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Abstract. Although stochastic volatility (SV) models have an intuitive appeal,
their empirical application has been limited mainly due to difficulties involved in
their estimation. The main problem is that the likelihood function is hard to
evaluate. However, recently, several new estimation methods have been intro
duced and the literature on SV models has grown substantially. In this article,
we review this literature. We describe the main estimators of the parameters
and the underlying volatilities focusing on their advantages and limitations
both from the theoretical and empirical point of view. We complete the survey
with an application of the most important procedures to the S&P 500 stock price
index.
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1. Introduction

During the last decade, there has been an increasing interest in modelling the
dynamic evolution of the volatility of high-frequency series of financial returns
using stochastic volatility (SV) models. The main characteristic of these models is
that the volatility is modelled as an unobserved latent variable. SV models are
attractive because they are close to the models often used in Financial Theory to
represent the behaviour of financial prices. Furthermore, their statistical properties
are easy to derive using well-known results on log-normal distributions. Finally,
compared with the more popular GARCH models, they capture in a more
appropriate way the main empirical properties often observed in daily series of
financial returns (see, for example, Carnero et al., 2003). However, until recently,
their empirical applications have been very limited mainly because the exact like-
lihood function is difficult to evaluate and Maximum Likelihood (ML) estimation
of the parameters is not straightforward. However, lately, several estimators who
overcome this problem have been proposed and the literature on SV models has
grown substantially. The objective of this article is to review this literature.

The article is organized as follows. Section 2 describes the properties of the
basic Gaussian Autoregressive SV (ARSV) model and several of its more popular
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extensions as, for example, leverage effect, fat-tailed errors, long-memory and
multivariate models. Section 3 describes the main advantages and limitations of
several estimators of the parameters and underlying volatilities. This section is
completed with an illustration with simulated data. Section 4 describes several
estimation methods for Long-Memory SV (LMSV) models. Section 5 illustrates
the results with an empirical application that compares the principal estimators
by fitting the ARSV model to daily S&P 500 returns. Finally, section 6 concludes
the article.

2. Stochastic Volatility Models

2.1 Autoregressive Stochastic Volatility Model

SV models are closely related to financial models often used to represent stock
prices [see, for example, Ghysels et al. (1996) and Barndorff-Nielsen et al. (2002)].
In the context of Financial Econometrics, they were first introduced by Taylor
(1986) who proposes to model the logarithm of volatility as an AR(1) process.
The corresponding model, known as ARSV(1), is given by

yt ¼ ��"t�t ð1Þ

log �2
t ¼ � log�2

t 1 þ �t; t ¼ 1; :::;T ð2Þ

where yt is the return observed at time t and �t is the corresponding volatility. �*

is a scale parameter that removes the necessity of including a constant term in the
equation of the log-volatility and "t is a white noise process with unit variance
that represents the innovations in the level of returns. The disturbance of the
volatility equation, �t, is assumed to be a Gaussian white noise processes with
variance �2

�, independent of "t. Although the assumption of Gaussianity of �t can
seem ad hoc at first sight, Andersen et al. (2001, 2003) show that the log-volatility
process can be well approximated by a Normal distribution. The variance of the
log-volatility process, �2

�, measures the uncertainty about future volatility. If
�2
� ¼ 0, the ARSV(1) model is not identified. As we will see later, the parameter

� is often considered as a measure of the persistence of shocks to the volatility.
Notice that, when � is close to 1 and �2

� is close to 0, the evolution of volatility
over time is very smooth. In the limit, if �¼ 1 and �2

� ¼ 0, the volatility is constant
over time and, consequently, returns are homoscedastic. Harvey and Streibel
(1998) propose to test for homoscedasticity using this property of the ARSV
model.

The properties of ARSV models have been summarized by Taylor (1994),
Shephard (1996), Ghysels et al. (1996), Capobianco (1996) and Barndorff-Nielsen
and Shephard (2001). In particular, it is easy to prove that the process yt is a
martingale difference. If �j j < 1, then �2

t is stationary and also yt. In this case, the
marginal variance of returns is given by
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�2
y ¼ �2

�exp 0:5�2
h

� �
ð3Þ

where �2
h ¼ �2

�=(1� �2): is the marginal variance of the log-volatility process. The
kurtosis of yt is given by

	y ¼ 	" exp �2
h

� �
ð4Þ

where 	" is the kurtosis of "t. Notice that, if 	" is finite, the kurtosis exists if
�j j < 1. Therefore, as far as the model is stationary, the dynamic evolution of the
volatility is not further restricted to guarantee the existence of the fourth order
moment. Bai et al. (2003) show that the contribution to the overall kurtosis of
returns of the kurtosis of the innovations "t and the kurtosis due to the volatility
clustering is symmetric.

Although the series yt is uncorrelated, it is not an independent sequence. The
dynamics of the series appear in the squared returns. Their autocorrelation
function (acf), derived by Taylor (1986), is given by


2ð�Þ ¼
exp �2

h
hð�Þ
� �

� 1

	" exp �2
h

� �
� 1

; � � 1; ð5Þ

where 
hð�Þ is the autocorrelation of order � of the underlying log-volatility that,
in model (1) and (2), is given by 
hð�Þ ¼ �� . If �2

h is small and/or � close to 1,
Taylor (1986) shows that the acf in (5) can be approximated by


2ð�Þ ’
exp �2

h

� �
� 1

	" exp �2
h

� �
� 1

�� ð6Þ

The pattern of the approximated autocorrelations in (6) is the same as for the
autocorrelations of an ARMA(1,1) model. However, Carnero et al. (2003) show
that the behaviour of the autocorrelations in (5) and (6) can be rather different. In
any case, the parameter � has been considered as the measure of the persistence of
the autocorrelations of squared returns.

Although it is rather common to assume that the errors "t have a Gaussian
distribution, several authors have also considered heavy-tailed distributions [see,
for example, Nelson (1988), Harvey et al. (1994), Barndorff-Nielsen (1997),
Gallant et al. (1997), Mahieu and Schotman (1998), Sandmann and Koopman
(1998), Steel (1998), Liesenfeld and Jung (2000), Anderson (2001) and Watanabe
and Asai (2001) among many others]. Notice that even when "t is assumed to be
Gaussian, the distribution of yt conditional on past observations up to time t� 1
is not Gaussian.

It is also interesting to mention that Liesenfeld and Richard (2003) show that
the ARSV model with Student-t errors can be interpreted as a SV model with two
independent volatility processes [see also Shephard (1996) and Chernov et al.
(2003) for SV models where the volatility has different components].
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The ARSV(1) model can be linearized by taking logarithms of squared returns:

log y2t
� �

¼ �þ ht þ t ð7Þ

ht ¼ �ht 1 þ �t ð8Þ

where � ¼ log �2
�

� �
þ E log "2t

� �� �
, ht ¼ log �2

t

� �
and t ¼ log "2t

� �
� E log "2t

� �� �
.

Model (7) and (8) is a non-Gaussian linear state space model where (7) is the
measurement equation and (8) is the transition equation. The properties of the
measurement noise, t, depend on the distribution of "t. If, for example, "t is
Gaussian, t has a log�2

(1) distribution with �2
 ¼ Var log "2t

� �� �
¼ �2

2
and

E 4t
� �

¼ 3�2
 þ �4 [see Abramowitz and Stegun (1970)].

