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1. INTRODUCTION

In macroeconometrics, structural vector autoregressive, moving-average models are
widely employed since they provide a simple, practical representation of structural the-
oretical models. For decades, the most preferred framework has been the structural
vector autoregressive models, under the belief that structural economics models are fun-
damental, which intuitively means that information generated from the history (current
and past values) of observable, endogenous variables is equivalent to the information

constructed from the history of unobservable economic shocks.

Under such an assumption, most empirical studies only focus on the identification
challenges of the contemporaneous effects matrix or the static component of the model.
Nevertheless, the fundamentalness assumption may need to be revised, especially when
the econometrician’s information set is smaller than the information set of the theoretical
model. Moreover, it has been documented that this case may not be quite an unrealistic
situation. Therefore, it might be necessary to develop methods for estimating structural
vector autoregressive, moving-average models without imposing the location of roots but
determining them from observable data. However, this leads to abandoning the Gaus-
sian behavior assumption regarding the structural shocks. Otherwise, it is unfeasible to

distinguish fundamental from non-fundamental models.

In recent years, several methodological works have proposed alternatives for identify-
ing and estimating structural vector autoregressive moving-average models without im-
posing the location of roots by exploiting the non-Gaussian behavior of structural shocks.
Most of these investigations assumed that shocks are serial independent, characterize
the non-Gaussianity by its non-zero third and (or) fourth-order cumulants, and impose
the finiteness of a large amount of higher-order moments. The present research attempts
to fill this gap in the literature by proposing an estimation method that does not require
the finiteness of a large number of higher-order moments or the knowledge of a spe-
cific joint density distribution of structural shocks. Also, the proposed method may be

adapted to structural shocks exhibiting higher-order serial dependence.

Furthermore, one of the critical identification assumptions of the statistical strat-
egy for identifying structural vector autoregressive moving-average models is the non-
Gaussian behavior of all shocks in the system. However, in the literature, few efforts
have been posed to determine the non-Gaussian dimension in a structural system. Fur-

thermore, these investigations assume that the structural model is fundamental, which



makes it unfeasible to apply such proposals to more general contexts. Consequently,
this research also proposes a method for determining the non-Gaussian dimensiéon. Our
proposal is robust to the location of the roots of the dynamic polynomials in the model,
consequently, can be applied to fundamental or non-fundamental contexts. Finally, this
work explores under which conditions it is feasible to employ economically motivated
economic sign restrictions for selecting a permutation under the context of fundamental

structural vector autoregressive models.



2. CHAPTER I: IDENTIFICATION AND ESTIMATION OF
SVARMA MODELS USING PAIRWISE DEPENDENCE
MEASURES

Causal structural vector autoregressions (SVAR) models may deliver biased estimates of causal effects of economic
shocks when data comes from a non-fundamental structural model. A way to address non-fundamentalness in
SVAR or SVARMA models is to allow roots of lag polynomials to lie inside the unit circle. However, relaxing the
location of the lag polynomial roots adds an extra identification problem, consisting of the observational equivalence
between fundamental and non-fundamental representations of a stationary process when only second-order infor-
mation is exploited. Instead of imposing identification restrictions, we employ a statistical identification approach.,
whose primary identification condition is that each structural shock in the system is non-Gaussian distributed. In
this line, the contributions of this paper are twofold. On the one hand, we extend a well-known identification re-
sult for SVARMA models with independent shocks to a situation in which disturbances can exhibit a more general
dependence structure; on the other hand, we propose an estimation procedure that minimizes the distance of the
generalized cumulative spectral distribution of unrestricted and restricted model errors. This procedure does not
require the imposing of a particular joint non-Gaussian distribution of structural errors, as well as it does not need
the existence of a large number of higher-order moments.

2.1. Introduction

Structural vector autoregressive (hereafter SVAR) models have an extended usage in
empirical macroeconomics because they provide a simple framework for identifying eco-
nomic shocks and estimating their causal effects over outcomes of interest, such as GDP
growth, unemployment, and inflation, among others. Identifying the structural shocks
using SVAR models entails a well-documented identification problem. According to Sims
(1980), this identification issue consists of the observational equivalence of any orthogo-
nal rotation of structural shocks, i.e., any orthogonal rotation of structural disturbances

reproduces the second-order information of observed data.

In mainstream macroeconometrics, the strategies for overcoming this identification
problem resort to using external information. Early proposals impose zero or linear re-
strictions over the matrix of contemporaneous effects (see Bernanke and Mihov (1998);
Blanchard and Perotti (2002); Christiano et al. (1996); Sims (1980)). Another type of
restriction is imposed on the long-run effects of economic shocks over some outcomes of
interests, also known as long-run identification restrictions, such as the one employed
in Blanchard and Quah (1989); Gali (1992). An alternative strategy is based on sign
restrictions, which only restrain the direction (sign) of the response of some endoge-
nous variable to changes in a single or a subset of economic shocks (Arias et al. (2018);
Mountford and Uhlig (2009); Rubio-Ramirez et al. (2010); Uhlig (2005)). For instance,

it is a consensus to assume that a positive demand shock increases output and inflation



in the short-run. On the other hand, a more economic-based identification strategy is
the narrative approach. This scheme constructs a measure for an unobserved economic
shock by analyzing extensive policy change information. For instance, C. D. Romer and
D. H. Romer (1989) construct a measure of monetary policy shock by analyzing historical
records of Federal Reserve meetings (see Ramey (2011); Ramey and M. D. Shapiro (1998);
C. D. Romer and D. H. Romer (2010) for applications to identify government spending
shocks). Recently, an identification strategy that uses external measures as a proxy or
instrumental variables for identifying a single shock or a subset of structural shocks has
been introduced (Mertens and Ravn (2013); Olea et al. (2021); Stock and Watson (2018)).

Despite the usefulness of these strategies, they possess essential drawbacks. In the
case of zero, linear or long-run identification restrictions, most of these conditions are not
subject to empirical evaluation unless they are overidentification restrictions. Their sup-
port must be done by appealing to economic intuitions, some of which may be arguable.
Besides, some of the identification restrictions may be challenging to implement. For
instance, zero long-run restrictions are commonly approximated by restricting the cu-
mulative response of a shock over a finite time horizon. Regarding identification based
on sign restrictions, these can only identify a set of models. Consequently, this strategy
entails two sources of variability: sample and model uncertainty. Isolate each of these
sources of variance is challenging. Finally, regarding the strategy using proxy or in-
strumental variables, its identification power depends on the exogeneity and relevance
conditions. Besides, as it is documented in Angelini et al. (2022), when proxy SVARs fea-
ture multiple target shocks, it requires additional point or sign restrictions. Last but not
least, most of these strategies have in common that they were developed for identifying

shocks in a causal (or fundamental) structural VAR model.

The fundamental representation of macroeconomic models has been questioned lately,
as SVAR models’ suitability for properly representing macroeconomic data. Ravenna
(2007) shows that the solution of a dynamic stochastic general equilibrium (DSGE) model
is described much better by an SVARMA model rather than by a causal SVAR model.
Moreover, depending on the chosen parameterization, the structural VARMA model may
have a non-invertible MA component. This characteristic implies that linear combina-
tions of current and future values of endogenous, observable variables can recover unob-
served structural shocks. Under such a situation, a finite lag, stable VAR model would
produce inconsistent estimates of the causal effects of economic shocks, even though the

researcher knew the true structure of the contemporaneous effect matrix.

An approach to address non-fundamental behavior in SVARMA models is to permit

the roots of AR and MA lag polynomials to lie inside the unit circle. However, once



the fundamentalness assumption of the structural model is abandoned and only unit
roots are ruled out, a new identification problem appears. This identification issue con-
sists of the observational equivalence between fundamental and non-fundamental rep-
resentations of a stationary process. This problem means that fundamental and non-
fundamental representations can reproduce a stationary sequence’s first and second-
order information. Velasco (2022a) and Velasco (2022b) call this issue as the dynamic
identification problem. Hence, employing only second-order information for identifica-
tion requires that model errors are serially uncorrelated; thus, it is impossible to dis-
tinguish which representation is correct because both types of representations generate
white-noise model errors. In this sense, imposing that the roots of AR and MA polynomi-
als lie outside the unit circle is an identification restriction that prevents the considera-

tion of non-fundamental representations.

In this paper, the root location of lag polynomials is not imposed. Instead, we fol-
low a data-driven approach for identifying the location of roots and the parameters of
an SVARMA model. To achieve this, exploiting information beyond the second order is
crucial. Therefore, it is necessary to assume that structural shocks are non-Gaussian
distributed. Otherwise, only second-order moments are informative. In Time Series lit-
erature, in a univariate context, Rosenblatt (2000) and Velasco (2022a) show that the
parameters in lag polynomials of a univariate stationary ARMA process are identified if
and only if the random disturbance is an independent identically distributed (hereafter
i.i.d.) process with non-zero third order cumulant and finite fourth order moment. In the
multivariate scenario, Chan et al. (2006) states that any stationary linear process is iden-
tified up to shift-permutation if and only if the structural shocks in the process are i.i.d.
and each of them is non-Gaussian distributed with non-zero third or fourth order cumu-
lants. Velasco (2022b) reach a similar conclusion but characterize non-Gaussianiaty by

third and fourth-order cumulants.

Two standard features of these identification results are that they rely on the inde-
pendence of structural shocks and the sufficient condition of having non-zero third-order
cumulants and finite fourth-order moments. Therefore, the first aim of this work is to
provide a necessary condition for the identification of structural VARMA models with-
out imposing the existence of a large number of cumulants of non-Gaussian shocks, as
well as to provide an identification result for structural models with dependent shocks.
Regarding this latter scenario, Lanne and Luoto (2021); Lanne, Meitz, et al. (2017) can
prove the identification of structural parameters by only assuming that errors are seri-

ally uncorrelated but restricted to fundamental SVAR models.

On the other hand, once identification is assured, the following step is to provide



estimates of structural parameters. In the literature, we can find several estimation
approaches. For the context of fundamental SVAR models, we can point out the works
of Gouriéroux et al. (2017); Guay (2021); Lanne and Luoto (2021); Lanne, Meitz, et al.
(2017). The first one employs a conditional likelihood approach for estimating the pa-
rameters of the causal SVAR, for which it is necessary to assume a joint non-Gaussian
density function for structural errors. The common choice is to assume that each error
follows a t-student density function with a few degrees of freedom. In contrast, Guay
(2021); Lanne and Luoto (2021) use second and higher-order moment conditions; thus,
their estimators of structural parameters are based on the GMM approach. The work of
Gouriéroux et al. (2017) combines moment- and likelihood-based approaches. In the con-
text of non-fundamental models, Gouriéroux et al. (2019); Lanne and Saikkonen (2013)
estimates the structural parameters by maximum likelihood estimation. It is worth
mentioning that the structural model in Lanne and Saikkonen (2013) is a non-causal
SVAR model. He constructs the likelihood of data by assuming that the AR polynomial
of the model is the product of two polynomials, one capturing the causal part and the
other non-causal component. On the contrary, Gouriéroux et al. (2019) estimate a struc-
tural VARMA model with a non-invertible MA component. Unlike these works, Velasco
(2022b) employs a GMM approach using third and fourth-order spectrum cumulant den-
sities for an SVARMA model with possibly non-fundamental roots.

