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1. Introduction

Let μ be a positive Borel measure supported on a finite or infinite interv
convex hull verifies C0(E) = [a, b] ⊆ R. In the last years several authors have
spectral transformations of μ, which are a way to construct new families of 
perturbed version of μ. They have been studied from several points of vie
Jacobi matrices (see [2,27]) or the Stieltjes functions associated with such 
[28] among others).

Let us introduce the sequences of monic orthogonal polynomials (SMOP
one of the aforesaid canonical transformations, called the Geronimus canon
line. The basic Geronimus perturbation of μ is defined as

1
x− c

dμ(x) + Nδ(x− c),
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where N ∈ R+, δ(x − c) is the Dirac delta function located at x = c, and the shift of the perturbation
verifies c /∈ E. Observe that it is given simultaneously by a rational modification of μ by a positive linear 
polynomial whose real zero c is the point of transformation (also known as the shift of the transformation) 
jointly with the addition of a Dirac mass at the point of transformation as well.

This transformation was introduced by Geronimus in his pioneer works [12] and [13] on procedures of 
constructing new sequences of orthogonal polynomials from other known families, and it was also studied 
by Shohat in a different scheme involving mechanical quadratures (see [22]). Years later, Maroni (see [17]) 
returned to the problem and gave a first expression of the Geronimus perturbed orthogonal polynomials in 
terms of so-called co-recursive polynomials of the classical orthogonal polynomials. More recently, Bueno and 
Marcellán reinterpreted this perturbation in the framework of the discrete Darboux transformations (see [3]). 
In [2] the authors present a new computational algorithm for computing the Geronimus transformation with 
large shifts. In [1] the authors provide sharp limits (and the speed of convergence to them) of the zeros of the 
Geronimus perturbed SMOP, and also, when μ is semi-classical they obtain the corresponding electrostatic 
model for the zeros of the Geronimus perturbed SMOP, showing that they are the electrostatic equilibrium 
points of positive unit charges interacting according to a logarithmic potential under the action of an external 

a cubic case. [9] provides a new 
rms in order to include certain 
ux transformations. Finally, [8]
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field. In [16] the authors extend the standard Geronimus transformation to 
revision of the Geronimus transformation in terms of symmetric bilinear fo
Sobolev and Sobolev-type orthogonal polynomials into the scheme of Darbo
deals with multiple Geronimus transformations and show that they lead to d
type inner products, and it is shown that every discrete Sobolev inner produc
Geronimus transformation.

In view of the foregoing, this transformation has been extensively studi
analytic and algebraic frameworks. However, to the best of our knowledge, t
family of orthogonal polynomials as n → ∞ have not been studied in deta
when N = 0 and the perturbed measure is the Laguerre classical measure (

2. Laguerre polynomials and functions of the second kind

The classical Laguerre polynomials Lα
n(x) are defined as the polynomials

L2([0, ∞)) inner product

〈p, q〉α =
∞∫
0

p(x)q(x)xαe−xdx, α > −1, p, q ∈

see, among others [4] or [23].
In order to fix notation, we denote by L̂α

n(x) the monic Laguerre polynom
monic polynomials are connected to standard Laguerre polynomials Lα

n(x) b

L̂α
n(x) = (−1)nn!Lα

n(x), n ≥ 0.

They satisfy a three term recurrence relation that we write in the following

xL̂α
n(x) = L̂α

n+1(x) + βnL̂
α
n(x) + γnL̂

α
n−1(x),

where

βn = 2n + α + 1, γn = n(n + α),



and we have initial data L̂α
0 (x) = 1 and L̂α

1 (x) = x − α − 1. We will also make use of the L2([0, ∞)) norm 
of the monic Laguerre polynomials. Since

‖Lα
n‖2

α = Γ(n + α + 1)
Γ(n + 1) ,

we have

‖L̂α
n‖2

α = Γ(n + α + 1)Γ(n + 1). (4)

A second (independent) solution of the recurrence relation (2) is the function of the second kind, obtained 
via a Stieltjes transform of the Laguerre polynomials

F̂α
n (z) =

∞∫
0

L̂α
n(t)

t− z
tαe−tdt, (5)

ne Fα
−1(c) = 1, analogously to

.5(ii)] and a standard integral 
α
n (z) in terms of the confluent

πi), (6)

sentation will be a key element 
formation about the confluent 
3].
nomials with real coefficients

