Long Memory in Stock-Market Trading Volume

Ignacio N. LOBATO

Centro de Investigacié n Econdmica, Instituto Tecnolégico Auténomo de México, México D.F. 10700,

México (ilobato@itam.mx)

Carlos VELASCO

Departamento de Econometria y Estadistica, Universidad Carlos Ill de Madrid, 28911 Leganés (Madrid),

Spain (cavelas@est-econ.uc3m.es)

This article examines consistent estimation of the long-memory parameters of stock-market trading
volume and volatility. The analysis is carried out in the frequency domain by tapering the data
instead of detrending them. The main theoretical contribution of the article is to prove a central
limit theorem for a multivariate two-step estimator of the memory parameters of a nonstationary
vector process. Using robust semiparametric procedures, the long-memory properties of trading
volume for the 30 stocks in the Dow Jones Industrial Average index are analyzed. Two empirical
results are found. First, there is strong evidence that stock-market trading volume exhibits long
memory. Second, although it is found that volatility and volume exhibit the same degree of long
memory for most of the stocks, there is no evidence that both processes share the same long-

memory component.
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The analysis of the long-term dependence of economic
time series is an outstanding statistical problem. Tradition-
ally, to study persistence economists have emphasized the
use of unit-root models if stationarity was not assumed and,
more recently, the use of autoregressive models with roots
close to 1 when covariance stationarity was assumed. In
the last years, the notion of long memory has attracted the
attention of economists trying to model and measure the
persistence of stationary processes. For covariance station-
ary processes, long memory focuses on the behavior of the
autocovariance sequence at long lags or on the behavior of
the spectral density function in a neighborhood of zero fre-
quency. Because many economic time series appear to be
nonstationary in different degrees, there has been interest
in extending the concept of long memory to nonstation-
ary processes (e.g., see Hurvich and Ray 1995; Gil-Alana
and Robinson 1997; Robinson and Marinucci 1998; Velasco
1999a,b).

In both the stationary and the nonstationary cases, long
memory characterizes the stochastic long-term dependence
by one parameter d. In the stationary case, Robinson (1994a;
1995a,b) recently introduced consistent estimators of d for
a broad class of long-memory processes. For nonstation-
ary data, some of these estimators are still consistent under
some conditions (see Velasco 1999a,b), but typically non-
stationary data should be converted to stationary—for in-
stance, by differencing—before applying these estimators.

In practice, the estimation of d is additionally compli-
cated by the potential presence of deterministic trends. In
this case, an obvious approach to estimate d would involve
detrending the data to obtain a stationary sequence and then

applying any of Robinson's estimators. This
procedure can- not guarantee the consistent
estimation of d, however, un- less the
researcher possesses a priori information
about the memory of the process and about
the true form of the trend.

In case this information is unavailable or imprecise, it is still
possible to estimate d consistently in the frequency domain
by means of tapering the data. Velasco (1999a,b) showed
that tapering can be used to estimate d consistently with-
out assuming if the process is stationary or not and without
specifying and estimating any trend. The only requirement
to apply the tapering procedure is to assume an upper bound
for the memory of the process and for the order of the de-
terministic trend.

When the interest resides in vector observations rather
than in scalars, model specification is additionally compli-
cated. The generating mechanism of each economic variable
can be radically different, and misspecification of the trend
of a particular series may lead to the inconsistent estima-
tion of the memory parameters of the whole vector. Again,
as will be shown in this article, the use of tapering allows a
consistent estimation of the memory parameters for a wide
class of nonstationary vector processes.

The theoretical research of this article was motivated
by an empirical example in which the two components
of the vector process of interest apparently exhibit differ-
ent stochastic properties. The two variables are volatility
(measured by the absolute value of the return) and trad-
ing volume in the stock market. Even though volatility is
considered to be stationary, whereas volume is treated as
nonstationary (see Gallant, Rossi, and Tauchen 1992; An-
dersen 1996; Bollerslev and Jubinski 1999), some stochas-
tic properties of both series, in particular the long-term
dependence, could be very similar. Bollerslev and Jubin-
ski (1999) considered a mixture-of-distribution hypothesis
model, in which the latent information-arrival process ex-
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hibits long memory, and derived that volatility and volume
exhibit long-memory dependence of the same degree. Be-
cause volume is nonstationary, analyzing its long-memory
properties is complicated. Bollerslev and Jubinski (1999)

addressed this issue by linearly detrending the data. The

resulting estimators of the long-memory parameters have
unknown properties, however, as is illustrated in Section
2. Furthermore, it is a priori questionable that the nonde-
terministic part of volume is stationary and thus that its
long-memory parameter belongs to the stationary region
(d < .5). We employ a tapering procedure that overcomes
these two difficulties.

This article makes two contributions. The first is to es-
tablish a multivariate central limit theorem (CLT) for a two-
step semiparametric estimator of the long-memory param-
eters of a nonstationary vector process. This two-step esti-
mator is based on a modification of the objective function
considered by Lobato (1999) to allow for a tapering pro-
cedure as given by Velasco (1999b). The proposed statistic
consistently estimates the long-memory parameters for a
wide class of nonstationary processes with any degree of
long-memory dependence (even when d > .5) or any order
of polynomial trend if appropriate tapering is applied.

The second contribution of the article is to analyze the
long-memory properties for the volume and return volatility
processes of the 30 stocks that compose the Dow Jones In-
dustrial Average (DJIA) index. We employ daily data for the
period 1962-1994. Using the previous theory, we establish
two empirical findings. First, stock-market volume exhibits
long memory for the 30 stocks in the DJIA index. Second,
for most stocks it can be concluded that return volatility
and trading volume possess the same long-memory param-
eter, although apparently the long memory of the volatility
and of the volume series cannot be explained by a common
long-memory component.

The outline of the article is the following. In Section 1,
the concept of long memory for stationary and nonstation-
ary processes and the tapering procedure are introduced.
Section 2 illustrates how tapering can be employed to an-
alyze the long-memory properties of nonstationary series.
In Section 3, the multivariate CLT for a two-step semi-
parametric estimator of the long-memory parameters of a
possibly nonstationary vector process is established and a
small Monte Carlo analysis of its finite-sample performance
is reported. Section 4 contains the empirical analysis, and
Section 5 concludes. The proof of the CLT is in the Ap-
pendix.

1. DEFINITIONS
1.1 Long Memory for Stationary Processes

A covariance stationary stochastic process exhibits long
memory with memory parameter d when its spectral density
function (SDF hereafter) f(\) satisfies

FA) ~GXx 2 as X — 0t (1)

where G is a finite positive constant and d € (—1,1) (see

Robinson 1994a and references therein). The parameter d
governs the degree of memory of the series.

1.2 Long Memory for Nonstationary Processes

By analogy to the unit-root literature, the memory of a
nonstationary stochastic process X, whose increments A X}
are stationary and satisfy (1) for some dax € [-3,3), is
defined as dx = dax +1,dx € [%, %) This definition gen-
eralizes the I(d) processes terminology, in which an I(1)
process—namely, a process whose first-order differences
have positive and bounded spectral density at the origin [an
1(0) process]—could be said to possess memory parameter
dx = 1.

For general nonstationary processes, Velasco (1999a,b)
generalized the long-memory definition of Hurvich and Ray’
(1995). A nonstationary stochastic process {X,} is said to
exhibit long memory with memory parameter dx = d + s
if after being integer-differenced s times it is transformed
into a stationary stochastic process with spectral density
satisfying (1) for some d € [—1,1). This definition of
nonstationary integrated processes is not the only possible;
for an alternative definition, see Robinson and Marinucci
(1998). Formally, denote the successive differences of X, as
Ul = ATX,, forr =1,2,...,s, and let |z] be the largest
integer less than or equal to z. Then the stochastic process
X has memory parameter dx > -% if the stochastic pro-
cess Ut(s) = A%Xy,s = |dx + %J, is covariance stationary
with mean x4 = 0 and its SDF satisfies

fuw(A) ~ GA™Hdx=9) a5 X — 0+,
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where G is a finite positive constant. Notice that Condition
(2) is very general because it only refers to the behavior
of the SDF in a neighborhood of zero frequency. In par-
ticular, it is not assumed that fy) is the spectral density
of a stationary and invertible fractional autoregressive inte-
grated moving average process, and it is not ruled out that
fu () may have (integrable) poles or zeros at frequen-
cies beyond the origin. Notice that for an observed stretch
of data {X;, X», ...}, setting all initial conditions to 0 and

integrating U*), we can write, for t > 1,

t
Xt = Z
J1i=1

The previous definition of memory refers to a process that
does not exhibit any deterministic part. If a process is com-
posed of a purely stochastic part with memory dx, such as
the one considered on the right side of (3), and of some ad-
ditional deterministic trend of order g, the memory of the
process is defined to be dx, the memory of the stochastic
component.