The second aim of this paper is to develop an estimation method that does not rely on
assuming or imposing a particular joint density function for structural errors, which may
expose the estimates to misspecification bias. Additionally, the proposed method should
only assume the existence of a small number of higher-order moments. When third or
fourth-order moments or cumulants are employed for estimation, then it is necessary to
assume the finiteness of the sixth or eighth-order moments for calculating the standard
errors of estimates. This assumption is very problematic because of two reasons. First,
it focuses attention only on particular types of non-Gaussian behavior. For instance, in
a world where shocks are distributed as t-student, the existence of at least eighth-order
moments narrows the attention to distributions with at least nine degrees of freedom,
implying that the fat-tail property is less pronounced and closer to the tail behaviour
of a Normal distribution. Second, estimating accurately higher order moments by their

sample counterparts requires a considerable number of observations’.

For identification and estimation, our approach follows the idea applied by Velasco

(2022a) to a univariate context and employs a generalized dependence measure of pair-

IFor instance, a t-distributed random variable with five degrees of freedom has a population excess
of kurtosis coefficient of 6, but its estimated values are 4.0 and 5.6 with sample sizes of 500 and 5000
observations, respectively.



wise dynamics. With independent shocks, our dependence measure is the centered joint
characteristic function of model errors at two different periods. This measure can be
interpreted as the autocovariance of the complex exponential transformation of model
errors. This measure summarizes all the information in the pairwise joint density func-
tion of model errors. Thus, imposing a particular joint density function for structural
errors is unnecessary. Besides, this measure is well-defined, disregarding the existence
of moments of structural errors. For the context of dependent shocks, we assume that
structural errors are a martingale difference sequence (hereafter m.d.s.). In this case, we
modify the dependence measure and use the autocovariance between model errors and

the complex exponential transformation of shifted model errors.

Once the pairwise dependence measure for model errors is defined, it is necessary
to summarize the information over all lags and (or) leads. In the case of independent
shocks, we have two alternatives. One is to employ the generalized spectral density (GSD)
introduced by Hong (1999). Based on the GSD, the second option is to compute the cumu-
lative spectral distribution (CSD). Both functions are well-defined for any joint density
function of structural errors and do not require the existence of moments of structural
shocks. We use the CSD because its sample counterpart does not require a smoothing
kernel. With the CSD, we construct our population loss function to identify the struc-
tural model, while the sample loss function is employed for estimation purposes. Our
population loss function consists of the distance between the CSD for unrestricted model
residuals and the CSD imposing the corresponding dependence structure and the mutual
independence components assumption. Using this loss function, we show that identifica-
tion (up to sign permutation) of structural parameters requires non-Gaussian behavior
in a broad sense and only the existence of standard second-order moments in the con-
text of independent shocks. Furthermore, in the case of dependent shocks, identification
(up to sign-permutation) requires the existence of second-order moments of structural
shocks and peculiar non-Gaussian behavior, detailed below, consisting of non-linearity
of expectations of structural errors conditional to non-constant linear filters. Regarding
the asymptotic properties of our estimators, in the case of i.i.d. shocks, the finiteness
of third-order moments is the only requisite to find the asymptotic distribution of the
structural parameter estimator; in the case of m.d.s. structural errors, it required the
finiteness of at least fifth-order moments for finding the asymptotic distribution of the

estimator.

The simulation evidence shows that our method satisfactorily identifies the location
of the roots with a relatively small sample size (T' = 250). In the case of the bivariate

structural model, the rate of correct root location is above 90% when structural shocks



are asymmetric. In contrast, this rate decays when the errors follow a symmetric non-
Gaussian distribution, especially for VARMA models with non-zero AR and MA compo-
nents. To analyze our method’s robustness, we study how well the proposal identifies the
location of roots when structural shocks behave like a multivariate Gaussian random
element. The rate of correct root location obtained with the Montecarlo experiment is

quite close to the theoretical rate when only errors are required to be white noise.

Finally, we applied our proposal to the dataset analyzed in Blanchard and Quah
(1989). This dataset contains only two endogenous variables, GDP growth, and unem-
ployment rate. We select two different specifications. The first case assumes that the
roots of the AR polynomial lie outside the unit circle, but the location of the roots of the
MA polynomial is not determined. The second specification is an unrestricted structural
model, which does not restrict the root location of both the AR and MA polynomials. In
both scenarios, the overall degree of the polynomials is set to p = 1,q = 1. The estima-
tion results are the following: for the first restricted specification, our proposed method
identifies that the roots of the MA polynomial lie outside the unit circle, i.e., our method
identifies that the MA polynomial is invertible. Based on the estimation of the structural
model, we compute the estimated causal effects of both identified shocks (i.e., impulse
response functions of each shock). The analysis of these causal effects shows that we
identify a shock with a non-zero long-run effect and another with zero long-run effect
over GDP growth. It is worth mentioning that the identification of these shocks did not
require imposing any external identification restriction. In the scenario of not restricting
the SVARMA model’s root location, our method identifies MA roots outside the unit circle
but AR roots inside the unit circle. In other words, our proposal identifies a non-causal
but invertible SVARMA model.

The remainder of this chapter is organized as follows: Section 2.2 details the struc-
tural model and the technical assumptions and explains the methodology we propose.
Section 2.3 deals with estimating the parameters of the structural VARMA model and
states the asymptotic properties. Section 2.4 presents the simulation study results and
some robustness analysis of the methodology for independent shocks. Section 2.5 shows
the simple empirical application of our proposed procedure. Finally, Section 2.6 con-

cludes.



2.2. Model, Assumptions and Identification

2.2.1. Structural VARMA Model

Let Y; be a d-dimensional vector of observable, zero-mean, endogenous variables. Y is

the stationary solution of the following structural model,
ALY =M(L)¢,, (2.1

where A(L) = Ay — IZZIAkLk and M(L)=Y]_, M L* are matrix lag polynomials of de-

p
k=0’

det(Ao)det(A,)det(My)det(M,) # 0. L represents the lag (back-shift) operator (L*Y, =

Y; ). € represents the d-dimensional vector of unobservable structural shocks, which

gree p and g, respectively. {A M Z:l} are time-invariant d x d matrices;

receive an economic interpretation. A general behavior assumed for structural errors is
that they are an ergodic, white-noise, or serially uncorrelated process. Later, we state

explicit additional structure on these unobserved structural shocks.

The structural model in (4.1) can be expressed alternatively as
®(L)Y;=0O(L)Bg;, (2.2)

with ®(L) =I5 - Y} _, ®;L*, ©(L) =I5 +Y]_ ©,L*. The relationship between coeffi-
cients in equations (4.1) and (4.2) is the following: ®; = AalAk for k=1,...,p; O =
Aj'M M A for k =1,...,q; and B = A;*M,. Although both equations (4.1) and (4.2)
are equivalent, we use the expression in (4.2) for referring to an SVARMA model through-

out this work.

Notice that the structural model in (4.2) resembles the standard notation for the
SVAR model in macroeconometrics. In fact, if ¢ = 0, then MA polynomial (L) = I; and
the SVARMA model collapses to the SVAR model. When p = 0, our model is an SVMA.
Besides, polynomials ®(L) and O(L) drive the dynamics of endogenous variables, while
B accounts for the static, contemporaneous relation between endogenous variables and
unobserved shocks. The parameters of interest, known as structural parameters, are
({@r),_;, O1);_,, B).

Unlike SVAR models, SVARMA models have received less attention in macroecono-
metrics literature. This lack of attention can be explained by the various identification
problems a structural VARMA model faces. These issues can be grouped into three cat-
egories: (1) the location of roots of ®(L) and O(L) polynomials (dynamic identification

problem) ; (2) identification of static component, B (static identification problem); and (3)



the issue of unique representation. This latter has been explored by different authors
(Deistler and Hannan (1981); Deistler and Hannan (1988); Hannan (1976); Liitkepohl
(2005); Reinsel (2003)), and consists on the problem of having different AR and MA poly-
nomials that can lead to the same structural model as in (4.2). This problem is ruled out
in a univariate context by assuming that AR and MA polynomials are coprime, meaning

that AR and MA polynomials do not share any root.

In a multivariate environment, assuming that ®(L) and O(L) are left coprime, it is
not enough to avoid the unique representation problem. According to Liitkepohl (2005),
there exist cases in which it is possible to multiply both polynomials by a uni-modular
factor, generating an equivalent representation to the structural model in (4.2). This
identification problem is out of the scope of this paper. To ensure a unique representation
of the SVARMA model, we imposed that dynamic polynomials in equation (4.2) satisfy
the conditions stated in Hannan (1976).

2.2.2. Dynamic Identification Problem

Dynamic identification problem consists of the observational equivalence between funda-
mental and non-fundamental representations of any stationary process. In our context,
where the vector of observable endogenous variables is the stationary solution of the
model in (4.2), the dynamic identification problem can be interpreted in the following
way: there exist a pair of polynomials ®(L) and @(L) which are different from the true
ones, with no roots over the unit circle, such that the model errors u; = @_I(L)(i)(L)Yt

are serially uncorrelated.

Let us see this problem with a simple example. Assume Y; is generated by a non-
invertible SVMA(1) model, i.e. Y; = &,+0%¢,_1 with &, ~ WN(0,I5) and 09 = diag (011,0, 022,0)

with [0;; ol > 1 for i = 1,2. The second order information of Y, is

I,+070), hr=0
v e/, h=1
Vi =Cov(¥Y 1, Y1) = 5 :
e?, h=-1
0, | =2

Now, if the researcher represents Y, as an invertible SVMA(1),1i.e. Y; = (I 9+ (:)1L) u;
with @1 = diag( L1 ) Then, the model errors are u; = (I +(:)1L)_1Yt . Since the

11,0 220
roots of P(z) = det(Is + ©12) are outside the unit circle, hence P~ 1(z) =I5 - 01z + (:)322 -
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~3
0723 +...; therefore

o0
u = (lo-O:1L+OIL? - OIL% + .| (I, +O3L) e, = Y 81801,
=0

(1107 o1 =63 o) 0

. Q l ® l_
with 8o = I3 and &; = [-01]' + [-01]' '@ = 0 (-1'0;L {1-62, )}
22,0 22,0

for [ = 1.
After some algebraic manipulations, we have

7,016, =0%0), h=0

Elwa, | =v, = )
' 88, =0, h =1

which means that {u;};c7 is a white-noise sequence.

The autocovariance function based on the invertible model is

Yi+0,7:0; =000 +1;, h=0
Du _ @0 _
yre - 0] v, =01, h=1
" reeh =, h=-1
0, |h] =2

which is the same second-order information as the one obtained for the data, y{.

