
Bachelor in Telematics Engineering
2014-1015

Bachelor Thesis

“Predictive analysis for cache
generation in quadtree based geo

visualizations”

Author:
Carla Iriberri Gutiérrez

Supervisor:
Víctor Elvira Arregui

“Visualization leads to comprehension.”

To my parents:
for your efforts.

Abstract

The Web Mercator projection is commonly used in geo data visualizations. This
projection shows geospatial information based on some restrictions, but allows to
scale the whole world with a precision of centimeters. One of the most important
restrictions is the clustering of the information within cells inside map tiles, so that
they can be cached. Depending on the data that is being visualized, that cache must
behave in a different way to be responsive to user requests.

Web mapping has become a very relevant market in the last few years, and it is
expected to grow even more in the near future, with a great variety of applications
such as self-driving cars or business analytics. The analysis of user reactions and
interactions against a map filled with information will be key when building the
mapping platforms of the future.

This project aims to predict usage patterns in web map visualizations so that
dynamically generated data can be precached to improve the usability of such
maps. To that end, we use different statistical approaches, all of them trained with
real data of map usage activity.

Throughout this document, we describe a suitable way to curate the raw data
acquired through thousands of log files and how to obtain statistical insights from
it. Based on this data, we define a predictive model for tile caching, and we test it
against real map usage data. We also cover the timing details of tile generation,
comparing the efficiency of serving cached tiles against generating tile images on
runtime. The economic impact of the developed solution is also explained in terms
of how much it costs to store the tiles predicted by our caching algorithm in a
content delivery network. Regarding the social context, we analyse which legal
frameworks regulate the web mapping industry and how do them affect our
caching solution.

Table of contents

1. Motivations and goals 8...
1.1. Problem statement 8..

2. Introduction to web mapping 9...
2.1. State of the art 9...

2.2. Technical overview of web mapping 13..

2.3. The social environment of the web mapping market: regulatory framework 30......

3. Curating and visualizing the source data 31..
3.1. Introduction to the different data sources 31...

3.2. Analysis of requests through CDN logs 32...

3.3. Analysis of map metadata 35..

3.4. Visualizing the source data 39...

3.5. Statistical insights of the source data 42...

4. Designing heuristics for tile caching 48..
4.1. Zoom level and bounding boxes 48..

4.2. Data, distribution and its interactivity 49..

4.3. Creating caching rules through the study of the variables 50...................................

4.4. Implementation details of the caching algorithm 52...

4.5. The walk through the quadtree 54...

4.6. Testing caching heuristics results 55...

5. Real applications of cache generation 57...
5.1. Render timing breakdown 57..

5.2. Reducing the map generation time 57...

5.3. Protecting the mapping platform 61..

6. Project planning and budget 62..
6.1. Project planning 62..

6.2. Economic analysis on cache generation 66...

7. Conclusions 68..
8. References 69...
9. Terminology 72..
10. List of figures 76..
11. List of tables 78...
12. Appendix 79...
13. Summary 88...

!  
! of !7 98

Predictive analysis for cache generation in quadtree based geo visualizations

1. Motivations and goals

The main objective of this project is to build an algorithm to predict which map
tiles need to be generated and cached whenever a web map is created. In order to
achieve this, we will analyse the spatial data contained on thousands of maps
together with the interactions that the users perform on them: zooming, moving or
clicking on the map features.

1.1. Problem statement

Predicting which tiles are likely to be requested when a map is generated will
allow caching these tile resources in advance and avoid their generation on runtime
as a consequence of a user request. The response time of a tile that is cached
versus the response time of a tile that needs to be generated could be different in
several orders of magnitude depending on the complexity of the data that needs to
be rendered in a tile.

This research on possible enhancements that could be applied to the current web
mapping platforms and tools gets its motivation from an industry field that is
expected to grow within the next years.  

!  
Page ! of !8 98

Predictive analysis for cache generation in quadtree based geo visualizations

2. Introduction to web mapping

2.1. State of the art

Cartography has been a part of human history for a long time, the earliest known
map of Earth being dated in the year 6200 B.C. From these ancient maps of
Babylon, Greece or Asia and on into the current century, the different societies that
have populated the planet have created and used maps as tools to describe their
world.

The improvements in technology and the advent of the Internet have provided a
new way to communicate and work which has affected the manner in which maps
are built nowadays.

In 1996, a company named MapQuest released the first web map, which provided
also geocoding and routing capabilities. This map was created by a set of images
that were explorable through direction arrows located in each of the four borders
of a squared screen. Browsing around this map required a full site refresh due to
the way that the complete images per each region were requested to the servers.

During the following 10 years, other companies such as the NASA or ESRI
released their own web map services. In 2004, the open source world map project
OpenStreetMap was founded by Steve Coast, allowing the people in the world to
collaborate and map their local data. Just one year later, in 2005, the first version
of Google Maps was released. Google Maps was introducing therefore the ideas
that changed the web mapping world and that have become an standard these days.

Along with the new Google Maps service, Google presented the concept of “tile”.
Instead of drawing the maps by showing a single image, their service used tiles:
small squared images that placed side-by-side made up the complete map.

This scalable approach allows loading small predefined images instead of images
of millions of pixels which would be too large to download or hold in memory at
once. The specifics about how the tiles were defined constitute what is known as
“Google Maps tile convention”:
!  

Page ! of !9 98

Predictive analysis for cache generation in quadtree based geo visualizations

• Tiles are images of 256x256 pixels
• Tiles are drawn according to the Web Mercator projection
• Tiles are ordered hierarchically according to the zoom level applied to

the map

Together with these statements, other tiled web map standards adapted more
specific conventions:

• Tiles are presented as PNG images
• Tiles are described by an ZXY numbering scheme, where Z is the

zoom level and X and Y identify the tile

Tiles are organised in a quadtree scheme. A quadtree is “a tree data structure in
which each internal node has exactly four children”[1]. This hierarchical structure
implies that at each level of zoom a web map will be formed by 22z tiles. At the
level of zoom zero, the whole world can be drawn just with a single tile (20 = 1).
Four tiles are necessary to build the world at the second level of zoom. The amount
of tiles needed to draw the world when the zoom level increases grows
exponentially.

Each tile can be always identified and requested by means of its (Z, X, Y) triplet.
This system of coordinates defines the different set of tiles that make up the whole
world for each one of the levels of zoom available (usually, the range of zoom
goes from 0 up to 24). The following figure demonstrates visually the organisation
described above:

!  
Page ! of !10 98

Figure 2.a): Schema: Quadtree based hierarchy for tiles.

https://en.wikipedia.org/wiki/Quadtree

Predictive analysis for cache generation in quadtree based geo visualizations

The fact that these tiles have specific boundaries for the geographical regions
makes the system standard against different tile providers. Tiles are generated in
tiler servers and offered through a REST API with URLs that include the three
ZXY parameters. An example of these URLs can be http://tile.openstreetmap.org/
4/2/6.png, which corresponds to a tile in the zoom level 4 whose position is (2,6).

Analogously, the rest of tiles of this service can be obtained through the
parametrised URL http://tile.openstreetmap.org/{z}/{x}/{y}.png.

A web map is formed by one or more layers of tiles which can be of two different
types. Base layers are intended to show the geographical information of the world.
Data layers show data on top of a base layer.

The common layer that most of web maps share is the base map (or base layer).
Base maps are built by static tiles that are usually rendered once and then stored in
a cache in order to serve them when necessary. Base maps can be obtained from
satellital imagery or designed using the data available throughout the world as a
source. Companies such as Stamen or Mapbox design base maps and create
software (like Tilemill) to allow people to customise their own base maps by using
OpenStreetMap open data. The next figure shows different base maps for the same
geographical boundary (the same tile) in the area of the San Francisco Bay.

!  
Page ! of !11 98

Figure 2.b): Example of different designs for the same tile.

http://tile.openstreetmap.org/4/2/6.png
http://tile.openstreetmap.org//2/6.png

Predictive analysis for cache generation in quadtree based geo visualizations

As web maps are used to visualise information, we can find more tile layers on top
of the base maps. The base layers help us to understand the data and analyse it
with a geographical meaning.

There are several companies in the market whose product is based on displaying
data tiles generated from user data. With this objective, companies like ArcGIS,
Mapbox or CartoDB serve millions of tiles per day[2].

Companies such as Twitter, Facebook, Uber or Tesla are making a great use of
maps: from creating graphs that show where “hashtags” are used over time[3] to
where the taxi drivers are picking up their clients and driving them up to their
destination. Thanks to the global connectivity and the use of location services,
human beings have become sensors: all this collected data is associated to a
geographical meaning that is able to offer powerful insights. Mapmaking has
unshackled itself from the confines of paper atlases and migrated onto cellphones,
which are, after all, GPS units that also make phone calls.

The web mapping industry is evolving jointly with the car industry, whose near
future challenge is focused in self-driving cars: collecting and analysing data in
order to build intelligent routing services will be the key to find driverless vehicles
in our streets, and it will be supported by the mapping companies in the market.

Maps form the heart of consumer businesses like Uber and Airbnb. They are
central to aerospace and defense firms. Cartographers are becoming integral in
fields such as media, finance and health. All that attention is expected to drive U.S.
revenue in the geospatial industry to nearly $100 billion by 2017, according to a
2012 report from the Boston Consulting Group commissioned by Google[4].

In this scenario, being able to know which tiles will be requested taking into
account different parameters such as the characteristics of the underlying data, the
kind of represented geometries or their spatial distribution could be the key to
build scalable and fast platforms to the map services of the future. Throughout this
project we will process, analyse and define statistical approaches for samples of
real datasets in order to discover the way to predict the tiles that would be
requested taking into consideration the characteristics of a given map.

!  
Page ! of !12 98

http://blog.cartodb.com/the-versatility-of-retreiving-and-rendering-geospatial/
http://www.theguardian.com/news/datablog/ng-interactive/2014/may/07/sunrise-twitter-animated-map
http://www.crainsnewyork.com/article/20150825/TECHNOLOGY/150829943/city-mapmakers-are-making-lots-of-money

Predictive analysis for cache generation in quadtree based geo visualizations

2.2. Technical overview of web mapping

In this section we will explain the basic concepts of web mapping: from the data
formats used to build a map, up to the storage of the generated tiles in the latest
generation of content delivery networks (CDNs).

2.2.1. Geospatial vector data

Vector geometries are used in GIS in order to represent the spatial component of
geographical features, such as lines, points or polygons. The Open Geospatial
Consortium[5] standardised[6] how vector geometries are expressed.

In a human readable way, a geometry can be represented in the “Well-known text”
markup (WKT). A well-known text geometry string includes the type of the
represented geometry and a collection of its vertices (or, in case of a single point,
the point itself). The vertices are written as coordinates corresponding to a
coordinate reference system which must be specified (such as the Universal
Transverse Mercator coordinate system — UTM).

Geometries can also be expressed as a stream of bytes, which allows to use them in
geospatial applications in binary form. This standard representation is named
“Well-known binary” (WKB) and the geometries expressed this way are named

!  
Page ! of !13 98

Table 1: WKT geometry examples

Geometry type Text literal representation Description

Point POINT (10 10) A Point

LineString LINESTRING (10 10, 20 20, 30 40) A LineString with 3 points (or
vertices)

MultiLineString MULTILINESTRING ((15 15, 25 25),
(0 0, 10 15))

A MultiLineString with 2
LineStrings

Polygon POLYGON ((10 10, 10 20, 20 20, 20
15, 10 10))

A Polygon

Multipoint MULTIPOINT ((10 10), (20 20)) A MultiPoint with 2 points

MultiPolygon MULTIPOLYGON (((10 10, 10 20, 20
20, 20 15, 10 10)), ((60 60, 70 70, 80
60, 60 60)))

A MultiPolygon with 2 polygons

http://www.opengeospatial.org/
http://portal.opengeospatial.org/files/?artifact_id=25355

Predictive analysis for cache generation in quadtree based geo visualizations

WKBGeometries. This sequence of bytes in hexadecimal form follows a specific
format: The first byte of the sequence indicates the order of the most significant
byte with an integer: big endian (00) or little endian (01) if the most significant
byte comes first or if it is the latest one, respectively.

The following 4 bytes in the WKB standard are reserved for the geometry type,
expressed as an uint32. The WKB integer codes for the geometries we presented in
Table 1 are defined as follows:

After these first 5 bytes, which are fixed for all geometry types, the next ones
depend on the geometry that needs to be described, as each of them has a different
data structure. The most fundamental type, the point, forms the basis for all the
other types. While a Point can be defined with two double numbers (8 bytes each)
for x and y coordinates, a LineString is defined by its number of points (uint32, 4
bytes) and an array of Point elements.

The following graph represents the byte representation of a single Point:

!  
Page ! of !14 98

Table 2: WKB integer codes

Geometry type WKB integer code

Point 1

LineString 2

MultiLineString 5

Polygon 3

Multipoint 4

MultiPolygon 6

B geomType xCoordinate yCoordinate

1B

00 00000001 4000000000000000 4010000000000000

Figure 2. c): WKB structure of a point in coordinates (2, 4)

Predictive analysis for cache generation in quadtree based geo visualizations

Further details of the specific data structures for WKBPoints and WKBLineString
are shown in the following figure:

As we have studied above, storing geometries in a database can require a lot of
space as all the coordinates are being saved as doubles (8B). With the objective of
avoiding this waste of space and improving the redundant specification of
coordinate information, a group of individuals is working since 2013 on the
definition of a new format to define geometries as a byte sequence. The Tiny Well-
Known Binary [7] (or TWKB) format has as its main principle to store the absolute
position of a point once and refer to the rest of the points in the same geometry as
delta values relative to the initial point.

2.2.2. Geospatial data formats

In the traditional world of geographical information systems, the most common
format for geospatial data is the Shapefile. GIS has been using this format since it
was introduced by ESRI in the early 1990s. Web maps prefer the KML format, or
more recently, GeoJSON.

These most common formats in web mapping have their own characteristics which
are defined as follows:

!  
Page ! of !15 98

Point {
 double x;
 double y
}

WKBPoint {
 byte byteOrder;
 static uint32 wkbType = 1;
 Point point
}

WKBLineString {
 byte byteOrder;
 static uint32 wkbType = 2;
 uint32 numPoints;
 Point points[numPoints]
}

Figure 2. d): WKB data structures

https://github.com/TWKB/Specification/blob/master/twkb.md

Predictive analysis for cache generation in quadtree based geo visualizations

• Shapefiles

The Shapefile[8] format is a multi-file format — it consists of a set of files with the
same name and stored in the same directory which are differentiated by their
extension.

A Shapefile has to be formed, at least, by a .shp file, a .shx file, and a .dbf file.
These files contain the geometry data, the indexes and the attributes, respectively.
Other auxiliary files, as the .prj one, are not mandatory and contain extra
information for the Shapefile, as in this case, its spatial projection.

• Keyhole Markup Language

The KML (Keyhole Markup Language)[9] format relies on the XML notation and
adds to it a geographical meaning by being able to define features such as points,
polygons, lines or 3D models. It was originated in the Keyhole company to use it
in their Keyhole Earth Viewer 3D application. The company was acquired by
Google in 2004 and the program was renamed to Google Earth. From 2008, the
KML format became an standard of the Open Geospatial Consortium.

• GeoJSON

The GeoJSON[10] format is an open standard geospatial data interchange format
based on JavaScript Object Notation (JSON[11]) that allows encoding geographical
features and their metadata. The GeoJSON format working group was originated
in March 2007 and the format specification was complete in June 2008.

!  
Page ! of !16 98

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<Placemark>
 <name>New York City</name>
 <description>New York City</description>
 <Point>
 <coordinates>-74.006393,40.714172,0</coordinates>
 </Point>
</Placemark>
</Document>
</kml>

Figure 2. 3): KML sample file

https://en.wikipedia.org/wiki/Shapefile
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
http://geojson.org/geojson-spec.html
http://www.ietf.org/rfc/rfc4627.txt

Predictive analysis for cache generation in quadtree based geo visualizations

Besides these formats, maps can be created from a variety of other sources:
Comma Separated Value (CSV) files, simple JSONs, or Excel spreadsheets (which
are converted to CSV files) are commonly used as data sources that can be
geocoded — translated to a point, a line or a polygon with specific coordinates —
if they contain geospatial information like city names, postal code, street
addresses, administrative regions or even IP addresses.