Given that log y2t
� �

is the sum of two independent stationary processes, it is easy
to derive its acf:


ð�Þ ¼ �2
h

�2
h þ �2



�� ð9Þ

Pérez and Ruiz (2003) have analysed, in the context of SV models, the proper-
ties of the sample autocorrelations of y2t and log y2t

� �
as estimators of the corres-

ponding population counterparts.
Recently Yu et al. (2002) propose a new class of SV models, the non-linear SV

model, where the volatility is transformed according to the Box–Cox power
function. This new specification includes the log-normal SV model.

An interesting extension of the basic ARSV(1) model consists of incorporating
the asymmetric response of volatility to negative and positive returns. This effect,
known as leverage effect, was first pointed out by Black (1986) and has been often
observed in real time series of returns. Harvey and Shephard (1996) proposed to
introduce the leverage effect into the ARSV model by allowing the disturbances "t
and �tþ 1 to be negatively correlated. Later, Jacquier et al. (2004) propose an
ARSV model with leverage effect where "t and �t are correlated. However, Yu
(2002b) points out the problems involved in the latter specification and provides
empirical evidence favouring the specification proposed by Harvey and Shephard
(1996). Finally, So et al. (2002) propose a threshold SV model that is also able to
represent the leverage effect.

On the other hand, it could be expected that higher levels of volatility
are associated with higher expected returns. The SV in mean (SVM) model incor-
porates this relationship between mean returns and volatilities. The SVM model as
proposed, for example, by Koopman and Uspensky (2002) is given by

yt ¼ ���2�2
t þ ��"t�t ð10Þ

where st is defined as in equation (2) and � is the parameter measuring the
volatility-in-mean effect.

Finally, it has often been observed that the decay towards zero of the acf of the
squared returns is neither exponential, as in short-memory processes, nor implies
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a unit root, as in integrated processes. Consequently, it has been suggested
that the volatility may be modelled as a long memory process, whose auto-
correlations decay at an hyperbolic rate [see, for example, Ding et al. (1993)].
In the context of SV models, Breidt et al. (1998) and Harvey (1998) propose
independently the LMSV model, where the log-volatility is modelled as an
ARFIMA (p,d,q) process. In particular, if p¼ 1 and q¼ 0, the volatility is
given by

ð1� �LÞð1� LÞd log �2
t

� �
¼ �t ð11Þ

where d is the long memory parameter. Model (11) is stationary when �j j < 1 and
d< 0.5 and encompasses the short memory model in (2) when d¼ 0. Harvey
(1998) shows that the acf of squared returns is given by expression (5) where
the variance and the acf of the underlying log-volatility are given by

�2
h ¼ �2

�

�ð1� 2dÞ
�ð1� dÞ½ �2

Fð1; 1þ d; 1� d;�Þ
ð1þ �Þ


hð�Þ ¼
Y� 1

i¼0

d þ i

1� d þ i

 !
Fð1;d þ � ;1� d þ � ;�Þ þFð1;d � � ;1� d � � ;�Þ � 1

ð1� �ÞFð1;1þ d;1� d;�Þ

respectively, where �ð�Þ is the gamma distribution and F( � , � ; � ; � ) is the hyper-
geometric function. Andersen and Bollerslev (1997) and Robinson (2001) show
that, for large lags, � , the autocovariances of squares decay at the same rate as the
autocovariances of ht. However, if � is small, the rate of decay of the acf in (5)
could be rather different from the rate of decay of the acf of ht (Pérez & Ruiz,
2003).

2.2 Multivariate Stochastic Volatility Models

Multivariate models have been often used to represent systems of financial
returns related, for example, with the Asset Pricing Theory (APT),
asset allocation, estimation of time-varying betas or Value-at-Risk (VaR). In
the context of stochastic volatility models, Harvey et al. (1994) propose the
following multivariate model which allow the variances and covariances to evolve
through time with possibly common trends

yit ¼ ��i"it�it; i ¼ 1; : : : ; n ð12Þ

log �2
it

� �
¼ �ilog �2

it 1

� �
þ �it

where "t ¼ ("1t; . . . ; "nt)
0 has a multivariate Normal distribution with covariance

matrix S" and �t ¼ (�1t; . . . ; �nt)
0 is distributed independently from "t following a

multivariate Normal distribution with covariance matrix S�.
The main limitation of this model is that it restricts the correlations to be

constant over time. Danielsson (1998) extends this model to allow for leverage
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effects and time-varying correlations. Later, Ray and Tsay (2000) used the same
model to study common long memory components in daily stock volatilities of
groups of companies.

Alternatively, Jacquier et al. (1995) and Shephard (1996) propose a factor
model for returns, where the factors are SV processes. The factor-SV model is
given by

Yt ¼ Dft þ at; t ¼ 1; : : :T ð13Þ

fit ¼ "it�it; i ¼ 1; : : : ;K

log �2
it

� �
¼ !i þ �ilog �2

it 1

� �
þ �it

where Yt ¼ (y1t; . . . ; ynt) is the vector of returns observed at time t, D is the matrix
of factor loadings restricted as usual to be identified and at ¼ (a1t; . . . ; ant) is the
vector of idiosyncratic noises assumed to be NID(0, Sa ) where �a ¼ diag �2

ai

� �
.

Jacquier et al. (1995), Shephard (1996) and Liesenfeld and Richard (2003) have
considered a single-factor model, i.e. K¼ 1. Extensions to K factors and/or
idiosyncratic errors following SV processes have been analysed by Kim et al.
(1998), Pitt and Shephard (1999b) and Aguilar and West (2000). Finally, Chib et
al. (2002b) generalize model (13) allowing series-specific jumps at each time and
Student-t innovations, at, with unknown degrees of freedom, and Lopes and
Migon (2003) allow for factor loadings to evolve over time.

Very recently, Tims and Mahieu (2003) have proposed to fit a multivariate SV
model to the logarithmic range. The logarithmic range is a proxy for volatility
that is approximately Gaussian, allowing for the application of standard Kalman
filter techniques to estimate the corresponding models.

3. Estimation of the Parameters of ARSV(1) Models

Estimation methods of the parameters of the short-memory ARSV(1) model in
(1) and (2) can be classified into two general groups. The first class is comprised
by estimators based directly on the statistical properties of yt. There are three
main classes of estimators within this group: (i) estimators based on the method
of moments (MM); (ii) estimators based on the ML principle and (iii) estimators
based on an auxiliary model. Alternatively, the parameters of the ARSV(1) model
can also be estimated using the linear model in (7) and (8). In subsection 3.1, we
describe the estimators within the first group while subsection 3.2 deals with the
estimators based on log y2t

� �
.

3.1 Methods Based on yt

3.1.1 Method of Moments

The simplest estimator within this group is the MM used by, for example, Taylor
(1986). Later, Melino and Turnbull (1990) proposed to estimate the parameters of
the ARSV(1) model using generalized method of moments (GMMs) which, under
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very general conditions, is consistent and asymptotically normal (Hansen, 1982).
These estimators are based on the convergence of selected sample moments to
their unconditional expected values. The procedure also implies the estimation of
a weighting matrix that takes into account the non-iid property of the moment
discrepancies. Andersen and Sørensen (1996) propose to improve the MM pro-
cedure by using a penalty function to ensure stationarity of the model and
employing a modified weighting matrix. The problem is that the score function
in ARSV models cannot be computed and, consequently, the proper set of
moments to be used should be guessed. Alternatively, Duffie and Singleton
(1993) proposed the simulated method of moments (SMM) that replaces the
analytical moments by the moments of a simulated process.