Therefore, we say that both representations Y; = &; + (H)(l)et_l and Y; = u; + Oqu;_1
are observationally equivalent, which implicates that requiring model errors to be se-
rially uncorrelated, i.e., a white noise process, does not provide enough information for
distinguishing these two representations. This observational equivalence between non-
invertible and invertible models has a tremendous impact on identifying the causal ef-
fect of a shock. The impulse response function (the causal effect measure of structural

shocks) obtained from both representations are the following:

1, h=0 011,0, h=0
0Yt+h,1 0Yt+h,1
=~ = = and —— = =1,
9511 11,0 h=1 our, 1, h=1
0, h=2 0, h=2
where agtg% represents the response of the first endogenous variable to first structural

shock, while aglilh’l is the causal effect to a standardized movement of the first error in
t,1

the fundamental representation. Without loss of generality, we can assume that 011 > 1,

11



then under the correct specification, the largest causal effect of structural shock €1 hap-
pens one period after the change in the shock. On the contrary, using the fundamental
approximation, the largest causal effect is contemporaneous. Although the sign of both

responses is the same, the economic implications are quite different.

Risks of imposing causal and invertible representations

In our previous example, we have seen that if the researcher imposes a fundamen-
tal representation of data generated by a non-fundamental model, this will produce bi-
ased impulse response functions, which lead to erroneous conclusions. Nonetheless, is
it still possible to employ alternative methods that do not require estimating an SVAR
or SVARMA model for computing the causal effects of shocks? Local projections (LPs)
have become quite popular in empirical macroeconometrics because they allow the com-
puting of impulse response functions using simple linear regression techniques (Jorda
(2005)). Plagborg-Mgller and Wolf (2021) proves that LPs and SVAR models provide
the same impulse responses. However, one of the assumptions in their work is that all
roots of the AR polynomial are outside the unit circle, i.e., the correct dynamic repre-
sentation is a fundamental one. When the actual model is non-invertible, which implies
structural shocks cannot be recovered using present and past information of endogenous
variables, Stock and Watson (2018) propose to employ instrumental variables approach
for achieving identification. Such a procedure can handle non-invertibility. Nonetheless,
this approach depends on the existence of valid instruments for each shock if we are in-
terested in estimating all the causal effects. Additionally, inference may be problematic

in the case of weak instruments.

If the SVAR model is non-fundamental, LPs may not be a suitable alternative. Let us
see this with a simple example. The correct structural model is given by (I +(I)(1)L)Yt =&
with £ ~ WN(0,I5) and det(Ig + d)?z) #0 for all |z| =1, i.e. Y; is non-causal SVAR(1).
The researcher approximates data using a fundamental model, Y; = ®(L)u,; with ®(L) =

Is+®L, whose roots outside the unit circle, and u; = Ci)_l(L)Yt is a white noise process.

Local projections estimate the following linear regression, assuming that u; is ob-
served:

Yiis =B X:+asu;+vsyg,
where X, is a vector containing lagged values of Y.

Therefore, if the correct specification is a fundamental model, then u; is £;. More-
over, according to Jorda (2005), a, represents the causal effect of shock u; and can be

consistently estimated using the least squares method. The explanation behind this
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result is that under fundamentalness, endogenous variables can be represented as an
infinite, causal moving average of structural shocks, implying that variables in X; are

not correlated with the error term v;,.

Nonetheless, when the correct specification is a pure non-causal SVAR(1), then the
endogenous variables are a linear combination of future values of structural shocks,
Y; =372, Yr&rir. Furthermore, under this context, the errors from a fundamental rep-
resentation, u;, are a dynamic combination of structural shocks’ past, current and fu-
ture values. Therefore, local projections fail to deliver consistent estimates of the causal
effects of structural error changes for two reasons. First, the variables in X; may be cor-
related with the error term. Second, according to Hamilton (1994), the impulse response
(or the causal effect) of a structural shock over a variable of interest can be defined as
IR(t,s,d;) = E(Y ;4sler =di, X)) —E(Y ;5|6 = 0,X;). And, under non-Gaussianity, in the
non-fundamental case these conditional expectations are unknown non-linear functions.
Therefore, LPs only estimate the best linear approximation, which is not equal to the

actual causal effect in this case.

2.2.3. Static Identification Problem

Like in the SVAR context, the structural model described by (4.2) is subject to static
identification problem. Assuming that AR and MA polynomials are identified, then the
model errors are u; = Be;. Thus, the static identification problem implies that model er-
rors based on orthonormal rotations to structural shocks are observationally equivalent.
Formally, assuming E¢;€, = I4, then the variance of model errors is 2, = Eu;u, = BB'.
Now, defining @t; = B#; with & = Q¢} and B =BQ'. Then, i1}, = BB' = T, for any ma-
trix @ that holds Q'Q = I;. Consequently, infinite orthonormal rotations of structural

innovations exist that reproduce the same variance structure of model errors.

2.2.4. Parameterization

In this section, we show a convenient parameterization of the structural model, which
makes it easier to discuss the identification and study of the statistical properties of es-
timators. Besides, our parameterization makes it simple to compute model errors in the
time domain. Let 9 be a K-dimensional vector containing the parameters of the struc-
tural model in (4.2). We assume 9 € 7 < RE, with 7 compact parameter set. Additionally,
the vector of structural parameters can be split as 9 = (ﬂ'l),ﬂfg)' where the block 9p gov-
erns the dynamic part -i.e., the lag polynomials- and 9g, the static component of the

model. Besides, we assume that 9p € RE? and 9g € RS with Kp + Kg = K. In general,
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K<d= d?(p + g +1); when none external restrictions are imposed, then K = d; while if

some external restrictions are set over the structural parameters, K <d.

With the block 9p we can construct AR and MA polynomials, that is ®(L,{p) and
O(L,9p); while with the block 9g, we construct the static component of the model,
B(9g). We denote by 9 = (06,0,8570)/ the true values of structural parameters, then
the elements in equation (4.2) can be rewritten as ®(L) = ®(L,9p o), O(L) = O(L,Ip o)
and B = B(9g,). Hence, the structural model in (4.2) can be expressed as follows:
®(L,9p0)Y;: = O(L,9p 0)B(9g,0)e;. Therefore, in general, we can index the AR and
MA polynomials as ®(L;®9) and O(L;9), respectively. The following assumption imposes
some structure on lag polynomials, define T={ze€C:|z| =1}, T, ={ze€C : |z| <1} and
T_={z€eC:|z|>1}:

Assumption 2.1. Let p and q be the orders of AR and MA polynomials. We assume for
any 9 €V that:

(a) ®(z;9) and O(z;9) are left co-prime.

(b) det ((I)p(ﬂ)) det (G)q(z‘))) # 0, where ®,(9) and O4(9) are the matrix coefficients associ-
ated to the largest power of backward-shift operator, L, in AR and MA polynomials.

(c) det(®(z;9))det(O(z;9)) #0 forall ze TU{0}uU{z:|z| — oo}

(d) ®(z;9) and O(z;9) admit left canonical factorization with respect to T.

Assumptions 2.1.(a) and 2.1.(b) are the standard necessary and sufficient conditions
for avoiding non-unique representations (see Hannan (1976); Mainassara and Francq
(2011) for details). Assumption 2.1.(c) rules out the presence of unit roots in both the AR
and MA polynomials. Besides, we discard roots at zero or infinity. This assumption is
important for two technical reasons: first, AR unit roots prevent the possibility of having
stationary solutions to difference equation (4.2) (see Giurcanu (2015) and the references
therein for a formal proof) and make unfeasible to construct our dependence measure;
second, MA unit roots makes unfeasible to recover shocks from a linear combination of
observable variables. Additionally, it would not be feasible to apply matrix factorization
of AR and MA polynomials (see Baggio and Ferrante (2018); I. Gohberg et al. (1982);
Israel Gohberg et al. (2005) for some details on the factorization of rational matrix func-

tions).

Assumption 2.1.(d) is critical for making it feasible to compute sample model resid-
uals in the time domain. Lanne and Saikkonen (2013) applies a similar assumption.

Their parameterization assumes that a fundamental part drives the AR lag polynomial.

14



In contrast, the non-fundamental part is explained by a lead polynomial with roots out-
side the unit circle. On the contrary, Funovits (2020) employs a general (Wiener-Hopf)
factorization of a rational matrix polynomial of the form ®,(z)A(z)®_(z) where A(z) =
diag(z*1,...,z"d). Our factorization is a particular case, occurring when k1 =--- =x4 =0,
and imposes that AR dynamics has two components: a fundamental, with roots of lag
polynomial outside the unit circle; and a non-fundamental, with roots of lag polynomials
inside the unit circle. Velasco (2022a); Velasco (2022b) do not impose this factorization

because both article work in the frequency domain.

The left canonical factorization of AR and MA polynomials consists on ®(z;9) =
D (z;9)DP_(z;9) and O(z;9) = O, (z;9)0_(z;9), where ®,(z;9) and O, (z;9) along with
their inverses are analytic in T, ; similarly, ®_(z;9) and ©_(z;9) and their inverses are
analytic in T_. Furthermore, ®.(z;9)=1,4— Z’;jl (I)E.i)zj and O.(z;9) =14+ Zgil @;i)zj.
p+ and p_ denote the polynomial degrees of non-causal and causal AR components, re-
spectively; ¢+ and g - represent de polynomial order for non-invertible and invertible MA
components, respectively. Besides, notice that p = p, + p_ and ¢ =g+ —q_. Thus, given
p and g, the location of roots is determined by the pair (p.,q+). For instance, if we had a
2-dimensional SVARMAC(1,0) with p, =0, then the model is a causal SVAR(1). Addition-
ally, the number of causal and non-causal roots are dp_ =2 and dp, = 0, respectively.
This example shows that our factorization implies that the number of causal (invertible)
or non-causal (non-invertible) roots are multiples of d. In total, we have d(p; + p-) AR

roots, and d(q+ + q_) MA roots.

Given the assumption (2.1.d), we can refine the structure of structural parameters
vector 9. In particular, 9p = (¢,,¢",6',,0" )', where ¢, are the coefficients for autore-
gressive polynomials; 0., the parameters of moving-average polynomials. When K =d,
then ¢, :vec([(bf (I);fi]), 0. :Vec( o7 - @);—“i ) and 9g = vec(B).

For any 9, the model errors, £,(1), are defined as follows:

e(0)E Y L;0Y, =B @0 L HVL; Y, = Y ¥ OY,,

Jj=—00
where W(L;9) = @ 1(L;9)0(L;9)B@) = Z;’;_OO ‘Pj(ﬂ)Lj . Since we are ruling out the
presence of unit roots for any value in parameter space, then it holds that the filters
@ (L;9) and ® 1(L;9) are absolute summable for any value in the parameter space.
That is supgey X32_, 0(1)5,‘1)({))” < oo and supgey X72_, H@)E,‘D({))H < 0o. Then, with-
out loss of generality, it can be specified that supg.y H CI)S._D (19)“ < C|j| " for |j| > 0 and

Lo > 2. In Lemma 1 it is proven that given the absolute summability condition for filters
@ 1(L;9) (resp. O 1(L;9)), then Y(L;9) and Y~ 1(L;9) are absolute summable as well,
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and supycy ||¥;(9)| = CljI 7" and supg.y H‘I’E._D(t‘))H < C|j|™" hold with jig = 1— po.