2.2.3. Storing and querying geospatial data: PostgreSQL and
PostGIS

In GIS, as well as in almost any other discipline, relational databases are the most
used type of database[12]. Working with geospatial information that needs to be
stored implies the challenge of working with the aforementioned geometry types
that were mentioned in a database context. There are several options to fulfil this
need: PostGIS stands out in the open source world, while Oracle Spatial offers a
private solution. Other databases as MySQL do not accomplish the required Simple
Features Access standard[13] of the OGC and cannot be considered as a complete
spatial database manager but it is often used as a geographic information container.

In this section we will highlight PostGIS[14], which is the database over which the
CartoDB platform is built. PostGIS is a module for the open source PostgreSQL
database. This module provides PostgreSQL the means to store geometries in the
database and the ability to perform geographical analysis computations. Its first
stable release took place in 2005 but it is in constant development.

There is a large number of applications that use PostGIS in the backend, such as
ArcGIS, CartoDB, QGIS or Tilemill, developed by the Mapbox company, which
!  

Page ! of !17 98

{
 "type": "Feature",
 "properties": {
 "name": "Coors Field”
 },
 "geometry": {
 "type": "Point",
 "coordinates": [-104.99404, 39.75621]
 }
}

Figure 2. f): GeoJSON sample file

ftp://ftp.ehu.es/cidira/profs/iipbaiza/Libro_SIG.pdf
http://portal.opengeospatial.org/files/?artifact_id=25354
http://postgis.net/

Predictive analysis for cache generation in quadtree based geo visualizations

include both open source and proprietary software on both server and desktop
systems[15].

PostgreSQL supports natively geometric types as well as functions and operators.
In the database, the geometries are defined as shown in the following table[16]:

The set of functions and operators available in PostgreSQL can be used to perform
various geometric operations such as scaling, translation, and determining
intersections. The most common ones are shown in the following table[17]:

Name Storage size Representation Description

Point 16 bytes Point on the plane (x,y)

Lseg 32 bytes Finite line segment ((x1, y1), (x2,y2))

Polygon 40+16n bytes Polygon (similar to closed path) ((x1, y1),…)

Line 32 bytes Infinite line (not fully implemented) ((x1, y1), (x2,y2))

Box 32 bytes Rectangular box ((x1, y1), (x2,y2))

Path 16+16n bytes Closed path (similar to polygon) ((x1, y1), (x2,y2))

Path 16+16n bytes Open path [(x1, y1), (x2,y2)]

Circle 24 bytes Circle <(x,y),r> (center and radius)

Operator Description Example

<-> Distance between circle '((0,0),1)' <-> circle '((5,0),1)'

* Scaling/rotation box '((0,0),(1,1))' * point '(2.0,0)'

Number of points in path or polygon # '((1,0),(0,1),(-1,0))'

@@ Center @@ circle '((0,0),10)'

&& Overlaps? box '((0,0),(1,1))' && box '((0,0),
(2,2))'

Closest point to 1st operand on 2nd operand point '(0,0)' ## lseg '((2,0),(0,2))'

!  
Page ! of !18 98

Table 3: PostgreSQL geometry types

Table 4: PostgreSQL common geometric functions

http://workshops.boundlessgeo.com/postgis-intro/introduction.html
http://www.postgresql.org/docs/8.2/static/datatype-geometric.html
http://www.postgresql.org/docs/8.2/static/functions-geometry.html

Predictive analysis for cache generation in quadtree based geo visualizations

2.2.4. Styling geometries: CartoCSS

Once we have analysed how geometries are defined and stored, we will study how
geometries can be drawn. In the following section Generating map tiles we will
understand the internals on how maps and tiles are generated with the Mapnik[18]
renderer, but this section will be focused in geometry styling.

CartoCSS[19], also known as the Carto language, is a language for map design
which is similar in syntax to CSS but builds upon it with specific abilities to filter
map data. It was created by Tom MacWright, Konstanting Käfer, A.J. Ashton and
Dane Springmeyer, which are all members of the Mapbox company team.

In a similar way as CSS is used over DOM elements, CartoCSS is used over
layers. Different properties are available for different types of geometries, such as
points, lines and polygons, which have specific attributes.

CartoCSS has also the capability to define variables, nest styles or filter the
geometries depending on their data attributes. In the following images we will
show how different CartoCSS code creates geometries with different styles:

!  
Page ! of !19 98

#barcelona_building_footprints{
 polygon-fill: #FFFFFF;
 polygon-opacity: 0.7;
 line-color: #000000;
 line-width: 1;
 line-opacity: 1;
}

Figure 2.g): Black/white map and CartoCSS code

http://mapnik.org/
https://github.com/mapbox/carto

Predictive analysis for cache generation in quadtree based geo visualizations

This language allows drawing the different types of geometries by using their own
properties. In the examples above, we can see the usage of the most basic polygon
and line characteristics, but points can also be styled with properties like marker-
width, marker-fill, or marker-opacity.

Notice that CartoCSS properties are written inside the scope of the layer that is
going to be styled. These scopes are not only referred to specific layers, but they
can also be used to filter the data of the geometries. These selectors that allow to
filter the data can understand specific values and comparisons (like [area > 10] or
[name = ‘Barcelona’]) but they also support regular expressions. For example,
filtering data by the length of its name attribute could be achieved by using a
selector like [name=~’^.{10, }$’].

Another use of CartoCSS selectors which is very common in a map is to apply
constraints depending on the level of zoom. This way, the properties specified
within the scope [zoom = 4] will only be applied when this equality holds.

As an example of these defined selectors, the following figure shows a map
colorised by the area of the polygons (which correspond to the buildings in
Barcelona):

!  
Page ! of !20 98

#barcelona_building_footprints{
 polygon-fill: #5CA2D1;
 polygon-opacity: 0.7;
 line-color: #081B47;
 line-width: 1;
 line-opacity: 1;
}

Figure 2.h): Blue map and CartoCSS code

Predictive analysis for cache generation in quadtree based geo visualizations

2.2.5. Generating map tiles

Once we have studied how the data is presented and how its styles can be defined,
we will move on to the specifics of tile generation.

Mapnik is an open source map rendering engine used to make tile sets that
supports various types of data files and spatial databases. It is an essential part of
the stack of the different web mapping solutions that we have already mentioned in

!  
Page ! of !21 98

#barcelona_building_footprints{
 polygon-fill: #FFFFB2;
 polygon-opacity: 0.8;
 line-color: #FFF;
 line-width: 0.4;
 line-opacity: 1;
}
#barcelona_building_footprints [area <= 1152701.46653] {
 polygon-fill: #B10026;
}
#barcelona_building_footprints [area <= 799.513571955] {
 polygon-fill: #E31A1C;
}
#barcelona_building_footprints [area <= 435.76472095] {
 polygon-fill: #FC4E2A;
}
#barcelona_building_footprints [area <= 305.993911112] {
 polygon-fill: #FD8D3C;
}
#barcelona_building_footprints [area <= 216.382241189] {
 polygon-fill: #FEB24C;
}
#barcelona_building_footprints [area <= 155.74910497] {
 polygon-fill: #FED976;
}
#barcelona_building_footprints [area <= 103.956183639] {
 polygon-fill: #FFFFB2;
}

Figure 2.i): Building areas in Barcelona and CartoCSS code

Predictive analysis for cache generation in quadtree based geo visualizations

previous sections, like OpenStreetMap, Mapbox, CartoDB, Stamen, MapQuest or
Kosmtik.

In terms of styling, Mapnik is not capable of generating tiles directly from
CartoCSS but from XML files, known as Mapnik XML. A Mapnik XML file will
have a root node Map, parent of two types of nodes: Layer and Style. The Map
node contains basic information as the background color of the map and its spatial
projection. It can have one or more Layer children, and one or more Style children.

The Style nodes are the ones equivalent to CartoCSS. They are formed by rules,
and can also include filters. In the following figure a sample of a Style node is
shown:

The Layer nodes specify where the data can be obtained from, for example,
accessing to a PostGIS database and running a query on a certain table. A Layer
node is presented in the following figure:

!  
Page ! of !22 98

<Style name="highway-directions">
 <Rule>
 <Filter>[oneway] = 'yes' or [oneway] = 'true' or [oneway] = '1'</Filter>
 <MaxScaleDenominator>10000</MaxScaleDenominator>
 <LineSymbolizer>
 <CssParameter name="stroke">#6c70d5</CssParameter>
 <CssParameter name="stroke-width">1</CssParameter>
 <CssParameter name="stroke-linejoin">bevel</CssParameter>
 <CssParameter name="stroke-dasharray">0,12,10,152</CssParameter>
 </LineSymbolizer>
 </Rule>
 </Style>

Figure 2. j): Mapnik XML style example

<Layer name="water_areas" status="on" srs="+proj=merc +a=6378137 +b=6378137
+lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null
+no_defs +over">
 <StyleName>water_areas</StyleName>
 <Datasource>
 <Parameter name="type">postgis</Parameter>
 <Parameter name="password">****</Parameter>
 <Parameter name="host">localhost</Parameter>
 <Parameter name="port">5432</Parameter>
 <Parameter name="user">username</Parameter>
 <Parameter name="dbname">gis</Parameter>
 <Parameter name="table">(select * from planet_osm_polygon order by
 z_order) as water_areas</Parameter>
 </Datasource>
 </Layer>

Figure 2. k): Mapnik XML layer example

Predictive analysis for cache generation in quadtree based geo visualizations

The following figure shows in a simple way the inputs and outputs of Mapnik: it
obtains data and styles, and from these, tile images are rendered:

The CartoDB stack that we are using as example in this approach to web mapping
uses an intermediate layer above Mapnik: Windshaft[20].

Windshaft is Node.js map tile server for PostGIS with CartoCSS styling. In order
to generate a map, it uses a configuration file just like the XML file of Mapnik,
containing the information of the data layers that are going to be rendered and their
styles. These configuration files are then internally translated to the Mapnik
language, which finally renders the tiles.

The specification of the layers of a map in these configuration files determines
what we will call from now on a layergroup. Therefore, the word layergroup
references the layers that will be rendered in a tile: both the SQL from which the
data is obtained and the CartoCSS code.

An example of a layergroup can be seen here:

!  
Page ! of !23 98

Figure 2. l): Tile generation simple schema

{
 "layers": [{
 "type": "cartodb",
 "options": {
 "cartocss_version": "2.1.1",
 "cartocss": "#layer { polygon-fill: #FFF; }",
 "sql": "select * from european_countries_e"
 }
 }]
}

Figure 2. m): Layergroup configuration example

https://github.com/CartoDB/Windshaft

Predictive analysis for cache generation in quadtree based geo visualizations

Once sent to the tile server, this configuration will be saved with an
alphanumerical identifier like “c01a54877c62831bb51720263f91fb33:0”. This
identifier is named layergroup ID, and it is the key to building the URL of the tiles
in the system.

This way, the tiles of the map that has been configured will be accessed through a
specific URL that will be associated to the styles and data of the map through this
identifier. This relationship will allow us to study and analyse the requests obtained
in the logs by translating them to the tile information from which the map has been
created.

A sample URL could be as follows: http://username.cartodb.com/api/v1/map/
c01a54877c62831bb51720263f91fb33:0/{z}/{x}/{y}.png.

2.2.6. Interacting with map tiles

Besides from tile rendering, Windshaft and Mapnik also take care of the
interactivity of the map. When a user clicks or hovers a web map, usually the
underlying information is shown as an interactive text box in the website or as a
popup in which the information for a specific geometry is included.

In tiled maps, interactivity is obtained from the UTFGrid[21]. The UTFGrid is an
invisible tile layer made up of arbitrary letters which are indexes into the clickable
data of a map. Its specification was created by the Mapbox team with the idea of
generating ASCII tiled layers for slower browsers and machines which can not
cope with rendering the polygons used to draw vectors on the map tile.

The UTFGrid uses a grid-based approach where the information for each pixel is
stored and uses JSON as a container format. It is exclusively geared towards the
standard tiles of 256x256 pixels.

To associate data with each pixel, each feature is associated in a grid tile with a
character, usually starting with 0, and then a mapping of that character is included
to the actual data[22]. When each pixel in the grid is associated to a symbol, a
UTFGrid layer looks as shown in the following figure, where we can see Norway,
!  

Page ! of !24 98

https://github.com/mapbox/utfgrid-spec
https://www.mapbox.com/blog/how-interactivity-works-utfgrid/

Predictive analysis for cache generation in quadtree based geo visualizations

Sweden, Denmark and the mid regions of Europe, each of them defined with a
different character. Norway is drawn with the character “!”, Sweden with “#” and
France with the number 2, among other countries.

Each one of those characters corresponds to a number that is afterwards mapped to
a key, usually the identifier of the geometry from which we can retrieve the rest of
data when any interaction occurs with its pixels. In terms of the UTFGrid object,
this corresponds to “keys” and “data”:

The requests to this UTFGrid from the user’s browser will allow us to analyse the
behaviour of a user with a specific map: which regions were hovered or which
ones were clicked on. Together with the requests for tiles of different positions and
zooms, we will be able to reproduce and study the user’s activity over a map.

!  
Page ! of !25 98

 !######$$$$%%% %%%% %
 !#######$$$$%%% %%%
 !!##### $$$%%% %%%
 !###### $$$$%%% %% %%%
 !!!#### $$$$$%%%% %%%%
 ! !###### $$$$$$%%%%%%%%%%
 ! !!##### $$$$$$$%%%%%%%%%
 !!!!!#### $$$$$$%%%%%%%%%%
 !!!!!#### $$$$$$%%%%%%%%%%
 !!!!!#### $$$$$%%%%%%%%%%%
 !!!!!#####% $$ %%%%%%%%%%%
 !!!!!### # %%%%%%%%%%%%
 !!! ##### ''''%%%%%%%%%%%%
 ! ### ('%%%%%%%%%%%%
) ### # (((%%%%%%%%%%%%
)) ## (((((%%%%%%%%%%%%
)) # ****(+%%%%%%%%%%%
) %**++++%%%%%%%%%
 , , ------*+++++%%%%%%%%%
. ,,,,,------+++++++%%%%%%%%
.. /,,,,,,------++++++%%%%%%%%%
. //,,,,,,------000++000%%%%%%%
 211,,,,,33------00000000%%%%%%
 2221,,,,33333---00000000000%%%%
222222,,,,3635550000000000000%%%
222222,,,,6665777008900000000%%%

Figure 2. n): ASCII UTFGrid

keys: ["9",“10"],
data: {9: {cartodb_id: 48},10: {cartodb_id: 23}]

Figure 2. o): Keys and data mapping

Figure 2. p): Interactive map example: Nuclear reactors operating around the world

Predictive analysis for cache generation in quadtree based geo visualizations

2.2.7. Javascript mapping libraries

After learning how tile sets are created, the next step revolves around how the tiles
and the different interactivity options are put together to create interactive web
maps.

Leaflet[23] is the leading open-source JavaScript library for interactive maps. It is
developed mainly by Vladimir Agafonkin, among different contributors, since
more than 5 years ago.

The creation of a map in Leaflet can be done with a couple of lines of Javascript.
The following figure demonstrates how to create a map object, assign an
OpenStreetMap basemap to it and add a marker in some specific coordinates:

The open source CartoDB.js[24] and Mapbox.js[25] libraries are built on top of
Leaflet — they provide all the mapping functionality available in the Leaflet
library plus specific functions that make easier to work with the maps created in
the CartoDB or Mapbox platforms, respectively.