The appearance of a polynomial trend can be explained,
in first instance, because the mean of Ut("> = A®X; can
be different from 0, x # 0. In this case, it is possible to
show that a nonstationary stochastic process X; of memory
dx = d+ s can be decomposed as the sum of a polynomial
trend of order s and a stochastic process that is the sth-
order integration of a long-memory covariance stationary

J1 Js—1
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zero mean process with memory d. Thus, for random vari-

ables US”,r = 1,..., s, that do not depend on time, after
repeated integration it is obtained that

s—1
X = Xo+ Y UPpP () + w2 (1) @

r=1

t Ji Js—1
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where U,(*) = Ut(s) — 1 has zero mean and the same spec-
tral density as U{*), and p{}’(t) and p{(t) are polynomi-
als in t of order r and s, respectively. The right side of
(4) is a polynomial in time of order s given by the initial
conditions, whereas expression (5) is purely stochastic with
memory dx.

In general, the observed process Y; can be the sum of the
purely nonstationary stochastic process X; with memory
dx as defined in (3) or (5) and a polynomial trend of order
q, T,

i=X+T (6)

where

q
Tt = Zartr
r=0

and both processes, Y; and X, have the same memory pa-
rameter (dy = dx) determined exclusively by the stochastic
part.

Although for nonstationary process the SDF does not ex-
ist, it is possible to define a generalized or pseudo SDF that
behaves like (1) also but adds to d the number of integer
differences taken to achieve stationarity. Formally, define
the pseudo spectral density fx () of X, as

Fx(N) = |1 = exp(iA)| 7 fy (A) ~ GAT2x
as A — 0, (7)

where fy ) (M) satisfies (2) and fx()) can behave as (1) for
any dx > —3, so it is not a spectral density for dx > 1.
See Velasco (1999a) for details.

1.3 Frequency-Domain Analysis and Tapering

The basic statistics employed in the time series analysis
in the frequency domain are the discrete Fourier transform
(DFT) and the periodogram. The DFT of an observed se-
quence X;,t = 1,...,n, where n denotes the sample size,
at frequency A is

wx(A) = (2mn) "2 ZX, exp(iAt). (8)

t=1

For statistical and computational reasons, the DFT is evalu-
ated at the Fourier frequencies \; = 27j/n (j integer). The
periodogram of X, at frequency A;, Ix();) = lwx (A;)[% is
the sample equivalent of the SDF for stationary processes,

and it is used to construct consistent parametric and non-
parametric estimates of the SDF.

Unfortunately, statistics based on the periodogram suffer
from a bias problem caused by leakage, which is especially
accentuated for stochastic processes whose SDF’s exhibit
peaks at some frequencies. Tukey observed that the leak-
age problem could be attenuated if the spectral estimators
were constructed with the data multiplied by a sequence
of nonnegative weights rather than with the raw data (see
Cooley and Tukey 1965). This sequence of weights, called
a “data window” or a “taper,” is constructed so that it takes
values around 1 for the central part of the data, but it de-
cays smoothly to O at both the beginning and the end of
the sample. Consequently, the tapered DFT of an observed
sequence X¢,t = 1,...,n, at frequency ); is

n

" -1/2
wk(X) = (27r Z hf) Z he X exp(i);t), 9)
t=1

t=1

for any taper sequence {h:}7,. Then, the tapered peri-
odogram at frequency ), is I%();) = |w%();)|? Notice
that the usual DFT wx();) is obtained by setting h; = 1,
for all t.

Tapering has been employed in different frameworks by
Zhurbenko (1979), Robinson (1986), and Dahlhaus (1988),
among others, to carry out statistical inference for stochas-
tic processes that exhibit behavior close to nonstationarity
at certain frequencies. These processes are employed to de-
scribe the dynamic properties of data whose SDF estimates
exhibit very strong peaks at zero frequency or at seasonal
or cyclical frequencies. For these data, the usual integer or
seasonal differencing may complicate statistical inference
because this may lead to noninvertibility.

Several data tapers have been used in the literature
(see Brillinger 1975, pp. 54-59). Zhurbenko (1979) used
a general class of data weights {h{?} suggested by Kol-
mogorov, based on p convolutions of the uniform density
in 1,2,...,n. When p = 1, these are the uniform weights,
hy = 1, so no tapering is carried out. When p = 2, the taper
sequence is given by Bartlett’s or triangular window. Al-
though the weights {h?} generally have involved expres-
sions for p > 3, they can be easily calculated in a computer
using the properties of the Fourier transform. If p > 3, the
shape of the taper is similar to the Gaussian probability
density because the sum of three or more uniform random
variables has an approximate normal distribution. Alekseev
(1996) provided a broad discussion and some explicit for-
mulas.

To implement the tapering procedure, the concept of the
order p of a taper is fundamental. The order of a taper is
a positive integer related to the smoothness of the taper.
For a formal definition, see Velasco (1999a). In the next
sections, the case p = 1 implies that no tapering is carried
out. It can be shown that the asymptotic bias of the tapered
periodogram for the SDF of stationary processes becomes
smaller as the order p of the taper becomes higher. Conse-
quently, the leakage problem can be controlled by using a
taper of high enough order. This property extends to non-
stationary processes, for which the pseudo SDF fx defined



in (7) for dx > 3 is now the limit of the expectation of
the tapered periodogram. In fact, for the case in which no
deterministic trends are present, Velasco (1999a,b) proved
that the semiparametric estimators of the memory d pro-
posed by Robinson (1995a,b) are consistent for any d when
tapers of order p > d are employed. This result is especially
significant because those estimators are consistent only for
d < 1 when no taper is employed.

2. TAPERING AND LONG-MEMORY
NONSTATIONARY PROCESSES

In this section we illustrate how tapering can be employed
to estimate robustly the memory parameter of a possibly
nonstationary stochastic process. Consider the model given
by (6). To make inference about the memory parameter dy
the standard approach attempts the estimation of dy in two
stages. In the first stage, the data are transformed to elim-
inate the deterministic trend. This stage is motivated by
the definition of the long-memory parameter that concerns
exclusively the stochastic part of a process. The second
stage is to estimate the long-memory parameter from the
detrended data. Instead of this approach, in this section we
propose to estimate dy directly from the raw data by means
of tapering.

The two typical ways of detrending the data are, first,
to estimate the deterministic trend T; and then subtract it
from the original series and, second, to difference the series.
Both procedures have serious limitations because an exact
knowledge of the true model seems essential to avoid the
risks of inappropriate detrending and differencing (e.g., see
Chan, Hayya, and Ord 1977; Nelson and Kang 1981, 1984,
Durlauf and Phillips 1988).

For instance, it is ignored under what conditions dy can
be estimated consistently from the residual series Y; — T,
because the statistical properties of the fitted trend 7} are
likely to depend crucially on the memory parameter dy . If
the exact shape of the trend is unknown, the first difficulty
is to select the order g. For example, one approach would
be to carry out a polynomial regression and choose g as the
order of the last significant coefficient &,, where &, are,
for instance, the least squares estimates. Inference based
on &, depends on the unknown dy, however; see Yajima
(1988) for the stationary case and Deo and Hurvich (1998)
for nonstationary series with linear trends. With nonpara-
metric detrending methods, such as the one employed by
Andersen (1996), similar difficulties arise, although Robin-
son (1997) proved that consistent estimation of d is pos-
sible for the stationary case in the presence of smooth
trends.

The method of detrending by integer-differencing Y;
avoids some of the problems of trend estimation. As long
as the trend-free differenced series has memory parameter
in the interval (—.5, .5), this parameter can be estimated us-
ing the consistent procedures of Robinson (1995a,b). There
is no guarantee that this happens in practice, though. After
differencing, ¢ times the resulting series will be noninvert-
ible when ¢ > s or will be nonstationary when q < s.

Instead of estimating the deterministic trend T; or dif-
ferencing the series, a general approach to estimate dy is
to apply a tapering procedure to the raw data. From (4),
(5), and (6), the tapered Fourier transform of the observed
sequence Y; is

wy (A;)

Z hs <X + Z UMpi

t=1

m

q
+ M)(s)(t) + Zartr) exp(i\;t)
r=0
(10)
1 n t g1 Js—1
G th Z Z Z U;:) exp(iA;t).
EZD DL v S s S

(11)

The partial-sums term (11) reflects the accumulation of in-
formation about the memory parameter dy in the observed
(nonstationary) time series Y;, starting from ¢ = 1. The
right side of (10) is a nuisance component of the DFT,
which comprises the information contained in {X;}7 from
the past, X,, and Ui, together with the information in
{Y;} determined by the mean y and the trend Ty.
Because the information about dy is exclusively con-
tained in (11), to make inferences about dy the tapering ap-
proach proposes the use of sequences h; so that (10) equals
0 for certain frequencies \;. The set of max(s + 1,q + 1)
conditions
(12)

thtf exp(iAt) =0 forr =0,...,max(s,q)

t=1

removes the nuisance term (10) in the DFT of the observed
sequence. Notice that for covariance stationary processes
(s,g = 0) with unknown mean, ag + u, (12) reduces to

Z hi exp(iA;t) =0,

t=1

which is satisfied by the usual DFT for any frequency
A;j # 0 mod n and for the cosine bell taper at frequen-
cies \; # —1,0,1 mod n. Therefore, the unknown mean of
a covariance stationary process, ag + p, appears in the DFT
only at zero frequency. This is a well-known fact by re-
searchers in the frequency domain in which estimators and
test statistics are constructed avoiding the zero frequency
for automatic mean correction. Equation (12) generalizes
this property to higher-order trends. Therefore, the identity
taper (or raw DFT) and the cosine bell taper should not be
applied to series whose s’s are larger than 1 or possess any
trend.

