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Aims of the Tutorial

1. Survey of AIP: Automatic Inductive 
Programming is a fragmented field
(ILP, GP, Program Synthesis, ...)

2. To understand AIP as an extension to 
Machine Learning

3. Focus on search-based techniques
(mostly evolutionary techniques) 



INTRODUCTION TO AIP. A 
SURVEY

Introduction
Deductive Automatic 

Programming
Synthesis of Functional Programs
ILP for Program Synthesis
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Automatic Programming

Automatic Generation of Programs
The user says what to do, the computer 
builds a program that does it
Saying what to do must be easier than 
writing the program by hand



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Related Fields
Universal Planning 
Production Rule Systems (PRS)
Reinforcement Learning (learning general 
strategies)
Recurrent Neural Networks (sequences of
executions)
Learning classifier system (rule-based systems. 
Pittsburgh and Michigan approaches)
Inductive Logic Programming (powerful 
relational language)
...
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Importance of AIP
From a scientific point of view: 

A program is the most general structure 
that another program can learn (well 
beyond propositional Machine Learning)

From a practical point of view:
There are problems whose solution is a 
computer program and not some other 
Machine Learning propositional structure 
(decision trees, neural networks, ...) 
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Propositional Machine 
Learning. Input

Sky Temperature humidity Wind Tennis
Sun 85 85 No No

Sun 80 90 Yes No

Clouds 83 86 No Yes

Rain 70 96 No No

Rain 68 80 No Yes

Clouds 64 65 Yes Yes

Sun 72 95 No No

Sun 69 70 No Yes

Rain 75 80 No Yes

Sun 75 70 Yes Yes

Clouds 72 90 Yes Yes
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Propositional Machine 
Learning. Output

Sky

Humidity WindYES

YES NO NO YES

sun
clouds

rain

<=75 > 75 yes no

IF Sky = sun

Humidity <= 75 THEN Play = yes

ELSE IF Sky = sun

Humidity > 75  THEN Play = no

ELSE IF Sky = clouds  THEN Play = yes

ELSE IF Sky = rain 

Wind = Si      THEN Play = yes

ELSE Play = no

Decision trees Rules
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Automatic Programming. 
Input (specification)

Input/output pairs: (list sorting) 
([2,1], [1,2]); ([2,3,1], [1,2,3]); 
([3,5,4], [3,4,5]); ([],[]); ...

Primitives:
(dobl start end work): for loop 
(wismaller x y): return smaller
(wibigger x y): return bigger
(swap x y)
(e1+ x) (e1- x) (e- x y) : increase, decrease, substract
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Automatic Programming. 
Output
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Equivalente to (kind of 
“bubble sort”)
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AIP as an Extension to 
Propositional Machine Learning

Variable input size
Use of conditionals (if-then-else, case)
Reuse:

Use of variables (reuse of computations)
Use of subroutines (reuse of code)
Use of loops and recursivity (reuse of code)

Turing-complete languages
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For What Kind of Problems?

Complex domains where human beings 
find difficult to write programs
And, full algorithms are required (with 
conditionals, subroutines, loops, ...)
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For What Kind of Problems?
Programming quantum computers
Programming parallel computers
Machine Conde Programming
Programming agents in complex domains (ej: 
Robosoccer)
Programming text transformations from user 
supplied examples (web pages, ...)
Behavioral cloning
Etc.



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Behavioral Cloning (Extracting 
Operational Knowledge)

Agent to be cloned

Observer Agent

Inputs / 
sensors

Clon Agent
Model (computer program)

Outputs / 
Actions
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Types of AIP

Deductive: to generate a program 
from a high-level description
Inductive: to generate a program 
from a set of instances
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Deductive Automatic 
Programming
Artificial Intelligence + Software 
Engineering
Main goal: generate a program from a 
high-level description, easier (and shorter) 
to write than the actual program.
However, this field includes compiler 
techniques for the optimisation of 
programs, tools for helping programmers, 
etc.
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Deductive Automatic 
Programming Techniques

Program analysis, transformation, and
optimisation (compilers techniques)

Memoization, sentence ordering, tail
recursivity, rewriting rules (* ?x 1) → ?x, ...