, (7)

e that consists of an absolutely 
on [0, +∞), plus a Dirac delta 

rd Laguerre measure (see [2,1]
gonal polynomials with respect 

 monic orthogonal polynomials
le connection formula:

(8)

3

which is an analytic function for z ∈ C \ [0, ∞). Here n ≥ 0, and we defi
[11, §2.4.4]. Using the Rodrigues formula for Laguerre polynomials [19, §18
representation, see [19, Eq. (13.4.4)] for instance, it is possible to write F̂
hypergeometric function of the second kind, or Kummer U function:

F̂α
n (z) = (−1)nn!Γ(n + α + 1)U(n + 1, 1 − α, ze±

with plus sign if −π < arg z ≤ 0 and minus sign if 0 < arg z ≤ π. This repre
for all the asymptotic analysis later on in this manuscript. For more in
hypergeometric functions, we refer the reader for instance to [19, Chapter 1

Let us introduce the following inner product in the linear space P of poly

〈p, q〉νN
=

∞∫
0

p(x)q(x) xα

x− c
e−xdx + Nδ(x− c)

where α > −1, and N ≥ 0, and c ∈ (−∞, 0). Namely, we deal with a measur
continuous part, which is a rational perturbation of the Laguerre weight 
located at point x = c:

dνN (x) = xαe−x

x− c
dx + Nδ(x− c).

Equivalently, we will say that νN is a Geronimus perturbation of the standa
and the references therein), and we will denote by Q̂α,c,N

n (x) the monic ortho
to (7).

As explained in [1] (and the references therein), the Laguerre–Geronimus
can be written in terms of the monic Laguerre OPs using the following simp

Q̂α,c,N
n (x) = L̂α

n(x) + ΛN
n L̂α

n−1(x),

where the coefficient ΛN
n depends on n, α, c and N . More precisely:



Proposition 1. The connection coefficient ΛN
n can be written as follows:

ΛN
n = − Γ(n + α)Γ(n)

L̂α
n−1(c)F̂α

n−1(c) −NL̂α
n−1(c)2

− πn−1(c), (9)

where we have defined, for c ∈ (−∞, 0),

πn(c) =
L̂α
n+1(c)
L̂α
n(c)

. (10)

In particular, when N = 0, we have ΛN
n = −rn−1(c).

Proof. In Remark 1 in [1], ΛN
n is given in terms of Laguerre polynomials and functions of the second kind:

( )−1

−1(c), (11)

(12)

1(c),

), n ≥ 1.

tions of the recurrence relation 

−1(c), with Δ1(c) = −Γ(α+1).

sequence of OPs Q̂α,c,N
n (x), for 

e identity to use in conjunction 
 Perron, Fejér or Mehler–Heine 
the Laguerre–Geronimus OPs. 

he asymptotic behavior of the 

n(c) and rn(c).
mptotic expansions for πn−1(c)
utting together this result and

or Q̂α,c,N
n (x) in Section 5.
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ΛN
n = 1

πn−1(c) − rn−1(c)
−N

L̂α
n−1(c)2

‖L̂α
n−1‖2

− πn

where

rn(c) =
F̂α
n+1(c)
F̂α
n (c)

, c ∈ (−∞, 0).

Therefore, we can rewrite ΛN
n as follows:

ΛN
n =

(
L̂α
n−1(c)F̂α

n−1(c)
Δn(c) −N

L̂α
n−1(c)2

‖L̂α
n−1‖2

)−1

− πn−

with the Casoratian determinant

Δn(c) = L̂α
n(c)F̂α

n−1(c) − L̂α
n−1(c)F̂α

n−1(c) = −Γ(n + α)Γ(n

The last equality follows from the fact that both L̂α
n(c) and F̂α

n (c) are solu
(2), with x = c, and then it is straightforward to check that Δn(c) = γn−1Δn

Using (4) for the norm of the polynomials and simplifying, we arrive at (9).
Finally, the case N = 0 follows directly from formula (11). �
The aim of this paper is to obtain strong and relative asymptotics of the 

large n. The simplicity of the connection formula (8) makes it a very attractiv
with classical asymptotic approximations for Laguerre polynomials (such as
expansions, see [23, §8.22]), in order to obtain the corresponding result for 
The only element that is missing so far in the literature is a study of t
coefficient ΛN

n . We observe that because of (9), ΛN
n depends on the ratios π

The structure of the paper is as follows: in Section 3 we obtain large n asy
and rn−1(c), which lead to asymptotic approximations for ΛN

n in Section 4. P
the connection formula (8), we obtain the strong and relative asymptotics f



