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Capillary ordering and layering transitions in two-dimensional hard-rod �uidsYuri Martínez-Ratón∗Grupo Interdis
iplinar de Sistemas Complejos, Departamento de Matemáti
as,Es
uela Polité
ni
a Superior, Universidad Carlos III de Madrid,Avenida de la Universidad 30, E�28911, Leganés, Madrid, SPAIN(Dated: February 1, 2008)In this arti
le we 
al
ulate the surfa
e phase diagram of a two-dimensional hard-rod �uid 
on�nedbetween two hard lines. In a �rst stage we study the semi-in�nite system 
onsisting of an isotropi
�uid in 
onta
t with a single hard line. We have found 
omplete wetting by the 
olumnar phaseat the wall-isotropi
 �uid interfa
e. When the �uid is 
on�ned between two hard walls, 
apillary
olumnar ordering o

urs via a �rst-order phase transition. For higher 
hemi
al potentials thesystem exhibits layering transitions even for very narrow slits (near the one-dimensional limit).The theoreti
al model used was a density-fun
tional theory based on the Fundamental-MeasureFun
tional applied to a �uid of hard re
tangles in the restri
ted-orientation approximation (Zwanzigmodel). The results presented here 
an be 
he
ked experimentally in two-dimensional granular mediamade of rods, where verti
al motions indu
ed by an external sour
e and ex
luded volume intera
tionsbetween the grains allow the system to explore those stationary states whi
h entropi
ally maximizepa
king 
on�gurations. We 
laim that some of the surfa
e phenomena found here 
an be present intwo-dimensional granular-media �uids.PACS numbers: 64.70.Md,61.30.Hn,61.20.GyI. INTRODUCTIONThe e�e
t of �uid 
on�nement on phase transitions isnowadays an a
tive line of s
ienti�
 resear
h due to thedire
t appli
ation of the theoreti
ally predi
ted surfa
ephase diagrams in the nanote
hnology industry. Con�n-ing simple �uids, su
h as hard [1, 2℄ or Lennard-Jones[3℄ spheres, in a narrow slit geometry, results in a ri
hphase behavior, whi
h has re
ently been studied in de-tail. Liquid 
rystals 
on�ned in nanopores is anothertypi
al example of systems with important appli
ationsin the industry of ele
troni
 devi
es. For this reason theyhave been extensively studied using theoreti
al modelsbased on density-fun
tional theory. In parti
ular, 
apil-lary phase transitions exhibited by a nemati
 �uid 
on-�ned between hard walls[4, 5℄, or walls favoring a par-ti
ular an
horing [6℄, have been predi
ted. When non-uniform liquid-
rystal phases, su
h as the sme
ti
 phase,are in
luded in the study of 
on�ned systems, the result-ing surfa
e phase diagrams display a ri
h phenomenol-ogy, whi
h in
ludes wetting transitions, the appearan
eof sme
ti
 defe
ts [7℄, and layering transitions [8℄.The e�e
t of 
on�nement on two-dimensional �uids isalso an interesting topi
 of resear
h. Langmuir monolay-ers of lipids on the surfa
e of water have been extensivelystudied in the last hundred years [9℄, and the dis
ov-ery of stru
tures and phase transitions in these systemshas experien
ed a dramati
 evolution driven by the newexperimental te
hniques. Now it is possible to 
on�nethese two-dimensional systems by external potentials andstudy the in�uen
e of the 
on�nement on the mole
ular
∗Ele
troni
 address: yuri�math.u
3m.es

pa
king of surfa
e monolayers.Another paradigm of two-dimensional systems wherethe 
on�nement plays an important role is the pa
k-ing stru
tures formed by parti
les in granular media[10℄. The 
rystallization of a quasi-two-dimensional one-
omponent granular-disk �uid has re
ently been studiedexperimentally [11℄. It was found that the propertiesof the 
rystal stru
ture obtained (su
h as pa
king fra
-tion, latti
e stru
ture, and Lindenman parameter) 
o-in
ide with their 
ounterparts obtained from MC sim-ulations of a hard disk �uid. Re
ent experiments havefound non-equilibrium steady states in a vibrated granu-lar rod monolayer with tetrati
, nemati
 and sme
ti
 
or-relations [12℄. Some of these textures are similar to theequilibrium thermodynami
 states of two-dimensionalanisotropi
 �uids resulting from density-fun
tional 
al-
ulations [13℄ and MC simulations [14℄. It was shown byseveral authors that the inherent states of some frozengranular systems 
an be des
ribed by equilibrium sta-tisti
al me
hani
s [15℄. Also, an experimental test ofthe thermodynami
 approa
h to granular media has re-
ently been 
arried out [16℄. Con�ning two-dimensionalgranular rods in di�erent geometries (
ir
ular, re
tangu-lar, et
.) results in spontaneous formation of patterns,with di�erent orientationally ordered textures and de-fe
ts next to the 
ontainer [17℄. The authors of Ref. [18℄have 
arried out MC simulations of a 
on�ned hard disk�uid. They have found that the 
rystal phase fails to nu-
leate due to formation of sme
ti
 bands when the systemis 
on�ned [18℄. It would be interesting to devi
e an ex-periment with 
on�ned granular disks with the aim of
omparing the properties of the non-uniform stationarystates with those obtained from the statisti
al me
hani
sapplied to the hard disk �uid.The main purpose of this arti
le is the study of a 
on-�ned two-dimensional hard-rod �uid. We are interested
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2in the 
al
ulation of the surfa
e phase diagram of a hardre
tangle (HR) �uid 
on�ned by a single or two hardlines. We 
an think on a HR �uid as an experimental re-alization of a system of hard 
ylinders 
on�ned betweentwo plates at a distan
e less than twi
e the 
ylinder di-ameter. We suggest that some of the surfa
e phase tran-sitions obtained here by applying the density fun
tionalformalism to a 
on�ned two-dimensional HR �uid shouldbe similar to the steady states of 
on�ned granular rods.Some experiments are required to verify this hypothesis.The paper is organized as follows. In Se
. II wepresent the theoreti
al model: the fundamental-measuredensity fun
tional applied to a HR �uid in the restri
ted-orientation approximation. This se
tion is divided intotwo subse
tions. In the �rst the model is parti
ularizedto the study of the bulk phases, while in the se
ond partthe theoreti
al expressions used in the 
al
ulations of thethermodynami
 and stru
tural properties of the inter-fa
es are presented. The results are presented in Se
.III. First we study the bulk phase diagram of a HR �uidwith aspe
t ratio equal to 3, and then the resulting sur-fa
e phase diagrams of a single wall-HR �uid interfa
eand of the �uid 
on�ned between two hard lines are pre-sented. Some 
on
lusions are drawn in Se
. IV.II. THEORETICAL MODELIn this se
tion we introdu
e the theoreti
al model usedin the 
al
ulations of the bulk and interfa
e equilibriumphases. To study highly inhomogeneous phases su
h asthose resulting from the 
on�nement of a �uid in a nar-row slit geometry or the solid phase with a high pa
kingfra
tion, we have used the Fundamental-Measure Theory(FMT) applied to an anisotropi
 �uid of hard re
tangles.It is well known that this formalism presents a great ad-vantage over other te
hniques when dealing with highlyinhomogeneous phases, and that this is mainly due to thefa
t that a basi
 requirement to 
onstru
t the FMT den-sity fun
tional is that it 
onform with the dimensional
ross-over 
riterium [19, 20℄. To implement the 
al
u-lations we have used the restri
ted-orientation approxi-mation, where the axes of the re
tangles are restri
tedto align only along the 
oordinate axes x or y. Thus,the whole system is des
ribed in terms of density pro�les
ρν(r) (ν = x, y).While the ideal part of the free energy density in re-du
ed thermal units has the exa
t form

