la fiabilidad tiende a incrementarse con el paso del tiempo. Los diferentes conceptos de
envejecimiento describen como una componente o un sistema mejora o empeora con la edad.
Muchas clases de distribuciones de vida se caracterizan o definen en la literatura según sus
propiedades de envejecimiento. Un aspecto importante en esta clasificación es el hecho de
que la distribución exponencial pertenece, en la mayoŕıa de los casos, a todas las clases.
Esto es debido a la propiedad de falta de memoria de la distribución exponencial. En el
quinto caṕıtulo de la tesis estudiamos en profundidad el concepto de envejecimiento conocido
como función de vida cuant́ılica residual decreciente, que fue introducido por primera vez en
Haines y Singpurwalla (1974). Además, presentamos resultados que permiten caracterizar
esta noción a partir de ciertas propiedades del orden de vida cuant́ılica residual estudiado en
el Caṕıtulo 2. En este mismo caṕıtulo definimos nuevas nociones de envejecimiento basadas
también en el comportamiento monótono de las funciones de vida cuant́ılica residual y que
pueden ser caracterizadas a partir de ciertas propiedades de los órdenes estocásticos definidos
en los caṕıtulos tercero y cuarto. Además, completamos algunos resultados demostrados en
Launer (1993) que relacionan el comportamiento de la función tasa de fallo y la función de
vida cuant́ılica residual. En particular, damos condiciones necesarias para las distribuciones
bathtub y bathtub invertida.

Dada una cierta ordenación estocástica y las muestras aleatorias de dos poblaciones, es
común que se presenten en la literatura ciertas técnicas estad́ısticas que permitan decidir
cuándo las variables aleatorias subyacentes están ordenadas o no. En el sexto caṕıtulo
de la tesis presentamos un nuevo procedimiento para construir bandas de confianza para
la diferencia de dos funciones de vida cuant́ılica residual. Estas bandas proporcionan un
criterio mediante el cual poder decidir cuando dos variables aleatorias están cerca o no en el
sentido del orden de vida cuant́ılica residual. La metodoloǵıa que hemos aplicado requiere
el uso de técnicas bootstrap y del concepto de profundidad estad́ıstica para funciones.

Por último, en el séptimo, resumimos nuestras principales aportaciones y explicamos
cuáles serán las futuras ĺıneas de investigación en las que trabajaremos a partir de ahora y
que están ı́ntimamente relacionados con el trabajo presentado en esta tesis.
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Chapter 1

Background and Motivation

This chapter gives an overview of the basic concepts, terminology, and related work regarding
the topics of this dissertation. The focus of this dissertation is five-fold:

• to introduce and study new families of stochastic orders: the percentile residual life
orders, the percentile residual life orders from time t0 on, and the percentile residual
life orders up to time t0,

• to study in depth the decreasing percentile residual life aging notions and to charac-
terize them in terms of the percentile residual life orders,

• to introduce new aging notions and characterize them in terms of the percentile residual
life orders from time t0 on and the percentile residual life orders up to time t0,

• to introduce new results that relate the behavior of the hazard rate function and
the behavior of the percentile residual life function providing necessary conditions for
bathtub distributions and upside-down bathtub distributions, and

• to develop a new procedure for constructing bootstrap confidence bands for the differ-
ence of two percentile residual life functions.

In order to explain the interest of the topics of this dissertation, we present an example.
The data were taken from Apendix I of Kalbfleisch and Prentice (1982) (Data Set II) and
are part of a large clinical trial carried out by the Radiation Therapy Oncology Group in
the United States. The full study included patients with squamous carcinoma of 15 sites in
the mouth and throat, with 16 participating institutions, though in the book only data on
three sites in the oropharynx reported by the six largest institutions are considered. Patients
entering the study were randomly assigned to one of two treatment groups, radiation therapy
alone or radiation therapy together with a chemotherapeutic agent. We are interested in the
survival times (in days) of the patients after the treatments. Approximately 30% of the
survival times are censored owing primarily to patients surviving to the time of analysis.
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2 CHAPTER 1. BACKGROUND AND MOTIVATION

Some patients were lost to follow-up because the patient moved or were transferred to an
institution not participating in the study, though these cases were relatively rare. From a
statistical point of view, the main feature of these data that distinguishes this example from
others is the considerable lack of homogeneity between individuals being studied. We have
deleted the females in order to make the populations more homogeneous (this way we avoid
possible differences due to gender).

In Figure 1.1 the histograms of the survival times of the patients belonging to the two
treatment groups are shown. This figure reveals that both groups of data present asymmetry:
the right tail (tail at small end of the distribution) is more pronounced than the left tail (tail
at the large end of the distribution). Skewness is a measure of the degree of asymmetry of
a distribution. We have computed the skewness of both groups of data and obtained 0.8386
and 1.3463, respectively.
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Figure 1.1: Histograms of the survival times of the two groups of patients

In Figure 1.2 the box-and-whisker plots of the survival times of the patients belonging
to the two treatment groups are shown. It is clear from the figure that there exist several
outliers within the second group of patients, those undergoing radiotherapy together with a
chemotherapeutic agent.

Given these data, researchers may be interested in studying the effectiveness of the treat-
ments. For doing that, different reliability measures can be considered. Besides, since there
exist two treatment groups, one may be interested in comparing them. For comparing the
two treatments, different stochastic orderings can be considered.

This chapter reviews some literature in reliability theory and stochastic orderings. It is
organized as follows. In Section 1.1 we give a brief description of different reliability mea-
sures. Some very well known stochastic orders, based on the comparison of these reliability
measures, are reviewed on Section 1.2. We will explain the deficiencies of some of these orders
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Figure 1.2: Box-and-whisker plots of the survival times of the two groups of patients

and motivate the introduction of new ones. Finally, in Section 1.3 we recall the definition of
several aging notions.

The rest of the document is organized as follows. New families of stochastic orders:
the percentile residual life orders, the percentile residual life orders from time t0 on, and
the percentile residual life orders up to time t0 are explored in Chapter 2, Chapter 3, and
Chapter 4, respectively. In Chapter 5 we study the decreasing percentile residual life aging
notions and establish some characterizations of these notions based on the percentile residual
life orders. Also in Chapter 5, new aging notions are defined and characterized in terms of
the percentile residual life orders from time t0 on and the percentile residual life orders up
to time t0. Besides, we complete a study carried out by Launer (1993) providing necessary
conditions for bathtub and upside-down bathtub distributions. In Chapter 6 we describe a
new procedure for constructing bootstrap confidence bands for the difference of two percentile
residual life functions. Finally, Chapter 7 outlines our contributions and gives directions for
future work.

Some conventions that we use in this dissertation are the following. By “increasing” and
“decreasing” we mean “nondecreasing” and “nonincreasing”, respectively. For any distribu-
tion function F we let function F−1 be the left continuous version of the inverse of F , that
is

F−1(p) = inf{x : F (x) ≥ p}, p ∈ (0, 1).

1.1 Reliability measures

Let X be a random variable and let uX be the right endpoint of its support. For any t < uX ,
the residual life at time t is the random variable that has the conditional distribution of
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X − t given that X > t. We denote it by

Xt = [X − t
∣∣X > t], t < uX . (1.1)

The residual life is of interest in many areas of applied probability and statistics such as
actuarial studies, biometry, survivorship analysis, and reliability — see, for example, Lillo
(2005) for a list of references.

We introduce the definitions of four very well known reliability measures.

Definition 1.1. If FX denotes the distribution function of X, then FX = 1 − FX denotes
the corresponding survival function. That is,

F̄X(t) = P (X > t).

Let X1, . . . , Xn be the lifetimes of the patients in the example previously described un-
dergoing Treatment 1 (radiotherapy alone). Only their right censored versions are observed,
leading to the information (δ1, Z1), . . . , (δn, Zn) where for i = 1, . . . , n,

δi = I{Xi≤Yi} and Zi = Xi ∧ Yi = max{Xi, Yi},

with Yi representing the i-th censoring random variable. (I{A} is one if A is true, and zero
otherwise). It is assumed that Y1, . . . , Yn are i.i.d. with G(y) = P (Y > y) > 0 and that G is
continuous. The survival function of X can be estimated by

F̄X,n(x) =
N+(x) + 1

n + 1

n∏
j=1

(2 + N+(Zj)

1 + N+(Zj)

)I{δj=0,Zj≤x}
, (1.2)

where N+(x) denotes the number of censored and uncensored observations greater than x.
Analogously, the survival function of the patients undergoing Treatment 2 (radiotherapy
together with a chemotherapeutic agent) is estimated.

In Figure 1.3 the estimated survival functions of the patients belonging to the two treat-
ment groups are shown.

Definition 1.2. If X is a random variable with an absolutely continuous distribution func-
tion FX , then the hazard rate of X at t is defined as rX(t) = (d/dt)(−log(1−FX(t))). The
hazard rate can alternatively be expressed as

rX(t) = lim
∆t↓0

P{t < X ≤ t + ∆t|X > t}
∆t

=
fX(t)

F̄X(t)
, t ∈ R, (1.3)

where fX is the density function of X.

As it can be seen from (1.3), the hazard rate rX(t) can be thought of as the intensity of
failure of a device, with a random lifetime X, at time t. Clearly, the higher the hazard rate
is, the smaller X should be stochastically.
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Figure 1.3: Estimated survival functions of the patients undergoing Treatment 1 (blue) and
Treatment 2 (red)

Definition 1.3. If X is a random variable with an absolutely continuous distribution func-
tion FX , then the reversed hazard rate of X at the point t is defined as

r̃X(t) = (d/dt)(log FX(t)). (1.4)

One interpretation of the reversed hazard rate at time t is the following. Suppose that
X is nonnegative with distribution function FX . Then X can be thought of as the lifetime
of some device. Given that the device has already failed by time t, the probability that it
survived up to time t− ε (for small ε > 0) is approximately ε · r̃X(t).

Definition 1.4. The mean residual life function that is associated with X is given by

mX(t) =

{
E[X − t

∣∣X > t], t < uX ;

0, t ≥ uX ,
(1.5)

provided the expectation exists.

The mean residual life function is a useful tool for analyzing important properties of X
when it exists because it characterizes the distribution:

F̄X(t) =
mX(0)

mX(t)
exp

{
−

∫ t

0

1

mX(x)
dx

}
, (1.6)
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for all t such that P (X > t) > 0. However, the mean residual life function may not exist.
Even when it exists it may have some practical shortcomings, especially in situations where
the data are censored, or when the underlying distribution is skewed or heavy-tailed. In
such cases, either the empirical mean residual life function cannot be calculated, or a single
long-term survivor can have a marked effect upon it which will tend to be unstable due to
its strong dependence on very long durations.

To estimate the mean residual life function of this group of patients, we have computed
the estimator proposed by Ghorai, Susarla, Susarla, and van Ryzin (1980), given by

m̂X,n(x) =
1

(n + 1)F̄X,n(x)

n∑
l=1

δl · Zl · I{Zl>x} ·
n∏

j=1

(2 + N+(Zj)

1 + N+(Zj)

)I{δj=0,Zj≤Zl}
,

where F̄X,n is computed as in equation (1.2). Analogously, the mean residual life function of
the patients undergoing Treatment 2 (radiotherapy together with a chemotherapeutic agent)
is estimated.

In Figure 1.4 the estimated mean residual life functions of the patients belonging to the
two treatment groups are shown.
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Figure 1.4: Estimated mean residual life functions of the patients undergoing Treatment 1
(blue) and Treatment 2 (red)

An alternative to the mean residual life function is the γ-percentile residual life func-
tion, denoted by qX,γ, where γ is some number between 0 and 1. This function is defined
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for any t < uX by letting qX,γ(t) be the γ-percentile of Xt. The formal definition of the
percentile residual life function will be given in Chapter 2.

The γ-percentile residual life functions were studied in some detail by Arnold and Brockett
(1983), Gupta and Langford (1984), Joe and Proschan (1984a), and Joe (1985), as well as by
Haines and Singpurwalla (1974). Families of distributions for which simple expressions for
the γ-percentile residual life functions can be obtained, are identified in Raja Rao, Alhumoud,
and Damaraju (2006).

A particular γ-percentile residual life function of interest is the median residual life func-
tion given by qX,0.5. This function was studied in detail by Lillo (2005) and Gelfand and
Kottas (2003) used it for Bayesian semiparametric modeling. See the above two references
for further references to papers that studied the γ-percentile and the median residual life
functions, and that used them in practical applications.

In Figure 1.5, the estimated median residual life functions of the two groups of patients are
shown. Since there exist censored data, we have computed the estimator proposed in Csörgő
(1987) which consists in calculating the empirical median residual life function associated
with the survival function given in equation (1.2). Analogously, the median residual life
function of the second group of patients is estimated.
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Figure 1.5: Estimated median residual life functions of the patients undergoing Treatment
1 (blue) and Treatment 2 (red)

As we have already said, the mean residual life function has a strong dependence to the
underlying distribution which is inconvenient, specially in situations where the distribution
is skewed or heavy-tailed. In this case, the survival data of both groups of patients present
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asymmetry. We have also pointed out the presence of some outliers that take large values,
within the second group of patients. By a visual examination we can confirm that these
outliers affect to the whole mean residual life function, but they only affect to the tail of the
median residual life function.

A researcher should find all four reliability measures, whose definitions we have just
recalled, interesting and complementary. To illustrate their different perspective, consider
one of the cancer patients in the example undergoing radiotherapy alone and let us suppose
that his radiotherapy began 60 days ago. It may be interesting to know how long he should
expect to live. His expected remaining life is given by mX(60). In the same manner, the
median of his remaining life is qX,0.5(60). The proportion of patients like him who survive
more than 60 days is given by F̄X(60) and his instantaneous probability of dying tomorrow
is rX(60).

As we pointed out before, it is well known that if X has finite mean, then FX is uniquely
determined by its mean residual life function (see equation (1.6)). However, there can be an
infinite number of life distributions with the same qX,γ(t) and, in particular, with the same
median residual life function. Gupta and Langford (1984) proved this result by solving the
functional equation that relates the survival function and the percentile residual life function,

FX(t + qX,γ(t)) = γFX(t) for all t,

where γ = 1−γ. More generally, they studied the problem of solving the functional equation

g(φ(t)) = sg(t), (1.7)

called Schröder’s equation. Here φ is a known function, s is a constant, and g is to be solved
for. They proved that, under mild assumptions on φ(t), the solution is of the form

g(t) = g0(t)K(log(g0(t))), for all t,

where g0 is a well-behaved particular solution of (1.7) which can be constructed, and K is a
periodic function of period | log(s)|; thus the solution of (1.7) is not unique and, specifically,
either the median residual life function or the γ-percentile residual life function does not
characterize the distribution function as the mean residual life function does.

In spite of that, and as we have illustrated in the example, the median residual life
function (and, in general, the percentile residual life function) has some practical advantages
compared to the mean residual life function since it is not so sensitive to the underlying
distribution (in particular to the presence of outliers). Besides, the γ-percentile residual life
function always exists and to compute its empirical version we do not need all the data, just
the (1 − γ) · 100% of the data. Given all these advantages in practical situations, we focus
our attention on this reliability measure, and in this thesis we define several stochastic orders
and aging notions based on this function.
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1.2 Stochastic orderings

Stochastic orders and inequalities have been used during the last 40 years, at an acceler-
ated rate, in different areas of probability and statistics. These areas include reliability
theory, queueing theory, survival analysis, biology, economics, insurance, actuarial science,
operations research, and management science.

The simplest way of comparing two distribution functions is by comparing the associated
means. However, such a comparison is based on only two single numbers (the means), and
therefore it is often not very informative. In addition to this, the means sometimes do not
exist. In many instances in applications one has more detailed information, for the purpose
of comparison of two distribution functions, than just the two means. The most important
and common stochastic orders that compare the ‘location’ or the ‘magnitude’ of random
variables are the usual stochastic order, the hazard rate order and the mean residual life
order which are reviewed next.

Definition 1.5. Let X and Y be two random variables such that

F̄X(t) ≤ F̄Y (t) for all t ∈ (−∞,∞). (1.8)

Then X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st

Y ).

Roughly speaking, (1.8) says that X is less likely than Y to take on large values, where
‘large’ means any value greater than t, and that is the case for all t’s. Note that (1.8) is the
same as

FX(t) ≥ FY (t) for all t ∈ (−∞,∞). (1.9)

An important characterization of the usual stochastic order is the following theorem (=st

denotes equality in law), whose proof can be read in Shaked and Shanthikumar (2007).

Theorem 1.1. Two random variables X and Y satisfy X ≤st Y if, and only if, there exist
two random variables X̂ and Ŷ , defined on the same probability space, such that

X̂ =st X̂,

Ŷ =st Ŷ ,

and
P (X̂ ≤ Ŷ ) = 1.

In Figure 1.6, the estimated survival functions for the two groups of patients are com-
pared.

From (1.9) and Theorem 1.1 it follows that the random variables X and Y , with the
respective distribution functions FX and FY , satisfy X ≤st Y if, and only if,

F−1
X (p) ≤ F−1

X (p), for all p ∈ (0, 1); (1.10)

see, for example, (1.A.12) in Shaked and Shanthikumar (2007).
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Figure 1.6: Comparing estimated survival functions of the patients undergoing Treatment 1
(blue) and Treatment 2 (red)

Definition 1.6. Recall from (1.3) the definition of the hazard rate function rX of a random
variable X. Let rY be the hazard rate of another random variable Y . If

rX(t) ≤ rY (t), for all t ∈ R, (1.11)

then X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y ).

Although the hazard rate order is usually applied to random lifetimes (that is, nonnega-
tive random variables), definition (1.11) may also be used to compare more general random
variables. In fact, even the absolute continuity, which is required in (1.11), is not really
needed. It is easy to verify that (1.11) holds if, and only if,

F̄Y (t)

F̄X(t)
increases in t ∈ (−∞, max(uX , uY )) (1.12)

(a/0 is taken to be equal to ∞ whenever a > 0). Here uX and uY denote the corresponding
right endpoints of the supports of X and Y . Equivalently, (1.12) can be written as

F̄X(x)F̄Y (Y ) ≥ F̄X(y)F̄Y (x) for all x ≤ y. (1.13)

Recall from (1.4) the definition of the reversed hazard rate function r̃X of a random
variable X. Let r̃Y be the reversed hazard rate of another random variable Y .
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Definition 1.7. If
r̃X(t) ≤ r̃Y (t), for all t ∈ R, (1.14)

then X is said to be smaller than Y in the reversed hazard rate order (denoted by
X ≤rh Y ).

The absolute continuity, which is required in (1.14), is not really needed. It is easy to
verify that (1.14) holds if, and only if,

FY (t)

FX(t)
increases in t ∈ (min(lX , lY ),∞) (1.15)

(a/0 is taken to be equal to ∞ whenever a > 0). Here lX and lY denote the corresponding
left endpoints of the supports of X and Y . Equivalently, (1.14) can be written as

FX(x)FY (Y ) ≥ FX(y)FY (x) for all x ≤ y. (1.16)

Recall from (1.5) the definition of the mean residual life function mX of a random variable
X. Let mY be the mean residual life function of another random variable Y .

Definition 1.8. If
mX(t) ≤ mY (t) for all t ∈ R, (1.17)

then X is said to be smaller than Y in the mean residual life order (denoted by
X ≤mrl Y ).

In Figure 1.7, the estimated mean residual life functions and the estimated median resid-
ual life functions for the two groups of patients are compared.

As we pointed out in the previous section, there exist several outliers within the second
group of patients. Since these outliers affect the whole mean residual life function of the
second group of patients, using the mean residual life order to compare the efficiency of
the treatments may lead us to wrong conclusions. The comparison of the mean residual
life functions leads us to conclude that the first treatment is better than the second one
when the patients survive at least about 100 days after the treatment. Since the presence
of these outliers only affects to the tail of the median residual life function of the second
group of patients, we can conclude that, in this case, the comparison of median residual life
functions is more reliable in some sense. If we do not take into account the information
provided by the tail of the median residual life functions (t > 600) we would conclude that
the second treatment is better than the second one when the patients survive at least about
100 days after the treatment. This is exactly the opposite we conclude if we compare the
mean residual life functions.

Let us now consider a different example from the field of Finance. Every day investors and
financial professionals look to one firm for financial market intelligence that is authoritative,



12 CHAPTER 1. BACKGROUND AND MOTIVATION

0 500 1000 1500

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

ejeb

a
u

x1
b

0 500 1000 1500
0

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

ejeb

a
u

x1
b

Figure 1.7: Estimated mean residual life functions (left) and estimated median residual life
functions (right) of the patients undergoing Treatment 1 (blue) and Treatment 2 (red)

objective and credible. Standard & Poors credit ratings, indices, investment research and
data provide financial decision-makers with the information and opinions they need to feel
confident about their decisions. The following example shows how the comparison of median
residual life functions is also more useful to interpret financial data than the median residual
life order.

We are interested in comparing the most solvent firms with the less ones in terms of the
financial burden of the company with respect to its business volume. This information is
measured by the ratio Financial Expenditures/Sales. For doing that, we have considered the
Standard & Poors credit ratings of 394 firms in 2000; 358 of those firms were classified as
triple-A, AA or A (we denote them as A* firms) and 36 were classified as triple-C, CC or C
(we denote them as C* firms).

The histograms of the ratios for the two groups of firms are shown in Figure 1.8. This
figure reveals that both groups of data present asymmetry. As in the oncological example,
the right tail is more pronounced than the left tail. We have computed the skewness of both
groups of data and obtained 2.5831 and 3.2584, respectively.

In Figure 1.9 the box-and-whisker plots of the ratios of the two groups of firms are shown.
It is clear from the figure that there exist several outliers within both groups of firms. The
number of outliers is larger in the A* firms; however, the outliers within the C* firms take
more extreme values.

In Figure 1.10, the estimated mean residual life functions and the estimated median
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Figure 1.8: Histograms of the ratios for the two groups of firms
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Figure 1.9: Box-and-whisker plots of the ratios for the two groups of firms

residual life functions for the two groups of firms are compared.

From Figure 1.7 we can affirm that, in this case, the comparison of the mean or median
residual life functions leads us to the same conclusion. That is, that those firms which are
less solvent, tend to invest more with respect to their sales benefits than those which are
more solvent. However, this difference seems to be larger if we compare the mean residual
life functions instead of the median residual life function.

In this example it is even more clear how the presence of outliers affects the mean and
the median residual life functions. It is seen from the figure that the few outliers that belong
to the second group of firms affect to the whole mean residual life function. However, they
do only affect to the tail of the median residual life function of the second group of firms.
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Figure 1.10: Estimated mean residual life functions (left) and estimated median residual life
functions (right) of the A* firms (blue) and the C* firms (red)

Therefore, we can conclude that, also in this example, the comparison of median residual
life functions is more reliable that the comparison of the mean residual life functions.

Given the advantages of comparing the median residual life functions instead of the mean
residual life functions of random variables, in Chapter 2 we have introduced and studied a
new family of stochastic orderings which is based on the comparison of percentile residual life
functions: the percentile residual life orders. One of these advantages is that the percentile
residual life orders are less sensitive to outliers than the mean residual life order, as we have
illustrated through these real data examples. However, since the γ-percentile residual life
function does not characterize the distribution, the γ-percentile residual life orders are not
orders but preorders.

Motivated by the applicability of the percentile residual life orders for comparing items
after initial warranty or to compare used items as we show in Chapter 2, in Chapter 3
we have proposed and studied new stochastic orderings which can be used with the same
purpose but these orders are based on the comparison of all the percentile residual life
functions of two random variables, not in the whole support but from a certain moment
t0 > 0 on. They are called the percentile residual life orders from time t0 on. Analogously to
the percentile residual life order from time t0 on, we have defined and studied new stochastic
orders that allow us to compare random variables until t0. These orders are useful to compare
items during the warranty period or in medical trials. They were introduced and studied in
Chapter 4.
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Let X and Y be two nonnegative random variables with mean residual life functions mX

and mY , respectively, and suppose that the harmonic averages of mX and mY are comparable
as follows:

[
1

x

∫ x

0

1

mX(u)
du]−1 ≤ [

1

x

∫ x

0

1

mY (u)
du]−1 for all x > 0.

Then X is said to be smaller than Y in the harmonic mean residual life order
(denoted by X ≤hmrl Y ).

Since the harmonic averages of mX and mY are increasing functionals of mX and mY ,
respectively, it follows that

X ≤mrl Y ⇒ X ≤hmrl Y. (1.18)

The previous stochastic orders compare the size of the variables. Very often, however, also
the variability of a random variable is of interest, since it describes the risk of an uncertain
outcome. If two random variables X and Y with the same mean describe the returns of two
risky investments, then every risk-averse decision maker will choose that one with the lower
variability. Therefore variability orderings are of special interest in the context of decision
making under risk.