3. Asymptotic expansions for πn−1 and rn−1

The ratios πn−1(z) and rn−1(z) could in principle be studied using standard techniques for the asymptotic
behavior of solutions of three-term recurrence relations, such as the Perron theorem, see for instance [14, 
§4.3]. However, since the recurrence coefficients in (2) satisfy βn ∼ 2n and γn ∼ n2 as n → ∞, the theorem is
inconclusive about the existence of minimal and dominant solutions, and it does not give detailed asymptotic 
information about the behavior of ratios of solutions. We refer the reader to [6, Section 4] for more details.

In this paper we work with strong asymptotics of the Laguerre polynomials and functions of the second 
kind directly. For z away from [0, ∞), the strong asymptotics for the Lα

n(z) can be obtained from the classical
expansion due to Perron, see for instance [23, Theorem 8.22.3]:

Lα
n(z) = 1

2
√
π
ez/2(−z)−α

2 − 1
4n

α
2 − 1

4 e2
√
−nz

(
1 + O(n−1/2)

)
, (13)

which is valid for fixed α > −1 and z ∈ C \ [0, ∞). The fractional powers are assumed to take their principal 
values, with phase between −π and π. In [5, Theorem 3] higher terms in this asymptotic expansion have 

tions due to Buchholz, see also 

3/2)

,

, for the monic polynomials we 

+ 1 + O(n−1/2), (14)

e present the following result:

ed by (5), satisfy

)n−α
2 − 1

4

∞.
(15)

 the power functions. The first 

)z2

4α2 − 9)
.
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been obtained, using a related expansion for confluent hypergeometric func
[15] and references therein. The ratio asymptotics is given in [5] as well:

Lα
n(z)

Lα
n−1(z)

= 1 +
√

− z

n− 1 + 2α− 2z − 1
4(n− 1) + O(n−

= 1 +
√

− z

n
+ 2α− 2z − 1

4n + O(n−3/2)

as n → ∞, for fixed α and z ∈ C \ [0, ∞). Therefore, as a direct consequence
have

πn−1(z) = L̂α
n(z)

L̂α
n−1(z)

= −n
Lα
n(z)

Lα
n−1(z)

= −n−
√
−zn + 2z − 2α

4

as n → ∞.
Regarding the asymptotic behavior of the functions of the second kind, w

Proposition 2. Given α > −1, the functions of the second kind F̂α
n (z), defin

F̂α
n (z) = (−1)n

√
π(−z)α

2 − 1
4 e−z/2−2

√
−zn Γ(n + α + 1

×
[
e0 + e1√

−zn
+ e2

−zn
+ O(n−3/2)

]
, n →

The expansion is valid for bounded z ∈ C \ [0, ∞), with principal values of
few coefficients ej are

e0(α, z) = 1,

e1(α, z) = 12α2 − 3 − 24z(1 − α) − 4z2

48 ,

e2(α, z) = 16z4 + 192(1 − α)z3 + 24(20α2 − 48α + 13
4608

+ 144(α− 1)(2α + 1)(2α + 3)z + 9(4α2 − 1)(
4608



Proof. In order to get the previous result, there are at least two possibilities: use the expression of F̂α
n (c)

in terms of Kummer functions, see (6), or deduce its asymptotic behavior from the Deift–Zhou steepest 
descent method applied to the corresponding Riemann–Hilbert problem, see the work of Vanlessen [26] and 
the monograph by Deift [7]. In the sequel, we elaborate on the first approach.

Following the ideas exposed in [24], we use the integral representation for the Kummer U -function:

U(a, b, z) = 1
Γ(a)

∞∫
0

e−ztta−1(1 + t)b−a−1dt,

which holds for Re a, Re z > 0, see also [19, 13.4.4]. The transformation t/(1 + t) = e−τ gives

U(a, b, z) = ez/2

Γ(a)

∞∫
0

e−aτ−z/τ τ−bf(τ)dτ,

− 1
2 .

er series expansion around the 

(16)

5], gives an expansion of the 

),

2),

τ,

∞, uniformly with respect to z
f R. We assume, following [24, 

6

where

f(τ) = ezμ(τ)
(

τ

1 − e−τ

)b

, μ(τ) = 1
τ
− 1

eτ − 1

The function f(τ) is analytic for |τ | < 2π, and therefore it admits a pow
origin of the form

f(τ) =
∞∑

m=0
dm(b, z)τm.