The main attraction of these estimators is that their empirical implementation
is very simple. Consequently, they have been extensively used to estimate the
parameters of SV models [see, for example, Andersen (1994b), Ghysels and Jasiak
(1996), Vetzal (1997) and Fleming et al., 1998].

However, these procedures have poor finite sample properties, and their effi-
ciency is suboptimal with respect to ML methods. Jacquier et al. (1994) (JPR) find
substantial bias and sampling variability, especially for the estimates of �2

� and
show that the performance of the technique worsens when � is close to 1 and the
coefficient of variation, defined as CV ¼ V �2

t

� �
= E �2

t

� �� �2 ¼ exp
�2
�

1 �2

n o
� 1, is

small. As real time series of returns are characterized by highly persistent volati-
lities, it seems that the methods based on the MM principle are not suitable for
estimating the parameters of SV models. Furthermore, the GMM criterion sur-
face for the ARSV(1) model is highly irregular. Therefore, optimization fails to
converge, specially for small sample sizes. A large amount of non-converging
estimations has been reported by Andersen and Sørensen (1996). This problem
can be caused by imprecise estimates of the long-run covariance matrix and,
consequently, would disappear with an accurate approximation of the true
weighting matrix (Andersen et al., 1999).

Finally, given that GMM estimators do not generate estimates of the under-
lying volatilities, other procedures as, for example, the Kalman filter or the
reprojection technique of Gallant and Tauchen (1998) should be used to get
them [see, for example, Andersen (1994b) and Ghysels and Jasiak (1996)].

3.1.2 Maximum Likelihood Estimators

Recently, ML estimators of the parameters of SV models have experienced a big
progress, thanks to the development of numerical methods based on importance
sampling and Monte Carlo Markov Chain (MCMC) procedures. In order to
derive the likelihood, the vector of the unobserved volatilities has to be integrated
out of the joint probability distribution. If we denote by YT ¼ (y1; . . . ; yT )

0

the vector of observations, � ¼ (�1; . . . ; �T )
0 the vector of unobserved

volatilities and � ¼ ð!; �; �2
�Þ

0 the vector of unknown parameters, the likelihood
is given by
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f ðYT j�Þ ¼
Z

f ðYT j�; �Þf ð�j�Þd� ð14Þ

The dimension of the integral in (14) is equal to the sample size, T, and its
evaluation requires numerical methods.

The first importance sampling algorithm applied to SV models was by Geweke
(1994), who also introduced the possibility of using MCMC in this setting.
Although his procedure has not been directly applied to real time series, it is
important because it was the basis of many subsequent procedures, for example,
Danielsson (1994), Shephard and Pitt (1997) and Sandmann and Koopman
(1998). The main attraction of importance sampling over MCMC algorithms is
that it is less computationally demanding and avoids convergence problems.
Furthermore, the accuracy of the estimators can be increased by augmenting
the simulation sample size. On the other hand, MCMC algorithms are more
flexible because they allow large dimensional problems to be split into smaller
dimensional tasks.

MCMC estimators of the parameters of ARSV(1) models, proposed indepen-
dently by Shephard (1993) and Jacquier et al. (1994), have been extensively used
in the context of SV models [see, for example, So et al. (1998), Steel (1998),
Mahieu and Bauer (1998), Chib et al. (2002a), So et al. (2002) and Yu et al.
(2002) among many others]. The Bayesian approach for estimating the para-
meters � is to augment this vector with the latent log-volatilities,
HT ¼ ðlogð�2

1Þ; . . . ; logð�2
T ÞÞ

0, forming the vector � ¼ ð�0;H 0
TÞ

0 ¼ (�1; �2; . . . ; �m)
0

Then, the problem is to obtain draws from the posterior density f ð�jYTÞ. The
MCMC algorithm creates a Markov process on the blocks of the unknown
parameters and latent volatilities and run the simulation sufficiently long, so
that the distribution of the current values of the process converges to the posterior
density. There are several Markov chain methods that can lead to the same
posterior distribution, and the Gibbs sampling is perhaps the most popular.
Given a starting value �(0), the algorithm consists on obtaining draws �(i)1 from
f ð�1j�(i 1)

2 ; . . . ; �(i 1)
m ;YtÞ, �(i)2 from f ð�2j�(i)1 ; �

(i 1)
3 . . . ; �(i 1)

m ;YtÞ, . . . , and �(i)m from
f ð�mj�(i)1 ; �

(i)
2 . . . ; �(i)m 1;YtÞ from i ¼ 1; . . . ;M þN. Tierney (1994) shows that under

mild conditions, ð�(i)1 ; . . . ; �(i)m Þ converges in distribution to the posterior as i tends to
1. Usually, the first M burn-in iterates are discarded and the last N iterates are
considered as an approximately independent sample from f (�jYT ). Therefore, the
MCMC procedure requires to simulate from suitable conditional distributions. In
these iterations, sampling from f (�jHT ;YT ) is fairly straightforward, if conjugate
priors are used. On the other hand, sampling from f (HT jYT ; �) can be done by a
single-state sampler where each observation ht is drawn conditional on the value of
all the other observations. However, if � is close to 1 and �2

� is small, the volatility is
highly correlated and the single-state sampler, as used by Jacquier et al. (1994),
generates high level of correlation between draws and, consequently, the algorithm
is inefficient and converges very slowly to the posterior distribution (Shephard &
Kim, 1994). The efficiency of a MCMC algorithm is determined by how close these
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potentially correlated draws from the posterior distribution are from being inde-
pendent. Sampling the latent volatility can be done more efficiently with multi-state
samplers that draw the entire vector HT at once. Shephard and Pitt (1997) have
suggested an efficient multi-move algorithm that outperforms the single block
approach in computational terms (Sandmann & Koopman, 1998; Wong, 2002).
Multi-move samplers have also been considered by Kim et al. (1998), So et al.
(1998), So and Li (1999), Chib et al. (2002a) and So et al. (2002).

In any case, after M Monte Carlo replicates of the parameters have been
obtained, �(i), it is possible to obtain density estimates. Point estimates of

any function g(�) can also be formed using the posterior mean, i.e. dg(�)g(�) ¼
1
N

PMþN
i¼Mþ1 g �(i)

� �
. On the other hand, a natural choice to obtain smooth estimates

of the log-volatilities is the marginal posterior expectation which can be estimated

by the sample mean given by 1
N

PMþN
i¼Mþ1 h

(i)
t . Finally, it is also possible to obtain

interval predictions of future volatilities conditional on the information available
at time T that take into account the inherent model variability and the parameter
uncertainty.

In the Bayesian framework, comparison between alternative models can be
carried out using the Bayes factor which involves the calculation of the marginal
likelihood [see, for example, Kim et al. (1998), Jacquier et al. (2004) or Yu (2002b)
for alternative procedures to compute the marginal likelihood]. Berg et al.
(2004) propose to compare models via the information criteria.