It turns out that there is a natural connection between variability of random variables
and stochastic orders based on convex functions. Recall that a real function g is called
convex if

g(ax + (1− a)y) ≤ ag(x) + (1− a)g(y),

for all x and y and all 0 < a < 1. Let X and Y be random variables with finite means. If

Eg(X) ≤ Eg(Y ), (1.19)

for all increasing convex functions f such that the expectations exist, then X is said to be
smaller than Y in the increasing convex order.

1.3 Aging notions

The concept of aging is very important in reliability analysis. ‘No aging’ means that the
age of a component has no effect on the distribution of the residual lifetime of the compo-
nent. ‘Positive aging’ describes the situation where residual lifetime tends to decrease, in
some probabilistic sense, with increasing age of a component. This situation is common in
reliability engineering as components tend to become worse with time due to increased wear
and tear. On the other hand, ‘negative aging’ has an opposite effect on the residual lifetime.
Although this is less common, when a system undergoes regular testing and improvement,
there are cases for which we have reliability growth phenomenon.

Concepts of aging describe how a component or a system improves or deteriorate with
age. Many classes of life distributions are categorized or defined in the literature according
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to their aging properties. An important aspect of such classifications is that the exponential
distribution is nearly always a member of each class. This is due to the memorylessness
property of the exponential distribution.

From the definitions of the life distribution classes, results may be derived concerning such
things as properties of systems (based upon properties of components), bounds for survival
functions, moment inequalities, and algorithms for use in maintenance policies (Hollander
and Proschan, 1984).

Next we introduce the definition of very well known aging notions for nonnegative random
variables. Most of the definitions we provide here are based on the verification of a stochastic
order relation between the random variable and its residual life. For alternative definitions
and more characterizations of these concepts see, for example, Müller and Stoyan (2002).

A random variable X, or a lifetime distribution, is said to have an increasing hazard
rate distribution (IHR distribution), if its hazard rate rX(t) is increasing. Some authors
speak of IFR distributions, standing for increasing failure rate. This notion has several
characterizations. Some of them are collected in the following proposition.

Proposition 1.1. The following statements are equivalent:

(i) X has an IHR distribution;

(ii) Xt ≤hr Xs for all s < t;

(iii) Xt ≤st Xs for all s < t.

The bathtub shaped hazard rate life distributions, often known simply as bathtub
distributions, have a hazard rate curve that resembles to a bathtub shape. There are several
variants of the definition of a bathtub shaped hazard rate but they are essentially the same.
The main difference is whether the assumption of having two change points is imposed. See,
for example, Lai and Xie (2006) for different definitions of this concept. Here we consider
the following. Let X be a random variable with hazard rate function rX continuous. Then
X has a bathtub distribution (BT distribution) if there exist t1 ≤ t2 such that

(i) rX(t) is strictly decreasing for t < t1,

(ii) rX(t) is a constant for t1 ≤ t ≤ t2, and

(iii) rX(t) is strictly increasing for t > t2.

Another important family of distributions is known as the upside-down bathtub hazard
rate class consisting of distributions whose hazard rates are reverse bathtub shaped.

A weaker notion of aging than IHR, is obtained if we replace the requirement Xt ≤st Xs

for all s < t in Proposition 1.1 by the weaker requirement Xt ≤icx Xs for all s < t. Distri-
butions with this property are said to have the DMRL property, standing for decreasing
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mean residual life. Equivalently, X has a DMR distribution if, and only if, the mean
residual life function of X, that is mX , is decreasing.

Another important concept of aging is the NBU property, an abbreviation for new better
than used. This holds if Xt ≤st X for all t > 0. It is easy to see that the NBU property is
weaker than IHR.

Finally, for any γ ∈ (0, 1), a distribution is said to be decreasing γ-percentile residual
life (DPRL(γ)) if the γ-percentile residual life function of X is decreasing.

In Chapter 5 we give some characterization results of the decreasing percentile residual
life aging notions in terms of the percentile residual life orders we study in Chapter 2 and
we introduce new aging notions which are also based on the monotonous behavior of per-
centile residual life functions. We show the usefulness of these concepts providing necessary
conditions for bathtub and upside-down bathtub distributions.
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Chapter 2

The γ-percentile residual life orders

In this chapter we study a family of stochastic orders indexed by γ ∈ (0, 1). For a fixed
γ ∈ (0, 1) the γth order compares pointwise the percentile residual life functions of two
random variables. These stochastic orders were introduced in Joe and Proschan (1984b),
but they were not extensively studied there.

This chapter is organized as follows. The γ-percentile residual life stochastic orders
are formally defined in Section 2.1. We also give some equivalent ways of describing these
orders that turn up to be useful in the sequel. Section 2.2 consists of a thorough study
of the relationships among the γ-percentile residual life orders and other stochastic orders
in the literature. Some useful properties of the γ-percentile residual life orders are given
in Section 2.3. Finally, some applications in reliability theory and finance are described in
Section 2.4. Most of the results of this chapter will be found in Franco-Pereira, Lillo, Romo
and Shaked (2009).

2.1 Definition

Let X be a random variable and let uX be the right endpoint of its support. Recall from
(1.1) that the residual life of X is given by

Xt = [X − t
∣∣X > t], t < uX .

If FX denotes the distribution function of X and FX = 1−FX denotes the corresponding
survival function, then the survival function of Xt is given by

FXt(x) =
FX(t + x)

FX(t)
, x ≥ 0.

If γ is some number between 0 and 1, the γ-percentile residual life function of X, denoted

19
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by qX,γ, is defined for any t < uX by letting qX,γ(t) be the γ-percentile of Xt. That is,

qX,γ(t) =

{
F−1

Xt
(γ), t < uX ;

0, t ≥ uX ,
(2.1)

A straightforward computation shows that

qX,γ(t) = F
−1

X (γFX(t))− t, t < uX , (2.2)

where γ = 1− γ. Alternatively,

qX,γ(t) = F−1
X (γ + γFX(t))− t, t < uX . (2.3)

Similar expressions can be found in Joe and Proschan (1984b). Note that, unlike Joe and
Proschan (1984a,b), we do not assume here that X is a nonnegative random variable.

Now let Y be another random variable, and let qY,γ be its γ-percentile residual life
function. If

qX,γ(t) ≤ qY,γ(t) for all t, (2.4)

then we say that X is smaller than Y in the γ-percentile residual life order, and we denote
it as X ≤γ-rl Y . The γ-percentile residual life orders were introduced in Joe and Proschan
(1984b), but these orders were not extensively studied there. The focus of Joe and Proschan
(1984b) was to test the hypothesis H0 : FX = FY versus H1 : qX,γ ≤ qY,γ.

Note that (2.4) defines a family of stochastic orders, indexed by γ ∈ (0, 1). It follows
from (2.1) and (2.4) that if X ≤γ-rl Y then

uX ≤ uY , (2.5)

where uX and uY are the right endpoints of corresponding supports.

The following proposition states equivalent conditions for the γ-percentile residual life
order to hold.

Proposition 2.1. Let γ be in (0, 1) and let X and Y be two random variables.

(i) The random variables X and Y satisfy X ≤γ-rl Y if, and only if,

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t.

(ii) The random variables X and Y satisfy X ≤γ-rl Y if, and only if,

F−1
X (γ + γFX(t)) ≤ F−1

Y (γ + γFY (t)) for all t.

(iii) Suppose that FX and FY are continuous. Then X ≤γ-rl Y if, and only if,

F Y (F
−1

X (u))

u
≤ F Y (F

−1

X (γu))

γu
for all u ∈ (0, 1).
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Proof. Parts (i) and (ii) follow at once from (2.2), (2.3), and (2.4). In order to prove part (iii)

we note that under the stated assumptions we have that FX

(
F
−1

X (p)
)

= p and F Y

(
F
−1

Y (p)
)

=
p for all p ∈ (0, 1). Now, by part (i), we have that X ≤γ-rl Y is equivalent to

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t.

Applying F Y to both sides of the above inequality we get that it is equivalent to

F Y

(
F
−1

X (γFX(t))
)
≥ γF Y (t) for all t.

Letting t = F
−1

X (u) in the latter inequality we see that it is equivalent to

F Y

(
F
−1

X (γu)
)

γu
≥

F Y

(
F
−1

X (u)
)

u
for all u ∈ (0, 1),

completing the proof.

The γ-percentile residual life orders indicate comparisons of size or magnitude. For
example, letting t → −∞ in (2.4) we see that if X ≤γ-rl Y then the γ-percentile of X is
smaller than (or at least not larger than) the γ-percentile of Y . Inequality (2.5) is another
indication of comparisons of size or magnitude. Now let lX and lY are the left endpoints of
corresponding supports. One may wonder whether X ≤γ-rl Y implies lX ≤ lY . The following
counterexample shows that this is not necessarily the case.

Counterexample 2.1. For some γ ∈ (0, 1), let X(γ) have the distribution function given
by

FX(γ)(t) =


0, t < γ;

t, γ ≤ t < 1;

1, t ≥ 1;

that is, FX(γ) is a mixture of a uniform distribution on (γ, 1) with probability 1 − γ, and a
degenerate variable at γ with probability γ. Let Y have the uniform distribution on (0, 1).
We compute

qX(γ),γ(t) =


γ − t, t < γ;

γ(1− t), γ ≤ t < 1;

0, t ≥ 1;

and

qY,γ(t) =


γ − t, t < 0;

γ(1− t), 0 ≤ t < 1;

0, t ≥ 1.

(2.6)

It is easy to check that X(γ) ≤γ-rl Y but lX(γ) = γ � 0 = lY . J
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We end this section with an example that describes a family of random variables that
are ordered with respect to ≤γ-rl. It will be used in the sequel.

Example 2.1. Let X have the Pareto distribution:

FX(t) = 1−
( λ

λ + t

)ν

, t ≥ 0,

where λ > 0 and ν > 0. Then, for any γ ∈ (0, 1),

qX,γ(t) =

{
((1− γ)−1/ν − 1)λ− t, t < 0;

((1− γ)−1/ν − 1)(λ + t), t ≥ 0.

Let Y have the Pareto distribution:

FY (t) = 1−
( δ

δ + t

)µ

, t ≥ 0,

where δ > 0 and µ > 0. Then, for any γ ∈ (0, 1),

qY,γ(t) =

{
((1− γ)−1/µ − 1)δ − t, t < 0;

((1− γ)−1/µ − 1)(δ + t), t ≥ 0.

It follows that

X ≤γ-rl Y ⇐⇒

{
µ ≤ ν and
(1−γ)−1/ν−1

(1−γ)−1/µ−1
≤ δ

λ
.

J

2.2 Relationship to other stochastic orders

Recall from (1.10) that a random variable X is said to be smaller than the random variable
Y in the usual stochastic order (denoted as X ≤st Y ) if, and only if,

F−1
X (p) ≤ F−1

Y (p) for all p ∈ (0, 1). (2.7)

Next recall from (1.13) that a random variable X is said to be smaller than the random
variable Y in the hazard rate order (denoted as X ≤hr Y ) if FX(y)F Y (x) ≤ FX(x)F Y (y)
for all x ≤ y. If Xt and Yt denote the residual lives that are associated with X and Y
respectively, it is known that X ≤hr Y if, and only if,

Xt ≤st Yt for all t < uX ; (2.8)

see, for example, (1.B.6) in Shaked and Shanthikumar (2007). Equivalently, recalling the
notation qX,γ and qY,γ from (2.1), we can apply (2.7) to (2.8) and see that X ≤hr Y if, and
only if,

qX,γ(t) ≤ qY,γ(t) for all t < uX and γ ∈ (0, 1).

From (2.4) we thus obtain the following result (which has already been observed in Joe and
Proschan (1984b)).
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Theorem 2.1. Let X and Y be two random variables. Then X ≤hr Y if, and only if,

X ≤γ-rl Y for all γ ∈ (0, 1). (2.9)

In particular, for any γ ∈ (0, 1),

≤hr =⇒≤γ-rl .

Joe and Proschan (1984b) stated that there is no relationship between the orders ≤st and
≤γ-rl. However, they gave no proof of this statement. In the following discussion, especially
in Remarks 2.1 and 2.2 below, it is formally shown, among other things, that indeed there
is no relationship between these orders.

Recall from (1.17) that two random variables X and Y with mean residual life functions
mX and mY respectively, are ordered with respect to the mean residual life order if

mX(t) ≤ mY (t) for all t ∈ R.

Remark 2.1. The random variables in Counterexample 2.1 have expectations E[X(γ)] =
γ2+1

2
and E[Y ] = 1

2
. Thus, although X(γ) ≤γ-rl Y we have E[X(γ)] > E[Y ]. That is, the

γ-percentile residual life orders do not preserve expectations. It follows that any stochastic
order that preserves expectations cannot be implied by any γ-percentile residual life order. In
particular, for any γ ∈ (0, 1),

≤γ-rl 6=⇒≤st,

≤γ-rl 6=⇒≤mrl,

and

≤γ-rl 6=⇒≤hmrl;

see Section 1.2 for the definitions of the above orders and see Shaked and Shanthikumar
(2007) for the fact that they preserve expectations. C

Recall from (1.16) that a random variable X is said to be smaller than the random variable
Y in the reversed hazard rate order (denoted as X ≤rh Y ) if FX(y)FY (x) ≤ FX(x)FY (y)
for all x ≤ y. Since the order ≤rh implies the order ≤st (see, for example, Shaked and
Shanthikumar (2007)), it follows from Remark 2.1 that, for any γ ∈ (0, 1),

≤γ-rl 6=⇒≤rh .

It is known (see, for example, Shaked and Shanthikumar (2007)) that ≤rh 6=⇒≤hr. It
thus follows from Theorem 2.1 that ≤rh 6=⇒≤γ-rl for some γ ∈ (0, 1). In the next remark we
will show a stronger result.
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Remark 2.2. Note that the distribution FX(γ) of the random variable X(γ) in Counterex-
ample 2.1 can be obtained from the distribution of the random variable Y there by shifting
some of the mass of FY to the right. Thus Counterexample 2.1 shows in a simple way that
shifting some mass of a distribution of a random variable to the right can actually decrease
it in the γ-percentile residual life order. This shows that, for any γ ∈ (0, 1),

≤st 6=⇒≤γ-rl . (2.10)

In fact, it is easy to verify that FX(γ) and FY in Counterexample 2.1 satisfy FY (y)FX(γ)(x) ≤
FY (x)FX(γ)(y) for all x ≤ y; that is, Y ≤rh X(γ). It follows that, for any γ ∈ (0, 1),

≤rh 6=⇒≤γ-rl . (2.11)

Note that (2.11) is a stronger statement than (2.10) because the order ≤rh implies the order
≤st. C

Let us now return to the consideration of the relationship between the orders ≤γ-rl and
≤hr. In Theorem 2.1 it is shown that condition (2.9) implies X ≤hr Y (actually these two
conditions are equivalent). The question that now arises is whether a weaker condition, such
as

X ≤γ-rl Y for all γ ∈ (0, β)

for some β ∈ (0, 1), implies the same conclusion. It turns out that this is indeed the case,
no matter how small β is (provided it is positive). In order to show it we need the following
lemma.

Lemma 2.1. Let γ ∈ (0, 1) and let X and Y be two random variables with continuous
distributions. If X ≤γ-rl Y then

X ≤(1−γ2m
)-rl Y for all m = 1, 2, . . . .

Proof. By Proposition 2.1(iii), if X ≤γ-rl Y then

F Y (F
−1

X (u))

u
≤ F Y (F

−1

X (γu))

γu
for all u ∈ (0, 1).

Replacing above u by γu we get

F Y (F
−1

X (γu))

γu
≤ F Y (F

−1

X (γ2u))

γ2u
for all u ∈ (0, 1),

and by induction

F Y (F
−1

X (γ2m−1
u))

γ2m−1
u

≤ F Y (F
−1

X (γ2m
u))

γ2m
u

for all u ∈ (0, 1) and m = 1, 2, . . . .
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Multiplying the above inequalities we get

F Y (F
−1

X (u))

u
≤ F Y (F

−1

X (γ2m
u))

γ2m
u

for all u ∈ (0, 1) and m = 1, 2, . . . ,

and, by Proposition 2.1(iii), this yields the stated result.

Theorem 2.2. Let β ∈ (0, 1) and let X and Y be two random variables with continuous
distributions. If

X ≤γ-rl Y for all γ ∈ (0, β)

then X ≤hr Y .

Proof. For any γ ∈ (0, β), since X ≤γ-rl Y , it follows from Lemma 2.1 that

X ≤(1−γ2m
)-rl Y for all m = 1, 2, . . . .

Now, let δ ∈ [β, 1), and consider

γ
def
= 1− (1− δ)

1
2m where m =

[
log

( log(1−δ)
log(1−β)

)
log 2

]
+ 1;

here [s] denotes the integer part of s. It is straightforward to verify that γ < β. Plugging
this γ in the inequality X ≤(1−γ2m

)-rl Y we obtain X ≤δ-rl Y . Since this is true for every
δ ∈ [β, 1) we get X ≤hr Y from (2.9).

Remark 2.3. Looking at condition (2.9) and at Theorem 2.2 it is natural to wonder whether
a condition such as

X ≤γ-rl Y for all γ ∈ (δ, β),

for some 0 < δ < β < 1 (note that here we do not allow δ = 0), implies X ≤hr Y . It turns
out that this is not the case. In order to see it, fix a δ ∈ (0, 1), and consider the random
variables X(δ) and Y from Counterexample 2.1. For any γ ∈ (δ, 1) we have

qX(δ),γ(t) =


γ − t, t < δ;

γ(1− t), δ ≤ t < 1;

0, t ≥ 1;

whereas qY,γ is given in (2.6). It is now easy to verify that X(δ) ≤γ-rl Y (and this is true for
all γ ∈ (δ, 1)), but X(δ) �hr Y . C

In the next counterexample it is shown that for any γ ∈ (0, 1) we have

≤mrl 6=⇒≤γ-rl .
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Counterexample 2.2. For (ω, δ, λ) ∈ (0, 1)3, let X have the survival function given by

FX(t) =


1, t < 0;

1− ωt, 0 ≤ t < δ;

ω(1− t), δ ≤ t < 1;

0, t ≥ 1;

(2.12)

that is, FX is a mixture of a uniform distribution on (0, 1) with probability ω, and a degenerate
variable at δ with probability 1− ω. Let Y have the survival function given by

F Y (t) =


1, t < 0;

1− λt, 0 ≤ t < 1;

0, t ≥ 1;

(2.13)

that is, FY is a mixture of a uniform distribution on (0, 1) with probability λ, and a degenerate
variable at 1 with probability 1 − λ. Lengthy computations show that the mean residual life
functions of X and Y , respectively, are given by

mX(t) =


ω
2

+ δ(1− ω)− t, t < 0;
ω(1−t2)+2δ(1−ω)

2(1−ωt)
− t, 0 ≤ t < δ;

1−t
2

, δ ≤ t < 1;

0, t ≥ 1,

and

mY (t) =


1− λ

2
− t, t < 0;

2−λ−λt2

2(1−λt)
− t, 0 ≤ t < 1;

0, t ≥ 1.

Now let ω and λ be such that
0 < ω < λ < 1, (2.14)

and set

δ =
1− λ

1− ω
; (2.15)

from (2.14) it follows that 0 < δ < 1.

For t < 0 we see that

mX(t) =
ω

2
+ δ(1− ω)− t =

ω

2
+ 1− λ− t ≤ 1− λ

2
− t = mY (t),

where the second equality follows from (2.15), and the inequality follows from (2.14).

For 0 ≤ t < δ note, by (2.14) and (2.15), that 2(1− ωt) ≥ 2(1− λt) and that

ω(1− t2) + 2δ(1− ω) = ω(1− t2) + 2(1− λ) ≤ λ(1− t2) + 2(1− λ) = 2− λ− λt2.
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Thus,

mX(t) =
ω(1− t2) + 2δ(1− ω)

2(1− ωt)
− t ≤ 2− λ− λt2

2(1− λt)
− t = mY (t).

Finally, for δ ≤ t < 1, we have

mX(t) =
1− t

2
≤ 2− λ− λt2

2(1− λt)
− t = mY (t),

where the inequality follows (after some straightforward manipulations) from 0 < λ < 1 and
0 ≤ t ≤ 1. Thus

X ≤mrl Y.

Now consider γ ∈ (0, 1). If
λ > γ (2.16)

then the γ-percentile of the random variable Y (with survival function given in (2.13)) is
easily seen to be

qY,γ(0) =
γ

λ
.

If
ωδ > γ (2.17)

then the γ-percentile of the random variable X (with survival function given in (2.12)) is
easily seen to be

qX,γ(0) =
γ

ω
.

Note that if (2.14) holds then
qX,γ(0) > qY,γ(0),

and therefore X �γ-rl Y . For δ in (2.15) we can rewrite the inequality (2.17) as

ω(1− λ)

1− ω
> γ. (2.18)

In summary, consider the following task:

For γ ∈ (0, 1), find (ω, λ) ∈ (0, 1)2 that
satisfies the inequalities (2.14), (2.16),
and (2.18).

(2.19)

If we can find a solution to the task (2.19), then the corresponding X and Y , with survival
functions given in (2.12) and (2.13), will satisfy X ≤mrl Y and X �γ-rl Y .

In order to find a solution to the task (2.19) (for any fixed γ), let b > 1 be a number such
that

b−1 > γ.
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For a small positive ε (that will be shown below to exist), define

ω = γ + ε and

λ = γ + b ε;

of course, ε should be small enough so that λ < 1. Then (2.14) and (2.16) hold. To see that
(2.18) also holds, we rewrite it as

(γ + ε)(1− γ − b ε)

1− γ − ε
> γ.

This simplifies to
1− b γ − b ε > 0.

Since γ < 1/b we can find such an ε > 0, and the resulting ω and λ will satisfy (2.14),
(2.16), and (2.18). J

Since X ≤mrl Y =⇒ X ≤hmrl Y (see Shaked and Shanthikumar (2007, page 95)), it
follows from Counterexample 2.2 that for any γ ∈ (0, 1) we have

X ≤hmrl Y 6=⇒ X ≤γ-rl Y.

One may wonder whether the orders ≤γ-rl and ≤β-rl imply each other when γ 6= β. The
following counterexample shows that if β < γ then X ≤γ-rl Y does not necessarily imply
that X ≤β-rl Y . The counterexample after that (Counterexample 2.4) will show that also if
β < γ then X ≤γ-rl Y does not necessarily imply that X ≤β-rl Y .

Counterexample 2.3. Let 0 < β < γ < 1. Let X and Y have the Pareto distributions,

given in Example 2.1, with µ = 1 and ν = 2. Choose λ and δ such that (1−γ)−1/2−1
(1−γ)−1−1

= δ
λ
.

Then, by Example 2.1, X ≤γ-rl Y . It is not hard to verify that (1−γ)−1/2−1
(1−γ)−1−1

is strictly decreasing

in γ ∈ (0, 1). Therefore (1−β)−1/2−1
(1−β)−1−1

> δ
λ
. It follows from Example 2.1 that X �β-rl Y . J

The basic idea in the following counterexample has been inspired by the study of Gupta
and Langford (1984) that we explained in Section1.1. They presented an example to show
that the percentile residual life function does not characterize a distribution. For simplicity
we consider a special case of their example (that is, their a and b are taken here to be both
equal to 1) that still provides us with our objective.

Counterexample 2.4. For γ ∈ (0, 1), let X has the Pareto distribution with survival func-
tion

FX(t) =
( 1

1 + t

)− log(1−γ)
log 2

, t ≥ 0. (2.20)

Now define

kε(x) = 1 + ε sin
( 2πx

log 2

)
, x ∈ R,
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where ε > 0, and consider the function Hε given by

Hε(t) =
( 1

1 + t

)− log(1−γ)
log 2 · kε(log(1 + t)), t ≥ 0.

Obviously, Hε(0) = 1 and limt→∞ Hε(t) = 0. If we can find an ε > 0 such that Hε(t) is
decreasing in t ≥ 0, then it would follow that Hε is a survival function. In order to identify
such an ε, we note that the derivative of kε is given by

k′ε(x) = ε cos
( 2πx

log 2

)
· 2π

log 2
, x ∈ R,

and thus the derivative of Hε is given by

H ′
ε(t) =

log(1− γ)

log 2
·
( 1

1 + t

)− log(1−γ)
log 2 · 1

1 + t

[
1 + ε sin

(2π log(1 + t)

log 2

)]
+

2π

log 2
· 1

1 + t
·
( 1

1 + t

)− log(1−γ)
log 2 · ε cos

(2π log(1 + t)

log 2

)
, t ≥ 0.

Therefore Hε is decreasing if, and only if,

ε
[
log(1− γ) sin

(2π log(1 + t)

log 2

)
+ 2π cos

(2π log(1 + t)

log 2

)]
≤ − log(1− γ), t ≥ 0. (2.21)

Since

ε
[
log(1− γ) sin

(2π log(1 + t)

log 2

)
+ 2π cos

(2π log(1 + t)

log 2

)]
≤ ε(− log(1− γ) + 2π), t ≥ 0,

we see that if

ε ≤ − log(1− γ)

− log(1− γ) + 2π
(2.22)

then (2.21) holds. Thus, for such an ε the function Hε is a survival function.