Φid(r) =
∑

ν

ρν(r) [ln ρν(r) − 1] , (1)the FMT intera
tion part of the 2D HR �uid is approxi-mated [20℄ by
Φexc(r) = −n0(r) ln [1 − n2(r)] +

n1x(r)n1y(r)

1 − n2(r)
, (2)

where the weighted densities nα's are 
al
ulated as
nα(r) =

∑

ν=x,y

[

ρν ∗ ω(α)
ν

]

(r), (3)and where the symbol ∗ stands for 
onvolution, i.e.,
ρν ∗ ω

(α)
ν =

∫

V
dr′ρν(r′)ω

(α)
ν (r − r

′). The weights ω
(α)
νare the 
hara
teristi
 fun
tions whose volume integrals
onstitute the fundamental measures of a single parti
le(the edge lengths and surfa
e area). They are de�ned as

ω(0)
ν (r) =

1

4
δ(

σx
ν

2
− |x|)δ(

σy
ν

2
− |y|), (4)

ω(1x)
ν (r) =

1

2
Θ(

σx
ν

2
− |x|)δ(

σy
ν

2
− |y|), (5)

ω(1y)
ν (r) =

1

2
δ(

σx
ν

2
− |x|)Θ(

σy
ν

2
− |y|), (6)

ω(2)
ν (r) = Θ(

σx
ν

2
− |x|)Θ(

σy
ν

2
− |y|), (7)where σν

µ = σ + (L− σ)δµν , with L and σ the length andwidth of the re
tangle and δµν the Krone
ker fun
tion,while δ(x) and Θ(x) are the Dira
 delta and Heavisidefun
tions, respe
tively.A. The bulk phasesTo 
al
ulate the bulk phase diagram we need to mini-mize the Helmholtz free energy fun
tional βF [{ρν(r)}] =
∫

dr [Φid(r) + Φexc(r)] with respe
t to the density pro-�les ρν(r). These density pro�les have the symmetries
orresponding to the equilibrium phases, whi
h 
an bethe isotropi
 or nemati
 �uids, the sme
ti
 phase (withparti
les arranged in layers with their long axes pointingperpendi
ular to the layers), the 
olumnar phase (withlong axes parallel to the layers), plasti
 solid (parti
leslo
ated at the nodes of the square grid with averaged ori-entational order parameter over the 
ell equal to zero),and oriented solid (with both translational and orienta-tional order). To take proper a

ount of all these possiblesymmetries, we have used a Fourier-series expansion ofthe density pro�les:
ρν(r) = ρ0xν

N
∑

k=(0,0)

α
(ν)
k1,k2

cos(q1x) cos(q2y), (8)where we de�ned k ≡ (k1, k2) [with N = N(1, 1)℄,
q1 = 2πk1/dx, and q2 = 2πk2/dy are the wave ve
tor
omponents parallel to x and y axes respe
tively, and dx,
dy are the periods of the re
tangular grid along these di-re
tions. α

(ν)
k1,k2

are the Fourier amplitudes of the densitypro�le of the spe
ies ν with the 
onstraint α
(ν)
0,0 = 1. ρ0 isthe average of the lo
al density over the 
ell, while xν isthe 
ell-averaged o

upan
y probability of spe
ies ν. TheFourier series is trun
ated at that value N whi
h guar-antees that α

(ν)
N,N < 10−7. With this parametrization the



3weighted density 
an be 
al
ulated expli
ity as
nα(r) = ρ0

∑

ν,k

xνα
(ν)
k1,k2

ω̂(α)
ν (k) cos(q1x) cos(q2y), (9)where ω̂

(α)
ν (k) are the Fourier transforms of the 
orre-sponding weights, whi
h have the form

ω̂(0)
ν (k) = χ0(q1σ

x
ν /2)χ0(q2σ

y
ν/2), (10)

ω̂(1x)
ν (k) = σx

νχ1(q1σ
x
ν/2)χ0(q2σ

y
ν/2), (11)

ω̂(1y)
ν (k) = σy

νχ0(q1σ
x
ν/2)χ1(q2σ

y
ν/2), (12)

ω̂(2)
ν (k) = aχ1(q1σ

x
ν/2)χ1(q2σ

y
ν/2), (13)Here a = Lσ is the surfa
e area of the parti
le, and

χ0(x) = cosx, χ1(x) = sin(x)/x. We have sele
ted theorientational dire
tor parallel to y. Thus, the equilib-rium sme
ti
 (
olumnar) phase should be found by min-imizing the free energy with respe
t to the Fourier am-plitudes α
(ν)
0,k (α(ν)

k,0), the sme
ti
 (
olumnar) period dy(dx) and the order parameter QN ∈ [−1, 1] [related tothe xν 's through the relations x‖,⊥ = (1 ± QN)/2 wherethe symbols ‖,⊥ stand for parti
le alignment along yand x respe
tively℄. For uniform phases [α(ν)
k1,k2

