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Capillary ordering and layering transitions in two-dimensional hard-rod �uidsYuri Martínez-Ratón∗Grupo Interdisiplinar de Sistemas Complejos, Departamento de Matemátias,Esuela Politénia Superior, Universidad Carlos III de Madrid,Avenida de la Universidad 30, E�28911, Leganés, Madrid, SPAIN(Dated: February 1, 2008)In this artile we alulate the surfae phase diagram of a two-dimensional hard-rod �uid on�nedbetween two hard lines. In a �rst stage we study the semi-in�nite system onsisting of an isotropi�uid in ontat with a single hard line. We have found omplete wetting by the olumnar phaseat the wall-isotropi �uid interfae. When the �uid is on�ned between two hard walls, apillaryolumnar ordering ours via a �rst-order phase transition. For higher hemial potentials thesystem exhibits layering transitions even for very narrow slits (near the one-dimensional limit).The theoretial model used was a density-funtional theory based on the Fundamental-MeasureFuntional applied to a �uid of hard retangles in the restrited-orientation approximation (Zwanzigmodel). The results presented here an be heked experimentally in two-dimensional granular mediamade of rods, where vertial motions indued by an external soure and exluded volume interationsbetween the grains allow the system to explore those stationary states whih entropially maximizepaking on�gurations. We laim that some of the surfae phenomena found here an be present intwo-dimensional granular-media �uids.PACS numbers: 64.70.Md,61.30.Hn,61.20.GyI. INTRODUCTIONThe e�et of �uid on�nement on phase transitions isnowadays an ative line of sienti� researh due to thediret appliation of the theoretially predited surfaephase diagrams in the nanotehnology industry. Con�n-ing simple �uids, suh as hard [1, 2℄ or Lennard-Jones[3℄ spheres, in a narrow slit geometry, results in a rihphase behavior, whih has reently been studied in de-tail. Liquid rystals on�ned in nanopores is anothertypial example of systems with important appliationsin the industry of eletroni devies. For this reason theyhave been extensively studied using theoretial modelsbased on density-funtional theory. In partiular, apil-lary phase transitions exhibited by a nemati �uid on-�ned between hard walls[4, 5℄, or walls favoring a par-tiular anhoring [6℄, have been predited. When non-uniform liquid-rystal phases, suh as the smeti phase,are inluded in the study of on�ned systems, the result-ing surfae phase diagrams display a rih phenomenol-ogy, whih inludes wetting transitions, the appearaneof smeti defets [7℄, and layering transitions [8℄.The e�et of on�nement on two-dimensional �uids isalso an interesting topi of researh. Langmuir monolay-ers of lipids on the surfae of water have been extensivelystudied in the last hundred years [9℄, and the disov-ery of strutures and phase transitions in these systemshas experiened a dramati evolution driven by the newexperimental tehniques. Now it is possible to on�nethese two-dimensional systems by external potentials andstudy the in�uene of the on�nement on the moleular
∗Eletroni address: yuri�math.u3m.es

paking of surfae monolayers.Another paradigm of two-dimensional systems wherethe on�nement plays an important role is the pak-ing strutures formed by partiles in granular media[10℄. The rystallization of a quasi-two-dimensional one-omponent granular-disk �uid has reently been studiedexperimentally [11℄. It was found that the propertiesof the rystal struture obtained (suh as paking fra-tion, lattie struture, and Lindenman parameter) o-inide with their ounterparts obtained from MC sim-ulations of a hard disk �uid. Reent experiments havefound non-equilibrium steady states in a vibrated granu-lar rod monolayer with tetrati, nemati and smeti or-relations [12℄. Some of these textures are similar to theequilibrium thermodynami states of two-dimensionalanisotropi �uids resulting from density-funtional al-ulations [13℄ and MC simulations [14℄. It was shown byseveral authors that the inherent states of some frozengranular systems an be desribed by equilibrium sta-tistial mehanis [15℄. Also, an experimental test ofthe thermodynami approah to granular media has re-ently been arried out [16℄. Con�ning two-dimensionalgranular rods in di�erent geometries (irular, retangu-lar, et.) results in spontaneous formation of patterns,with di�erent orientationally ordered textures and de-fets next to the ontainer [17℄. The authors of Ref. [18℄have arried out MC simulations of a on�ned hard disk�uid. They have found that the rystal phase fails to nu-leate due to formation of smeti bands when the systemis on�ned [18℄. It would be interesting to devie an ex-periment with on�ned granular disks with the aim ofomparing the properties of the non-uniform stationarystates with those obtained from the statistial mehanisapplied to the hard disk �uid.The main purpose of this artile is the study of a on-�ned two-dimensional hard-rod �uid. We are interested
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2in the alulation of the surfae phase diagram of a hardretangle (HR) �uid on�ned by a single or two hardlines. We an think on a HR �uid as an experimental re-alization of a system of hard ylinders on�ned betweentwo plates at a distane less than twie the ylinder di-ameter. We suggest that some of the surfae phase tran-sitions obtained here by applying the density funtionalformalism to a on�ned two-dimensional HR �uid shouldbe similar to the steady states of on�ned granular rods.Some experiments are required to verify this hypothesis.The paper is organized as follows. In Se. II wepresent the theoretial model: the fundamental-measuredensity funtional applied to a HR �uid in the restrited-orientation approximation. This setion is divided intotwo subsetions. In the �rst the model is partiularizedto the study of the bulk phases, while in the seond partthe theoretial expressions used in the alulations of thethermodynami and strutural properties of the inter-faes are presented. The results are presented in Se.III. First we study the bulk phase diagram of a HR �uidwith aspet ratio equal to 3, and then the resulting sur-fae phase diagrams of a single wall-HR �uid interfaeand of the �uid on�ned between two hard lines are pre-sented. Some onlusions are drawn in Se. IV.II. THEORETICAL MODELIn this setion we introdue the theoretial model usedin the alulations of the bulk and interfae equilibriumphases. To study highly inhomogeneous phases suh asthose resulting from the on�nement of a �uid in a nar-row slit geometry or the solid phase with a high pakingfration, we have used the Fundamental-Measure Theory(FMT) applied to an anisotropi �uid of hard retangles.It is well known that this formalism presents a great ad-vantage over other tehniques when dealing with highlyinhomogeneous phases, and that this is mainly due to thefat that a basi requirement to onstrut the FMT den-sity funtional is that it onform with the dimensionalross-over riterium [19, 20℄. To implement the alu-lations we have used the restrited-orientation approxi-mation, where the axes of the retangles are restritedto align only along the oordinate axes x or y. Thus,the whole system is desribed in terms of density pro�les
ρν(r) (ν = x, y).While the ideal part of the free energy density in re-dued thermal units has the exat form