These libraries work asynchronously: the tiles and the interactivity information is
requested with AJAX calls when required after a user interaction: if the user zooms
in, the tiles for the next level of zoom are requested and placed in the correct
placement in order to build the map.

These requests of tiles and UTFGrid data will be analysed in the following section
with the objective of improving the performance of web maps through the study of
user interactions.

!  
Page ! of !26 98

var map = L.map('map').setView([51.505, -0.09], 13);

L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png', {
 attribution: '© OpenStreetMap
contributors'
}).addTo(map);

L.marker([51.5, -­‐0.09]).addTo(map);

Figure 2.q): Leaflet map creation example

http://leafletjs.com/
https://github.com/CartoDB/CartoDB.js
https://www.mapbox.com/mapbox.js

Predictive analysis for cache generation in quadtree based geo visualizations

2.2.8. Caching map tiles

Web access times, and web map access times in specific can be slow because of
different reasons: the time that is taken in the generation of the requested resource
(always considering that the resource is not static), transmission delays due to
congested or slow links, and overloaded servers.

One approach which is commonly used to lessen this problem is to replicate the
content expected to be requested in different servers. Content delivery networks
(or CDNs) are considered an efficient schema for content distribution and are
based in a network of distributed servers throughout the Internet in which data is
replicated[26].

CDNs provide updated data by refreshing the resources of the servers in their
network whenever any of them is out of date. This refreshing process — taking
place in content delivery networks or in any other caching schema — is usually
referred to as “invalidation”, and allows old or outdated resources to be marked as
no longer valid for them to be provided to the users. CDNs are location aware and
the data is always provided to the end user by the nearest available server in order
to minimize transmission delays.

Caching dynamic resources allows the server of a platform to skip generating these
requested resources at runtime, as they get cached after the first generation and the
cached data is provided until it is invalidated by an edition or deletion on its
source. In this scenario, caching reduces the cost of rendering map tiles at its
minimum, where only one copy of the data needs to be generated regardless of
how many requests it gets.

Map tiles are defined by their layergroup and timestamp, which we have studied in
the previous section. These two values will allow a cache (or a CDN) to identify a
resource and to be able to determine if it contains valid or outdated data to be
served.

The network schema below (fig. 2. r) demonstrates the following workflow:

!  
Page ! of !27 98

Predictive analysis for cache generation in quadtree based geo visualizations

• User A, User B, Windshaft (tiler) and the CDN are the main
stakeholders, while Varnish is an internal cache of the platform that
stores data that flows through the network level.

• (1) User B requests a map (a specific layergroup)
• (2 and 3) The tiler (Windshaft) checks the last updated time for the data
• (4) The tiler returns the valid layergroup ID and timestamp
• (5) User B requests the tiles with the temporal identifier
• (6) The tiler responds back with the generated tiles. Along the path that

this request follows, tiles are cached at the different platform and
network levels

After some time:

• (7) User A requests the same map
• (8 and 9) The tiler checks the last update timestamp for the data
• (10) The tiler returns the valid layergroup ID and timestamp
• (11) User A requests the tiles with the temporal identifier
• (12) The CDN intercepts this requests and responds back with the

cached tiles, as the timestamp proves the validity of the data

Afterwards:
• (13) User B, which is the owner of the map, updates the data from

which it is generated

Then:
• (14) User A accesses again to the map
• (15 and 16) The tiler checks the last update timestamp for the data
• (17) In this case, the data has been edited, so a different timestamp than

the one obtained previously is sent back to the user
• (18) User A requests the tiles, by using the updated information

While the graph does not manifest the following steps, similarly to the response in
(6), the tiler would generate the new tiles from the updated data and would send
them back to User A. Notice the cache status information shown at each hop,
where a white circle applies for a cache miss and a black circle does it for a cache
hit.
!  

Page ! of !28 98

Predictive analysis for cache generation in quadtree based geo visualizations

!  
Page ! of !29 98

Figure 2. r): Tile cache request schema

Predictive analysis for cache generation in quadtree based geo visualizations

2.3. The social environment of the web mapping
market: regulatory framework  

Our tile prediction solution and the web mapping market in general is not affected
directly by any regulatory framework involving the work of companies or
individuals.

Nevertheless, there is a Spanish law and a European directive that regulate how
local governments offer Open Data and web mapping services. This Spanish law is
known as LISIGE[27] (Ley sobre las infraestructuras y los servicios de información
geográfica en España) and regulates the national cartographic system. It requires
public administrations to publish their cartography by means of standard web
services and by following preset conditions.

In Europe, the INSPIRE[28] (Infrastructure for Spatial Information in the European
Community) directive was introduced in May 2007. It establishes an infrastructure
for spatial information in Europe in specific areas such as metadata, data
specifications, network services or data and service sharing. At the moment, it is
being operated by the 28 Member States of the European Union.

LISIGE and INSPIRE demand public administrations to publish their cartography
through standard web services.

!  
Page ! of !30 98

http://www.idee.es/web/guest/espanol-lisige
http://inspire.ec.europa.eu/

Predictive analysis for cache generation in quadtree based geo visualizations

3. Curating and visualizing the source data

In this section we will introduce the different sources of data that will be used for
further statistical analysis. We will also explain the steps performed to obtain the
curated data to be used as input for our predictive analysis.

3.1. Introduction to the different data sources

We will analyze three sources of data:

3.1.1. Fastly logs for user requests
 
The CartoDB platform uses the Fastly CDN service for all tile requests, as well as
the requests of the interactive UTFgrids. These requests to all CDN nodes are
stored in logs. These logs contain information about the requested resource,
allowing to detect which map has been accessed and which of its tiles have been
served. They also provide temporal information (when the request was performed)
and the IP address of the source of the request, which allows tracking the
behaviour of an individual over a single visualization.

3.1.2. Redis dump for maps metadata
 
The Redis key-value database stores the CartoCSS styles that define each map, as
well as its interactivity options. This is the data that can be obtained from the
original data source through browsing the visualization. This information allows us
to match the requests obtained through the logs with the individual metadata of the
maps that have been accessed.

3.1.3. PostgreSQL dump for map and layers metadata

The PostgreSQL dump contains all the information available for a map. To
simplify the retrieval of data, some characteristics of the map will be obtained
from the Redis cache contents. Other specifics such as the bounding box in which
a map is located, its center or its level of zoom are available from Postgres. In the

!  
Page ! of !31 98

Predictive analysis for cache generation in quadtree based geo visualizations

PostgreSQL dump section below we will study and extract the contents of these
tables for the posterior analysis.

3.2. Analysis of requests through CDN logs

In this section we will analyze the logs generated by Fastly’s CDN as a source of
data. We will cover the structure of the stored log requests and the meaning of each
of its attributes. The syntax of each line generated in the logs that corresponds to a
unique request is formatted as follows:

The most useful information that we can find in these events is:
• The timestamp of the request, showing when the request occurred
• The source IP address of the request, identifying different user

activities
• The resource that was requested, such as a single tile or an UTFGrid

object containing interactive information

By studying the time when the event took place in combination with the source IP
address we can track the activity of individuals over a specific map. As an
example, we can check the different resources requested by a single person in a
specific temporal sequence to understand if the user was moving the map, zooming
in/out or interacting with it by clicking or hovering its geometric features.

The resource parameter of the log event is the part that will give us most of the
information. With a request URL we can determine the map that was accessed and
the specific tiles that were requested.

!  
Page ! of !32 98

<ServerID> Timestamp (YYYY-MM-DDTHH24:MI:SSZ) NodeID Log-name [LogID]: Source-
IP "-" “-" Timestamp (Day, DD Mon YYYY HH24:MI:SS GMT) GET (resource) (MISS/
HIT) HTTP-status-code

Figure 3. a): Log event example

Predictive analysis for cache generation in quadtree based geo visualizations

In order to process 6405 compressed log files (with a size of approximately 9.3
GB) we will use the following regular expression:

The groups in each match of the regular expression will be stored in an Event
object that will be represented by the properties defined in the next figure:

The Python code that generates Event objects from the data can be found at
Appendix 12. A: Python script for the curation of log files.

Log files are compressed in the BZ2 format. One of the advantages of this choice
is that .bz2 files, unlike other compression methods, can be concatenated and still
build a valid .bz2 file. This makes it easy to join together several files that, for
example, might belong to the same data range but come from different CDN
nodes.
!  

Page ! of !33 98

 <\d+>
 (\d+-\d+-\d+T\d+:\d+:\d+Z) # log timestamp
 \ (?:.*?)\[\d+\]:
 \ (\d+.\d+.\d+.\d+) # IP address
 \ (?:.*?)\ GET
 \ /([\w-]+)/+api/+v1/+map/+ # user + endpoint
 (?:([\w-]+(?:@|%40)\w+)(?:@|%40))? # named map template (optional)
 (\w+):(\d+(?:\.\d+)?)/ # layergroup ID + timestamp
 /?
 (-?\d+)(?:,*\d*)*/ # zoom (or layer number if torque)
 (-?\d+)/ # x (or z if torque)
 (-?\d+) # y (or x if torque)
 (?:/-?\d+)? # (y if torque)
 \.([\w\.]+) # extension type

Figure 3. b): Regular expression for log processing

 Event = namedtuple("Event", [
 'x', 'y', 'z',
 'time', ‘user',
 ‘ip_address',
 'named_map_template',
 'layergroup',
 'layergroup_timestamp',
 'type'
])

Figure 3. c): Event object definition

Predictive analysis for cache generation in quadtree based geo visualizations

Once that the data has been retrieved from the logs with the method explained
above we will have a list of Event objects to analyze.

One of the most descriptive properties of an event is its type, which can be one of:
• “png”: the event corresponds to a request of a tile (PNG image)
• “grid.json”: the event corresponds to a request of interactive data —

the user performed any cursor interaction in the map: hover or click
• “json.torque”: the event corresponds to a specific data format request

that contains an extra temporal component  

Torque[29] is an Open source library that allows rendering time-series data in the
client side, instead of being rendered by a tiler server. Torque is outside of the
scope of our work, hence the events corresponding to a request of type json.torque
will be skipped for our tile analysis.

Other important properties that we are matching and storing are:
• X, Y, Z: parameters that define the exact tile that has been requested

within the quadtree tile schema
• time: timestamp for the request
• user: username of the owner of the map
• ip_address: the source IP address from which the resource was

requested
• named_map_template: if the map contains private data, this is its

template identifier
• layergroup: alphanumerical string that uniquely identifies a map
• layergroup_timestamp: timestamp of the last edition operation on the

map

We will group the different Event objects in a Dataset object.

By using a Dataset we will be able to start performing some easy queries and
calculations. For example, we can obtain the subset of the requests that correspond
to tile requests out of the whole Dataset by checking the “type” attribute of an
event. In this scenario, the type of the request will be “png” if it corresponds to a
tile request (an image).
!  

Page ! of !34 98

https://github.com/CartoDB/torque

Predictive analysis for cache generation in quadtree based geo visualizations

3.3. Analysis of map metadata

In this subsection we will analyze the map metadata by using two different data
sources: a Postgres database dump and a Redis dump.

3.3.1. Analysis of map metadata through a PostgreSQL dump

Our data source in this case is a 10.07 GB SQL file that we will handle in a
personal installation of PostgreSQL.

We create a local database (named tiledb) and load all the data in the PostgreSQL
dump by running the following commands:

Once the database is rebuilt, we will have four tables to study: maps,
visualizations, layers and layers_maps. The structure and information of all of
them can be seen by using the command “\d+ <tablename>” in the psql[30]
console, and it is as follows:

• Maps table

!  
Page ! of !35 98

psql create database tiledb
psql tiledb < map_metadata_dump.sql

Figure 3. d): PSQL commands for database generation

Table 5: “Maps” table structure

http://www.postgresql.org/docs/9.0/static/app-psql.html

Predictive analysis for cache generation in quadtree based geo visualizations

• Layers table

• Layers Maps table

• Visualizations table

!  
Page ! of !36 98

Table 6: “Layers” table structure

Table 8: “Visualizations” table structure

Table 7: “Layers Maps” table structure

Predictive analysis for cache generation in quadtree based geo visualizations

Notice that the different identifiers that are common in the four tables will allow us
to join the data even though it is stored in different tables of the database. To
retrieve the final data from all the tables in the database as a workable set, we will
export a joint query as JSON. The psql command \o <output_filename> allows
exporting to a file the results of a SQL query.

In order to obtain the output in the format we need, we will use the array_to_json
Postgres function. By using this function in combination with array_agg (which
appends each returned value inside an array) we will generate the final dataset. We
will however need an alias for the intermediate results, which we will then
aggregate and finally export as JSON. The final SQL statement is as follows:

!  
Page ! of !37 98

WITH t AS (
 SELECT
 distinct(a.id) AS map_id,
 a.zoom,
 a.center,
 a.view_bounds_sw,
 a.view_bounds_ne,
 b.id AS viz_id,
 d.infowindow,
 d.tooltip,
 CASE
 WHEN d.options LIKE '%marker-width%'
 THEN 1
 ELSE 0
 END AS point,
 CASE
 WHEN d.options LIKE '%polygon-fill%'
 THEN 1
 ELSE 0
 END AS polygon,
 CASE
 WHEN d.options NOT LIKE '%marker-width%' AND d.options NOT LIKE '%polygon-
fill%'
 THEN 1
 ELSE 0
 END AS line
 FROM
 maps as a,
 visualizations as b,
 layers_maps as c,
 layers as d
 WHERE
 b.map_id = a.id AND a.id = c.map_id AND c.layer_id = d.id
)
SELECT array_to_json(array_agg(t))
FROM t;

Figure 3. e): SQL statement for metadata obtention

Predictive analysis for cache generation in quadtree based geo visualizations

The output file from this SQL statement will be named maps_db_metadata.json. It
has a size of 423MB and contains JSON-like formatted text.

The inner structure of each object is the one defined by the selected columns in the
SQL statement. They can be seen in the following figure:

3.3.2. Analysis of map metadata through a Redis dump

Similarly as with the PostgreSQL dump, we will convert a Redis dump into JSON
to make it easier to work between the different data sources. The Python utility
RDBtools[31] is able to parse Redis dump.rdb files and export their data as JSON.

In order to load a Redis dump into our system, we can replace the default
dump.rdb file that the Redis server generates the first time it is set up with the
dump we want to load. Once this dump is loaded, we can select the keyspace in
which the data is stored (the default keyspace is db0) and start loading the keys we
need to obtain values from.

In our specific case we are interested in the map_cfg and map_tpl sets of keys,
which contain the information of each layergroup and template ID. As an example,
listing the value of all pairs for the map_tpl key is done as follows:

!  
Page ! of !38 98

[{
 ‘map_id',
 'zoom',
 ‘center',
 ‘view_bounds_sw’,
 'view_bounds_ne',
 ‘viz_id',
 ‘infowindow’,
 ‘tooltip',
 ‘point’,
 ‘polygon’,
 ‘line'
}]

Figure 3. f): Postgres data as a JSON

keys map_tpl|*

Figure 3. g): Redis command to list the set of map_tpl key-values

https://github.com/sripathikrishnan/redis-rdb-tools

Predictive analysis for cache generation in quadtree based geo visualizations

A challenge that we find with a datastore like Redis is that the contents on it get
deleted after some time, defined by the “EXPIRE” flag of each independent key. If
this flag is not overwritten or removed, loading an old Redis dump will probably
generate an empty database if all the records have expired at that time.

By using a tool to export the Redis information into JSON we can work around
this behaviour. After installing the RDBtools utility in our system, we can generate
the output files by running the following commands:

As a result of this operation, two files are generated: tpls.json (which contains information
for 79571 different keys and has a size of 741MB) and cfgs.json (which contains
information for 7180 keys and has a size of 17MB).

3.4. Visualizing the source data

In the following subsections we will start visualizing and getting insights from the
data we have curated in the previous process.

3.4.1. Maps from requested tiles

In the same way that maps are used to represent geographical information, we will
use them to have visual information about the tiles that are being requested.