Summarizing, the main attraction of MCMC procedures is that they permit to
obtain simultaneously sample inference about the parameters, smooth estimates of the
unobserved variances and predictive distributions of multistep forecasts of volatility.
On top of that, if the simulation size is large, they have asymptotically the same
distribution as the ML estimator. In any case, notice that an important advantage of
the MCMC estimators is that inference is based on finite sample distributions and,
consequently, the asymptotic approximation is not needed. The main disadvantage is
that their implementation is rather complicate and computer consuming.

By means of an extensive Monte Carlo study, Jacquier et al. (1994) show
that MCMC is more efficient than both quasi-maximum likelihood (QML)1

and GMM estimators. They consider the following parameter design that has
been extensively used afterwards in the literature: �¼ 0.9 with �2

� ¼
ð0:4556; 0:1317; 0:0182Þ; �¼ 0.95 with �2

� ¼ ð0:2337; 0:0676; 0:0092Þ and, finally,
�¼ 0.98 with �2

� ¼ ð0:0948; 0:0274; 0:0037Þ.
Recently, MCMC procedures have been extended to estimate the parameters

and volatilities of SV models with fat tails [see, for example, Watanabe and Asai
(2001), Chib et al. (2002a), Jacquier et al. (2004) and So et al. (2002)]. SV models
with leverage effect have been estimated using MCMC procedures by Meyer and
Yu (2000), Yu (2002b), So et al. (2002) and Eraker et al. (2003). However, Andersen
(1994a) points out that Jacquier et al.’s (1994) procedure is not easily applicable
to SVM models. In general, due to its lack of flexibility, these procedures need to
be non-trivially modified for extensions such as the introduction of explanatory
variables as well as the multivariate approach (Jacquier et al., 1995). Furthermore,
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increasing the number of parameters imposes a big computational cost to the
MCMC procedure. For example, Jacquier et al. (1994) always remove the
AR(1) component and the monthly effects in their empirical applications in order
to decrease the number of parameters.

Alternatively, Danielsson and Richard (1993) proposes the simulated maxi-
mum likelihood (SML) estimator as a general method for estimation of dynamic
latent models, and Danielsson (1994) applied it to the ARSV model. The
likelihood in (14) is evaluated by simulation specifying a density 
(�) whose
expectation equals f (YT j�). By taking N draws from 
(�), a natural estimator of
f (YT j�) is given by

f̂f ðYT j�Þ ¼
1

N

XN
i¼1


ðiÞð�Þ ð15Þ

Once the likelihood is evaluated by simulation, estimates are obtained using a
derivative-free optimizer. The SML estimator has the same asymptotic distribu-
tion as the ML estimator. Danielsson (1994) shows that SML and JPR have
similar root mean square error (RMSE). However, his conclusions are based on
just one experiment with �¼ 0.9 and s�¼ 0.363 and T¼ 2000.

With respect to the solution to the smoothing problem, Liesenfeld and Richard
(2003) propose a procedure to estimate the underlying volatilities.

The SML estimator has been implemented to the empirical analysis of financial
returns by, for example, Liesenfeld (1998), Liesenfeld and Jung (2000) and
Liesenfeld (2001). Liesenfeld and Richard (2003) extends the SML estimator to
SV models with non-Normal latent variables and errors and to multivariate
models [see also Danielsson (1994, 1998) for leverage effect and multivariate
extensions].

However, the SML procedure suffers from several drawbacks. First, the way
in which the integral is evaluated is not direct, so that it is hard to measure
the accuracy of the proposed approximation. In fact, the likelihood can only
be exactly evaluated for �¼ 0 and for the rest of parameter values is not avail-
able. To solve this problem, Jacquier et al. (1994) propose to nest the SML
procedure in a wider Bayesian framework using Monte Carlo methods of numer-
ical integration. However, this extension is not yet developed. On top of that,
Shephard (2000) shows that typical importance samplers for the ARSV model
may not posses a variance and, consequently, not obey a standard central limit
theorem.

Alternatively, Fridman and Harris (1998) propose a direct ML estimation
method that calculates the likelihood function directly by means of the recursive
numerical integration procedure suggested by Kitagawa (1987) for non-Gaussian-
filtering problems. This method can be considered as an extended Kalman filter.
Through a small simulation experiment, they conclude that the direct ML proce-
dure performs better than QML and GMM, and similar to SML, the simulated
expectation maximization (SEM) algorithm by Kim and Shephard (1994) and the
JPR procedure. The smoothed sequence of volatilities can be obtained with an
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additional forward-recursion step in the extended filter. They apply their tech-
nique to the S&P 500 index considering both Gaussian and Student-T errors.

Finally, Watanabe (1999) proposes a non-linear-filtering natural extension of
QML. He obtains the exact form of the likelihood by means of a non-linear filter
that makes use of the conditional probability density functions of the log-volatility
and the observed series.2 By means of a small Monte Carlo comparative study
with the same design proposed by JPR, he shows that the efficiency of the
non-linear-filtering maximum likelihood (NFML) procedure is close to the SML
and JPR procedures. He also proposes a smoothing algorithm to estimate the
volatilities that is shown to be superior to the standard smoothing solution used
in QML. The NFML procedure can be used in models with a linear structure in
the mean where the errors are assumed to be normal.

However, one of the main drawbacks of methods based on an extended Kalman
filter [as Fridman and Harris (1998) or Watanabe (1999)] is their slow computa-
tional convergence. These procedures also involve choosing a priori a fixed grid
over which the process will be integrated, and the optimal grid may not exist
(Sandmann and Koopman, 1998).

3.1.3 Estimation Procedures by Means of an Auxiliary Model

SV models are easy to simulate, although they are difficult to estimate. The
methods described in this subsection choose an auxiliary model that is easy to
estimate. There are two main methods proposed within this group: Indirect
Inference and Efficient Method of Moments (EMMs).

The indirect inference estimator proposed by Gourieroux et al. (1993) is given
by

~��
H

T ¼ argmin

� 2 �
�̂�T � ~��THð�Þ
� �0

�̂�T �̂�T � ~��THð�Þ
� �

ð16Þ

where �̂�T is obtained by maximizing an auxiliary criterion from the auxiliary
model QT (�; yt);

~��TH (�) is an estimate of the binding function obtained by
maximizing QTH(�; yTH(�)) and yTH(�) ¼ (y1; . . . ; ytH) is a vector of simulated
observations from the SV model. Gourieroux et al. (1993) propose the quasi-
likelihood function of Harvey et al. (1994) as an auxiliary criterion to estimate a
continuous time SV process (Pastorello et al., 1994). Several alternative models
have been proposed as auxiliary models. For example, Engle and Lee (1996) and
Calzolari et al. (2001) use GARCH models, Monfardini (1998) uses AR(m) and
ARMA(1,1) models, van der Sluis (1997) uses an EGARCH model and Fiorentini
et al. (2002) use a non-linear asymmetric GARCH (NAGARCH) model.

The EMM approach, introduced by Bansal et al. (1993, 1995) and Gallant and
Tauchen (1996), is similar but is based on score calibrating the criterion function.
EMM improves the Indirect Inference approach in computational terms, as there
is no need to refit the score to each simulated realization, while in the Indirect
Inference procedure the binding function should be computed at each step.
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The EMM procedure has been implemented by Engle (1994), Ghysels and Jasiak
(1996), Andersen and Lund (1997), Chernov and Ghysels (2000), Dai and Singleton
(2001) and Chernov et al. (2003), among others, to estimate SV models in
continuous time. Gallant et al. (1997) and Jiang and van der Sluis (1998, 2000)
use EMM to estimate discrete time univariate and multivariate SV models.