Φid(r) =
∑

ν

ρν(r) [ln ρν(r) − 1] , (1)the FMT interation part of the 2D HR �uid is approxi-mated [20℄ by
Φexc(r) = −n0(r) ln [1 − n2(r)] +

n1x(r)n1y(r)

1 − n2(r)
, (2)

where the weighted densities nα's are alulated as
nα(r) =

∑

ν=x,y

[

ρν ∗ ω(α)
ν

]

(r), (3)and where the symbol ∗ stands for onvolution, i.e.,
ρν ∗ ω

(α)
ν =

∫

V
dr′ρν(r′)ω

(α)
ν (r − r

′). The weights ω
(α)
νare the harateristi funtions whose volume integralsonstitute the fundamental measures of a single partile(the edge lengths and surfae area). They are de�ned as
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σx
ν

2
− |x|)Θ(

σy
ν

2
− |y|), (7)where σν

µ = σ + (L− σ)δµν , with L and σ the length andwidth of the retangle and δµν the Kroneker funtion,while δ(x) and Θ(x) are the Dira delta and Heavisidefuntions, respetively.A. The bulk phasesTo alulate the bulk phase diagram we need to mini-mize the Helmholtz free energy funtional βF [{ρν(r)}] =
∫

dr [Φid(r) + Φexc(r)] with respet to the density pro-�les ρν(r). These density pro�les have the symmetriesorresponding to the equilibrium phases, whih an bethe isotropi or nemati �uids, the smeti phase (withpartiles arranged in layers with their long axes pointingperpendiular to the layers), the olumnar phase (withlong axes parallel to the layers), plasti solid (partilesloated at the nodes of the square grid with averaged ori-entational order parameter over the ell equal to zero),and oriented solid (with both translational and orienta-tional order). To take proper aount of all these possiblesymmetries, we have used a Fourier-series expansion ofthe density pro�les:
ρν(r) = ρ0xν

N
∑

k=(0,0)

α
(ν)
k1,k2

cos(q1x) cos(q2y), (8)where we de�ned k ≡ (k1, k2) [with N = N(1, 1)℄,
q1 = 2πk1/dx, and q2 = 2πk2/dy are the wave vetoromponents parallel to x and y axes respetively, and dx,
dy are the periods of the retangular grid along these di-retions. α

(ν)
k1,k2

are the Fourier amplitudes of the densitypro�le of the speies ν with the onstraint α
(ν)
0,0 = 1. ρ0 isthe average of the loal density over the ell, while xν isthe ell-averaged oupany probability of speies ν. TheFourier series is trunated at that value N whih guar-antees that α

(ν)
N,N < 10−7. With this parametrization the



3weighted density an be alulated expliity as
nα(r) = ρ0

∑

ν,k

xνα
(ν)
k1,k2

ω̂(α)
ν (k) cos(q1x) cos(q2y), (9)where ω̂

(α)
ν (k) are the Fourier transforms of the orre-sponding weights, whih have the form

ω̂(0)
ν (k) = χ0(q1σ

x
ν /2)χ0(q2σ

y
ν/2), (10)

ω̂(1x)
ν (k) = σx

νχ1(q1σ
x
ν/2)χ0(q2σ

y
ν/2), (11)

ω̂(1y)
ν (k) = σy
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ν/2)χ1(q2σ

y
ν/2), (12)

ω̂(2)
ν (k) = aχ1(q1σ

x
ν/2)χ1(q2σ

y
ν/2), (13)Here a = Lσ is the surfae area of the partile, and

χ0(x) = cosx, χ1(x) = sin(x)/x. We have seleted theorientational diretor parallel to y. Thus, the equilib-rium smeti (olumnar) phase should be found by min-imizing the free energy with respet to the Fourier am-plitudes α
(ν)
0,k (α(ν)

k,0), the smeti (olumnar) period dy(dx) and the order parameter QN ∈ [−1, 1] [related tothe xν 's through the relations x‖,⊥ = (1 ± QN)/2 wherethe symbols ‖,⊥ stand for partile alignment along yand x respetively℄. For uniform phases [α(ν)
k1,k2