Integration term by term, invoking the classical Watson lemma, [20,2
U -function of the form

U(a, b, z) =
M−1∑
m=0

dm(b, z)φm(a, b, z) + RM (a, b, z

where the asymptotic sequence is

φm(a, b, z) = 2 ez/2

Γ(a)

(z
a

)m+1−b
2

Km+1−b(2(az)1/

in terms of modified Bessel functions, using the fact that

Kν(2(zζ)1/2) = 1
2

(
ζ

z

)−ν/2 ∞∫
0

e−zτ−ζ/ττ−ν−1d

valid for Re z, Re ζ > 0. Also, we have RM (a, b, z) = O(φM (a, b, z)) as a →
in compact sets in z ≥ 0 and uniformly with respect to b in compact sets o
§2.1] that M is large enough, in particular M > b.



If we replace b = 1 − α, symbolic computation gives

d0(α, z) = 1,

d1(α, z) = 6(1 − α) − z

12 ,

d2(α, z) = z2 − 12(1 − α)z + 12(α− 1)(3α− 2)
288 ,

d3(α, z) = −5z3 − 90(1 − α)z2 − 36(15α2 + 25α + 8)z − 1080α(α− 1)2

51 840 ,

and so on, for the coefficients in the series expansion (16). Replacing a by n +1 in the asymptotic sequence, 
we obtain

φm(n, α, z) = 2 ez/2

n!

(
z

n + 1

)m+α
2

Km+α(2((n + 1)z)1/2). (17)

(n, α, ze±πi)
]
,

+ 1)ze±πi)1/2),

< arg z ≤ 0 and minus sign if

: using the asymptotics of the 
, see [19, 10.40.2], we have

)
.

vious results and expanding in

7

As a consequence, using (6) and (17), we have

F̂α
n (z) = (−1)nn! Γ(n + α + 1)U(n + 1, 1 − α, ze±πi)

= 2e−z/2(−1)nΓ(n + α + 1)
[
SM (n, α, ze±πi) + RM

as n → ∞, where

SM (n, α, ze±πi) =
M−1∑
m=0

dm(α,−z)
(
ze±πi

n + 1

)m+α
2

Km+α(2((n

and RM (n, α, ze±πi) is the remainder. Once again, we take plus sign if −π

0 < arg z ≤ π.
It is possible to re-expand this asymptotic series in inverse powers of n

modified Bessel functions for large values of the argument and fixed order ν

Kν(z) ∼
( π

2z

)1/2
e−z

∞∑
�=0

a�(ν)
z�

, z → ∞,

where a0(ν) = 1 and for � ≥ 1,

a�(ν) = (4ν2 − 1)(4ν2 − 32) · · · (4ν2 − (2�− 1)2

8��!

So, if we denote sn = 2((n + 1)ze±πi)1/2, we have

Km+α(sn) ∼
(

π

2sn

)1/2

e−sn

∞∑
�=0

a�(m + α)
s�n

.

Note that sn = 2
√
nze±πi (1 + O(n−1)) as n → ∞. Assembling all the pre

inverse powers of n, we arrive at Proposition 2. �



Remark 1. We observe that the leading term in this expansion is consistent with the results in [10,18], 
bearing in mind that we are working with monic polynomials. We also note that the exponential factor is 
erroneously corrected in Proposition 3.2(a) in the first reference.

As a direct consequence, and using symbolic computation, we have an asymptotic expansion for the ratio 
of consecutive functions of the second kind:

Proposition 3. As n → ∞, the ratio asymptotics of the Laguerre functions of the second kind is given by

rn−1(z) = F̂α
n (z)

F̂α
n−1(z)

= −n +
√
−zn + 2z − 2α + 1

4 + O(n−1/2),

where α > −1 and z ∈ C \ [0, ∞).