With this objective, we have coded three drawing functions:
• draw_basemap: by providing an XYZ URL of a basemap service and a

level of zoom, this function retrieves the different tiles and places them
together to build a basemap image

• draw_multimap: this function gets as parameters a set of tiles and,
optionally, a set of events, such as the most requested tiles, which are
highlighted in the final image over the regular tile requests

!  
Page ! of !39 98

rdb —-command json redis_dump.rdb —-db0 —-key “map_tpl\|*” > tpls.json
rdb —-command json redis_dump.rdb —-db0 —-key “map_cfg\|*” > cfgs.json

Figure 3. h): RDBtools command for exporting data to JSON

Predictive analysis for cache generation in quadtree based geo visualizations

• draw_layergroup: this function receives as parameters a complete set
of tiles and a specific layergroup, analyzes the most requested events
and plots the information for a specific layergroup

The source code of these functions and the helper function
most_requested_events is available in Appendix 12.B.

The most accessed maps (or layergroups) represented as a map of tile requests can
be found in the next figures.

• Day with most accesses: June 6th, 2015 (19369 accesses)

• Day with most accesses: June 19th, 2015 (16309 accesses)

!  
Page ! of !40 98

Global view Detailed view

Figure 3. i): Global and detailed view of map d200f8c2d8a0fd4adffd6e8512576285

Global view Detailed view

Figure 3. j): Global and detailed view of map f148fd4dad5313505f19b8032dfe2c6d

Predictive analysis for cache generation in quadtree based geo visualizations

• Day with most accesses: June 27th, 2015 (12159 accesses)

• Day with most accesses: July 2nd, 2015 (10321 accesses)

• Day with most accesses: June 16th, 2015 (10121 accesses)

!  
Page ! of !41 98

Global view Detailed view

Figure 3. k): Global and detailed view of map dbcd5e1fdae10d922a66ebde44a35751

Global view Detailed view

Figure 3. l): Global and detailed view of map 7f0d1c82b45abde157e8c5ff03a2b9fe

Global view Detailed view

Figure 3. m): Global and detailed view of map a9938a1c41ffe4d4cb4ce6a5474e86ae

Predictive analysis for cache generation in quadtree based geo visualizations

3.4.2. Obtaining reference and test data

Log data is divided in several thousand files. Our goal is to reorganize all the data
into two subsets: a reference subset we will use to design our heuristics and a test
subset we will use to verify the behaviour of the heuristics. To do this, we have the
following functions:

• aggregate_data_files: this function receives from its parameters a set
of .bz2 formatted files and a name, and concatenates them into a bigger
.bz2 file with the specified name

• get_sliced_data: this function receives from its parameter a file set
and the slicing mode (reference or test) and returns a file set containing
a specific percentage over the total amount of files. By default, it uses
80% for reference data and 20% for test data

The source code of these functions and the helper function get_filepaths that
allows getting a set of files that have a specific name is available in Appendix 12.C.

By following this approach we will generate two daily files, one for reference
purposes and another one for testing. In total, we will work with 60 final files.

3.5. Statistical insights of the source data

These are the most important variables that we will be working with:
• Zoom level
• Bounding box
• Interactivity
• Geometry type

Besides these variables, we will also work with IP addresses (to distinguish
individual behaviours) or time information. Also, thanks to the layer information
that we obtain from the PostgreSQL dump, we will be able to compute the spatial
distribution of the information shown in a map.

!  
Page ! of !42 98

Predictive analysis for cache generation in quadtree based geo visualizations

With the objective of handling this big amount of data in an efficient way, we will
use Python iterators by importing the itertools[32] module, which is intended to
be fast and use memory efficiently.

3.5.1. Events statistics
 
Firstly, we will analyze the global information as a series of counts and unique
counts: For example, to obtain a total count of successful requests over a given
time period. Similarly, getting a unique count of a given field will give us visibility
into the number of unique accesses from user IPs.

The results of the analysis above can be found in the following table:

!  
Page ! of !43 98

Date Events Tile
requests

Unique
accesses

Unique
maps

June 06, 2015 46.808 38.488 4.126 1.185

June 07, 2015 98.775 80.672 12.346 2.259

June 08, 2015 49.119 38.371 3.417 1.449

June 09, 2015 30.695 32.709 3.209 1.518

June 10, 2015 76.197 62.376 11.059 1.666

June 11, 2015 60.953 48.842 5.299 1.908

June 12, 2015 52.606 41.995 5.580 1.429

June 13, 2015 46.110 35.884 4.458 1.261

June 14, 2015 54.683 38.321 5.524 1.244

June 15, 2015 56.449 45.023 5.080 1.592

June 16, 2015 64.595 52.081 5.448 2.188

June 17, 2015 64.621 51.950 5.858 3.055

June 18, 2015 58.685 45.009 7.054 1.896

June 19, 2015 65.687 51.912 5.374 1.786

June 20, 2015 53.314 43.338 4.953 1.234

June 21, 2015 39.039 30.432 3.961 1.104

June 22, 2015 46.306 35.899 3.400 1.492

https://github.com/sripathikrishnan/redis-rdb-tools

Predictive analysis for cache generation in quadtree based geo visualizations

The total counts for the events and tile requests is then as follows:

From this information we can obtain the average values of events per day, events
per map, and events per user:

!  
Page ! of !44 98

Table 9: Counting daily data from the logs

Date Events Tile
requests

Unique
accesses

Unique
maps

June 23, 2015 47.024 36.283 3.770 1.665

June 24, 2015 56.598 45.536 5.090 1.744

June 25, 2015 56.581 46.010 4.711 2.104

June 26, 2015 60.563 50.140 3.778 2.354

June 27, 2015 35.452 27.086 1.893 1.069

June 28, 2015 36.353 28.009 2.245 675

June 29, 2015 49.051 38.012 2.170 1.105

June 30, 2015 50.087 39.794 2.377 1.368

July 01, 2015 129.855 107.132 8.605 1.618

July 02, 2015 88.812 70.025 7.660 1.689

July 03, 2015 75.072 59.877 6.019 1.736

July 04, 2015 53.093 42.671 6.562 1.245

Per day Events per map Events per user

Average 58.730,45 36,52 11,28

Table 11: Event averages

Table 10: Total monthly counts

Amount Events Tile requests

Total 1.703.183 1.363.877

Predictive analysis for cache generation in quadtree based geo visualizations

3.5.2. Interactivity statistics

With the information that we have for tile requests over the general events count,
we can know how many requests were due to tile requests and how many were due
to interactivity requests:

On a daily basis, tile requests involve 76 to 83% of the total requests.

3.5.3. Zoom statistics

From a total of 28379 unique maps accesses during the period that we are
studying, the statistics of the levels of zoom can be found in the following table:

!  
Page ! of !45 98

Table 12: Percentages of tiles and interactivity

% tile requests % interactivity requests

Events 80,0781 19,9219

Table 13: Zoom level statistics

Zoom level Percentage Zoom level Percentage Zoom level Percentage

0 0,2180700 10 0,0599668 20 0,0029722

1 0,0750568 11 0,0531987 21 0,0008205

2 0,0316654 12 0,0537777 22 0,0000426

3 0,0357503 13 0,0451301 23 0,0000385

4 0,0415465 14 0,0454693 24 0,0000298

5 0,0461388 15 0,0375655 25 0,0000229

6 0,0454280 16 0,0259762 26 0,0000257

7 0,0554322 17 0,0211327 27 0,0000167

8 0,0389847 18 0,0127801 28 0,0000197

9 0,0479590 19 0,0047921 29 0,0001892

Predictive analysis for cache generation in quadtree based geo visualizations

The real distribution of zoom levels among the 28379 analyzed maps obtained
from the PostgreSQL dump data is as follows:

3.5.4. Geospatial statistics

In terms of location, the mean of the set of coordinates in which all maps are
centered is (-7.9157, 30.5698). Taking into account the previous statistics on the
zoom levels, this average value makes sense: for low level of zooms (such as from
0 to 3) almost all the globe region is covered and traditionally, in the Mercator
projection, the center is set at the Atlantic Ocean. This location can be seen in the
following figure:

The actual distribution of the center points of the complete set of maps can be seen
in the following figure:

!  
Page ! of !46 98

R
at

io

0
0,06
0,12
0,18
0,24

0,3

Zoom level

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Figure 3.n): Zoom level distribution

Figure 3.o): Average center coordinates map

Figure 3.p): Distribution of the center point of the maps

Predictive analysis for cache generation in quadtree based geo visualizations

In terms of areas, the regions mapped over the whole month that we are analyzing
are represented in the following figure. This map has been generated by using the
coordinates available in the PostgreSQL maps table and the ST_MakeEnvelope
PostGIS function[33], which creates a rectangular polygon formed from the given
minima and maxima.

3.5.5. Data statistics

From the data point of view, the 28379 analyzed maps are formed by 51082
different layers. The different types of geometries are distributed within these
layers as the following table indicates:

The Python script to retrieve simple statistics from log data can be found in
Appendix 12. D.

!  
Page ! of !47 98

Figure 3.q): Representation of the bounding boxes of all maps

Table 14: Statistics of geometry types over all map layers

Points Lines Polygons

Percentage 0,53099 0,21913 0,24987

Total amount 27.124 11.194 12.764

http://postgis.net/docs/ST_MakeEnvelope.html

Predictive analysis for cache generation in quadtree based geo visualizations

4. Designing heuristics for tile caching

In the previous section we defined the methods for event processing by means of
log crunching. Now, we are going to analyze these results in order to design the
rules to follow for caching the tiles that are likely to be requested.

Slicing our analysis and grouping our data by different parameters will allow us to
get a more granular view of the key information. Along this section, we will be
treating each of these components in different subsections.

4.1. Zoom level and bounding boxes

The most important variable when it comes to understanding how users will
interact with a map is the initial status of the map itself. The initial status of a map
is defined by its level of zoom and its center point. Usually, these two variables are
set so that the whole data is visible in this initial state.

Talking of a very small bounding box is synonym with saying that the map is
focused in a high level of zoom. In order to cover a specific region of the Earth,
there is a minimum level of zoom that applies for it. Because of this close
relationship, we will be treating these two variables in the same section.

In Section 3 we got some insights about the most used levels of zoom. For map
initial states, the most used levels are from 0 to 3 (the level of zoom 0 is set in 25%
of the maps). For requests, the most requested level of zoom is 0 (21%) while the
rest of levels, until 15, are requested around 5% of the time each.

Different levels of zoom might trigger different behaviours in the interaction of a
user with a map. If a user accesses a map which contains information about a
neighborhood in Barcelona (a level of zoom of 15 would be appropriate here), we
know that they could zoom in/out or move along a specific area, but other requests
are not likely to happen. In Section 4.4. we will strengthen these ideas by obtaining
detailed information about map activity.

!  
Page ! of !48 98

Predictive analysis for cache generation in quadtree based geo visualizations

4.2. Data, distribution and its interactivity

The type of the data that is being shown in a map, its aggregation and its ability to
provide extra information are also the key to define user activity. Points are the
most polyvalent and simple geometric type. They keep their meaning in any zoom
level, whereas lines or polygons are more affected by these changes because they
lose their meaning as soon as the resolution of the map decreases.

The spatial distribution of the data is important too. If a global map is set in a low
level of zoom but it shows information about the provinces in each country, users
will zoom and browse around them to check the specific details. However, if this
global map only contains information about continents that is easily readable at
first sight for a low level of zoom, it might not engage the same level of user
activity.

Interactivity could be another source of user engagement in a map. If a
visualization offers information when its geometries are interacted with, its data
will be consulted. Similarly as in the data distribution scenario, having more data
available will trigger more events from the users that access maps as a way to
retrieve geospatial information.

In the next section we will study individual activity related to these parameters to
understand how much they affect map browsing.

4.2.1. Empty tiles

Throughout this document we have been focused on data standards, formats,
storage and rendering, but most of the tiles that made up a map do not contain data
at all. As tiles follow a quadtree hierarchy, the 4 children of an empty tile will
always be empty tiles. Therefore, the number of empty tiles for the next level of
zoom can be computed as 4n, being n the number of empty tiles of the current
level of zoom.

From our data sources we also know the bounding boxes of a map. Tiles outside a
map bounding box are empty tiles, and so are their children.

!  
Page ! of !49 98

Predictive analysis for cache generation in quadtree based geo visualizations

4.3. Creating caching rules through the study of the
variables

Grouping log information by user and map will allow us to get a better
understanding of the activity per user within each map. After the information is
sliced, we will order it by timestamp in order to obtain a chronological feed of
events that we will be able to map into common behaviours. The script to retrieve
chronological activity grouped by users is available in Appendix 12. E.

For this, we will use just the 80% of the total log data we have as a reference. First,
we will analyze how many requests for further levels of zoom are performed on
average for each level of zoom. We note that statistically speaking, users always
zoom in on the contents of the map; even if they did not, the process of zooming
out would serve mostly tiles which are already cached. We disregard all zoom out
requests from our analysis.

Zoom level Avg. zoom requests Zoom level Avg. zoom requests

0 1,416 5 2,124

1 1,323 6 1,843

2 1,832 7 3,650

3 3,246 8 3,215

4 2,876 9 3,643

!  
Page ! of !50 98

z

z+1

Figure 4.a): Empty tile quadtree representation

Predictive analysis for cache generation in quadtree based geo visualizations

To find the areas on which to focus our caching heuristics, we will calculate an
information density ratio for each tile on the map. We define an information point
as a point or a vertex (in the case of line or polygon geometries) from the dataset
we are displaying on each map.

For tile x,y at zoom level z its density ratio will be equal to the number of
information points on the tile divided by the average information points per tile for
the current zoom level z. Because of this formula, tiles which are particularly
dense will have a ratio above 1.0 whilst the least populated tiles will be below.
This naturally causes our heuristics to emphasize the areas with the most
information density.

We can calculate the density of points of a tile in PostGIS by clustering the data in
regions of the size of a tile (256 pixels). In the following set of figures, we will
show in terms of a scale of colors the amount of information points that lay in each

Zoom level Avg. zoom requests Zoom level Avg. zoom requests

10 2,874 20 1,483

11 2,545 21 0,912

12 3,411 22 0,786

13 3,233 23 0,854

14 2,451 24 0,820

15 2,676 25 0,642

16 2,310 26 0,704

17 2,360 27 0,304

18 1,225 28 0,208

19 1,322 29 0,000

!  
Page ! of !51 98

Table 15: Zoom level behaviours

Predictive analysis for cache generation in quadtree based geo visualizations

of the tiles. In this case, each one of the clusterized regions corresponds to the data
from a Spanish municipalities dataset.

As a reference, the source municipalities points map can be found in the next
figure:

After performing some analysis, we are not detecting that the interactivity options
of a map have an statistical relevance in a tile prediction scenario, so we will
discard this variable in our final decision matrix.

4.4. Implementation details of the caching algorithm

Unfortunately, and due to constraints on the performance of our tile rendering
process, it is not feasible to dynamically trigger caching jobs whilst the user
!  

Page ! of !52 98

Figure 4.c): Spanish municipalities map

Figure 4.b): Point clustering density

Predictive analysis for cache generation in quadtree based geo visualizations

interacts with the map: our logs on user interactivity show that users spend on
average less than 3s on each zoom level of the map. CDN log analysis, however,
shows an average of 220ms rendering time spent per tile, allowing us to cache 13
tiles during the average time a user spends in any given zoom level. Given that the
default display size of our maps on desktop platforms shows 15 tiles on the screen
at a time, our dynamic caching would always lag behind the actual interaction
behavior of the user.

Because of this, our practical implementation will stick to optimistically caching
the most likely visited tiles on map generation by running in an offline job on the
server side, once and only once after map creation.

We need however to set a hard limit on the amount of time the background job can
process and cache tiles, as to not affect the overall performance and availability of
our platform. Following existing patterns in our infrastructure, we will limit the
total runtime of the background job to 60s in all cases, resulting in the capacity to
cache 272 tiles on average.

