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ABSTRACT

The activities of the current European RACE
and ACTS projects have led to an increasing interest in
OFDM (Orthogonal Frequency Division Multiplexing)
as a means of combating impulsive noise and multipath
effects and making fuller use of the available
bandwidth of the system. This paper analyses the
performance of OFDM signals in amplifier
nonlinearity. In particular, bit error rate (BER)
degradation as a result of amplitude limiting or clipping
are analysed. In the presence of both nonlinear
distortion and additive Gaussian noise, optimized
output power back off is provided to balance the
requirements of minimum BER and power amplifier
efficiency. For this purpose, an OFDM system has
been built using the SPW [1] (Signal Processing
Worksystem) simulator.

1. INTRODUCTION.

Considerable research has been done
in Europe on OFDM and a great deal of
progress has been made in developing it for
digital television broadcasting. OFDM has
already been implemented in digital audio
broadcasting and is being tested for Digital
Television Terrestrial Broadcasting (dTTb)
[2]. It is also being studied for broadband
cellular distribution systems of digital TV and

interactive services, where Microwave Video

Distribution Systems (MVDS) are used.

To apply OFDM to these systems, is
usually required an increase in the power of
the transmitted signal. However, the high
peak-to-average power ratio of an OFDM
signal makes it susceptible. to nonlinear or
clipping distortions as the signal peaks may
occasionally thrust into the saturation region
of the power amplifier. This paper studies the
effects of nonlinear behaviour of the power
amplifier (i.e. amplitude distortion) on the
performance of the OFDM system.

2. OFDM CONCEPT.
Orthogonal ~ Frequency Division
Multiplexing is one of the best alternatives for

alleviating multipath effects in mobile
communications [3].

In a conventional serial data system,
the symbols are transmitted sequentially, with
the frequency spectrum of each data symbol
allowed to occupy the entire available
bandwidth. ‘Burst errors caused by fading
result in the complete destruction of a series
of adjacent symbols and the delay spread
introduced by the channel limits the
transmission rate in order to prevent
intersymbol interference (ISI). The channel is
selective in frequency.

In a parallel transmission system,
several sequential streams of data are
transmitted simultaneously, so that at any
instant many data elements are being
transmitted. In such a system, the spectrum of
each individual symbol occupies only a small
part of the whole available bandwidth. The
total bandwidth is divided into N orthogonal
subchannels, each of them is modulated by
one symbol and they are all frequency
multiplexed. A parallel approach has the
advantage of spreading out a frequency
selective fade over many symbols, which
randomizes burst errors caused by fading.

In OFDM, a block of N serial symbols
of duration T is converted into a block of N
parallel symbols of duration Ts=NT, where
the N carriers are placed at the frequencies:

fi=f.+k/Ts k=1,2,....N-1 (1)

A higher spectral efficiency can be
achieved if the different subchannels are
allowed to overlap. Orthogonality between
them simplifies the separation process in the
receiver. The values of N adopted in the
simulations are 2K (N=2024 carriers) and 8K
(N=8192 carriers) which are compliant with
the dT'Tb proposal.

The symbol duration is longer which
allows the effect of the delay spread of the
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channel to be

reduced when NT> >o,

where o is the 1ms value of the delay spread

of the channel.
each subchannel

The bandwidth occupied by
in an OFDM symbol will be

small compared with the coherence bandwidth

of the channel,
non-selective.

so the channel is frequency

The muiltiplexing and demultiplexing
process can be accomplished easily using an
inverse FFT in the transmitter and a FFT in

the receiver [4].

This guarantees orthogona-

lity and simplifies the design, allowing the

construction of
Figures 1 and

a totally digital modem.
2 show a totally digital

implementation of a OFDM transmitter and
receiver respectively
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Figure 1. OFDM transmitter.
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2. OFDM receiver.

The multipath characteristic of the

channel spreads

each OFDM symbol, which

produces OFDM  intersymbol interference. In
order to avoid this effect, a temporal guard of
duration T, is added to each OFDM symbol,
repeating the last part of the FFT and placing

it at the end

of the symbol. Thus, the

characteristic of| periodicity of the FFT is
used. The OFDM symbol duration will be
T,=T,+T,. ISI can be eliminated if the delay

of the last echd

interval duration
of T, will

is shorter than the guard
, T,. Therefore, the selection
depend on the channel

characteristics, binary rate and the multilevel
modulation  scheme applied. In the
simulations performed, a value of T,/T,=1/8
has been adopted, which is compliant with the
dTTb proposal fgr 2K and 8K systems.

A frequency guard is also added in
order to avoid adjacent channel interference

(analogue or digital channels). Frequency
nulls are introduced into some subcarriers
placed on both sides of the OFDM symbol.
The selection of the frequency nulls will
depend on the frequency band characteristics
and occupation, and the adjacent channels’
guard band. It will also depend on the number
of carriers, N, used in the FFT. In the
simulations performed, the values proposed
for dTTDb have been adopted.

The number of OFDM carriers, N, is
a compromise between frequency and phase
stability requirements and the capability of
combating selective frequency fading.