Proof. The result follows from Proposition 2, using symbolic computation to manipulate the asymptotic 
expansions. We remark that division by F̂α (z) is allowed for z away from the positive real axis, bearing

ve zeros for | arg z| < π if a is 

n

→ ∞, (18)

n → ∞. (19)

: combining (13) with (15), we 

−1)
)
,

o be expected here, is actually 

,

1/2)
)
,

tation

8

n−1
in mind (6) and the fact that the Kummer function U(a, b, z) does not ha
positive, see [19, §13.9]. �
4. Asymptotic behavior of ΛN

n

The main result of this section is the following:

Proposition 4. Let c ∈ (−∞, 0), α > −1 and N ≥ 0 be fixed parameters, the

ΛN
n = n +

√
−cn + 2α− 2c− 1

4 + O(n−1/2), n

if N > 0, and

Λ0
n = −rn−1 = n−

√
−cn + 2α− 2c− 1

4 + O(n−1/2),

Proof. We deduce this result from the asymptotic expansions derived before
obtain

L̂α
n−1(c)F̂α

n−1(c) = 1
2
√
−cn

Γ(n)Γ(n + α)
(
1 + O(n

as n → ∞. It can be checked that the term of order O(n−1/2), which is t
equal to 0. Also,

L̂α
n−1(c)2 = Dα,c

2
√
−cn

Γ(n)2nαe4
√
−cn

(
1 + O(n−1/2)

)
= Dα,c

2
√
−cn

Γ(n)Γ(n + α)e4
√
−cn

(
1 + O(n−

using the fact that Γ(n + α)/Γ(n) = nα(1 + O(n−1)), as n → ∞, and the no

Dα,c = ec(−c)−α

2π .



Putting everything together and using the results in [5], we have

ΛN
n = − 2

√
−cn

1 + O(n−1) −NDα,ce4
√
−cn(1 + O(n−1/2))

+ n
Lα
n(c)

Lα
n−1(c)

,

= − 2
√
−cn

1 + O(n−1) −NDα,ce4
√
−cn(1 + O(n−1/2))

+ n +
√
−cn + 2α− 2c− 1

4 + O(n−1/2).

It is important to observe that if N > 0, the first term in the previous sum is exponentially small in n, 
so it does not contribute to the final result. However, if N = 0 the first term does contribute, since the 
exponential term is not present, and then we have the difference in sign in the subleading term given in 
Proposition 4. �
5. Asymptotics for Q̂α,c,N

n (z)

symptotics for Q̂α,c,N
n (z), for z

 \ [0, ∞), as n → ∞, the monic 

) (
1 + O(n−1/2)

)
, (20)

ials:

−3/2). (21)

ign to N = 0.

(22)

) does not cause any problem, 
duce

n → ∞,

ion 4 and (14), we obtain (20).
nce of (22). �
)], taking N = 0 and M = 1.
xpansion for Laguerre polyno-

9

Using the estimates for ΛN
n (18) and (19), we describe first the strong a

away from the interval of orthogonality (outer asymptotics):

Proposition 5. Given fixed values of N ≥ 0, α > −1, c ∈ (−∞, 0) and z ∈ C

polynomials Q̂α,c,N
n (z) verify the following strong asymptotics

Q̂α,c,N
n (z) = (−1)nn!

2
√
π

ez/2+2
√
−nz(−z)−α

2 − 1
4n

α
2 − 3

4
(√

−z ∓
√
−c

and the following ratio asymptotics with respect to monic Laguerre polynom

Q̂α,c,N
n (z)
L̂α
n(z)

=
√
−z ∓

√
−c√

n
− (

√
−z ∓

√
−c)2

2n + O(n

In both cases, the upper sign corresponds to the case N > 0 and the lower s

Proof. We rewrite the connection formula (8) as follows:

Q̂α,c,N
n (z) =

(
1 + ΛN

n

L̂α
n−1(z)
L̂α
n(z)

)
L̂α
n(z),

and we use the information obtained so far. Observe that division by L̂α
n(z

since the zeros of this polynomial are contained in [0, ∞). From (14), we de

L̂α
n−1(z)
L̂α
n(z)

= − 1
n

[
1 −

√
− z

n
+ 1 − 2z − 2α

4n + O(n−3/2)
]
,

and combining this with the asymptotic behavior for ΛN
n given by Proposit

Then formula (21) for the relative asymptotic behavior is a direct conseque

We remark that this is consistent with the result in [10, Proposition 3.4a
Applying the connection formula again, but with the inner asymptotic e

mials, we can obtain strong asymptotics of Q̂α,c,N
n (x) for x ∈ (0, ∞).