Programming assistants (Apprentice)
Scientific program generation (Kant)
High-Level languages (SML, SETL –set 
theory based-)
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Deductive Automatic 
Programming Tools

Automatic Programming Server: 
http://www.cs.utexas.edu/users/novak/cgi/ap
demo.cgi

Generating procedures for specialized types from
abstract types
Type conversion

Graphical Programming System: 
http://www.cs.utexas.edu/users/novak/cgi/gp
server.cgi

http://www.cs.utexas.edu/users/novak/cgi/apdemo.cgi
http://www.cs.utexas.edu/users/novak/cgi/apdemo.cgi
http://www.cs.utexas.edu/users/novak/cgi/gpserver.cgi
http://www.cs.utexas.edu/users/novak/cgi/gpserver.cgi
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Deductive Automatic 
Programming
Transformational and Deductive Systems 
(Refine, KIDS; Manna & Waldinger 92)
Specifications are written by means of formal 
languages
An specification is a theorem to prove
An Automatic Theorem Prover constructs the 
program
Specification -> theorem -> proof -> program
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Example: Amphion [Stickel, 95]
“Deductive Composition of Astronomical 
Software from Subroutine Libraries”
Astronomical domain (solar system)
Example: generate a program that tells where 
the shadow of Io is on Jupiter at a particular 
time
The program is made of calls to astronomical 
subroutines from the SPICE library
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Where is the shadow of Io?

Photon-sun-Io

Photon-Io-Jupiter

Photon-Jupiter-Voyager2

Shadow-point

Ray-Sun-to-Io
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Amphion. Shadow of Io 
Theorem
Is there a shadow-point, that is at the 
intersection of Ray-Sun-to-Io and Júpiter-
Ellipsoid ?
(exists sp?) in-ray(Sun,Io,Jupiter, Voyager, 
sp) & in-elipsoid(Jupiter, sp)
This theorem is represented in graphical form
Then converted to predicate logic
Then a constructive proof is obtained by the 
SNARK theorem prover
Then, a FORTRAN program is generated
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Graphical 
specification of 
theorem

Input

Output

1 2

3

Sun
Io

Voyager

Júpiter
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Theorem (first order logic)
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FORTRAN PROGRAM
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Amphion

Advantages:
Easy to use (after 1h training) 

Experts: from 30m to 5m
Non-experts: from several days to 30m

Lmitations: 
Programs made of calls to subroutines, no 
conditionals, no loops, no recursivity
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Pros/Cons of Deductive AP

+: Generated programs are guaranteed to 
be correct
- : In general, it is difficult to write
correct and complete formal 
especifications, specially if the problem 
is not well-defined
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Automatic Inductive 
Programming

Goal: to generate computer programs from 
instances
This is usually achieved by a heuristic search
in the space of computer programs
Pros/Cons:

+: Specifications are easier to write
-: Specifications are not complete -> It is not 
guaranteed that the generated program will be 
absolutelly correct 
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AIP specifications
Specifications are composed of:

Language: primitives to be used by the 
AIP system to construct the solution 
program
Heuristic: evaluates candidate solutions
(programs). There are basically, two types:

Input / Output pairs
Performance measure
(or combinations of both) 
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Input / Output specification

Example: create a sorting program
Input / output pairs: 

([2,1], [1,2]); ([2,3,1], [1,2,3]); 
([3,5,4], [3,4,5]); ([],[]); ...