= 0

∀(k1, k2) 6= (0, 0)℄ QN oinides with the nemati orderparameter. The solid phase is to be found by minimiz-ing the free energy with respet to all the Fourier ampli-tudes α
(ν)
k1,k2

, the rystal periods dx and dy, and the orderparameter QN in the ase of an orientationally orderedsolid. To measure the paking struture and the orienta-tional order of the bulk phases we use the loal densityand the order parameter pro�les, ρ(r) =
∑

ν ρν(r), and
Q(r) = [ρy(r) − ρx(r)] /ρ(r) respetively.B. The interfaial phasesAs we want to study the hard wall-�uid interfae or theHR �uid on�ned in a slit geometry, we have introduedthe following external potential:

Vν(x) =







∞, x < σx
ν/2

0, x ≥ σx
ν/2,

(14)for the semi-in�nite system, and
Vν(x) =







∞, x < σx
ν/2 and x > H − σx

ν/2

0, σx
ν/2 ≤ x ≤ H − σx

ν /2,
(15)for the slit geometry, where H is the slit width, andthe normal to the wall was seleted in the x diretion.Note that this external potential represents a hard linewhih exludes the enter of mass of partiles at distanesless than their ontat distanes with the wall. In thissense we an say that the external potential favors par-allel alignment at the wall. This is in ontrast with the

favored homeotropi alignment usually onsidered in sev-eral studies of three-dimensional liquid rystals on�nedby a single or two walls (in partiular that of Ref. [8℄).The one-dimensional equilibrium density pro�les ρν(x)were found by minimizing the exess surfae free energyper unit length
γ ≡

∫

dx

{

Φ(x)

β
+ P −

∑

ν

ρν(x) [µν − Vν(x)]

}

, (16)where β = (kBT )−1, Φ(x) = Φid(x) + Φexc(x), and µνare the hemial potentials of speies ν �xed at the bulk�uid-phase value at in�nite distane from the wall, while
P is the �uid pressure. The hemial potential of thebulk �uid phase is alulated, as usual, as µ =

∑

ν xνµν ,with xν the molar frations of speies ν. If the bulk phaseis an isotropi �uid then xν = 1/2, and µν = µ, ∀ν.To measure the degree of interfaial order, we willuse the adsorption of the density pro�le, de�ned as
Γ =

∫

dx [ρ(x) − ρ(∞)], and the order parameter pro�le
Q(x).The expression (16) oinides with the de�nition of thesurfae tension of the wall-�uid interfae for the semi-in�nite ase, whih is approximately equal to half theexess surfae free-energy for the slit geometry when thewall distane H is large enough to aommodate bothinterfaes.To minimize the funtional given by (16), we have dis-retized spae in the x diretion and minimize γ withrespet to ρν(xi) (xi ∈ [x0, xN ]) using the onjugate-gradient algorithm. III. RESULTSIn this setion we present the main results obtainedfrom the appliation of the theoretial model just de-sribed to the study of surfae properties of a 2D HR�uid. Partiles were hosen to have aspet ratio κ ≡
L/σ = 3. This aspet ratio is hosen beause one of theaims of the present work is the study of layered phaseson�ned by one or two walls. As we will show bellow for
κ = 3 the stable phase is the olumnar layered phase.In the �rst subsetion we will summarize the resultsobtained in the alulation of the bulk phase diagram ofthis system, while in the seond subsetion we will fouson the study of the surfae phase diagram.A. Bulk phase diagramWe have minimized the free energy density of the HR�uid, de�ned as Φ ≡ V −1

∫

V
dr [Φid(r) + Φexc(r)], withrespet to the Fourier amplitudes, periods, and mean o-upany probability, as desribed in detail in Se. II A.The results are plotted in Fig. 1, where the free-energydensities of all the stable and metastable phases foundare plotted as a funtion of the paking fration η = ρ0a.