Proposition 6. Given fixed values of N ≥ 0, α > −1, c ∈ (−∞, 0) and x in compact intervals of (0, ∞), as 
n → ∞, the monic polynomials Q̂α,c,N

n (x) verify the following strong asymptotics

Q̂α,c,N
n (x) = (−1)n+1n! n

α/2−3/4ex/2√
π xα/2+1/4

[√
x sin θαn(x) ±

√
−c cos θαn(x) + O(n−1/2)

]
, (23)

where the phase function is

θαn(x) = 2
√
nx−

(
α

2 + 1
4

)
π, (24)

and again the upper sign corresponds to the case N > 0 and the lower sign to N = 0.

Proof. We rewrite (8) as follows:

Q̂α,c,N
n (x) =

(
1 − ΛN

n

n

)
L̂α
n(x) + ΛN

n

n
L̂α−1
n (x), (25)

ls:

(26)

Laguerre polynomials, see [23, 

/2)
]
, (27)

O(n−1),

N = 0. Using this information 
ition cos θα−1

n (x) = − sin θαn(x),

e Mehler–Heine type formulas. 
 verify

(28)

 the Bessel function of the first
 prove the following:

in compact subsets of C, the 

(29)

= 0.
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where we have used the following identity for standard Laguerre polynomia

Lα
n−1(z) = Lα

n(z) − Lα−1
n (z),

see for example [19, 18.9.13]. Then, we use the classical Fejér formula for 
Theorems 8.22.1, 8.22.2], adapted to the monic case:

L̂α
n(x) = (−1)nn! n

α/2−1/4ex/2√
π xα/2+1/4

[
cos θαn(x) + O(n−1

valid for x in compact intervals of (0, ∞), with phase function (24).
From the asymptotic expansion of ΛN

n we deduce that

1 − ΛN
n

n
= ∓

√
−c

n
+ O(n−1), ΛN

n

n
= 1 ±

√
−c

n
+

where the upper sign corresponds to the case N > 0 and the lower sign to 
and (27), we expand as n → ∞ in (25), bearing in mind that from the defin
and we arrive at the result. �

Another useful asymptotic behavior that one can find in the literature is th
Is very well known that for j ∈ N ∪ {0}, the standard Laguerre polynomials

lim
n→∞

L
(α)
n (z/(n + j))

nα
= z−α/2Jα

(
2
√
z
)
,

uniformly for z in compact subsets of C, see [23, Theorem 8.1.3], where Jα is
kind, and the square root takes its principal value. Using this result, we can

Proposition 7. For given values of N ≥ 0, α > −1, c ∈ (−∞, 0) and z
polynomials Q̂α,c,N

n (z) verify

lim
n→∞

(−1)n

n!
Q̂α,c,N

n (z/n)
nα−1/2 = ∓

√
−c Jα

(
2
√
z
)
,

where the upper sign corresponds to the case N > 0 and the lower sign to N



Proof. In order to prove (29), we start with the connection formula (8) for monic polynomials. In terms of 
standard Laguerre polynomials, recall (1), we have

(−1)n

n! Q̂α
n(z/n) = Lα

n(z/n) − ΛN
n

n
Lα
n−1(z/n)

=
(

1 − ΛN
n

n

)
Lα
n(z/n) + ΛN

n

n
Lα−1
n (z/n),

where we have used (26) again. Consequently,

(−1)n

n!
Q̂α

n(z/n)
nα

=
(

1 − ΛN
n

n

)
Lα
n(z/n)
nα

+ ΛN
n

n2
Lα−1
n (z/n)
nα−1 . (30)

Next, using the asymptotic expansion for ΛN
n , we deduce that as n → ∞,

ΛN
n

√
−c −1 ΛN

n −1),

N = 0. Then multiplication by 
omials (28) give the result. �
 N = 0 and M = 1.

ion (2), and from that we can
his result follows from the ones 
 a short proof for the case of 

lation

, (31)

ce relation for the polynomials

(x).

 get

α
n−1(x) + γnΛN

n−1L̂
α
n−2(x).