= 0

∀(k1, k2) 6= (0, 0)℄ QN 
oin
ides with the nemati
 orderparameter. The solid phase is to be found by minimiz-ing the free energy with respe
t to all the Fourier ampli-tudes α
(ν)
k1,k2

, the 
rystal periods dx and dy, and the orderparameter QN in the 
ase of an orientationally orderedsolid. To measure the pa
king stru
ture and the orienta-tional order of the bulk phases we use the lo
al densityand the order parameter pro�les, ρ(r) =
∑

ν ρν(r), and
Q(r) = [ρy(r) − ρx(r)] /ρ(r) respe
tively.B. The interfa
ial phasesAs we want to study the hard wall-�uid interfa
e or theHR �uid 
on�ned in a slit geometry, we have introdu
edthe following external potential:

Vν(x) =







∞, x < σx
ν/2

0, x ≥ σx
ν/2,

(14)for the semi-in�nite system, and
Vν(x) =







∞, x < σx
ν/2 and x > H − σx

ν/2

0, σx
ν/2 ≤ x ≤ H − σx

ν /2,
(15)for the slit geometry, where H is the slit width, andthe normal to the wall was sele
ted in the x dire
tion.Note that this external potential represents a hard linewhi
h ex
ludes the 
enter of mass of parti
les at distan
esless than their 
onta
t distan
es with the wall. In thissense we 
an say that the external potential favors par-allel alignment at the wall. This is in 
ontrast with the

favored homeotropi
 alignment usually 
onsidered in sev-eral studies of three-dimensional liquid 
rystals 
on�nedby a single or two walls (in parti
ular that of Ref. [8℄).The one-dimensional equilibrium density pro�les ρν(x)were found by minimizing the ex
ess surfa
e free energyper unit length
γ ≡

∫

dx

{

Φ(x)

β
+ P −

∑

ν

ρν(x) [µν − Vν(x)]

}

, (16)where β = (kBT )−1, Φ(x) = Φid(x) + Φexc(x), and µνare the 
hemi
al potentials of spe
ies ν �xed at the bulk�uid-phase value at in�nite distan
e from the wall, while
P is the �uid pressure. The 
hemi
al potential of thebulk �uid phase is 
al
ulated, as usual, as µ =

∑

ν xνµν ,with xν the molar fra
tions of spe
ies ν. If the bulk phaseis an isotropi
 �uid then xν = 1/2, and µν = µ, ∀ν.To measure the degree of interfa
ial order, we willuse the adsorption of the density pro�le, de�ned as
Γ =

∫

dx [ρ(x) − ρ(∞)], and the order parameter pro�le
Q(x).The expression (16) 
oin
ides with the de�nition of thesurfa
e tension of the wall-�uid interfa
e for the semi-in�nite 
ase, whi
h is approximately equal to half theex
ess surfa
e free-energy for the slit geometry when thewall distan
e H is large enough to a

ommodate bothinterfa
es.To minimize the fun
tional given by (16), we have dis-
retized spa
e in the x dire
tion and minimize γ withrespe
t to ρν(xi) (xi ∈ [x0, xN ]) using the 
onjugate-gradient algorithm. III. RESULTSIn this se
tion we present the main results obtainedfrom the appli
ation of the theoreti
al model just de-s
ribed to the study of surfa
e properties of a 2D HR�uid. Parti
les were 
hosen to have aspe
t ratio κ ≡
L/σ = 3. This aspe
t ratio is 
hosen be
ause one of theaims of the present work is the study of layered phases
on�ned by one or two walls. As we will show bellow for
κ = 3 the stable phase is the 
olumnar layered phase.In the �rst subse
tion we will summarize the resultsobtained in the 
al
ulation of the bulk phase diagram ofthis system, while in the se
ond subse
tion we will fo
uson the study of the surfa
e phase diagram.A. Bulk phase diagramWe have minimized the free energy density of the HR�uid, de�ned as Φ ≡ V −1

∫

V
dr [Φid(r) + Φexc(r)], withrespe
t to the Fourier amplitudes, periods, and mean o
-
upan
y probability, as des
ribed in detail in Se
. II A.The results are plotted in Fig. 1, where the free-energydensities of all the stable and metastable phases foundare plotted as a fun
tion of the pa
king fra
tion η = ρ0a.



4We have found, apart from the usual isotropi
 (I) and ne-mati
 (N) phases, two di�erent sme
ti
 phases (Sm1, andSm2), a plasti
 solid (PS), perfe
tly oriented solid (OS),and �nally the 
olumnar phase (C), whi
h is the stableone in the whole range of pa
king fra
tions explored.

0.55 0.6 0.65 0.7 0.75
η

-0.2

-0.1

0

0.1

0.2

Φ
∗

C

OS

PS

Figure 1: The res
aled free-energy density Φ∗ = Φ+2.9875−
5.8501η is plotted against the mean pa
king fra
tion for allthe stable and metastable phases found. These are: isotropi
(dashed line), nemati
 (dotted line), sme
ti
-1 and sme
ti
-2 (dotted and dashed lines), plasti
 solid (dashed line la-belled as PS), while the perfe
tly oriented solid and the
olumnar phases (labelled in the �gure as OS and C respe
-tively) are plotted with solid lines. The open 
ir
le indi-
ates the isotropi
-nemati
 bifur
ation point; the open square,the isotropi
-plasti
 solid bifur
ation point; and the solid 
ir-
les represent the 
oexisting pa
king fra
tions at isotropi
-
olumnar phase 
oexisten
e.The 
oupling between the spatial and orientational de-grees of freedom of the parti
les results in the presen
e ofphases (stable or metastable) with di�erent symmetries.In Fig. (2) we have sket
hed some of the parti
le 
on-�gurations 
orresponding to phases with 
olumnar (a),sme
ti
-1 (b), sme
ti
-2 (
), and plasti
 solid (d) sym-metries found from the numeri
al minimization of thedensity fun
tional. The dire
tions of spatial periodi
itiesof ea
h phase have been depi
ted in the �gure.In Fig. 3 (a) we have plotted the density and order-parameter pro�les of the 
oexisting 
olumnar phase. The
olumnar phase is orientationally ordered in the y dire
-tion with the long re
tangle axis pointing along the y axis,while the periodi
ity of both density and order parame-ter pro�les (whi
h are in phase) is along the x dire
tion[see Fig. 3 (a)℄. The mean 
oexisten
e pa
king fra
tionsof the I and C phases are ηI = 0.57058 and ηC = 0.60310,respe
tively while the period of the C phase, in units ofthe HR width, was found to be dx/σ = 1.20102. In Fig.3 (b) we have plotted the order parameter QN, and theperiod of the 
olumnar phase as a fun
tion of the meanpa
king fra
tion.