Gourieroux et al. (1993) show that the Indirect Inference and EMM estimators
are asymptotically equivalent. Both estimators are consistent and asymptotically
normal. Furthermore, Tauchen (1997) and Gallant and Long (1997) show that
the estimated covariance matrix of the EMM estimator approaches that of ML,
as the score generator approaches the true conditional density.

With respect to the finite sample properties of Indirect Inference and EMM
estimators, Monfardini (1998) shows that the former estimator performs well in
finite samples, but JPR and the SEM of Kim and Shephard (1994) procedures are
more efficient. Andersen et al. (1999) observe that the EMM estimator is more
efficient than GMM, although it is not as efficient as JPR. They also state that the
efficiency of the method for finite samples strongly depends on the choice of the
auxiliary model [see also Calzolari et al. (2000) for similar Monte Carlo results on
a related estimator].

Gallant and Tauchen (1998) show how to obtain estimates of the underlying
volatilities after the parameters have been estimated by EMM.

One of the main drawbacks of the Indirect Inference and EMM estimators is
that they are very expensive in computational terms.

Table 1 summarizes the properties of the estimators described in this
subsection.

3.2 Methods Based on log (y2t )

3.2.1 Quasi-Maximum Likelihood

The QML estimator, proposed independently by Nelson (1988) and Harvey et al.
(1994), is based on linearizing the SV model by taking logarithms of squares as in
model (7) and (8). Treating t as if it were Gaussian, the Kalman filter can be
applied in order to obtain the quasi-likelihood function of logðy2t Þ which, ignoring
constants, is given by

logL logðy2Þj�
� �

¼ � 1

2

X
t¼1

T

logFt �
1

2

X
t¼1

T �2
t

Ft
ð17Þ

where �t is the one-step-ahead prediction error of logðy2t Þ and Ft is the corres-
ponding mean-squared error. Ruiz (1994) shows that the QML estimator is
consistent and asymptotically normal. However, the QML procedure is ineffi-
cient, as the method does not rely on the exact likelihood of logðy2t Þ. Note that
approximating the density of t by a normal density instead of using the true
logð�2

1Þ density could be rather inappropriate (see Figure 1 for a comparison of
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both densities). The effects of this approximation depend on the true parameter
values and are worse, as the variance of the volatility equation �2

� decreases.
On the other hand, an inlier problem often arises when dealing with the log-

squared transformation. When returns, yt, are very close to zero, the log-squared
transformation yields large negative numbers. In the extreme case, if the return is
equal to 0, the log-squared transformation is not defined. In Figure 1, large
negative values in the distribution of logð�2

1Þ reflect the presence of those inliers.
To solve this problem, Fuller (1996) proposes the following modification of the
log-squared transformation

y�t ¼ logðy2t þ �s2Þ � �s2

y2t þ �s2
ð18Þ

where s2 is the sample variance of yt and � is a small constant. In several studies,
this constant has been set equal to 0.02 (Fuller, 1996; Breidt and Carriquiry, 1996;
Bollerslev and Wright, 2001).

The finite sample properties of the QML estimator have been analysed by Ruiz
(1994) who shows that the bias of the estimator of �2

� increases when �2
� decreases.

Jacquier et al. (1994) also find that QML has inadequate finite sample properties
when the persistence is high and �2

� is small. Furthermore, they also remark that,
in this case, there is a huge degradation in the filtering performance in terms of
the RMSE. However, Sandmann and Koopman (1998) and Breidt and Carriquiry
(1996) state that although QML is inefficient, it is not as bad as Jacquier et al.
(1994) show. These authors suggest that the bad results of QML in Jacquier et al.
(1994) may be due to an inefficient implementation of the procedure (poor
starting values, different convergence criteria, etc.). On the other hand, Andersen
and Sørensen (1996) show that the QML estimator dominates the GMM
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Figure 1. The logð�2
1Þ Density (Solid Line) and its Corresponding Normal Approximation

(Thick Solid Line).
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estimator for models with a high degree of persistence. Deo (2002) provides
theoretical intuition for this finding.

Once the parameters have been estimated, Harvey et al. (1994) propose to
implement a smoothing algorithm based on the Kalman filter to obtain estimates
of the underlying log-volatilities. However, the Kalman filter yields minimum
mean square linear estimators (MMSLEs) of ht rather than minimum mean
square estimators (MMSEs).

Despite the limitations of the method, QML procedure is very flexible and has
been extensively implemented for the empirical analysis of financial returns3 [see,
for example, Hwang and Satchell (2000) and Yu (2002a)]. Furthermore, several
generalizations of the method have been proposed. For instance, the QML
estimator can be directly implemented to estimate models with heavy-tailed
errors and can also be easily extended to models with explanatory variables or
other ARMA models for the log-volatility. Furthermore, the multivariate
generalization is straightforward in this context (Harvey et al., 1994; Lien and
Wilson, 2001; McMillan, 2001). Missing or irregularly spaced observations
can also be easily handled. Finally,Harvey and Shephard (1996) show that, after
imposing certain distributional assumptions about "t and �t, the QML estimator of
the SV model with leverage effect is consistent and asymptotically normal.

Finally, Alizadeh et al. (2002) propose a QML estimation procedure based on
using the range as a proxy of the volatility. The range is defined as the difference
between the highest and lowest log security prices over a fixed sampling interval.
The new procedure is applied to five exchange rates.

3.2.2 Other Methods Based on Linearization

In this subsection, we describe methods that try to approximate the likelihood of
logðy2t Þ. Originally, Kim and Shephard (1994) proposed a simulated expectation
maximization (SEM) algorithm using a mixture of seven normal distributions to
match the first four moments of logð"2t Þ. Later,Mahieu and Schotman (1998)
propose a more flexible mixture in order to accommodate a wider range of shapes
of logð"2t Þ. The main advantage of approximating the distribution of logð"2t Þ by
mixtures of normals is that, conditional on the mixture component, the state
space model in (7) and (8) is Gaussian. In addition, the use of mixtures makes the
procedure more robust than QML to the inlier problem. A multimove Gibbs
sampling technique that extends the usual Gaussian Kalman filter can then be
applied (Carter and Kohn, 1994; Shephard, 1994).

The performance of the SEM procedure for finite samples has been studied by
Fridman and Harris (1998), who show that this procedure is similar to MCMC
and SML in terms of efficiency.

Later, Kim et al. (1998) (KSC) propose a procedure that nests and improves
several aspects of the SEM estimator. Specifically, they propose a MCMC algo-
rithm that samples all the unobserved volatilities simultaneously by means of an
approximating offset mixture of normal model, together with an importance
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reweightening procedure to correct the linearization error. The KSC procedure
provides efficient inferences, likelihood evaluation, filtered volatility estimates,
diagnostics for model failure and computation of statistics for comparing non-
nested volatility models. However, its finite sample properties have not been
compared with other estimators [see Steel (1998) for an alternative MCMC
algorithm for logðy2t Þ].

The generalization of the KSC method to Student-t errors was proposed by
Chib et al. (2002a) who also include a generalization of the method for the SV
model with jumps.