For identification purposes, we assume the following

Assumption 2.2. There exists 9y € 7/0, with V the interior set of V, such that

(@) &/(80)=Y (9, L)Y; = &;.

(b) Y YO,L)¥(9y,L)#1, for any 9 #9€ 7.

Assumption 2.2 is crucial for achieving identification of structural parameters up to
signed-permutation (see proof of Theorem (2.1) for some details). In standard SVAR
literature, this assumption is not necessary because it is assumed AR polynomial has
a stable/causal representation, which guarantees dynamic identification. Besides, if we
were working with general linear, possibly non-fundamental models, Assumption 2.2.(b)
rules out the case of getting a back/forward shift monomial. Since we are working with
vector ARMA model, then W~1(9,1) = £2__ W 9L/ and W(@,L) = £2__ ¥;(9o)L/
and their multiplication is W~'(,L)¥(Do,L) = ¥, j, ¥’ V(@)W ,(9)L/1*/2. Thus, this
will be a back/forward shift monomial if and only if v19,L) =¥ 1(9y,L)L* for some
k #0€ Z. Such a scenario is implausible in a VARMA context.

From Assumption 2.2.(a), model errors are equal to

£/(9) =¥ 1(9;L)¥(Do;L)e; = 6(9;L)e; = io: 6 (D¢ ;. (2.3)

j=—o0
Equation (2.3) can be interpreted as follows: for any 9 # 9y, model residuals are a possi-
bly infinite, two-sided filter of true structural innovations. Many filters produce serially
correlated model errors, but others generate serially uncorrelated ones. These latter
filters are known as all-pass filters. Hence, the dynamic identification problem can be
summarized as follows: any filter equal to an all-pass filter is observationally equiva-

lent.

2.2.5. Identification with independent structural shocks

In this section, it is shown the identification of parameters of the structural model in
(4.2). Showing identification is crucial because it permits learning the true value of
parameters from data. Typically, identification is operationalized as the existence of a
unique minimizer of a suitable population loss function. Hence, it is important to detail

how we construct our population loss function.

16



Loss Function

The primary input of the loss function is the generalized spectral density (GSD), first
introduced in time-series literature by Hong (1999), who employs it for testing the serial
white-noise property of a stationary variable. According to Hong (1999), the GSD is the
Fourier transform of the autocovariance function of the transformation eiT’Xt, where x;

is a strict stationary, ergodic random vector.

The following assumption makes explicit the structure about shocks &; and provides

sufficient conditions for ensuring the existence of the GSD.

Assumption 2.3. Let €; = (st,l, ... ,Et,d)’, the vector of structural shocks, satisfy:

(a) &;is an independent identically distributed (i.i.d.) process.

(b) &;; follow a non-Gaussian distribution for each i € {1,...,d}, and &; possess mutually

independent components for all t € Z.
(c) Eg; =0, Eese, =14

d) X%

Jj=—00

cess €.

ag( j)v%1 < oo for v>1, where a(j) is the j-th strong mixing coefficient of pro-

Assumption 2.3.(a) implies that &; is a strict stationary, ergodic process. This assump-
tion involves that Y, follows a strong SVARMA model. Assumption 2.3.(b) is the basis
of Independent Component Analysis (ICA) studied by Comon (1994). In this paper, it is
stated that if &; contains at most one Gaussian component, then a linear combination
of &, i.e., Bg;, is identified up to signed-permutation. Under the context of this article,
on the contrary, it is required that all the components in the vector of structural distur-
bances be non-Gaussian distributed because we are dealing with the dynamic identifica-
tion (see Chan et al. (2006); Funovits (2020); Gouriéroux et al. (2019); Velasco (2022a);

Velasco (2022b) for similar assumptions).

It is usual in the literature to characterize non-Gaussianity by having, at least, dis-
tributions with a non-zero skewness coefficient, i.e., asymmetric shocks. On the contrary,
Assumption 2.3 does not impose such characterization, and, as detailed in the Appendix,
such requirement is sufficient but not necessary for identification. Finally, Assumption
2.3.(c) is standard in SVAR literature and implies we work with standardized centered
innovations. Finally, Assumption 2.3.(d) is a technical requirement, also required in
Hong (1999), and ensures the existence of the GSD for the null hypothesis of indepen-

dence.
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Let consider the following transformation of model errors, exp (i7'e;(9)). The ex-
pected value of this transformation always exists for any 9 € 7 satisfying Assumption
2.1 and under Assumption 2.3, because is the characteristic function of model errors,
@D (1) = Elexp (it'&,(9))].

The joint characteristic function of the pair of model errors (&:(9), ;- j(9)) is:
9 P(x1,79) = Elexp (it} e:(@) + ithe, j (D)), j = ...,-2,-1,0,1,2,.... (2.4)
Therefore, our dependence measure is defined as
05(8)(71,‘52) = <p§-('9)(1'1, 79) — (1) (1) (2.5)

This measure captures all the pairwise dynamics of the pair (£:(9), &_;(9)).

Dependence measure in (2.5) is equivalent to

05(3)(71, T9) = Cov (24(71,9),2:-j(T2,9)), (2.6)

1T’ €4(9)

where z/(7,9)=e — p*D(7). This is why we called equation (2.5) as generalized au-

tocovariance of order j. Notice that 05('9)(1'1, T9) satisfies the following: (i) 0'5(3)(—1'1, —T9) =
05(3)(11,12); (i) Gf(}"))(n,fz) = 05(3)(T2,T1); and (iii) Uj(ﬂ)(Tl,TZ) =0 < <.0§('9)(T1,T2) =
(pf(ﬂ)(rl)<p5(‘9)(rg). This latter implies independence of £;(9) and &;_;({) if holds for every
(T1,T2) € R%,

Using the previous dependence measure, the GSD is

1 = .
Se@)(W;T1,T2) IZE Z 05(9)(11,12)e‘lw, weEl[-n,l. 2.7

Jj=—00

Note that s.9)(w;T1,T2) is the Fourier transform of generalized autocovariance function,

05('9)(‘51,1'2)-

The cumulative spectral distribution (hereafter CSD) function for any interval of the
form [-w,w] c[-n, 7] is defined as

w

Fg({))(a);‘rl,‘l'g)Z:f .S‘g(g)(/l;‘l'l,‘rz)d/l

—w
sin(jw)

= %ag(‘”(n,rz) + ) 05(8)(11,12), w €[0,7]. (2.8)

ljlzo  J7

Now, under Assumption 2.3.(a), which imposes that &;(9g) is an i.i.d. process, then

05('90)(1'1, 79) =0 for all j # 0. Thus, the form of F¢9)(w;T1,T2), when the i.i.d. assumption
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is imposed, is equal to

w
Fiip@371,79) = —0 (11, 72).

And, if Assumption 2.3.(b) is additionally assumed, then the form of F ﬁ(ﬂﬁ (w;T1,T2) for

the restricted case of having i.i.d. structural shocks with mutual independent compo-

nents is equivalent to
IICA ol &, (9) 4 @) em ()
F o (w;T1,12)=; [T g™ " Cim,t2m) = [T 05" @im)eg™ " (T2m)
m=1 m=1

where (pg’”w)(rlm, Tom) = E[exp(iT1m&rm(9)) exp(iTomerm(9))] and (pf)m(a)(rlm) = Eexp(iT1m&rm(9)).

The population loss function when structural shocks are independent is the L2-
distance between the unrestricted CSD, F¢g)(w;T1,T2), and its restricted form, imposing
i.i.d. and ICA assumptions, FIICA

£(9)
Lo() = f f
_n f
3

. 9 m (9 m @ m (9 .
with o5 2) . (11,72) = 14 _; 05" P (T 1m, Tam) — T4 _1 05" P 1) 0§ P (T2m). W(a1,72) is a

continuous weighting function which belongs to the space of bounded variation functions.

(w;T1,T2) over all frequencies w € [0, ].

. 1ICA,, .. 2
Feo)(w;T1,72) —F g ((1),71,1'2)‘ doW(dri,dT2) (2.9)

£(9) 2
ol (t1,72)| dW(T1,72)

2 1 &1
Ug(ﬂ)(‘n,‘m)_Ug(?I)CA(Tl’TZ)’ dW(TL, T+ 50 ), '_2f
, 27 j=1‘]

A complementary technical condition is to assume that [ ([ T1]1% + lT2|*) W(dT1,dT2) < 00
for a < 5. For finding closed form expressions of £,(#9), Gaussian W(t1,T2) = Wi(t1)Wa(T2)
is employed, with W,,(z,,) = (21)"¥2exp(t/,7,). Although, any W(r1,73) = W1(11)Wa(z2)
with this property can be employed.

Theorem 2.1. Let Y ; generated by the structural model in 4.2. If Assumptions 2.1 and
2.3 holds, then

(@) ZLo(99)=0;

(b) Lo(9)> 0 for all 9 #PY,.
Id2(p+q) 0d2(p+q)><d2

0d2><d2(p+q) PDI®Id
sign matrix.

where P = , with P a permutation matrix and D a diagonal

Theorem 2.1 establishes that our population loss function £y(9) is minimized only at

points of the form 9 = P9y. This result means our model is identified up to the signed
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permutation. £(9) = 0 implies that we have found a model, given by the filter ¥(L,9),
such that model errors, £,(9), are pairwise independent. We are aware that this is dif-
ferent from being fully independent. Nonetheless, the gap between pairwise and full
independence is difficult to characterize. As far as our structural model is linear, this
gap may not be critical. A way to shrink this gap is to consider dependence measure for
£(9)
l

higher tuples, such as 0% ”(t1,72,73) = E[z:(71,)2¢—j(T2,9)z:—1(T3,0)]. Of course, the

more higher-order tuples are included in the loss function, the smaller the gap.

Besides, it is worth highlighting the difference between Theorem 2.1 to Chan et al.

(2006) identification result. In the work of Chan et al., identification of a very general sta-
d

tionary linear process requires that each component of structural disturbances, {e; m}},_;,

has finite non-zero skewness coefficient. In our case, the identification of the structural
model does not depend on such particular characterization of non-Gaussianity, but on a
broader sense of non-Gaussian behavior. The intuition behind this could be the follow-
ing. Complete independence implies that shocks are serially uncorrelated and orthog-
onal across their components when structural shocks are Gaussian distributed. There
exists different types of models or parameter vector, W(L,9), whose roots may lie inside
or outside unit circle, that generates serially uncorrelated model errors. This feature
means that the identified set would be equal to the space of all-pass filters (6(L,9)). As
argued in Hong (1999), when each structural shock is non-Gaussian distributed, being
serially and marginal uncorrelated, it is not sufficient for obtaining independent model
errors. Hence, the combination of complete independence and non-Gaussian behavior
helps to discriminate among the different all-pass filters. Assuming pairwise indepen-
dence characterizes full independence, the remaining set of filters is discrete because

any sign permutation of the static component leads to marginal independent shocks.