4We have found, apart from the usual isotropi (I) and ne-mati (N) phases, two di�erent smeti phases (Sm1, andSm2), a plasti solid (PS), perfetly oriented solid (OS),and �nally the olumnar phase (C), whih is the stableone in the whole range of paking frations explored.
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Figure 1: The resaled free-energy density Φ∗ = Φ+2.9875−
5.8501η is plotted against the mean paking fration for allthe stable and metastable phases found. These are: isotropi(dashed line), nemati (dotted line), smeti-1 and smeti-2 (dotted and dashed lines), plasti solid (dashed line la-belled as PS), while the perfetly oriented solid and theolumnar phases (labelled in the �gure as OS and C respe-tively) are plotted with solid lines. The open irle indi-ates the isotropi-nemati bifuration point; the open square,the isotropi-plasti solid bifuration point; and the solid ir-les represent the oexisting paking frations at isotropi-olumnar phase oexistene.The oupling between the spatial and orientational de-grees of freedom of the partiles results in the presene ofphases (stable or metastable) with di�erent symmetries.In Fig. (2) we have skethed some of the partile on-�gurations orresponding to phases with olumnar (a),smeti-1 (b), smeti-2 (), and plasti solid (d) sym-metries found from the numerial minimization of thedensity funtional. The diretions of spatial periodiitiesof eah phase have been depited in the �gure.In Fig. 3 (a) we have plotted the density and order-parameter pro�les of the oexisting olumnar phase. Theolumnar phase is orientationally ordered in the y dire-tion with the long retangle axis pointing along the y axis,while the periodiity of both density and order parame-ter pro�les (whih are in phase) is along the x diretion[see Fig. 3 (a)℄. The mean oexistene paking frationsof the I and C phases are ηI = 0.57058 and ηC = 0.60310,respetively while the period of the C phase, in units ofthe HR width, was found to be dx/σ = 1.20102. In Fig.3 (b) we have plotted the order parameter QN, and theperiod of the olumnar phase as a funtion of the meanpaking fration.
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dyFigure 2: Sketh of partile on�gurations orresponding todi�erent phases: olumnar (a), smeti-1 (b), smeti-2 (),and plasti solid (d) phases. The diretion of spatial period-iities are labeled in the �gure.To ompare the di�erent pakings of HR partiles inthe metastable phases (found as the loal minima of thefree energy density) for a �xed mean paking fration
η = 0.7, we have plotted the density and order-parameterpro�les of the Sm1,2 [Fig. 4 (a) and (b)℄, and PS and OS[Fig. 5 (a)�()℄ phases. As an be seen from Fig. 4(a), the density pro�le of the Sm1 phase has two max-ima per period. The less pronouned maxima, loatedat the interstitials, re�et the high population of parti-les with long axes oriented parallel to the smeti layers[see the skethed partile on�gurations in Fig. 2 (b)℄.This alignment is also shown in the order-parameter pro-�le, whih reahes high negative values at the intersti-tial positions. This phase bears a strong resemblaneto the �ndings of Refs. [21℄ and [22℄ where the parti-le equilibrium on�gurations in the 3D smeti phasesshow the same pattern. As a onsequene of this (al-ternating population of partiles aligned perpendiular�sharpest peak in the density pro�le� and parallel to thelayers), the smeti period in units of the partile lengthis dy/L = 1.53025, higher than the smeti period of theSm2 phase (dy/L = 1.17935). The density and order-parameter pro�les of the Sm2 are shown in Fig. 4 (b).As an be seen from the �gure, these pro�les re�et theusual paking in smetis, haraterized by a single den-sity peak with vanishingly small population of partilesin the interstitials, while the order parameter reahes itsmaximum value at the position of the smeti layers [seeFig. 2 () for the skethed partile on�gurations℄.The density and order parameter pro�les of the PSphase with mean paking fration equal to 0.7 are plot-
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Figure 3: (a): density ρ(x) (solid line) and order parameter
Q(x) (dashed line) pro�les of the olumnar phase at oex-istene with the isotropi phase. (b): order parameter QNand period of the olumnar phase against the mean pakingfration.ted in Fig. 5 (a) and (b). The plasti solid has the sameperiodiity in the x and y diretion, i.e. dx = dy = d,and the order parameter averaged over the unit ell isstritly equal to zero. As we an see from Fig. 5 (b),while the order parameter at the nodes of the squarelattie is equal to zero, it reahes positive (negative) val-ues at the (±0.5, 0) [(0,±0.5)℄ positions along the sidesof the ell (the same solution with the x and y dire-tions interhanged was found in the minimization of thefree energy). Finally, the density pro�le of the perfetlyaligned two-dimensional solid is plotted in Fig. 5 ().Although the phases desribed above are metastablewith respet to the olumnar phase, they an be stabi-lized for di�erent values of the partile aspet ratio. Adetailed study of the omplete phase diagram, neessaryto eluidate this point, is a work in progress.We now proeed to make a omparison between theresults for the 2D Zwanzig model with κ = 3 obtained
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Figure 4: Density (solid line) and order parameter (dashedline) pro�les of the smeti-1 (a) and smeti-2 (b) metastablephases for a value of mean paking fration �xed at 0.7.above and those for hard parallelepipeds with restritedorientations and the same value of κ [23℄. This ompari-son will show the di�erenes in phase behaviour betweenthree and two dimensions as predited by Fundamental-Measure Theory (whih, as already pointed out, on-forms with the dimensional rossover riterion). Asshown in Ref. [23℄, hard parallelepipeds exhibit a seond-order phase transition between isotropi and plasti solidphases. As density inreases the system goes to a disotismeti phase (on�rmed by simulations) via a �rst-orderphase transition, whih in turn disontinuously hangesto a olumnar phase and then to an oriented solid. Byontrast, the present model shows that, in two dimen-sions, the isotropi phase exhibits a �rst-order transitionto a olumnar phase that is stable until very high pak-ing frations (more stable that plasti, oriented solid anddi�erent smeti phases). As a onsequene, one expetsthat the orresponding surfae phase diagrams be also



6

Figure 5: Density (a) and order-parameter (b) pro�les of theplasti solid phase. (): Density pro�le of the perfetly ori-ented solid.
di�erent.