Condition (12) is satisfied by taper sequences of or-
der p > max(q,s) at frequencies A;,j = p,2p,...,n —p
(see Velasco 1999a). Therefore, frequency-domain infer-
ence about the parameter dy can be performed by choosing
a taper of high enough order p > max(q,s) and defining
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the relevant statistics over the set of frequencies A;,j =
p,2p,...,n—p. Hence, a conservative approach to estimate
dy is to set a high value for the order of the taper. This
strategy, however, presents a drawback because the higher
the order of the taper, the higher the loss of efficiency in the
estimation of dy (see Sec. 3). This inefficiency can be atten-
uated through initial differencing if it is known that dy > .5
or by recalling some tapering robustness to noninvertibility
in other cases (see Velasco 1999a, theorem 9).

When dy < .5 and ¢ = 0, there is no need for taper-
ing, and hence the consistent estimators of dy proposed by
Robinson (1994a, 1995a,b) can be employed. For this case,
however, Velasco (1999a,b) showed that Robinson’s esti-
mators based on tapered data are still consistent and, fur-
thermore, can be less biased in finite samples. The tapering
procedure can also be very effective when the determinis-
tic trends T; are not polynomials but they are sufficiently
smooth in ¢ to be approximated by low-order polynomials.
In these cases, it can be expected that the use of tapers
with appropriate high enough orders will roughly remove
the trends without explicit specification and estimation (see
Robinson 1986).

3. A MULTIVARIATE TWO-STEP
SEMIPARAMETRIC ESTIMATOR

3.1 A Nonstationary Long-Memory Vector Process

Consider a real-valued N-dimensional vector process
X;,t = 0,+1,..., that has memory parameter vector d° =
(d9,dY,...,d%), where &% > —1 for all a. Denote by
s = |dJ + 1| the smallest number of integer differences
necessary to make covariance stationary the ath element
of X, and define the covariance stationary /N-dimensional
vector process U; = diag{Asg }X: with mean p and auto-
covariance matrix at lag j,I'; = E[(U; — p)(Uz; — p)']. We
assume that the spectral density matrix of Uz, fu(\) = f(A),
exists and is implicitly defined by

L= [ f)e*dx

Denote by f,5(A) the (a,b)th element of f(\). A natural
extension of (2) to the vector case (see Lobato and Robinson
1998; Lobato 1999) is

fO\) ~ A°ROA® as A — 0, (13)

where RC is a symmetric positive definite real matrix and
Yy p

1 1
——<sg—d2<—.

0 _ g s9—d?
A —d'lag{A }a 2 = 2

3.2 A Multivariate Two-Step Semiparametric Estimator

A consistent estimator of the long-memory parameter of
a covariance stationary process can be motivated by exam-
ining Equation (1). Because (1) concerns only the behavior
of the SDF in a neighborhood of 0 and does not constrain
the short-term behavior in any way, the consistent approach
proposes to estimate d using periodograms evaluated at fre-
quencies on a shrinking neighborhood of the origin. This
approach is implemented by defining a bandwidth parame-

ter m asymptotically negligible with respect to the sample
size, n, so that only periodograms evaluated up to frequency
Am = 2mm/n are used. The idea was introduced by Geweke
and Porter-Hudak (1983), formalized by Robinson (1994a),
and further developed by Robinson (1995a,b).

In this article we propose a two-step estimator (TSE)
based on an extension of the objective function consid-
ered by Lobato (1999) to allow for tapering as shown by
Velasco (1999b) (see also Kiinsch 1987; Robinson 1995b).
This function is the frequency-domain version of the Whit-
tle log-likelihood function. Estimators of the long-memory
parameters based on this function have several advantages
over rival semiparametric estimators. For instance, they are
more efficient, and there is no need to introduce additional
user-chosen numbers to compute them. Furthermore, com-
pared with a multivariate quasi maximum likelihood esti-
mator (QMLE), a TSE has the same asymptotic efficiency
and the advantage of being easier to compute because there
is no need of carrying out a multidimensional maximization
problem. The objective function considered is the follow-
ing:

Lp(R, d)

= % 3 {log [A;RA| +tr [(A;RA;) T IT(A)]}, (14)
i(p)

where the symbol Z;(lp) means that the sum is performed
over j = p,2p,...,m (we assume m/p to be integer), A; =
diag{/\]._d“ }, and IT();) is the tapered periodogram matrix
IT(\;) = wT (A\;))wT (A;)*, where * represents transposition
combined with conjugation and w7 (};) is given by (9).

Equation (14) is a modified version of the Whittle ap-
proximation of the Gaussian log-likelihood function con-
sidered by Lobato (1999). Notice the distinction between
the true values d°, R® and any admissible value d, R. Ex-
pression (14) can be simplified by concentrating out R to
end up with the following concentrating objective function
(see Lobato 1999):

N m
Tod) = 22 3" dy 3" log(hy) +log | Ry(d)],

a=1 " j(p)

where

Ry(d) = % i {A7Re{IT(O\)IASY). (19)

i(p)

The estimation procedure we propose is a TSE based on
this objective function. The first step is to compute the uni-
variate QMLE gf Velasco (1999b) for every series (denote
that vector by d)), and the second step is to compute the

following expression:
-1
d® — g _ *Tp(d) 9Yp(d)
0dod' | ju od
Then the estimator of R° is, using (15),
R = By(d®).

). (16)
dm

(17)



3.3 A CLT for the TSE

The following assumptions are needed for the CLT.
Assumption 1. For 8 € (0,2],

[far(N) = TapA =% "% | = O(A=da~B+8) a5 X — 07,

where 7,5 is the (a, b)th element of RC.

Assumption 2. Uy = p+3 72 Ajer—; with 3772 || 4|
< oo, where || - || denotes the supremum norm and
e satisfies E(g;|Ti—1) = 0,E(ese}|T-1) = In, and
E(eo(t)en(t)ec(t)|Ti—1) = Habes With |pape| < oo for
a,b,c = 1,...,N; E(gq(t)en(t)ec(t)ea(t)) = pabed, Where
|tabed| < oo for a,b,c,d = 1,..., N, where T;_; is the ¢
field of events generated by {e,,5 <t —1}.

Assumption 3. As A — 07,

AN _
o = 0T 14D
for a = 1,..., N, where A,()) is the ath row of A(\) =
Z;‘;o Ajexp(ijA).

Assumption 4. As n — oo,
1 m'*28(logm)?
1, m™(logm)®

= T — 0,

in addition, when p > 1,m~!lognlogm — 0.

Assumption 5. The order p of the taper satisfies the
following: When p = 1,max,d} < 3, and when p >
1, max, s < p.

Assumption 1 strengthens Specification (13) by imposing
arate of convergence of fu,(\) to rguA~% =% This smooth-
ness condition is typically imposed in spectral analysis (see
Lobato 1999). One of the major technical contributions of
this article is to prove the CLT when the tapering proce-
dure is employed with p > 1 under Assumption 1. Previous
research has both strengthened Assumption 1 (cf. Velasco
1999b, Assumption 8) and assumed a lower bound for g3,
such as § > 1. This extension was recommended by a ref-
eree who suggested the case of a stationary long-memory
series X;(dx < 1) observed with an added short-memory
noise component for which 8 < 2dx < 1. This case has em-
pirical relevance because it happens in some long-memory
stochastic volatility models. In addition, in certain bivariate
models of volume and volatility, the short-memory com-
ponent could affect the long-memory components of both
volume or volatility (leverage effect) implying that 3 < 1.

Assumption 2 establishes that the process is linear with
finite fourth moment. The assumption of linear fourth-order
stationary processes has also been employed in the paramet-
ric literature (see Giraitis and Surgailis 1990; Hosoya 1997).
Notice that the restriction of constant conditional innova-
tions variances could be relaxed by assuming boundedness
of the eighth moment as shown by Robinson and Henry
(1999). Assumption 3 is a regularity condition similar to
the ones imposed in the parametric case.

Assumption 4 [which is assumption A4’ of Robinson
(1995b) for the p = 1 case] imposes an upper bound in
the rate of increase of m with n, necessary to control the
bias from high frequencies. Notice that this upper bound is
especially restrictive when /3 is small, suggesting that when

the long-memory series is observed with an added noise or
when the leverage effect is important, the chosen m should
be smaller. It also imposes a mild lower rate for m when
tapering is applied.

Assumption 5 restricts the order of the taper to be higher
than the maximum order of integration of the series that
compose the vector process. This condition implies that the
level of tapering is high enough for the tapered periodogram
to be unbiased for the pseudo SDF and for the construction
of consistent estimators of d (see Velasco 1999a,b).

When the components of the stochastic vector process
contain deterministic polynomial trends, T, of order ¢(®
(> 0), the order of the taper has to satisfy the following
assumption.