Let Y be a random variable with survival function Hε, namely,

F Y (t) =
( 1

1 + t

)− log(1−γ)
log 2 · kε(log(1 + t)), t ≥ 0.

Recall the random variable X with survival function given in (2.20). From Gupta and
Langford (1984) we know that qX,γ(t) = qY,γ(t) for all t. So,

X ≤γ-rl Y.

Let β ∈ (γ, 1). We are going to identify a t0 > 0 such that

qX,β(t0) > qY,β(t0). (2.23)
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(It would then follow that X �β-rl Y .) Rewriting (2.23) it is seen to be equivalent to

F Y (F
−1

X (β FX(t0))) < β F Y (t0).

Setting u0 = FX(t0), it is seen that rather than identifying t0 that satisfies (2.23), we may
as well identify u0 ∈ (0, 1) such that

F Y (F
−1

X (βu0)) < β F Y (F
−1

X (u0)). (2.24)

We now compute

F
−1

X (u) = u
log 2

log(1−γ) − 1, u ∈ (0, 1),

and

F Y (F
−1

X (u)) = ukε(log(1 + F
−1

X (u))) = ukε

( log 2

log(1− γ)
· log u

)
.

So (2.24) is the same as

kε

( log 2

log(1− γ)
· log(βu0)

)
< kε

( log 2

log(1− γ)
· log u0

)
,

which is the same as

sin
(
2π · log β + log u0

log(1− γ)

)
< sin

(
2π · log u0

log(1− γ)

)
. (2.25)

Now take u0 = exp
{ log(1−γ)

4

}
. Then u0 ∈ (0, 1), as well as sin

(
2π · log β+log u0

log(1−γ)

)
< 1 and

sin
(
2π · log u0

log(1−γ)

)
= 1. So (2.25), and therefore also (2.24), hold for this u0. It follows that

X �β-rl Y .

Besides, we are going to identify a t1 > 0 such that

qX,β(t1) < qY,β(t1). (2.26)

(It would then follow that X �β-rl Y either.) Rewriting (2.26) it is seen to be equivalent to
identify a u1 ∈ (0, 1) such that

sin
(
2π · log β + log u1

log(1− γ)

)
> sin

(
2π · log u1

log(1− γ)

)
. (2.27)

We take u1 = exp
{3 log(1−γ)

4

}
. Then u1 ∈ (0, 1), as well as sin

(
2π · log β+log u1

log(1−γ)

)
> −1 and

sin
(
2π · log u1

log(1−γ)

)
= −1. So (2.27), and therefore also (2.26), hold for this u1. It follows that

X �β-rl Y . J

Figure 2.1 summarizes some of the results shown in this section.
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γ-PRL, γ ∈ (0, 1) ST, MRL, HMRL, RH-X
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γ-PRL, ∀γ ∈ (0, 1)

γ-PRL, ∀γ ∈ (0, β)
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?

6

--�

?

Figure 2.1: Relationship among some common stochastic orders

2.3 Closure properties

The γ-percentile residual life orders satisfy some desirable closure properties. These are
described and discussed in this section.

First we show that the γ-percentile residual life orders are preserved under strictly in-
creasing transformations.

Theorem 2.3. Let X and Y be random variables, let γ ∈ (0, 1), and let φ be a strictly
increasing function. Then X ≤γ-rl Y if, and only if, φ(X) ≤γ-rl φ(Y ).

Proof. Let F φ(X) and F φ(Y ) denote the survival functions of the indicated random variables.
Since φ is strictly increasing we have

F φ(X)(t) = FX(φ−1(t)) and F φ(Y )(t) = F Y (φ−1(t)) for all t,

and
F
−1

φ(X)(u) = φ(F
−1

X (u)) and F
−1

φ(Y )(u) = φ(F
−1

Y (u)) for all u ∈ (0, 1).

Therefore, by Proposition 2.1(i), φ(X) ≤γ-rl φ(Y ) if, and only if,

φ(F
−1

X (γFX(φ−1(t)))) ≤ φ(F
−1

Y (γF Y (φ−1(t)))) for all t.

By the strict monotonicity of φ, the latter condition is equivalent to

F
−1

X (γFX(φ−1(t))) ≤ F
−1

Y (γF Y (φ−1(t))) for all t.
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Letting t′ = φ−1(t), this condition is the same as

F
−1

X (γFX(t′)) ≤ F
−1

Y (γF Y (t′)) for all t′,

and the stated result follows from Proposition 2.1(i).

For the next result we need the following lemma from van der Vaart (1998, page 305).
Note that the assumption requiring that a distribution function has interval support, means
that the distribution function has no “flats” on that interval.

Lemma 2.2. Let {Fn} be a sequence of distribution functions that converges in distribution
to F . Suppose that F is continuous and has interval support. Then F−1

n converges to F−1

on (0, 1).

The following result gives conditions under which the γ-percentile residual life orders are
closed under limits in distribution.

Theorem 2.4. Let {Xn, n = 1, 2, . . . } and {Yn, n = 1, 2, . . . } be two sequences of random
variables such that Xn →st X and Yn →st Y as n →∞, where “→st” denotes convergence in
distribution. Suppose that both X and Y have continuous distribution functions with interval
supports. For any γ ∈ (0, 1), if Xn ≤γ-rl Yn, n = 1, 2, . . ., then X ≤γ-rl Y .

Proof. From Lemma 2.2 we know that

F−1
X (γ + γFX(t)) = lim

n→∞
F−1

Xn
(γ + γFXn(t))

and that
F−1

Y (γ + γFY (t)) = lim
n→∞

F−1
Yn

(γ + γFYn(t))

for all t. If Xn ≤γ-rl Yn, n = 1, 2, . . ., then, using Proposition 2.1(ii), we have

F−1
X (γ + γFX(t)) = lim

n→∞
F−1

Xn
(γ + γFXn(t)) ≤ lim

n→∞
F−1

Yn
(γ + γFYn(t)) = F−1

Y (γ + γFY (t)),

and the stated result follows from Proposition 2.1(ii).

Without the assumption of interval supports in Theorem 2.4 the conclusion of the theorem
may not hold. This is shown next.

Counterexample 2.5. Let γ ∈ (0, 1). For every n > 1
γ

let Xn be a random variable whose
distribution is the following mixture:

uniform on [1.5, 2.5] with probability γn
n+1

,

uniform on [2.5, 3.5] with probability 1
n+1

,

standard exponential with shift 4.5 with probability (1−γ)n
n+1

;
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that is

FXn(t) =



0, t < 1.5;
γn(t−1.5)

n+1
, 1.5 ≤ t < 2.5;

γn+t−2.5
n+1

, 2.5 ≤ t < 3.5;
γn+1
n+1

, 3.5 ≤ t < 4.5;

1− (1−γ)ne−(t−4.5)

n+1
, t ≥ 4.5.

It is easy to see that Xn converges in distribution to X whose distribution is{
uniform on [1.5, 2.5] with probability γ,

standard exponential with shift 4.5 with probability (1− γ);

that is

FX(t) =


0, t < 1.5;

γ(t− 1.5), 1.5 ≤ t < 2.5;

γ, 2.5 ≤ t < 4.5;

1− (1− γ)e−(t−4.5), t ≥ 4.5.

Next, for every n > 1
γ

let Yn be a random variable whose distribution is the following
mixture: 

uniform on [0.5, 1.5] with probability γn
n+1

,

uniform on [2.5, 3.5] with probability 1
n+1

,

standard exponential with shift 4.5 with probability (1−γ)n
n+1

;

that is

FYn(t) =



0, t < 0.5;
γn(t−0.5)

n+1
, 0.5 ≤ t < 1.5;

γn
n+1

, 1.5 ≤ t < 2.5;
γn+t−2.5

n+1
, 2.5 ≤ t < 3.5;

γn+1
n+1

, 3.5 ≤ t < 4.5;

1− (1−γ)ne−(t−4.5)

n+1
, t ≥ 4.5.

It is easy to see that Yn converges in distribution to Y whose distribution is{
uniform on [0.5, 1.5] with probability γ,

standard exponential with shift 4.5 with probability (1− γ);

that is

FY (t) =


0, t < 0.5;

γ(t− 0.5), 0.5 ≤ t < 1.5;

γ, 1.5 ≤ t < 4.5;

1− (1− γ)e−(t−4.5), t ≥ 4.5.
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Computing the γ-percentile residual life functions that are associated with Xn and with
Yn, we get

qXn,γ(t) =



2.5 + γ − t, t < 1.5;

2.5 + γ + nγ(1− γ)(t− 1.5)− t, 1.5 ≤ t < 1.5 + 1
γn

;

4.5− log
(n+1−γn(t−1.5)

n

)
− t, 1.5 + 1

γn
≤ t < 2.5;

4.5− log
(

n−γn−t+3.5
n

)
− t, 2.5 ≤ t < 3.5;

4.5− log(1− γ)− t, 3.5 ≤ t < 4.5;

− log(1− γ), t ≥ 4.5;

and

qYn,γ(t) =



2.5 + γ − t, t < 0.5;

2.5 + γ + nγ(1− γ)(t− 0.5)− t, 0.5 ≤ t < 0.5 + 1
γn

;

4.5− log
(

n+1−γn(t−0.5)
n

)
− t, 0.5 + 1

γn
≤ t < 1.5;

4.5− log
(

n−γn+1
n

)
− t, 1.5 ≤ t < 2.5;

4.5− log
(

n−γn−t+3.5
n

)
− t, 2.5 ≤ t < 3.5;

4.5− log(1− γ)− t, 3.5 ≤ t < 4.5;

− log(1− γ), t ≥ 4.5.

It is straightforward to verify that qXn,γ(t) ≤ qYn,γ(t) for all t. Thus Xn ≤γ-rl Yn, n > 1
γ
. On

the other hand, by our convention that the inverse distribution function is the left continuous
version of it, we see that the γ-percentile of X is 2.5 while the γ-percentile of Y is 1.5. So
X �γ-rl Y . J

The following two lemmas, that deal with simple mixtures, will yield a general closure
under mixtures property of the γ-percentile residual life orders.

Lemma 2.3. Let X, Y , U , and V be random variables with continuous distribution func-
tions, and let W be a random variable with distribution function

FW = pFX + (1− p)FY ,

for some p ∈ [0, 1].

(i) If U ≤γ-rl X and U ≤γ-rl Y then U ≤γ-rl W .

(ii) If X ≤γ-rl V and Y ≤γ-rl V then W ≤γ-rl V .

Proof. First we prove (i). From U ≤γ-rl X and U ≤γ-rl Y , using Proposition 2.1(i), we obtain

F
−1

U (γFU(t)) ≤ F
−1

X (γFX(t)) and F
−1

U (γFU(t)) ≤ F
−1

Y (γF Y (t)) for all t.
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It follows, by the continuity of FX and of FY , that

FX(F
−1

U (γFU(t))) ≥ γFX(t) and F Y (F
−1

U (γFU(t))) ≥ γF Y (t) for all t.

Therefore,

pFX(F
−1

U (γFU(t))) + (1− p)F Y (F
−1

U (γFU(t))) ≥ γpFX(t) + γ(1− p)FX(t) for all t;

that is,

FW (F
−1

U (γFU(t))) ≥ γFW (t) for all t.

By the continuity of FW we get

F
−1

U (γFU(t)) ≤ F
−1

W (γFW (t)) for all t;

that is, by Proposition 2.1(i), U ≤γ-rl W .

Now we prove (ii). From X ≤γ-rl V and Y ≤γ-rl V , using Proposition 2.1(i), we obtain

F
−1

X (γFX(t)) ≤ F
−1

V (γF V (t)) and F
−1

Y (γF Y (t)) ≤ F
−1

V (γF V (t)) for all t.

It follows, by the continuity of FX and of FY , that

γFX(t) ≥ FX(F
−1

V (γF V (t))) and γF Y (t) ≥ F Y (F
−1

V (γF V (t))) for all t.

Therefore,

γpFX(t) + γ(1− p)F Y (t) ≥ pFX(F
−1

V (γF V (t))) + (1− p)F Y (F
−1

V (γF V (t))) for all t;

that is,

γFW (t) ≥ FW (F
−1

V (γF V (t))) for all t.

By the continuity of FW we get

F
−1

W (γFW (t)) ≤ F
−1

V (γF V (t)) for all t;

that is, by Proposition 2.1(i), W ≤γ-rl V .

Lemma 2.4. Let X1, X2, Y1, and Y2 be random variables with continuous distribution
functions, and let W and Z be random variables with distribution functions

FW = pFX1 + (1− p)FX2 and FZ = pFY1 + (1− p)FY2 ,

for some p ∈ [0, 1]. If there exists a random variable S such that

X1 ≤γ-rl S, X2 ≤γ-rl S, S ≤γ-rl Y1, S ≤γ-rl Y2,

then W ≤γ-rl Z.
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Proof. Since X1 ≤γ-rl S and X2 ≤γ-rl S, it follows from Lemma 2.3 (ii) that W ≤γ-rl S.
Furthermore, since S ≤γ-rl Y1 and S ≤γ-rl Y2, it follows from Lemma 2.3 (i) that S ≤γ-rl Z.
By the transitivity property of the order ≤γ-rl we get W ≤γ-rl Z.

By repeated application of Lemma 2.4, and convergence arguments, we obtain the fol-
lowing result.

Theorem 2.5. Let {Xθ, θ ∈ Θ} and {Yθ, θ ∈ Θ} be two families of random variables
with continuous distribution functions. Let W and Z be random variables with distribution
functions given by

FW (t) =

∫
Θ

FXθ
(t)dH(θ) and FZ(t) =

∫
Θ

FYθ
(t)dH(θ), t ∈ R,

where H is some distribution function on Θ. Suppose that there exists a random variable S
such that

Xθ ≤γ-rl S ≤γ-rl Yθ for all θ ∈ Θ. (2.28)

Then W ≤γ-rl Z.

Note that condition (2.28) can be rewritten as

Xθ ≤γ-rl Yθ′ for all θ, θ′ ∈ Θ.

It is worth noting that results that are similar to Theorem 2.5 hold for the hazard rate
order, the reversed hazard rate order, the likelihood ratio order, and the mean residual life
order (see, respectively, Theorems 1.B.8, 1.B.46, 1.C.15, and 2.A.13 in Shaked and Shan-
thikumar, 2007).

A special case of Theorem 2.5 is the following result which shows that a random variable,
whose distribution is a mixture of two distributions of γ-percentile residual life ordered
random variables, is bounded from below and from above, in the γ-percentile residual life
order sense, by these two random variables.

Corollary 2.1. Let X and Y be two random variables with continuous distribution functions,
and let W be a random variable with distribution function

FW = pFX + (1− p)FY ,

for some p ∈ [0, 1]. If X ≤γ-rl Y then X ≤γ-rl W ≤γ-rl Y .

Again, note that similar results hold for the hazard rate order, the likelihood ratio order,
and the mean residual life order (see, respectively, Theorems 1.B.22, 1.C.30, and 2.A.18 in
Shaked and Shanthikumar, 2007).

The possible preservation of a stochastic order under the formation of coherent systems
is a useful property that has important applications in reliability theory (see, for example,
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Barlow and Proschan, 1975, for the definition and the use of coherent systems). Thus it is of
interest to ask whether the γ-percentile residual life orders are closed under this formation.
Boland, El-Neweihi, and Proschan (1994) showed that the hazard rate order is not preserved
under the formation of coherent systems. It follows from Theorem 2.1 that, for some γ, the
γ-percentile residual life order is not closed under this formation. In the next counterexample
it is shown that in fact, for all γ, the γ-percentile residual life order is not closed under this
formation. This is shown by considering a parallel system of size 2 whose lifetime is the
maximum of the lifetimes of its two components.

Counterexample 2.6. For any γ ∈ (0, 1), let X be an exponential random variable with
rate − log(1− γ). That is,

FX(t) =

{
0, t < 0;

1− e(log(1−γ))t, t ≥ 0.

Let Y be a random variable that is degenerate at 0, and let Z be a random variable that is
degenerate at 1. Note that max{X, Y } =st X. Note also that Y ≤γ-rl Z, and, of course,
X ≤γ-rl X. Now we compute

qmax{X,Y },γ(t) = qX,γ(t) =

{
1− t, t < 0;

1, t ≥ 0,

and

qmax{X,Z},γ(t) =

{
1− t, t < 1;

1, t ≥ 1.

It is seen that max{X,Y } �γ-rl max{X, Z} (in fact, max{X, Y } ≥γ-rl max{X, Z} strictly).
Thus the γ-percentile residual life order is not closed under the maximum operation. J

In fact, unlike the hazard rate order, for every γ ∈ (0, 1), the γ-percentile residual life
order is not even closed under the formation of series systems (that is, under the minimum
operation). This is shown in the next counterexample.

Counterexample 2.7. Let X1 and X2 be two random variables that are degenerate at 1.
For any γ ∈ (0, 1), let Y1 and Y2 be two independent exponential random variables, each with
rate − log(1− γ). The corresponding γ-percentile residual life functions are

qX1,γ(t) = qX2,γ(t) =

{
1− t, t < 1;

0, t ≥ 1;

and

qY1,γ(t) = qY2,γ(t) =

{
1− t, t < 0;

1, t ≥ 0.
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It is easy to see that X1 ≤γ-rl Y1 and X2 ≤γ-rl Y2. Now we compute

qmin{X1,X2},γ(t) = qX1,γ(t) =

{
1− t, t < 1;

0, t ≥ 1;

and (note that min{Y1, Y2} is an exponential random variable with rate 2)

qmin{Y1,Y2},γ(t) =

{
1/2− t, t < 0;

1/2, t ≥ 0.

It is seen that min{X1, X2} �γ-rl min{Y1, Y2}. Thus the γ-percentile residual life order is not
closed under the minimum operation. J

We point out that some comparisons of minima in percentile residual life orders are given
in Corollary 2.2 below.

In relation to Counterexample 2.7 it is worthwhile to note that if X and Y are continuous
random variables, then, for any γ ∈ (0, 1) we have

min{X, Y } ≤γ-rl X. (2.29)

In order to see it we note that FX(t) ≥ γFX(t) for all t. Therefore t ≤ F
−1

X (γFX(t)) and

hence F Y (t) ≥ F Y (F
−1

X (γFX(t))) for all t. It follows that

γFX(t)F Y (t) ≥ FX(F
−1

X (γFX(t)))F Y (F
−1

X (γFX(t))) for all t.

Since Fmin{X,Y } = FXF Y , the last inequality can be written as

γFmin{X,Y }(t) ≥ Fmin{X,Y }(F
−1

X (γFX(t))) for all t,

or, equivalently,

F
−1

min{X,Y }(γFmin{X,Y }(t)) ≤ F
−1

X (γFX(t)) for all t.

Thus (2.29) follows from Proposition 2.1(i).

2.4 Some applications

2.4.1 Risk management

Consider a firm confronted with a risky business over some time period, and let the random
variable X represent the loss that the firm incurs at the end of the period. A common
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measurement of the risk is the value at risk, denoted by VaRγ[X], which is defined as the
γ-percentile of the loss distribution for some prescribed confidence level γ ∈ (0, 1); see, for
example, Hürlimann (2002, 2003). That is, if FX denotes the distribution function of X,
then

VaRγ[X] = F−1
X (γ).

In practice γ is “large” in the sense that γ = 95%, 99%, 99.75%, etc.

The risk measure VaRγ[X] is widely used. However, it is not very informative in the
following sense: Suppose that we want to compare the losses X and Y of two risky items
that satisfy VaRγ[X] = VaRγ[Y ]. We then know that losses, larger than the common value
of VaRγ[X] and VaRγ[Y ], will occur with the same probability 1 − γ, but we do not know
the magnitudes of these losses. A risk measure that captures this information is the average
value at risk defined, for a random loss X, by

AVaRγ[X] =
1

1− γ

∫ 1

γ

VaRu[X] du. (2.30)

The average value at risk is also called the conditional value at risk, or the expected shortfall,
or the tail conditional expectation. The expression (2.30) for AVaRγ[X] is only one of a long
list of expressions that are given in Hürlimann (2003).

Suppose now that the firm with the risky asset X insures itself against heavy losses, that
is, against losses above some deductible t. Then the loss that the reinsurer experiences (if it
does) is Xt = [X − t

∣∣X > t]. Its corresponding value at risk is

VaRγ[Xt] = qX,γ(t),

where qX,γ(t) is defined, for instance, in (2.1). Consider another risky asset Y with the same
deductible t, and the reinsurer’s loss Yt = [Y − t

∣∣Y > t], and its corresponding value at risk
VaRγ[Yt] = qY,γ(t). Obviously, for any fixed deductible t, we have that

X ≤γ-rl Y =⇒ VaRγ[Xt] ≤ VaRγ[Yt]. (2.31)

However, it may be more interesting to compare the corresponding average value at risk
measures AVaRγ[Xt] and AVaRγ[Yt]. This is done in the next theorem.

Theorem 2.6 (Comparison of AVaR’s). Let γ ∈ (0, 1) and let X and Y be two risky
assets with continuous distributions. Let t be a fixed deductible. If

X ≤β-rl Y for all β ∈ [γ, 1) (2.32)

then
AVaRγ[Xt] ≤ AVaRγ[Yt]. (2.33)

In particular, (2.33) holds if X ≤hr Y .
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Proof. From (2.31) and (2.32) it is seen that∫ 1

γ

VaRβ[Xt] dβ ≤
∫ 1

γ

VaRβ[Yt] dβ.

The inequality (2.33) now follows from (2.30). The last statement of the theorem follows
from the fact, shown in Theorem 2.1, that X ≤hr Y implies (2.32).

It is of interest to note, following Remark 2.2, that, for a fixed γ ∈ (0, 1), it is not
necessary to assume that X ≤hr Y in order for (2.33) to hold. Since γ is usually “large”, the
condition (2.32) seems to be significantly weaker than X ≤hr Y .

As it is indicated in the proof of Theorem 2.7, the condition (2.32) in Theorem 2.7 can
be verified through Theorem 2.1. Alternatively, using empirical data, condition (2.32) can
be verified through Theorem 2.4.

2.4.2 Reliability theory

Let X be a random variable with survival function FX . For θ > 0, let X(θ) denote a random

variable with survival function F
θ

X . In the theory of statistics, F
θ

X is often referred to as
the Lehmann’s alternative. In reliability theory terminology, different X(θ)’s are said to
have proportional hazards. If θ < 1 then X(θ) is the lifetime of a component with lifetime
X which is subjected to imperfect repair procedure where θ is the probability of minimal
(rather than perfect) repair (see Brown and Proschan (1983)). If θ = n, where n is a positive
integer, then F

n

X is the survival function of min{X1, X2, . . . , Xn} where X1, X2, . . . , Xn are
independent copies of X; that is, F

n

X is the survival function of a series system of size n
where the component lifetimes are independent copies of X. Similarly, if Y is a random
variable with survival function F Y , then denote by Y (θ) a random variable with survival

function F
θ

Y . The following result compares X(θ) and Y (θ).

Theorem 2.7. Let X and Y be two random variables with continuous distributions on
interval supports. Let γ ∈ (0, 1) and θ > 0. If X ≤γ-rl Y then

X(θ) ≤β-rl Y (θ), (2.34)

where β = 1− (1− γ)θ.

Proof. It is not hard to verify that, under the continuity assumptions above, we have

(F
θ

X)−1(u) = F
−1

X (u1/θ) and (F
θ

Y )−1(u) = F
−1

Y (u1/θ), u ∈ (0, 1),

or, equivalently,

F
−1

X (u) = (F
θ

X)−1(uθ) and F
−1

Y (u) = (F
θ

Y )−1(uθ), u ∈ (0, 1).
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Now, by Proposition 2.1(i), X ≤γ-rl Y means

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t,

that is,

(F
θ

X)−1(γθF
θ

X(t)) ≤ (F
θ

Y )−1(γθF
θ

Y (t)) for all t,

and the result follows from Proposition 2.1(i).

As a corollary of Theorem 2.7 we have the following “preservation property” of the γ-
percentile residual life order under formation of series systems.

Corollary 2.2. Let X1, X2 . . . , Xn be independent and identically distributed random vari-
ables with a continuous distribution function on an interval support. Also let Y1, Y2 . . . , Yn

be independent and identically distributed random variables with a continuous distribution
function on an interval support. If X1 ≤γ-rl Y1 then

min{X1, X2 . . . , Xn} ≤β-rl min{Y1, Y2 . . . , Yn}, (2.35)

where β = 1− (1− γ)n.

It is of interest to contrast Corollary 2.2 with the result in Counterexample 2.7.

It is worthwhile to remark that each of the conclusions of Theorem 2.7 and Corollary 2.2
(that is, (2.34) with θ > 0, or (2.35) with n ≥ 1) is sufficient for X ≤γ-rl Y or X1 ≤γ-rl Y1,
respectively.