d

d

d

x

x

dy

y

(a)

(c) (d)

(b)

dyFigure 2: Sket
h of parti
le 
on�gurations 
orresponding todi�erent phases: 
olumnar (a), sme
ti
-1 (b), sme
ti
-2 (
),and plasti
 solid (d) phases. The dire
tion of spatial period-i
ities are labeled in the �gure.To 
ompare the di�erent pa
kings of HR parti
les inthe metastable phases (found as the lo
al minima of thefree energy density) for a �xed mean pa
king fra
tion
η = 0.7, we have plotted the density and order-parameterpro�les of the Sm1,2 [Fig. 4 (a) and (b)℄, and PS and OS[Fig. 5 (a)�(
)℄ phases. As 
an be seen from Fig. 4(a), the density pro�le of the Sm1 phase has two max-ima per period. The less pronoun
ed maxima, lo
atedat the interstitials, re�e
t the high population of parti-
les with long axes oriented parallel to the sme
ti
 layers[see the sket
hed parti
le 
on�gurations in Fig. 2 (b)℄.This alignment is also shown in the order-parameter pro-�le, whi
h rea
hes high negative values at the intersti-tial positions. This phase bears a strong resemblan
eto the �ndings of Refs. [21℄ and [22℄ where the parti-
le equilibrium 
on�gurations in the 3D sme
ti
 phasesshow the same pattern. As a 
onsequen
e of this (al-ternating population of parti
les aligned perpendi
ular�sharpest peak in the density pro�le� and parallel to thelayers), the sme
ti
 period in units of the parti
le lengthis dy/L = 1.53025, higher than the sme
ti
 period of theSm2 phase (dy/L = 1.17935). The density and order-parameter pro�les of the Sm2 are shown in Fig. 4 (b).As 
an be seen from the �gure, these pro�les re�e
t theusual pa
king in sme
ti
s, 
hara
terized by a single den-sity peak with vanishingly small population of parti
lesin the interstitials, while the order parameter rea
hes itsmaximum value at the position of the sme
ti
 layers [seeFig. 2 (
) for the sket
hed parti
le 
on�gurations℄.The density and order parameter pro�les of the PSphase with mean pa
king fra
tion equal to 0.7 are plot-
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-0.5 -0.25 0 0.25 0.5
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-0.5

0

0.5

1

1.5

2

ρa
; 

Q
(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8
η

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
N

; d
x/σ

d
x
/σ

Q
N

(b)

Figure 3: (a): density ρ(x) (solid line) and order parameter
Q(x) (dashed line) pro�les of the 
olumnar phase at 
oex-isten
e with the isotropi
 phase. (b): order parameter QNand period of the 
olumnar phase against the mean pa
kingfra
tion.ted in Fig. 5 (a) and (b). The plasti
 solid has the sameperiodi
ity in the x and y dire
tion, i.e. dx = dy = d,and the order parameter averaged over the unit 
ell isstri
tly equal to zero. As we 
an see from Fig. 5 (b),while the order parameter at the nodes of the squarelatti
e is equal to zero, it rea
hes positive (negative) val-ues at the (±0.5, 0) [(0,±0.5)℄ positions along the sidesof the 
ell (the same solution with the x and y dire
-tions inter
hanged was found in the minimization of thefree energy). Finally, the density pro�le of the perfe
tlyaligned two-dimensional solid is plotted in Fig. 5 (
).Although the phases des
ribed above are metastablewith respe
t to the 
olumnar phase, they 
an be stabi-lized for di�erent values of the parti
le aspe
t ratio. Adetailed study of the 
omplete phase diagram, ne
essaryto elu
idate this point, is a work in progress.We now pro
eed to make a 
omparison between theresults for the 2D Zwanzig model with κ = 3 obtained

-0.5 -0.25 0 0.25 0.5
y/d

y

-1

0

1

2

3

4

5

ρa
; 

Q

(a)

-0.5 -0.25 0 0.25 0.5
y/d

y

0

0.5

1

1.5

2

2.5

3

ρa
; 

Q

(b)

Figure 4: Density (solid line) and order parameter (dashedline) pro�les of the sme
ti
-1 (a) and sme
ti
-2 (b) metastablephases for a value of mean pa
king fra
tion �xed at 0.7.above and those for hard parallelepipeds with restri
tedorientations and the same value of κ [23℄. This 
ompari-son will show the di�eren
es in phase behaviour betweenthree and two dimensions as predi
ted by Fundamental-Measure Theory (whi
h, as already pointed out, 
on-forms with the dimensional 
rossover 
riterion). Asshown in Ref. [23℄, hard parallelepipeds exhibit a se
ond-order phase transition between isotropi
 and plasti
 solidphases. As density in
reases the system goes to a dis
oti
sme
ti
 phase (
on�rmed by simulations) via a �rst-orderphase transition, whi
h in turn dis
ontinuously 
hangesto a 
olumnar phase and then to an oriented solid. By
ontrast, the present model shows that, in two dimen-sions, the isotropi
 phase exhibits a �rst-order transitionto a 
olumnar phase that is stable until very high pa
k-ing fra
tions (more stable that plasti
, oriented solid anddi�erent sme
ti
 phases). As a 
onsequen
e, one expe
tsthat the 
orresponding surfa
e phase diagrams be also
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Figure 5: Density (a) and order-parameter (b) pro�les of theplasti
 solid phase. (
): Density pro�le of the perfe
tly ori-ented solid.
di�erent.