Assumption 6. The order of the taper p satisfies p >
max, q(@

Theorem 1. Under Assumptions 1, 2, 3, 4, and 5 (and 6
when deterministic trends are present)

Vm(d® —

d®) =4 N(0,p®,E~1), (18)

where d® is given by (16), E = 2(Iy + (R° o R°™")),

n -2 n—p n 2
®, = lim (th) > (Z h2 cost)\k> ,
"7 \i=1 k=0,p2p,... \t=1

and o denotes the Hadamard product of two matrices.

The proof is in the Appendix. Notice that, with respect
to the CLT provided by Lobato (1999), the covariance ma-
trix is increased by a factor of p®,,. The factor ®,, is due to
the lack of orthogonality of the taper weights that implies
correlation of adjacent tapered periodograms. The effect of
®, is very moderate, though. Notice that ®,, takes the val-
ues of 1.05000, 1.00354, and 1.00086 for the Kolmogorov—
Zhurbenko kernels with p = 2, 3, 4, respectively, implying
increments of the variance of 5%, .35%, and .09% for each
of the data tapers. The factor p is because only frequen-
cies A\;,j = p,2p,...,n — p, are employed. Notice that
only such frequencies can be employed with possibly non-
stationary data; hence the factor p relates to the fact that
there is no need to specify or to estimate the deterministic
trends when tapering is applied.

Although the tapering procedure implies an increase in
the limiting variance of the TSE, the finite-sample perfor-
mance of estimators based on tapered data can be supe-
rior to those based on raw data. Hauser (1999), Velasco
(1999a,b), and Velasco and Robinson (in press) found that
the tapered versions of semiparametric and parametric es-
timators of d are more reliable than the procedures based
on raw data.

To be able to use (18) for statistical inference, we need to
obtain a consistent estimator for E. Considering the defini-
tion of E, the natural one is E = 2(Iy + (Ro R~!)), where
R s given by (17). To prove the consistency of R for RY, it
is necessary to strengthen Assumption 4 to the following.

Assumption 4'. As n — oo,m ~ ¥n’, with ¥ a finite
positive constant and 0 < § < 1.



Table 1. Bias and Root Mean Squared Error of the TSE

m
60 150 140
p
1 2 3 1 2 3 1 2 3

Bias DGP1, d1 —.004 —.014 —.017 —.005 —.011 —.013 —.012 —-.017 —-.015
a2 .003 —.004 —.013 .001 —.004 —.009 —.008 —.012 —.014

DGP2, d1 —.004 —.014 —-.017 —.005 —.011 —.012 —.011 —-.017 —.015

a2 —.010 —.002 —-.012 .006 —.005 —.010 —.006 —.017 —.018

DGP3, d1 —.004 —.015 —-.018 —.005 —.011 —.012 —.012 —.017 —.015

a2 .019 .003 —.008 .014 —.004 —.010 —.001 —.020 —.022

DGP4, d1 —.004 —.014 —.017 —.005 —.011 -.013 —.012 —.017 —.015

a2 317 —.004 —.013 221 —.004 —.009 172 —.012 —.014

RMSE DGP1, d1 .076 121 .156 .045 .067 .089 .037 .053 .065
d2 .075 118 155 .044 .066 .088 .035 .052 .064

DGP2, d1 .076 124 .158 . .044 .068 .086 .037 .054 .065

a2 .079 118 .154 .047 .067 .085 .037 .054 .065

DGP3, d1 .076 126 157 .044 .068 .087 .037 .054 .064

d2 .081 119 .154 .052 .067 .086 .040 .054 .066

DGP4, d1 .076 121 .156 .045 .067 .089 .037 .053 .065

a2 321 118 .155 .223 .066 .088 174 .052 .064

NOTE: The first three DGP's are independent ARFIMA's with (d1, d2) = (.4, .4), (4, .6), and (.4, .8). DGP4 is DGP1 with a linear trend added to the second series. Sample size n = 1,000.

Then, the following lemma can be established using the-
orem 5 of Robinson (1994a) in a way similar to that of
Lobato (1999).

Lemma. Under Assumptions 1, 2, 3, 4, and 5 (and 6
when deterministic trends are present), R —p RO,

Consider as null hypothesis a linear set of » (r < N)
independent restrictions on d°, Hd® = z, where H is 7 x N
and z is r x 1. Then, the test statistic

7="0  (HI® - 2y (HE-'H') " (Hd® —z)  (19)
p

is asymptotically distributed as a x?2 distribution under the
null hypothesis. An interesting case is testing for a common
long-memory parameter for the vector process. In this case
zis a vector of N—1zerosand H = (Iy_1: 0)—(0:In_1),
with dimension (N — 1 x N), where Ix_; is the identity
matrix of order N —1, and 0 is an IV x 1 vector of zeros. In
Section 4, we apply (19) to test for a common long-memory
parameter for stock-market volatility and volume.

To establish a CLT for R, Assumption 4’ needs to be
strengthened.

Assumption 4". As n — oo,m ~ Und, with ¥ a finite
positive constant and 0 < § < 23/(1 + 20).

Theorem 2. Under Assumptions 1, 2, 3, 4”, and 5 (and
6 when deterministic trends are present),

Vm(vec(R(d)) — vec(R)) —a N(0,p®,F),  (20)
where F is a square matrix of dimension N’ = N(N +1)/2
and typical element Fyp s = 2(RarRys + RasRor).

The proof is in the Appendix, Section A.4. The com-
ponents of vec(R(d)) can be considered as standard
prewhitened nonparametric spectral estimates at zero fre-
quency. Hence, they can be used to estimate the squared co-
herency between series a and b at zero frequency, H,;(0)?,
by Hap(0)2 = K2, /(RaaRes). Then, using (20) and the delta
method, it can be proved that, for 0 < H,,(0)? < 1 (see
Brillinger 1975, p. 257),

Vm(Hap(0)? = Hap(0)2)
—a N(0,2p®,Hap(0)2(1 — Hap(0)2)?), (21)

fora,b=1,...,N.

We finish this section with a small finite-sample Monte
Carlo exercise reported in Tables 1 and 2. The finite-sample
bias and root mean squared error (RMSE) of the TSE re-

Table 2. Proportion of Rejections of the Wald Test of Common Long-Memory Parameter Based on 5% Asymptotic Critical Value

m
60 150 240
p
1 2 3 1 2 3 1 2 3

DGP1 .099 .130 .153 .073 .095 105 .070 .077 .089
DGP2 .631 414 .331 937 .692 .528 .991 .850 .680
DGP3 .987 .843 .693 1.000 .995 .959 1.000 1.000 996
DGP4 .943 .130 .153 .981 .095 .105 .985 .077 .089

NOTE: DGP's and sample size are the same as in Table 1.



ported in Table 1 are for four different data-generating pro-
cesses (DGP’s). The first three DGP’s are Gaussian inde-
pendent autoregressive fractionally integrated moving av-
erages with (di,d2) = (.4,.4),(.4,.6), and (.4,.8). In the
fourth DGP, we have added a linear trend (that takes the
values .005¢,¢ = 1,...n) to the second series for the first
DGP. We have considered one sample size (n = 1,000),
three values for m (m = 60, 150, 240), and three values for
p (p = 1,2,3). The number of replications has been 5,000.
S-PLUS and FORTRAN 90 codes with all the procedures
employed in the article are available from the authors. Table
1 indicates that biases are small and, typically, negative. As
could be expected, however, for the fourth DGP the bias for
the second estimate is very large when p = 1 is employed.
Notice that Assumption 5 does not hold for the third DGP
and p = 1, explaining the slightly larger bias of estimates
for d;. RMSE decreases with m and increases with p, as ex-
pected. In additional experiments that are not reported, we
have observed that the finite-sample behavior of the TSE is
very similar to the QMLE. QMLE is computationally more
demanding, which is another reason to prefer TSE.

In Table 2, we examine the performance of the T test
given in (19) for H = (1,—1) and z = 0 (the bivariate
Wald test for a common d) for the four DGP’s considered
previously. This table illustrates the effect of choosing p
incorrectly. Notice that, for the fourth DGP, Assumption
6 requires that p is chosen greater than 1. Table 2 shows
that, for this DGP when no tapering is carried out (p = 1),
the true null hypothesis is rejected more than 90% of the
times. In addition, it can be observed that, for the chosen
values of n and m, the rejection proportions (RP’s) under
the null hypothesis increase with p and decrease with m in
agreement with Theorem 1 (they are about 8% instead of
5%), whereas the RP’s decrease with p and increase with
m under the alternative.

4. LONG MEMORY IN TRADING VOLUME

In this section we analyze the long-memory properties
for the daily trading volume and return volatility processes
of the 30 stocks that compose the DJIN index for the period
July 1962 to December 1994.

Because stock-market trading volume is nonstationary,
several detrending procedures for the volume data have
been considered in the empirical finance literature. For
instance, Gallant et al. (1992) fitted a quadratic polyno-
mial trend, Andersen (1996) estimated nonparametrically
the trend of the logarithm of the volume series using
both equally and unequally weighted moving averages, and
Bollerslev and Jubinski (1999) fitted a linear trend. There is
a lack of rigorous statistical theory, however, on the effects
of detrending for the inference on the long-memory param-
eters of nonstationary long-memory processes. Hence, the
determination of a detrending mechanism that would al-
low for inference on the long-memory parameter of stock-
market volume is still an unsolved problem.