Corollary 2.2 can be useful in reliability theory when it is of importance to compare a
particular percentile (say, the median, that is, γ = .5) of the residual life of a series system
that survived up to time t0, with the same percentile (again, say, the median) of the residual
life of another series system, with different components, that survived up to time t0. This
can be useful, for instance, when t0 is the time at which the initial warranty of the system
expires.

For example, if the series systems consist of n = 4 components, then the second one will be
preferred to the first one, in the median residual life order, if the lifetimes of the components
of the first system are smaller than the lifetimes of the components of the second system with
respect to the order ≤.169-rl (since (1 − .169)4 ≈ .5). An engineer who is familiar with the
possible components of these systems can usually tell whether the two types of components
have lifetimes that are ordered with respect to ≤.169-rl. C

Similar applications can be described in biometry and in statistics.

2.4.3 Market of used items

The order ≤γ-rl can also be useful in a market of used items. Assume that an engineer (or
any individual) is considering a purchase of a used machine (or a car, say). Suppose that she
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has a choice among a few equally aged machines (or cars). If the original machine lifetimes
are ordered with respect to the hazard rate order, and if the engineer wishes to maximize
a certain γ-percentile of the remaining life of the purchased machine, then, obviously (for
example, by Theorem 2.1), she should select the machine whose lifetime is the highest with
respect to the order ≤hr.

Note, however, that the requirement that the machine lifetimes are ordered with respect
to ≤hr is a very strong requirement that may be hard to verify (or that actually may not
even hold) in practice. On the other hand, verification of the order ≤γ-rl may be a simpler
matter — and it yields the same decision!

Moreover, if the above engineer (or individual) has a choice between two markets that
have different mixtures of aged machines, and if the original machine lifetimes in these
markets satisfy (2.28) [here Xθ and Yθ, θ ∈ Θ, are the original machine lifetimes that are
mixed in the two markets], then Theorem 2.5 determines which market is preferable.



Chapter 3

The PRL orders from time t0 on

Motivated by the applicability of the percentile residual life orders for comparing items after
initial warranty or to compare used items, here we propose new stochastic orderings which
can be used with this purpose. These orders are based on the comparison of all the percentile
residual life functions of two random variables, not in the whole support but from a certain
moment t0 > 0 on.

The formal definition of the percentile residual life orders from time t0 on is given in
Section 3.1. Some interpretations of these stochastic orders are given, and various properties
of them are derived in Section 3.2. In Section 3.3 the relationships to other stochastic orders
are studied. Finally, some applications in reliability theory are described in Section 3.4.

3.1 Definition

Let X be a random variable. The γ-percentile residual life function qX,γ is defined by

qX,γ(t) =

{
F−1

Xt
(γ), t < uX ;

0, t ≥ uX .
(3.1)

As we have already pointed out, the γ-percentile residual life function can also be written as

qX,γ(t) = F
−1

X (γFX(t))− t, t < uX , (3.2)

where γ = 1− γ or, equivalently,

qX,γ(t) = F−1
X (γ + γFX(t))− t, t < uX . (3.3)

Now let Y be another random variable, and let qY,γ be its γ-percentile residual life
function. Let t0 < uX . If

qX,γ(t) ≤ qY,γ(t) for all t ≥ t0 and all γ ∈ (0, 1), (3.4)

43
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then we say that X is smaller than Y in the percentile residual life order from time t0 on,
and we denote it as X ≤prl

t0 Y .

The following proposition states equivalent conditions for the percentile residual life from
time t0 order to hold.

Proposition 3.1. Let t0 < uX and let X and Y be two random variables.

(i) The random variables X and Y satisfy X ≤prl
t0 Y if, and only if,

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t ≥ t0 and all γ ∈ (0, 1).

(ii) The random variables X and Y satisfy X ≤prl
t0 Y if, and only if,

F−1
X (γ + γFX(t)) ≤ F−1

Y (γ + γFY (t)) for all t ≥ t0 and all γ ∈ (0, 1).

(iii) Suppose that FX and FY are continuous. Then X ≤prl
t0 Y if, and only if,

F Y (F
−1

X (u))

u
≤ F Y (F

−1

X (γu))

γu
for all u ≤ F̄X(t0) and all γ ∈ (0, 1).

Proof. Parts (i) and (ii) follow at once from (3.2), (3.3), and (3.4). In order to prove

part (iii) we note that, under the stated assumptions, we have that FX

(
F
−1

X (p)
)

= p and

F Y

(
F
−1

Y (p)
)

= p for all p ∈ (0, 1). Now, by part (i), we have that X ≤prl
t0 Y is equivalent to

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t ≥ t0 and for all γ ∈ (0, 1).

Applying F Y to both sides of the above inequality, we get that it is equivalent to

F Y

(
F
−1

X (γFX(t))
)
≥ γF Y (t) for all t ≥ t0 and for all γ ∈ (0, 1).

Letting t = F
−1

X (u) in the latter inequality we see that it is equivalent to

F Y

(
F
−1

X (γu)
)

γu
≥

F Y

(
F
−1

X (u)
)

u
for all u ≤ F̄X(t0) and for all γ ∈ (0, 1),

completing the proof.

The question now is whether a weaker condition, such as

qX,γ(t) ≤ qY,γ(t) for all γ ∈ (0, β) and all t ≥ t0,

for some β ∈ (0, 1), implies X ≤prl
t0 Y . It turns out that this is indeed the case, no matter

how small β is (provided it is positive). In order to show it we need the following lemma.



3.1. DEFINITION 45

Lemma 3.1. Let γ ∈ (0, 1) and let X and Y be two random variables with continuous
distributions. If qX,γ(t) ≤ qY,γ(t) for all t ≥ t0, then

qX,1−γ2m (t) ≤ qY,1−γ2m (t) for all t ≥ t0 and all m = 1, 2, . . . .

Proof. By Proposition 3.1(iii), if X ≤prl
t0 Y then

F Y (F
−1

X (u))

u
≤ F Y (F

−1

X (γu))

γu
for all u ≤ F̄X(t0) and for all γ ∈ (0, 1).

Replacing above u by γu we get

F Y (F
−1

X (γu))

γu
≤ F Y (F

−1

X (γ2u))

γ2u
for all u ≤ F̄X(t0) and for all γ ∈ (0, 1),

and by induction, for all γ ∈ (0, 1),

F Y (F
−1

X (γ2m−1
u))

γ2m−1
u

≤ F Y (F
−1

X (γ2m
u))

γ2m
u

for all u ≤ F̄X(t0) and m = 1, 2, . . . .

Multiplying the above inequalities we get

F Y (F
−1

X (u))

u
≤ F Y (F

−1

X (γ2m
u))

γ2m
u

for all u ≤ F̄X(t0) and m = 1, 2, . . . ,

and, by Proposition 3.1(iii), this yields the stated result.

Theorem 3.1. Let β ∈ (0, 1) and let X and Y be two random variables with continuous
distributions. If

qX,γ(t) ≤ qY,γ(t) for all γ ∈ (0, β) and all t ≥ t0,

then X ≤prl
t0 Y .

Proof. For any γ ∈ (0, β), since qX,γ(t) ≤ qY,γ(t) for every t ≥ t0, it follows from Lemma 3.1
that

qX,1−γ2m (t) ≤ qY,1−γ2m (t) for all t ≥ t0 and for all m = 1, 2, . . . .

Now, let δ ∈ [β, 1), and consider

γ
def
= 1− (1− δ)

1
2m where m =

[
log

(
log(1−δ)
log(1−β)

)
log 2

]
+ 1;

here [s] denotes the integer part of s. It is straightforward to verify that γ < β. Plugging
this γ in the inequality qX,1−γ2m (t) ≤ qY,1−γ2m (t) we obtain qX,δ(t) ≤ qY,δ(t) for all t ≥ t0.

Since this is true for every δ ∈ [β, 1) we get X ≤prl
t0 Y .

Looking at Theorem 3.1 it is natural to wonder whether a condition such as

qX,δ(t) ≤ qY,δ(t) for all γ ∈ (δ, β) and all t ≥ t0,

for some 0 < δ < β < 1 (note that here we do not allow δ = 0), implies X ≤prl
t0 Y . It turns

out that this is not the case. See Example given in Remark 2.3.
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3.2 Relationship to other stochastic orders

Recall from (1.10) that a random variable X is said to be smaller than the random variable
Y in the ordinary stochastic order (denoted as X ≤st Y ) if FX(x) ≤ F Y (x) for all x ∈ R. It
is known that X ≤st Y if, and only if,

F−1
X (p) ≤ F−1

Y (p) for all p ∈ (0, 1); (3.5)

see, for example, (1.A.12) in Shaked and Shanthikumar (2007).

Recall also from (1.12) that a random variable X is said to be smaller than the random

variable Y in the hazard rate order (denoted as X ≤hr Y ) if F Y (t)

F X(t)
is increasing in t. Recalling

the notation Xt and Yt for the residual lives that are associated with X and Y , it is known
that X ≤hr Y if, and only if,

Xt ≤st Yt for all t < uX ; (3.6)

see, for example, (1.B.6) in Shaked and Shanthikumar (2007).

The following proposition states an equivalent condition for the percentile residual life
order from time t0 on to hold.

Proposition 3.2. Let t0 < uX , and let X and Y be two random variables. The random
variables X and Y satisfy X ≤prl

t0 Y if, and only if,

Xt ≤st Yt for all t ≥ t0. (3.7)

Proof. For every t ≥ t0,

Xt ≤st Yt ⇔ F−1
Xt

(δ) ≤ F−1
Yt

(δ) for all δ ∈ (0, 1).

Then, by (3.1), qX,δ(t) ≤ qY,δ(t) for all t ≥ t0 and all δ ∈ (0, 1). That is X ≤prl
t0 Y .

Corollary 3.1. If X and Y are two nonnegative random variables and t0 ≤ 0, then ≤prl
t0 ⇒≤st.

Proof. Let t0 < uX , by the second condition in Proposition 3.1,

X ≤prl
t0 Y ⇔ F−1

X (γ +(1−γ)FX(t)) ≤ F−1
Y (γ +(1−γ)FY (t)), for all t ≥ t0 and all γ ∈ (0, 1).

In particular, the latter inequality is true when t = 0. Therefore,

F−1
X (γ) ≤ F−1

Y (γ), for all γ ∈ (0, 1) ⇔ X ≤st Y.

From (3.6) we obtain the following result.
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Theorem 3.2. Let X and Y be two random variables and t0 < uX . If X ≤hr Y then,
X ≤prl

t0 Y .

Remark 3.1. When X and Y are two nonnegative random variables and t0 ≤ 0, the per-
centile residual life order from time t0 on is an order between the usual stochastic order and
the hazard rate order.

Corollary 3.2. If t0 = −∞,
≤hr⇔≤prl

t0 .

From Theorem 3.2 and Corollary 3.2 it is seen that when we consider nonnegative random
variables, the percentile residual life orders from time t0 are indeed orders and not only
preorders.

In the next counterexample it is shown that for any t0 < uX we have

≤st 6=⇒≤prl
t0 .

Counterexample 3.1. Let t0 < uX and k ∈ (t0, uX). Assume that X is uniformly dis-
tributed on (0,k+2) and that Y is a random variable whose distribution is the following
mixture:

FY (x) =


uniform on [0, k] with probability a,

uniform on [k, k + 1] with probability k+1
k+2

− a,

uniform on [k + 1, k + 2] with probability 1
k+2

;

with a < k
k+2

. Then X ≤st Y holds. But Xk is uniformly distributed on (k, k + 2) and the
distribution function of Yk is given by the following mixture:

FYk
(x) =

{
uniform on [k, k + 1] with probability 1

1−a

(
k+1
k+2

− a
)
,

uniform on [k + 1, k + 2] with probability 1
(k+2)(1−a)

;

so that Xk ≥st Yk. And therefore X �prl
t0 Y .

From this result, it follows that ≤prl
t0 does not imply ≤prl

t1 when t1 < t0. Obviously, ≤prl
t0

imply ≤prl
t1 when t1 > t0.

Let us now return to the consideration of the relationship between the orders ≤prl
t0 and

≤hr.

Recall from (1.17) the definition of the mean residual life function mX of a random
variable X. Similarly the mean residual life function mY , of another random variable Y , is
defined. If

mX(t) ≤ mY (t) for all t ∈ R,

then X is said to be smaller than Y in the mean residual life order (denoted as X ≤mrl Y );
see Shaked and Shanthikumar (2007).
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Since ≤mrl 6=⇒≤hr, there exist two random variables X and Y such that X ≤mrl Y but
X �hr Y . By Theorem 3.2 ≤hr⇒≤prl

t0 for all t0 < uX , the same example shows that there
exists t0 < uX such that

≤mrl 6=⇒≤prl
t0 .

Since X ≤mrl Y =⇒ X ≤hmrl Y , it follows from the above that for any t0 < uX we have

X ≤hmrl Y 6=⇒ X ≤t0
prl Y ;

where ≤hmrl denotes the harmonic mean residual life stochastic order (see Shaked and Shan-
thikumar (2007) for the definition, and for the fact that the mean residual life order implies
the harmonic mean residual life order).

The following example shows that the percentile residual life order from time t0 on does
not imply the mean residual life order. Therefore, since the hr order implies the mrl order)
the percentile residual life order from time t0 on does not imply the hr order.

Counterexample 3.2. Let k > 0 and k+1
k+2

< w < 1. Let X have the uniform distribution
on (0, k + 2) and let Y be distributed as a mixture of a degenerate random variable at k + 1
with probability w, and a degenerate random variable at k + 2 with probability 1− w.

For every k +1 < t < k +2, Xt is uniformly distributed on (t, k +2) and Yt is distributed
as a degenerate random variable in k + 2. It is easy to verify that Xt ≤st Yt for every
k + 1 < t < k + 2 = uX . Therefore, X ≤prl

t0 Y , where t0 ≥ k + 1.

Now, take ε > 0, such that ε < 2w − 1. Then, Xk+1−ε is uniformly distributed on
(k + 1− ε, k + 2) and Yk+1−ε =st Y . Besides, since w > k+1

k+2
> 1

2
, then k + 3

2
= E(Xk+1) =

mX(k + 1) > mY (k + 1) = E(Yk+1) = k + 2− w. Therefore, X �mrl Y .

However, the following result shows that there exists a relationship between the percentile
residual life order from time t0 on and the mean residual life order.

Theorem 3.3. Let X and Y be two random variables and t0 < uX . If X ≤t0
prl Y then

mX(t) ≤ mY (t), for all t ≥ t0.

Proof. By Proposition 3.2,

X ≤t0
prl Y ⇔ Xt ≤st Yt for all t ≥ t0.

And, Xt ≤st Yt implies mX(t) = E(Xt) ≤ E(Yt) = mY (t).

Recall that a random variable X is said to be smaller than the random variable Y in the
reversed hazard rate order (denoted as X ≤rh Y ) if FX(y)FY (x) ≤ FX(x)FY (y) for all x ≤ y.
The following counterexample shows that ≤rh;≤prl

t0 .
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Counterexample 3.3. Let t0 < uX and k ∈ (t0, uX). Consider any γ ∈ (0, 1) and let X
have the distribution function given by

FX(x) =


0, x < k + γ;

x− k, k + γ ≤ x < k + 1;

1, t ≥ k + 1;

that is, FX is a mixture of a uniform distribution on (k +γ, k +1) with probability 1−γ, and
a degenerate variable at k + γ with probability γ; and let Y have the uniform distribution on
(k, k + 1). We compute

qX,γ(x) =


k + γ − x, x < k + γ;

γ(k + 1− x), k + γ ≤ x < k + 1;

0, t ≥ k + 1;

and

qY,γ(x) =


k + γ − x, x < k;

γ(k + 1− x), k ≤ x < k + 1;

0, t ≥ k + 1;

It is easy to verify that FX and FY satisfy FY (y)FX(x) ≤ FY (x)FX(y) for all x ≤ y; that is,
X ≤rh Y . However qX,γ(t) > qY,γ(t) for all t ∈ (k, k + γ), and, since k > t0, X �prl

t0 Y .

Nanda and Shaked (2002) showed the following result. Let g be a continuous strictly
decreasing function. Then,

X ≤hr Y ⇔ g(X) ≤rh g(Y ).

So, in general, X ≤hr Y ; X ≤rh Y . Therefore, there exist X and Y two random variables
such that X ≤hr Y (or, equivalently, X ≤prl

t0 Y for all t0 < uX) and X �rh Y . This example
shows that

X ≤prl
t0 Y 6=⇒ X ≤rh Y.

Figure 3.1 summarizes some of the results shown in this section. Here PRL-t0 denotes
the percentile residual life order from time t0 on.

3.3 Closure properties

The percentile residual life orders from time t0 on satisfy some desirable closure properties.
These are described and discussed in this section.

First we show that the percentile residual life orders from time t0 on are preserved under
strictly increasing transformations.
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PRL-t0, t0 < uX MRL, RH-X

ST, MRL, HMRL, RH PRL-t0, t0 < uX
-X

HR ST

PRL-t0, t0 < uX

PRL-t0, t0 = −∞ --�

?

Figure 3.1: Relationship among some common stochastic orders

Theorem 3.4. Let X and Y be random variables, let t0 < uX , and let φ be a strictly
increasing function. Then X ≤prl

t0 Y if, and only if, φ(X) ≤prl
φ−1(t0) φ(Y ).

Proof. Let F φ(X) and F φ(Y ) denote the survival functions of the indicated random variables.
Since φ is strictly increasing we have

F φ(X)(t) = FX(φ−1(t)) and F φ(Y )(t) = F Y (φ−1(t)) for all t,

and
F
−1

φ(X)(u) = φ(F
−1

X (u)) and F
−1

φ(Y )(u) = φ(F
−1

Y (u)) for all u ∈ (0, 1).

Therefore, by Proposition 3.1(i), φ(X) ≤prl
t0 φ(Y ) if, and only if,

φ(F
−1

X (γFX(φ−1(t)))) ≤ φ(F
−1

Y (γF Y (φ−1(t)))) for all t ≥ t0 and all γ ∈ (0, 1).

By the strict monotonicity of φ, the latter condition is equivalent to

F
−1

X (γFX(φ−1(t))) ≤ F
−1

Y (γF Y (φ−1(t))) for all t ≥ t0 and all γ ∈ (0, 1).

Letting t′ = φ−1(t), this condition is the same as

F
−1

X (γFX(t′)) ≤ F
−1

Y (γF Y (t′)) for all t′ ≥ φ−1(t0) and all γ ∈ (0, 1),

and the stated result follows from Proposition 3.1(i).
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The percentile residual life orders from time t0 on are closed under limits in distribution.

Theorem 3.5. Let {Xn, n = 1, 2, . . . } and {Yn, n = 1, 2, . . . } be two sequences of random
variables such that Xn →st X and Yn →st Y as n → ∞, where “→st” denotes convergence
in distribution. For any t0 < uX , if Xn ≤prl

t0 Yn, n = 1, 2, . . ., then X ≤prl
t0 Y .

Proof. For every n = 1, 2, . . ., by Proposition 3.2,

Xn ≤prl
t0 Yn ⇔ (Xn)t ≤st (Yn)t for all t ≥ t0,

where (Ai)t = [Ai − t|Ai > t], for every random variable A.

Since the usual stochastic order is closed with respect to weak convergence, then

lim (Xn)t ≤st lim (Yn)t.

On the other hand, for every n = 1, 2, . . . , it holds that (Xn)t →st Xt and (Yn)t →st Yt.
Then

Xt ≤st Yt

for all t ≥ t0 and, by Proposition 3.2 the claim is true.

The following two lemmas, that deal with simple mixtures, will yield a general closure
under mixtures property of the percentile residual life orders from time t0 on.

Lemma 3.2. Let X, Y , U , and V be random variables with continuous distribution func-
tions, and let W be a random variable with distribution function

FW = pFX + (1− p)FY ,

for some p ∈ [0, 1].

(i) If U ≤prl
t0 X and U ≤prl

t0 Y then U ≤prl
t0 W .

(ii) If X ≤prl
t0 V and Y ≤prl

t0 V then W ≤prl
t0 V .

Proof. First we prove (i). From U ≤prl
t0 X and U ≤prl

t0 Y , using Proposition 3.1(i), we obtain

F
−1

U (γFU(t)) ≤ F
−1

X (γFX(t)) and F
−1

U (γFU(t)) ≤ F
−1

Y (γF Y (t)) for all t ≥ t0 and all γ ∈ (0, 1).

It follows, by the continuity of FX and of FY , that

FX(F
−1

U (γFU(t))) ≥ γFX(t) and F Y (F
−1

U (γFU(t))) ≥ γF Y (t) for all t ≥ t0 and all γ ∈ (0, 1).

Therefore, for every γ ∈ (0, 1),

pFX(F
−1

U (γFU(t))) + (1− p)F Y (F
−1

U (γFU(t))) ≥ γpFX(t) + γ(1− p)FX(t) for all t ≥ t0;
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that is,

FW (F
−1

U (γFU(t))) ≥ γFW (t) for all t ≥ t0 and all γ ∈ (0, 1).

By the continuity of FW we get

F
−1

U (γFU(t)) ≤ F
−1

W (γFW (t)) for all t ≥ t0 and all γ ∈ (0, 1);

that is, by Proposition 3.1(i), U ≤prl
t0 W .

Now we prove (ii). From X ≤prl
t0 V and Y ≤prl

t0 V , using Proposition 3.1(i), we obtain

F
−1

X (γFX(t)) ≤ F
−1

V (γF V (t)) and F
−1

Y (γF Y (t)) ≤ F
−1

V (γF V (t)) for all t ≥ t0 and all γ ∈ (0, 1).

It follows, by the continuity of FX and of FY , that

γFX(t) ≥ FX(F
−1

V (γF V (t))) and γF Y (t) ≥ F Y (F
−1

V (γF V (t))) for all t ≥ t0 and all γ ∈ (0, 1).

Therefore, for every γ ∈ (0, 1),

γpFX(t) + γ(1− p)F Y (t) ≥ pFX(F
−1

V (γF V (t))) + (1− p)F Y (F
−1

V (γF V (t))) for all t ≥ t0;

that is,

γFW (t) ≥ FW (F
−1

V (γF V (t))) for all t ≥ t0 and all γ ∈ (0, 1).

By the continuity of FW we get

F
−1

W (γFW (t)) ≤ F
−1

V (γF V (t)) for all t ≥ t0 and all γ ∈ (0, 1);

that is, by Proposition 3.1(i), W ≤prl
t0 V .

Lemma 3.3. Let X1, X2, Y1, and Y2 be random variables with continuous distribution
functions, and let W and Z be random variables with distribution functions

FW = pFX1 + (1− p)FX2 and FZ = pFY1 + (1− p)FY2 ,

for some p ∈ [0, 1]. If there exists a random variable S such that

X1 ≤prl
t0 S, X2 ≤prl

t0 S, S ≤prl
t0 Y1, S ≤prl

t0 Y2,

then W ≤prl
t0 Z.

Proof. Since X1 ≤prl
t0 S and X2 ≤prl

t0 S, it follows from Lemma 4.1(ii) that W ≤prl
t0 S.

Furthermore, since S ≤prl
t0 Y1 and S ≤prl

t0 Y2, it follows from Lemma 4.1(i) that S ≤prl
t0 Z. By

the transitivity property of the order ≤prl
t0 we get W ≤prl

t0 Z.

By repeated application of Lemma 4.2, and convergence arguments, we obtain the fol-
lowing result.
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Theorem 3.6. Let {Xθ, θ ∈ Θ} and {Yθ, θ ∈ Θ} be two families of random variables
with continuous distribution functions. Let W and Z be random variables with distribution
functions given by

FW (t) =

∫
Θ

FXθ
(t)dH(θ) and FZ(t) =

∫
Θ

FYθ
(t)dH(θ), t ∈ R,

where H is some distribution function on Θ. Suppose that there exists a random variable S
such that

Xθ ≤prl
t0 S ≤prl

t0 Yθ for all θ ∈ Θ. (3.8)

Then W ≤prl
t0 Z.

Note that condition (4.8) can be rewritten as

Xθ ≤prl
t0 Yθ′ for all θ, θ′ ∈ Θ.

It is worth noting that results that are similar to Theorem 4.6 hold for the hazard rate
order, the reversed hazard rate order, the likelihood ratio order, and the mean residual life
order (see, respectively, Theorems 1.B.8, 1.B.46, 1.C.15, and 2.A.13 in Shaked and Shan-
thikumar, 2007).

A special case of Theorem 4.6 is the following result which shows that a random variable,
whose distribution is a mixture of two distributions of random variables which are ordered
with respect to the percentile residual life order from time t0 on, is bounded from below and
from above, in the percentile residual life order from time t0 on sense, by these two random
variables.

Corollary 3.3. Let X and Y be two random variables with continuous distribution functions,
and let W be a random variable with distribution function

FW = pFX + (1− p)FY ,

for some p ∈ [0, 1]. If X ≤prl
t0 Y then X ≤prl

t0 W ≤prl
t0 Y .

