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Abstract

Monitoring gene therapy of glycogen storage disease type 1a in a mouse model was achieved using [18F]FDG

and a dedicated animal scanner. The G6Pase knockout (KO) mice were compared to the same mice after infusion

with a recombinant adenovirus containing the murine G6Pase gene (Ad-mG6Pase). Serial images of the same

mouse before and after therapy were obtained and compared with wild-type (WT) mice of the same strain to

determine the uptake and retention of [18F]FDG in the liver. Image data were acquired from heart, blood pool and

liver for twenty minutes after injection of [18F]FDG. The retention of [18F]FDG was lower for the WT mice

compared to the KO mice. The mice treated with adenovirus-mediated gene therapy had retention similar to that

found in age-matched WT mice. These studies show that FDG can be used to monitor the G6Pase concentration in

liver of WT mice as compared to G6Pase KO mice. In these mice, gene therapy returned the liver function to that

found in age matched WT controls as measured by the FDG kinetics in the liver compared to that found in age

matched wild type controls. Published by Elsevier Science Inc.
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Introduction

Glucose-6-Phosphatase (G6Pase) [1], most abundantly found in liver and kidney, catalyzes the last

step of both gluconeogenesis and glycogenolysis. This enzyme is a key protein in the regulation of

glucose homeostasis. Its function is to dephosphorylate glucose-6-phosphate (G6P), so that free glucose

can be transported out of cells and released into the blood. Thus, the activity of this enzyme controls

liver glucose production. Defects of the G6Pase enzyme system cause glycogen storage disease type 1

(GSD-1), which manifests with severe hypoglycemia, hepatomegaly, hyperlipidemia, and hyperuremia.

If no therapy is implemented, very few GSD-1 patients can live to 20 years of age. GSD-1 affects 1 in

100,000 live birth. Morbidity and mortality have been improved because of successful dietary therapy.

The G6Pase enzyme system is associated with the endoplasmic reticulum and has multiple

components [2]. Current understanding of this system indicates that G6P is transported into the

microsome by a G6P transporter (G6PT). Once inside the microsome the G6Pase catalytic unit

dephosphorylates G6P and finally phosphate and glucose are transported out of the microsome via

specific transport proteins [3]. Accordingly, GSD-1 was divided into four subgroups, corresponding to

defects in: the G6Pase catalytic unit (GSD-1a), the G6P transporter (GSD-1b), the putative phosphate/

pyrophosphate transporter (GSD-1c), and the putative glucose transporter (GSD-1d) [4]. The cDNA and

gene for both the G6Pase catalytic unit [1,5] and G6PT [6–8] have been isolated and characterized and

the molecular bases of GSD-1a [1] and GSD-1b [8] have been established. The requirement for both the

G6Pase catalytic unit and G6PT has recently been demonstrated in cell culture [9].

[18F]-2-fluoro-2-deoxyglucose ([18F]-FDG) is a glucose analog currently utilized for positron

emission tomography (PET) imaging studies in humans. FDG uptake has been used for many years

to measure in vivo regional glucose utilization [10]. This tracer competes with glucose for phosphor-

ylation by hexokinase or glucokinase. After it is phosphorylated, FDG-6-phosphate (FDG6P) does not

undergo glycolysis. In tissues with elevated glucose metabolic rates, such as tumors, with low or absent

dephosphorylating activity, FDG6P is trapped inside cells. This property allows for imaging of areas

with increased FDG retention and has been extensively applied to visualize, stage and monitor

progression of tumors [11]. On the other hand, in organs such as the liver, FDG is taken up and rapidly

released, presumably due to the presence and activity of the G6Pase enzyme [12]. Images in a single

patient with GSD-1 indicate that FDG is more avidly retained in the liver compared to normal subjects

[13]. The pharmacokinetics of FDG, developed from the seminal work by Sokoloff using [14C]deox-

yglucose, can be described by the two tissue compartment model [14,15]. The current understanding of

FDG metabolism is that the k4 parameter (the rate of hydrolysis of G6P) is tightly linked to the presence

and activity of the G6Pase enzyme system. Therefore, in vivo measurement of k4 for FDG may provide a

non invasive quantitative method to evaluate liver G6Pase function and also be a tool to monitor the

effectiveness of gene therapy in patients with GSD type 1.