The most prominent economic theory regarding the be-
havior of stock-market trading volume and its relation to
return volatility appears to be the information-counting

model or mixture-of-distribution hypothesis (MDH) model.
There are several MDH models based on different theo-
retical backgrounds (see Clark 1973; Epps and Epps 1976;
Tauchen and Pitts 1983; Lamoureux and Lastrapes 1994;
Andersen 1996; Bollerslev and Jubinski 1999), and essen-
tially the MDH posits a joint dependence of returns volatil-
ity and volume on an underlying information-flow process.
Hence, according to the MDH, both the return volatility
and the trading-volume processes should share the same
stochastic properties.

Because it has been repeatedly shown that a main feature
of return volatility (for exchange-rate returns and for stock-
market returns) is the presence of long memory (e.g., see
Ding, Granger, and Engle 1993; Bollerslev and Mikkelsen
1996; Baillie, Bollerslev, and Mikkelsen 1996; Lobato and
Savin 1998), it is of interest to test if stock-market vol-
ume exhibits long memory and, if this is the case, to test
also if return volatility and volume share the same long-
memory parameter d. These two implications were derived
by Bollerslev and Jubinski (1999)—see their equations (5)
and (6)—but their testing procedure has two drawbacks.
First, when applied to data linearly (or nonlinearly) de-
trended, the estimators of the long-memory parameters have
unknown properties. Second, it is unknown a priori that the
long-memory parameter of volume lies in the stationary re-
gion (d < .5), and in fact they reported some cases for
which d > .5. In this section, we use a tapering procedure
to overcome both difficulties.

Table 3 lists the 30 stocks in the DJIA index with their
ticks and the periods covered by the data. The period covers
July 1962 to December 1994 (hence, the number of obser-
vations is 8,180) for all stocks but 3. These were the data
employed by Lobato and Savin (1998) in which strong ev-
idence of long memory was found in squared and absolute
returns (as measures of the return volatility process) using
a semiparametric Lagrange multiplier (LM) test for weak
dependence.

To illustrate a series, Figure 1 presents trading volume
(corrected for stock splits) for IBM. Because trending het-
eroscedasticity is clearly present—see also figure 2A of An-
dersen (1996)—we analyze the logarithm of stock trading
volume. This way of stabilizing the variance is a standard
practice in the empirical finance literature. Figure 2 presents
the daily log-trading volume for IBM (compare with An-
dersen’s fig. 2B). The IBM log-trading volume exhibits a
strongly nonlinear trend that might be represented by a
quadratic or a cubic polynomial. To study the long-memory
properties of log-trading volume, we could set the order of
the taper at least to p = 3 or p = 4 and apply the tools
considered in the previous sections. This approach, as we
have seen, is a robust way of estimating the long-memory
properties of processes whose nonstationary trends can be
approximated by quadratic or cubic polynomials.

In Table 4 we present the results of a modified version
of the univariate version of the LM test for weak depen-
dence of Lobato and Robinson (1998) applied to log-trading
volume corrected for stock splits for the 30 stocks in the
DIJIA. The modification consists of using the tapered pe-
riodogram and defining the statistic over the frequencies



Table 3. List of the 30 Dow Jones Industrial Average Companies With Beginning and Ending Dates

Stock Name Beginning date Ending date
ATT AT&T Corp. 07-02-1962 12-30-1994
ALD Allied Signal Inc. 07-02-1962 12-30-1994
AA Aluminum Company of America 07-02-1962 12-30-1994
AXP American Express Co. 05-18-1977 12-30-1994
BS Bethlehem Steel Corp. 07-02-1962 12-30-1994
BA Boeing Co. 07-02-1962 12-30-1994
CAT Caterpillar Inc. 07-02-1962 12-30-1994
CHV Chevron Corp. 07-02-1962 12-30-1994
KO Coca Cola Corp. 07-02-1962 12-30-1994
DIS Walt Disney Co. 07-02-1962 12-30-1994
DD DuPont E.I. De Nemours & Co. 07-02-1962 12-30-1994
EK Eastman Kodak Co. 07-02-1962 12-30-1994
XON Exxon Corp. 07-02-1962 12-30-1994
GE General Electric Corp. 07-02-1962 12-30-1994
GM General Motors Corp. 07-02-1962 12-30-1994
GT Goodyear Tire & Rubber Co. 07-02-1962 12-30-1994
IBM 1BM 07-02-1962 12-30-1994
P International Paper Co. 07-02-1962 12-30-1994
MCD McDonalds Corp. 07-05-1966 12-30-1994
MRK Merck & Co., Inc. 07-02-1962 12-30-1994
3M Minnesota Mining & Mfg. Co. 07-02-1962 12-30-1994
JPM Morgan, J. P. & Co. Inc. 04-01-1969 12-30-1994
MO Philip Morris Co. Inc. 07-02-1962 12-30-1994
PG Procter and Gamble Co. 07-02-1962 12-30-1994
S Sears Roebuck & Co. 07-02-1962 12-30-1994
X Texaco Inc. 07-02-1962 12-30-1994
UK Union Carbide Corp. 07-02-1962 12-30-1994
uTx United Technology Corp. 07-02-1962 12-30-1994
WX Westinghouse Electric Corp. 07-02-1962 12-30-1994
4 Woolworth Corp. 07-02-1962 12-30-1994

7 =p,2p,...,m. Hence, the test statistic employed is
™ uIT()\
LM = () ( S0
Ej(p)‘[ (’\j)
where

m
vj =logj — (p/m) ) _logj. (22)
i(p)
The null hypothesis that the log-trading volume process is
weak dependent (Hy : d° = 0) is rejected in favor of the al-

ternative that the log-trading volume process exhibits long
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Figure 1. Trading Volume for IBM Over the Period July 1962—
December 1994.

memory (H, : d° # 0) when LM is significantly large rel-
ative to the x? distribution. Notice that, to facilitate their
examination, Table 4 reports the p values rather than the
values of the test statistics. We present the results for the
Kolmogorov—Zhurbenko taper with p = 3 and a grid of
values for m from 60 to 300. Results for the p = 4 case
are qualitatively similar. From (18) it is obvious that infer-
ence is more accurate as m is larger. For big values of m,
however, the statistics employed would reflect the medium-
and short-term behavior of the process that would bias our
inference. This trade-off between bias and variance was ad-
dressed, for instance, by Robinson (1994b) and Henry and
Robinson (1996) for the univariate case. Following the pro-

0 2000 4000 6000 8000

Figure 2. Log-Trading Volume for IBM Over the Period July 1962—
December 1994.



Table 4. P Values of the Univariate LM Test for Long Memory for Volume for the Kolmogorov—-Zhurbenko Taper of Order p = 3

m
Stock 60 84 108 132 156 180 204 228 252 276 300
ATT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
ALD .070 .028 .010 .001 .000 .000 .000 .000 .000 .000 .000
AA .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
AXP .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
BS .095 .019 .009 .001 .000 .000 .000 .000 .000 .000 .000
BA .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
CAT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
CHV .019 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
KO .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
DIS .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
DD .025 .008 .001 .000 .000 .000 .000 .000 .000 .000 .000
EK 140 .005 .003 .000 .000 .000 .000 .000 .000 .000 .000
XON .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
GE .021 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
GM .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
GT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1BM .269 104 .012 .007 .001 .000 .000 .000 .000 .000 .000
P .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
MCD .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
MRK .026 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000
3M 213 .033 .003 .000 .000 .000 .000 .000 .000 .000 .000
JPM .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
MO .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
PG .057 .015 .001 .000 .000 .000 .000 .000 .000 .000 .000
S 493 .074 .005 .001 .000 .000 .000 .000 .000 .000 .000
TX .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
UK .013 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
uTXx .013 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
WX .035 .005 .000 .000 .000 .000 .000 .000 .000 .000 .000
z .016 .005 .000 .000 .000 .000 .000 .000 .000 .000 .000

NOTE: The null hypothesis is dyoume — 0.

cedure of Lobato and Savin (1998), we prefer to report the
results for a grid of m rather than the results for just some
optimal m. Furthermore, notice that even when m = 300
the shortest cycle included in the estimation is 27.3 days,
which is marginally higher than the monthly trading day,
and hence the potential bias caused by the monthly seasonal
peak is avoided in all the calculations. Inspection of Table
4 indicates that log-trading volume exhibits long-term de-
pendence. This agrees with Bollerslev and Jubinski’s (1999)
results for individual stocks in the S&P 100 index.

The null hypothesis of weak dependence can also be
tested using Wald-type tests based on (19). We prefer to
report the results of the LM test because, as pointed out
by Lobato and Savin (1998, p. 283), the LM test tends to
reject less often than the Wald test. Results (that are not
reported) of univariate and bivariate Wald-type tests based
on (19) confirm the evidence from the LM test.