Again, note that similar results hold for the hazard rate order, the likelihood ratio order,
and the mean residual life order (see, respectively, Theorems 1.B.22, 1.C.30, and 2.A.18 in
Shaked and Shanthikumar, 2007).

The possible preservation of a stochastic order under the formation of coherent systems
is a useful property that has important applications in reliability theory (see, for example,
Barlow and Proschan, 1975, for the definition and the use of coherent systems). Thus it is
of interest to ask whether the percentile residual life orders from time t0 on are closed under
this formation. Boland, El-Neweihi, and Proschan (1994) showed that the hazard rate order
is not preserved under the formation of coherent systems. In the next counterexample it is
shown that, for all t0 < uX , the percentile residual life order from time t0 on is not closed
under this formation. This is shown by considering a parallel system of size 2 whose lifetime
is the maximum of the lifetimes of its two components.
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Counterexample 3.4. Let X be an exponential random variable with rate λ > 0. That is,

FX(t) =

{
0, t < 0;

1− e−λt, t ≥ 0.

Let Y be a random variable that is degenerate at 0, and let Z be a random variable that is
degenerate at 1. Note that max{X, Y } =st X. Note also that for every t0 < uX , Y ≤prl

t0 Z,

and, of course, X ≤prl
t0 X. Now we compute

qmax{X,Y },γ(t) = qX,γ(t) =

{
− log(1−γ)

λ
− t, t < 0;

− log(1−γ)
λ

, t ≥ 0,

and

qmax{X,Z},γ(t) =

{
− log(1−γ)

λ
− t, t < 1;

− log(1−γ)
λ

, t ≥ 1.

It is seen that max{X, Y } �t0
prl max{X, Z} (in fact, max{X, Y } ≥t0

prl max{X, Z} for every
t0 < uX). Thus the percentile residual life order from time t0 on is not closed under the
maximum operation. J

For every t0 < uX , the percentile residual life order from time t0 on is closed under the
formation of series systems (that is, under the minimum operation). This is shown in the
next theorem.

Theorem 3.7. Let X1, X2 . . . , Xn and Y1, Y2 . . . , Yn be independent random variables with
Xi ≤prl

t0 Yi, for i = 1, . . . , n. Then

min{X1, X2 . . . , Xn} ≤prl
t0 min{Y1, Y2 . . . , Yn}. (3.9)

Proof. For every i = 1, . . . , n, by Proposition 3.2,

Xi ≤prl
t0 Yi ⇔ (Xi)t ≤st (Yi)t for all t ≥ t0,

where (Ai)t = [Ai − t|Ai > t], for every random variable A.

Since the usual stochastic order is closed under the minimum operation, we have that

min{(X1)t, (X2)t . . . , (Xn)t} ≤st min{(Y1)t, (Y2)t . . . , (Yn)t}.

On the other hand, for every n = 1, 2, . . . it holds that min{(X1)t, (X2)t . . . , (Xn)t} =st

(min{X1, X2 . . . , Xn})t and min{(Y1)t, (Y2)t . . . , (Yn)t} =st (min{Y1, Y2 . . . , Yn})t. Then,

(min{X1, X2 . . . , Xn})t ≤st (min{Y1, Y2 . . . , Yn})t

for all t ≥ t0 and, by Proposition 3.2, the claim is true.
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3.4 Some applications

Besides the practical applications we have enumerated on the introduction of the chapter,
here we show some other practical features of the new order which may be considered as
applications.

As we already explained in Section 2.4, the following result is useful in reliability theory.

Theorem 3.8. Let X and Y be two random variables with continuous distributions on
interval supports. Let t0 < uX and θ > 0. If X ≤prl

t0 Y then

X(θ) ≤prl
t0 Y (θ). (3.10)

Proof. It is not hard to verify that under the continuity assumptions above we have

(F
θ

X)−1(u) = F
−1

X (u1/θ) and (F
θ

Y )−1(u) = F
−1

Y (u1/θ), u ∈ (0, 1),

or, equivalently,

F
−1

X (u) = (F
θ

X)−1(uθ) and F
−1

Y (u) = (F
θ

Y )−1(uθ), u ∈ (0, 1).

Now, by Proposition 3.1(i), X ≤prl
t0 Y means

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t ≥ t0 and all γ ∈ (0, 1),

that is,

(F
θ

X)−1(γθF
θ

X(t)) ≤ (F
θ

Y )−1(γθF
θ

Y (t)) for all t ≥ t0 and all γ ∈ (0, 1),

and the result follows from Proposition 3.1(i).
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Chapter 4

The PRL orders up to time t0

In the two previous chapters, we have introduced different tools that are useful to compare
items from a certain moment on. We think that it is interesting too, to develop a technique
for comparing items until a certain instant. This would be useful in medical trials, when
there exists a time for testing different treatments, for example, and to compare items during
the warranty period.

The percentile residual life order up to time t0 is a stochastic ordering for nonnegative
random variables which compares all their percentile residual life functions until a certain
moment t0. This order is stronger than the usual stochastic order and weaker than the
hazard rate order.

The percentile residual life orders that we have defined and studied in Chapter 2 and in
Chapter 3 are not orders but preorders. The reason is that these binary relations do not
verify the antisymmetry property. That is, X ≤γ-rl Y and Y ≤γ-rl X does not necessarily

imply X =st Y . And, analogously, X ≤prl
t0 Y and Y ≤prl

t0 X does not necessarily imply
X =st Y . However, since the percentile residual life order up to time t0 implies the usual
stochastic order, then this new order is an order not only a preorder.

In this chapter the percentile residual life orders up to time t0 are formally defined in
Section 4.1. We also give some equivalent ways of describing these orders that turn up
to be useful in the sequel. Section 4.2 consists of a thorough study of the relationships
among the percentile residual life orders up to time t0 and other stochastic orders in the
literature. Some useful properties of the percentile residual life orders up to time t0 are given
in Section 4.3. Finally, some applications in reliability theory are described in Section 4.4.
We will assume that all random variables considered along this chapter are nonnegative,
unless stated otherwise.

57
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4.1 Definition

Let X be a random variable. Recall that the γ-percentile residual life function qX,γ is defined
by

qX,γ(t) =

{
F−1

Xt
(γ), t < uX ;

0, t ≥ uX .
(4.1)

Recall from the two previous chapters that the γ-percentile residual life function can be
written

qX,γ(t) = F
−1

X (γFX(t))− t, t < uX , (4.2)

where γ = 1− γ. Alternatively,

qX,γ(t) = F−1
X (γ + γFX(t))− t, t < uX . (4.3)

Now let Y be another random variable, and let qY,γ be its γ-percentile residual life
function. Let t0 > 0. If

qX,γ(t) ≤ qY,γ(t) for all t ≤ t0 and for all γ ∈ (0, 1), (4.4)

then we say that X is smaller than Y in the percentile residual life order up to time t0, and
we denote it as X ≤t0

prl Y .

The following proposition states equivalent conditions for the percentile residual life order
up to time t0 to hold. The proof follows straightforward from (4.2), (4.3) and (4.4).

Proposition 4.1. Let t0 > 0 and let X and Y be two random variables.

(i) The random variables X and Y satisfy X ≤t0
prl Y if, and only if,

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t ≤ t0 and all γ ∈ (0, 1).

(ii) The random variables X and Y satisfy X ≤t0
prl Y if, and only if,

F−1
X (γ + γFX(t)) ≤ F−1

Y (γ + γFY (t)) for all t ≤ t0 and all γ ∈ (0, 1).

4.2 Relationship to other stochastic orders

Recall from (1.10) that a random variable X is said to be smaller than the random variable
Y in the ordinary stochastic order (denoted as X ≤st Y ) if FX(x) ≤ F Y (x) for all x ∈ R. It
is known that X ≤st Y if, and only if,

F−1
X (p) ≤ F−1

Y (p) for all p ∈ (0, 1); (4.5)
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see, for example, (1.A.12) in Shaked and Shanthikumar (2007).

Recall also from (1.12) that a random variable X is said to be smaller than the random

variable Y in the hazard rate order (denoted as X ≤hr Y ) if F Y (t)

F X(t)
is increasing in t. Recalling

the notation Xt and Yt for the residual lives that are associated with X and Y , it is known
that X ≤hr Y if, and only if,

Xt ≤st Yt for all t < uX ; (4.6)

see, for example, (1.B.6) in Shaked and Shanthikumar (2007).

The following proposition states an equivalent condition for the percentile residual life
order up to time t0 to hold.

Proposition 4.2. Let t0 > 0, and let X and Y be two random variables. The random
variables X and Y satisfy X ≤t0

prl Y if, and only if,

Xt ≤st Yt for all t ≤ t0. (4.7)

Proof. For every t ≤ t0, by (4.5),

Xt ≤st Yt ⇔ F−1
Xt

(γ) ≤ F−1
Yt

(γ) for all γ ∈ (0, 1).

Then, by (4.1), qX,γ(t) ≤ qY,γ(t) for all t ≤ t0 and all γ ∈ (0, 1). That is X ≤t0
prl Y .

In particular, we get the following corollary which indicates that the percentile residual
life orders up to time t0 indicate comparisons of size or magnitude and that the percentile
residual life orders up to time t0 are indeed orders, not only preorders.

Corollary 4.1. Let t0 > 0. Then,
≤t0

prl⇒≤st .

From (4.6) we obtain the following result.

Theorem 4.1. Let X and Y be two random variables and t0 > 0. If X ≤hr Y then,
X ≤t0

prl Y .

Theorem 4.2. If t0 ≥ uX ,
≤hr⇔≤t0

prl .

Remark 4.1. When t0 < uX , the percentile residual life order up to time t0 is an order
between the usual stochastic order and the hazard rate order.

In the next counterexample it is shown that for any t0 > 0 we have

≤st 6=⇒≤t0
prl .
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Counterexample 4.1. Let t0 > 0 and 0 < k < t0. Assume that X is uniformly distributed
on (0,k+2) and that Y is a random variable whose distribution is the following mixture:

FY (x) =


uniform on [0, k] with probability a,

uniform on [k, k + 1] with probability k+1
k+2

− a,

uniform on [k + 1, k + 2] with probability 1
k+2

;

with a < k
k+2

. Then X ≤st Y holds. Now consider t = k, Xk is uniformly distributed on
(k, k + 2) and the distribution function of Yk is given by the following mixture:

FYk
(x) =

{
uniform on [k, k + 1] with probability 1

1−a

(
k+1
k+2

− a
)
,

uniform on [k + 1, k + 2] with probability 1
(k+2)(1−a)

;

so that Xk ≥st Yk, and therefore X �t0
prl Y .

From this result, it follows that ≤t0
prl does not imply ≤t1

prl when t1 > t0. It is obvious that

≤t0
prl implies ≤t1

prl when t1 < t0.

Recall from (1.17) the definition of the mean residual life function mX of a random
variable X. Similarly the mean residual life function mY , of another random variable Y , is
defined. If

mX(t) ≤ mY (t) for all t ∈ R,

then X is said to be smaller than Y in the mean residual life order (denoted as X ≤mrl Y );
see Shaked and Shanthikumar (2007).

In Counterexample 2.2 it is shown that for any γ ∈ (0, 1) we have

≤mrl 6=⇒≤γ-rl .

In that counterexample, X and Y are two nonnegative random variables such that X ≤mrl Y
but qX,γ(0) > qY,γ(0). Therefore, the same counterexample shows that ≤mrl;≤t0

prl for any
t0 > 0.

Since X ≤mrl Y =⇒ X ≤hmrl Y , it follows from the above that for any t0 > 0 we have

X ≤hmrl Y 6=⇒ X ≤t0
prl Y ;

where ≤hmrl denotes the harmonic mean residual life stochastic order (see Shaked and Shan-
thikumar (2007) for the definition, and for the fact that the mean residual life order implies
the harmonic mean residual life order).

The following example shows that the percentile residual life order up to time t0 does
not imply the mean residual life order. Therefore, since the hr order implies the mrl order,
the same example shows that percentile residual life order up to time t0 does not imply the
hr order.
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Counterexample 4.2. Let k > 0 and 1
2

< w < k+1
k+2

. Let X have the uniform distribution
on (0, k + 2) and let Y be distributed as a mixture of a degenerate random variable at k + 1
with probability w, and a degenerate random variable at k + 2 with probability 1− w.

For every 0 < t ≤ k + 2 − 1
1−w

, Xt is uniformly distributed on (t, k + 2) and Yt =st Y .
That is

FXt(x) =


0, x < t;

x−t
k+2−t

, t ≤ x < k + 2;

1 x ≥ k + 2;

and

FYt(x) =


0, x < k + 1;

w, k + 1 ≤ x < k + 2;

1 x ≥ k + 2.

It is easy to verify that Xt ≤st Yt for every t ≤ k +2− 1
1−w

(notice that, since w < k+1
k+2

, then

k + 2− 1
1−w

> 0). Therefore, X ≤t0
prl Y , for t0 ≤ k + 2− 1

1−w
.

Now, take ε > 0 such that ε < 2w− 1 (note that such an ε exists because w > 1
2
). Then,

Xk+1−ε is uniformly distributed on (k + 1− ε, k + 2) and Yk+1−ε =st Y . We compute

k +
3− ε

2
= E(Xk+1−ε) = mX(k + 1− ε) > mY (k + 1− ε) = E(Yk+1−ε) = k + 2− w.

Therefore, X �mrl Y .

However, the following result shows that there exists a relationship between the percentile
residual life order up to time t0 and the mean residual life order.

Theorem 4.3. Let X and Y be two random variables and t0 > 0. If X ≤t0
prl Y then

mX(t) ≤ mY (t), for all t ≤ t0.

Proof. By Proposition 4.2,

X ≤t0
prl Y ⇔ Xt ≤st Yt for all t ≤ t0.

And, Xt ≤st Yt for all t ≤ t0 implies mX(t) = E(Xt) ≤ E(Yt) = mY (t), for all t ≤ t0.

Recall that a random variable X is said to be smaller than the random variable Y in the
reversed hazard rate order (denoted as X ≤rh Y ) if FX(y)FY (x) ≤ FX(x)FY (y) for all x ≤ y.
The following counterexample shows that ≤rh;≤t0

prl.

Counterexample 4.3. Let t0 > 0 and take any γ ∈ (0, 1) such that t0−γ > 0. Let k = t0−γ
and let X have the distribution function given by

FX(x) =


0, x < k + γ;

x− k, k + γ ≤ x < k + 1;

1, x ≥ k + 1;
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that is, FX is a mixture of a uniform distribution on (k +γ, k +1) with probability 1−γ, and
a degenerate variable at k + γ with probability γ; and let Y have the uniform distribution on
(k, k + 1). We compute

qX,γ(x) =


k + γ − x, x < k + γ;

γ(k + 1− x), k + γ ≤ x < k + 1;

0, x ≥ k + 1;

and

qY,γ(x) =


k + γ − x, x < k;

γ(k + 1− x), k ≤ x < k + 1;

0, x ≥ k + 1.

It is easy to verify that FX and FY satisfy FY (y)FX(x) ≤ FY (x)FX(y) for all x ≤ y; that is,
X ≤rh Y . However qX,γ(t) > qY,γ(t) for all t ∈ (k, k + γ), and, since k + γ = t0, X �t0

prl Y .

Nanda and Shaked (2001) showed the following result. Let g be a continuous strictly
decreasing function. Then,

X ≤hr Y ⇔ g(X) ≤rh g(Y ).

So, in general, X ≤hr Y ; X ≤rh Y . Therefore, since X ≤hr Y is equivalent to X ≤t0
prl Y

for all t0 > 0, then
X ≤t0

prl Y 6=⇒ X ≤rh Y.

Figure 4.1 summarizes some of the results shown in this section. Here t0-PRL denotes
the percentile residual life order up to time t0.

4.3 Closure properties

The percentile residual life orders up to time t0 satisfy some desirable closure properties.
These are described and discussed in this section. First we show that the percentile residual
life orders up to time t0 are preserved under strictly increasing transformations.

Theorem 4.4. Let X and Y be random variables, let t0 > 0, and let φ be a strictly increasing

function. Then X ≤t0
prl Y if, and only if, φ(X) ≤φ−1(t0)

prl φ(Y ).

Proof. Let F φ(X) and F φ(Y ) denote the survival functions of the indicated random variables.
Since φ is strictly increasing, we have

F φ(X)(t) = FX(φ−1(t)) and F φ(Y )(t) = F Y (φ−1(t)) for all t,

and
F
−1

φ(X)(u) = φ(F
−1

X (u)) and F
−1

φ(Y )(u) = φ(F
−1

Y (u)) for all u ∈ (0, 1).
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t0-PRL, t0 > 0 MRL, RH-X
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Figure 4.1: Relationship among some common stochastic orders

Therefore, by Proposition 4.1(i), φ(X) ≤t0
prl φ(Y ) if, and only if,

φ(F
−1

X (γFX(φ−1(t)))) ≤ φ(F
−1

Y (γF Y (φ−1(t)))) for all t ≤ t0 and all γ ∈ (0, 1).

By the strict monotonicity of φ, the latter condition is equivalent to

F
−1

X (γFX(φ−1(t))) ≤ F
−1

Y (γF Y (φ−1(t))) for all t ≤ t0 and all γ ∈ (0, 1).

Letting t′ = φ−1(t), this condition is the same as

F
−1

X (γFX(t′)) ≤ F
−1

Y (γF Y (t′)) for all t′ ≤ φ−1(t0) and all γ ∈ (0, 1),

and the stated result follows from Proposition 4.1(i).

The percentile residual life orders up to time t0 are closed under limits in distribution.

Theorem 4.5. Let {Xn, n = 1, 2, . . . } and {Yn, n = 1, 2, . . . } be two sequences of random
variables such that Xn →st X and Yn →st Y as n → ∞, where “→st” denotes convergence
in distribution. For any t0 > 0, if Xn ≤t0

prl Yn, n = 1, 2, . . ., then X ≤t0
prl Y .

Proof. For every n = 1, 2, . . ., by Proposition 4.2,

Xn ≤t0
prl Yn ⇔ (Xn)t ≤st (Yn)t for all t ≤ t0,
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where (Ai)t = [Ai − t|Ai > t], for every random variable A.

Since the usual stochastic order is closed with respect to weak convergence, then

lim (Xn)t ≤st lim (Yn)t.

On the other hand, for every n = 1, 2, . . . , it holds that (Xn)t →st Xt and (Yn)t →st Yt.
Then

Xt ≤st Yt

for all t ≤ t0 and, by Proposition 3.2 the claim is true.

The following two lemmas, that deal with simple mixtures, will yield a general closure
under mixtures property of the percentile residual life orders up to time t0.

Lemma 4.1. Let X, Y , U , and V be random variables with continuous distribution func-
tions, and let W be a random variable with distribution function

FW = pFX + (1− p)FY ,

for some p ∈ [0, 1].

(i) If U ≤t0
prl X and U ≤t0

prl Y then U ≤t0
prl W .

(ii) If X ≤t0
prl V and Y ≤t0

prl V then W ≤t0
prl V .

Proof. First we prove (i). From U ≤t0
prl X and U ≤t0

prl Y , using Proposition 4.1(i), we obtain

F
−1

U (γFU(t)) ≤ F
−1

X (γFX(t)) and F
−1

U (γFU(t)) ≤ F
−1

Y (γF Y (t)) for all t ≤ t0 and all γ ∈ (0, 1).

It follows, by the continuity of FX and FY , that

FX(F
−1

U (γFU(t))) ≥ γFX(t) and F Y (F
−1

U (γFU(t))) ≥ γF Y (t) for all t ≤ t0 and all γ ∈ (0, 1).

Therefore, for every γ ∈ (0, 1),

pFX(F
−1

U (γFU(t))) + (1− p)F Y (F
−1

U (γFU(t))) ≥ γpFX(t) + γ(1− p)FX(t) for all t ≤ t0;

that is,

FW (F
−1

U (γFU(t))) ≥ γFW (t) for all t ≤ t0 and all γ ∈ (0, 1).

By the continuity of FW , we get

F
−1

U (γFU(t)) ≤ F
−1

W (γFW (t)) for all t ≤ t0 and all γ ∈ (0, 1);

that is, by Proposition 4.1(i), U ≤t0
prl W .
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Now we prove (ii). From X ≤t0
prl V and Y ≤t0

prl V , using Proposition 4.1(i), we obtain

F
−1

X (γFX(t)) ≤ F
−1

V (γF V (t)) and F
−1

Y (γF Y (t)) ≤ F
−1

V (γF V (t)) for all t ≤ t0 and all γ ∈ (0, 1).

It follows, by the continuity of FX and FY , that

γFX(t) ≥ FX(F
−1

V (γF V (t))) and γF Y (t) ≥ F Y (F
−1

V (γF V (t))) for all t ≤ t0 and all γ ∈ (0, 1).

Therefore, for every γ ∈ (0, 1),

γpFX(t) + γ(1− p)F Y (t) ≥ pFX(F
−1

V (γF V (t))) + (1− p)F Y (F
−1

V (γF V (t))) for all t ≤ t0;

that is,

γFW (t) ≥ FW (F
−1

V (γF V (t))) for all t ≤ t0 and all γ ∈ (0, 1).

By the continuity of FW we get

F
−1

W (γFW (t)) ≤ F
−1

V (γF V (t)) for all t ≤ t0 and all γ ∈ (0, 1);

that is, by Proposition 4.1(i), W ≤t0
prl V .

Lemma 4.2. Let X1, X2, Y1, and Y2 be random variables with continuous distribution
functions, and let W and Z be random variables with distribution functions

FW = pFX1 + (1− p)FX2 and FZ = pFY1 + (1− p)FY2 ,

for some p ∈ [0, 1]. If there exists a random variable S such that

X1 ≤t0
prl S, X2 ≤t0

prl S, S ≤t0
prl Y1, S ≤t0

prl Y2,

then W ≤t0
prl Z.

Proof. Since X1 ≤t0
prl S and X2 ≤t0

prl S, it follows from Lemma 4.1(ii) that W ≤t0
prl S.

Furthermore, since S ≤t0
prl Y1 and S ≤t0

prl Y2, it follows from Lemma 4.1(i) that S ≤t0
prl Z. By

the transitivity property of the order ≤t0
prl we get W ≤t0

prl Z.

By repeated application of Lemma 4.2, and convergence arguments, we obtain the fol-
lowing result.

Theorem 4.6. Let {Xθ, θ ∈ Θ} and {Yθ, θ ∈ Θ} be two families of random variables
with continuous distribution functions. Let W and Z be random variables with distribution
functions given by

FW (t) =

∫
Θ

FXθ
(t)dH(θ) and FZ(t) =

∫
Θ

FYθ
(t)dH(θ), t ∈ R,

where H is some distribution function on Θ. Suppose that there exists a random variable S
such that

Xθ ≤t0
prl S ≤t0

prl Yθ for all θ ∈ Θ. (4.8)

Then W ≤t0
prl Z.
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Note that condition (4.8) can be rewritten as

Xθ ≤t0
prl Yθ′ for all θ, θ′ ∈ Θ.

It is worth noting that results that are similar to Theorem 4.6 hold for the hazard rate
order, the reversed hazard rate order, the likelihood ratio order, and the mean residual life
order (see, respectively, Theorems 1.B.8, 1.B.46, 1.C.15, and 2.A.13 in Shaked and Shan-
thikumar, 2007).

A special case of Theorem 4.6 is the following result which shows that a random variable,
whose distribution is a mixture of two distributions of random variables which are ordered
in the sense of the percentile residual life order up to time t0, is bounded from below and
from above, in the percentile residual life order up to time t0 sense, by these two random
variables.

Corollary 4.2. Let X and Y be two random variables with continuous distribution functions,
and let W be a random variable with distribution function

FW = pFX + (1− p)FY ,

for some p ∈ [0, 1]. If X ≤t0
prl Y then X ≤t0

prl W ≤t0
prl Y .

Again, note that similar results hold for the hazard rate order, the likelihood ratio order,
and the mean residual life order (see, respectively, Theorems 1.B.22, 1.C.30, and 2.A.18 in
Shaked and Shanthikumar, 2007).

The possible preservation of a stochastic order under the formation of coherent systems
is a useful property that has important applications in reliability theory (see, for example,
Barlow and Proschan, 1975, for the definition and the use of coherent systems). Thus it is
of interest to ask whether the percentile residual life orders up to time t0 are closed under
this formation. Boland, El-Neweihi, and Proschan (1994) showed that the hazard rate order
is not preserved under the formation of coherent systems. In the next counterexample it is
shown that, for all t0 > 0, the percentile residual life order up to time t0 is not closed under
this formation. This is shown by considering a parallel system of size 2 whose lifetime is the
maximum of the lifetimes of its two components.

Counterexample 4.4. Let X be an exponential random variable with rate λ > 0. That is,

FX(t) =

{
0, t < 0;

1− e−λt, t ≥ 0.