Alternatively, Sandmann and Koopman (1998) propose the Monte Carlo
Likelihood (MCL) procedure that approximates the likelihood function of logðy2t Þ
by aGaussian part constructed via the Kalman filter plus a correction for departures
from the Gaussian assumption relative to the true unknown model as follows

logL Y�
T j�

� �
¼ logLGðY�

T j�Þ þ logEG

flog�2
1
ðj�Þ

f
G
ðj�Þ

 !
ð19Þ

where Y�
T ¼ ðlogðy21Þ; . . . ; logðy2TÞÞ, LGðY�

T j�Þ is the Gaussian likelihood function,

flog�2
1
(j�) is the true logð�2

1Þ density, fG (j�) is the importance density corresponding

to the approximating Gaussian model and EG refers to the expectation with this
density. The MCL is based on estimating model (7) and (8) assuming conditional

Gaussianity and computing logLGðY�
T j�Þ and the corresponding estimates of ̂t.

Then, using Shephard and Pitt (1997) and Durbin and Koopman (1997), N impor-

tance samples from the importance density are generated, ~
(i)

t , i¼ 1,. . .,N together

with the quantities !ð~(i)t Þ ¼ flog�2
1
ð~(i)t j�Þ=f

G
ð~(i)t j�Þ. Finally, the sample mean and

variance through all importance samples of !ð~(i)t Þ, denoted by ! and s2w, respec-

tively, are computed. The unbiased estimate of logLðY�
T j�Þ in (19) is given by

dlog L Y�
T j�

� �
log L Y�

T j�
� �

¼ logLG Y�
T j�

� �
þ log!þ s2w

2N !2
ð20Þ

Then, MCL estimates of the parameters are obtained by numerical optimization
of (20). Sandmann and Koopman (1998) recommend a small number of draws,
N¼ 5, to obtain similar efficiency as compared with MCMC methods. The MCL
procedure also generates simultaneously estimates of the latent volatilities. The
Kalman filter smoother applied to the approximating Gaussian model (7) and
(8) effectively computes the posterior mode estimates of the volatility. If the
posterior mean is required, it is possible to use the following computationally
efficient algorithm of Durbin and Koopman (2000):

log �2
t=T

� �
¼ log y2t

� �
�
XN
i¼1

ft e(i)t
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where ft ¼ !ð̂(i)t Þ
N! . Notice that the smoothness of MCL estimates of the underlying

log-volatilities can be controlled by the number of replications in the importance
sampler.

The MCL estimation procedure can be easily generalized to heavy-tailed errors,
explanatory variables or to the inlier problem. The multivariate case is not yet
available. Although Sandmann and Koopman (1998) also mention that the MCL
can be implemented in models with correlated "t and �t and with stochastic
seasonal components, these extensions have not yet been developed in the
literature.

Brandt and Kang (2004) propose an interesting application of the MCL pro-
cedure for monthly returns on the CRSP index and use MCL to fit a VAR model
where the first equation describes the dynamics of the conditional mean and the
second equation defines the variance as a SV model.

The MCL procedure has also been generalized to the SVM model by Koopman
and Uspensky (2002) who estimate the underlying volatilities by means of the
particle-filtering technique of Pitt and Shephard (1999a).

Recently, Singleton (2001) and Knight et al. (2002) have proposed a new
estimation procedure based on the empirical characteristic function (ECF). As
logðy2t Þ is the convolution of an AR(1) and an independent logð�2

1Þ process, there
is a closed form expression for the characteristic function, so that the model is
fully and uniquely parameterized by it. Knight and Yu (2002) establishes the
strong consistency and asymptotic normality for the ECF estimators with a
general weight function.

Table 2 summarizes the main estimators of the parameters of the ARSV(1)
model described in this subsection, together with their asymptotic properties and
their main advantages.

3.3 Illustration with Simulated Data

The objective of this section is to show how the main estimators described in this
article can be implemented to real data and to illustrate whether the estimates of
the parameters and volatilities obtained are different. Notice that a proper
comparison of the properties of the alternative estimators requires a Monte
Carlo study that is beyond the objectives of this survey. We simulate one series
of size T¼ 5000 by each of the two following ARSV models: �¼ 0.95, �2

� ¼ 0:05
and �� ¼ 1:0 (M1) and �¼ 0.98, �2

� ¼ 0:02 and �� ¼ 1:0 (M2) The parameters
have been selected to represent values often found in empirical applications of
daily returns. The estimation is carried out using the whole series and using also
the first 500 and 1500 observations by GMM, JPR, QML, MCL and KSC. With
respect to GMM, estimates of the covariance of the differences between the
sample and populational moments have been obtained as in Melino and Turnbull
(1990).4 We have not obtained the original code of the JPR estimator and,
consequently, we have implemented our own code following Wong (2002) with
the number of iterations suggested by JPR, i.e. 1500 burn-in iterations and 2500
iterations.5 The convergence of the resulting algorithm is extremely slow.6 The
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MCL procedure is implemented using the library SsfPack 2.3 of Koopman,
Shephard and Doornik (1999).7 The program employed for estimation is named
sv_mcl_est.ox and can be downloaded from the website of Siem Koopman.8 The
KSC procedure to estimate the parameters is implemented in BUGS following the
approach by Meyer and Yu (2000)9 with 10,000 iterations and 1000 burn-in
iterations. The underlying volatilities have been estimated using the software
package SVPack 2.1 by Neil Shephard.10

Estimates of the scale parameter, s*, are obtained in different ways depending
on the estimation procedure. In the QML case, �̂�� is the sample SD of the
observations standardized by the smoothed estimates of the volatility [see Harvey
and Shephard (1993) for details on this standardization]. The approximation of

the asymptotic variance of �̂�� is given by Varð�̂�2
�Þ ¼ ð�2

�
2Þð�̂�2

�Þ
2=T . In MCL and

JPR, the corresponding algorithms obtain estimates of � ¼ ð1� �Þ logð�2
�Þ, hence

estimates of �* and its corresponding SD are obtained after transformation.
Finally, KSC estimates directly �*.

Table 3, that reports the estimation results for model M1, shows that when
T¼ 500, the GMM estimates of � and �2

� underestimate the true values and suggests
that the volatility is nearly constant over time. Furthermore, the SDs of these
estimates are clearly greater than those for any of the other methods considered.
Finally, we would like to point out that, for this moderate sample size and the
particular series generated, we encounter important difficulties for the convergence
of the GMM estimation algorithm. The estimates of � and �2

� obtained by the other
methods are rather similar. With respect to their SEs, the biggest corresponds to the
QML estimator and the smallest to the KSC. Looking at the estimates of the scale
parameter, it can be observed that all of them are very similar. However, in this case,
the smallest SE corresponds to the GMM estimator and the biggest to the KSC
estimator. Finally, for the larger sample sizes, T¼ 1500 and 5000, the estimates of all
the parameters are similar independently of the estimator used. The main differences
between the estimators arise in the SEs, with the GMMSEs of b�� and b��2

� being rather
big compared with the other estimators. Notice that the results for QML and KSC
are remarkably similar. Once more, the smallest SEs of the estimates of �* are
obtained using the GMM and QML estimators.

