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Abstract

We study the critical behavior of the Laplacian roughening model, which describes the growth of tensionless surfaces. This type of

growth phenomena is very important, for instance, in biological membranes and in molecular beam epitaxy. We summarize previous

analytical and numerical results and point out their contradictions and differences, thus making clear the context of our work. Our

contribution, achieved through large scale numerical simulations, is the confirmation that the model exhibits a single continuous phase

transition: the transition takes place between a continuum massless (i.e., with infinite correlation length) bilaplacian behavior and a massive

propagator (finite correlation length).
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1. Introduction

Tensionless surfaces are of great importance in differ-

ent fields and applications, ranging from biology, where

lipid membranes are tensionless for practical purposes [1],

to nanotechnology, where molecular beam epitaxy and

related techniques used to grow devices are carried out in

conditions for which surface tension is negligible [2].

Therefore, from the viewpoint of these and other

applications, understanding the different regimes in which

tensionless surfaces can grow is a very relevant issue. In

this context, in this paper we study the critical behavior

of a model which describes tensionless surfaces. In spite

of its simplicity, the model has been the subject of a

number of studies [3–8], which have led to disparate and

often contradictory predictions of its behavior. Our aim in

this work is to carry out large-scale numerical simulations

that can clarify the actual scenario in which the transition

(or transitions) takes place. Indeed, one of the most

intriguing previous results is the conjecture [3] that the

model undergoes two different phase transitions between

the so-called liquid, hexatic, and solid phases (names

borrowed from studies of two-dimensional melting, but

standard in this context). As we will see below, our

numerical results do not support this picture and allow us

to claim that there is no hexatic phase in the model.

Furthermore, we find that the transition is continuous,

contrary to earlier simulations [5] which reported a first-

order transition.

In order to present clearly our conclusions, the outline

of the paper is as follows. In the next two subsections we

motivate the definition of the model and recall briefly

examples of its applications. We then (Section 2) establish

our notation and define the observables we study. Section 3

is devoted to summarizing all available analytical and

numerical results to date. Section 4 reports the outcome of

our numerical simulation program. Finally, we recapitulate

on our work and its relation to previous ones in the

conclusions, in Section 5.
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1.1. Tensionless surfaces

Generally speaking (see, e.g., [2] for a detailed intro-

duction to the subject), the free energy of a surface

(F=lN�pV+rA) can be written as follows:

F ¼
�
l
v
� p

�Z Z
dx dy h x; yð Þ þ

Z Z
dx dy /ðhx; hyÞ;

where l is the chemical potential, m=V/N is the specific

volume, h(x, y) is the height of the surface above point (x, y),

p is the pressure, and /ðhx; hyÞ ¼ rðhx; hyÞ 1þ h2x þ h2y

q
,

with r being the surface tension and A being the area.

Working at constant pressure, we can study the in influence of

either the chemical potential or the surface tension in the way

the surface grows.

First, the main effect of the chemical potential is to

induce diffusion on the surface from regions with higher

chemical potential to regions with lower chemical potential.

A conserved mass current (the number of particles is

constant) is generated that is restricted to the surface, reads

j ¼ � Dsjl;

and drives dynamics for the surface height, in the form of a

continuity equation

Bh

Bt
¼ �jdj:

Combining both expressions, and having in mind that, to

linear order, the chemical potential (that is proportional to

the mean surface curvature) is related to the surface height

by l ~�j2h, we arrive at

Bh

Bt
¼ Dsj

2l ¼ � j j2
� �2

h; with jN0:

Second, let us consider the other ingredient, surface

tension. Assuming that the chemical potential of the vapor is

uniform, l0, there will be evaporation in places where lNl0.