B. Surfa
e phase diagramIn this se
tion we deal with surfa
e phenomena. In the�rst part we will 
on
entrate on the semi-in�nite wall-isotropi
 interfa
e of a HR �uid, while in the se
ond partwe will fo
us on the slit geometry. We will demostratethe presen
e of 
omplete wetting, 
apillary ordering andlayering transitions in the 
on�ned two dimensional hardrod �uid. For a detailed dis
ussion on general grounds ofthe phase behavior and 
riti
al phenomena of a 
on�nedby a single wall �uid see Ref. [24℄.1. The wall-�uid interfa
eThe intera
tion between the isotropi
 �uid phase and ahard wall was studied by 
al
ulating the one-dimensionalequilibrium density ρ(x) and order-parameter Q(x) pro-�les through the ex
ess surfa
e free-energy minimization[see Eq. (16)℄. The 
hemi
al potential µ of the �uid phaseat in�nite distan
e from the wall was varied within therange of isotropi
-phase stability, i.e. µ ∈ [−∞, µ0] (µ0being the value at whi
h the I-C phase transition o

urs).It is well known that the presen
e of a hard wall in a sys-tem of elongated parti
les indu
es parallel alignment ofthe parti
le axes with respe
t to the wall [25, 26℄. Thispreferential alignment is a result of the entropi
 depletione�e
t. In the parallel 
on�guration, the 
enters of massof the parti
les are mu
h 
loser to the wall, so the gainin volume per parti
le is larger and, as a 
onsequen
e,the 
on�gurational entropy of the system is maximized.This e�e
t is responsible for the o

urren
e of a biaxialnemati
 phase whi
h breaks the orientational symmetryin a three-dimensional nemati
 �uid [4℄. The same deple-tion me
hanism is at work in 2D, as we will show below.The results from the minimization are shown in Figs. 6(a) and (b) for an undersaturation of β∆µ = −1.1×10−4.As we 
an see from the �gure, the density and order-parameter pro�les indi
ate 
olumnar order near the wall,whi
h propagates several 
olumnar periods into the �uidphase. The wall-�uid intera
tion enhan
es the orienta-tional order near the surfa
e and the adsorption of par-ti
les, 
reating a stru
tured layer with 
olumnar-phasesymmetry whi
h grows in width with in
reasing 
hem-i
al potential and diverges at µ = µ0. Thus, 
ompletewetting by a 
olumnar phase o

urs at the wall-isotropi
interfa
e. This result is shown in Fig. 7 (a) where the ex-
ess surfa
e free-energy γ and the adsorption 
oe�
ient Γare plotted against ∆µ = µ−µ0. As we 
an see, Γ grows
ontinuously, ultimately diverging logarithmi
ally with
∆µ (see inset of �gure). The ex
ess surfa
e free energy γhas a maximum, and at this point the adsorption passesthrough zero. This result is dire
tly related to the interfa-
ial Gibbs-Duhem equation, Γ = −dγ/dµ, whi
h relatesthe adsorption 
oe�
ient with the �rst derivative of theex
ess surfa
e free-energy with respe
t to bulk 
hemi
alpotential. At µ0 the ex
ess surfa
e energy is equal to thewall-isotropi
 surfa
e tension γWI, whi
h is in turn equal



7to the sum of wall-
olumnar and 
olumnar-isotropi
 sur-fa
e tensions, γ(µ0) = γWI = γWC + γCI (the Young'sequation for 
omplete wetting).
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Figure 6: Density (a) and order parameter (b) pro�les of thewall-isotropi
 �uid interfa
e. The undersaturation is �xed to
β∆µ = −1.1 × 10−4.We have 
arried out a logarithmi
 �t of the adsorp-tion 
oe�
ient with respe
t to undersaturation β∆µ =
β (µ − µ0), and we �nd that Γσ = τ1 +τ2 ln [β|∆µ|], with
τ1 = 0.02387 and τ2 = −0.03396. Then, integrating theinterfa
ial Gibbs-Duhem relation Γ = −dγ/dµ, we �ndthe expression

βγσ ≈ βγWIσ − [τ1 + τ2 (ln (β|∆µ|) − 1)] β∆µ, (17)whi
h approximates the ex
ess surfa
e free energy near
omplete wetting. The above expression is plottedagainst β∆µ in Fig. 7 (b), where the results from dire
t
al
ulation of βγσ, using the equilibrium density pro�lesobtained, are also plotted. As we 
an see the agreementis ex
ellent even for relatively high values of undersatu-ration.
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Figure 7: (a): ex
ess surfa
e free energy (solid line) and ad-sorption 
oe�
ient (dashed line), in redu
ed units, against
β∆µ. The inset shows Γσ vs. β∆µ in logarithmi
 s
ale. (b):ex
ess surfa
e free energy vs. βµ in the neighborhood of zeroundersaturation. The open 
ir
les show the values obtainedfrom the numeri
al minimization, while the solid line repre-sents the analyti
 
urve obtained by integrating the interfa
ialGibbs-Duhem relation with the �tted logarithmi
 dependen
eof the adsorption 
oe�
ient (see text). The solid 
ir
le showsthe value of the W-I surfa
e tension βγWIσ = 0.13822To 
al
ulate the stru
tural and thermodynami
 prop-erties of the 
olumnar-isotropi
 interfa
e, we have imple-mented a numeri
al s
heme already used in Ref. [27℄,
onsisting of minimizing the surfa
e ex
ess free energy γin a box of width h 
ontaining a stripe of a few 
olum-nar layers surrounded by isotropi
 material with periodi
boundary 
onditions. h is 
hosen su
h that the densitypro�les 
an easily a

ommodate the two interfa
es andgo to the 
oexisten
e �uid density at the periodi
 bound-ary. A typi
al result from this 
al
ulation is plotted inFig. 8 (a) and (b) for the density and order-parameterpro�les, respe
tively. Thus, the I-C interfa
ial tension
an be 
al
ulated as half the ex
ess surfa
e free energy