Complete or Global Identification

Identification up to signed-permutation reduces the identified set to a discrete one, mean-
ing that model is not point-identified. For achieving global or point identification, it is
necessary to have a mechanism for selecting a specific permutation. In the literature,
there exist several procedures for achieving this goal. In this paper, we follow the idea
stated by Hallin and Mehta (2015), which is also employed by Lanne, Meitz, et al. (2017).

Hallin’s procedure consists of re-defining the set where the contemporaneous matrix
coefficient, B(9), belongs. In general, it is assumed that B(9) € .4 dxd  where #%*?
denotes the space of square, real-valued, non-singular matrices of size d. Nonetheless,
let consider the set ¢(d) c .4%*?, which is the set of all matrices B such that Dllg , PB and
D‘zg exist and satisfy the following:
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(i) D% =diag(d?,...,d8) with d® >0, and C1:=BD% =(c1; ... €14) with lle1nl =1
forallm=1,...,d;

d

(i) PBisa permutation matrix such that Cp = lePB =lemjpl, =1

satisfies |cpym.p| >

lecmjplform<j<dandm=1,...,d;

(iii) DB is a diagonal matrix such Cy:= BDPPEDS = [ij];in,jzl with Cypm.2 =1 for all
m=1,...,d.

For the rest of the paper, we assume that the true static component B(9g ) € 4(d),
which allows us to employ this selection approach. Alternatively, Lanne, Meitz, et al.
(2017) or Gouriéroux et al. (2019) suggest that permutation selection can be made by

imposing a particular shape of the impulse response function.

2.2.6. Identification with dependent structural shocks

A major drawback of our previous identification result is that assumes {€;};c7 is an i.i.d.
sequence. This requirement is quite restrictive, especially in empirical macroeconomics
and finance, where it is common to find that observed data exhibit volatility that changes
over time. This characteristic implies that structural disturbances in the model may

exhibit conditional heteroskedasticity, leading to discarding independence across time.

One inconvenience, in this case, is to make explicit the type of dependence in struc-
tural errors. We cannot assume the weak white noise condition on structural errors
because, as explained above, this requirement does not provide sufficient information for
overcoming the dynamic identification problem. However, we would like not to impose a
specific dependence structure, e.g., ARCH or GARCH behavior of structural shocks, but

to keep our problem as general as possible.

Assumption 2.4. The structural shocks, €;, in model (4.2) satisfies:

(a) E [stlff_l] =0, where 97 ; =o0({es :s<t—1}).

(b) &; is a strict stationary, ergodic, strong mixing process with mixing coefficient a(j) =
O(j1'H1), p1 > Land 2, a()'T <oo for v>5.

(c) & = (81,t,...,€d,t) has mutually independent components and &, is non-Gaussian
distributed for each m =1,...,d. Ele;e}]1=14

(d) Eles |H(L)e:] is a non-linear function for some s,t € Z, where H(L) is a possibly infi-

nite, two sided linear filter.
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Assumption 2.4.(a) states the time dependence structure of £;. It means that &; is
a martingale difference sequence (m.d.s.). Being a m.d.s. implies milder restrictions
than independence on the memory of the sequence of structural shocks; however, it is
still stronger than the white noise condition. This assumption is a quite general depen-
dence structure, which covers relevant cases common in empirical macroeconomics and
finance, such as conditional heteroskedasticity (GARCH errors) or stochastic volatility
innovations. To our knowledge of the current literature of structural VAR or VARMA
models with non-Gaussian errors, identification with dependent shocks has not been ex-
plored unless the structural model is assumed to be fundamental. For instance, Lanne,
Meitz, et al. (2017) obtain identification of the static component in a causal structural

VAR model with only white noise shocks.

Assumption 2.4.(b) it is necessary since being a m.d.s. does not imply to be stationary.
This condition is required due to technical reasons because it permits to approximate the
behavior of a possibly infinite, two-sided moving average, such as the model errors £;(9),
by a truncated (finite), two-sided moving average, €,(9). Assumption 2.4.()c) is the ICA
condition and imposes that each shock is non-Gaussian distributed. Besides, it states
that shocks are standardized. Assumption 2.4.()d) is crucial for identification. It can be
interpreted as our characterization of non-Gaussian behavior. Rosenblatt, 2000, Section
5.4, requires a similar condition for proving that a possibly non-fundamental univariate
ARMA model is identified.

A sufficient condition for Assumption 2.4.(d) to hold is that each structural shock has
at least a non-zero third-order cumulant. Chen et al., 2017 develop a procedure for test-
ing the martingale difference property within the context of a non-fundamental struc-
tural model, and requires a stronger version of Assumption 2.4.(d). Specifically, they im-
pose that all the structural shocks in the model have non-zero third-order cumulant, i.e.,
each structural error exhibits asymmetric behavior. This characterization is partially
unsatisfactory since it rules out cases where non-Gaussian behavior comes from kurto-
sis’s excess (or deficit). A similar assumption is made by Funovits, 2020; Gouriéroux et
al., 2019. In our case, this condition is necessary and sufficient and rules out the possibil-
ity that €; and 6(L,9)¢; are jointly distributed as a multivariate Pearson or multivariate
t-student since such distributions produce linear conditional expectations (see Kotz et al.
(2004, p.6-10) and Roth (2012) for more examples).

Loss Function

When &; is a m.d.s.?, then in general 05(1'1,1'2) # 0 for any j and (t1,72) € R2¢. Hence,

2E [etl,ﬂf_ 1] =0 can be interpreted as a conditional mean independence assumption.
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the loss function Z£y(9) cannot be used for identification purposes because it is unknown

the functional form of 0; (T1,T2) under a the m.d.s. assumption.

Let define AT172)¢g (r1,72) = %@(TLQ)- Setting r1 =1 and rz = 0 we ob-
tain
0
N o7 (T1,T2) = o UfJ-|(T1,T2):C0V(6 2(T1), 2¢- IJI(T2))
1

X / -t
= LCOV{Ste”lEt -E [etenlst] , zt_|j|(‘rz)}

. L . L
= lCOV{fte”lsta Zt—ljl(T2)} = z[E(ste”l‘” -Zt—m(rz))

where last equality uses the fact that E [z;—;(T2)] =0

Evaluating the expression above at 7; = 0, we get ALDge |(0 T9) = E(ig; 24— j(T2)).
Therefore:
Ele.9F 11=0 = AMY0F,0,72)=0V |j1>0, 79 € R%. (2.10)

To be strict, E (ig;-2z;-;(t2)) = 0 for all T3 € R? if and only if Ele;|e;—,1 = 0, which is not
exactly the definition of being a m.d.s.. Let call a process satisfying E[e;|e;—;] =0 as a
pairwise martingale difference sequence (p.m.d.s.). The gap between being a p.m.d.s. and
a m.d.s. is difficult to characterize but may be important. Nonetheless, as discussed
in Hong and Lee (2005), the p.m.d.s. covers some interesting time series models. A
more accurate approximation to a m.d.s. is achieved by considering triples, such that
AL00) l‘c’(l'()l)ll(rl,tz,‘rg), or even higher tuples. However, again, the curse of dimensional-

ity becomes an important issue.

Like in the independence case, we define the generalized spectrum for the dependent

. . . . 7 !
case as the Fourier transform of covariance function A(I’O)afjlﬂ )(O, T9) =1 Cov {ste”lef, 2t j|(‘rz)}

1 & -
— (1,0) 6(19) —iwj _
Ge)(w,T2) = _2ﬂj§ {A ol O, )} , wE[—m, ],

and its cumulative distribution function is

w
i:(lﬂo))(w T2) —f_wCs(a)(/l,Tz)d/l

= 2NAOGED 0,7y Y T N0 D g 1)) wefo,n]. (21D
14 ; Jjm J
710
Accordingly to (2.10), when &;(9) is a m.d.s., the restricted form of F 0)(w;12) is equal to

&)

(1,0) ey W 1,00 e®)
[F]™ @12 = 289965000,15)
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and, if &£,(9) also satisfies mutual independence components, [F(%ﬂo))]MD (w;T2) collapses

to

Cov (e,1(9), z:(12 1,3)) Mns1 952 (x2,m)
FLO MDIC w

E(:‘)) (0;72) = i;
Cov (e1,q4(9), z:(12 d,ﬂ)) [Tnzd 95 (T2,m)

where zp, (T, 9) = e!72meem®) _[FloiTameLm@)]

Similarly to the situation of a model with independent shocks, the loss function
is the L2-distance between the unrestricted CSD, F(%ﬂ(;)

sion when structural errors are a m.d.s. and have mutual independent components,
MDIC
(1,0)

£(9)

Ro(9) = f f

COV(Etl(ﬂ) z24(12 1,19)) Hm¢1(P (Tz m)
— zf A(l’O)O'Sw)(O, Tz)— . W(d‘rz)
Cov (e1,a(9), 2:(r2,4, f))) Tz @0 (T2,m)

(w;T2), and its restricted ver-

(w;T2).

MDIC 2
FUD(w;T9) - [F(l’o) (w;T2)|| doW(dTy) (2.12)

£(9) &)

ton & 72 f ”A(IO) 5o, Tz)H W(dty), (2.13)
j=1

where W(t9) is a differentiable weighting matrix, satisfying similar properties like the

one specified in equation (2.9).

Using the loss function, Z¢(9), and the dependence structure for structural errors,

we state identification of the model described in (4.2).

Theorem 2.2. If Assumptions 2.1, 2.2 and 2.4 hold, then

(@) Ro(9o)=0;

() Zo(9) >0 for all 9 # PIy;
where P is any permutation matrix defined similarly like in Theorem 2.1.

The result in Theorem 2.2 means that the structural model described by (4.2) is iden-
tified up to sign-permutations. For achieving this, we only require that structural shocks
have finite second-order moments and exhibit non-Gaussian behavior in a broad sense
(Assumption 2.4.(d)).
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2.3. Estimation

This section details the procedure for estimating the structural parameters vector, 9,
in both dependence structures, i.e., with i.i.d. errors and m.d.s. disturbances. We con-
struct the sample counterpart of the population loss functions defined in the previous
section. Furthermore, note that model errors, &;(9) = Z?‘;_Oo ‘I’;_l)(w‘))Yt_ j, are not ob-
servable since we have a finite sample of the endogenous variables {Y;: ¢t =1,...,T}.

Thus, we employ the sample model residuals, which are defined as follows:

DY W§‘1>(3)Yt_jn{1 <t-j<T}
Jj=—00
where [{1<t—j<T}is equal to 1 if the lag/lead j is in the range {t—T,...,t—1}, and 0

otherwise.