We can thus write the variation of the height with time as a

linear function of the chemical potential difference:

Bh

Bt
~� l� l0Þ;ð

and so

Bh

Bt
¼ mj2h; with mN0:

If we now include all the above factors in our description,

i.e., we take into account evaporation, surface diffusion and

thermal fluctuations, we can write the following Langevin

equation for the surface height

Bh

Bt
¼ mj2h� j j2

� �2
hþ g r; tð Þ; ð1Þ

where g(r, t) is a Gaussian white noise. This is the

generalized, continuum Laplacian roughening model.1 From

this general expression, by letting r=0, we are left with a

model for continuum tensionless surfaces, henceforth

referred to as the bilaplacian model.

1.2. Examples of tensionless surfaces

One example of a tensionless surface is provided by a

lipid membrane [1]. The fluid of lipids which conforms the

membrane is above its melting point and hence lipids can

move inside the membrane. Recently Gov and Safran [9]

have proposed the following equation to model the action of

the elastic cytoskeleton on the fluid membrane:

j j2
� �2

v rð Þ þ V rð Þv rð Þ ¼ 0; ð2Þ

where v(r)=hh(r)i (i.e., we are in a mean field approx-

imation), and V(r) represents the pinning effect of the

cytoskeleton on the surface. Eq. (2) is the mean field analog

of Eq. (1) for m=0, in the presence of an external potential.

A second instance of tensionless surfaces arises in the

growth of thin films by molecular beam epitaxy (MBE)

[2,6]. MBE is a process of high technological interest, in

which atoms or molecules are deposited on the surface of

the growing sample in conditions such that evaporation is

largely suppressed. This suppression leads in turn, following

the reasoning of the above subsection, to the continuum

bilaplacian model [Eq. (1) with m=0], referred to in this

context as the linear MBE equation.

Finally, the third example is two-dimensional melting.

Nelson [3] proposed the Laplacian roughening model in

order to describe this phenomenon. We specify details of

this model below. We refer the reader to the original work

for details on how two-dimensional melting occurs within

such approach.

2. Model, observables, and their meaning

The Hamiltonian of the generalized Laplacian rough-

ening model is

H ¼
X
r

ðm jdh rð Þ½ �2 þ j j2
dh rð Þ� �2Þ; ð3Þ

where r is denotes position on a (square) two-dimensional

lattice, jd is the corresponding discrete gradient and,

importantly, haZ. The original discrete Laplacian rough-

ening model [3] is obtained by letting r=0.
In order to characterize the model and its possible phases,

it is interesting to define two different correlation functions

1 We can take into account an external flux of particles, F, by

performing the transformation hYh+Ft.
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(or propagators). The first one, the usual height difference

correlation function, is defined as

C rð Þuh h rð Þ � h 0ð Þð Þ2i;
where the brackets denote thermal average, whereas the

slope–slope correlation function is given by

Cd sð Þuh jdh rþ sð Þ �jdh rð Þð Þ2i:
In the continuum model (i.e., continuous heights, haR)

the previous two propagators, as we will refer to them in the

following, behave in momentum space as C( q)~1/q4 and

Cd(q)~1/q2, respectively, as can be easily seen by solving

the linear Eq. (1) in Fourier space. We can define the surface

tension as the coefficient of the quadratic term (in the mo-

mentum variable) in 1/C(q). If a quadratic term is observed

in numerical simulations, it will indicate that the surface has

developed an effective surface tension. On the other hand, if

no quadratic term is present, we will use the term tensionless

to describe the corresponding situation: the surface tension

is absent. Finally, as a standard magnitude to look for phase

transitions, we define the specific heat, c, as

c ¼ 1

V
hH2i � hHi2

	
;




where V=L2 is the volume of the two-dimensional lattice.

3. The Laplacian roughening model: previous results

Before reporting our results, we have to summarize

previous analytical and numerical results in order to place

our findings in their proper context. Therefore, we will now

describe, briefly, results obtained using three different

analytical methods: mapping to a two-dimensional vector

Coulomb gas [3], mean field [7], and renormalization group

(RG) (dynamics) [8]. Subsequently, we will recall the

available numerical results [4,5].