8resulting from the minimization. We have found a valueof βγICσ = 0.00672.
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Figure 8: Density (a) and order-parameter (b) pro�les of anumeri
al box 
ontaining two isotropi
-
olumnar interfa
es.Finally, to verify that Young's law for 
omplete wet-ting holds, we need to 
al
ulate the surfa
e tension ofthe wall-
olumnar interfa
e. To 
onstru
t density pro-�les 
ompatible with this semi-in�nite interfa
e, one hasto establish a boundary, at the side of the 
omputationalbox opposite to the wall, and pla
e, beyond the bound-ary and into the bulk, a periodi
ally stru
tured pro�le,
hoosing the phase (i.e. the value of the pro�le at theboundary) arbitrarily within the bulk period. Althoughthis re
ipe 
an in prin
iple be implemented, we have 
ho-sen to �x bulk I-C 
oexisten
e 
onditions in a 
on�ned
olumnar phase and 
al
ulate the density pro�le of thesystem 
on�ned between two walls; the separation be-tween the walls was 
hosen large enough so that the ef-fe
ts of having a �nite interfa
e penetration length 
ausedby the presen
e of the 
on�ned external potential 
an benegle
ted. Also, in order to ensure that 
ommensurabil-ity e�e
ts 
an be ignored, the distan
e between the walls

was set to a (large) integer number of equilibrium periodsof the 
olumnar phase. The results from these 
al
ula-tions are plotted in Fig. 9 (a) and (b). The W-C surfa
etension 
al
ulated as half the value of the ex
ess surfa
efree energy results in βγWCσ = 0.13150, 
ompatible withYoung's law in 
onditions of 
omplete wetting of the W-Iinterfa
e by the 
olumnar phase.
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Figure 9: The density (a) and order parameter (b) pro�lesof two wall-
olumnar interfa
es2. Capillary orderingThis se
tion is devoted to a study of the e�e
t of 
on-�nement of a 2D HR �uid on the thermodynami
 andstru
tural properties of the �uid. In parti
ular, we areinterested in the enhan
ement of the orientational andlayering ordering due to 
on�nement, and the 
ommen-surability e�e
ts exhibited by a layered phase sandwi
hedbetween two hard walls at a distan
e that may or maynot 
ommensurate with the period of the bulk 
olumnarphase. It is well known that, under 
ertain 
ir
umstan
es



9(related to the nature of the �uid-�uid and surfa
e-�uidintera
tions), a �uid inside a pore 
an exhibit 
apillary�rst-order phase transitions between two di�erent phasesat a 
hemi
al potential below the bulk 
oexisten
e value.An example of this phenomenon is the re
ently studied
apillary nematization [4℄ and sme
tization [8℄ of a liquid
rystal �uid inside a pore. The bulk 
ondensed phasemay have uniform (nemati
) or nonuniform density pro-�les. For the latter 
ase, 
apillary layering transitions be-tween interfa
ial phases with di�erent number of sme
ti
layers [8℄ 
an also be found. Here we will show that these
apillary and layering phase transitions are not unique to3D system. They are also present in 2D anisotropi
 �uidswhi
h 
an stabilize layered phases with di�erent spatialsymmetries, su
h as the 
olumnar phase.With a view to �nding the e�e
ts of 
on�nement on
olumnar ordering in a HR �uid, we have minimized theex
ess surfa
e free energy with respe
t to the density pro-�le for the parti
ular 
ase of HR's with κ = 3. The �uidis 
on�ned by two hard walls at a distan
e H/σ = 30 (inunits of the parti
le width). As already pointed out, hardwalls favor alignment parallel to the wall, as well as ad-sorption of parti
les at both surfa
es (density and orderparameters at 
onta
t are mu
h higher than their bulkvalues). This 
oupled translational-orientational order-ing near the surfa
es propagates into the �uid, 
reating
olumnar ordering. We have found that for low valuesof the 
hemi
al potential of the bath the density pro�leis stru
tureless (ex
ept just at the wall 
onta
t), similarto the bulk isotropi
 phase. In
reasing the 
hemi
al po-tential several damped 
olumnar peaks appear near thewall in a 
ontinuous fashion, i.e. with their heights in-
reasing 
ontinuously. At some value of the 
hemi
al po-tential, the system exhibits a �rst-order phase transitionbetween a phase with highly damped 
olumnar peaks toa new phase with mu
h stronger 
olumnar ordering evenat the 
enter of the pore. The typi
al density and order-parameter pro�les of both interfa
ial phases are shown inFig. 10 (a)-(d). Although the less-ordered phase exhibitsstrong os
illations in both density and order-parameterpro�les, the peak amplitudes are damped into the porefaster than those of the higher ordered phase. We willtake the 
onvention to 
all the �rst `isotropi
', and these
ond `
olumnar' surfa
e phases. This 
onvention is jus-ti�ed by the fa
t that, just before the transition des
ribedabove, 
olumnar ordering in
reases 
ontinuously, start-ing from an isotropi
-like density pro�le, as the 
hemi-
al potential is in
reased. Thus we 
annot tra
e out ade�nite boundary (a value for µ below that 
orrespond-ing to �rst order phase transition) below or above whi
hthe pro�le inside the pore 
an be 
onsidered isotropi
 or
olumnar. Only the �rst order phase transition des
ribedabove 
an really distinguish two di�erent surfa
e phases,one of them less ordered (following our 
onvention, theisotropi
 phase) than the other (the 
olumnar phase). Aswe 
an see in the �gure, the latter has 25 
olumnar peaks.The transition point is 
al
ulated from the dis
ontinu-ity in the �rst derivative of the ex
ess surfa
e free en-
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Figure 10: Isotropi
 (a)-(b) and 
olumnar (
)-(d) phases that
oexist at the same 
hemi
al potential bellow µ0. (a), (
):Density pro�les. (b), (d): Order-parameter pro�les.ergy with respe
t to the bulk pa
king fra
tion η. The
orresponding plot is shown in Fig 11 (a). At this pointthe adsorption 
oe�
ient jumps dis
ontinuously from theless- (the damped 
olumnar) to the higher-ordered phase[see Fig. 11 (b)℄.This surfa
e transition point is lo
ated below the bulkisotropi
-
olumnar phase transition [see Fig. 11 (a)℄,
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Figure 11: Ex
ess surfa
e free energy (a) and adsorption 
oef-�
ient (b) against pa
king fra
tion of the bulk isotropi
 �uid.In the �gure at top, the solid 
ir
le represents the transitionpoint between both interfa
ial phases, while open square in-di
ates the point 
orresponding to the bulk 
oexisten
e valuefor isotropi
 and 
olumnar phases.showing the presen
e of 
olumnar-order enhan
ement inthe pore. On further in
reasing the 
hemi
al potentialup to a su�
iently high value (above µ0), we �nd a �rst-order layering transition between two interfa
ial 
olum-nar phases whi
h di�er by just a single 
olumnar layer.The behavior of the ex
ess surfa
e free energy and theadsorption 
oe�
ient is similar to that shown in Fig. 11(a) and (b). Alternatively we 
an �nd the transition from
n−1 to n 
olumnar layers by �xing the 
hemi
al potentialand in
reasing the pore width H .The two surfa
e phase transitions des
ribed above,namely �rst-order 
apillary I-C ordering and (n − 1)�
n layering transition, are 
onne
ted in the µ−H surfa
ephase diagram through the pe
uliar stru
ture shown inFig. 12.The parabola below the bulk transition line 
orre-sponds to �rst-order transition lines separating regionsof stability of the isotropi
 and the 
olumnar interfa
ialphases, while the straight lines indi
ate layering transi-tions. In
reasing the 
hemi
al potential from low valuesto those 
orresponding to the parabola, the density pro-�les always 
hange 
ontinously from a stru
tureless todamped 
olumnar density pro�le. Both types of transi-
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Figure 12: µ − H surfa
e phase diagram showing �rst-order
apillary 
olumnar ordering and layering transitions. Thepore width 
overs a range whi
h goes from 23 to 25 
olum-nar layers, as labeled in the �gure. The open 
ir
les indi
atethe 
ases 
hosen for 
al
ulations, while the solid line is a 
u-bi
 spline interpolation. The horizontal dashed line shows thevalue of the bulk 
hemi
al potential at the isotropi
-
olumnarphase 
oexisten
e.tions (the isotropi
-
olumnar and n−1-n layering transi-tions) 
oales
e in triple points, two of whi
h are shown inFig. 12. At the triple points an isotropi
 and two 
olum-nar interfa
ial phases with n − 1 and n layers 
oexist inequilibrium. The set of 
onne
ted of Fig. 12 are similarto those found in MC simulations of the 
on�ned hard-sphere �uid [2℄. In this work the authors have shown theexisten
e of 
apillary freezing of the HS �uid, 
on�nedin the slit geometry, for 
hemi
al potential values belowthe bulk freezing transition. The transitions lines in the
µ−H surfa
e phase diagram follow the same topology of
onne
ted set of parabolas as found in our system.Some of the topologi
al features of this surfa
e phasediagram 
an be elu
idated from the Clausius-Clapeyronequation as applied to the interfa
ial 
oexisten
e lines.The ex
ess surfa
e free energy γ(µ, H) along 
oexisten
eis a fun
tion of two variables, the 
hemi
al potential µ,and the pore width H . Thus, in�nitesimal 
hanges inthese variables along the 
oexisten
e 
urve are relatedthrough the equation