Moreover, it is common that endogenous variables may have a deterministic compo-
nent (y,), i.e., Y; = p, + W(L)e;. Typically the derterministic component is a non-zero
mean, [, = [, or linear trend, u, = p,+ p,t. For our analysis, pu, is irrelevant and can be
estimated by OLS in a previous step. For the rest of the paper Y ; denotes the de-meaned

or de-trended observable data.

Given the model residuals, &;(9), the sample counterparts of the joint characteristic

function, the dependence measure and the CSD are

. 1 r .. s
¥V (r1,79) = Y elmiE )iy
171 — 17l =131/
540 1 d £(9) &(9) &(9)
) (T1,T2)—ﬁ > 2t(T1,19)2t—|j|(T2,19)=<i1|j| (T1,72)— <p| (71,0)9);,7(0,72)
=141/
&(9) 580)( sin(jw)
Feo)(0; 71772)—_08 (Tl,T2)+2Z fﬂ T1,T2) .

with 2,(t1,9) = exp(iT}£,(9)) - ¢ (x1,0).

Although the GSD has been employed in Hong (1999) for testing serial dependence,
its consistent estimator involves using a smoother kernel, % (j/h) with bandwidth A. The
introduction of this smoother affects the rate of convergence of our estimators. In this
sense, the CSD has a tremendous advantage over the GSD because it avoids the usage

of a smoother factor.
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2.3.1. Estimation with independent shocks

The sample loss function, £r(9), is

~£(9) 2
0 (t1,72)| W(dt1,d72)

) ) 2 IS
Gy (T1,T2)-0 (T1,72) W(dTl,dTZ)"‘%Z 1-— .—f

T
Zr(9) = §f 0,/ICA = T )2

~&(9 ~E(D ~E(D ~&(9
where 607, (71,72) = 1% _; @5 " @1m, Tam) ~ %21 §5 " @T1m, 0095 (0, T2m).

The estimator of structural parameters vector, ?)f, is defined as the minimizer of

sample loss function £y (9),
12)";’0 = argmin Zr(9). (2.14)
eV

Given the compactness of the parameters space, 7, and that £p(9) is, at least, a twice
differentiable function regarding 9, the existence of 12)“:,? is guaranteed. Taken as known
the values of overall degrees (p, ¢) and the order of non-fundamental polynomials (p+,q ),
the estimator 12)'}% solves:

0ZLr(9)

AL
sz (7)) = 59 |, 93:0
=vr

where s% (9) is the score function, i.e. the gradient vector of loss function £r(9).

Consistency

Before setting the consistency of our minimum distance estimator (zt)f), it is necessary to

show that our sample loss function (£7(9)) converges uniformly to its population version.

Theorem 2.3. If Assumptions 2.1-2.3 hold and using Hallin’s permutation selection, then

sup | ZLr(9) — L(9)| 2, 0,as T — oo
eV

Theorem 2.3 shows that, given our parameterization and sufficient conditions that
guarantee the existence of GSD, the sample loss function, Z7(9), converges uniformly to

the population loss function, Zy(9).

Once the uniform convergence of the sample loss function is provided, consistency of

.. . . oL . .
our minimum distance estimator, 97 , is straightforward.
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Theorem 2.4. If Assumptions 2.1-2.3 hold and using Hallin’s permutation selection, then

Azp
O —99,as T — o0

Theorem 2.4 establishes the consistency of our proposed estimator using sample loss
function Z7r(9). The assumptions guarantee that all the requirements in Amemiya
(1985, Theorem 4.1) are satisfied. Furthermore, this result depends explicitly on the
existence of second-order moments for the structural shocks, i.e., E|l&;]|2 < oo, which is
standard in the literature. Velasco (2022b) shows that efficiency of 9% can be improved
using Newton-Raphson updating procedure but using the GSD.

Asymptotic Normality

Once the consistency of our minimum distance estimator is provided, another impor-
tant asymptotic result is to show the convergence in the distribution of the estimator.
However, as a preliminary step, we show that derivatives of the all-pass filter, 6(L,9),
are bounded given the structure of our structural model and our parameterization. For
instance, when K =d and p, >0, we can compute the following

0 5(L,9)= —— (@1L, 00X, HB®) WL, )

6‘/’+,i a(,b+,i
:B—l(a)@)—l(L,a)(

30 <I)+(L,<P+)) ®_(L,¢p_)¥(L,90)

:B'l(o)®'1<L,ﬂ)( <D+(L,<P+))(D-(L,(P_)‘I’(L,ﬂo).

a(P+,i
Hence, given that W(L,9) and v-1(L,9,) are absolute summable polynomials, and under
an appropriate decay rate of their coefficients, it holds that the derivative polynomial
#6@, 9) satisfies absolute summability with coefficients decaying at a similar rate to
W(L,9) and Y 1(L,9y). Then, unlike Velasco (2022a), assuming a specific behavior for

these derivatives is not necessary.

Theorem 2.5. Under Assumptions 2.1-2.3 hold and using Hallin’s permutation selection.
IfE|le|1? < oo, then

2 ) )
(a) agaf)’ Zr(9) 9-0r L. Arrca(@0) =E %3’1’(1‘)0) for any 97 2 9,.

(b) The random vector \/TS“; (99) converges in distribution to a multivariate Normal with
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mean zero and variance Qrrca(9y), i.e.
VTsZ(80) L N (0,Q1104(90))

and
AL d _ _
VT (97 - 80) & i (0,A77c4 90)R11cA@0)A 5 (90))

Asymptotic Standard Errors

Qr104(99) denotes the asymptotic variance of vV7T's2 T's7 (o).

. 1 L 5 5 5
T26%(86) = — [vee(S_giaglo180(90)) @ I ;] { — t_zl (60 P! - ep? - o0t — 02— 603) }

~02
~03

o . 9 i
&%3 =Re (—zffagfl%A(n,rz)<ﬂ£(ﬂ°)(—‘rz)vec[(I&®[E[£te At

T1/2 Z [Xt let E;_ 1xt] +0,(1)

where
( 2012 (zs)vee | (I & E £,/ T1+72 ft] Jo 1+ dW(Tl,‘rg))
:Re( (Tl)Zt(Tz)(Pg({)O)( Tg)vec [(Id ®F [s e iTIE )®r’1])
Re( zt(rl)zt(rz)we(ﬂO)( Tl)vec[(1d®ﬂi[£ e ot ,)®T,2]dW(T1,TQ))
Re( g(l;’éA(‘rl,‘rg)vec [(I& ®F [ete_i(””Q)let],) ®(T1+ 12)'] dW(‘tl,‘rz))
Re( 8(}9;’()3A(71,rz)¢£('9°)(—rz)vec [(Ia'z ®F [ete_”,l” ,) ® T’l])

I) ®‘r'2] dW(Tl,Tg))

and z?(‘r) = z4(7,99). Then, the asymptotic variance Q;7c4(9g) is

Q1rca(@o) = C(D)E [S;S;] C(o)

. : S S 50 75
where C(8g) = | [vec(S_giagl0160(90)) ® I ;] ] E[S;S!]=E|" " 12] ,S11 =E(E°EY)
12 22
with E9 =¢9 - ég 1 é(t) 2[00+ 802+ 803], S 19 = E(EJIX} e} +E} jx71) and
Sag = ([X? 1)+ E? 2X? 9 +EY x07). The symbol [o] denotes the penetrating face

product, a generalization of Hadamard element-wise product (see Slyusar (1999) for tech-

nical details).

A consistent estimation of Q7704(9¢) is obtained by using the sample counterparts
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of the elements. We employ a Gaussian weighting function, W, to simplify the calculus
because it allows us to find closed-form solutions to the integrals. In Appendix (5.10.1),
we can find the details of this computation procedure. Alternatively, Q;7ca(99) can be
consistently estimated by employing a non-parametric method, such as a bootstrap pro-
cedure with a bootstrap sampling that needs to preserve the dependence structure of

observable variables, e.g., block bootstrapping.

2.3.2. Estimation with dependent shocks

The sample loss function, Z7(9), for the sample model residuals £;(9) is

A 5 ~e(9) 2
Covr (84,1(0), 22,1, ) 11 9*(12,)

Rr(9) = g f AD689(0,74) - s W(dt2)
Covr (81,4(), 2(r2,q, ) 1j2a 9P (12,))

21”T 1(1__) f“A(l ,0) A e(:‘))(o 1_2)0 W(dts).

The estimator of structural parameters, 12)‘?, is defined as the minimizer of the sample

loss function.

A

97 = argmin 27(9). (2.15)
JeV

Like in the case of estimator 12)‘7'?, compactness of 7 and differentiability of Z7(9) with
respect to 9 guarantees the existence of the minimizer 12)?. Taken as known the overall
order of lag polynomials and the order of non-fundamental ones, 9‘? is a solution to

%, OR7(D)

stdr)= 5= =0
=vr

where sT( ) is the score function, that is the gradient of loss function Z7(.).

Consistency
Theorem 2.6. If Assumptions 2.1, 2.2 and 2.4 hold, then

sup | Zr(9) — Bo(9)| 2 0, as T — oo.
deV

Theorem 2.6 shows the uniform convergence of our loss function to its population
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counterpart when the structural model is given by (4.2) and satisfies Assumptions 2.1
and 2.2, and structural shocks are dependent with structure given by Assumption (2.4).

Given this result, the consistency of the estimator can be stated.

Theorem 2.7. Under assumption 2.1, 2.2 and 2.4, and using Hallin’s selection scheme,
then

o R
97 29y, as T — oco.

Like in the case of the independent shocks, Theorem 2.7 is a direct application of
Theorem 4.1 in Amemiya, 1985. Besides, it is worth noticing that no additional require-
ments regarding moments’ existence to those stated in Assumption 2.4 are needed. It is
evident that if a sufficient condition similar to the one assumed in Chen et al. (2017) is

imposed, Theorem 2.7 is still valid.

Asymptotic Normality
Theorem 2.8. If Theorem 2.7 holds and assuming that E| &;||¥ < oo for v =5, then
(@ 2R L Aupic@0) =E|s2=R1(00)| for any B 29

T

(b) The vector ﬁs?(ﬂo) converges in distribution to a multivariate Normal with mean

zero and variance Quyprc(9o), i.e

VTSED0) L (0,Qup1c(90)), and
N7 d _ _
VT (97 = 80) & i (0, A3 1cB0)Run1c (B0 A 16(90)).

2.3.3. Estimation of polynomial degrees (p,q+)

Consistency of parameter estimators has been achieved by taking as fixed overall degrees
(p,q) and the order of non-fundamental polynomials (p.,q.). Once these two pairs are
known, the order of fundamental polynomials is given by p_ =p—p;+ and q_ =q—q.
For applying the optimization problem, instead of minimizing over the whole parameter
space 7, we split it into a finite number of partitions defined by all the possible values of
duple (p+,q-) for a fixed pair (p, q). For instance, for (p,q) =(1,1), we have four different
subsets of 7 since (p,q.) € {(1,1);(1,0);(0,1);(0,0)}.