Primitives:
(dobl start end work) (wismaller x y)
(swap x y) (wibigger x y)
(e1+ x) (e- x y) (e1- x)
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Performance Measure 
Specification
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Performance measure 
specification

Performance measure:
Count how many dots the Pacman ate in 
one game

Primitives:
if-obstacle, if-dot, if-big-dot, if-phantom, 
Forward, turn-left, turn-right
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Example of strategy for 
Pacman

if-phantom then {
turn-left;
turn-left;
go-forward;}

else if-big-dot { 
go-forward; 
girar-derecha;}
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Types of Automatic Inductive 
Programming

Synthesis-based: the program is built piece
by piece, never actually executed

Synthesis of Functional Programs
Synthesis of Logic Programs

Search-based: 
A search technique (genetic algorithms, ...) is 
used to search in the space of computer 
programs
Basically it is “iterated generate and test”
Candidate programs are executed (run) to 
determine how well they perform
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LISP Program Synthesis

Seminal work: Summers P. 1977. "A 
Methodology for LISP Program Construction 
from Examples," Journal of the ACM
Smith, D. 1984. “The Synthesis of LISP 
Programs from examples. A survey”. Mac 
Millan Publishing.
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Two Steps in LISP Program 
Synthesis

1. Traces (computations) are created for
individual input/output pairs

2. Then, patterns (like recurrence / 
recursivity) are identified in the traces
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LISP Program Synthesis
Idea: “For some classes of programs, a few well-
chosen input/output pairs, determine the general 
program”
Example (last): [(A),A]; [(A B), B]; [(A B C), C]

T1: A=first((A))
T2: B=first(rest ((A B)))
T3: C=first(rest (rest ((A B C))))
TK: last=first(rest ... rest (list))

General pattern (program): “Apply k-1 times rest, 
then apply first”
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LISP Program Synthesis

T1: A=first((A))
T2: B=first(rest ((A B))) =

T2 = T1(rest((A B)))

T3: C=first(rest (rest ((A B C))))
T3 = T2(rest((A B C)))

TK: last=first(rest ... rest (list))
Tk = Tk-1(rest(list))
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LISP Program Synthesis
• That is, traces are obtained from input/output 

pairs, and then the general pattern is 
identified

• Actually, recursive programs are synthesized
by applying Summers’ Basic Synthesis
Theorem

last(x) =
Case singleton?(x) 

Yes: return first(x)
No: return last(rest(x))
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Structure of (Recursive) 
Learned Programs

G(x) = F(x, constant)
F(x,z) = 

Case
p1(x): f1(x,z)
...
pk(x): fk(x,z)
Else H(x, F(b(x), G(x,z)))

X is the main variable, Z is a secondary variable
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Examples of Programs
(last x) =

(cond 
((atom (cdr x)) 

(car x))
(T (last (cdr x)))))

(but-last x) =
(cond 

((atom (cdr x)) nil)
(T (cons (car x) 

(but-last (cdr
x)))))

(reverse x) = (rev x ‘())

(rev x z) = 

(cond  ((atom x) z)

(T (rev (cdr x) (cons (car x) z))))
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Assumption on Input/Output 
Pairs

x/y are sorted from simple to complex

No atom (element) appears twice in x

All atoms (elements) in y are also in x 
(selfcontained). 

If all this happens, each input/output pair has a 
unique trace

Traces can be found by enumeration



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

LISP sublanguage

Language: 
Car: (car ‘(a b c)) = a
Cdr: (cdr ‘(a b c)) = (b c) 
Cons:  (cons ‘a ‘(b c)) = (a b c)
Atom: (atom ‘a) = T
Cond: conditional

Operates only with lists (no numbers)



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Obtaining traces
For every input/output pair (x,y), find f such that: 

y = f(x)
1. By enumeration of compositions of car and cdr, 

try to find a direct relation between x and y: 
Ej: trace[(A),A] : y = (car x)

2. If that fails, then divide and conquer: find traces 
f1 and f2 such that:

(car y) = f1(x)
(cdr y) = f2(x)
Trace[x,y]= (cons f1(x) f2(x))
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Obtaining Traces (Divide and 
Conquer)