Recently a mouse model of GSD-1a has been generated by gene targeting [16]. The G6Pase-knockout

(KO) mice manifest essentially the same phenotype as human GSD-1a patients and have been used to

evaluate the gene replacement therapy for this disorder [17]. The results demonstrate that a single

administration of a recombinant adenovirus vector can alleviate the clinical manifestations of GSD-1a in

mice, suggesting that this disorder in humans can potentially be corrected by gene therapy. Therefore, it

was of interest to determine if G6Pase deficiency in these KO animals could be monitored by external

imaging using a projection imaging PET camera especially designed for small animal imaging [18].
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FDG uptake and release is affected exclusively by transport, phosphorylation and dephosphorylation

because it cannot undergo further glycolysis. Sadiq et al. found that the glucose transporter, GLUT 1,

was similar from day 1 to day 27 in normal mice, whereas the GLUT 2 decreased from a high at day 1 to

a low at day 14 and 27 [19]. Glucokinase concentrations were similar at day 1 and day 7 but increased by

33% by day 14 and 27. Therefore, we expected that FDG would be transported and phosphorylated in a

normal fashion over the lifetime of the mice. It has been shown that microsomal G6Pase activity was

first detectable in rat liver at 17 days gestation and enzymatic activity increased rapidly after birth, before

leveling off to adult levels [20–22]. In the mouse, hepatic G6Pase mRNA and enzymatic activity were

first detected by 18 days gestation, and at parturition, the level of G6Pase mRNA increased markedly

before leveling off to steady-state adult levels [22]. The age at which steady-state G6Pase mRNA occurs

is approximately day 4 after birth. We therefore expected that the FDG would be transported into the

hepatocytes, phosphorylated, and dephosphorylated essentially independent of age of the mouse. Our

hypothesis is that the G6Pase KO mice would have higher retention of FDG compared to the wild-type,

and after gene therapy, the KO mice would process FDG in a similar manner to that observed in the wild

type (WT) mice.

Materials and methods

G6Pase KO mice

All animal studies were conducted under an animal protocol approved by the NICHD Animal Care

and Use Committee. Starting within the first postnatal day, glucose therapy, consisting of intraperitoneal

injection of 25–100 Al of 10% glucose every 8 h was administered to the G6Pase-/- mice. Mice that

passed weaning were given glucose injection, unrestricted access to water containing polycose (5%), and

Mouse Chow (Zeigler Bros., Inc., Gardners, PA.).

Infusion of mice with Ad-mG6Pase

Two-week-old G6Pase KO mice [16] were infused with 0.1 ml of Ad-mG6Pase containing 2 � 109

plaque forming units (PFU) via the retro-orbital vein [17]. Glucose therapy was terminated immediately

in Ad-mG6Pase-infused G6Pase KO mice and the weaning mice were given Mouse Chow ad libitum.

Imaging studies

FDG was prepared using a standard method [23]. The mice were injected with 275 ACi with a range

of 131 to 576 ACi. The knockout mice ranged from 5 g to 17 g and the control mice ranged from 8 to 18

g with one normal control at 25 g. The animal imaging system (PiPET) has been described previously

[18]. Each detector consists of a 26 � 22 array of bismuth germanate (BGO) crystals coupled to a

Hamamatsu R3941 position-sensitive photomultiplier tube. Tomographic resolution is FWHM = 2.1 mm

and central point source sensitivity without energy thresholding is 130 cps/ACi. The imaging study was

performed in each mouse after configuring the detector pair for planar imaging. The animal was placed

on the imaging table, centered within the field-of-view, injected with [18F]FDG in a retroorbital vein and

imaging immediately begun. Image data were acquired for 20 minutes in ‘‘list mode’’ and formatted into
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sequential 10-second frames. This image sequence was then analyzed to quantify the time variation of

radioactivity in the liver and heart. Time-activity curves were obtained from both structures by placing a

region-of-interest over the apparent center of the heart and another over the upper right lobe of the liver.

Both of these regions were small compared to the apparent size of both structures. The time-activity

curves for the heart were analyzed using a two exponential fit in Kaleidagraph (Synergy Sofware, Inc,

Brentwood TN). The errors represent the standard error values of the parameters.

These time-activity curves were then used to create Patlak and Logan plots for each animal. The

Patlak plot is useful for characterizing ligands that bind irreversibly and are essentially trapped for the

time course of the scanning procedure [24,25]. The Logan plot is useful for analysis of reversible

systems where the slope of the plot yields the volume of distribution [26].

Biodistribution studies (Table 1)

Tumor bearing mice (nu/nu Balb/c) or Balb/c mice, which were awake or anesthetized [IP with

Ketamine (50 mg/Kg)/Xylazine (2 mg/Kg)], were injected intravenously with 10 to 20 ACi of [18F]FDG.
The awake or anesthetized groups were sacrificed at 20, 60, or 90 min following the injection. Blood and

tissue samples were removed and counted in a Wallac gamma counter. The results are expressed as %

injected dose/g of tissue (%ID/g) normalized to a 20 g mouse.