11
1 −
n

= ∓
n

+ O(n ),
n2 = O(n

where the upper sign corresponds to the case N > 0 and the lower sign to 
n1/2 in (30) and the use of the Mehler–Heine asymptotics for Laguerre polyn

Again, we note that this is consistent with [10, Proposition 3.4b)], taking

6. Three-term recurrence relation

The monic Laguerre polynomials satisfy the three-term recurrence relat
obtain an analogous recurrence for the perturbed polynomials Q̂α,c,N

n (x). T
in the references [3,28], but for the benefit of the reader we include here
Laguerre–Geronimus polynomials.

Proposition 8. The polynomials Q̂α,c,N
n (x) satisfy a three term recurrence re

Q̂α,c,N
n+1 (x) = (x− β̃n)Q̂α,c,N

n (x) − γ̃nQ̂
α,c,N
n−1 (x)

where the coefficients are given by

β̃n = βn + ΛN
n − ΛN

n+1,

γ̃n = ΛN
n

ΛN
n−1

γn−1,

and βn and γn are given by (3).

Proof. Let us denote by β̃ and γ̃ the coefficients of the three term recurren
Q̂α,c,N

n (x):

xQ̂α,c,N
n (x) = Q̂α,c,N

n+1 (x) + β̃nQ̂
α,c,N
n (x) + γ̃nQ̂

α,c,N
n−1

Using the connection formula (8) on both sides of the previous equation we

xL̂α
n(x) + ΛN

n xL̂α
n−1(x) = L̂α

n+1(x) + (ΛN
n+1 + β̃n)L̂α

n(x) + (β̃nΛN
n + γ̃n)L̂



We use the three-term recurrence relation for the Laguerre polynomials (2) on the left hand side of the 
previous equation and we obtain

L̂α
n+1(x) + (βn + ΛN

n )L̂α
n(x) + (γn + ΛN

n βn−1)L̂α
n−1(x) + ΛN

n γn−1L̂
α
n−2(x)

= L̂α
n+1(x) + (ΛN

n+1 + β̃n)L̂α
n(x) + (β̃nΛN

n + γ̃n)L̂α
n−1(x) + γnΛN

n−1L̂
α
n−2(x).

Since the Laguerre polynomials are a basis for the space of polynomials, we obtain the following equations

βn + ΛN
n = ΛN

n+1 + β̃n, (32)

γn + ΛN
n βn−1 = β̃nΛN

n + γ̃n, (33)

ΛN
n γn−1 = γ̃nΛN

n−1. (34)

The proposition follows directly from formulas (32) and (34). �
˜ e following non-linear recursion

(35)

γ1

ΛN
1
.

(36)

1 = 0. (37)

9), it is straightforward to de-
 γ̃n, in terms of the recurrence

s β̃n and γ̃n of the three term
atisfy

e case N = 0.
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Remark 2. From (33), substituting the expressions for γ̃n and βn, we obtain th
for ΛN

n :

ΛN
n+1 − ΛN

n = − γn
ΛN
n

+ γn−1

ΛN
n−1

+ 2

It follows directly from (35) that

ΛN
n+1 − ΛN

2 =
n+1∑
i=3

(ΛN
i − ΛN

i−1) = − γn
ΛN
n

+ 2(n− 1) +

This gives the following recursion for ΛN
n :

ΛN
n+1 = −n(n + α)

ΛN
n

+ 2(n− 1) + γ1

ΛN
1

+ ΛN
2 .

If we define ΛN
n = 
Nn /
Nn−1, then (36) becomes


Nn+1 −
(

2(n− 1) + γ1

ΛN
1

+ ΛN
2

)

Nn + n(n + α)
Nn−

From this result and the asymptotic expansion for ΛN
n , see (18) and (1

duce the large n asymptotic behavior of the recurrence coefficients β̃n and
coefficients for monic Laguerre polynomials, βn and γn, given by (3):

Theorem 3. As n → ∞, for fixed c ∈ (−∞, 0) and N ≥ 0, the coefficient
recurrence relation for monic Laguerre–Geronimus orthogonal polynomials s