Let Y be a random variable that is degenerate at 0, and let Z be a random variable that is
degenerate at 1. Note that max{X, Y } =st X. Note also that for every t0 > 0, Y ≤t0

prl Z

(Y ≤hr Z), and, of course, X ≤t0
prl X (X ≤hr X). Now we compute

qmax{X,Y },γ(t) = qX,γ(t) =

{
− log(1−γ)

λ
− t, t < 0;

− log(1−γ)
λ

, t ≥ 0,
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and

qmax{X,Z},γ(t) =

{
− log(1−γ)

λ
− t, t < 1;

− log(1−γ)
λ

, t ≥ 1.

It is seen that max{X, Y } �t0
prl max{X, Z} (in fact, max{X, Y } ≥t0

prl max{X, Z} for every
t0 > 0 because max{X, Y } ≥hr max{X, Z}). Thus the percentile residual life order up to
time t0 is not closed under the maximum operation. J

For every t0 > 0, the percentile residual life order up to time t0 is closed under the
formation of series systems (that is, under the minimum operation). This is shown in the
next theorem.

Theorem 4.7. Let X1, X2 . . . , Xn and Y1, Y2 . . . , Yn be independent random variables with
Xi ≤t0

prl Yi, for i = 1, . . . , n. Then

min{X1, X2 . . . , Xn} ≤t0
prl min{Y1, Y2 . . . , Yn}. (4.9)

Proof. For every i = 1, . . . , n, by Proposition 4.2,

Xi ≤t0
prl Yi ⇔ (Xi)t ≤st (Yi)t for all t ≤ t0,

where (Ai)t = [Ai − t|Ai > t], for every random variable A.

Since the usual stochastic order is closed under the minimum operation, we have that

min{(X1)t, (X2)t . . . , (Xn)t} ≤st min{(Y1)t, (Y2)t . . . , (Yn)t}.

On the other hand, for every n = 1, 2, . . . it holds that min{(X1)t, (X2)t . . . , (Xn)t} =st

(min{X1, X2 . . . , Xn})t and min{(Y1)t, (Y2)t . . . , (Yn)t} =st (min{Y1, Y2 . . . , Yn})t. Then,

(min{X1, X2 . . . , Xn})t ≤st (min{Y1, Y2 . . . , Yn})t

for all t ≤ t0 and, by Proposition 3.2, the claim is true.

4.4 Some applications

Besides the practical applications we have enumerated on the introduction to the chapter,
here we show some other practical features of the new order which may be considered as
applications.

As we already explained in Section 2.4, the following result is useful in reliability theory.

Theorem 4.8. Let X and Y be two random variables with continuous distributions on
interval supports. Let t0 > 0 and θ > 0. If X ≤t0

prl Y then

X(θ) ≤t0
prl Y (θ). (4.10)
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Proof. It is not hard to verify that under the continuity assumptions above we have

(F
θ

X)−1(u) = F
−1

X (u1/θ) and (F
θ

Y )−1(u) = F
−1

Y (u1/θ), u ∈ (0, 1),

or, equivalently,

F
−1

X (u) = (F
θ

X)−1(uθ) and F
−1

Y (u) = (F
θ

Y )−1(uθ), u ∈ (0, 1).

Now, by Proposition 4.1(i), X ≤t0
prl Y means

F
−1

X (γFX(t)) ≤ F
−1

Y (γF Y (t)) for all t ≤ t0 and all γ ∈ (0, 1),

that is,

(F
θ

X)−1(γθF
θ

X(t)) ≤ (F
θ

Y )−1(γθF
θ

Y (t)) for all t ≤ t0 and all γ ∈ (0, 1),

and the result follows from Proposition 4.1(i).



Chapter 5

Aging notions

As we pointed out in Section 1.3, statisticians find it useful to categorize life distributions
according to different aging properties. These categories of distributions are useful for mod-
eling situations where items deteriorate with age. Haines and Singpurwalla (1974) and Joe
and Proschan (1984a) studied some aspects of the classes of distribution functions with de-
creasing γ-percentile residual life (DPRL(γ)), 0 < γ < 1. The formal definition of these
classes were given in Section 1.3 and will be recalled in Section 5.1.1 in which we will also
present some equivalent conditions. In Section 5.1.2 we derive the new properties of these
classes by employing results involving the γ-percentile residual life orders that were obtained
in Chapter 2.

In Section 5.2.1 we introduce four new aging notions for nonnegative random variables
and derive some equivalent conditions. Some characterization results of one of these notions
in terms of a stochastic ordering are presented in Section 5.2.2. In Section 5.2.3 we complete
some of the results relating the behavior of the hazard rate function and the percentile
residual life function given in Launer (1993).

5.1 The γ-DPRL aging notion

5.1.1 Definition

Let X be a random variable, and let uX be the right endpoint of its support. Recall from
Section 2.1 that the γ-percentile residual life function qX,γ, where γ is some number between 0
and 1, is defined by

qX,γ(t) =

{
F−1

Xt
(γ), t < uX ;

0, t ≥ uX .

69
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It is useful to also recall that qX,γ satisfies

FX(t + qX,γ(t)) = γFX(t) for all t, (5.1)

where γ = 1− γ. Also,

qX,γ(t) = F
−1

X (γFX(t))− t, t < uX . (5.2)

Let 0 < γ < 1. A random variable X is said to have (or to be) DPRL(γ) if qX,γ(t) is
decreasing in t. It is also possible to similarly define the notion of increasing γ-percentile
residual life (IPRL(γ)). However, note that with our definition of qX,γ, in order for a random
variable to be IPRL(γ) it is necessary that uX = ∞.

Some useful equivalent conditions for the DPRL(γ) notion are given in the following
proposition for absolutely continuous random variables with interval support (which may be
finite or infinite). For such random variable X we denote by fX its density function and by
rX ≡ fX/FX its hazard rate function.

Proposition 5.1. Let X be an absolutely continuous random variable with interval support
(lX , uX). The following conditions are equivalent:

(i) X is DPRL(γ);

(ii) γfX(t) ≤ fX(F
−1

X (γFX(t))) for all t ∈ (lX , uX);

(iii) γfX(F
−1

X (p)) ≤ fX(F
−1

X (γp)) for all p ∈ (0, 1);

(iv) rX(t) ≤ rX(t + qX,γ(t)) for all t ∈ (lX , uX).

Proof. Assume (i). Then qX,γ(t) is decreasing in t ∈ (lX , uX). Therefore, by differentiating
(5.2) we see that

0 ≥ d

dt
qX,γ(t) =

γfX(t)

fX(F
−1

X (γFX(t)))
− 1,

and (ii) follows. In fact, the proof shows that (i)⇐⇒(ii).

Next assume (ii). Putting there t = F
−1

(p) we obtain (iii). In fact, the proof shows that
(ii)⇐⇒(iii).

Finally, assume (ii) again. For t ∈ (lX , uX), divide the left hand side by γFX(t) and the
right hand side by FX(t + qX,γ(t)), which are equal by (5.1). We obtain

rX(t) ≤ fX(F
−1

X (γFX(t)))

FX(t + qX,γ(t))
=

fX(t + qX,γ(t))

FX(t + qX,γ(t))
,

where the last equality follows from (5.2). This gives (iv). In fact, the proof shows that
(ii)⇐⇒(iv).
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The equivalence (i)⇐⇒(iv) can be found already in Haines and Singpurwalla (1974) and
in Joe and Proschan (1984).

From (iv) it is seen that if rX is increasing (that is, if X has an increasing hazard rate
(IHR)) then X is DPRL(γ) for any γ ∈ (0, 1). On the other hand, if X is DPRL(γ) for some
γ ∈ (0, 1) then it is not necessary that X be IHR. In fact, the following example shows that,
given any ε > 0, then, even if X is DPRL(γ) for every γ ≥ ε, it is not necessary that X be
IHR. A related result, with a more positive flavor, will be given later in Proposition 5.3.

Example 5.1. Let us fix an ε ∈ (0, 1). Denote

a = (− log ε)1/2.

Consider a random variable X with the hazard rate function (see Figure 5.1)

rX(t) =

{
a− t, 0 ≤ t ≤ a;

t− a, t > a.

- t
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Figure 5.1: Hazard rate function rX in Example 5.1

A straightforward computation yields the survival function of X:

FX(t) =

{
exp{−at + t2

2
}, t ≤ a;

exp{−a2

2
− (t−a)2

2
}, t > a.

Note that
F (2a) = exp{−a2} = ε.

From a Remark in page 672 of Joe and Proschan (1984) it follows that X is DPRL(γ) for
every γ ≥ ε. However, obviously, X is not IHR. J

From Example 5.1 it is seen that, given any γ ∈ (0, 1), it is possible to find a random
variable that is DPRL(γ), but that is not DPRL(β) for β < γ.

A natural question to ask now is whether X being DPRL(γ) implies that X is also
DPRL(β) for β > γ. In the next example we show that the answer to this question is
negative. That is, the following example shows that, given γ ∈ (0, 1), it is possible to find a
random variable X, and a β ∈ (γ, 1), such that X is DPRL(γ) but it is not DPRL(β).
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Example 5.2. Fix an γ ∈ (0, 1) and let θ be such that

θ >
3 log(1− γ)

2 log
( − log(1−γ)

4π−log(1−γ)

) ; (5.3)

it is not hard to verify that the right hand side of (5.3) is positive. Furthermore, let ε be
such that

− log(1− γ)(1− (1− γ)
3
2θ )

2π(1 + (1− γ)
3
2θ )

< ε ≤ − log(1− γ)

− log(1− γ) + 2π
; (5.4)

it is not hard to verify that, when (5.3) holds, then the left hand side of (5.4) is smaller than
the right hand side of (5.4).

Now define

k(x) = 1 + ε sin
( 2πx

log(1− γ)

)
, x ∈ R;

and
H(t) = (1− t)θ · k

(
log

[
(1− t)θ

])
, 0 ≤ t ≤ 1.

Below, first we show that H is a survival function. Second, we show that a random variable
X that has the survival function H is DPRL(γ). Finally, we show that there exists a β > γ
such that X is not DPRL(β).

Obviously, H(0) = 1 and H(1) = 0. If we can find an ε > 0 such that H(t) is decreasing
in 0 ≤ t ≤ 1, then it would follow that H is a survival function. In order to identify such an
ε, we note that the derivative of k is given by

k′(x) = ε cos
( 2πx

log(1− γ)

)
· 2π

log(1− γ)
, x ∈ R,

and thus the derivative of H is given by

H ′(t) = −θ(1− t)θ−1
[
1 + ε sin

(2πθ log(1− t)

log(1− γ)

)
− 2πε

− log(1− γ)
cos

(2πθ log(1− t)

log(1− γ)

)]
,

0 ≤ t ≤ 1.

Therefore H is decreasing if, and only if,

ε
[
log(1− γ) sin

(2πθ log(1− t)

log(1− γ)

)
+ 2π cos

(2πθ log(1− t)

log(1− γ)

)]
≤ − log(1− γ), 0 ≤ t ≤ 1.

(5.5)
Since

ε
[
log(1−γ) sin

(2πθ log(1− t)

log(1− γ)

)
+2π cos

(2πθ log(1− t)

log(1− γ)

)]
≤ ε(− log(1−γ)+2π), 0 ≤ t ≤ 1,
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we see that if

ε ≤ − log(1− γ)

− log(1− γ) + 2π
(5.6)

then (5.5) holds. But (5.6) is the right hand side of (5.4), and therefore H is a survival
function.

Now, let X have the survival function H, and let Y be a random variable with survival
function F Y given by

F Y (t) = (1− t)θ, 0 ≤ t ≤ 1.

From Gupta and Langford (1984) we know that qX,γ(t) = qY,γ(t) for all t. Computing qY,γ,
and using the equality qX,γ = qY,γ, we obtain

qX,γ(t) =


1− γ1/θ − t, t < 0,

(1− γ1/θ)(1− t), 0 ≤ t < 1,

0, otherwise.

Thus, X is DPRL(γ).

For the reminder of this example, let H and −H ′ be denoted by FX and fX , respectively.
We will now show that there exists a β ∈ (γ, 1) such that X is not DPRL(β). Specifically,

let β = 1− (1− γ)
3
2 (> γ). We will show that for t0 = 1− (1− γ)

3
2θ we have

βfX(t0) > fX(F
−1

X (β FX(t0))), (5.7)

and then use Proposition 5.1(ii).

We compute

FX(t0) = FX(1− (1− γ)
3
2θ ) = (1− γ)

3
2 k(θ log

[
(1− γ)

3
2θ

]
)

= (1− γ)
3
2 k

(
3
2
log(1− γ)

)
= (1− γ)

3
2 (1 + ε sin(3π)) = (1− γ)

3
2 .

So
β FX(t0) = (1− γ)3 = (1− γ)3[1 + ε sin(6π)] = FX(1− (1− γ)

3
θ ).

Hence
F
−1

X (β FX(t0)) = 1− (1− γ)
3
θ .

So, (5.7) is equivalent to

βfX(1− (1− γ)
3
2θ ) > fX(1− (1− γ)

3
γ ),

and this is equivalent to

(1− γ)
3
2 θ(1− γ)

3(θ−1)
2θ

[
1 + ε sin(3π) + 2πε

log(1−γ)
cos(3π)

]
> θ(1− γ)

3(θ−1)
θ

[
1 + ε sin(6π) + 2πε

log(1−γ)
cos(6π)

]
,
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which is equivalent to

(1− γ)
3
2θ

[
1 + 2πε

− log(1−γ)

]
>

[
1− 2πε

− log(1−γ)

]
,

which is equivalent to

ε >
− log(1− γ)(1− (1− γ)

3
2θ )

2π(1 + (1− γ)
3
2θ )

.

The last inequality is the left hand side of (5.4). So (5.7) holds, and therefore X is not
DPRL(β). J

The previous example shows that if X is DPRL(γ), it does not necessarily follow that X
is DPRL(β) for β > γ. In the next proposition we notice that if the density function of X
is decreasing on a specific region of its support, then, if X is DPRL(γ), it does follow that
X is DPRL(β) for β > γ.

Proposition 5.2. Let X be an absolutely continuous random variable with interval support
(lX , uX), such that uX < ∞, and with density and survival functions fX and FX , respectively.

Let γ ∈ (0, 1). If X is DPRL(γ) and if fX is increasing on [F
−1

X (γ), uX ], then X is DPRL(β)
for all β > γ.

Proof. Let β > γ. Then, for all p ∈ (0, 1) we have

βfX(F
−1

X (p)) ≤ γfX(F
−1

X (p))

≤ fX(F
−1

X (γp))

≤ fX(F
−1

X (βp)),

where the second inequality follows from Proposition 5.1(iii), and the last inequality follows
from the increasingness of fX . The stated result now follows from Proposition 5.1(iii).

Note that if fX is increasing on its support, then the monotonicity condition on fX in
Proposition 5.2 obviously holds, but this is not a useful observation because if fX is increasing
on its support then X is IHR, and, as we noted after Proposition 5.1, this implies that X is
DPRL(γ) for all γ ∈ (0, 1).

5.1.2 More properties

We recall the following family of stochastic orders that was recently studied in Chapter 2.
Let 0 < γ < 1. Let X and Y be two random variables with percentile residual life functions
qX,γ and qY,γ, respectively. If

qX,γ(t) ≤ qY,γ(t) for all t
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then X is said to be smaller than Y in the γ-percentile residual life order (denoted as
X ≤γ-rl Y ).

In the following result we provide some characterizations of the DPRL(γ) aging notion
in term of the γ-percentile residual life order. Recall the definition of Xt from (1.1):

Xt = [X − t|X > t], t < uX .

Theorem 5.1. Let X be an absolutely continuous random variable with interval support.
Then X is DPRL(γ) if, and only if, any of the following equivalent conditions holds:

(i) Xt ≥γ-rl Xt′ whenever t ≤ t′ < uX ;

(ii) X ≥γ-rl Xt whenever 0 ≤ t < uX (when X is a nonnegative random variable);

(iii) X + t ≤γ-rl X + t′ whenever t ≤ t′.

Proof. For all t < uX ,

F̄Xt(x) =
F̄X(t + x)

F̄X(t)
, x ≥ 0.

It is easy to verify that

qXt,γ(x) = F
−1

X (γFX(t + x))− (t + x) for all 0 < x < uX − t.

Now, let t ≤ t′ < uX . Then Xt ≥γ-rl Xt′ if, and only if,

F
−1

X (γFX(t + x))− (t + x) ≥ F
−1

X (γFX(t′ + x))− (t′ + x) for all x < uX − t′;

that is (by (5.2)), qX,γ(t + x) ≥ qX,γ(t
′ + x) whenever t + x ≤ t′ + x < uX ; that is, qX,γ is

decreasing. This proves the equivalence of DPRL(γ) and (i).

Next, let 0 ≤ t < uX . Then X ≥γ-rl Xt if, and only if,

F
−1

X (γFX(x))− x ≥ F
−1

X (γFX(t + x))− (t + x) for all x < uX − t;

that is (by (5.2)), qX,γ(x) ≥ qX,γ(t + x) whenever t + x ≤ uX ; that is, qX,γ is decreasing.
This proves the equivalence of DPRL(γ) and (ii).

In order to prove the equivalence of DPRL(γ) and (iii), let t ≤ t′, and denote a = t′ − t.
Then condition (iii) is equivalent to

X ≤γ-rl X + a for all a > 0. (5.8)

Now, from (5.2) we have

qX,γ(t) = F
−1

X (γFX(t))− t for all t < uX ,
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and, for a > 0 we have

qX+a,γ(t) = F
−1

X+a(γFX+a(t))− t = F
−1

X (γFX(t− a))− t + a = qX,γ(t− a)

for all t < uX + a.

That is, condition (5.8) is equivalent to the decreasingness of qX,γ.

There are results in the literature that are similar to Theorem 5.1, but which involve
aging notions other than DPRL(γ). For example, Theorems 1.A.30, 1.B.38, 3.B.24, 3.B.25,
and 4.A.53 in Shaked and Shanthikumar (2007) give similar characterizations for the IHR
aging notion. Theorems 2.A.23, 2.B.17, 3.A.56, 3.C.13, and 4.A.51 in Shaked and Shan-
thikumar (2007), as well as a result in Belzunce, Gao, Hu, and Pellerey (2004), give similar
characterizations for the decreasing mean residual life (DMRL) aging notion.

A classical result (Joe and Proschan, 1984b) shows that

X ≤γ-rl Y for all γ ∈ (0, 1)

if, and only if,
X ≤hr Y, (5.9)

where ≤hr denotes the hazard rate stochastic order (see 1.11). This result was strengthened
in the result given in who showed that if X is a continuous random variable, and if for some
fixed ε ∈ (0, 1) we have that

X ≤γ-rl Y for all γ ∈ (0, ε) (5.10)

then (5.9) still holds. Now, suppose that some continuous random variable X is DPRL(γ)
for all γ ∈ (0, ε). From Theorem 5.1(iii) we see that (5.10) holds if we replace X and Y there
by X + t and X + t′, for any t and t′ such that t ≤ t′. Thus, from (5.9) we get

X + t ≤hr X + t′ whenever t ≤ t′,

which means, by Shaked and Shanthikumar (2007, Theorem 1.B.38(iii)), that X is IHR.
We have thus proven the following positive result that may be contrasted with the negative
result shown in Example 5.1.

Proposition 5.3. Let X be a random variable with a continuous distribution function, and
let ε ∈ (0, 1). If X is DPRL(γ) for all γ ∈ (0, ε) then X is IHR.

Intuitively speaking, the order ≤γ-rl is an order of magnitude in the sense that a “larger”
random variable may be expected to be larger with respect to this order. However, Theo-
rem 5.1(iii) shows that that is not always the case. A natural condition under which indeed
X + t′ is larger than X + t with respect to this order, when t ≤ t′, is that X is DPRL(γ).
The next result highlights the usefulness of the DPRL(γ) notion in a similar situation. The
following result is an analog of Theorem 1.B.21 in Shaked and Shanthikumar (2007) which
involves the IHR aging notion, and of Theorem 2.A.17 in Shaked and Shanthikumar (2007)
which involves the DMRL aging notion.
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Theorem 5.2. Let X be a positive, absolutely continuous, DPRL(γ) random variable with
interval support. Then

X ≤γ-rl aX for all a > 1. (5.11)

Proof. By (5.2),

qX,γ(t) = F
−1

X (γFX(t))− t for all t < uX ,

and

qaX,γ(t) = F
−1

aX(γF aX(t))− t = aF
−1

X

(
γFX

( t

a

))
− t = aqX,γ

( t

a

)
for all t < uX and for all a > 1.

If X is DPRL(γ) then

qX,γ(t) ≤ qX,γ

( t

a

)
≤ aqX,γ

( t

a

)
= qaX,γ(t) for all 0 < t < uX and for all a > 1,

which yields (5.11).

If X is not DPRL(γ) then (5.11) may not hold. More explicitly, for any γ ∈ (0, 1), if X is
not DPRL(γ) then (5.11) need not all for any a > 1; this is shown in the following example.

Example 5.3. For a fixed γ ∈ (0, 1) and a fixed a > 1, let X be a random variable with the
following distribution function:

FX(t) =


0, t < 0,

(1 + γ)at, 0 ≤ t < 1
2a

,

1− a(1−γ)(1−t)
(2a−1)

, 1
2a
≤ t < 1.

A lengthy straightforward computation yields

qX,γ(t) =



γ
a(1+γ)

− t, t < 0,

γ( 1
a(1+γ)

− t), 0 ≤ t < 1
2a(1+γ)

,[
(1 + γ)(2a− 1)− 1

]
t− a−1

a
, 1

2a(1+γ)
≤ t < 1

2a
,

γ(1− t), 1
2a
≤ t < 1,

0, t ≥ 1.

The graph of qX,γ(t) is shown in Figure 5.2. Obviously X is not DPRL(γ)
[
qX,γ(t) is in-

creasing in the interval
(

1
2a(1+γ)

, 1
2a

)]
. We want to show (see the proof of Theorem 5.2)

that

aqX,γ

(
t̃

a

)
< qX,γ(t̃) (5.12)
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for some t̃ ∈ (0, 1). In order to do that take t̃ = 1
2(1+γ)

; again, see Figure 5.2. Then

aqX,γ

(
t̃

a

)
= aqX,γ

( 1

2a(1 + γ)

)
=

γ

2(1 + γ)
,

and

qX,γ(t̃) =

{
γ
(
1− 1

2(1+γ)

)
= γ(1+2γ)

2(1+γ)
; if a ≥ 1 + γ,

2(a2+1)(1+γ)−3aγ−4a
2a(1+γ)

; if a < 1 + γ.

- t

6

0 1
2a(1+γ)

1
2a t̃ = 1

2(1+γ)
1

γ
2a(1+γ)

γ
a(1+γ)

γ(2a−1)
2a

Figure 5.2: Graph of qX,γ(t) in Example 5.3

If a ≥ 1 + γ then

aqX,γ

(
t̃

a

)
=

γ

2(1 + γ)
<

γ(1 + 2γ)

2(1 + γ)
= qX,γ(t̃),

where the inequality follows from 1 + 2γ > 1. So inequality (5.12) holds in this case.

On the other hand, if a < 1+ γ then a straightforward computation shows that inequality
(5.12) is equivalent to (a− 1)2 > 0, which is always true. Therefore X �γ-rl aX. J

Another situation in which the DPRL(γ) aging notion arises as a natural condition will
be described next. The result below (Theorem 5.3), again, indicates a useful property of the
order ≤γ-rl when one of the compared random variables is “larger in magnitude” than the
other one. The following result from Chapter 2 will be used in the proofs of Theorems 5.3
and 5.4.

Proposition 5.4. Let {Xθ, θ ∈ Θ} and {Yθ, θ ∈ Θ} be two families of random variables
with continuous distribution functions. Let V and W be random variables with distribution
functions given by

FV (t) =

∫
Θ

FXθ
(t)dH(θ) and FW (t) =

∫
Θ

FYθ
(t)dH(θ), t ∈ R,
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where H is some distribution function on Θ. If

Xθ ≤γ-rl Yθ′ for all θ, θ′ ∈ Θ, (5.13)

then V ≤γ-rl W .

The following result is a generalization of the sufficiency part of Theorem 5.1(iii).

Theorem 5.3. Let X be a continuous DPRL(γ) random variable. Let Z be a nonnegative
continuous random variable that is independent of X. Then

X ≤γ-rl X + Z. (5.14)

Proof. We write

FX(x) =

∫ ∞

z=0

FX(x) dFZ(θ)

and

FX+Z(x) =

∫ ∞

z=0

FX+θ(x) dFZ(θ).

Denote Xθ = X and Yθ = X + θ. Now, in Proposition 5.4, take Θ = [0,∞) and H = FZ .
Then V = X and W = X + Z. By Theorem 5.1(iii) we see that (5.13) holds. Therefore the
stated result follows from Proposition 5.4.