The results for the M2 model are reported in Table 4 and are very similar to the
ones reported in Table 3. Although these results have just scratched the surface of
the problem and, as we mentioned before, they have just an illustrative purpose, it
seems that the estimator of the scale parameter based on the corresponding
sample moment has good properties. Therefore, as suggested by Harvey and
Shephard (1993), it seems that to standardize the original observations using the
estimated marginal SD before the ARSV model is estimated and then to estimate
the scale parameter by the sample SD of the observations standardized by the
estimated volatilities could be a reasonable strategy. Furthermore, for the sample
sizes usually encountered in empirical applications, it seems that, with the excep-
tion of the GMM estimator, the estimates of the parameters obtained by the
alternative estimators considered in this example are rather similar.
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The final objective when fitting a SV model to a series of financial returns is
usually to obtain estimates of the underlying volatilities. Although the parameters
estimated by the different methods are not very different, we will see whether the
estimated volatilities are different. Figure 2 plots the corresponding volatilities
estimated by the QML, JPR, KSC and MCL filters, together with the underlying
simulated volatilities for the M1 model and T¼ 1500. Notice that the KSC
estimates are too volatile while the QML estimates are too smooth when com-
pared with the true underlying volatilities. The corresponding RMSE are 0.32 and
0.29, respectively. On the other hand, the JPR and MCL estimates are rather
similar and close to the true volatilities. In both cases, the RMSE is 0.27. Finally,
Figure 3 plots the estimated volatilities obtained using the QML, JPR and MCL
filters with the parameters fixed at the GMM estimates together with the simu-
lated volatilities. Once more, the shapes of the JPR and MCL estimates are quite
similar with RMSE of 0.27. As before, the QML estimates have a smoother
shape, and the RMSE is slightly bigger with a value of 0.29. Comparing Figs 2
and 3, it is possible to observe that, for the particular series generated in this
example, the differences between the estimated sequences of volatilities are not so
different when the alternative filters are run using the same GMM estimates of the
parameters as when they are run with different estimates. Taking into account
that, the parameters estimated by the alternative methods are very similar, our
results seem to suggest that small differences in the parameters can generate
relatively large differences between the sequences of volatilities estimated by the
alternative filters.

4. Estimation Methods for LMSV Models

In this section, we describe estimators proposed for the parameter of LMSV.
Most of these methods are based on the spectral representation of the model.

Harvey (1998) and Breidt et al. (1998) propose to estimate the parameters of
the LMSV model in (11) by QML, maximizing the Whittle discrete approxima-
tion to the Gaussian likelihood function of logðy2t Þ in the frequency domain, given
by

~LLð�jyÞ ¼ � 1

2T

X
j¼1

T 1

log fð�j; �Þ þ
Ið�jÞ
f ð�j; �Þ

� �
ð21Þ

where f (�j; �) is the spectral density, �j ¼ 2�j
T

are the corresponding frequencies
and I(�j) is the sample spectrum. Breidt et al. (1998) demonstrate that the QML
estimator is strongly consistent. Furthermore, Deo (2002) proves the asymptotic
normality of the QML estimator obtained maximizing the time domain likelihood
and conjectures that this result may also hold for the Whittle estimator. With
respect to its finite sample properties, Breidt et al. (1998) conclude that they are
satisfactory. However, their parameter design is not very realistic and Pérez and
Ruiz (2001) extend their analysis and conclude that, when parameters are close to
non-stationarity (d � 0:5) and/or to homoscedasticity (�2

� � 0), the properties of
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Figure 2. Estimated Volatilities of a Simulated Series with f¼ 0.95 and �2
� ¼ 0:05 and

T¼ 1500.
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the QML estimator are very poor, so that huge sample sizes are needed to obtain
reliable inferences.11 The Whittle estimator has been implemented by Islas-
Camargo and Venegas-Martı́nez (2003) to estimate the LMSV model fitted to
several indexes of Latin American Stock Exchanges.

Harvey (1998) suggests an algorithm to obtain the smoothed estimates of the
volatility. The empirical implementation of the algorithm is developed in Pérez
(2000) and applied to a real series in Pérez and Ruiz (2001).

Estimation of LMSV models has also been carried out by means of Bayesian
procedures. Hsu and Breidt (1997) obtain the posterior distribution of the para-
meters and the smoothed estimates of the volatilities of LMSV processes by
means of a Gibbs sampling algorithm. So (1999) develops a new algorithm
based on the state space formulation of Gaussian time series models with additive
noise where full Bayesian inference is implemented through MCMC techniques.
This algorithm can be applied to model outliers in long-memory time series and
LMSV models [see So (2002) for an empirical application to S&P500 returns].
Finally, Chan and Petris (2000) propose a Bayesian approach to perform
inference in the time domain based on the truncated likelihood method where
the LMSV model is expressed as a linear state space model. Nevertheless, there is
no finite sample analysis, so that the behaviour of this procedure compared with
other methods is unknown. Finally, Jensen (2003) extends the KSC procedure to
estimate the fractional parameter using a wavelet representation of the log-
squared returns.

All the three Bayesian-based approaches are computationally intensive and not
easy to generalize to more complicated models, for example, when the log-
volatility equation has an ARMA component.

Figure 3. Estimated Volatilities of a Simulated Series with f¼ 0.95 and �2
� ¼ 0:05

Estimated by JPR, QML and MCL Using Estimates Obtained by GMM. T¼ 1500.
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Deo and Hurvich (2001) suggest a semiparametric estimator of the parameter d
based on the GPH estimator of Geweke and Porter-Hudak (1983) for ARFIMA
models and derive its asymptotic bias and variance. They assume that �¼ 0 in
model (11) and show that, under certain conditions, the corresponding asymp-
totic distribution is normal, although the convergence rate is m

p
, where m is the

number of Fourier frequencies used in the corresponding log-periodogram regres-
sion. A small Monte Carlo experiment is carried out for a unique sample size of
T¼ 6144. The asymptotic normality of the GPH estimator relies on the Gaus-
sianity of the log-volatility process. Bollerslev and Wright (2000) show that the
properties of the GPH estimator of d are closely related to the sampling frequency
of the data and propose new estimators that aggregate the information in very
high frequency returns. Alternatively, Arteche (2004) proposes a local Whittle
estimator of the long-memory parameter that relaxes this assumption. This
estimator is consistent and asymptotically normal and more efficient than the
estimator based on the log-periodogram regression. However, the local Whittle
estimator is also affected by the large and negative biases often found in this
context (Crato & Ray, 2002). Finally, it is interesting to mention that the SV
model considered by Arteche (2004) incorporates persistent stochastic seasonality
in the volatility and therefore could be implemented to intradaily data.

Finally, Wright (1999) proposes a GMM estimator of LMSV models and
demonstrates its consistency and asymptotic normality, provided that 1/2< d
< 1/4. However, numerous studies have found that usually the estimates of d for
high-frequency returns are between 0.3 and 0.47 (Andersen et al., 2001). There-
fore, the case d� 1/4 is most interesting from an empirical point of view. Monte
Carlo experiments comparing the GMM and the frequency domain estimators
show that the asymptotic distribution of the GMM estimator is not an adequate
approximation for finite samples, even for the biggest sample size considered,
T¼ 4000. Furthermore, although both estimators have similar SEs, the biases are
bigger for GMM. Deo (2002) shows that, with the moment conditions that have
been commonly used, the rate of convergence of the GMM estimator is T1/2 d

Alternatively, he proposes a new set of moment conditions based on the linear
transformation logðy2t Þ and shows that, in this case, the GMM estimator is T

p

consistent and asymptotically normal.
Table 5 provides a summary of the main characteristics of the estimators

proposed for LMSV models.