B. Surfae phase diagramIn this setion we deal with surfae phenomena. In the�rst part we will onentrate on the semi-in�nite wall-isotropi interfae of a HR �uid, while in the seond partwe will fous on the slit geometry. We will demostratethe presene of omplete wetting, apillary ordering andlayering transitions in the on�ned two dimensional hardrod �uid. For a detailed disussion on general grounds ofthe phase behavior and ritial phenomena of a on�nedby a single wall �uid see Ref. [24℄.1. The wall-�uid interfaeThe interation between the isotropi �uid phase and ahard wall was studied by alulating the one-dimensionalequilibrium density ρ(x) and order-parameter Q(x) pro-�les through the exess surfae free-energy minimization[see Eq. (16)℄. The hemial potential µ of the �uid phaseat in�nite distane from the wall was varied within therange of isotropi-phase stability, i.e. µ ∈ [−∞, µ0] (µ0being the value at whih the I-C phase transition ours).It is well known that the presene of a hard wall in a sys-tem of elongated partiles indues parallel alignment ofthe partile axes with respet to the wall [25, 26℄. Thispreferential alignment is a result of the entropi depletione�et. In the parallel on�guration, the enters of massof the partiles are muh loser to the wall, so the gainin volume per partile is larger and, as a onsequene,the on�gurational entropy of the system is maximized.This e�et is responsible for the ourrene of a biaxialnemati phase whih breaks the orientational symmetryin a three-dimensional nemati �uid [4℄. The same deple-tion mehanism is at work in 2D, as we will show below.The results from the minimization are shown in Figs. 6(a) and (b) for an undersaturation of β∆µ = −1.1×10−4.As we an see from the �gure, the density and order-parameter pro�les indiate olumnar order near the wall,whih propagates several olumnar periods into the �uidphase. The wall-�uid interation enhanes the orienta-tional order near the surfae and the adsorption of par-tiles, reating a strutured layer with olumnar-phasesymmetry whih grows in width with inreasing hem-ial potential and diverges at µ = µ0. Thus, ompletewetting by a olumnar phase ours at the wall-isotropiinterfae. This result is shown in Fig. 7 (a) where the ex-ess surfae free-energy γ and the adsorption oe�ient Γare plotted against ∆µ = µ−µ0. As we an see, Γ growsontinuously, ultimately diverging logarithmially with
∆µ (see inset of �gure). The exess surfae free energy γhas a maximum, and at this point the adsorption passesthrough zero. This result is diretly related to the interfa-ial Gibbs-Duhem equation, Γ = −dγ/dµ, whih relatesthe adsorption oe�ient with the �rst derivative of theexess surfae free-energy with respet to bulk hemialpotential. At µ0 the exess surfae energy is equal to thewall-isotropi surfae tension γWI, whih is in turn equal



7to the sum of wall-olumnar and olumnar-isotropi sur-fae tensions, γ(µ0) = γWI = γWC + γCI (the Young'sequation for omplete wetting).
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Figure 6: Density (a) and order parameter (b) pro�les of thewall-isotropi �uid interfae. The undersaturation is �xed to
β∆µ = −1.1 × 10−4.We have arried out a logarithmi �t of the adsorp-tion oe�ient with respet to undersaturation β∆µ =
β (µ − µ0), and we �nd that Γσ = τ1 +τ2 ln [β|∆µ|], with
τ1 = 0.02387 and τ2 = −0.03396. Then, integrating theinterfaial Gibbs-Duhem relation Γ = −dγ/dµ, we �ndthe expression

βγσ ≈ βγWIσ − [τ1 + τ2 (ln (β|∆µ|) − 1)] β∆µ, (17)whih approximates the exess surfae free energy nearomplete wetting. The above expression is plottedagainst β∆µ in Fig. 7 (b), where the results from diretalulation of βγσ, using the equilibrium density pro�lesobtained, are also plotted. As we an see the agreementis exellent even for relatively high values of undersatu-ration.
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Figure 7: (a): exess surfae free energy (solid line) and ad-sorption oe�ient (dashed line), in redued units, against
β∆µ. The inset shows Γσ vs. β∆µ in logarithmi sale. (b):exess surfae free energy vs. βµ in the neighborhood of zeroundersaturation. The open irles show the values obtainedfrom the numerial minimization, while the solid line repre-sents the analyti urve obtained by integrating the interfaialGibbs-Duhem relation with the �tted logarithmi dependeneof the adsorption oe�ient (see text). The solid irle showsthe value of the W-I surfae tension βγWIσ = 0.13822To alulate the strutural and thermodynami prop-erties of the olumnar-isotropi interfae, we have imple-mented a numerial sheme already used in Ref. [27℄,onsisting of minimizing the surfae exess free energy γin a box of width h ontaining a stripe of a few olum-nar layers surrounded by isotropi material with periodiboundary onditions. h is hosen suh that the densitypro�les an easily aommodate the two interfaes andgo to the oexistene �uid density at the periodi bound-ary. A typial result from this alulation is plotted inFig. 8 (a) and (b) for the density and order-parameterpro�les, respetively. Thus, the I-C interfaial tensionan be alulated as half the exess surfae free energy