dγα − dγβ = ∆

(

∂γ

∂µ

)

H

dµ + ∆

(

∂γ

∂H

)

µ

dH = 0, (18)where the 
oexisting 
ondition γα = γβ (for
α, β =I,Cn−1,Cn) was used, and ∆u = uα − uβ for anyfun
tion u. Using the interfa
ial Gibbs-Duhem equation
∂γ/∂µ = −Γ and the de�nition of the solvation for
e
f = −∂γ/∂H , we arrive at

dµ

dH
= −

∆f

∆Γ
, (19)



11whi
h relates the �rst derivative of the 
hemi
al potentialwith respe
t to the pore width with 
hanges in the sol-vation for
e and in the adsorption 
oe�
ient at the tran-sition point. The negative slope of the layering 
urves isa dire
t result of Eq. (19), as the in
rement in the ad-sorption is always positive for the (n − 1) → n layeringtransition, while the 
hange in the solvation for
e is alsopositive (the latter 
an be interpreted as an in
rementwith respe
t to the bulk of the ex
ess surfa
e pressure,whi
h is obviously larger for the phase with n layers).For values of the pore width that 
ommensurate with aninteger number of 
olumnar periods of the bulk 
olumnarphase, the solvation for
e be
omes zero and we get a min-imum in the I-C 
apillary transition 
urve (see Fig. 12).At ea
h side of the minimum the solvation for
e 
hangethe sign to positive (left side) or negative (right side) aswe 
ompress or expand the �lm, respe
tively, while the
hange in adsorption remains positive.The Kelvin equation for 
apillary 
ondensation in a slitgeometry relates the undersaturation in 
hemi
al poten-tial with pore width H as
∆µ = µ(H) − µ0 = −

2γαβ

(ρα − ρβ)H
, (20)where ρα and ρβ are the bulk 
oexisting densities ofphases α and β (α being the 
ondensed phase), while

γαβ is the surfa
e tension of the 
orresponding interfa
e.It was assumed that 
omplete wetting by the α phaseo

urs at the W-β interfa
e. For a detailed dis
ussion ofthe Kelvin equation in the 
ontext of liquid 
rystal phasetransitions see Ref. [28℄. Applying this equation using
H/σ = 28.88 (the lo
ation of the minimum in the µ−Hphase diagram of Fig. 12), we obtain an undersaturation
β∆µ = −0.0429, while its real value is β∆µ = −0.1255.In the derivation of the Kelvin equation, deviations fromthe bulk stru
ture of the density pro�le arising fromthe 
on�nement by the external potential are negle
ted.Also, the elasti
 energy resulting from the 
ompression orexpansion of a layered phase 
on�ned between two wallsis not taken into a

ount. These e�e
ts might be respon-sible for the di�eren
es found between our 
al
ulationsand the estimation based on the Kelvin equation. Wehave 
he
ked that the sequen
e of minima in the µ − Hphase diagram tends to µ0 as H → ∞, a result predi
tedby Eq. (20).Refs. [4℄ and [8℄ showed that the 
apillary nemati-zation line of the 
on�ned liquid-
rystal �uid ends in a
riti
al point for small values of the pore width. In or-der to study how the topology of the surfa
e phase dia-gram 
hanges in the regime of small pore widths, we have
arried out the 
orresponding 
al
ulations of interfa
ialstru
ture. We have found that the I-C 
apillary orderingtransition 
hanges at some parti
ular value of H (nearits maximum undersaturation represented by the mini-mum in the I-C interfa
e 
oexisting 
urve) from �rst tose
ond order. For lower values of H two 
riti
al pointsemerge from this single point, the distan
e between themin
reasing. In Fig. 13 one of these s
enarios is shown.