For each feasible pair (p +,q ), we find the estimator of structural parameters vector,

9?( P+,q+). After substituting the estimated parameter vector, the sample loss function
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will depend on the pair (p.,q-). Thus, the estimator of (p.,q.) is defined as:

b.,4+)=ar min  Z5(p+,q4) (2.16)
(P+,4+) g(er,qu)E@(p,q) T\P+,9 +

where 2(p,q)=1{0,1,...,p} x{0,1,...,q} and (p, g) the overall degrees of lag polynomials.

We consider the risk of over-parameterizing limited since the total number of pa-
rameters does not change at any pair in 2(p, q). For instance, in the case of structural
VARMAC(1,0), the true number of parameters is d(p + 1). The proposed procedure above
compares the loss function for causal and non-causal roots. In each case, the number of

parameters is d(p +1).

Estimation Algorithm

We detail how to obtain the estimator 12)? or 12)}? Given the pair (p,q), 2(p,q) =1{0,...,p}x
{0,...,q} and |2(p,q)| = (p + 1)(q + 1).

1. Fix (p.,q9+) =(0,0) and (p_,q-) = (p,q), i.e., it starts by fitting a causal and in-
vertible structural VARMA model. The estimated parameter vector is 12)";{(0,0) or
9‘?(0,0). Besides, compute the causal and invertible roots. The overall number of

roots is dp and dq, respectively.

/

2. Choose (p1,9+)=(p',q")#20,0. Then p_=p—-p'and q_=q—q’.

(i) Take dp+ and dq. roots from the estimated causal and invertible roots, re-
spectively, and flip them.

(i) Find an initial value of lag polynomials {®, (L), ®_(L),0.(L),0_(L)} that are

coherent with the selected roots.

(iii) Given the initial value of lag polynomials, find the estimator 97 for the se-

lected roots.

(iv) The estimator 9f(p+,q+) (12)“?(p+,q+)) is chosen from all the possible combi-
nations of roots (dp,,dp_,dq.,dq_).

3. Do step 2 for each (p’,q") € 2(p,q) \ {(0,0)}.

4. Finally, the estimated structural parameters and the order of lag polynomials
(?)}?,m,m) ((f)?,ﬁhcﬁ)) is chosen such that it reports the smallest £r(p5+,4+)
(%T(ﬁ+an+))-

31



2.3.4. Lag Length Selection

Choosing the overall degrees (p, q) is a relevant problem, but it is beyond the scope of this
paper. Standard procedures minimize information criteria, which are usually derived
from likelihood. In our case, we follow the criteria proposed by Boubacar Mainassara
(2012) for a weak VARMA model, i.e., a fundamental VARMA with serially uncorrelated
model errors. This approach means that either in the case of independent shocks or with

dependent ones, we choose (p, q) as the degrees of a fundamental VARMA approximation.

. T2d>? Td . <1
AICMDS _ Tiog(S tr( Q11 7A
M 08(Ze) + Td—-d%(p+q) " 2ATd —d%(p +q)) r( 1T ll’T)
AICHD — Tlog(3,)+Td 2(d?
M 0g(2e) + YT Epr D (d*(p+q)

where ﬂu,T is the square upper-block of flT and All,T is the upper block of A7 with
dimension d%(p + ¢) when shocks satisfy m.d.s property. 2. is the estimated variance-

covariance matrix of shocks.

2.4. Simulation Study

We evaluate the proposed methodology with the following simulation study. We use

different data-generating processes (DGPs) and distributions for structural shocks.

2.4.1. Simple Case

The simulation setup is: d = 2, i.e. bi-dimensional vector, p =1 and g = 1, i.e overall
AR(1) and MA(1), respectively. The following tables summarize the proportion of success-
ful location of the roots or the rate of correct estimation of the pair (p,q+) conditional

to the overall dynamic orders (p, q)).

Table 2.1 shows the rate of correct root location. The findings are mixed. In the case
of simple structural causal VAR or invertible VMA, the rate of successful root location is
around 91% and 95%, respectively. These rates represent around double the theoretical
rate in the case of using only second-order moments®, which is 50% for both possible

representations. In the case of causal and invertible VARMA, the rate fluctuates between

3Remember, it is always possible to find a non-causal (non-invertible) model such that the residuals
are serially uncorrelated. In case of a VAR(1), we have only two possible value for p,, {0,1}. Then, the
probability of having p. =0 is 0,5 as well as the probability of having p, = 1. Similarly, for a VMA(1). In
the case of a VARMA(1, 1), we have four possible values for the pair (p+,q+), then the probability of each
possible pair is 25%.
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82 and 92 percent, which are high above the 25% when only second-order moments are
used. However, in the case of a non-causal and non-invertible representation, the rates
are lower and, in some cases, near the theoretical rates. In particular, the non-causal
VAR is only identified correctly 51% of the times, using shocks distributed as chi-square
with 4 and 5 degrees of freedom. This rate is barely above the 50% rate when second-
order moments are used. For the simple non-invertible VMA, we obtain a 77% rate of
correct root identification (1.5 times higher than the theoretical rate using only second-
order moments). In the case of non-causal and non-invertible, the rate ranges from 41 to
51 percent, although it is almost twice the 25% theoretical rate. However, we expected

to obtain a higher rate.

A possible explanation for the low rates of non-causal and (or) non-invertible models
can be related to the numerical optimization procedure. The way we start the opti-
mization procedure is to estimate a causal and (or) invertible VARMA model. Then, for
obtaining non-causal and (or) non-invertible initial points, we invert the appropriated
number of causal and (or) invertible roots to be consistent with the values of (p.,q.).
That starting point is the one we use for finding the respective minimizer. However,
as Dufour and Pelletier (2021) explain, unlike the univariate case, there does not ex-
ist a unique AR polynomial that produces some specified roots*. Since the optimization
method we employ is based on derivatives, that is, a local minimizer; the solution is sen-
sitive to the starting point. Besides, it is quite often that the higher the parameter space
dimension, the more sensitive these methods become. Additionally, there could be more

than one local minimum, even in the proper case.

Table 2.1: Rate of Successful Identification, T' = 250.
(Local Solution)

VARMA Models
Distribution (p=1,9¢=0) (p=1,¢g=0) (p=0,9=1) (p=0,9=1) (p=1,9g=1) (p=1,q=1)
(p+=1) (p+=0) (g+=1) (g+=0  (p+=0,9+=0) (p+=1,9+=1)
(X3 x2) 0.51 0.91 0.77 0.95 0.92 0.51
(t4,t5) 0.66 0.85 0.80 0.95 0.87 0.44

(t4,U(-2,2)) 0.40 0.60 0.61 0.90 0.82 0.41

Optimization procedure was performed through local approximation of Lagrangian, that includes barrier and li constraints. The i number of number of iterations and function evaluations was
set to 103 and 5 x 104, respectively.

Hence, it is better to employ a global optimization procedure instead of a local one. A
possible alternative is to employ different random starting points; however, this could be

very costly computationally. Alternatively, we can use a global optimization algorithm

4For instance, if our non-causal roots were 11 = 1/2 and A9 = 1/3. These can comes from ®(1) =
1-22 0 o= |24 0
0 1-32|""WT o5 1-321
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called genetic algorithm. This algorithm starts with an initial population, is created
randomly, and then selects the points below the objective function’s average value. Once
the first generation survivors are selected, it creates a second generation of points based
on the former survivors, called children, and also cross-over or mutations points. The
procedure continues until obtaining convergence. The pros of this algorithm are: (i) it is
less sensitive to starting points, and (ii) it is a derivative-free method. The cons are that,
in comparison to local methods, it requires higher computing time and power. Table 2.2
shows the rate of correct root location using a genetic algorithm. The improvements can

be seen easily in the most problematic cases.

Table 2.2: Rate of Successful Identification, T' = 250.

(Global Solution)
VARMA Models
Distribution (p=1,g=0) (p=1,g=0) (p=0,9=1) (p=0,9=1) (p=1,9=1) (p=1,q9=1)
(p+=1) (p+=0) (g+=1) (g+=0  (p+=0,9+=0) (p+=1,9+=1)
) 0.98 0.97 0.83 0.97 0.94 0.81
(t4,t5) 0.84 0.96 0.70 0.96 0.86 0.65
(t4,U(-2,2)) 0.75 0.94 0.62 0.97 0.90 0.58

Optimization procedure was performed through global optimization. Genetic Algorithm was the selected optimizer. The initial population size is 400. The maximum time was set in 500 seconds.

In the case of a structural causal and invertible VARMA of order 1, the rate of suc-
cessful location is around 94% when shocks are distributed as chi-square; it lowers to
89% when shocks are distributed as ¢-student. In both cases, the obtained rate is, at
least, 3.5 times higher than the theoretical rate, which for this case is 25%. For a non-
causal and non-invertible VARMA of order 1, the rate is 51% (2 times higher than the
theoretical rate) when errors are distributed as chi-square, and 44% (1.76 times higher

than the theoretical rate) when errors are distributed as ¢-student.

In the case of pure VAR with non-causal roots and pure VMA with non-invertible,
the following graphs (Figures 2.1 and 2.2) shows how close the estimated roots are from
the true ones. In both figures, we only plot the successful cases. We can notice that not
only the order estimation is accurate using the global optimization procedure but also
the specific location of the roots. Thus, identifying non-invertible roots is more complex

than non-causal roots.

2.4.2. Static Model

To check if the method identifies the static component well, we simulate a simple static
2.50 -0.126 1 -0.25((25 0

1.626  0.50 0.65 1 0 05

model, p = ¢ = 0. In this case, we use B =
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(a) | b) ©

Figure 2.1: Pure non-causal VAR(1) Roots. (a) (¢;1,€:2) ~ (xi,)cg); (b) (e4,1,€¢2) ~
(t4,t5); () (€41,€¢2) ~ (¢4,U[-2,2]). Black-filled dots represent true roots. Orange and
yellow circles represent the estimated roots.

(a) (b) (c)

Figure 2.2: Pure non-invertible VMA(1) Roots. (a) (g1 1,£:2) ~ (xi,xg); () (€¢,1,€12) ~
(t4,t5); () (e4,1,€12) ~ (¢4,U[-2,2]). Black-filled dots represent true roots. Orange and
yellow circles represent the estimated roots.
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Figure 2.3 shows the mean, median, and confidence interval at 95% level and the esti-
mated coefficient series. We report the coefficient in the diagonal. The simulation was
done with 500 replications with 7' = 250. The selected distribution for innovations was
()(%,t;;). As we can observe in Figure 2.3, the proposed method can identify the true

contemporaneous effect quite well, on average.
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Figure 2.3: Static VARMA. (Left panel) Static response of y1; to shock in & 9; (Right
panel) Static response of y ; to shock in ;1

2.4.3. Sensitivity Analysis

We explore how sensible the method is when the vector dimension is d > 2. We explore
the case of d = 3. The computational cost may be significant for higher dimensions, but

the accuracy would be maintained. Additionally, we explore distributions near Normal.