3. OFDM IN NONLINEARITY.

RF power is as always a critical issue.
The RF High Power Amplifier (HPA) is
intended to be used as efficiently as possible.
However, when a HPA is driven hard, i.e. at
or near saturation, it exhibits nonlinear
behaviour and distorts the multicarrier signal,
degrading the system performance. The
conflicting requirements of high power and
signal distortion need to be balanced
carefully. There is a trade off between the
back-off (amplifier efficiency) and the
maximum degradation allowed. A Solid State
Power Amplifier (SSPA) is considered as a
candidate for MVDS high power amplifica- -
tion.

Theoretically, the difference of peak-
to-average power ratio between a multicarrier
system and a single carrier system is a
function of the number of carriers as:

A(dB)=10logN 2)

where N is the number of carriers.
When N=1000, the difference can be as large
as 30dB. However, this theoretical value
rarely occurs. Since the input data are well
scrambled, the chances of reaching its
maximum value are very low, especially
when the constellation size is large [5].

OFDM signals can be treated as a
series of independent and identically
distributed modulated carriers. Therefore, it
follows from the central limit theorem [6] that
the OFDM signal distribution tends to be



Gaussian when the number of carriers, N, is
large. Generally, when N>20, which is the
case for most OFDM systems, . the
distribution is very close to Gaussian.

The high peak-to-average power ratio
of an OFDM signal makes it susceptible to
nonlinear or clipping distortions, as the signal
peaks may occasionally thrust into the
saturation region of the power amplifier. The
result is BER degradation and adjacent
channel interference. Moreover, this
nonlinear effect will depend on the multilevel
modulation applied and will be greater than
the single carrier equivalent system. In the
presence of both nonlinear distortion and
additive: Gaussian noise, optimized output
power back-off is needed to reduce the
OFDM signal degradation. For this purpose,
an OFDM system has been built using SPW
simulator where the 2K and 8K systems have
been simulated with QPSK and 16-QAM
modulation schemes. The system performance
has been characterized by means of the
symbol error rate (SER) as a function of the
signal to noise ratio (S/N) at the input of the
sample and hold subsystem. The SER has
been estimated using the Monte Carlo
method.

4. SIMULATION RESULTS.

In order to validate the system, a
simulation was executed without the amplifier
so that the signal degradation would be as low
as possible. The QPSK/OFDM and 16QAM/
OFDM systems have been compared with the
single carrier (SC) QPSK and 16QAM
equivalent systems. Once the system was
validated, the system performance was
studied in the presence of the amplifier
nonlinearity in order to evaluate the back-off
that must be introduced to reduce degradation
to the required minimum level. First, OFDM
clipping distortion will be discussed with the
aim of comparing and validating the results
that will be obtained when the amplifier is
used in the simulations. After that, the
amplifier distortion will be considered.

4.1. EFFECT OF CLIPPING.

4.1.1. 160AM/OFDM system.

The OFDM system block diagram
used in the computer simulations is shown in
figure 3:

AWGN
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> 16QAM —b OFDM |—»

T
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DEMOD
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Figure 3. OFDM system block diagram.

The transmitter consists of a random
binary source, a 16-QAM modulator using
Gray encoding and the orthogonal frequency
division multiplexer. The OFDM signal is
implemented by means of an N-point inverse
FFT, with N carriers. For the 8K system,
N=8192 where the first 667 and the last 668
carriers are nulled as a frequency guard in
order to avoid adjacent channel interference.
For the 2K system, N=2048, where the first
171 and the last 172 carriers are nulled. Both
systems have a temporal guard T,/T,=1/8 in
order to avoid intersymbol interference,
where the last 1024 and 256 samples of the
FFT are repeated at the beginning of the
OFDM block for the 8K and 2K systems
respectively.

White Gaussian noise is added to the
signal. In the receiver, the signal is
Orthogonal Frequency Division Demulti-
plexed (OFDD) by an N-point FFT and 16-
QAM demodulated. The SER is estimated by
comparison between the transmitted and
received constellations.

For comparison with the single carrier
(SC) 16QAM system, the simulation is
executed without the limiter so that the
degradation will be as low as possible. Figure
4 compares the log(SER) curves versus the
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Figure 5. 16QAM/OFDM signal
distribution.

The effects of limiter induced clipping
noise on the SER performance of a
16QAM/OFDM signal is presented in figure
6, for a soft limiter whose transfer function
is:
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Figure 6. Effect of clipping on the SER
performance of 16QAM/OFDM 2K/8K.

It can be seen that the same
performance is obtained for the 2K and 8K
systems and the SER degradation is negligible
for BO=6dB (a log(SER) degradation of
0.23).

A SC/16QAM system was also
evaluated through simulation and BO=3dB
was concluded to be enough to allow the
system performance to recover without any
SER degradation.

4.1.2. QPSK/OFDM system.

The block diagram and the OFDM
signal have the same characteristics as those
described in the last section, but now the
modulation scheme applied is QPSK.