It is worthwhile to point out that if X in Theorem 5.3 is not DPRL(γ) then the conclusion
of that theorem need not hold. In order to see this, note that Theorem 5.1(iii) actually says
that X is DPRL(γ) if, and only if, X ≤γ-rl X +a for every a ≥ 0. Thus, if X in Theorem 5.3
is not DPRL(γ) then there exists a degenerate Z such that (5.14) does not hold.

The DPRL(γ) aging notion is also useful as a condition under which the order ≤γ-rl is
preserved under certain random additions. This is shown next.

Theorem 5.4. Let X and Y be two DPRL(γ) random variables. Let Z be a random variable,
independent of X and Y , with support in [l, u], where −∞ < l < u < ∞. If X +u ≤γ-rl Y + l,
then

X + Z ≤γ-rl Y + Z.

Proof. Write

FX+Z(x) =

∫ ∞

θ=0

FX+θ(x) dFZ(θ)

and

FY +Z(x) =

∫ ∞

θ=0

FY +θ(x) dFZ(θ).
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Denote Xθ = X + θ and Yθ = Y + θ. Take any θ, θ′ ∈ [l, u]. Then

Xθ = X + θ ≤γ-rl X + u (by Theorem 5.1(iii) and θ ≤ u)

≤γ-rl Y + l (by assumption)

≤γ-rl Y + θ′ = Yθ′ (by Theorem 5.1(iii) and l ≤ θ′);

that is, (5.13) holds for Θ = [l, u]. So, taking H = FZ in Proposition 5.4, we obtain the
stated result.

5.2 Other aging notions

5.2.1 Definitions

In this section, we introduce four new definitions of aging notions. We will assume that all
the variables considered along the section are nonnegative, unless stated otherwise.

Definition 5.1. Let t0 > 0. A random variable X is said to be decreasing percentile residual
life up to time t0, denoted t0-DPRL, if its γ-percentile residual life function is decreasing for
every γ ∈ (0, 1) and for every t ≤ t0. That is,

qX,γ(t) ≥ qX,γ(t
′
), for all t < t

′ ≤ t0.

Analogously, we can define the t0-IPRL aging notion.

Definition 5.2. Let t0 > 0. A random variable X is said to be increasing percentile residual
life from time t0 on, denoted IPRL-t0, if its γ-percentile residual life function is decreasing
for every γ ∈ (0, 1) and for every t ≥ t0. That is,

qX,γ(t) ≤ qX,γ(t
′
), for all t0 ≤ t < t

′
.

Analogously, we can define the DPRL-t0 aging notion. Note that, if X is IPRL-t0, it is
necessary uX = ∞.

Some useful equivalent conditions for the t0-DPRL, the t0-IPRL, the IPRL-t0 and the
DPRL-t0 notions are given in the following propositions for absolutely continuous random
variables with interval support (which may be finite or infinite). For such random variable
X we denote by fX its density function and by rX ≡ fX/FX its hazard rate function.

Proposition 5.5. Let X be an absolutely continuous random variable with interval support
(lX , uX). Let t0 > 0. The following conditions are equivalent:

(i) X is t0-DPRL;
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(ii) γfX(t) ≤ fX(F
−1

X (γFX(t))) for all t ∈ (lX , t0] and all γ ∈ (0, 1);

(iii) γfX(F
−1

X (p)) ≤ fX(F
−1

X (γp)) for all p ∈ [F̄X(t0), 1) and all γ ∈ (0, 1);

(iv) rX(t) ≤ rX(t + qX,γ(t)) for all t ∈ (lX , t0] and all γ ∈ (0, 1).

Proof. Assume (i). Then qX,γ(t) is decreasing in t ∈ (lX , t0] for every γ ∈ (0, 1). Therefore,
by differentiating qX,γ we see that

0 ≥ d

dt
qX,γ(t) =

γfX(t)

fX(F
−1

X (γFX(t)))
− 1,

for all γ ∈ (0, 1) and t ≤ t0 and (ii) follows. In fact, the proof shows that (i)⇐⇒(ii).

Next assume (ii). Putting there t = F
−1

(p) we obtain (iii). In fact, the proof shows that
(ii)⇐⇒(iii).

Finally, assume (ii) again. For t ∈ (lX , t0] divide the left hand side by γFX(t) and the
right hand side by FX(t + qX,γ(t)), which are equal by the definition of percentile residual
life function. We obtain

rX(t) ≤ fX(F
−1

X (γFX(t)))

FX(t + qX,γ(t))
=

fX(t + qX,γ(t))

FX(t + qX,γ(t))
,

where the last equality follows from the definition of hazard rate function . This gives (iv).
In fact, the proof shows that (ii)⇐⇒(iv).

The equivalence (i)⇐⇒(iv) can be found already in Haines and Singpurwalla (1974) and
in Joe and Proschan (1984). The difference here is that we consider all γ ∈ (0, 1) and t ≤ t0.

From (iv) it is seen that if rX is increasing (that is, if X has an increasing hazard rate
(IHR)) then X is t0-DPRL for any γ ∈ (0, 1) and every t0 > 0.

Proposition 5.6. Let X be an absolutely continuous random variable with interval support
(lX , uX). Let t0 > 0. The following conditions are equivalent:

(i) X is t0-IPRL;

(ii) γfX(t) ≥ fX(F
−1

X (γFX(t))) for all t ∈ (lX , t0] and all γ ∈ (0, 1);

(iii) γfX(F
−1

X (p)) ≥ fX(F
−1

X (γp)) for all p ∈ [F̄X(t0), 1) and all γ ∈ (0, 1);

(iv) rX(t) ≥ rX(t + qX,γ(t)) for all t ∈ (lX , t0] and all γ ∈ (0, 1).

The proof of this proposition is analog to the proof of Proposition 5.5. Analogously, the
two following propositions hold.
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Proposition 5.7. Let X be an absolutely continuous random variable with interval support
(lX , uX). Let t0 > 0. The following conditions are equivalent:

(i) X is IPRL-t0;

(ii) γfX(t) ≥ fX(F
−1

X (γFX(t))) for all t ≥ t0 and all γ ∈ (0, 1);

(iii) γfX(F
−1

X (p)) ≥ fX(F
−1

X (γp)) for all p ∈ (0, F̄X(t0)] and all γ ∈ (0, 1);

(iv) rX(t) ≥ rX(t + qX,γ(t)) for all t ≥ t0 and all γ ∈ (0, 1).

Proposition 5.8. Let t0 > 0 and let X be an absolutely continuous random variable with
no flats in (t0, uX). The following conditions are equivalent:

(i) X is DPRL-t0;

(ii) γ̄f(t) ≤ f(F̄−1(γ̄F̄ (t))) for all t ≥ t0 and all γ ∈ (0, 1);

(iii) γ̄f(F̄−1(p)) ≤ f(γ̄F̄ (p)) for all p ∈ (0, F̄X(t0)] and all γ ∈ (0, 1);

(iv) r(t) ≤ r(t + qγ(t)) for all t ≥ t0 and all γ ∈ (0, 1);

5.2.2 Characterization of the t0-DPRL aging notion

In the following result we provide some characterizations of the t0-DPRL aging notion in
terms of the percentile residual life order up to time t0. Let X be a random variable and let
uX be the right endpoint of its support. Recall the definition of Xt,

Xt = [X − t|X > t], t < uX ;

whose survival function is given by

F̄Xt(x) =
F̄X(t + x)

F̄X(t)
, x ≥ 0.

Theorem 5.5. Let X be an absolutely continuous random variable with interval support and
t0 > 0. Then X is t0-DPRL if, and only if, any of the following equivalent conditions holds:

(i) Xt ≥
t∗0
prl Xt′ whenever t ≤ t′ and t∗0 = t0 − t

′
;

(ii) X ≥t∗0
prl Xt whenever 0 ≤ t ≤ t0 and t∗0 = t0 − t (when X is a nonnegative random

variable);

(iii) X + t ≤t0
prl X + t′ whenever t ≤ t′.
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Proof. From the definition of the percentile residual life function it is easy to verify that

qXt,γ(x) = F
−1

X (γFX(t + x))− (t + x) for all 0 < x < uX − t.

Now, let t ≤ t′. Then Xt ≥
t∗0
prl Xt′ if, and only if,

F
−1

X (γFX(t + x))− (t + x) ≥ F
−1

X (γFX(t′ + x))− (t′ + x) for all x ≤ t∗0;

that is, qX,γ(t + x) ≥ qX,γ(t
′ + x) whenever t + x ≤ t′ + x ≤ t′ + t∗0; that is, qX,γ is decreasing

for all γ ∈ (0, 1) and all t ≤ t
′
+ t∗0 = t0. This proves the equivalence of t0-DPRL and (i).

Next, let 0 ≤ t ≤ t0. Then X ≥t∗0
prl Xt if, and only if,

F
−1

X (γFX(x))− x ≥ F
−1

X (γFX(t + x))− (t + x) for all x ≤ t∗0;

that is, qX,γ(x) ≥ qX,γ(t + x) whenever x ≤ t + x ≤ t0; that is, qX,γ is decreasing for all
γ ∈ (0, 1) and all t ≤ t + t∗0 = t0. This proves the equivalence of t0-DPRL and (ii).

In order to prove the equivalence of DPRL(γ) and (iii), let t ≤ t′, and denote a = t′ − t.
Then condition (iii) is equivalent to

X ≤t0
prl X + a for all a > 0. (5.15)

Now, from the definition of percentile residual life function we have

qX,γ(t) = F
−1

X (γFX(t))− t for all t < uX and all γ ∈ (0, 1),

and, for a > 0 we have

qX+a,γ(t) = F
−1

X+a(γFX+a(t))− t = F
−1

X (γFX(t− a))− t + a = qX,γ(t− a)

for all t < uX + a.

That is, condition (5.15) is equivalent to the decreasingness of qX,γ for all γ ∈ (0, 1) and
t ≤ t0.

In the literature there are results that are similar to Theorem 5.5, but which involve
aging notions other than t0-DPRL. See Theorem 5.1 in this document and the paragraph
which follows its proof for a list of references.

Intuitively speaking, the order ≤t0
prl is an order of magnitude in the sense that a “larger”

random variable may be expected to be larger with respect to this order. However, Theo-
rem 5.5 (iii) shows that that is not always the case. A natural condition under which indeed
X + t′ is larger than X + t with respect to this order, when t ≤ t′ ≤ t0, is that X is t0-DPRL.
The next result highlights the usefulness of the t0-DPRL notion in a similar situation. The
following result is an analog of Theorem 1.B.21 in Shaked and Shanthikumar (2007) which
involves the IHR aging notion, of Theorem 2.A.17 in Shaked and Shanthikumar (2007) which
involves the DMRL aging notion, and of Theorem 5.2 which envolves the DPRL(γ) aging
notion.
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Theorem 5.6. Let t0 > 0. Let X be an absolutely continuous random variable with interval
support, If X is t0-DPRL, then

X ≤t0
prl aX for all a > 1. (5.16)

Proof. We know that

qX,γ(t) = F
−1

X (γFX(t))− t for all t < uX ,

and

qaX,γ(t) = F
−1

aX(γF aX(t))− t = aF
−1

X

(
γFX

( t

a

))
− t = aqX,γ

( t

a

)
for all t < uX and for all a > 1.

If X is t0-DPRL then

qX,γ(t) ≤ qX,γ

( t

a

)
≤ aqX,γ

( t

a

)
= qaX,γ(t) for all 0 < t ≤ t0 and for all a > 1,

which yields (5.16).

5.2.3 Necessary conditions for BT and UBT distributions

We recall the definition of bathtub distributions and upside-down bathtub distributions,
already given in Section 1.3 .

Definition 5.3. Let X be an absolutely continuous random variable with hazard rate function
rX continuous. Then X has a bathtub distribution (BT distribution) if there exists a t1 ≤ t2
such that

(i) rX(t) is strictly decreasing for t < t1,

(ii) rX(t) is a constant for t1 ≤ t ≤ t2, and

(iii) rX(t) is strictly increasing for t > t2.

Definition 5.4. Let X be an absolutely continuous random variable with hazard rate function
rX continuous. Then X has an upside-down bathtub distribution (UBT distribution) if there
exists a t1 ≤ t2 such that

(i) rX(t) is strictly increasing for t < t1,

(ii) rX(t) is a constant for t1 ≤ t ≤ t2, and

(iii) rX(t) is strictly decreasing for t > t2.
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In Launer (1993) some results relating the behavior of the hazard rate function and the
percentile residual life function are given. He states and illustrates how those relationships
can be useful for studying the behavior of the empirical hazard rate function. In this paper
he shows that the maximum of the γ-percentile residual life function precedes in time the
minimum of the hazard rate (providing a minimum exists) and that the minimum of the
γ-percentile residual life function precedes the maximum of the hazard rate. This set of
relationships forms the basis for computational procedures in that paper.

The determination of the time at which the γ-percentile residual life function is a max-
imum can be important in fixing product warranty. For example, product burn-in could
be used to eliminate the units which fail early, and thus, maximize the reliability of the
remaining product.

In this section we complete the study carried out by Launer (1993), providing some new
results in terms of the aging notions defined in Section 5.2.1.

First of all, we introduce the following propositions which show how the conditions t0-
DPRL and IPRL-t0 have implications on the behavior of the hazard rate function.

Proposition 5.9. Let t0 > 0 and X be an absolutely continuous random variable with hazard
rate rX . Then, X is t0-DPRL if, and only if, rX(t) ≤ rX(t

′
), for all t < t

′
, t ≤ t0.

Proof. In order to prove the conclusion of the theorem, consider 0 < t ≤ t0 < uX and
t
′

> t. Since X is a nonnegative random variable, we can write t
′

= t + qX,γ(t) where

γ = 1− F̄X(t
′
)

F̄X(t)
∈ (0, 1). That is,

t′ = t + qX,γ(t) = t + F̄−1
X (γ̄F̄X(t))− t = F̄−1

X (γ̄F̄X(t)) = t′.

Therefore,
rX(t) ≤ rX(t

′
) ⇔ rX(t) ≤ rX(t + qX,γ(t)) (5.17)

and, by Proposition 5.5(iv), the right side of equation (5.17) is equivalent to X being t0-
DPRL.

Analogously, the three following results hold.

Proposition 5.10. Let t0 > 0 and X be an absolutely continuous random variable with
hazard rate rX . Then, X is t0-IPRL if, and only if, rX(t) ≥ rX(t

′
), for all t < t

′
, t ≤ t0.

Proposition 5.11. Let t0 > 0 and X be an absolutely continuous random variable with
hazard rate rX . Then, X is IPRL-t0 if, and only if, rX(t) ≥ rX(t

′
), for all t < t

′
, t ≥ t0.

Proposition 5.12. Let t0 > 0 and X be an absolutely continuous random variable with
hazard rate rX . Then, X is DPRL-t0 if, and only if, rX(t) ≤ rX(t

′
), for all t < t

′
, t ≥ t0.

Launer (1993) stated the following result that gives necessary conditions for a special
kind of bathtub distributions.
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Theorem 5.7. Let X be an absolutely continuous random variable with hazard rate function
rX . Let t∗ > 0 be such that rX(0) = rX(t∗). If rX has a bathtub shape, there is a minimum
γ = γ∗ for which qX,γ(t) is a decreasing function of t, for γ > γ∗. For γ ≤ γ∗, however,
qX,γ(t) attains a maximum for some t > 0.

We give some results in terms of the aging notions defined on Section 5.2.1 and that
complete the study carried out by Launer (1993). First, let us to introduce the following
notation:

t∗1 = max{t : X is t-DPRL},
t∗2 = min{t : X is IPRL-t},
t∗3 = max{t : X is t-IPRL},
t∗4 = min{t : X is DPRL-t}.

Then, Theorem 5.7 is a particular case of the following result.

Theorem 5.8. Let X be an absolutely continuous random variable with hazard rate function
rX . If rX has a bathtub shape, then X is DPRL-t∗4 with t∗4 ∈ (lX , uX). Besides, t∗4 is the
point where rX attains the minimum value.

Proof. Since X is BT, there exits t2 such that rX is strictly increasing for t > t2. Then, by
Proposition 5.12, X is DPRL-t∗4 and t∗4 = min{t : rX(t) is increasing}.

Theorem 5.9. Let X be an absolutely continuous random variable with hazard rate function
rX . Let t∗ > 0 be such that rX(uX) = rX(t∗). If rX has a bathtub shape, then X is DPRL-t∗4
and t∗3-IPRL. Besides, t∗4 is the point where rX attains the minimum value and t∗3 = t∗.

Proof. Since X is BT, there exits t2 such that rX is strictly increasing for t > t2. Then, by
Proposition 5.12, X is DPRL-t∗4 and t∗4 = min{t : rX(t) is increasing}. Besides, there exits
t1 such that rX is strictly decreasing for t < t1. Then, by Proposition 5.10, X is t∗3-IPRL.

Obviously, t∗3 ≤ t∗4. Besides, since X is t∗3-IPRL, by Proposition 5.6,

rX(t) ≥ rX(t + qX,γ(t)) for all t ∈ (lX , t∗3] and all γ ∈ (0, 1).

In particular, this inequality holds for t = t∗3 and γ = 1, that is,

rX(t∗3) ≥ rX(t∗3 + qX,1(t
∗
3)) = rX(uX) = rX(t∗). (5.18)

And, since t∗3, by definition, is the maximum value that verifies (5.18), this proofs that
t∗ = t∗3.

Remark 5.1. Notice that X is IHR if t∗1 = uX and t∗4 = lX . Analogously, X is DFR if
t∗2 = uX and t∗3 = lX .

The following results give a necessary conditions for upside-down bathtub distributions.
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Theorem 5.10. Let X be an absolutely continuous random variable with hazard rate function
rX . If rX has a upside-down bathtub shape, then X is IPRL-t∗2 with t∗2 ∈ (lX , uX).

Theorem 5.11. Let X be an absolutely continuous random variable with hazard rate function
rX . Let t∗ > 0 be such that rX(uX) = rX(t∗). If rX has a upside-down bathtub shape, then
X is t∗1-DPRL and IPRL-t∗2.

Additionally, the two following results hold.

Theorem 5.12. Let X be an absolutely continuous random variable with hazard rate function
rX . If X is t∗1-DPRL and DPRL-t∗4, then rX has, at least, one maximum value.

Theorem 5.13. Let X be an absolutely continuous random variable with hazard rate function
rX . If X is t∗3-IPRL and DPRL-t∗4, then rX has, at least, one minimum value.
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Chapter 6

Confidence bands for ordering
percentile residual life functions

In this chapter we present a nonparametric method for constructing confidence bands for the
difference of two percentile residual life functions. Given two random samples, we estimate
the difference of their percentile residual life functions and its bootstrapped counterparts
and apply statistical depth as a criteria for constructing the bands. These bands evidence
whether two random variables are close with respect to the percentile residual life order or
not. A simulation study support the results. We also present a application to real data.

This chapter is organized as follows. The problem is introduced in Section 6.1. In
Section 6.2 we give an overview of some definitions and basic concepts on statistical depth.
The methodology for constructing the confidence bands is described in Section 6.3. The
practical performances of the bands are evaluated through simulation in Section 6.4. Finally,
we show some applications to real data.

6.1 Description of the problem

Given the advantages of the percentile residual life orders, specially in practical situations, it
is convenient to develop an statistical tool to test whether two independent random samples
have underlying random variables which are close with respect to a γ-percentile residual life
order or not, where 0 < γ < 1.

In this work, we present a nonparametric method for constructing confidence bands for
the difference of two percentile residual life functions. This confidence bands provide us with
evidence of whether two random variables are close with respect to some percentile residual
life order or not. These bands do not only allow us to compare the whole functions, but also
in a given interval.

89
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6.2 Definition and basic concepts on statistical depth

The analysis of functional data is one of the topics that, within the field of statistics, is
receiving a steady increasing attention in recent years (see, for example Ramsay and Siverman
(2005)). In particular, a robust methodology is important to study curves, which are the
output of experiments in applied statistics. A natural tool to analyze functional data aspects
is the idea of statistical depth. It has been introduced to measure the ‘centrality’ or the
‘outlyingness’ of an observation with respect to a given dataset or a population distribution.

The notion of depth was first considered for multivariate data to generalize order statis-
tics, ranks, and medians to higher dimensions. Several depth definitions for multivariate
data have been proposed and analyzed by Mahalanobis (1936), Tukey (1975), Oja (1983),
Liu (1990), Singh (1991), Fraiman and Meloche (1999), Vardi and Zhang (2000), Koshevoy
and Mosler (1997) and Zuo (2003).

Liu (1990) presented four four desirable properties that an ideal depth function should
possess:

(i) AFFINE INVARIANCE. The depth of a point x ∈ Rd should not depend on the under-
lying coordinate system or, in particular, on the scales of the underlying measurements.

(ii) MAXIMALITY AT CENTER. For a distribution having a uniquely defined ‘center’
(e.g., the point of symmetry with respect to some notion of symmetry), the depth
function should attain a maximum value at this center.

(iii) MONOTONICITY RELATIVE TO DEEPEST POINT. As a point x ∈ Rd moves away
from the ‘deepest point’ (the point at which the depth function attains maximum value)
along any fixed ray through the center, the depth at x should decrease monotonically.

(iv) VANISHING AT INFINITY. The depth of a point x should approach to zero as ||x||
approaches to infinity.

Direct generalization of current multivariate depths to functional data often leads to
either depths that are computationally intractable or depths that do not take into account
some natural properties of the functions, such as shape. For that reason several specific
definitions of depth for functional data were introduces. See for example, Vardi and Zhang
(2000), Fraiman and Muniz (2001), López-Pintado and Romo (2005), Cuevas, Febrero and
Fraiman (2007) and López-Pintado and Romo (2009). The definition of depth for curves
provides us with a criteria to order the sample curves from the center-outward (from the
deepest to the most extreme).

Here we recall the definition of band depth introduced in López-Pintado and Romo (2009).
The band depth follows a graph-based approach.

Let x1(t), · · · , xn(t) be a collection of real functions. Although the following ideas can
be introduced for more general functional observations, we will restrict the exposition to
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functions in the space C(I) of real continuous functions on the compact interval I. Let the
graph of a function x be the subset of the plane G(x) = {(t, x(t)) : t ∈ I} and let the band
in R2 delimited by the curves xi1 , ...xik be

B(xi1 , ...xik) = {(t, y) : t ∈ I, min
r=1,...,k

xir(t) ≤ y ≤ max
r=1,...,k

xir(t)} =

= {(t, y) : t ∈ I, y = β min
r=1,...,k

xir(t) + (1− β) max
r=1,...,k

xir(t), β ∈ [0, 1]}.

Now, for any function x in x1, · · · , xn, and a fixed j value with 2 ≤ j ≤ n, the quantity

BD(j)
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

I{G(x)⊂B(xi1
,...xij

)},

expresses the proportion of bands B(xi1 , ...xij) determined by j different curves xi1 , ...xij

containing the whole graph of x. (I{A} is one if A is true, and zero otherwise).

Let J be a fixed value with 2 ≤ J ≤ n. For functions x1, ...xn, the band depth of any of
these curves x is

BDn,J(x) =
J∑

j=2

BD(j)
n (x).

If X1, · · · , XJ are independent copies of the stochastic process X generating the ob-
servations x1, · · · , xn, the corresponding population versions are BD(j)(x, P ) = P{G(x) ⊂
B(X1, · · · , Xj)} and

BDJ(x, P ) =
J∑

j=2

BD(j)(x, P ) =
J∑

j=2

P (G(x) ⊂ B(X1, · · · , Xj)).

López-Pintado and Romo (2009) recommend considering the definition of band depth
with J = 3 for several reasons: (1) when J is larger than 3 the index BDn,J can be compu-
tationally intensive, (2) bands corresponding to large values of J do not resemble the shape
of any of the curves from the sample, (3) the band depth induced order is very stable in J ,
and (4) the band depth with J = 2 is the easiest to compute but, if two curves cross over,
the band delimited by them is degenerated in a point and, with probability one, no other
curve will be inside this band.

Instead of considering the indicator function, a more flexible definition was introduced
by measuring the set where the function is inside the band. For any of the functions x in
x1, · · · , xn and for 2 ≤ j ≤ n, let

Aj ≡ A(x; xi1 , · · · , xij) ≡ {t ∈ I : min
r=i1,··· ,ij

xr(t) ≤ x(t) ≤ max
r=i1,··· ,ij

xr(t)}
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be the set where the function x is in the band determined by the observations xi1 , · · · , xij .
If λ is the Lebesgue measure on I, λr(Aj(x)) = λ(Aj(x))/λ(I) gives the ‘proportion of time’
that x is in the band. Now, for 2 ≤ j ≤ n,

MBD(j)
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

λr(A(x; xi1 , · · · , xij))

is a more flexible version of BDj
n(x): if x is always inside the band, the value λr(Aj(x)) is

one as in the previous notion of depth.

Let J be a fixed value with 2 ≤ J ≤ n. For functions x1, · · · , xn, the modified band depth
of any of these curves x is

MDBn,J(x) =
J∑

j=2

MDBJ
n(x).