The question is now how to choose the up to 272 tiles that will be cached from the
potentially huge set of data on the map. Here is where our data analysis will come
into play, aiding us to design a viable and accurate heuristic.

For our caching algorithm, we will exploit the properties of quadtrees: tile
selection will operate as a depth-first traversal of the quadtree, beginning at the
initial zoom level of the map, and culling its trajectory based on the data density of
each individual tile and the expected zoom level that a user would reach. This
simple heuristic, as we will see later on, is trivial to implement and provides great
results when applied to real world data.

In practice, the traversal algorithm will not run until a fixed amount of tiles are
cached (e.g. 272), but until the timeout for the background job is hit, which means
than in some highly dense maps we will not be able to cache as many tiles as on
simpler ones.

!  
Page ! of !53 98

Predictive analysis for cache generation in quadtree based geo visualizations

4.5. The walk through the quadtree

The depth-first traversal of the quadtree cannot be performed naively, as that
would mean focusing all our caching efforts into a narrow view of the map (i.e.
one that eventually reaches the maximum zoom level for the first quad we
descended into). Because of this, we will cull the depth of the walk at a limit based
on the amount of zoom that an user is expected to perform from a given zoom
level (as previously studied on Table 16).

This culling however will be biased based on the expected amount of information
density in that branch of the quadtree. Likewise, the order of the branches of the
quadtree will also be influenced by the expected amount of information density.

Considering this, we can define our heuristic with this Python pseudo-code:

The caching traversal begins at the initial set of quads for the map and will
descend as many zoom levels as the average values seen in Table 16.

For each level of recursion, we will decrease the depth accordingly but we will
also adjust it based on the information density ratio for the quad we are descending
into. This way we make sure that the most dense quads will be cached more
frequently than their simpler counterparts.

!  
Page ! of !54 98

def caching_traversal(quads, max_depth):
 if max_depth <= 0 or timed_out():
 return

 quads = sorted(quads, key=lambda q: q.information_density)
 for q in quads:
 cache_tile(q)
 md = (max_depth - 1) * q.information_density
 caching_traversal(q.quads, md)

caching_traversal(quads, AverageZoom[z])

Figure 4.d): Traversal caching pseudo-code

Predictive analysis for cache generation in quadtree based geo visualizations

4.6. Testing caching heuristics results

To verify our heuristics, we will study various interaction patterns in our test
dataset by rendering them as we previously saw on Section 6.1. We will also tweak
our caching algorithm as to mark the cached tiles on a blank basemap instead of
actually caching them. With this, we will be able to compare the interaction
patterns with the renderings from our caching heuristic and verify visually that the
cached tiles are an useful and accurate subset of the actual interactions performed
by our users.

!  
Page ! of !55 98

REQUESTED CACHED

REQUESTED CACHED

REQUESTED CACHED

Predictive analysis for cache generation in quadtree based geo visualizations

From the resulting images above, we see how our algorithm focuses the caching
efforts in the tiles that contain information. The tiles that do not contain
information are discarded, so the cached schemes show a more focused result than
the requested schemes, which show outlying tiles.

Another detail that we can notice through the color of the cached schemes is that
the zoom levels are not completely cached (this scenario would show a big
aggregation of opaque regions). With these visual results we can conclude that our
algorithm is accurate enough to significantly reduce the amount of tiles that need
to be dynamically generated for the average user. In the following section we will
analyze the costs of the tile generation process and the impact of our caching
solution.

!  
Page ! of !56 98

REQUESTED CACHED

REQUESTED CACHED

Figure 4.e): Request and cached tiles comparison

Predictive analysis for cache generation in quadtree based geo visualizations

5. Real applications of cache generation

In this section we will study the benefits and effects of cache generation.

5.1. Render timing breakdown

The first step of the tile rendering process is to obtain the data that needs to be
shown in the tile. This is done with a SQL query performed on the database where
the geometric information is stored. We will refer to the time of this operation as
TDATA.

Windshaft, the Node.js tile renderer, uses several background threads to process
rendering requests. A new rendering request will wait until any of these threads is
not busy to start rendering the data. The amount of time that the process is queued
waiting for a thread will be defined as TQUEUE.

Finally, when the actual rendering process has started, the tiler spends a variable
amount of time generating the tiles, which depends on geometry complexity and
on the styles applied to the features. This amount of time will be defined as
TRENDERING.

Therefore, the time needed for rendering a tile (TTILE) can be defined as follows:

TTILE = TDATA + TQUEUE + TRENDERING

We can consider that rendering processes are never blocked by busy threads. In
this case, we can approximate TTILE to:

TTILE ≈ TDATA + TRENDERING

5.2. Reducing the map generation time

Caching tile resources greatly improves response times of any interactive map
when accessed by the user. In general, tile generation is an expensive process and
caching allows reducing this cost to its minimum.
!  

Page ! of !57 98

Predictive analysis for cache generation in quadtree based geo visualizations

In this section we will study how the different components affect the total
rendering time of a map. We will also measure by means of the time to first byte
how the behaviour of a map improves when the contents are served from a cache.

5.2.1. Time analysis on geospatial complexity

The number of geometries that are to be drawn in a single tile or their precision
(the number of vertices that define a line or a polygon) affect the rendering time. In
the following examples we will analyze different use cases and their time:

• Points. Low aggregation.  
The time to render 9 points in a tile is:

• TDATA : 4 ms
• TRENDERING: 159 ms
• TTILE: 163 ms
• TCACHED: 48 ms
• TTILE - TCACHED: 115 ms  

• Points. High aggregation.  
The time to render 13553 points in a tile is:

• TDATA : 403 ms
• TRENDERING: 4.427 s
• TTILE: 4.83 s
• TCACHED: 57 ms
• TTILE - TCACHED: 4.773 s

• Polygons. Low precision. 
The time to render 7119 polygon vertices in a tile is:

• TDATA : 8 ms
• TRENDERING: 167 ms
• TTILE: 175 ms
• TCACHED: 51 ms
• TTILE - TCACHED: 124 ms  

!  
Page ! of !58 98

Figure 5. c): Low precision tile

Figure 5. b): High aggregation tile

Figure 5. a): Low aggregation tile

Predictive analysis for cache generation in quadtree based geo visualizations

• Polygons. High precision.  
The time to render 2988837 polygon vertices is:

• TDATA : 268 ms
• TRENDERING: 2.182 s
• TTILE: 2.45 s
• TCACHED: 50 ms
• TTILE - TCACHED: 2.4 s  

5.2.2. Time analysis on design complexity

The CartoCSS code that is applied to design a map can also add a variation in the
rendering time of the tiles.

• Polygons. Simple CartoCSS style. 
The time to render a tile with a simple CartoCSS style
is:

• TDATA : 43 ms
• TRENDERING: 137 ms
• TTILE: 180 ms
• TCACHED: 52 ms
• TTILE - TCACHED: 128 ms
 
The CartoCSS code applied to the features contain the most basic attributes for
polygon geometries. It is presented in the following figure:

!  
Page ! of !59 98

#layer{
 polygon-fill: #229A00;
 polygon-opacity: 0.8;
 line-color: #FFF;
 line-width: 0.5;
 line-opacity: 1;
}

Figure 5. f): CartoCSS simple code for design analysis

Figure 5. e): Simple design tile

Figure 5. d): High precision tile

Predictive analysis for cache generation in quadtree based geo visualizations

• Polygons. Advanced CartoCSS style. 
The time to render a tile by using an advanced
CartoCSS style is:

• TDATA : 43 ms
• TRENDERING: 431 ms
• TTILE: 474 ms
• TCACHED: 49 ms
• TTILE - TCACHED: 425 ms
 
The CartoCSS code applied to the features contain “building” properties that
allow drawing the polygons in a 3D shape. It is presented in the following figure:  

5.2.3. Time analysis on data computation complexity

When a map is created from data generated at runtime in a SQL statement, the
response time of this request has an impact in the tile rendering total time:

• Simple data generation.  
The time to render a tile with data obtained from a
simple SQL statement is:

• TDATA : 56 ms
• TRENDERING: 145 ms
• TTILE: 201 ms
• TCACHED: 52 ms
• TTILE - TCACHED: 149 ms
 
In this scenario, we are using a table in which all the information is available.
The CartoCSS code applied is a simple categoric one whose colors depend on a

!  
Page ! of !60 98

#layer{
 building-height: [height]/10;
 building-fill: #229A00;
 building-fill-opacity:1;
}

Figure 5. h): CartoCSS advanced code for design analysis

Figure 5. g): Advanced design tile

Figure 5. i): Simple SQL tile

Predictive analysis for cache generation in quadtree based geo visualizations

value of the dataset.The SQL statement from which the data is obtained is
presented in the following figure:

• Advanced data generation. 
The time to render a tile with data obtained from an
advanced SQL is:

• TDATA : 11.32 s
• TRENDERING: 301 ms
• TTILE: 11.621 s
• TCACHED: 59 ms
• TTILE - TCACHED: 11.562 s

In this scenario, we are retrieving data from two different tables, processing the
string in the results and using 3 filters. Similarly as the previous example, the
CartoCSS code used is drawing the different polygons by using different colors
that depends on their data.The SQL statement from which the data is obtained is
presented in the following figure:

5.3. Protecting the mapping platform

Cache generation also has a positive impact on the stability of the whole system.
By caching the tiles and avoiding them to be generated continuously we are saving
a lot of resources in a platform.  

!  
Page ! of !61 98

SELECT * FROM aggregated_data_table

Figure 5. j): SQL statement for simple data generation

SELECT p.*, d.escrutado, replace(trim(upper(d.partido_ganador)),'#','') as
partido_ganador, d.p_votos, d.numero_votos, d.cod_municipio,
d.nom_municipio, d.numero_regidores, d.participacion

FROM poligonos_municipio as p, datos_elecciones_municipales as d
WHERE p.cod_municipio = d.municipio
AND p.cod_provincia = d.provincia
AND d.escrutado >= 3

Figure 5. l): SQL statement for advanced data generation

Figure 5. k): Advanced SQL tile

Predictive analysis for cache generation in quadtree based geo visualizations

6. Project planning and budget

Along this section we will discuss the structure and planning of the project. Then,
we will study the costs that would be needed to put out solution into practice.

6.1. Project planning

The stages of the project and the temporal analysis of its activities will be studied
in the following subsections:

6.1.1. Stages of the project

The project is divided in four main stages:

1. Obtention and curation of the data:  
The data analysed in this project has been obtained from logs offered for
academic purposes by CartoDB, Inc, which collect the requests performed to
public maps of their users. This raw data will be processed with regular
expressions and transformed to objects usable in a script.

2. Analysis of the data: 
Once the source information is obtained and curated, its different
characteristics will be studied in order to categorise the different kinds of data
that are being used.  
 
This stage will present some statistics on the type of tiles that are requested and
on the data from which the maps are created, such as the geospatial density or
the bounding box of the datasets.  

3. Study of different statistical approaches to build a tile predicting model
over the training data.  

4. Application of the different statistical approaches and conclusions.

!  
Page ! of !62 98

Predictive analysis for cache generation in quadtree based geo visualizations

6.1.2. Table of activities

The stages documented in the previous section 6.1.1. can be separated into the
different activities presented in the table below. The duration of the activities is
specified in hours of work and the total amount of estimated time for the 12
defined activities is 297 hours.

Assuming a working day of 4 hours, the project would take 75 days, or two and a
half months, to conclude. As most of the activities, except the one in charge of
writing this report and the economical study of the solution, need to be performed
sequentially the project could be considered as inflexible in terms of the critical
path method.
 

Description Identifier Requirements Duration

Initial research on web mapping
technologies

A - 10

Obtention of data B - 1

Develop a method to curate the
data

C B 20

Obtain initial statistics and
conclusions from the data

D C 30

Analyse convenient statistical
approaches to be applied

E D 40

Apply and compare the different
approaches

F E 45

Implement predictive model G F 35

Test predictive model with test
data

H G 20

Obtain conclusions from the
statistical results

I H 20

Study economical impact of the
solution

J I 15

Report the process K A 60

Present the conclusions L K, J 1

!  
Page ! of !63 98

Table 16: Table of project activities

Predictive analysis for cache generation in quadtree based geo visualizations

6.1.3. PERT diagram

The activities defined in Table 16 are shown graphically in the following PERT
diagram:

The critical path of the project — marked in red in the diagram above —is formed
by the sequence of activities B-C-D-E-F-G-H-I-J-L, implying that any delay in
these activities will affect to the general project planning. The activity K (“Report
the process”) has a float of 156 days, meaning that it could be postponed until the
day 166 in the schedule without implying any extra delay in the project. In reality,
the activity K will be developed during the different stages that form the critical
path as each one of them will need to be documented in the final report.

6.1.4. Gantt diagram

The temporal organisation of the activities in the project is presented in the
following Gantt diagram. As in the section above, a day is considered as 4 hours
and the total length of the activities is, approximately, 8 weeks including
weekends.

!  
Page ! of !64 98

Figure 6. a): PERT diagram

Figure 6. b): Gantt diagram

Predictive analysis for cache generation in quadtree based geo visualizations

6.1.5. Tools

In this section we will cover the specifics of the tools and languages utilised in the
project, grouped by utilities, as well as the reasons why those where chosen
throughout the development of the cache generation solution. Along the scope of
the document we will be studying how tiles are requested with different tools and
methods described below.

• Programming languages and libraries

In order to manage the data the Python programming language will be used due to
its ease when processing input data such as text logs, which will be our main
source of information. The main reason why Python language was chosen was the
existence of the different data analysis tool available for it, as the interactive
computational environment IPython Notebook which are an advantage considering
the nature of the project. The Pillow library will be presented and used in order to
generate geospatial images from the collected data and to show the results as a
visual output.

• GIS applications

In the area of web mapping and GIS applications, the CartoDB open source project
will be used in order to generate map graphics.

Its architecture will be studied in Section 2.2.: Technical overview of web mapping
and it will serve as an example of web mapping platform architecture. From now
on and unless further specification, all mentions to “CartoDB" in the context of
this document will be referred to the CartoDB open source platform — not to the
commercial service from CartoDB, Inc.

• Databases and caches

In order to deal with the provided map metadata and process it in a usable format,
Redis and Postgres databases will be used to retrieve an analyse the necessary
information.

!  
Page ! of !65 98

Predictive analysis for cache generation in quadtree based geo visualizations

Redis is a key-value store — that can be used as a permanent database too — in
which the data types are independent for every record, meaning that the values for
different stored keys can have different types, fields or formats. Postgres is a
relational database that provides special capabilities for storing geospatial data.

The specific details about how these different technologies are used in this project
will be explained in Section 3: Curating and visualizing the source data.

6.2. Economic analysis on cache generation

Caching our resources in a content delivery network network implies paying the
cost of this service. We will analyze the pricing of three content delivery
companies: MaxCDN, Akamai and Fastly.

These companies usually charge per bandwidth and per number of HTTP and
HTTPS requests received. The pricing table obtained from the pricing information
of each service is as follows:

Assuming an average tile size of 40KB, we would serve 250 millions of tiles with
a bandwidth of 10TB. Measuring it per each gigabyte of traffic, it would
correspond to 25000 tiles.

We also have to take into account that some CDNs also charge for HTTP or
HTTPS requests, as in the case of Fastly. The cost per 1000 tiles in the services
mentioned above would be as follows:

!  
Page ! of !66 98

Table 17: CDNs pricing table

Pricing MaxCDN Akamai Fastly

Bandwidth: 10TB $499 $3.500 $1.200

Bandwidth: 100TB $2.560 $35.000 $7.400

10.000 HTTP/HTTPS requests N/A N/A $0,0086 (avg)

Predictive analysis for cache generation in quadtree based geo visualizations

While MaxCDN seems to be the most competitive option in terms of cost per
served tile, most of its infrastructure is located in USA and Canada as shown in
their network map[34].

Fastly also follows this pattern with 18 nodes in the USA and Canada region and
only 4 in Europe, according to their network map[35].