Trace[x, y]

Trace[x, (car-y . cdr-y)]

f1:Trace[x, car-y] f2: Trace[x, cdr-y]

Cons
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Obtaining Traces

No direct relation for Trace [(A B), (B)]
X = (A B); Y = (B); (car Y) = B; (cdr Y) = ()
Divide and conquer:

f1: (car Y)  =  B   = (car (cdr X)
f2: (cdr Y)  = ()   = ()
Trace[(A B), (B)] = (cons f1(X) f2(X)) =        
(cons (car (cdr X)) ())   
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Recurrence Detection (Basic 
Synthesis Theorem)

Let traces be:
y1 = f1(x1)
y2 = f2(x2)
...

If:∀i  fi+1(x) = H(fi(b(x)),x)
fi(b(x)) appears just once in H (b made of car/cdr, H made of 
cons/car/cdr)
This means that, for instance, f2 is embedded in f1
Pattern matching algorithms

Then: F(x) = case
p1(x) : f1(x)
Else:H(F(b(x)),x)
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Conclusions. Synthesis of LISP 
programs

[Summers, 77] Identifies recursivity by detecting a 
trace being embedded in another trace
It works because:

Restricts input/output (x,y) pairs so that trace f is 
unique in y = f(x)
It restricts the target to be learned (one-argument 
recursive functions)
It works only on structural tasks on lists. Structural: the 
task only depends on the structure of the list, not on its 
content. Sorting is beyond its scope.
Trace generation is domain dependent! (lists)

Good idea: using traces
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Applications of Program 
Synthesis

Learning by Demostration / Learning by 
Example
Teacher – Student paradigm
Computation traces come from users, 
working through graphical interactive 
interfaces 
Example: TELS learns text-editing macros 
from the user and generalizes them with 
loops and conditionals [Witten et al. 93]
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Extensions. Synthesis of
Functional Programs
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Joint International Conference
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Synthesis of Functional Programs”. ICML’05 
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Schmidt Approach
It goes well beyond Summer’s
Language independent
Multiple recursion
Multiple arguments
Linear, tail, and tree recursion
Mostly, structural tasks (lists, trees, ...)
Learning recursive programs is basically 
equivalent to learning some kind of grammars
Application: XSL transformations (traces 
generated by Genetic Programming)
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Some results (EBG paper)
Total time
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Types of Automatic Inductive 
Programming

Synthesis-based:
Synthesis of Functional Programs
Synthesis of Logic Programs:

Without schemes
With schemes

Search-based



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Inductive Logic
Programming (ILP)

Machine Learning framework for learning first-order
logic expressions (horn clauses)
ILP language is more expressive than typical 
propositional ML languages 
Actually, it is basically Turing-complete (computer 
programs can be written in it with recursivity and
“subroutines”)
However, it is mostly used for relational concept 
learning, not for program synthesis



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ILP Example

Learned Knowlege:
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General to Specific (top-down) 
Search (FOIL)

Also:

Bottom-up: GOLEM, 
CIGOL

Proposicional: LINUS



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ILP Allows for Recursivity

Obtained knowledge:
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ILP for Program Synthesis
Positive and negative instances

Background knowledge: select(a, [2,a,3,4], [2,3,4])

Obtained program
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Types of Synthesizers
No schemes: TIM, MARKUS, SPECTRE, MERLIN, 
WIM, FILP, ...
With schemes: SYNAPSE, DIALOG, 
METAINDUCE, CRUSTACEAN, CLIP, FORCE2, 
SIERES, ...
Pierre Flener, Serap Yilmaz. 1999. Inductive 
Synthesis of Recursive Logic Programs: 
Achievements and Prospects. Journal of Logic 
Programming 
Flener et al 1994. ILP and Automatic 
Programming: Towards Three Approaches. 
4th International Workshop on ILP
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WIM (top-down, no schemes) 
[Popelinsky, 95]