As we 
an see, there is a range of values of H (nearthe triple points) where the �rst-order 
apillary order-ing transitions are still present but, between the 
riti
alpoints belonging to di�erent layering bran
hes, 
olumnarordering grows 
ontinously from the isotropi
 (damped
olumnar interfa
ial phase) to a highly-ordered 
olum-nar phase. Layering transitions are always present evenfor very small H , as will be shown below. An interest-ing feature of this phase diagram is that the lo
ation ofthe triple points moves above the bulk 
oexisten
e value
µ0. This indi
ates that the interfa
ial 
olumnar phasejust below the triple points 
an be unstable for values of
hemi
al potentials 
orresponding to those of 
olumnar-phase stability at bulk (similar to the 
apillary evapora-tion of the 
on�ned �uid). For wide enough slits (thosefor whi
h the parabolas are 
onne
ted) the triple pointsare pra
ti
ally lo
ated at µ0, as 
an be observed fromFig. 12.
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Figure 13: µ−H surfa
e phase diagram showing 
riti
al points(�lled 
ir
les). Number of 
olumnar layers are indi
ated assubs
ripts.For even smaller values of H , only layering transitionsremain; these end in 
riti
al points lo
ated above µ0, asFig. 14 shows.When the width H is su
h that the pore 
an only a
-
ommodate one parti
le with its long axis perpendi
u-lar to the wall (or not more than four or three parti
lesaligned parallel to the wall) the system is near the one-dimensional limit. It is known that hard-
ore systems inthis limit do not exhibit �rst-order phase transitions, buteven for very narrow slits we 
an still �nd �rst-order tran-sitions at whi
h the density pro�le experien
es an abrupt
hange inside the pore. In Fig. 15 (a) and (b) we showtwo 
oexisting density pro�les 
orresponding to oversat-urations, β∆µ = 0.51760 and β∆µ = 0.72836, and porewidths H/σ = 4.32 and H/σ = 3.14 in (a) and (b), re-spe
tively. The �uid inside the pore undergoes a phasetransition, whi
h dramati
ally 
hanges the stru
ture ofthe interfa
ial density pro�les by in
reasing the heigh of
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Figure 14: µ − H surfa
e phase diagrams for small values of
H .four [Fig. 15(a)℄ or three [(b)℄ density peaks inside thepore. IV. CONCLUSIONSIn this arti
le we have shown that 2D �uids 
omposedof anisotropi
 parti
les intera
ting via hard-
ore repul-sion and 
on�ned in a slit geometry exhibit a 
omplexand ri
h interfa
ial phase behavior. Apart from �rst-order 
apillary 
olumnar ordering, we have also foundlayering transitions in this system. These results are sim-ilar to those found in 3D liquid-
rystal �uids 
on�ned ina pore, where 
apillary sme
tization and layering phe-nomena were also found [8℄. In view of these similarities,we 
an extra
t the 
on
lusion that, independent of thesystem dimensionality and the pe
uliarities of the layeredphases, either sme
ti
 or 
olumnar, if the �uid-wall inter-a
tion enhan
es layered interfa
e ordering (homeotropi
in 
ase of sme
ti
 phases, and the entropi
ally favoredparallel alignment for the 
olumnar phase), 
ompatiblewith the equilibrium bulk phase, then the 
on�ned �uidexhibits the interfa
ial phase transitions des
ribed above.In this study we have used as a model a hard-re
tangle�uid, and the density and the order-parameter pro-�les were 
al
ulated by minimizing the ex
ess surfa
efree-energy fun
tional resulting from the Fundamental-Measure Theory applied to the two-dimensional Zwanzigmodel. The orientational degrees of freedom weredis
retized, in order to take advantage of having afree-energy fun
tional whi
h redu
es to the exa
t one-dimensional fun
tional when the density pro�le is 
on-strained to lie along a line. This property is 
ru
ialto study strongly 
on�ned �uids (as is the 
ase in thisstudy), in parti
ular when the pore width has only a fewparti
le diameters in width.As already pointed out in Se
. I, some experimentshad shown profound similarities between parti
le 
on-�gurations obtained as stationary states of systems ofanisotropi
 grains and those 
orresponding to the equi-
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Figure 15: (a): density pro�les of two 
oexisting phases(shown with solid and dashed lines) at β∆µ = 0.5176. Thepore width is H/σ = 4.32. (b): same as in (a) but for a porewith H/σ = 3.14 and for β∆µ = 0.72836.librium states obtained by density fun
tional minimiza-tion [12℄. These similarities 
an be explained by applyinga maximum-entropy prin
iple on granular 
olle
tions ofparti
les, i.e. for a �xed pa
king fra
tion, externally-indu
ed vibrational motion for
es the system to explorethose stationary states whi
h maximize the 
on�gura-tional entropy (sin
e the grains 
annot overlap). Of
ourse, equilibrium statisti
al me
hani
s is unable to pro-pose an equation of state for granular matter, but it 
ouldbe possible to predi
t that granular matter 
omposed ofanisotropi
 parti
les and 
on�ned between parallel wallsmay support a stationary texture 
onsisting of layers ofparti
les oriented parallel to the wall. The manner inwhi
h the grain orientations propagate into the 
ontainerwould depend on the average pa
king fra
tion and onthe frequen
y of the external for
e. Only at this qualita-tive level 
an we give some insight into possible 
ompletewetting phenomena and 
apillary ordering in granularrod �uids 
on�ned between two horizontal plates at a



13distan
e slightly larger than the parti
le dimensions inthe verti
al dire
tion (thus simulating a two-dimensionalsystem), and also 
on�ned by one or two verti
al planes(these playing the role of hard walls).Some 
al
ulations (not shown here) on the 2D HR �uidshow that, for di�erent aspe
t ratios, 2D sme
ti
 and
rystal phases 
an be stable over some range of pa
k-ing fra
tions. It would be interesting to explore whether
on�nement suppresses or enhan
es bulk ordering, andto study the 
hanges in the surfa
e phase diagram whenphases of di�erent symmetries are in
luded. Work alongthis dire
tion is 
urrently in progress.
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