β̃n =
(

1 − 1
2n ∓

√
−c

4n3/2 + O(n−2)
)
βn,

γ̃n =
(

1 + 1
n
∓

√
−c

2n3/2 + O(n−2)
)
γn−1,

where the upper sign corresponds to the case N > 0 and the lower sign to th



7. Hypergeometric representation of Q̂α,c,N
n (x)

In this section we will derive a representation of the Geronimus perturbed family of orthogonal poly-
nomials as hypergeometric functions. For this we need the connection formula (8) together with the 
hypergeometric representation of the monic Laguerre polynomials, that can be obtained from [19, 18.5.12]:

L̂α
n (x) = (−1)n Γ (n + α + 1)

Γ (α + 1) 1F1

(
−n
α + 1;x

)
= (−1)n (α + 1)n

∞∑
k=0

(−n)k
(α + 1)k

xk

k! . (38)

Theorem 4. The monic polynomials Q̂α,c,N
n (x) have the following hypergeometric representation

Q̂α,c,N
n (x) = Cn,α 2F2

(
−n, 1 + eNn
α + 1, eNn

;x
)
,

− ΛN
n )

N
n

.

0

(−n + 1)k
(α + 1)k

xk

k! .

k)ΛN
n

+ n)

])
. (39)

1 + eNn )k
(eNn )k

, (40)

eNn )k
)k

xk

k!

)
eNn
eNn

;x
)
.
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where

Cn,α =
(

1 − ΛN
n

n + α

)
(−1)n (α + 1)n , eNn = n(n + α

Λ

Proof. It follows from the connection formula (8) and (38) that

Q̂α,c,N
n (x) = (−1)n (α + 1)n

∞∑
k=0

(−n)k
(α + 1)k

xk

k!

+ ΛN
n (−1)n−1 (α + 1)n−1

∞∑
k=

By a straightforward calculation, Q̂α,c,N
n (x) can be written as

Q̂α,c,N
n (x) = (−1)n (α + 1)n

∞∑
k=0

(
(−n)k

(α + 1)k
xk

k!

[
1 − (n−

n(α

Next, we rewrite the expression in square brackets as

1 − (k − n)ΛN
n

(−n)(α + n) = ΛN
n

n(α + n)
(
k + eNn

)
= ΛN

n

n(α + n) e
N
n

(

where

eNn = n(n + α− ΛN
n )

ΛN
n

.

By replacing (40) into (39), we obtain

Q̂α,c,N
n (x) = (−1)n (α + 1)n ΛN

n eNn
n(α + n)

∞∑
k=0

(
(−n)k

(α + 1)k
(1 +

(eNn

=
(

1 − ΛN
n

n + α

)
(−1)n (α + 1)n 2F2

(
−n, 1 +
α + 1,

This completes the proof of the theorem. �



Remark 5. The hypergeometric functions 2F2 are solutions to a third-order differential equation [19, 16.8.3].
Therefore, Theorem 4 implies that the perturbed polynomials Q̂α,c,N

n are solutions to

x2y′′′ − x(x− eNn − α− 2))y′′ − ((eNn − n + 2)x− (α + 1)eNn )y′ + n(eNn + 1)y = 0. (41)

This differential equation can be easily obtained from the holonomic equation for the polynomials Q̂α,c,N
n

(see [1, Section 4.1]):

y′′ + R(x)y′ + S(x)y = 0, (42)

where

R(x) = − ΛN
n

xΛN
n + (n− ΛN

n )(n + α− ΛN
n ) + α + 1

x
− 1,

S(x) = xΛN
n + (n− ΛN

n )(n + α)
x(xΛN

n + (n− ΛN
n )(n + α− ΛN

n )) + n− 1
x

.

dding it to (42) multiplied by

ño and E. J. Huertas) and the 
y Competitividad of Spain, is 

1533 and by SeCyT-UNC.
eful and stimulating discussions 

ctions and remarks, that have 

d by the Geronimus perturbation of 

us transformation with large shifts, 

ctionals, Linear Algebra Appl. 384 

 Breach, New York, 1978.
olynomials revisited, J. Math. Anal. 

r Kummer recursions, Math. Comp. 

ch, American Mathematical Society, 

ions, Linear Algebra Appl. 454 (1) 

lev orthogonal polynomials, Numer. 

erre measure modified by a rational 

iversity Press, New York, 2004.
quence and a theorem by W. Hahn, 

14
Indeed, (41) is obtained by multiplying the derivative of (42) by x2 and a
−x(x − eNn − α− 2) − x2R(x).
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