Results and discussion

We have completed imaging studies on a series of mice that included 20 WT mice, 6 G6Pase KO

mice, and 4 KO mice after two weeks of adenovirus-mediated gene therapy [17]. Each mouse was

injected with [18F]FDG and scanned continuously for 20 minutes using the PiPET system. The time

activity curve over the liver was compared with radioactivity in the heart blood pool. Since plasma

contains only [18F]FDG, the heart radioactivity was used as the input function.

All three sets of mice (WT, KO, and KO after gene therapy) exhibited reversible binding in the mouse

liver based on the observation of a plateau on the Patlak plot and a straight line on the Logan plot. This

can be explained by the presence of non-specific phosphatases because the G6Pase activity in the KO

mice was onlyf1% of the activity found in the wild type mice [17]. Because the Patlak plot does not

Table 1

Comparison of [18F]FDG Uptake in Awake and Anesthetized Mice after 20, 60, and 90 min

%ID/g1

20 min 60 min 90 min

awake anesthetized2 Awake anesthetized awake anesthetized

Blood 1.70 F 0.213 2.60 F 0.31 0.21 F 0.04 0.77 F 0.25 0.26 F 0.06 0.54 F 0.08

Heart 6.85 F 0.16 1.73 F 0.38 12.92 F 3.21 1.82 F 0.28 32.8 F 13.39 1.52 F 0.54

Liver 1.78 F 0.27 2.59 F 0.28 0.51 F 0.15 1.16 F 0.35 0.89 F 0.24 0.95 F 0.26

Muscle 1.54 F 0.56 0.98 F 0.28 1.21 F 0.59 0.56 F 0.11 2.99 F 0.51 0.47 F 0.09

1 %Injected Dose (ID)/g was normalized to a 20 g mouse.
2 Each mouse was anesthetized IP with Ketamine (50 mg/Kg)/Xylazine (2 mg/Kg).
3 Mean F Standard deviation (n 3 5 mice).
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give accurate volumes of distribution with reversible ligands, we concentrated on interpreting the data by

using the Logan Plot.

The first observation was that the slopes of the Logan plots for the WT group was dependent on the

weight of the animal (Fig. 1). The correlation of the volume of distribution was 0.039 times the weight of

the WT mouse (R = 0.85). We then compared the Logan plot slope for WT and KO animals with body

weights between 5 and 10 g. The average slope for the WTwas 1.32 F 0.041 whereas the average slope

for the KO mice was significantly higher (1.47 F 0.045). The box graph (Fig. 2) shows the distribution

of the Logan slopes for the WT and KO mice. For a group of WT animals with body weights between 5

and 10 grams, the slope from the Logan plot of 12 mice was between 1.1 and 1.3 while three other mice

had higher values at 1.45–1.55.

The Logan slope for the group of treated KO mice was similar to that obtained for the WT (Fig. 1). By

the nature of the experiment, the treated KO mice weighed from between 13.5 to 17.1 g body weight.

The correlation of the Logan slope and the body weight was y = 0.96 + 0.04x with R = 0.83 for the WT

and 0.76 + 0.59x with a R = 0.86 for the KO.

The volume of distribution as given by the slope of the Logan plot equals K1/k2(1 + k3/k4). The

change in slope could be caused by changes in any of the four parameters constituting the equation for

the slope. The partition coefficient (K1/k2) is not a function of blood flow and unlikely to change among

the three groups. In weight-matched animals, the concentration of glucokinase should be similar and

therefore k3 should not be different among the groups. The increase in slope in the KO mice is mostly

likely related to a decrease in k4 caused by a decrease in G6Pase activity. The KO animals after gene

therapy had Logan plot slopes that were larger than the first two groups, but they were statistically

Fig. 1. The Logan slope for the group of treated KO mice (solid squares) and the WT (open squares). By the nature of the

experiment, the treated KO mice weighed between 13.5 to 17.1 g body weight. The correlation of the Logan slope and the body

weight was y 0.96 + 0.04x with R 0.83 for the WT and 0.76 + 0.59x with R 0.86 for the KO.
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similar to WT mice of the same weight (they were older at the time of scanning because of the serial

nature of the experiment).