Beginning with the analytical approaches, as we will see

below, the predictions of the aforementioned techniques lead to

largely discrepant results. Without going into much technical

detail, we can sum up the main conclusions as follows:

Nelson Scenario [3]. As mentioned above, the applica-

tion of interest in this case was two-dimensional melting. In

any event, by using the Poisson summation formula the

Laplacian roughening model [Eq. (3) with r=0] can be

written as a vector Coulomb gas, in which the roles of high

and low temperatures are reversed. Taking into account the

most relevant terms in the modified Coulomb gas, a

sequence of two Kosterlitz-Thouless (KT) transitions was

found separating three phases. In terms of the propagators

defined above, those phases were characterized by:

(1) TNTc1: C(r)~r2 log r, Cd(r)~log r (solid phase).

(2) Tc1NTNTc2: C(r)~ log r, Cd(r)~1 (hexatic phase).

(3) TbTc2: C(r)~1, Cd(r)~1 (isotropic liquid phase).

In parenthesis, we have collected the physical meaning of

the different phases in the melting context. See [3] for

further details.

MeanField Scenario [7]. In this approach, the starting point

is the Bogoliubov–Feynman inequality for the free energy:

FVF 0 þ hH�H0i0uFMF

H0u
T

2

X
q

S 1 qð Þhqh q

This is a variational approach in which the propagator,

S(q), itself is the variational parameter. When particulariz-

ing the mean field free energy, F
MF
, to two dimensions, a

single, first-order phase transition is found.

Fig. 1. Propagators. T 1.8.
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Renormalization Group Scenario [8]. Renormalization

begins with the Langevin equation for the continuum limit

[7] of model (3), which is renormalized using the scheme of

Nozières–Gallet [10]. In a very sketchy manner, we can

summarize this approach as follows: let us define

Lc lð Þ ¼ j lð Þ=m lð Þp
; l ¼ log b, b being the scale factor in

RG; then, it is found that, if LbLc(l), the surface is

tensionless, otherwise surface tension is generated. In

addition, for large lattices (lYl) there is always surface

tension and, as a consequence, there is a single KT phase

transition, but the high temperature phase is as for the

Gaussian roughening model [described in the continuum by

Eq. (1) for j=0], rather than as for the bilaplacian model

[Eq. (1) for m=0].
Therefore, according to the approaches we have sum-

marized above, there can be one or two phase transitions in

the Laplacian roughening model, that can be KT-type or first

order, properties of the high temperature phase being

unclear. This is a rather unsatisfactory situation that calls

for further research. Coming now to the available simulation

data, we point out that numerical simulations performed by

Bruce [4] seem to confirm the Nelson scenario with Tc1=2.2

and Tc2=1.64. However, results obtained by Janke and

Kleinert [5] in a modified model would imply a first-order

Fig. 2. Propagators. T 1.5.

Fig. 3. Peak of the specific heat as a function of L.
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phase transition in the Laplacian roughening model at

Tc=2.454, in contradiction with Bruce. We thus see that the

numerical simulations have not shed any light on the

discrepancy so far, hence the need for the additional work

we are reporting here.

4. Numerical simulation results

In this section, we report on the results of our large-scale

numerical simulation program designed to test the different

scenarios we have seen in the previous section. To this end,

we begin by computing the normal and slope propagators at

T=1.8. In Fig. 1, it can be seen that both propagators follow

the continuum bilaplacian prediction (1/q4 and 1/q2

behaviors, respectively), hence neither the Bruce scenario

nor the Janke and Kleinert scenario can be valid, at least not

with the critical temperatures reported by them.

We have repeated the computation in the low temperature

region T=1.5. Fig. 2 shows a dramatic change of behavior:

The slope–slope propagator shows a bell shape and the

normal propagator shows a plateau in the low momentum

regime, indicating a massive phase (or, in other words, a

finite correlation length). We can explain these two

behaviors assuming a massive continuum bilaplacian model,

which has 1/( q4+m4) as the normal propagator, where the

mass m is the inverse of the correlation length of this phase.

This behavior for the normal propagator implies a behavior

Fig. 4. Tc(L) as a function of L. Fit to Eq. (4).