8resulting from the minimization. We have found a valueof βγICσ = 0.00672.
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Figure 8: Density (a) and order-parameter (b) pro�les of anumerial box ontaining two isotropi-olumnar interfaes.Finally, to verify that Young's law for omplete wet-ting holds, we need to alulate the surfae tension ofthe wall-olumnar interfae. To onstrut density pro-�les ompatible with this semi-in�nite interfae, one hasto establish a boundary, at the side of the omputationalbox opposite to the wall, and plae, beyond the bound-ary and into the bulk, a periodially strutured pro�le,hoosing the phase (i.e. the value of the pro�le at theboundary) arbitrarily within the bulk period. Althoughthis reipe an in priniple be implemented, we have ho-sen to �x bulk I-C oexistene onditions in a on�nedolumnar phase and alulate the density pro�le of thesystem on�ned between two walls; the separation be-tween the walls was hosen large enough so that the ef-fets of having a �nite interfae penetration length ausedby the presene of the on�ned external potential an benegleted. Also, in order to ensure that ommensurabil-ity e�ets an be ignored, the distane between the walls

was set to a (large) integer number of equilibrium periodsof the olumnar phase. The results from these alula-tions are plotted in Fig. 9 (a) and (b). The W-C surfaetension alulated as half the value of the exess surfaefree energy results in βγWCσ = 0.13150, ompatible withYoung's law in onditions of omplete wetting of the W-Iinterfae by the olumnar phase.
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Figure 9: The density (a) and order parameter (b) pro�lesof two wall-olumnar interfaes2. Capillary orderingThis setion is devoted to a study of the e�et of on-�nement of a 2D HR �uid on the thermodynami andstrutural properties of the �uid. In partiular, we areinterested in the enhanement of the orientational andlayering ordering due to on�nement, and the ommen-surability e�ets exhibited by a layered phase sandwihedbetween two hard walls at a distane that may or maynot ommensurate with the period of the bulk olumnarphase. It is well known that, under ertain irumstanes



9(related to the nature of the �uid-�uid and surfae-�uidinterations), a �uid inside a pore an exhibit apillary�rst-order phase transitions between two di�erent phasesat a hemial potential below the bulk oexistene value.An example of this phenomenon is the reently studiedapillary nematization [4℄ and smetization [8℄ of a liquidrystal �uid inside a pore. The bulk ondensed phasemay have uniform (nemati) or nonuniform density pro-�les. For the latter ase, apillary layering transitions be-tween interfaial phases with di�erent number of smetilayers [8℄ an also be found. Here we will show that theseapillary and layering phase transitions are not unique to3D system. They are also present in 2D anisotropi �uidswhih an stabilize layered phases with di�erent spatialsymmetries, suh as the olumnar phase.With a view to �nding the e�ets of on�nement onolumnar ordering in a HR �uid, we have minimized theexess surfae free energy with respet to the density pro-�le for the partiular ase of HR's with κ = 3. The �uidis on�ned by two hard walls at a distane H/σ = 30 (inunits of the partile width). As already pointed out, hardwalls favor alignment parallel to the wall, as well as ad-sorption of partiles at both surfaes (density and orderparameters at ontat are muh higher than their bulkvalues). This oupled translational-orientational order-ing near the surfaes propagates into the �uid, reatingolumnar ordering. We have found that for low valuesof the hemial potential of the bath the density pro�leis strutureless (exept just at the wall ontat), similarto the bulk isotropi phase. Inreasing the hemial po-tential several damped olumnar peaks appear near thewall in a ontinuous fashion, i.e. with their heights in-reasing ontinuously. At some value of the hemial po-tential, the system exhibits a �rst-order phase transitionbetween a phase with highly damped olumnar peaks toa new phase with muh stronger olumnar ordering evenat the enter of the pore. The typial density and order-parameter pro�les of both interfaial phases are shown inFig. 10 (a)-(d). Although the less-ordered phase exhibitsstrong osillations in both density and order-parameterpro�les, the peak amplitudes are damped into the porefaster than those of the higher ordered phase. We willtake the onvention to all the �rst `isotropi', and theseond `olumnar' surfae phases. This onvention is jus-ti�ed by the fat that, just before the transition desribedabove, olumnar ordering inreases ontinuously, start-ing from an isotropi-like density pro�le, as the hemi-al potential is inreased. Thus we annot trae out ade�nite boundary (a value for µ below that orrespond-ing to �rst order phase transition) below or above whihthe pro�le inside the pore an be onsidered isotropi orolumnar. Only the �rst order phase transition desribedabove an really distinguish two di�erent surfae phases,one of them less ordered (following our onvention, theisotropi phase) than the other (the olumnar phase). Aswe an see in the �gure, the latter has 25 olumnar peaks.The transition point is alulated from the disontinu-ity in the �rst derivative of the exess surfae free en-
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Figure 10: Isotropi (a)-(b) and olumnar ()-(d) phases thatoexist at the same hemial potential bellow µ0. (a), ():Density pro�les. (b), (d): Order-parameter pro�les.ergy with respet to the bulk paking fration η. Theorresponding plot is shown in Fig 11 (a). At this pointthe adsorption oe�ient jumps disontinuously from theless- (the damped olumnar) to the higher-ordered phase[see Fig. 11 (b)℄.This surfae transition point is loated below the bulkisotropi-olumnar phase transition [see Fig. 11 (a)℄,
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Figure 11: Exess surfae free energy (a) and adsorption oef-�ient (b) against paking fration of the bulk isotropi �uid.In the �gure at top, the solid irle represents the transitionpoint between both interfaial phases, while open square in-diates the point orresponding to the bulk oexistene valuefor isotropi and olumnar phases.showing the presene of olumnar-order enhanement inthe pore. On further inreasing the hemial potentialup to a su�iently high value (above µ0), we �nd a �rst-order layering transition between two interfaial olum-nar phases whih di�er by just a single olumnar layer.The behavior of the exess surfae free energy and theadsorption oe�ient is similar to that shown in Fig. 11(a) and (b). Alternatively we an �nd the transition from
n−1 to n olumnar layers by �xing the hemial potentialand inreasing the pore width H .The two surfae phase transitions desribed above,namely �rst-order apillary I-C ordering and (n − 1)�
n layering transition, are onneted in the µ−H surfaephase diagram through the peuliar struture shown inFig. 12.The parabola below the bulk transition line orre-sponds to �rst-order transition lines separating regionsof stability of the isotropi and the olumnar interfaialphases, while the straight lines indiate layering transi-tions. Inreasing the hemial potential from low valuesto those orresponding to the parabola, the density pro-�les always hange ontinously from a strutureless todamped olumnar density pro�le. Both types of transi-
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Figure 12: µ − H surfae phase diagram showing �rst-orderapillary olumnar ordering and layering transitions. Thepore width overs a range whih goes from 23 to 25 olum-nar layers, as labeled in the �gure. The open irles indiatethe ases hosen for alulations, while the solid line is a u-bi spline interpolation. The horizontal dashed line shows thevalue of the bulk hemial potential at the isotropi-olumnarphase oexistene.tions (the isotropi-olumnar and n−1-n layering transi-tions) oalese in triple points, two of whih are shown inFig. 12. At the triple points an isotropi and two olum-nar interfaial phases with n − 1 and n layers oexist inequilibrium. The set of onneted of Fig. 12 are similarto those found in MC simulations of the on�ned hard-sphere �uid [2℄. In this work the authors have shown theexistene of apillary freezing of the HS �uid, on�nedin the slit geometry, for hemial potential values belowthe bulk freezing transition. The transitions lines in the
µ−H surfae phase diagram follow the same topology ofonneted set of parabolas as found in our system.Some of the topologial features of this surfae phasediagram an be eluidated from the Clausius-Clapeyronequation as applied to the interfaial oexistene lines.The exess surfae free energy γ(µ, H) along oexisteneis a funtion of two variables, the hemial potential µ,and the pore width H . Thus, in�nitesimal hanges inthese variables along the oexistene urve are relatedthrough the equation