Because both stock-market volume and return volatil-
ity exhibit long memory, we proceed to test whether both
processes share the same long-memory parameter. The test
statistic employed, based on (19), is

m _ A A _ A
T= ;cbpl(Hd@))’(HE L)Y (HAP),

(23)

where H = (1,—1). As mentioned in Section 3, the test
statistic 7' asymptotically follows a x? distribution un-
der the null even if the analyzed series possess poly-

nomial or stochastic trends of order less than p. We
present the results for the same values for m and p in
Table 5.

Table 5 shows that for most of the stocks and most values
of m the null hypothesis of a common long-memory param-
eter cannot be rejected, the exceptions being just six stocks
(ATT, AXP, BA, IP, JPM, and Z). Because for most of the
values of m the null hypothesis of equal long-memory pa-
rameters cannot be rejected, Table 6 presents the estimated
values of the common d. From this table, it is clear that
most of the estimates range between .3 and .5, although
there are some estimates above .5. For completeness, we
report the TSE for volume (upper row) and volatility (lower
row) for those cases in which the hypothesis of a common
long-memory parameter is rejected. The asymptotic stan-
dard errors associated with these estimates vary slightly
across series. The typical standard error for m = 60 is .090,
for m = 180 it is .050, and for m = 300 it is about .038.
Notice that, due to the particular form of the matrix E, both
elements in the main diagonal are the same, and hence the
standard errors for the TSE for volume and volatility are
the same.

Notice that the null hypothesis of a common long-
memory parameter could have been rejected for those six
stocks because the trend of log-trading volume was not
well captured by a quadratic polynomial (as occurs for
the p = 1 case in which the null of common d is al-
ways rejected). In case the trend in log-volume trading
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Table 5. P Values of the Wald Test for Common Long-Memory Parameter for Volatility (measured by absolute returns)
and Volume for the Kolmogorov—-Zhurbenko Taper of Order p = 3

m
Stock 60 84 108 132 156 180 204 228 252 276 300
ATT 276 469 .055 000 .000 .000 .000 .000 .000 .000 .000
ALD 671 573 .503 .647 .842 169 165 072 .032 .050 .040
AA .692 418 .523 .653 .866 1.00 .705 959 977 .664 775
AXP .031 .553 .334 .001 .000 000 .000 000 .000 .000 .000
BS 470 .590 719 771 .770 458 129 .049 .011 .002 .000
BA 276 .012 .003 .097 .030 097 .049 .007 .003 .000 .000
CAT .664 .052 .369 275 .706 464 .088 .085 .070 1565 .052
CHV .403 773 .920 446 672 496 332 .237 147 234 167
KO 975 116 210 516 .969 .878 .725 540 .304 423 666
DIS 933 480 975 .920 195 213 .554 329 218 .090 .045
DD 672 .079 .298 .636 .690 855 661 .960 734 778 225
EK .795 911 120 724 .958 .868 .831 .982 .626 .904 677
XON .793 .280 .303 .296 214 .138 .050 .064 .010 .005 .003
GE .282 .006 .034 070 .031 427 .024 053 112 223 .343
GM .644 166 .093 .631 .991 .625 526 476 176 307 .245
GT .684 .087 615 .326 .361 215 128 071 142 .045 .029
IBM .024 .003 .038 074 150 .348 516 .580 736 371 696
P .033 518 319 .092 .037 .039 .013 .007 .015 .001 .000
MCD .019 .580 .385 393 .549 142 129 .058 011 .012 .006
MRK 410 .904 .304 .438 .376 .537 .852 .692 402 490 574
3M .201 .827 .865 718 216 .336 .257 052 .005 .003 .013
JPM .000 .002 .025 .003 .000 .000 .000 .000 .000 .000 .000
MO .996 .959 .688 .929 727 .996 .985 .817 .804 .399 208
PG .086 .262 .248 377 .306 676 .965 .895 .818 .886 .634
S .362 444 732 415 .658 .458 .255 177 132 187 .095
TX .078 .247 317 .626 .679 .644 .453 410 441 787 .818
UK .935 .948 .358 214 .208 .018 .080 168 .209 .045 .042
UTx .560 913 .932 .998 .523 .301 .203 21 .080 .156 109
WX .190 .223 .220 .293 514 .756 524 .233 195 .188 177
4 A17 .050 .027 .004 .006 .000 .000 .000 .000 .000 .000

NOTE: The null hypothesis is that dvoatiity = dvolume-

could be approximated by a polynomial of order third,
fourth, or fifth, we should employ a taper of order p =
4,p = 5, or p = 6, respectively. Using these higher-
order tapers, it appears that in all cases except AXP the
trend in volume is properly captured by a high-order poly-
nomial and the common long-memory parameters are in
the interval .3-.5. These results agree with Bollerslev and
Jubinski’s (1999) results for the stocks in the S&P 100
index.

Because it appears that both volume and volatility pos-
sess the same long-memory parameter, it is of interest
to examine if both processes are driven by the same
long-memory component—that is, if volume and volatil-
ity are fractionally cointegrated. Even though the issue
of fractional cointegration has received much attention
lately (see Robinson and Marinucci 1998 or Ray and Tsay
1998), relevant asymptotic distribution theory has proved
elusive.

One way of checking whether volume and volatility are
fractionally cointegrated is to test the necessary condition
that the coherency between both series is 1 at zero fre-
quency. In Table 7 we present the estimated squared co-
herency at zero frequency for the p = 3 case in which the
squared coherency is estimated by

R m yda+d 2
Hap(0)% = Ry EipXtRel(Y)) .
RaaBios 3770 N3% Laa (V) 2270 A3 Ten(N))

Typically the estimated squared coherency is in the range
.1-3, and only in one case is marginally higher than .4.
Using (21) we can have an idea about the typical stan-
dard error of Hgy(0)2. When Hep(0)2 ~ 1 and p =
3, for m = 60, se.(Hp(0)2) ~ .122, and for m =
150, s.e.(l?;(o)z) ~ .077. Hence, Table 7 clearly indi-
cates the absence of fractional cointegration between vol-
ume and volatility. Results when the squared coherency
at zero frequency is estimated by imposing a common d
are similar. In all cases the estimated squared coherency is
below 4.

Finally, we note that, because the semiparametric tools
employed in this article are robust to the seasonal behav-
ior of the vector process considered, the empirical results
reported in the article are not affected by some data fil-
tering common in the empirical finance literature. For in-
stance, filtering the data by excluding the Christmas period
(December 23rd to the first trading day of the following
year), as Andersen (1996) proposed, would not affect our
results.

5. CONCLUSIONS

In this article new methods for carrying out statistical
inference on the long memory parameters of stock-market
trading volume and volatility have been examined. We have
avoided detrending procedures and analyzed consistent es-
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Table 6. Two-Step Estimator (TSE) of the Common Long-Memory Parameter d for Va{atility (measured by absolute returns) and Volume
(reported when the corresponding p value in Table 5 is above .05) or TSE for Volume (upper row) and Volatility (lower row) (reported when the
corresponding p value in Table 5 is below .05) for the Kolmogorov-Zhurbenko Taper of Order p = 3

m
Stock 60 84 108 132 156 180 204 228 252 276 300
ATT 655 654 635 414 403 382 388 333 348 314 321
782 77 728 690 660 622 601 609
ALD 338 346 325 314 321 294 289 311 274 321 274
411 401
AA 454 358 368 336 363 375 380 378 361 338 298
AXP 809 815 841 582 434 433 074 464 477 388 414
912 987 1.00 1.61 933 913 1.03 .960
BS 251 268 244 242 252 270 288 252 234 224 202
394 402 419 448
BA 419 368 338 418 308 442 352 334 298 263 243
660 662 502 498 521 501 502 493
CAT 570 517 437 455 474 443 398 399 410 405 389
CHV 403 773 920 446 672 496 332 237 147 234 167
KO 493 441 409 396 429 405 372 352 354 348 353
DIS 553 507 512 491 431 401 .390 394 385 373 324
450
DD 347 367 353 327 320 332 336 311 278 285 267
EK 350 459 402 367 357 329 328 351 333 327 329
XON 500 554 476 406 403 382 386 395 274 223 222
458 414 420
GE 527 598 574 430 530 425 511 420 418 414 412
252 333 321 318
GM 553 507 511 442 A7 460 455 424 393 360 364
GT 463 472 452 453 413 409 .390 383 .381 284 .283
417 428
IBM 632 650 548 373 365 362 366 356 352 337 343
.329 .323 .339
1 471 393 374 295 224 214 224 231 250 225 205
401 367 401 434 425 432 433
MCD 274 463 497 379 391 386 401 399 .369 347 345
.606
MRK 219 284 285 374 372 361 349 313 277 268 281
3M 287 290 319 324 349 323 320 344 274 264 244
458 452 400
JPM 293 383 438 392 334 295 272 251 234 232 233
.880 782 702 704 720 674 670 660 677 634 632
MO 494 485 424 394 416 407 392 375 367 360 354
PG 376 329 370 402 374 334 363 347 342 346 347
S 292 452 ©.482 372 424 371 345 354 355 369 367
TX 508 558 489 463 461 428 430 445 428 408 41
UK .390 .383 .403 .381 .373 .381 315 .388 .387 .290 .291
446 421 419
uTX 462 451 421 397 362 368 369 353 367 353 348
WX 347 328 374 335 325 296 314 333 296 302 291
z 360 259 173 134 142 100 103 .095 112 A1 104
382 .381 .380 427 448 411 404 403 427
timates based on tapered data. Application of these pro- ACKNOWLEDGMENTS

cedures indicates that for the stocks in the DJIA in-
dex the logarithm of the trading volume exhibits long
memory and, additionally, that it shares the same long-
memory parameter with the volatility process for most of
the stocks. The estimated coherency between log-volume
and absolute returns at zero frequency, however, is very
small.