The third option, Akamai, offers the same coverage on CDN nodes in the regions
of USA, Canada, Europe and Asia, which could be a good service to use if we care
about the transmission delays of our users in those regions.

!  
Page ! of !67 98

Table 18: Cost per 1000 tiles served by a CDN

Pricing MaxCDN Akamai Fastly

For less than 100TB
of bandwidth

$0,001996 $0,014 $0,0134

For a total BW
greater than 100TB

$0,001024 $0,014 $0,01156

https://www.maxcdn.com/features/network/
https://www.fastly.com/network

Predictive analysis for cache generation in quadtree based geo visualizations

7. Conclusions

Throughout this document we have studied the most important concepts of web
mapping (covering from geospatial data formats to the different mapping libraries
that put the tiles in place) as an introduction to the most technical details involved
in tile generation and caching.

We have curated hundreds of gigabytes of data, with the goal of guiding the design
and tests for our heuristics on the tiles that are likely to be requested depending on
their geospatial properties.

Then, we have generated an algorithm to decide which tiles need to be cached
supported the properties of quadtrees and the amount of information that exists
beyond the different levels of zoom. After using our algorithm to test its efficacy,
the outcomes are optimistic. Despite the fact that extremely dense maps will not be
completely cached because of the big amount of tiles included in them at high
resolutions, the regions that contain the most information will be covered. This
happens because of the way we weight areas with higher information density in
our heuristic.

By performing an analysis on tile rendering times, we have discovered that
caching complex maps has a big impact on the time that a user will have to wait
for them to be shown completely in a screen. This solution improves the response
time of the maps while also saving rendering resources.

As a final step for our project, we have analysed the socioeconomic environment
of our solution inside the web mapping market. In order to implement the solution
in practice, we have listed the most common CDN services that will allow us to
cache and serve the generated tiles and the expected costs.  

!  
Page ! of !68 98

Predictive analysis for cache generation in quadtree based geo visualizations

8. References

[1] Wikipedia contributors. Quadtree. Wikipedia, The Free Encyclopedia
https://en.wikipedia.org/wiki/Quadtree

[2] CartoDB, Inc. The versatility of retrieving and rendering geospatial data
with CartoDB. May 16, 2013. http://blog.cartodb.com/the-versatility-of-
retreiving-and-rendering-geospatial/

[3] Rogers, Simon. Sunrise on Twitter - The animated map. The Guardian. May
17, 2014. http://www.theguardian.com/news/datablog/ng-interactive/2014/
may/07/sunrise-twitter-animated-map

[4] Elstein, Aaron. Demand and opportunities soar for digital mapmakers.
Crain’s New York. August 25, 2015. http://www.crainsnewyork.com/article/
20150825/TECHNOLOGY/150829943/city-mapmakers-are-making-lots-of-money

[5] Open Geospatial Consortium (OGC): http://www.opengeospatial.org/

[6] Open Geospatial Consortium Inc. OpenGIS® Implementation Standard for
Geographic information - Simple feature access - Part 1: Common architecture.
May 28, 2005. http://portal.opengeospatial.org/files/?artifact_id=25355

[7] Aven, Nicklas; Moullet, Cedric; Ramsey, Paul. Tiny Well-Known Binary
Specification. https://github.com/TWKB/Specification/blob/master/twkb.md

[8] Wikipedia contributors. Shapefile format. Wikipedia, The Free
Encyclopedia https://en.wikipedia.org/wiki/Shapefile

[9] Wikipedia contributors. Keyhole Markup Language format. Wikipedia, The
Free Encyclopedia https://en.wikipedia.org/wiki/Keyhole_Markup_Language

[10] Butler, Howard; Daly, Martin; Doyle, Allan; Gillies, Sean; Schaub, Tim;
Schmidt, Christopher. The GeoJSON format specification. June 16, 2008. http://
geojson.org/geojson-spec.html

[11] JavaScript Object Notation. http://www.ietf.org/rfc/rfc4627.txt

!  
Page ! of !69 98

https://en.wikipedia.org/wiki/Quadtree
http://blog.cartodb.com/the-versatility-of-retreiving-and-rendering-geospatial/
http://www.theguardian.com/news/datablog/ng-interactive/2014/may/07/sunrise-twitter-animated-map
http://portal.opengeospatial.org/files/?artifact_id=25355
https://en.wikipedia.org/wiki/Shapefile
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
http://geojson.org/geojson-spec.html
http://www.ietf.org/rfc/rfc4627.txt

Predictive analysis for cache generation in quadtree based geo visualizations

[12] Olaya, Víctor. El libro GIS. March 24, 2011. ftp://ftp.ehu.es/cidira/
profs/iipbaiza/Libro_SIG.pdf

[13] Open Geospatial Consortium Inc. OpenGIS® Implementation Standard for
Geographic information - Simple feature access - Part 2: SQL option. August 04,
2010. http://portal.opengeospatial.org/files/?artifact_id=25354

[14] PostGIS. http://postgis.net/

[15] Boundlessgeo. Introduction to PostGIS. August 04, 2010. http://
workshops.boundlessgeo.com/postgis-intro/introduction.html

[16] PostgreSQL: the geometric datatype http://www.postgresql.org/docs/
8.2/static/datatype-geometric.html

[17] PostgreSQL: functions for geometric datatypes http://
www.postgresql.org/docs/8.2/static/functions-geometry.html

[18] Mapnik. http://mapnik.org/

[19] CartoCSS. https://github.com/mapbox/carto

[20] Windshaft. https://github.com/CartoDB/Windshaft

[21] UTFGrid specification. https://github.com/mapbox/utfgrid-spec

[22] Käfer, Konstantin. How interactivity works with UTFGrid. https://
www.mapbox.com/blog/how-interactivity-works-utfgrid/

[23] Leaflet. http://leafletjs.com/

[24] CartoDB.js. https://github.com/CartoDB/CartoDB.js

[25] Mapbox.js. https://www.mapbox.com/mapbox.js

[26] Kurose, Jim; Addison-Wesley, Keith Ross. Computer networking: a top
down approach featuring the Internet, 2nd Edition.

[27] Spain. Ley 14/2010 sobre las infraestructuras y los servicios de información
geográfica en España . http://www.idee.es/web/guest/espanol-lisige

!  
Page ! of !70 98

ftp://ftp.ehu.es/cidira/profs/iipbaiza/Libro_SIG.pdf
http://portal.opengeospatial.org/files/?artifact_id=25354
http://postgis.net/
http://workshops.boundlessgeo.com/postgis-intro/introduction.html
http://www.postgresql.org/docs/8.2/static/datatype-geometric.html
http://www.postgresql.org/docs/8.2/static/functions-geometry.html
http://mapnik.org/
https://github.com/mapbox/carto
https://github.com/CartoDB/Windshaft
https://github.com/mapbox/utfgrid-spec
https://www.mapbox.com/blog/how-interactivity-works-utfgrid/
http://leafletjs.com/
https://github.com/CartoDB/CartoDB.js
https://www.mapbox.com/mapbox.js
http://www.idee.es/web/guest/espanol-lisige

Predictive analysis for cache generation in quadtree based geo visualizations

[28] European Union. Directive 2007/2/EC of the European Parliament and of
the Council of 14 March 2007 establishing an Infrastructure for Spatial
Information in the European Community. http://inspire.ec.europa.eu/

[29] Torque. https://github.com/CartoDB/torque

[30] PSQL Interactive Postgres Terminal. http://www.postgresql.org/docs/
9.0/static/app-psql.html

[31] RDBtools. https://github.com/sripathikrishnan/redis-rdb-tools

[32] Itertools. https://pymotw.com/2/itertools/

[33] PostGIS contributors. PostGIS ST_MakeEnvelope function. http://
postgis.net/docs/ST_MakeEnvelope.html

[34] MaxCDN Network Map. https://www.maxcdn.com/features/network/

[35] Fastly Network Map. https://www.fastly.com/network

!  
Page ! of !71 98

http://inspire.ec.europa.eu/
https://github.com/CartoDB/torque
http://www.postgresql.org/docs/9.0/static/app-psql.html
https://github.com/sripathikrishnan/redis-rdb-tools
https://pymotw.com/2/itertools/
http://postgis.net/docs/ST_MakeEnvelope.html
https://www.maxcdn.com/features/network/
https://www.fastly.com/network

Predictive analysis for cache generation in quadtree based geo visualizations

9. Terminology

AJAX (Asynchronous JavaScript and XML). Techniques used on the client-side
of web applications that allow sending and retrieving data from a server without
interfering with the display and behavior of the existing page

ArcGIS. Geographic information system application for working with maps and
geographic information, developed by ESRI.

Basemap. Non-editable layer that provides background to a map. It is typically
designed to provide a visual reference for other data layers to help orient the user.

CartoCSS. Language for map design developed by Mapbox, similar in syntax to
CSS but oriented to styling geometries.

CartoDB. GIS Open Source application that provides location intelligence and
data visualization capabilities.

CDN (Content Delivery Network). Network of distributed servers that deliver web
content to a user based on their geographic location.

ESRI. Company founded in 1969 that supplies GIS software and geodatabase
management applications.

Fastly. Paid content delivery network service that offers a set of APIs and allows
customisation.

GeoJSON. Format for encoding geographic data structures based on the JavaScript
Object Notation (JSON) format.

Geometry. Representation of the spatial component of geographic features, such as
lines, points or polygons.

!  
Page ! of !72 98

Predictive analysis for cache generation in quadtree based geo visualizations

GIS. Any system designed to capture, store, manipulate, analyze or present all
types of spatial or geographical data.

Infowindow. HTML popup that is used in web mapping to show the attributes of a
feature.

KML. File format used to display geographic data in a mapping application based
on the XML format.

Leaflet. Open source JavaScript Library for mobile friendly interactive web maps.

Mapbox. Company founded in 2010 that develops software to create custom
online basemaps.

Mapnik. Open source mapping toolkit for tile rendering, written in C++.

OGC consortium: International voluntary consensus that encourages the
development and implementation of geospatial open standards.

Open data. Data that can be freely used, re-used and redistributed by anyone
without restrictions from copyright, patents or other mechanisms of control.

Open source (software): Software for which the original source code is made
freely available and may be redistributed and modified.

OpenStreetMap. Free and editable map of the whole world that is being built by
volunteers largely from scratch and released with an open-content license.

PostGIS. Open source extension for PostgreSQL that adds support for spatial
functions and geometry data types to the database.

PostgreSQL. Open source object-relational database system.

!  
Page ! of !73 98

Predictive analysis for cache generation in quadtree based geo visualizations

Projection. Method used for representing a three-dimensional object like the Earth
on a two-dimensional surface. A projection is defined by its SRID (spatial
reference system identifier).

Psql. Interactive terminal for working with Postgres that allows to query, edit and
manage a database.

QGIS. Free and open-source desktop geographic information system application
that provides data viewing, editing, and analysis capabilities.

RDBtools. Python utility that is able to parse Redis dump.rdb files.

Redis. Open source and BSD licensed advanced key-value cache and store.

Shapefile. Vector data storage format for storing the location, geometry, and
attributes of geographic features.

Tile. Image of 256x256 pixels that represents a fixed geographical region and
makes up a map once combined with adjacent tiles of the same level of zoom.

Tilemill. Tool for cartographers to design maps for the web using custom data.

Torque. Open source library that allows rendering time-series data in the client
side, instead of being rendered by a tiler server

UTFGrid. Invisible tile layer made up of indexes and data that is shown in the
interactive options of a map, such as the information of a specific feature when a
user clicks or hovers it.

UTM (Universal Transverse Mercator). Projection system that divides the Earth
into sixty zones, each a six-degree band of longitude, and uses a secant transverse
Mercator projection in each zone. It preserves angles and approximates shape but
distorts distance and area.

!  
Page ! of !74 98

Predictive analysis for cache generation in quadtree based geo visualizations

Varnish. Web application that caches any contents in a server through the HTTP
level.

Web Mercator (projection). Variation of the Mercator projection which is the de
facto standard for Web mapping applications.

Well-known binary (WKB). Standard format used to describe geometries as a
stream of bytes.

Well-known text (WKT). Standard format used to describe geometries in a human
readable way.

Windshaft. Map tile server written in Node.js for PostGIS with CartoCSS styling.

!  
Page ! of !75 98

Predictive analysis for cache generation in quadtree based geo visualizations

10. List of figures
The list of the different figures presented in the different sections are as follows:

(1) Motivation and goals  

(2) Introduction to web mapping 
2. a): Schema: Quadtree based hierarchy for tiles  
2. b): Example of different designs for the same tile  
2. c): WKB structure of a point in coordinates (2, 4)  
2. d): WKB data structures  
2. e): KML file sample 
2. f): GeoJSON file sample 
2. g): Black/white map and CartoCSS code  
2. h): Blue map and CartoCSS code  
2. i): Building areas in Barcelona and CartoCSS code  
2. j): Mapnik XML style example  
2. k): Mapnik XML layer example  
2. l): Tile generation simple schema  
2. m): Layergroup configuration example  
2. n): ASCII UTFGrid 
2. o): Keys and data mapping  
2. p): Interactive map example: Nuclear reactors operating around the world  
2. q): Leaflet map creation example  
2. r): Tile cache request schema  

(3) Curating and visualizing the source data 
3. a): Log event example  
3. b): Regular expression for log processing  
3. c): Event object definition  
3. d): PSQL commands for database generation  
3. e): SQL statement for metadata obtention  
3. f): Postgres data as a JSON  
3. g): Redis command to list the set of map_tpl key-values  
3. h): RDBtools command for exporting data to JSON  
3. i): Global and detailed view of map d200f8c2d8a0fd4adffd6e8512576285  

!  
Page ! of !76 98

Predictive analysis for cache generation in quadtree based geo visualizations

3. j): Global and detailed view of map f148fd4dad5313505f19b8032dfe2c6d  
3. k): Global and detailed view of map dbcd5e1fdae10d922a66ebde44a35751  
3. l): Global and detailed view of map 7f0d1c82b45abde157e8c5ff03a2b9fe  
3. m): Global and detailed view of map a9938a1c41ffe4d4cb4ce6a5474e86ae  
3. n): Zoom level distribution  
3. o): Average center coordinates map  
3. p): Distribution of the center point of the maps  
3. q): Representation of the bounding boxes of all maps  

(4) Designing heuristics for tile caching  
4.a): Empty tile quadtree representation  
4.b): Point clustering density  
4.c): Spanish municipalities map  
4.d): Traversal caching pseudo-code  
4.e): Request and cached tiles comparison  

(5) Real applications of cache generation  
5. a) Low aggregation tile  
5. b) High aggregation tile  
5. c) Low precision tile  
5. d) High precision tile  
5. e) Simple design tile  
5. f): CartoCSS simple code for design analysis  
5. g) Advanced design tile  
5. h): CartoCSS advanced code for design analysis  
5. i): Simple SQL tile  
5. j): SQL statement for simple data generation  
5. k): Advanced SQL tile  
5. l): SQL statement for advanced data generation  

(6) Project planning and budget 
6. a): PERT diagram  
6. b): Gantt diagram  

(7) Conclusions  

!  
Page ! of !77 98

Predictive analysis for cache generation in quadtree based geo visualizations

11. List of tables
The list of the different tables presented along the different sections are as follows:

(1) Motivation and goals  

(2) Introduction to web mapping 
Table 1: WKT geometry examples  
Table 2: WKB integer codes  
Table 3: PostgreSQL geometry types  
Table 4: PostgreSQL common geometric functions

(3) Curating and visualizing the source data 
Table 5: “Maps” table structure  
Table 6: “Layers” table structure  
Table 7: “Layers Maps” table structure  
Table 8: “Visualizations” table structure  
Table 9: Counting daily data from the logs  
Table 10: Total monthly counts  
Table 11: Event averages  
Table 12: Percentages of tiles and interactivity  
Table 13: Zoom level statistics  
Table 14: Statistics of geometry types over all map layers  