The population version of the modified band depth is MDBJ(x) =
∑J

j=2 MDB(j)(x), where

MDB(j)(x) = E[λr(A(x; X1, · · · , Xj))].

It is straightforward to check that in the univariate case, the band depth and the modified
band depth coincide. Moreover, the ordering induced in that case does not depend on J .

López-Pintado and Romo (2009) recommend considering the definition of modified band
depth with J = 2 because it is computationally fast and the order induced is very stable in
J , even if many curves from the sample cross over.

These notions satisfy the usual depth properties except affine invariance, which is not
natural for functional data. They have also established the uniform consistency of the sample
band depth in the finite and functional case. Robustness of these depths was illustrated with
a simulation study and several real examples.

6.3 Our methodology

Let X be a random variable and let X1, X2,...,Xn be an i.i.d. random sample from X.
Let FX,n be the empirical distribution function of X. The sample or empirical γ-percentile
residual life of X at t < uX is

qX,n,γ(t) = Qn(γ + γ̄Fn(t))− t, 0 < γ < 1,

where Qn is the sample quantile function given by:

Qn(x) = Xk if (k−1)
n

< x ≤ k
n

(k = 1, ..., n),
Qn(x) = X1 if x = 0.
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Section 2.3.1 of Serfling (1980) and the Glivenko-Cantelli theorem for Fn implies that

qX,n,γ(t) → qX,γ(t), (6.1)

almost surely as n → ∞. That is, qX,n,γ(t) is a pointwise strongly consistent estimator of
qX,γ(t). See, for example, Csörgő and Csörgő (1987).

Now, let Y be another random variable and let Y1, Y2,...,Ym be an i.i.d. random sample
from Y . Given γ ∈ (0, 1), plots of the empirical γ-percentile residual life functions of X and
Y can give an indication of the plausibility of whether the γ-percentile residual life functions
of X and Y are ordered; that is, if X and Y are ordered according to the γ-percentile residual
life order. By equation (6.1),

qY,m,γ(t)− qX,n,γ(t) → qY,γ(t)− qX,γ(t),

almost surely as n,m →∞.

For constructing the band we follow a three-step algorithm. Let B be the bootstrap size,
α ∈ (0, 1) the confidence level and γ ∈ (0, 1) the percentile.

(i) Consider the bootstrap replications from X1, · · · , Xn and Y1, · · · , Ym. We denote them
by X∗b

1 , · · · , X∗b
n and Y ∗b

1 , · · · , Y ∗b
m , respectively; for b = 1, · · · , B.

(ii) For every b = 1, · · · , B, compute the empirical γ-percentile residual life functions which
is associated to X∗b

1 , · · · , X∗b
n and Y ∗b

1 , · · · , Y ∗b
m . We denote them by q∗bX,n,γ and q∗bY,m,γ,

respectively. Then consider
q∗b = q∗bY,m,γ − q∗bX,n,γ.

(iii) Order the sample curves q∗b , b = 1, . . . , B, from inner to outer using any concept of
depth for curves and take the band given by the (1− α) · 100% deepest curves.

The convex hull for these (1− α) · 100% deepest curves constitutes the confidence band.

Remark 6.1. If there exist censored data in the sample, we can consider the percentile resid-
ual life estimator under censoring proposed in Csörgő (1987) and described in Section 1.1,
and the bootstrap mechanism follows the approach proposed by Efron (1981).

6.4 A simulation study

A simulation study has been carried out in order to evaluate the performance and to illus-
trate the consistence of our methodology. As we will see, the bootstrap procedures play a
central role in the methods studied here. The computer codes written in R are available
from the author. The details of the simulation study are explained in the next paragraphs.
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The considered sampling models

We have examined several examples through simulation. The random variables we have
considered follow Pareto distributions. The reason is, that for any γ ∈ (0, 1), the γ-percentile
residual life function of a Pareto distribution is a line. Therefore, if we compare the γ-
percentile residual life functions of two Pareto distributions there are only two possible
situations: either their γ-percentile residual life functions are parallel or they cross. In the
first case we can conclude that X and Y are ordered in the γ-percentile residual life order
and in the second case they are not.

Recall from Example 2.1 that, if X have the Pareto distribution,

FX(t) = 1−
( ρ

ρ + t

)ν

, t ≥ 0,

where ρ > 0 and ν > 0. Besides, for any γ ∈ (0, 1),

qX,γ(t) =

{
((1− γ)−1/ν − 1)ρ− t, t < 0;

((1− γ)−1/ν − 1)(ρ + t), t ≥ 0.

That is, if X follows a Pareto distribution, its percentile residual life functions are lines.

Let Y follow a Pareto distribution whose distribution function is given by

FY (t) = 1−
( δ

δ + t

)µ

, t ≥ 0,

where δ > 0 and µ > 0. Then,

X ≤α-rl Y ⇐⇒

{
µ ≤ ν and
(1−α)−1/ν−1

(1−α)−1/µ−1
≤ δ

γ
.

J

It is straightforward to check that if X and Y have Pareto distribution, then

X ≤γ−rl Y ⇔ X ≤β−rl Y, for all β ∈ (0, 1) ⇔ X ≤hr Y,

where ≤hr denotes the hazard rate order. The last equivalence follows from Theorem 7.

We have considered the following examples. The pairs of variables from Example 6.1 to
Example 6.6 are ordered with respect to any percentile residual life order. In particular,
they are ordered with respect to the median residual life order. The pairs of variables from
Example 6.7 to Example 6.10 are not ordered with respect to any percentile residual life
order. In particular, they are not ordered with respect to the median residual life order.

Example 6.1. {
X ∼ Pareto(ρ = 10, ν = 10)

Y1 ∼ Pareto(20, 10)
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Example 6.2. {
X ∼ Pareto(10, 10)

Y2 ∼ Pareto(40, 10)

Example 6.3. {
X ∼ Pareto(10, 10)

Y3 ∼ Pareto(60, 10)

Example 6.4. {
X ∼ Pareto(10, 10)

Y4 ∼ Pareto(80, 10)

Example 6.5. {
X ∼ Pareto(10, 10)

Y5 ∼ Pareto(100, 10)

Example 6.6. {
X ∼ Pareto(10, 10)

Y6 ∼ Pareto(110, 10)

The median residual life functions of the variables from Example 6.1 to Example 6.6 are
represented in Figure 6.1. It can be seen that the distance between the median residual life
function of X and the median residual life function of Yi, i = 1, · · · , 6 increases as i increases.

−5 0 5 10 15
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15
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x

qX, 0.5
qY1, 0.5
qY2, 0.5
qY3, 0.5
qY4, 0.5
qY5, 0.5
qY6, 0.5

Figure 6.1: Median residual life functions of the variables from Example 6.1 to Example 6.6
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Example 6.7. {
X7 ∼ Pareto(10, 10)

Y7 ∼ Pareto(1, 5)

Example 6.8. {
X8 ∼ Pareto(20, 5)

Y8 ∼ Pareto(70, 10)

Example 6.9. {
X9 ∼ Pareto(160, 20)

Y9 ∼ Pareto(70, 10)

Example 6.10. {
X10 ∼ Pareto(10, 10)

Y10 ∼ Pareto(20, 15)

The simulation mechanism

We have chosen the modified band depth with J = 2 proposed by López-Pintado and
Romo (2009) and recalled in Section 6.2 because, contrary to most of other definitions of
depth, this depth is not computationally intensive. However, any other definition of depth
for curves can be considered.

The simulation results

The 90%-confidence bands for the difference of the median residual life functions of the
variables in the first six examples are shown in Figure 6.2 to Figure 6.7. The corresponding
95%-confidence bands are shown in Figure 6.8 to Figure 6.13.

In the left graph of every figure, the estimations of the difference of the median residual
life functions together with the confidence band is shown. In the right graph, only the band
is shown.

The 90%-confidence bands for the difference of the median residual life functions of the
variables in the last four examples are shown in Figure 6.14 to Figure 6.17.
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Figure 6.2: 90%-confidence band for qY1,0.5 − qX,0.5
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Figure 6.3: 90%-confidence band for qY2,0.5 − qX,0.5
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Figure 6.4: 90%-confidence band for qY3,0.5 − qX,0.5

Conclusions of the simulation study

Figures 6.2 to 6.7 and Figures 6.8 to 6.13, which correspond to the examples where the
variables are ordered in the sense of the median residual life order (Examples 6.1 to 6.6), it
is seen that most of the region delimited by the band lies above the x-axis. Indeed, except
when the difference of the variables is very small (Example 6.1), all this region lies above
the x-axis.
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Figure 6.5: 90%-confidence band for qY4,0.5 − qX,0.5
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Figure 6.6: 90%-confidence band for qY5,0.5 − qX,0.5
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Figure 6.7: 90%-confidence band for qY6,0.5 − qX,0.5

In Figure 6.2 and Figure 6.13, in which the variables involved are ordered but close with
respect to the median residual life order (Example 6.1), it is seen that the lower limit of the
band crosses the x-axis or the x-axis is contained in the band. However as the difference
between the two median residual life functions increases, the distance of the lower limit of
the band to the x-axis also increases. This fact shows the coherence of these bands.
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Figure 6.8: 95%-confidence band for qY1,0.5 − qX,0.5
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Figure 6.9: 95%-confidence band for qY2,0.5 − qX,0.5
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Figure 6.10: 95%-confidence band for qY3,0.5 − qX,0.5

In Figures 6.14 to 6.17, which correspond to the examples where the variables are not
ordered in the sense of the median residual life order (Examples 6.7 to 6.10), the x-axis
either cross any of the limits of the band or is contained in the band.

We have computed the confidence band for the difference of two median residual life
functions. However, as we have explained, the procedure is valid for every percentile γ ∈
(0, 1).
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Figure 6.11: 95%-confidence band for qY4,0.5 − qX,0.5
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Figure 6.12: 95%-confidence band for qY5,0.5 − qX,0.5
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Figure 6.13: 95%-confidence band for qY6,0.5 − qX,0.5

As we have illustrated with this example, the confidence bands for the different of two
percentile residual lifetimes provide us with a criteria of whether two random variables are
close or not with respect to a percentile residual life order and allow us to compare percentile
residual life functions in a given interval in the following sense. When the lower limit of the
band lies above the x-axis, we can conclude that the random variables are ordered with
respect to the median residual life order. Analogously, if the upper limit of the band lies
below the x-axis, the two random variables are also ordered but the first one dominates the
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Figure 6.14: 90%-confidence band for qY7,0.5 − qX,0.5
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Figure 6.15: 90%-confidence band for qY8,0.5 − qX,0.5

second one. When the lower limit of the band lies below the x-axis and the upper limit of
the band lies above the x-axis, we can not say that one variable dominates the other in the
sense of the median residual life order.

6.5 Application to real data

Failure time analysis (FTA) addresses data of the form ‘time until an event occurs’. The
survival times of medical patients or industrial products have been the usual subjects of FTA,
but data from a wide variety of ecological studies may be cast in these terms, including
survival times of organisms or part of organisms and times until certain behaviours are
exhibited.

In the biomedical context, FTA has been also called ‘survival analysis’ since the event is
commonly the death of a patient, so the time until the death is the survival time.

Failure time analysis accommodates ‘censored data’. Censored data points are those
in which the event was not observed, perhaps because the study ended before the event
happened to some of the individuals under observation or because some of the individuals
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Figure 6.16: 90%-confidence band for qY9,0.5 − qX,0.5
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Figure 6.17: 90%-confidence band for qY10,0.5 − qX,0.5

were lost track of before the event occurred during the study. For these censored data
points, the actual time of occurrence is not known. Instead we know a minimum length of
time during which the event did not occur. Failure time analysis allows use of such censored
data for their partial information. This feature is apt to be useful in the field biology, where
identification markers may be lost, external conditions may cause the premature end of
observations, or the observation period may be too brief for all positive events to occur.

Here we consider two examples in which the construction of confidence bands allows us to
compare two treatments of cancer and to conclude whether male plants are more attractive
to insects than female plants or not.

Application in medicine Consider the example introduced on Chapter 1. The data
correspond to the survival times in days of patients of cancer who were randomly assigned
to one of two treatment groups, radiation therapy alone or radiation therapy together with
a chemotherapeutic agent. The data were taken from Apendix I of Kalbfleisch and Prentice
(1982) (Data Set II) and are part of a large clinical trial carried out by the Radiation Therapy
Oncology Group in the United States.

We recall that approximately 30% of the survival times after the treatment are censored
owing primarily to patients surviving to the time of analysis. From a statistical point of view,
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the main feature of these data that distinguishes this example from others is the considerable
lack of homogeneity between individuals being studied. We have deleted the females in order
to make the populations more homogeneous (this way we avoid possible differences due to
gender).

We have constructed the 90% and the 95%-confidence bands for the difference of the
median residual life functions for the patients belonging to both groups, see Figure 6.18 and
Figure 6.19, respectively. Since there exist censored data, we have considered the median
residual life function estimator proposed in Csörgo (1987). From the figures we can not
conclude that one treatment is better than the other.
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Figure 6.18: 90%-confidence bands for comparing the two treatments of cancer.
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Figure 6.19: 95%-confidence bands for comparing the two treatments of cancer.

Application in ecology A number of ecological questions can be phrased in terms
of ‘time until an event occurs’. Events of interest might include the arrival of a migrant
or parasite, the display of a particular behavior, the dispersal of a fruit or offspring, the
germination of a seed, the abscission of a flower, or the death of an organisms or a part of
an organism.

Male plants of dioecious species are often more floriferous than female plants, see Loyd
and Webb (1977). This is true of Clematis ligusticifolia Nutt., the species we have considered
in our example. These data were collected in Matthews-Winters Park, Jefferson County,
Colorado, and are available in Muenchow (1986). In this paper it is tested whether males
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and females are equally attractive to insects against the alternative hypothesis that males
are more attractive. The event was defined as the arrival of any flying insect at one of the
flowers. He concluded that male flowers were visited at a significantly faster rate than were
female flowers after carrying out the Cox-Mantel test.

We have constructed the 90% and the 95%-confidence bands for the difference of the
median residual life functions for both groups of plants, see Figure 6.20 and Figure 6.21,
respectively. Since there exist censored data, we have considered the median residual life
function estimator proposed in Csörgo (1987). From the figures we can not conclude that
one group of plants is more attractive than the other.
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Figure 6.20: 90%-confidence bands for comparing the two groups of plants.
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Figure 6.21: 95%confidence bands for comparing the two groups of plants.



Chapter 7

Main results and further research

Stochastic orders have been used during the last four decades in different areas of probability
and statistics. These areas include reliability theory, queueing theory, survival analysis, biol-
ogy, economics, insurance, actuarial science, operations research, and management science.

The simplest way of comparing two distribution functions is by comparing the associated
means. However, such a comparison is based on only two single numbers (the means),
and therefore it is often not very informative. Besides, the means sometimes do not exist.
In many instances in applications, one has more detailed information, for the purpose of
comparison of two distribution functions, than just the two means. The most important and
common stochastic orders that take into account various forms of possible knowledge about
the two underlying distributions are the usual stochastic order, the hazard rate order, and
the mean residual life order.

In Chapter 2 we have introduced and studied a new family of stochastic orderings which
are useful, specially in practical situations. These stochastic orderings are based on the
comparison of percentile residual life functions. Given γ ∈ (0, 1), two random variables are
ordered with respect to the γ-percentile residual life order if the γ-percentile residual life
functions of the variables are ordered for every t. Since the γ-percentile residual life function
does not characterize the distribution, the γ-percentile residual life orders are not orders but
preorders. One of the advantages of these orderings is that the percentile residual life orders
are less sensitive to outliers than the mean residual life order, as we have illustrated through
real data examples. We have also studied whether this family of stochastic orders verify or
not several closure properties, we have established its relationship to other stochastic orders
and described possible applications in diverse disciplines.

Motivated by the applicability of the percentile residual life orders for comparing items
after initial warranty or to compare used items, in Chapter 3 we have proposed and studied
new stochastic orderings which can be used with the same purpose but which are based on
the comparison of all the percentile residual life functions of two random variables, not in the
whole support but from a certain moment t0 > 0 on. They are called percentile residual life

105
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orders from time t0 on and they are also preorders. Analogously, we have defined and studied
new stochastic orders that allow us to compare random variables until t0. These orders are
indeed orders, not only preorders. They were introduced and studied in Chapter 4 and are
useful for comparing items during the warranty period and in medical trials.

The concept of aging is very important in reliability analysis. ‘No aging’ means that
the age of a component has no effect on the distribution of the residual lifetime of the
component. ‘Positive aging’ describes the situation where residual lifetime tends to decrease,
in some probabilistic sense, with increasing age of a component. This situation is common in
reliability engineering as components tend to become worse with time due to increased wear
and tear. On the other hand, ‘negative aging’ has an opposite effect on the residual lifetime.
Although this is less common, when a system undergoes regular testing and improvement,
there are cases for which we have reliability growth phenomenon.

Concepts of aging describe how a component or a system improves or deteriorate with
age. Many classes of life distributions are categorized or defined in the literature according
to their aging properties. An important aspect of such classifications is that the exponential
distribution is nearly always a member of each class. This is due to the memorylessness
property of the exponential distribution.

From the definitions of the life distribution classes, results may be derived concerning such
things as properties of systems (based upon properties of components), bounds for survival
functions, moment inequalities, and algorithms for use in maintenance policies (Hollander
and Proschan, 1984). In Chapter 5 we gave some characterization results of the classes of
distribution functions with decreasing γ-percentile residual life (DPRL(γ)), 0 < γ < 1, in
terms of the percentile residual life orders introduced and studied in Chapter 2. In Launer
(1993) some results relating the behavior of the hazard rate function and the percentile
residual life function are given. He states and illustrates how those relationships can be
useful for studying the behavior of the empirical hazard rate function. In this paper, he shows
that the maximum of the γ-percentile residual life function precedes in time the minimum
of the hazard rate (providing a minimum exists) and that the minimum of the γ-percentile
residual life function precedes the maximum of the hazard rate. This set of relationships
forms the basis for computational procedures in that paper. The determination of the time
at which the γ-percentile residual life function is a maximum can be important in fixing
product warranty. For example, product burn-in could be used to eliminate the units which
fail early, and thus, maximize the reliability of the remaining product.

In Chapter 5 we have also defined two new aging notions for nonnegative random vari-
ables, also based on the percentile residual life function, and we have given some character-
ization results of one of these notions in terms of the stochastic order studied in Chapter 4.
We have also completed the study of Launer (1993) providing some necessary conditions
for bathtub and upside-down bathtub distributions. One of our future lines of research is
to continue with this study trying to characterize the bathtub and upside-down bathtub
distributions in terms of the aging notions defined in Chapter 5. Given a set of γ’s ∈ (0, 1)
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we wonder if it would be possible to define a criteria in order to conclude when a random
variable has a bathtub distribution.

We are also interested in studying the possibility of extending these new families of
stochastic orderings to the multivariate case. In the multivariate case the problem is how
to define the multivariate percentiles. We will also study the possibility of defining new
univariate stochastic orderings based on the comparison of γ-percentile residual life functions
for all t and γ ∈ (α1, γ2), with 0 < γ1 < γ2 < 1.

In Chapter 6, we presented a nonparametric method for constructing confidence bands
for the difference of two percentile residual life functions. The methodology we have used
involves bootstrap techniques and the concept of statistical depth for functional data. These
confidence bands provide us with an evidence of whether two random variables are close with
respect to some percentile residual life order or not. Besides, they do not only allow us to
compare the whole functions, but also in a given interval. A simulation study support the
results and we have presented applications to real data. The next natural step is to design
a hypothesis test to compare percentile residual life functions.

As we have already pointed out in Section 1.2, stochastic orders have been an important
topic in statistics and in many other disciplines. It is common in the literature to develop sta-
tistical tools to check, given two random samples, whether the underlying random variables
are ordered or not with respect to a stochastic order. Some examples of papers which deal
with this topic are Joe and Proschan (1984b) and Cheng (1985) in which tests for comparing
hazard rate functions and percentile residual life functions are proposed, respectively. These
tests, as well as many other tests proposed to compare functions, check the null hypothesis
that two functions are equal for all t, versus the alternative that one dominates the other
for all t. These models do not account for the realistic possibility that the functions cross.
A test designed only to test the null hypothesis of equality may have a large probability of
rejecting this null hypothesis for two populations whose functions cross. Rejection of the
null hypothesis by such a test may be interpreted as evidence that one function dominates
the other only if the possibility of crossing functions can be eliminated a priori. In order to
avoid this fact, Berger, Boos and Guess (1988) proposed tests to compare mean residual life
functions and median residual life functions that included the possibility that the functions
cross. The null hypothesis in these tests is that the two functions are ordered in an interval
(which may be the whole support) versus the alternative that they are not.

We are interested in testing whether two percentile residual life functions are ordered
using a new methodology. This methodology is based on a new idea: extreme measures for
functional data.

Finally, another interesting problem is to check whether the percentile residual life func-
tion or any kind of average of percentile residual life functions can be considered as a risk
measure.

We recall here the definition of a monetary measure of risk (see, for example, in Föllmer
and Schied (2002)). Let Ω be a fixed set of scenarios. A financial position is described by a
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mapping X : Ω → R where X(w) is the discounted net worth of the position at the end of
the trading period if the scenario w ∈ Ω is realized. A general aim is to quantify the risk of
X by some number ρ(X), where X belong to a given class χ of financial positions.

Definition 7.1. A mapping ρ : χ → R is called a monetary measure of risk if it satisfies
the following conditions for all X, Y ∈ χ.

(i) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ).

(ii) Cash invariance: If m ∈ R, then ρ(X + m) = ρ(X)−m.

The financial meaning of monotonicity is clear: The downside risk of a position is reduced
if the payoff profile is increased. Cash invariance is also called translation invariance. It is
motivated by the interpretation of ρ(X) as a capital requirement, i.e., ρ(X) is the amount
which should be added to the position X in order to make it acceptable from the point of
view of a supervising agency. Thus, if the amount m is added to the position and invested
in a risk-free manner, the capital requirement is reduced by the same amount.

The following example shows that the percentile residual life function does not verify the
monotonicity condition for being a measure of risk.

For every α ∈ (0, 1) and every t ∈ R, there exist two random variables X and Y such
that

X ≤st Y and qX,α(t) > qY,α(t).

Let us consider any k ∈ R such that t ∈ (k, k + α). Since α > 0, this is always possible. Let
X have the uniform distribution on (k, k + 1) and let Y have the distribution function given
by

FY (x) =


0, x < k + α;

x− k, k + α ≤ x < k + 1;

1, t ≥ k + 1;

that is, FY is a mixture of a uniform distribution on (k + α, k + 1) with probability 1 − α,
and a degenerate variable at k + α with probability α. We compute

qX,α(x) =


k + α− x, x < k;

α(k + 1− x), k ≤ x < k + 1;

0, t ≥ k + 1;

and

qY,α(x) =


k + α− x, x < k + α;

α(k + 1− x), k + α ≤ x < k + 1;

0, t ≥ k + 1;

It is easy to check that FX(x) ≥ FY (x), for all x. Therefore X ≤st Y . However qX,α(t) >
qY,α(t).
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Indeed, in this example we have X ≤st Y (strictly) and X ≥α−rl Y (strictly). Therefore,
it is not a good idea to consider an average in t. This example shows that any average in t
would not be monotonous either.

We compute for β ≥ α,

qX,β(x) =


k + β − x, x < k;

β(k + 1− x), k ≤ x < k + 1;

0, t ≥ k + 1;

and

qY,β(x) =


k + β − x, x < k + α;

β(k + 1− x), k + α ≤ x < k + 1;

0, t ≥ k + 1;

It is easy to check that qX,β(t) > qY,β(t) for every β ≥ α. Therefore, it is not a good idea to
consider an average in β ≥ α. This example shows that any average in β ≥ α would be not
monotonous either. However, one of our future lines of research is to define a risk measure
based on the percentile residual life function.





References

[1] Arnold, B. C. and Brockett, P. L. (1983). When does the βth percentile residual life
function determine the distribution? Operations Research 31, 391–396.

[2] Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing:
Probability Models, Holt, Rinehart, and Winston, New York.

[3] Belzunce, F., Gao, X., Hu, T., and Pellerey, F. (2004). Characterizations of the hazard
rate order and IFR aging notion. Statistics and Probability Letters 70, 235–242.

[4] Berger, R. L., Boos, D. D., and Guess, F. M. (1988). Tests and confidence sets for
comparing two mean residual life functions. Biometrics 44, 103–115.

[5] Boland, P. J., El-Neweihi, E., and Proschan, F. (1994). Applications of the hazard rate
ordering in reliability and order statistics. Journal of Applied Probability 31, 180–192.

[6] Brown, M. and Proschan, F. (1983). Imperfect repair. Journal of Applied Probability
20, 851–859.

[7] Cheng, K. F. (1985). Test for equality of failure rates. Biometrika 72, 211–215.
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