Finally, we note that tapering is a statistical tool that can
be very useful in many economic problems. For instance,
the comparison of trend stationarity and difference station-
arity (an issue that attracted great interest during the last
decade) is a problem for which the tapering procedure is
especially suitable.
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APPENDIX: CLT FOR TSE

As shown by Lobato (1999), the TSE has the same
asymptotic distribution as the QMLE, and in fact it is given
by (18) if
AT,(d)

VI 50 |

—d N(O,p@I,E)
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Table 7. Estimated Squared Coherency at Zero Frequency for the Kolmogorv-Zhurbenko Taper of Order p = 3

m
Stock 60 84 108 132 156 180 204 228 252 276 300
ATT .000 015 010 032 032 029 029 029 058 044 .052
ALD 220 325 360 369 314 251 231 240 .240 202 184
AA .000 017 062 121 110 140 163 .154 A73 177 124
AXP 190 137 119 118 .155 145 042 101 .099 102 074
BS .086 127 219 234 190 196 182 168 .181 197 198
BA 185 225 177 193 205 197 182 197 241 213 250
CAT 100 .165 125 137 125 137 109 076 073 071 098
CHV 165 147 125 130 151 166 196 199 218 239 212
KO 367 356 .333 268 236 250 269 276 252 259 254
DIS 145 244 192 265 234 223 .205 206 236 241 .238
DD 110 122 128 205 203 188 175 178 .191 193 201
EK 207 245 254 .306 304 318 .286 282 302 293 288
XON 085 119 A1 .108 126 110 145 133 133 131 125
GE 026 .085 086 .088 .087 .082 .097 110 141 113 105
GM .150 207 234 205 228 212 248 259 257 229 218
GT 042 .086 046 062 .056 045 .049 .050 .054 058 048
IBM 270 .321 253 216 227 235 222 220 268 222 225
IP 192 243 273 233 226 260 239 213 209 209 206
MCD 169 A12 172 133 103 101 127 135 161 133 129
MRK 258 264 187 160 162 184 218 202 246 244 .249
3M 256 .288 259 222 A74 190 170 A7 157 199 178
JPM 055 .059 .045 032 027 083 .097 092 114 .099 096
MO 048 024 095 132 171 .180 146 A19 .165 187 A79
PG 110 174 126 .150 157 142 147 163 179 A7 .166
s .185 255 286 179 202 163 .180 .198 210 237 226
TX 319 401 375 .355 349 321 324 312 333 296 269
UK 072 165 228 238 209 228 185 .181 169 155 143
uTx .040 .086 124 145 137 125 135 138 159 147 145
WX 120 101 091 133 147 139 .150 146 160 142 161
z 234 .365 .359 287 236 236 228 207 .180 185 189
and
, x {iaI"(N) + IT(\)ia}ATH (A
R
d where the matrix i, is an N x N matrix with every element

for all d such that ||d — d°|| < [|dV — d°|,
where E is positive definite. Both statements are proved
in Sections A.1 and A.2, respectively. Section A.3 contains
important auxiliary results. The matrix E is positive definite
as shown by Lobato (1999). Section A.4 contains a sketch
of the proof of Theorem 2.

A1 CLT FOR SCORE

In this section we prove that, for any N x 1 vector 7,

o T

—a N(0,®,n'En).

do

Proof. The proof is similar to the proof of Lobato
(1999). We just stress the differences. First, notice that

0Y,d) _ 2
So = ZlogJ
i(p)
+tr R(d)_li Z (log 5)A
i(p)

equal to 0 except the ath diagonal, which is 1. Then, calling
7 to the ath element of ;) and using that R(d®)~! = RO +
0p(1) [choose s = m in Expression (A.10) in Lemma 1 in
Section A.3 and divide by m],

o )

ZWaZw

o Vmp S ()

x (r*AY Re{IZ(0)IN% — 1) +0,(1), (A2)

where v; is as given in (22), r* is the ath row of Ro_l, and
IT();) is the ath column of IT();). Furthermore, (A.2) is
asymptotically equivalent to

DI

=1 j(p)

\/—/_

A) = ADHT )AL NI (A3)

x WA?“Re{A(A»J(Aj)A;(Aj)}Ajg ~1), (A4)
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where J(\) = (27 h2)"Y S0, heere™|2. Now using
(A.8), proved in Section A.3, and summation by parts, (A.3)
is

N m N
2(m/p) S me S vy 3wt

a=1  j(p) b=l

x (Re{IZ(\;) — Ap(A))J(A) AL DA% = 0,(1),

where 2 is the (a, b)th element of R°~". Equation (A.4) is

-1 1 ~ 2 « dg
Re {A(x])%—m ;hteteéAa(Aj)} Xje — 1)

1
x Re {A(z\,)m Z Z hihseiels

Now the first part is negligible using lemma 1 in ap-
pendix 4 of Lobato (1999) and that max; |h:| < 1, whereas
the second part can be written as ) ;_, z, where z, =
hiel 428 ©4_shge, with

O, = (71'\/m/thf)_1 i v;Q; cos(tA;)

i(p)
and ;= S0l naRelAQG)'AT " A0G) + AL ()
AO AD) )]/\ . , where the overline indicates conjugation. z;

1s a martmgale dlfference and we can apply a standard CLT
for a martingale difference sequence (see Hall and Heyde
1980, sec. 3.2). This entails proving the following:

L3, E(2}|Ti-1) — p®yp Zf=1 ng:l NaMoEab —p 0.
2. Y0 E(z2(|z] > p)) — 0 for all p > 0.
Proof of 1. We have that

n

> E(ITi) i: tha ©}_,O_sts
t=1

t=2 s=1
n t—1
+ 3037 S hiheel®)_ O gy
t=2 s#s’

The second term on the right is o,(1) using lemma 2 in
appendix 4 of Lobato (1999) and the fact that max; |hs| <
oco. The first one using lemma 3 in appendix 4 of Lobato

(1999) has mean

> S u

ip) 3'(p)

Zh22
n—1 n—

x [0, Y
t=1

and using Lemma 2 in Section A.3 we complete the proof
for 1.

Proof of 2. We prove the sufficient condition Y ;_,
E(z}) — 0. Because

S5

t=1

t—1 t—1
’ / /
X E hu€, O _yEtEL E hy©Os_yEy
u=1 v=1

¢
h2h%, cos(s);) cos(sAy),
1

=

n

> E(z)

Il

Zh4h €0, setsch (ST

s=1

IN

t—1

C {i tr [Z e;_set_se;_set_s]
t=1 s=1

+ Ztr {Z o,_

for some finite positive constant C, then Y, | F(z}) =
O(n~!(logm)*) as in appendix 1 of Lobato (1999).

Zet ret T@t s}}

=1

A.2 CONVERGENCE OF HESSIAN
In this section we prove that

5T, (d)
0da0dy |;

—p Eab

for all d such that ||d — d°|| < |dV — d°||. (A.5)

Proof. The proof is similar to that of Lobato (1999).
Define d. = max, d2, and for k = 0, 1,2, define

Fi(d) =pm™_ (logj)*diag{A} }Re{I" (A
i(p)

j)}diag{Af*}

and

Gi(d) =pm™ > (log j)*diag{j* }Re{I" ();)}diag{j®}.

i)

We also employ that pm~' 37 log”j — (pm~' 37,
log /)2 — 1 as m — co. What we need to show is that

Fk(do)—RO% 3 log* i = 0p(1). (A6)

i(p)

By summation by parts, the left side of (A.6) is

m—p J
237 ((1og4)* ~ (log(i +)*) D (diag{{}
i(p) l(p)
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x Re{IT(\)}diag{\¢} — R°) + % (log m)*

m

x Y (diag{Af* }Re{IT();)}diag{ "} — R°)

7(P)

The orders of magnitude of

m

3 (diag{A%}Re{I"(),)}diag{\"} - R°)

i(p)

are as follows:

1. For p = 1, and d, < 1, adapting Lobato’s (1999) pro-
cedures when d, > .5 as in theorem 3 of Velasco (1999b),

0, (nPmP+! 4 1/ (5=4d.) (og )2/ (5-4d.)
+ m2~1ogm + n~Y2md+1/2(1og n)3/4
+ n~Y4md (log m) /2 + m'/?)
2. For p > 1,d. < p, using (A.10) in Section A.3,
Op(n™PmP+! +logn + m'/?)
Then, using these orders of magnitude, Assumption 4, and

that |(log j)* — (log(j + p))*| < kj~"(log(j + p))*~", the
orders of magnitude of the left side of (A.6) are as follows:

1. Forp=1,d. <1,
O,,([n‘ﬂmﬁ + mAds=1)/(5-4d) (g )2/ (5-4d.)

+ m2@=D log m + n~ /2@ =D/2(10g 1)5/4
+ n_1/4md‘_1(log m)l/2 + m'1/2] logm) = o0p(1)

2. For p > 1,d. < p,
Op([n™PmP +m~Vlogn + m~/?]logm) = 0,(1)
A.3 AUXILIARY RESULTS

Lemma 1. Under the conditions of Theorem 1,

hd B+1
3 GasA)A % — 1) = 0 (snﬂ ) (A7)
i(p)
S 0 0
STRe{IG(N) — Aa(A\)IT () A5 (0) IS
i(p)
— O,,(logz n+ [sd.—p+1 + n-—.SSZ(d.—p+l)] log 8)1/2, (A.8)
e 0 0
3 Re{Aa(\)IT (M)A (A} — fas(Mg)ASe T
i(p)
= 0,(s'?), (A.9)

and hence
> d04dY
Y Re{Zup(A)IAT ™™ —rap)

i(p)

shtt
=0, (7 +10gn+sl/2> . (A.10)

Everything, except (A.8) holds as in the work of Lo-
bato (1999), just replacing the raw periodogram by the
tapered periodogram and the running index in the sum-
mation. Now, the proof of (A.8) is as shown by Lo-
bato (1999) up to the point at which the expectation of
the square of the left side of (A.8) is divided into two
parts, the terms with fourth-order cumulants and the terms
without.

The terms without the cumulants have two parts. For
the first part, using theorem 6 of Velasco (1999a) and
d. +.5 < p, their order of magnitude is O(3;, {i~" +
7,1 = O(logs), where v, = (jk)%Plogj,j < k.
To analyze the second part, notice that in theorem 6 of
Velasco (1999a), in the expression for the covariances of
w¥(})), the terms |j — k|~P are due to the bound for
|Hjkl, where Hj. = (2n37 k)~ [T DTN —
MNDT(A — Xp) dx and DT(;) = S, heexp(ith;).
Therefore, we obtain that E[v] (\)vT (M) = Hjx +
O@G~Yj — k|™Plogn + j~Yj — k|*P + ~v;x), where
vI(A) = wl(¥;)/fal%(),). Notice that the Hjj are
identically O for nontapered series, p = 1,57 # k(mod
n), but may not be for p > 1. In (4.26) of Robinson
(1995b), however, all the terms |H;x|? and |H;, _x|? can-
cel out by symmetry, obtaining that the order of magni-
tude of the second term without fourth-order cumulants
is

8 8
0 (ZZ {57215 — k7% log® n + 72 — k[>~% + ﬁ,k})

i(p) k>j

+0 (Z > {7~ kP logn

J(p) k>j
+ 37— RITP 4 - k!“’)

= O(log?n + s P logs).
For the terms with fourth-order cumulants, we find the

same expressions for tapered data as given by Robinson
(1995b) and Lobato (1999), defining for the ath series,

Py(aky) = [ 1) - )

— Ak (0)(1 = €M) HRET (A = M) ), (A1)
where KT()) = (2r Y7 h?)~'|DT(N)|%. Then applying
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Lemma 3 provided at the end of this section, its order of
magnitude is O(Z;(p){[’)’j’j +57 P [ 45 =

O(1) for the first part, and for the second part a typical term
has order of magnitude

At P2 (a k) )P (b, ko) PL/ % (a, ks) Py (b, ka)

o)
( + P2(a, k) PY2 (b, ka) P2 (b, kg) A2 A

Using the results in Lemma 3, this part is

o(im

i(p) k>j

+ 7Jy]][k + 71/2

+ O Ay +7”2]}>

= O(log s + P logl/2 s+ n~0gHd-—pt) log s).
Lemma 2. Under the conditions of Theorem 1,

h2 i
DT S S

i(p) k(p)

n—1 n—t

x tr[€ ] Z Z hZh2,, cos(s);) cos(sk)

t=1 s=1

N N
= q)p Z Z NaMEap + 0(1

a=1 b=1

(A.12)
Proof. Proceeding as in lemma 6 of Velasco (1999b),

(A.12) is

)2

41 2

2 m m

Z Z vj l/jftl'[Q;-Qk]

i(p) k(p)

n 2
x [Zh?cost()\j—)\k)] +O0(m~(logm)?) (A.13)

t=1

because ||Q;|| = O(1). Now, using the properties of the data
taper transforms and the differentiability of 2; and of v;
similarly to the proof of lemma 7 of Velasco and Robinson
(in press), (A.13) is

47r2

thr[ﬂ’ﬂ]+ o(1)

J(p)

The rest of the proof follows from appendix 1 of Lobato

(1999).
Lemma 3. Under the conditions of Theorem 1,
Pj(a,kp) = O(faa(Mj)i 2 +755), fora =1,...,7rkp, =

17273147.7' :pazpv"'7n—pvp > 1

Proof. Consider without loss of generality k, = 1 and
a =1, and set P; = P;(1,k;). The result in the lemma fol-
lows as in lemma 3 of Robinson (1995b) or Velasco (1999b),
by decomposing the integral that defines P; in (A.11) in the
following intervals. First, choose € > 0, fixed, such that As-

+n V2P (0, k) PY2 (b, ko) A% AP )

sumption 1 holds for |\| < ¢, as in the proof of theorem 2
of Robinson (1995a); then

L] =o (][ smwan)

= O(fu(y)j' =),

using that |[DT()\)| < Cmin{n,n!"P|\|~P} for a taper of
order p > 1. Second,

—2;/2
/.
us s
=0 (nl"z”[ A2 gx + f11(N) / ,\—ZPd,\D
A X

= O(n'=2P A2 4 g ()A)
O(f11(A)5'72P).

I\

Third,
2;/2 X;/2
/ = o(/ FuirWKT (A = X)) dr
~;/2 —2;/2
+ f11(A)[A4 sup KT()‘_)‘j))
~X;j/2SAK); /2

= O(fua(M)ly5 + nl—zp)\;_gp])

= O(fu(\)h + 3%,
using the same method as that of Velasco (1999a, pp. 356~
357) because fi1(A) might not be integrable. Finally, using
Assumption 3,

/2)\]-
A;/2

2

d
d)\Al( )

(0] sup
Xj/2SA<2);

2);
<
Xj/2
O(f11(X)i™3),
as [P APKT(A) dA = O(n~2),p > 1.
A4 CLT FOR COHERENCE ESTIMATES

We need to prove under the conditions of Theorem 2 that
for any N’ x 1 vector n

vm(vec(R(d)) — vec(R)) =4 N(0,p®,7'Fn).

A= XNPET(A = A)) d,\>
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Proof.  We follow as in Section A.1. First notice that and Q; = YN SN na TR 1AL A (G) + A (N)
) _ Aq(N;j)]. Therefore Z; is a martingale dlfference, and we can
m/prf (veo( R i(d )) vec(R(do))) apply a standard CLT for a martingale difference sequence

N as in Section A.1. This entails proving the following:

N/
dg+dg
@ »Re[IT (\:)] — Ra n B / , / ,
\/'_ > Smd OF RO ) Sty B(E P T =p®, S0l S0l B0 Sl e

a=1 b=1  j(p)

nTSE;b,rs —>P 0.
y (}\da+dz, 8 1) = o,(1), 2. Y0 E(1Z21(|2¢] > p)) — 0 for all p > 0.
ino that Both follow as in Section A.1; the main difference is that
using tha now, D = df + df + d7 + dg,
)\:iﬁd‘b—dg—d;: _1l = 0.4 dy —d° e
S 1 | = Op(lognsup| al) e[,
= Op(m~?logn). N
Then = X A0 A ) + 040
a,b,r,s=1
/ ’ —
m/pn’ (vec(R(do)) — vec(R)) x [A7 () A(Ag) + A5 (A3) Aa (M1}
Z Zﬂab Z \datd; and this is (27)? times
NOr=t= i(p)
D
x Re[I2,(A) = Aa(N)T (M) A5 (A7)] (A.14) . b;ﬂ Nabrs A7 {Fos(Xj) Fra(A) + Fob(X) far (X5)
Z Zﬂabz +fbr()‘j)fsa()‘j)+frb(’\j)fas()‘j)}
a=1 b=1 i(p) ’
0 4 Jo =2 7, bnrs)‘D
X (X;ﬁdbRe[Aa()\j)J(/\j)Ag(/\j)] — Rap), (A.15) a,b%:l ¢ !

where (A.14) is 0,(1) using (A.8) proved in Section A.3 and
(A.15) is

X

{Re[fbs( fra(’\ )] +Re[frb( J’)fasO‘j)]}
N
2 Z nabnrs{Rbera + RrbRas} + 0(1)7

.
Z NS el

a=1 b=1 i(p)

N’

Il

as n — oo, following the expression for F.
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