dγα − dγβ = ∆

(

∂γ

∂µ

)

H

dµ + ∆

(

∂γ

∂H

)

µ

dH = 0, (18)where the oexisting ondition γα = γβ (for
α, β =I,Cn−1,Cn) was used, and ∆u = uα − uβ for anyfuntion u. Using the interfaial Gibbs-Duhem equation
∂γ/∂µ = −Γ and the de�nition of the solvation fore
f = −∂γ/∂H , we arrive at

dµ

dH
= −

∆f

∆Γ
, (19)



11whih relates the �rst derivative of the hemial potentialwith respet to the pore width with hanges in the sol-vation fore and in the adsorption oe�ient at the tran-sition point. The negative slope of the layering urves isa diret result of Eq. (19), as the inrement in the ad-sorption is always positive for the (n − 1) → n layeringtransition, while the hange in the solvation fore is alsopositive (the latter an be interpreted as an inrementwith respet to the bulk of the exess surfae pressure,whih is obviously larger for the phase with n layers).For values of the pore width that ommensurate with aninteger number of olumnar periods of the bulk olumnarphase, the solvation fore beomes zero and we get a min-imum in the I-C apillary transition urve (see Fig. 12).At eah side of the minimum the solvation fore hangethe sign to positive (left side) or negative (right side) aswe ompress or expand the �lm, respetively, while thehange in adsorption remains positive.The Kelvin equation for apillary ondensation in a slitgeometry relates the undersaturation in hemial poten-tial with pore width H as
∆µ = µ(H) − µ0 = −

2γαβ

(ρα − ρβ)H
, (20)where ρα and ρβ are the bulk oexisting densities ofphases α and β (α being the ondensed phase), while

γαβ is the surfae tension of the orresponding interfae.It was assumed that omplete wetting by the α phaseours at the W-β interfae. For a detailed disussion ofthe Kelvin equation in the ontext of liquid rystal phasetransitions see Ref. [28℄. Applying this equation using
H/σ = 28.88 (the loation of the minimum in the µ−Hphase diagram of Fig. 12), we obtain an undersaturation
β∆µ = −0.0429, while its real value is β∆µ = −0.1255.In the derivation of the Kelvin equation, deviations fromthe bulk struture of the density pro�le arising fromthe on�nement by the external potential are negleted.Also, the elasti energy resulting from the ompression orexpansion of a layered phase on�ned between two wallsis not taken into aount. These e�ets might be respon-sible for the di�erenes found between our alulationsand the estimation based on the Kelvin equation. Wehave heked that the sequene of minima in the µ − Hphase diagram tends to µ0 as H → ∞, a result preditedby Eq. (20).Refs. [4℄ and [8℄ showed that the apillary nemati-zation line of the on�ned liquid-rystal �uid ends in aritial point for small values of the pore width. In or-der to study how the topology of the surfae phase dia-gram hanges in the regime of small pore widths, we havearried out the orresponding alulations of interfaialstruture. We have found that the I-C apillary orderingtransition hanges at some partiular value of H (nearits maximum undersaturation represented by the mini-mum in the I-C interfae oexisting urve) from �rst toseond order. For lower values of H two ritial pointsemerge from this single point, the distane between theminreasing. In Fig. 13 one of these senarios is shown.