(4) Designing heuristics for tile caching  
Table 15: Zoom level behaviours  

(5) Real applications of cache generation  

(6) Project planning and budget 
Table 16: Table of project activities  
Table 17: CDNs pricing table  
Table 18: Cost per 1000 tiles served by a CDN  

(7) Conclusions  

!  
Page ! of !78 98

Predictive analysis for cache generation in quadtree based geo visualizations

12. Appendix

12.A. Python script for the curation of log files
-*- coding: utf-8 -*-
import re
import datetime
import itertools
import random
import os
from collections import namedtuple

LINE_REGEXP = re.compile("""
 <\d+>
 (\d+-\d+-\d+T\d+:\d+:\d+Z) # log timestamp
 \ (?:.*?)\[\d+\]:
 \ (\d+.\d+.\d+.\d+) # IP address
 \ (?:.*?)\ GET
 \ /([\w-]+)/+api/+v1/+map/+ # user + endpoint
 (?:([\w-]+(?:@|%40)\w+)(?:@|%40))? # named map template (optional)
 (\w+):(\d+(?:\.\d+)?)/ # layergroup ID + timestamp
 /?
 (-?\d+)(?:,*\d*)*/ # zoom or layer number (if torque)
 (-?\d+)/ # x or z (if torque)
 (-?\d+) # y or x (if torque)
 (?:/-?\d+)? # y (if torque)
 \.([\w\.]+) # extension type
""", re.VERBOSE)

Event = namedtuple("Event", [
 'x', 'y', 'z',
 'time', 'user',
 'ip_address',
 'named_map_template',
 'layergroup',
 'layergroup_timestamp',
 'type'
])

def open_log(path):
 '''
 open_log(string path)

 Opens a compressed (bz2 format) log file.
 '''
 if path.endswith(".bz2"):
 import bz2
 return bz2.BZ2File(path)
 return open(path)

!  
Page ! of 9879

Predictive analysis for cache generation in quadtree based geo visualizations

def tilelog(path):
 '''
 tilelog(string path)

 Reads the log provided by parameters and returns a list of Events. Some
 special lines in the log are ignored. '''
 dataset = []
 with open_log(path) as f:
 for line in f:
 if "/static/bbox/" in line or \
 "/static/center" in line or \
 "/favicon.ico" in line or \
 "/attributes/" in line or \
 "/undefined/" in line or \
 "/tiles/layergroup" in line or \
 "GET / MISS" in line or \
 "GET / HIT" in line or \
 "GMT HEAD /" in line or \
 "GET /robots.txt" in line or \
 "GET /https://cartocdn" in line or \
 "GET /rules.abe" in line or \
 "ashbu.cartocdn.com.cartodb.com" in line or \
 "MISS 404" in line:
 continue

 m = LINE_REGEXP.match(line)
 if not m:
 print("Failed to match: " + line + "__________________________________")
 continue

 dataset.append(Event(
 time=datetime.datetime.strptime(m.group(1), "%Y-%m-%dT%H:%M:%SZ"),
 ip_address=m.group(2),
 user=m.group(3),
 named_map_template=m.group(4),
 layergroup=m.group(5),
 layergroup_timestamp=\
 datetime.datetime.utcfromtimestamp(
 float(m.group(6)) / 1000.0),
 z=int(m.group(7 if torque else 8)),
 x=int(m.group(8)),
 y=int(m.group(9)),
 type=m.group(10)
))

 print "- - - END OF FILE:" + path + " - - -"
 return dataset

!  
Page ! of 9880

Predictive analysis for cache generation in quadtree based geo visualizations

12.B. Python script for tile requests map drawing
def most_requested_events(ds, layergroup):
 '''
 most_requested_events(Event[] ds, string layergroup)

 Given a dataset (list of Events) and a layergroup ID, returns the Z X Y
 values for the most requested events of the specified layergroup ordered
 by frequency.
 '''
 ds = [(d.x, d.y, d.z) for d in ds if d.layergroup == layergroup]
 freq = sorted(((ds.count(d), d) for d in set(ds)), key=lambda x: x[0])
 max_freq = max(f for f, _ in freq)
 return [d for f, d in freq if f == max_freq]

def draw_multimap(tiles, highlight=[]):
 '''
 draw_multimap(Event[] tiles, tiles_dataset[] highlight)

 Given a set of tiles, and assuming a basemap ("basemap.png") colorizes
 the requested tiles according to each level of zoom. The highlight
 parameter allows to emphasize the more requested tiles, which are drawn
 as outlined tiles.
 '''
 basemap = PIL.Image.open("basemap.png").convert("RGBA")
 heatmap = PIL.Image.new('RGBA', basemap.size, (255,255,255,0))
 draw = PIL.ImageDraw.Draw(heatmap)
 w, h = basemap.size
 opacity = 22

 for (zoom, t) in _groupby(tiles, lambda x: x[2]):
 zoomw = (2 ** zoom)
 draw_w = w / zoomw
 draw_h = h / zoomw

 if draw_w == 0 or draw_h == 0:
 break

 for x, y, _ in set(t):
 x = x * draw_w
 y = y * draw_h
 draw.rectangle(
 [x, y, x + draw_w, y + draw_h],
 fill=(255,0,0,opacity)
)

 for x, y, z in highlight:
 if z == zoom:
 x = x * draw_w
 y = y * draw_h
 draw.rectangle(

!  
Page ! of 9881

Predictive analysis for cache generation in quadtree based geo visualizations

 [x, y, x + draw_w, y + draw_h],
 outline=(255,0,0,255)
)

 opacity += 22

 out = PIL.Image.alpha_composite(basemap, heatmap)
 tmp = tempfile.NamedTemporaryFile(
 suffix='.png', prefix='tmpmap_', dir='.', delete=False)

 with tmp.file as f:
 out.save(f, format="png")

 return tmp.name

def draw_layergroup(events, lg):
 '''
 draw_layergroup(Event[] ds, string layergroup)

 Given a dataset (list of Events) and a layergroup ID, retrieves the
 tiles that correspond to the layergroup ID and draws them in a map. The
 function also computes the most requested events for the layergroup
 which are outlined in the final image.
 '''
 tiles = [(e.x, e.y, e.z) for e in events if e.layergroup == lg]
 highlight = most_requested_events(events, lg)
 return draw_multimap(tiles, highlight)

import urllib2
from io import BytesIO

def build_basemap(zoom, retina=True):
 '''
 build_basemap(int zoom, boolean retina)

 Given a level of zoom, builds a basemap of a valid resolution obtaining
 the needed tiles from an external basemap tile server. If the retina
 option is set as true, tiles are requested with double size.
 '''
 zoomw = (2 ** zoom)
 tile_w = 512 if retina else 256
 w, h = (zoomw * tile_w, zoomw * tile_w)
 basemap = PIL.Image.new('RGBA', (w, h), (255,255,255,255))

 for x in range(zoomw):
 for y in range(zoomw):
 url = “http://3.basemaps.cartocdn.com/light_nolabels/%d/%d/%d
 %s.png"% (zoom, x, y, "@2x" if retina else "")
 print "Requesting %s..." % url

!  
Page ! of 9882

Predictive analysis for cache generation in quadtree based geo visualizations

 raw = urllib2.urlopen(url).read()
 tile = PIL.Image.open(BytesIO(raw)).convert("RGBA")
 tile_w, tile_h = tile.size

 basemap.paste(tile, (tile_w * x, tile_h * y))
 del tile

 print "Writing basemap_%d.png (%dx%d)..." % (zoom, w, h)
 basemap.save("basemap_%d.png" % zoom)

12.C. Python script for aggregating and slicing
datasets

def get_filepaths(directory, month, day):
 '''
 get_filepaths(string, string, string)

 This function will generate the file names in a directory
 tree by walking the tree either top-down or bottom-up. For each
 directory in the tree rooted at directory top (including top itself),
 it yields a 3-tuple (dirpath, dirnames, filenames).
 '''
 file_paths = []

 for root, directories, files in os.walk(directory):
 for filename in files:
 filepath = os.path.join(root, filename)
 requested = directory + "/ashbu-2015-" + str(month).zfill(2) +
 "-" + str(day).zfill(2)
 if filepath.startswith(requested):
 file_paths.append(filepath)

 return file_paths

def get_sliced_data(file_set, type):
 '''
 get_sliced_data(string[], string)

 This function generates a list of reference/test following an 80/20
 approach from the list of all available files.
 '''
 #By default, training data is set to 80% and test data to 20%
 ref_ = int(round(len(file_set)*0.8))
 if type=="ref":
 print "Number of files in ref set: " + str(ref_) + " out

!  
Page ! of 9883

Predictive analysis for cache generation in quadtree based geo visualizations

 of " + str(len(file_set)) return file_set[:ref_]
 elif type=="test":
 print "Number of files in test set: " + str(len(file_set)-ref_)
 + " out of " + str(len(file_set))
 return file_set[ref_:]

def aggregate_data_files(file_set, name):
 '''
 aggregate_data_files(string[], string)

 This function obtains a list of files and generates a bz2 compressed
 file based in the concatenation of the files listed.
 '''
 command_ = ' '.join(file_set)
 command_ = "cat " + command_ + " > " + name + ".log.bz2"
 os.system(command_)
 print "The file " + name + ".log.bz2 that contains " +
 str(len(file_set)) + "merged files has been generated"

12.D. Python script to retrieve statistics from log
data

def analyze_file_set(file_set):
 '''
 analyze_file_set(string[])

 This function applies an analysis over a list of files.
 '''
 dataset = []
 tileset = []
 files_count = 0
 for f in file_set:
 dataset += tilelog(f)
 files_count += 1
 _write_to_csv('global_analysis', f)
 print "File " + str(files_count) + " out of " + str(len(file_set)) +

 "has been processed"
 tileset = tiles(dataset)
 unique_visitors = set(t.ip_address for t in dataset)
 unique_maps = set(t.layergroup for t in dataset)

 print " ========= STATS ========= “

 _write_to_csv('global_analysis', str(len(dataset)) + " events”)

 print str(len(dataset)) + " events”

!  
Page ! of 9884

Predictive analysis for cache generation in quadtree based geo visualizations

 _write_to_csv('global_analysis', str(len(tileset)) + " tile requests
 (" + str(round(float(len(tileset)) / float(len(dataset)) *
 100.0 ,2)) + "% of total)”)

 print str(len(tileset)) + " tile requests (" +
 str(round(float(len(tileset)) / float(len(dataset)) * 100.0 ,
 2)) + "% of total)”

 _write_to_csv('global_analysis', str(len(unique_visitors)) + "
 unique visitors”)

 print str(len(unique_visitors)) + " unique visitors”

 _write_to_csv('global_analysis', str(len(unique_maps)) + " unique maps”)

 print str(len(unique_maps)) + " unique maps”

 _write_to_csv('global_analysis', zoom_stats(dataset))

 print zoom_stats(dataset)

 _write_to_csv('global_analysis', most_requested_layergroup(dataset))

 print most_requested_layergroup(dataset)

 _write_to_csv('global_analysis', " ========= STATS END ========= ")

 return "Done"

def analyze_file(name):
 '''
 analyze_file_set(string[])

 This function applies an analysis over a single file.
 '''
 list_file = []
 list_file.append(name)
 return analyze_file_set(list_file)

def _write_to_csv(name, string): '''
 _write_to_csv(string, string)

 This function generates a CSV file or writes to an existing one
 that is referenced through the firs parameter. The string to
 write is passed to the function in the second parameter.
 '''
 with open(name+'.csv', 'a') as csvfile:
 filewriter = csv.writer(csvfile, delimiter=' ',
 quotechar='|', quoting=csv.QUOTE_MINIMAL)
 filewriter.writerow(string)

!  
Page ! of 9885

Predictive analysis for cache generation in quadtree based geo visualizations

12.E. Python script to slice user data
chronologically

def analyze_zooms():
 '''
 analyze_zooms()

 This function applies a zoom behaviour analysis over a list of files.
 '''
 fileList = [LIST_OF_FILES]
 dataset = []
 tileset = []
 for f in fileList:
 dataset += tilelog(f)
 tileset = tiles(dataset)
 users = get_users(tileset)
 get_user_activity(tileset, users)

 def get_users(ds):
 '''
 get_users(Event[] ds)

 Given a dataset, returns a unique list of IP addresses that are involved
 in its events.
 '''
 return set(t.ip_address for t in ds)

def get_user_activity(ds, ip_address_set):
 '''
 get_user_activity(Event[] ds, set ip_address)

 Given a dataset (list of Events) and an IP address, returns the request
 activity of the source IP ordered by request timestamp.
 '''
 total_users = 0
 zoom_in = defaultdict(int)
 zoom_out = defaultdict(int)

 for ip_address in ip_address_set:
 events = events_by_ip_addr(ds, ip_address)
 sorted_events = sorted(events, key=lambda x: x.time)

 prev_x = None
 prev_y = None
 prev_z = None
 prev_time = None

 for s in sorted_events:
 prev_time = s.time

!  
Page ! of 9886

Predictive analysis for cache generation in quadtree based geo visualizations

 print "Time: %s X: %d, Y: %d Z: %d" % (s.time, s.x, s.y, s.z)

 if prev_x is not None:
 total_users += 1
 if s.z > prev_z:
 print " Zoom in"
 zoom_in[prev_z] += 1
 elif s.z < prev_z:
 print " Zoom out"
 zoom_out[prev_z] += 1

 if s.x > prev_x:
 print " Pan right"
 elif s.x < prev_x:
 print " Pan left"

 if s.y > prev_y:
 print " Pan up"
 elif s.y < prev_y:
 print " Pan down"

 prev_x = s.x
 prev_y = s.y
 prev_z = s.z

 print zoom_in
 print zoom_out

def events_by_ip_addr(ds, ip_address):
 '''
 events_by_ip_addr(Event[] ds, string ip_address)

 Given a dataset (list of Events) and an IP address, returns the list of
 Events that were requested from the specified source.
 '''
 return [d for d in ds if d.ip_address == ip_address]

def get_random_ip_addr(ds):
 '''
 get_random_ip_addr(Event[] ds)

 Given a dataset, returns one of the IP addresses that requested a
 resource.
 '''
 unique_ip = set(t.ip_address for t in ds)
 return random.choice(list(unique_ip))

!  
Page ! of 9887

Predictive analysis for cache generation in quadtree based geo visualizations

13. Summary

13.1. Motivation and goals

The main objective of this project is to build an algorithm to predict which map
tiles need to be generated and cached whenever a web map is created. This will
allow caching these tile resources in advance and avoid their generation on runtime
as a result of a user request. In order to achieve this, we will analyse the spatial
data contained on thousands of maps together with the interactions that the users
perform on them: zooming, moving or clicking on the map features.

13.2. Introduction to web mapping

13.2.1. State of the art

Cartography has been a part of human history for a long time. From the ancient
maps of Babylon, Greece or Asia and on into the current century, the different
societies that have populated the planet have created and used maps as tools to
describe their world.

The improvements in technology and the advent of the Internet have provided a
new way to communicate and work which has affected the manner in which maps
are built nowadays. In 1996 the first web map was born, but it was 9 years later, in
2005, when Google started to settle the standards that are used in web mapping
today. Google Maps introduced then the concept of “tile”: PNG images of
256x256 pixels drawn according to the Web Mercator projection that are ordered
hierarchically with the zoom level applied to the map. This hierarchical structure is
known as a quadtree, a tree in which each node has exactly four children.

Millions of tiles are served each day[1]. In practical terms, being able to predict
which tiles of a map will be requested taking into account different parameters
such as the characteristics of the underlying data, the kind of represented
geometries or their spatial distribution could be the key to build scalable and fast
platforms to the map services of the future.

!  
Page ! of 9888

http://blog.cartodb.com/the-versatility-of-retreiving-and-rendering-geospatial/

Predictive analysis for cache generation in quadtree based geo visualizations

13.2.2. Technical overview of web mapping

In GIS, vector geometries are used to represent the spatial component of
geographical features, such as lines, points or polygons. Traditionally, the most
common format for storing this geospatial data is the Shapefile[2], which has been
used since it was introduced by ESRI in the early 1990s. Modern web maps prefer
the KML[3] format, which relies on XML notation, or more recently, GeoJSON[4],
based on the JSON format.