5 seconds to 5 minutes
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WIM. Results (1 query, 
interactive)
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Quicksort Code

But 
partition 
and 
append are 
primitives!
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SYNAPSE (With Schemes) 
[Flener, 95]

Critique: instances are weak specifications
Goal: 

Compress ([a,a,b,b,a,c,c,c], [a,2,b,2,a,1,c,3])
From instances:

Compress ([],[])
Compress ([a], [a,1])
Compress ([b,b], [b,2])
Compress ([c,d], [c,1,d,1])
Compress ([e,e,e], [e,3])
Compress ([f,f,g], [f,2,g,1]
Compress ([j,k,l], [j,1,k,1,l,1])
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SYNAPSE. Properties

In addition to instances, it adds
background knowledge in the form of
properties:

Compress ([X], [X,1])
X=Y -> Compress([X,Y], [X,2])
X <> Y -> Compress([X,Y], [X,1,Y,1]

Interactive
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SYNAPSE. Schemes
Divide and conquer:
R(X,Y) iff Minimal(X), Solve(Y)
R(X,Y) ifff 

1<= k <= c
Non-Minimal (X)
Decompose (X, HX, TX)
Discriminatek (HX,TX,Y)
R(TX,TY)
Processk (HX,HY)
Composek (HY,TY,Y)
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SYNAPSE. Schemes
(Divide and conquer simplified wrt [Flener, 
95])
R(X,Y) iff Minimal(X), Solve(Y)
R(X,Y) ifff 

Non-Minimal (X)
Decompose X => Head + Tail
Solve(Head) => HY
Solve(Tail) => TY
Solution Y = HY + HX
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SYNAPSE. Algorithm
Expansion phase:

Create a first approximation
Synthesis of Minimal and Non-Minimal
Synthesis of Decompose
Insertion of recursive atoms

Reduction phase:
Synthesis of Solve
Synthesis of Processk and Composek
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SYNAPSE. Other Solved 
Problems

Delete (E,L,R) [6 instances, 3 
properties]
Sort (L,S) [10 instances, 1 property, 
split, partition]. Three programs: 

insertion-sort O(N2), 
merge-sort  O(N log(N)), 
quicksort O(N log(N)) were obtained by 
backtracking 
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ILP for Program Synthesis. 
Conclusions

First order logic seems a very natural 
framework for learning programs
(recursivity, “subroutines”, ...)
Formal approach
Good idea: General-to-specific and 
specific-to-general search
Good idea: schemes
Simple programs can be learned
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Other results on ILP for 
program synthesis

J. Stahl. 1993. “Predicate Invention in 
ILP – An Overview”. ECML
Hernández-Orallo, Ramírez-Quintana.
1999. “Inductive Functional Logic 
Programming”, 8th International Workshop 
on Functional and Logic Programming
Rao. 2005. “Learning Recursive Prolog 
Programs with Local Variables from 
Examples”. ICML (one-recursive)
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Search Based AIP. General 
Idea

Incremental Search in the space of 
computer programs. Generate and Test

Fac(n) = if () 
then {}

Else {}

Fac(n) = if (n=0) 
then {1} 

Else {n}

Fac(n) = if (n=0) 
then {1}

Else {n*fac(n-1)}
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Issues
1: Search space is vast 
2: Programs are “fragile”. Recursive or
iterative programs are even more fragile 

=> How to transform programs?
3: An iterative or recursive program may 
never end (or take a long time)

=> How to handle unlimited time?
4: No guarantee that the learned program is 
completely correct (induction)

=> How to handle many i/o pairs or long 
tests?
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Search-Based AIP
(Mostly, functional/procedural languages)

Genetic Search (Genetic Programming):
Tree-based
Grammar-based

Estimation of Distribution Algorithms:
Tree-based
Grammar-based

Iterative Deepening: ADATE
Other: Levin Search, Ant Colony Optimisation, 
...

More general than synthesis-based but require a high 
computational effort!!
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