As we an see, there is a range of values of H (nearthe triple points) where the �rst-order apillary order-ing transitions are still present but, between the ritialpoints belonging to di�erent layering branhes, olumnarordering grows ontinously from the isotropi (dampedolumnar interfaial phase) to a highly-ordered olum-nar phase. Layering transitions are always present evenfor very small H , as will be shown below. An interest-ing feature of this phase diagram is that the loation ofthe triple points moves above the bulk oexistene value
µ0. This indiates that the interfaial olumnar phasejust below the triple points an be unstable for values ofhemial potentials orresponding to those of olumnar-phase stability at bulk (similar to the apillary evapora-tion of the on�ned �uid). For wide enough slits (thosefor whih the parabolas are onneted) the triple pointsare pratially loated at µ0, as an be observed fromFig. 12.
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Figure 13: µ−H surfae phase diagram showing ritial points(�lled irles). Number of olumnar layers are indiated assubsripts.For even smaller values of H , only layering transitionsremain; these end in ritial points loated above µ0, asFig. 14 shows.When the width H is suh that the pore an only a-ommodate one partile with its long axis perpendiu-lar to the wall (or not more than four or three partilesaligned parallel to the wall) the system is near the one-dimensional limit. It is known that hard-ore systems inthis limit do not exhibit �rst-order phase transitions, buteven for very narrow slits we an still �nd �rst-order tran-sitions at whih the density pro�le experienes an abrupthange inside the pore. In Fig. 15 (a) and (b) we showtwo oexisting density pro�les orresponding to oversat-urations, β∆µ = 0.51760 and β∆µ = 0.72836, and porewidths H/σ = 4.32 and H/σ = 3.14 in (a) and (b), re-spetively. The �uid inside the pore undergoes a phasetransition, whih dramatially hanges the struture ofthe interfaial density pro�les by inreasing the heigh of
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Figure 14: µ − H surfae phase diagrams for small values of
H .four [Fig. 15(a)℄ or three [(b)℄ density peaks inside thepore. IV. CONCLUSIONSIn this artile we have shown that 2D �uids omposedof anisotropi partiles interating via hard-ore repul-sion and on�ned in a slit geometry exhibit a omplexand rih interfaial phase behavior. Apart from �rst-order apillary olumnar ordering, we have also foundlayering transitions in this system. These results are sim-ilar to those found in 3D liquid-rystal �uids on�ned ina pore, where apillary smetization and layering phe-nomena were also found [8℄. In view of these similarities,we an extrat the onlusion that, independent of thesystem dimensionality and the peuliarities of the layeredphases, either smeti or olumnar, if the �uid-wall inter-ation enhanes layered interfae ordering (homeotropiin ase of smeti phases, and the entropially favoredparallel alignment for the olumnar phase), ompatiblewith the equilibrium bulk phase, then the on�ned �uidexhibits the interfaial phase transitions desribed above.In this study we have used as a model a hard-retangle�uid, and the density and the order-parameter pro-�les were alulated by minimizing the exess surfaefree-energy funtional resulting from the Fundamental-Measure Theory applied to the two-dimensional Zwanzigmodel. The orientational degrees of freedom weredisretized, in order to take advantage of having afree-energy funtional whih redues to the exat one-dimensional funtional when the density pro�le is on-strained to lie along a line. This property is ruialto study strongly on�ned �uids (as is the ase in thisstudy), in partiular when the pore width has only a fewpartile diameters in width.As already pointed out in Se. I, some experimentshad shown profound similarities between partile on-�gurations obtained as stationary states of systems ofanisotropi grains and those orresponding to the equi-
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Figure 15: (a): density pro�les of two oexisting phases(shown with solid and dashed lines) at β∆µ = 0.5176. Thepore width is H/σ = 4.32. (b): same as in (a) but for a porewith H/σ = 3.14 and for β∆µ = 0.72836.librium states obtained by density funtional minimiza-tion [12℄. These similarities an be explained by applyinga maximum-entropy priniple on granular olletions ofpartiles, i.e. for a �xed paking fration, externally-indued vibrational motion fores the system to explorethose stationary states whih maximize the on�gura-tional entropy (sine the grains annot overlap). Ofourse, equilibrium statistial mehanis is unable to pro-pose an equation of state for granular matter, but it ouldbe possible to predit that granular matter omposed ofanisotropi partiles and on�ned between parallel wallsmay support a stationary texture onsisting of layers ofpartiles oriented parallel to the wall. The manner inwhih the grain orientations propagate into the ontainerwould depend on the average paking fration and onthe frequeny of the external fore. Only at this qualita-tive level an we give some insight into possible ompletewetting phenomena and apillary ordering in granularrod �uids on�ned between two horizontal plates at a



13distane slightly larger than the partile dimensions inthe vertial diretion (thus simulating a two-dimensionalsystem), and also on�ned by one or two vertial planes(these playing the role of hard walls).Some alulations (not shown here) on the 2D HR �uidshow that, for di�erent aspet ratios, 2D smeti andrystal phases an be stable over some range of pak-ing frations. It would be interesting to explore whetheron�nement suppresses or enhanes bulk ordering, andto study the hanges in the surfae phase diagram whenphases of di�erent symmetries are inluded. Work alongthis diretion is urrently in progress.
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