To handle geospatial information in a database, PostGIS[5] stands out in the open
source world. PostGIS is a module for the open source PostgreSQL database. This
module allows PostgreSQL to store geometries in the database and to perform
geographical analysis computations.

When a map has to be generated, one of the first concerns lies on how to style this
geospatial information. CartoCSS[6] is a language for map design which is similar
in syntax to CSS but builds upon it with specific abilities to filter map data. Just
like CSS is used over DOM elements, CartoCSS is used over layers. It can also
define variables, nest styles or filter the geometries depending on their data
attributes.

In the rendering space, Mapnik[7] is the open source engine used to make tile sets.
The CartoDB stack that we are using as example in this approach to web mapping
uses an intermediate layer above Mapnik: Windshaft[8]. Windshaft is a Node.js
map tile server for PostGIS with CartoCSS styling. In order to generate a map, it
uses a configuration file containing the information of the data layers that are going
to be rendered and their styles. The specification of the layers of a map in these
configuration files determines what we know as a layergroup. Its identifier is
named layergroup ID, and it is the key to identify the maps in the system.

Windshaft and Mapnik also take care of the interactivity of the map. When a user
clicks or hovers a web map, usually the underlying information is shown as an
interactive text box or a popup. In tiled maps, interactivity is obtained from the
UTFGrid[9]. The UTFGrid is an invisible tile layer made up of arbitrary letters
which are indexes into the clickable data of a map. These are afterwards mapped to

!  
Page ! of 9889

https://en.wikipedia.org/wiki/Shapefile
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
http://geojson.org/geojson-spec.html
http://postgis.net/
https://github.com/mapbox/carto
http://mapnik.org/
https://github.com/CartoDB/Windshaft
https://github.com/mapbox/utfgrid-spec

Predictive analysis for cache generation in quadtree based geo visualizations

a key from which we can retrieve the rest of data when any interaction occurs
within its pixels.

When the different layers of the map are finally generated, a mapping library takes
care of displaying them in a website. Leaflet[10] is the leading JavaScript library for
interactive maps. Other libraries, such as CartoDB.js[11] or Mapbox.js[12] are built
on top of it. These libraries work asynchronously: the tiles and the interactivity
information is requested with AJAX calls when required after a user interaction. If
the user zooms in, the tiles for the next level of zoom are requested and placed in
the correct position in order to build the map.

Further details on any of the processes can be found in Section 2.2.

13.2.3. Socioeconomic impact of the solution:
regulatory framework

Our tile prediction solution, and the web mapping market in general is not affected
directly by any regulatory framework that affects the work of companies or
individuals, but there are laws and directives that regulate how local governments
offer Open Data and web mapping services. This Spanish law is known as
LISIGE[13] and regulates the national cartographic system. In Europe, the
INSPIRE[14] directive was introduced in May 2007.

13.3. Curating and visualizing the source data

In Section 3 we analyzed the different sources that we will use and how to retrieve
and visualize the information that we need from the raw data. Our main source of
information are the logs generated from the different CDN nodes.

We also have other two sources for map metadata. The first one is a Redis key-
value database that stores the CartoCSS styles that define each map, as well as its
interactivity options. The second one is a PostgreSQL database dump, that contains
all the information available for a map (such as where is it centered, which is its
bounding box, or which level of zoom is used in the initial state of the map).

!  
Page ! of 9890

http://leafletjs.com/
https://github.com/CartoDB/CartoDB.js
https://www.mapbox.com/mapbox.js
http://www.idee.es/web/guest/espanol-lisige
http://inspire.ec.europa.eu/

Predictive analysis for cache generation in quadtree based geo visualizations

In order to obtain the relevant information from the logs, we will process them
with regular expressions to generate Event objects in Python. The Event object
stores all the information from a request: the type of resource requested (a tile or
an interactive UTFgrid request), the XYZ coordinates of the tiles, the time, the
source IP address and the map identifier (such as the layergroup and the template
name). To handle the information stored in the PostgreSQL tables we will run a
query to join the identifier of a map with all the information related to it that lives
within the different tables. Then, we will export this result as a JSON file.
Similarly, the RDBtools[15] library allows us to export Redis key-value dumps to
JSON files.

In the same way that maps are used to represent geographical information, we will
use them to have visual information about the tiles that are being requested. The
Python functions draw_basemap, draw_multimap, draw_layergroup and
most_requested_events written for this purpose allow us to visualize the set tiles
that are requested as a map. The source code of these functions is available in
Appendix 12.B.

Log data is divided in several thousand files. To reorganize it, the function
aggregate_data_files concatenates several files and the function
get_sliced_data splits the data into two subsets for reference and testing. Their
source code is available in Appendix 12.C.

In order to have a big picture about the data that we are analyzing, we have run
some simple statistics for each of the variables. In terms of events, the total count
of them sums up to 1703183, or 58730 events occurring per day. Interactivity
requests involve 20% of these requests, while the remaining 80% is due to tile
requests.

From a total of 28379 unique maps accesses during the period that we are
studying, the most accessed level of zoom is the level 0, being used in the 21,8%
of all tile requests. The level of zoom 0 is configured as the one by default in more
than 24% of the maps. In terms of location, the mean of the coordinates in which
all maps are centered is (-7.9157, 30.5698). We can appreciate a bigger
aggregation of maps having their default bounding box at small regions in Europe

!  
Page ! of 9891

https://github.com/sripathikrishnan/redis-rdb-tools

Predictive analysis for cache generation in quadtree based geo visualizations

and North America, meanwhile less populated places in the world are covered by
maps with a wider bounding box.

From the data point of view, the 28379 analyzed maps are formed by 51082
different layers. 53% of these layers are formed by point data, while 22 and 25%
are built from lines and polygons.

The Python script to retrieve these statistics from log data can be found in
Appendix 12. D. The detailed figures and tables in which we visualized the
information are available in Section 3.

13.4. Designing heuristics for tile caching

The most important variable when it comes to understanding how users will
interact with a map is the initial status of the map itself. The initial status of a map
is defined by its level of zoom and its center point.

The spatial distribution of the data displayed in a map is the key to define user
activity. We note that statistically speaking, users always zoom in on the contents
of the map; even if they did not, the process of zooming out would serve mostly
tiles which are already cached.

To find the areas on which to focus our caching heuristics, we will calculate an
information density ratio for each tile on the map. Tiles which are particularly
dense will have a ratio above 1.0 whilst the least populated tiles will be below.
This naturally causes our heuristics to emphasize the areas with the most
information density.

Unfortunately, and due to constraints on the performance of our tile rendering
process, it is not feasible to dynamically trigger caching jobs while the user
interacts with the map: our logs on user interactivity show that users spend on
average less than 3s on each zoom level of the map. CDN log analysis, however,
shows an average of 220ms rendering time spent per tile, allowing us to cache 13
tiles during the average time a user spends in any given zoom level. Given that the
default display size of our maps on desktop platforms shows 15 tiles on the screen
!  

Page ! of 9892

Predictive analysis for cache generation in quadtree based geo visualizations

at a time, our dynamic caching would always lag behind the actual interaction
behavior of the user.

Because of this, our practical implementation will stick to optimistically caching
the most likely visited tiles on map generation by running in an offline job on the
server side, once and only once after map creation.

We need however to set a hard limit on the amount of time the background job can
process and cache tiles, as to not affect the overall performance and availability of
our platform. Following existing patterns in our infrastructure, we will limit the
total runtime of the background job to 60s in all cases, resulting in the capacity to
cache 272 tiles on average.

For our caching algorithm, we will exploit the properties of quadtrees: tile
selection will operate as a depth-first traversal of the quadtree, beginning at the
initial zoom level of the map, and culling its trajectory based on the data density of
each individual tile and the expected zoom level that a user would reach. This
simple heuristic, as we will see later on, is trivial to implement and provides great
results when applied to real world data.

In practice, the traversal algorithm will not run until a fixed amount of tiles are
cached (e.g. 272), but until the timeout for the background job is hit, which means
than in some highly dense maps we will not be able to cache as many tiles as on
simpler ones.

The depth-first traversal of the quadtree cannot be performed naively, as that
would mean focusing all our caching efforts into a narrow view of the map (i.e.
one that eventually reaches the maximum zoom level for the first quad we
descended into). Because of this, we will cull the depth of the walk at a limit based
on the amount of zoom that an user is expected to perform from a given zoom
level. This culling however will be biased based on the expected amount of
information density in that branch of the quadtree.

The caching traversal begins at the initial set of quads for the map and will
descend as many zoom levels as the average values seen in Table 16. For each

!  
Page ! of 9893

Predictive analysis for cache generation in quadtree based geo visualizations

level of recursion, we will decrease the depth accordingly but we will also adjust it
based on the information density ratio for the quad we are descending into. This
way we make sure that the most dense quads will be cached more frequently than
their simpler counterparts.

To verify our heuristics, we will tweak our caching algorithm as to mark the
cached tiles on a blank basemap. With this, we will be able to compare the
interaction patterns with the renderings from our caching heuristic and verify
visually that the cached tiles are an useful and accurate subset of the actual
interactions performed by our users.

13.5. Real applications of cache generation

In order to study the impact of cache generation in a real scenario, we are going to
calculate the time which is taken to generate different kinds of map tiles. The first
step of the tile rendering process is to obtain the data that needs to be shown in the
tile through SQL. We will refer to the time of this operation as TDATA. Windshaft
uses several background threads to process rendering requests. The amount of time
that the process is queued waiting for a thread will be defined as TQUEUE. Finally,
when the actual rendering process has started, the tiler spends a variable amount of
time generating the tiles, which depends on geometry complexity and on the styles
applied to the features. This amount of time will be defined as TRENDERING.
Therefore, the time needed for rendering a tile (TTILE) can be defined as the sum of
TDATA, TQUEUE and TRENDERING.

In Section 5, we performed some measurements for different tile scenarios, such as
tiles with different data aggregation and tiles generated from advanced and simple
queries or styles. These different experiments showed differences of time from
124ms up to 11 seconds with respect to serving cached tiles.

13.6. Project planning and budget

The project is divided in four main stages: the obtention and curation of the data,
its analysis, the study of different statistical approaches and the application of

!  
Page ! of 9894

Predictive analysis for cache generation in quadtree based geo visualizations

these to provide a final predicting model over the source data. From these four
stages, we can define 12 activities with a total duration of 297 hours — or 75 days
estimating an amount of 4 hours of work per day. The temporal planning together
with the Gantt and PERT diagrams, as well as further details on the tools to be
used along the project can be found in Sections 6.1.3. and 6.1.4. respectively.

In terms of budget, caching our resources in a content delivery network network
implies paying the cost of this service. In Section 6.2. we analyze the pricing of
three content delivery companies: MaxCDN, Akamai and Fastly, which charge per
bandwidth and per number of HTTP and HTTPS requests received. MaxCDN
appears to be the most competitive option in terms of cost per served tile. It has a
cost of $0,0019 per 1000 tiles, while Akamai and Fastly charge $0,014 and
$0,0134, respectively.

13.7. Conclusions

Throughout this document we have studied the most important concepts of web
mapping as an introduction to the most technical details involved in tile
generation. We have curated hundreds of gigabytes of data, with the goal of using
it to build a predictive system for the tiles that are likely to be requested depending
on their geospatial properties. After testing the generated algorithm to prove its
efficacy, the outcomes are optimistic. Despite the fact that extremely dense maps
will not be completely cached because of the big amount of tiles implied in them at
high resolutions, the regions that contain a lot of information will be covered. This
is done thanks to the weigh that they imply in our caching algorithm, which will go
through the most populated children of the quadtree in contrast with the less
populated ones, that will be skipped.

By performing an analysis on tile rendering times, we have confirmed that this
solution improves the response time of the maps at the same time that it allows us
saving rendering resources.

!  
Page ! of 9895

Predictive analysis for cache generation in quadtree based geo visualizations

13.8. Terminology (summary)

AJAX (Asynchronous JavaScript and XML). Techniques used on the client-side
of web applications that allow sending and retrieving data from a server without
interfering with the display and behaviour of the existing page

CartoCSS. Language for map design developed by Mapbox, similar in syntax to
CSS but oriented to styling geometries.

CDN (Content Delivery Network). Network of distributed servers that deliver web
content to a user based on their geographic location.

GeoJSON. Format for encoding geographic data structures based on the JavaScript
Object Notation (JSON) format.

GIS. Any system designed to capture, store, manipulate, analyze or present all
types of spatial or geographical data.

KML. File format used to display geographic data in a mapping application based
on the XML format.

Mapnik. Open source mapping toolkit for tile rendering, written in C++.

PostGIS. Open source extension for PostgreSQL that adds support for spatial
functions and geometry data types to the database.

PostgreSQL. Open source object-relational database system.
 Redis. Open source and BSD licensed advanced key-value cache and store.

Shapefile. Vector data storage format for storing the location, geometry, and
attributes of geographic features.

Tile. Image of 256x256 pixels that represents a fixed geographical region and
makes up a map once combined with adjacent tiles of the same level of zoom.

UTFGrid. Invisible tile layer made up of indexes and data that is shown in the
interactive options of a map.

Web Mercator (projection). Variation of the Mercator projection which is the de
facto standard for Web mapping applications.

Windshaft. Map tile server written in Node.js for PostGIS with CartoCSS styling.
!  

Page ! of 9896

Predictive analysis for cache generation in quadtree based geo visualizations

13.9. References (summary)

[1] CartoDB, Inc. The versatility of retrieving and rendering geospatial data
with CartoDB. May 16, 2013. http://blog.cartodb.com/the-versatility-of-
retreiving-and-rendering-geospatial/

[2] Wikipedia contributors. Shapefile format. Wikipedia, The Free
Encyclopedia https://en.wikipedia.org/wiki/Shapefile

[3] Wikipedia contributors. Keyhole Markup Language format. Wikipedia, The
Free Encyclopedia https://en.wikipedia.org/wiki/Keyhole_Markup_Language

[4] Butler, Howard; Daly, Martin; Doyle, Allan; Gillies, Sean; Schaub, Tim;
Schmidt, Christopher. GeoJSON format. http://geojson.org/geojson-spec.html

[5] PostGIS. http://postgis.net/

[6] CartoCSS. https://github.com/mapbox/carto

[7] Mapnik. http://mapnik.org/

[8] Windshaft. https://github.com/CartoDB/Windshaft

[9] UTFGrid specification. https://github.com/mapbox/utfgrid-spec

[10] Leaflet. http://leafletjs.com/

[11] CartoDB.js. https://github.com/CartoDB/CartoDB.js

[12] Mapbox.js. https://www.mapbox.com/mapbox.js

[13] Spain. Ley 14/2010 sobre las infraestructuras y los servicios de información
geográfica en España . http://www.idee.es/web/guest/espanol-lisige

[14] European Union. Directive 2007/2/EC of the European Parliament and of
the Council of 14 March 2007 establishing an Infrastructure for Spatial
Information in the European Community. http://inspire.ec.europa.eu/

[15] RDBtools. https://github.com/sripathikrishnan/redis-rdb-tools

!  
Page ! of 9897

http://blog.cartodb.com/the-versatility-of-retreiving-and-rendering-geospatial/
https://en.wikipedia.org/wiki/Shapefile
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
http://geojson.org/geojson-spec.html
http://postgis.net/
https://github.com/mapbox/carto
http://mapnik.org/
https://github.com/CartoDB/Windshaft
https://github.com/mapbox/utfgrid-spec
http://leafletjs.com/
https://github.com/CartoDB/CartoDB.js
https://www.mapbox.com/mapbox.js
http://www.idee.es/web/guest/espanol-lisige
http://inspire.ec.europa.eu/
https://github.com/sripathikrishnan/redis-rdb-tools

Predictive analysis for cache generation in quadtree based geo visualizations

!  
Page ! of 9898