We have two possible explanations for the change in slope of the Logan plots: (1) FDG is not

phosphorylated in any of the groups and the reversible binding is due to K1/k2 with no k3 and k4; that is,

the FDG is taken up by the cell and then released. However, the increase in slope of the G6Pase KO mice

would not be easily explained by this mechanism because it would require an increase in K1/k2, which is

flow independent. The second explanation for reversible binding is a constant partition coefficient (K1/

k2) and a decrease in k4 caused by the KO procedure. Since the kinetics of FDG in untreated KO mice

are still reversible, other phosphatases must have hydrolyzed the G6P to some extent. Certainly the KO

mice had glycogen deposits in the liver and kidney so phosphatase activity was decreased, but not to the

extent that the kinetics of FDG become irreversible. Since the volume of distribution increased in the KO

mice, a decrease in k4 is most consistent with the data.

The average rate constant for the fast component of the radioactivity collected from the heart blood

pool in the WT was 0.030/sec F 0.003/sec where as the fast component for the KO was 0.065/sec F
0.007/sec and for the treated KO 0.085/sec F 0.007/sec. The average rate constants for the slow

components of the radioactivity collected from the heart blood pool in the WT, KO and treated KO were

similar. We also have observed that mice under anesthesia had low heart muscle uptake when compared

to awake animals and even at the end of our scan period of 20 min, the blood still contains more

[18F]FDG than the heart muscle (Table 1). This lower uptake should increase the percentage of

radioactivity measured in the blood pool. In general, the integral from the heart blood pool appears to be

similar between the KO mice and the treated KO mice and the uptake in the heart muscle compared to

that in the heart blood pool is low. However, the Logan plot takes into account differences in input

Fig. 2. The Logan plot slope for WT and KO animals with body weights between 5 and 10 g. The average slope for the WTwas

1.32 F 0.041 whereas the average slope for the KO mice was significantly higher (1.47 F 0.045). Each box encloses 50% of

the data with the median value of the variable displayed as a line. The top and bottom of the box mark the limits ofF25% of the

variable population. The lines extending from the top and bottom of each box mark the minimum and maximum values within

the data set that fall within an acceptable range.
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function in the calculation of the volume of distribution. Gallagher et al. [12] carried out the early studies

with FDG by sacrificing rats and counting tissue. More recently, imaging studies of liver and blood using

FDG have been carried out in rodents. Green et al. [27] studied the biodistribution of FDG in mice and

concluded that the input function could be obtained from monitoring the liver, but that heart TAC could

not be used presumably due to myocardial uptake of FDG. However, they were not using a dedicated

animal scanner in that study. Other investigators including Kallinowski et al. [28] and Hawkins et al.

[29] have been able to use the mouse left ventricle blood pool as the input function for FDG studies.

They both used high-resolution, dedicated animal PET scanners. Hawkins et al. obtained direct serial

retroorbital blood samples and compared them with arterial concentrations derived from imaging data

and with arterial sampling obtained by Kallinowski et al. This also suggests the left ventricle blood pool

radioactivity may be used as the input function. Lapointe et al. [30] collected eight blood samples of 10

AL in mice with the help of a computer-controlled microvolumetric sampler. The amount in the blood

was compared with the amount of FDG in the tumor, but the blood samples were not compared with

time-activity curves of the blood pool.

Choi et al. [31] showed that the volume of distribution in humans in both fasting subjects and post-

glucose was similar and the liver blood volume was increased in fasted subjects compared to post-

glucose subjects [32]. However, it is clear that plasma glucose levels can affect myocardial uptake of

FDG and this in turn could affect the determination of the input function in these studies. In the three

groups of mice used in this study, Zingone et al. showed that the glucose levels were lower in the KO

mice (66.6 F 15.6 mg/dl) than in the wild type (213.7 F 12.7 mg/dl) and KO mice treated with

adenovirus vector [17]. The treated KO group reached a peak plasma glucose level at 42 days of 155.8F
11.4 mg/dl. This is in spite of the KO mice receiving glucose injections until weaning and having access

to high starch mouse chow. There are no published studies describing how a change in glucose level

affects uptake in the mouse myocardium. We did not subtract blood radioactivity from the time-activity

curves over the liver. The liver was smallest in the wild type animals compared to the KO treated animals

and the KO untreated animals. However, no information on the blood volumes was available.

These studies show that FDG can be used to monitor the G6Pase concentration in liver of WT mice as

compared to G6Pase KO mice. Furthermore, FDG can be used to monitor the effects of gene therapy. In

these mice, gene therapy returned the liver function to that found in age matched WT controls as

measured by the FDG kinetics in the liver compared to that found in age matched wild type controls.
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