5. Empirical Application

In this section, the ARSV(1) model is fitted to daily observations of the S&P 500
stock price index to illustrate with real data which are the differences between the
estimated parameters and volatilities depending on the estimator used. The series
is observed daily from 19 February 1997 to 15 February 2002 and T¼ 1303.12

The prices, pt, are transformed into returns, rt, in the usual way, i.e.
rt ¼ 100 � log (pt=pt 1) and centred around the sample mean. Figure 4 plots the
series of returns and the corresponding autocorrelations of the squared returns.
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Table 6 reports several sample moments of the daily and squared returns. As
usual, returns are leptokurtic and uncorrelated, although not independent, given
that their squares have significant autocorrelations. However, there is not evi-
dence of long memory in squared returns.13 Therefore, we fit the short memory
ARSV model to the series rt.

Table 7 shows the parameter estimates of the ARSV model obtained by the
GMM, JPR, QML, MCL and KSC estimators. All the estimates of the persis-
tence parameter, �, are rather similar being the smallest, 0.93, obtained when the
MCL estimator is used and the biggest, 0.96, when the parameters are estimated

Figure 4. S&P 500 Stock Index Returns Observed daily from 19 February 1997 to 15

February 2002 and Correlogram of the Squared Returns.

Table 6. Summary Statistics of rt.

Mean SD SK Kurtosis Maximum Minimum Q (10)

rt 0.000 1.249 0.232 0.813* 4.965 7.136 13.777
r2t 1.560 3.425 7.270 82.469 50.926 0.000 82.799*

r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8) r(9) r(10)

rt 0.005 0.049 0.046 0.006 0.021 0.020 0.048 0.000 0.000 0.052
r2t 0.162* 0.118* 0.042 0.019 0.076* 0.074* 0.051 0.043 0.060* 0.041

Note: *Significant at the 5% level.
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by GMM or JPR. However, the corresponding standard deviations are rather
different. When the parameters are estimated by JPR, MCL or KSC, the standard
deviations are approximately 0.02, but when they are estimated by GMM or
QML, they are much bigger, 0.05 and 0.07, respectively. This result is in agree-
ment with the finite sample results described in previous sections. With respect to
the estimates of the variance of volatility, �2

�, there are important differences
depending on the estimator used. For example, if the parameters are estimated
by JPR or QML, the estimates are approximately, 0.01, and consequently, the
evolution of the volatility is very smooth. However, when the parameters are
estimated by GMM, MCL or KSC, the variance of the underlying volatilities is
much bigger, 0.05. Notice that these differences on the estimates of the variance
are also reflected on the corresponding estimates of the CV that go from 0.1164 to
1.0006 when the parameters are estimated by QML or GMM, respectively. In this
example, the standard deviations of the estimates of �2

� are rather similar. Finally,
looking at the estimates of the scale parameter, s*, all of them are around 1. Once
more, the main differences appear in the standard deviations although, in this
case, the smallest corresponds to GMM and the biggest to JPR.

The estimates of the volatility obtained by the QML, JPR, MCL and KSC
procedures are plotted in Figure 5. All four volatility estimates detect a similar
dynamic evolution of the latent variable, although, as we have already observed
with the simulated data, the QML procedure produces smoother estimates than
MCL and KSC which are rather similar. Finally, we have obtained the estimates of
the underlying volatilities using the QML, JPR and MCL filters with the para-
meters fixed at the GMM estimates. The results appear in Figure 6, where it can be
observed that, once the parameters are fixed at the GMM estimates, all the filters
give similar estimates of the volatility. This result, that has been also observed with
the simulated data, is important because it shows that the differences between the
estimated volatilities plotted in Figure 5 could be attributed mainly to differences
among the estimated parameters and not to the filters used to estimate them.

6. Conclusions

In this article, the main estimation procedures of SV models have been revised.
There are several methods that seem to match the benchmark efficiency established

Table 7. Empirical Estimates of ARSV Model for the S&P 500.

ARSV

GMM JPR QML MCL KSC

�̂� 0.9602 (0.0479) 0.9596 (0.0203) 0.9401 (0.0699) 0.9288 (0.0249) 0.9392 (0.0237)
�̂�2
� 0.0541 (0.0219) 0.0172 (0.0196) 0.0128 (0.0222) 0.0499 (0.0190) 0.0405 (0.0168)

CV 1.0006 0.2427 0.1164 0.4381 0.4099
�̂�� 1.0005 (0.0157) 0.9673 (0.0639) 1.2051 (0.0371) 1.1248 (0.0542) 1.1260 (0.0619)
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by the MCMC procedure of Jacquier et al. (1994), like MCL, SML and ML of
Fridman and Harris (1998) or the NFML approach of Watanabe (1999) being, at
the same time, simpler from a computational point of view. On the other hand,
there are very simple although not efficient methods as for example QML that can
be easily implemented in real time series. Whether, for the sample sizes usually
encountered in financial time series, the lost of efficiency compensates of using the
more computationally demanding methods is still an open question. It is evident
the need of a detailed comparative study of the finite sample properties of the

Figure 5. Estimated Volatilities of S&P 500 by JPR, QML, KSC and MCL.
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main estimators of the parameters of SV models. In fact, some of the Monte Carlo
experiments are only available for one set of parameter values.

With respect to results on the properties of the alternative procedures to
estimate the latent volatilities, only Jacquier et al. (1994) compare volatility
estimates calculated by MCMC with Kalman filter estimates obtained using as
parameters for the filter the QML and GMM estimates. In this article, we carry
out a very limited illustrative example comparing the estimates of volatility
obtained by the alternative algorithms considered, using two simulated and one
real time series. The estimates obtained by the simplest QML filter are the
smoothest, followed by the JPR and MCL estimates that are similar. Finally,
the estimates obtained by the KSC algorithm are the spikiest. Finally, we show
that when the filters are run with the parameters fixed at the GMM estimates, all
of them give similar results.
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Notes

1. The QML estimator will be described in section 2.2.

Figure 6. Estimated Volatilities of S&P 500 by JPR, QML and MCL Using Estimated

Parameter Values Obtained by GMM.
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2. This is not the first attempt to use non linear filters to estimate SV models; see, for
example, Brigo and Hanzon (1998).

3. The QML procedure for SV models is already implemented in the software STAMP
6.0 by Koopman, Harvey, Doornik and Shephard, London: Timberlake consultants
(2000).

4. Andersen and Sørensen (1996) suggest that better results could be obtained using
alternative windows.

5. We are very grateful to Mike Wiper for his continuos help to develop this code.
6. Geweke (1994) proposes an alternative algorithm that uses an adaptive rejection

sampling algorithm that could be faster.
7. More information is available at http://www.ssfpack.com.
8. We are very grateful to Siem Koopman for helpful suggestions using this code.
9. BUGS is available free of charge from http://www.mcr bsu.cam.ac.uk/bugs/welcome.

shtml.
10. More information is available at http://www.nuff.ox.ac.uk/users/shephard/ox/.
11. Notice that in the unit root case, the parameters of the LMSV model are not identified.
12. The series is obtained from http://www.spglobal.com/indexmaineuro350.html.
13. It is possible that this series is too short as to find long memory.
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