Fig. 5. Tc(L) as a function of L. KT scenario: fit to Eq. (4).
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q2/( q4+m4) for the slope–slope propagator, which indeed

presents the bell shape. It is very important to make clear

that in Figs. 1 and 2 there are no finite size effects within our

numerical accuracy: data for L=64 and for L=128 are

compatible up to statistical errors.

As an additional check, we have studied the behavior of

the specific heat. This observable shows a clear maximum

as a function of temperature for a given lattice size. We have

plotted the value of that maximum as a function of the

lattice size in Fig. 3. In the low L region linear behavior is

observed, for large lattices a plateau seems to have been

achieved. This behavior resembles that of the peak of the

specific heat in a KT phase transition, and implies a specific

heat critical exponent aV0, i.e., there is no divergence of the

specific heat. We can do further analysis by monitoring the

dependence of the apparent critical temperature, Tc(L)

(defined as the temperature in which the specific heat

shows the maximum for a given lattice size) on the lattice

size. This apparent critical temperature scales, in an ordinary

second order phase transition, as [11]

Tc Lð Þ ¼ Tc þ aL 1=m: ð4Þ

In Fig. 4 we plot Tc(L) versus L and the fit to Eq. (4). We

obtain m=0.70(7). However, this value of m, along with our

result that aV0; implies violation of the hyperscaling

relation [11] a=2�md, for d=2. Hence, we try a fit motivated

by the KT scenario [11]:

Tc Lð Þ ¼ Tc þ a

logLþ gð Þ2 ;

where a and g are constants, and Tc is the bulk critical

temperature. As can be seen from Fig. 5, this fit is in very

good agreement with the numerical data. Nevertheless, a

definitive assessment of the order of the transition requires

further research, which will be presented elsewhere [12].

5. Conclusions

Having presented our numerical simulation results, we

are in the proper position to discuss them in the light of

previous work and to draw some conclusions from that

comparison. To begin with, the outcome of our simulations

makes us confident that the system behaves in a continuum

massless bilaplacian way at T=1.8, i.e., at that temperature

the model exhibits an infinite correlation length. This result

contradicts those reported by Bruce [4], for whom the

system should be in Nelson’s hexatic phase, and by Janke

and Kleinert [5], who found the transition at a much higher

temperature. Furthermore, we have seen no sign at all of the

two-transition scenario proposed by Nelson [3]; indeed, the

system undergoes a continuous phase transition near T=1.64

(where the system develops a non-diverging specific heat

peak) between a high temperature phase, well described by

the bilaplacian, and a low temperature one which can be

described by a massive (finite correlation length) quartic

propagator. However, further studies are needed to exclude

the presence of a quadratic term (which would indicate

surface tension effects) in this propagator (i.e., 1/C(q)=

aq4+bq2+c). To be more specific about the possibility of

having two phase transitions, on the grounds of our

simulations we are confident2 that propagators at T=1.64

behave as at T=1.5, meaning that T=1.64 would still be the

low temperature phase. Conversely, at T=1.7 the propaga-

tors are still as at T=1.8, i.e., we are in the high temperature

phase. Hence, a detailed study of the region near Ta(1.64;

1.7) is needed in order to discard completely the inter-

mediate hexatic phase proposed by Nelson (work along this

line is in progress, and will be reported elsewhere [12]). As

for the type of the transition we observe, the choice for the

critical exponents aV0 and mg0.7 violates hyperscaling in

two dimensions, so that the phase transition might be in the

KT universality class. The behavior observed in the specific

heat would reinforce this conclusion.

To summarize, our numerical results are not compatible

with the Nelson scenario (two phase transitions), the

variational approach (a single first order phase transition)

and with the RG (that differs in the properties of the high

temperature phase). We hope that further numerical research

will lead to a final conclusion, although we believe that the

results we are reporting here should not be far from it. Once

the correct scenario is assessed, it will be interesting to try to

give an accurate analytical description of it.
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