For comparison with the SC/QPSK
system, the simulation is executed without the
clipping effect so that the degradation will be
as low as possible. Figure 7 compares the
log(SER) curves versus the (S/N) ratio for the
OFDM and the SC system. It can be seen in
the figure that the two curves are almost
identical though a slight improvement is
observed in the OFDM system because of the
frequency guards (about 0.7dB in (S/N)
ratio). The curves for the 2K and 8K systems
are virtually the same.

To study the clipping effect, a
(S/N)=9dB has been used, which results in a
log(SER)=-2.32 without clipping. A 12dB
peak-to-average power ratio was measured
through simulation for the QPSK/OFDM
signal. Both 2K and 8K systems show the
same behaviour. This means a high variation
of the OFDM signal versus the 0dB peak-to-
average power ratio obtained for the
equivalent SC system. Figure 8 shows the
OFDM signal distribution for both the 2K and
8K systems; the Gaussian characteristic of the
distribution can be clearly seen.
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Figure 7. QPSK/OFDM system. SER
evaluation.

OFDMsBPSK 8K~2K

Figure 8. QPSK/OFDM signal distribution. .

Figure 9 shows the effect of clipping
on the SER performance of a QPSK/OFDM
signal for both 2K and 8K systems, for a soft
limiter. It can be seen that the same curve is
obtained for the 2K and 8K systems and the
SER degradation is low for 3dB BO (a
log(SER) degradation of 0.59).
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Figuré 9. Effect of clippling on the SER
performance of QPSK/OFDM 2K/8K.

Comparison of these results with the
ones obtained in the 16QAM/OFDM
simulations shows that the QPSK/OFDM '
signal is less sensitive to the clipping effect.
This is a consequence of the lower amplitude
of the constellation states.

A SC/QPSK system was also
evaluated through simulation and it was
concluded that it is not necessary to introduce
back-off in order to reduce the -clipping
effect, due to the low average-to-peak power
ratio.

4.2, EFFECT OF THE RF AMPLIFIER.

4.2.1. 16QAM/OFDM system.

The nonlinear behaviour of the RF
amplifier has also been studied. The low pass
equivalent or complex envelope concept has
been applied in the simulations. If the input
signal is of the form A(t)e¢®” (an amplitude
and/or phase modulated signal), the power
amplifier output signal can be expressed as:

Y= A0 @

where f[A] is the AM/AM
characteristic of the amplifier and g[A] is the
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Figure 11. Amplifier effect on the SER
performance of 16QAM/OFDM 2K/8K.
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Figure 12. 16QAM/OFDM signal in
amplifier nonlinearity. PI, sweepping.

A SC/16QAM system has also been
simulated. Figure 13 shows the SER
performance versus the Eb/No ratio for a
SC/16QAM system. The BO is varied to
evaluate the effect on SER performance and
square root raised cosine filters with roll-off
equal to 0.35 (35%) have been used in
transmission and reception. As can be seen in
the figure, the SER degradation is negligible
for 3dB BO.
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Figure 13. SC/16QAM system in
nonlinearity. SER evaluation.



4.2.2. QPSK/OFDM system.

In this case, a 0dBm OFDM signal
power has been used and a (S/N)=9dB,
which means log(SER)=-2.72 without the
amplifier effect. The amplifier has a 10dB
gain and a 35dBm third order interception
point. The compression point is varied to
observe the BO effect on the OFDM signal.

Figure 14 shows the SER performance
as a function of the BO for (S/N)=9dB and
PI,=35dBm. As can be seen in the figure, 2K
and 8K systems show the same behaviour and
a 3dB BO is needed in order to recover the
system performance with a log(SER)
degradation of 0.16. These results are
compliant with the ones obtained in the
clipping effect study. Comparison of these
results with the ones obtained in the
16QAM/OFDM simulations shows that the
QPSK modulation scheme is less sensitive to
amplifier nonlinearity as a consequence of the
lower amplitude of the constellation states.
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Figure 14. Amplifier effect on the SER
performance of QPSK/OFDM 2K/8K.

Figure 15 shows the SER performance
as a function of BO, parametrized by the third
order interception point of the amplifier.
Greater degradation is observed when the
third order interception point approaches the
1dB compression point. However, this
degradation is less severe than in the
16QAM/OFDM system, which shows the
strength of the QPSK modulation scheme in
the presence of nonlinear systems.
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Figure 15. QPSK/OFDM signal in
amplifier nonlinearity. PI, sweepping.

A SC/QPSK system has also been
simulated. Figure 16 shows the SER
performance versus the Eb/No ratio for a
SC/QPSK system. The BO is varied to
evaluate the effect on SER performance and
square root raised cosine filters with roll-off
equal to 0.35 (35%) are used in transmission
and reception. As can be seen in the figure,
the SER degradation is negligible without any
back-off.

EbsNo 1dB)

Figure 16. SC/QPSK system in
nonlinearity. SER performance

5. CONCLUSIONS.

The activities of the current European
RACE and ACTS projects have led to an
increasing interest in OFDM (Orthogonal
Frequency Division Multiplexing) as a means
of combating impulsive noise and multipath
effects and making fuller use of the available
bandwidth of the system.
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