Higher Dimension Vector

An important drawback of structural VAR models is that the number of parameters
grows with the vector dimension or the number of lags. For instance, if we pass from a d-
dimensional SVAR(p) to d + 1-dimensional SVAR(p), the number of parameters grows by
(p+1)(2d +1); in case we pass to a d-dimensional SVAR(p + 1), the number of parameters
increases by d2. This feature represents an issue because if the sample size, T, does not
grow, then the accuracy of estimation decays. Structural VARMA models face the same

problem.

In this case, we fix T' = 250 and analyze the following two cases for d = 3: (i) Pure
non-causal VAR(1); (ii) pure non-invertible VMA(1).
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Table 2.3: Rate of Successful Identification.
(3-dimensional VARMA)

VARMA Models
Distribution (p=1,¢g=0) (p=0,9g=1)
(p+ =1) (CI+ =1)
(2, x2,x2) 0.94 0.95
(t4,t5,t6) 0.94 0.93

Optimization procedure was performed through global optimization. Genetic Algorithm
was the selected optimizer. The initial population size is 400. The maximum time was
set in 700 seconds.

Quasi Gaussian Distributions

We study how the results change in case of having an innovation with quasi-Gaussian
behavior. Specifically, three scenarios are considered: (i) )(2 with 50 degrees of freedom,;
(i1) t-student with 30 degrees of freedom; (iii) ¢#-student with 100 degrees of freedom.
To know how close to a Gaussian distribution are the three chosen cases, Figure 2.4
shows the probability plot for data generated with these distributions. Apart from some

outliers, one can observe that most of the data are concentrated along the Normal line.

In total three cases, we combine these distributions by pairs and simulate two simple
VARMA models. (i) pure non-causal VAR(1); (ii) pure non-invertible VMA(1). Table 2.4
shows the success rate of correct identification. It can be noticed that when we have
a skewed shock as part of the innovation vector, the rate of successful identification of
roots, although not as high as in the situations of Table 2.2, is significantly above the
theoretical rate, which 50% for the models considered in the simulation. However, when
both shocks are symmetric, the successful rate lowers, and it is around the theoretical
50% rate. This rate implies that, in practice, our methodology can be applied even though
we have Gaussian innovations, and the method will provide the correct dynamic identifi-
cation approximately half of the time. Additionally, this simulation was done with fixed

T, we expect these rates to increase if T rises.
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Figure 2.4: Quasi-Gaussian Distributions. (a) Data is generated from X?o; (b) Data is
generated from ¢3¢; (c) Data is generated from #1¢¢.
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Table 2.4: Rate of Successful Identification.
(2-dimensional VARMA)

VARMA Models
Distribution (p=1,9=0) (p=1,9=0) (p=0,9=1) (p=0,9=1)
(p+=1) (p+=0) (g+=1) (g+=0)
(X205 £30) 0.63 0.65 0.59 0.66
(X295 £100) 0.60 0.61 0.56 0.65
(£30,¢100) 0.49 0.48 0.47 0.60

Optimization procedure was performed through global optimization. Genetic Algorithm was the selected optimizer. The initial population size
is 400. The maximum time was set in 700 seconds.

2.5. Empirical Application

We take the dataset employed in Blanchard and Quah (1989)° (hereafter BQ). The en-
dogenous variables in this model are output growth, measured as the growth rate of
Gross National Product, and the unemployment rate, i.e., Y; = [AGNPt,Unempt]. It is
worth mentioning that output growth has been adjusted, considering the potential struc-
tural break in 1973. In Blanchard and Quah (1989) work, the selected structural model
was an SVAR with 8 lags. However, since an SVARMA model is more parsimonious than
an SVAR, we do not need to introduce many lags. In particular, we set the overall degrees

for AR and MA polynomials at p =1 and ¢q = 1.

We fit two specifications, a restricted and an unrestricted structural model. The re-
stricted case assumes that the roots of the AR polynomial lie outside the unit circle, i.e.,
the model has a causal representation but leaves the location of the roots of the MA
polynomial to be determined from the data. The unrestricted SVARMA model does not
impose causal roots in the AR polynomial, i.e., the location of roots for both polynomials

is determined from the data.

In the first case, our proposed method selects an invertible MA polynomial. That is,
the selected MA representation is a fundamental one. The estimated polynomials and

the static components are:

0.4273 0.1352 -0.2128 -0.7015 0.5784 0.3377
@)(L’gf y=I,— | ©0133)  (©.0360)| g 9? )= Ty+ | ©0150) (00030 | p 95) _ | “6.0020 0.0050
-0.3260 1.0672 0.1935 0.5339 -0.1598 0.5243
(0.0136)  (0.0430) (0.0162)  (0.0120) 0.0070 0.0030

From observing the estimated static component, 3(12);_,%), we can observe that the effect of
the first shock in the model has a positive effect over the growth rate of GNP, about 0.58

5The dataset was obtained from this link
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percentage points, while a negative impact over unemployment rate about 0.16 percent-

age points.

Figure 2.5 shows the auto-correlation functions of the level and squares of model
residuals. We observe that the restricted SVARMA(1,1) generates white-noise residuals
(panel (a) in Figure 2.5), although the estimated residuals exhibit some higher order

dependence, as it can be noted in the autocorrelation of squared residuals (panel (b) in

Figure 2.5).
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Figure 2.5: Sample auto-correlation function of estimated residuals. (a) Residuals; (b)

Squared residuals.

Based on the estimated AR and MA polynomials and the static component, we con-
struct the causal effects of both shocks over the endogenous variables in the structural
model. From Figure 2.6, we observe that the shock labeled as shock 2 has a long-run
effect on unemployment. In contrast, the effect of shock 1 has a transitory, although
very persistent, effect over both endogenous variables. The former response is similar to
the one identified in Blanchard and Quah (1989). Nonetheless, the persistent behavior
of shock 1 differs from that identified by Blanchard and Quah (1989). It is worth men-
tioning that these effects are estimated without requiring any external identification

restriction, such as the one imposed in the original work of BQ.
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Figure 2.6: Estimated IRFs. (a) Analytical S.E.; (b) Bootstrap S.E.

When the restriction of having a causal representation in the AR polynomial is re-
moved, our method estimates a structural VARMA(1,1) with AR roots inside the unit
circle but MA roots outside it. That is, the estimated model is a non-causal but invertible

SVARMA model. The estimated polynomials and the static component are listed below.

o, 25285 05631 —2.4498 -59769| | 08108 0.5061
(I)(L,f)T y=1Iy— (0.0383) (0.0348) , G(L,f)T )y =Iq+ (0.0377) (0.0442) , B({)T )= 0.0018 (0.0087)
~1.3390 0.7919 12229  2.9127 ~0.3522  0.7745

(0.0091) (0.0129) 0.0090 (0.0430) (0.0041) (0.0057)

The behavior of model residuals is shown in Figure 2.7. It can be noticed (in panel (a)
in Figure 2.7) that the auto-correlation of residuals shows that they behave like a white
noise process. Moreover, regarding the higher order dependence, notice that squared
residuals are also uncorrelated (panel (b) in Figure 2.7). This result is not a formal
testing result, but it gives us intuition that model residuals are, at least, not dependent

in the second order.

This result is new in the literature. Several works have estimated a non-fundamental
model for the BQ dataset, but they identified a causal, non-invertible SVARMA model.
The non-causal behavior of the AR polynomial makes intricate to estimate the causal ef-
fects of structural shocks because the infinite moving-average representation of this non-
fundamental model is ¥, = @~ {L)O(L)Be; = (X2, (1Y ®{L~7 (I +©1L)Be, = T2 8 €14,
implying that E[Y7,41Y1,...,Y7r_1,€7] is an unknown, non-linear function. Estimating
E[Y7r. 1Y1,...,Y7_1,€7] for a non-causal model remains to be an open question in the

literature.
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Figure 2.7: Sample auto-correlation function of estimated residuals. (a) Residuals; (b)
Squared residuals.

2.6. Concluding Remarks

Structural VAR models have become an essential tool in empirical macroeconometrics
because they offer a simple framework for identifying and estimating the causal effects
of economic shocks over macroeconomic or financial outcomes. The focus has been on
identifying the contemporaneous effects matrix, for which various identification strate-
gies have been proposed. Moreover, most of these approaches are based on using external

sources of information for imposing identification restrictions.

In this chapter, we focus on SVARMA models, which exhibit several advantages over
SVAR ones. First, VARMA models are more parsimonious than VAR representations. Be-
sides, it is a more accurate representation of theoretical macroeconomic models. A grow-
ing literature shows that a fundamental SVAR model is quite limiting for addressing
important characteristics of macroeconomic models. For instance, depending on the cali-
bration, the solution to a DSGE model is better represented as a non-invertible SVARMA
rather than a causal SVAR model. When fundamental representation is imposed, the es-

timates of the causal effects of economic shocks may be biased.

This chapter aims to design an estimation method that allows the researcher to iden-
tify the structural parameters of an SVARMA model without imposing the location of the
roots of lag polynomials. Besides, the proposed method, unlike the current methods in
the literature, is robust to whichever the joint density function of structural shocks is;

and does not require the existence of a large number of higher-order moments. Our pro-
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posal exploits a general pairwise dependence measure constructed from the joint char-

acteristic function of model errors.

Furthermore, our framework allows us to adapt the method for weakening the i.i.d.
assumption. We consider a very general dependence structure of shocks, such as to
assume they are m.d.s. This general characterization covers several relevant features
of macroeconomic and financial data. Identification and estimation explicitly require
the existence of the data’s second-order moments and a broader characterization of non-
Gaussian behavior. Besides, the asymptotic distribution only requires the existence of

fifth-order moments.

Simulation results show that our method satisfactorily identifies the location of roots
of AR and MA polynomials in an SVARMA model. However, the correct identification
rate decreases when a local optimization procedure is employed, contrary to the find-
ings when a global optimization method is used. This feature occurs due to the highly
non-linear nature of our optimization problem, which makes it quite sensitive to ini-
tial point conditions. Additionally, the method works fine with vector dimensions higher
than 2, although the results have yet to be tested in higher dimensional situations. The
method should work fine, although, as pointed out in the SVAR literature, it entails a
high computational cost for estimating the structural parameters because the number of

parameters increases exponentially.
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3. CHAPTER II: ROBUST ESTIMATION OF THE NON-GAUSSIAN
DIMENSION IN LINEAR STRUCTURAL SYSTEMS

Statistical identification of possibly non-fundamental structural VARMA models requires that shocks satisfy: (i) to
be an i.i.d process, (ii) to be mutually independent across components, and (iii) each shock must be non-Gaussian
distributed. Therefore, provided the first two requirements, it is crucial to empirically evaluate the third require-
ment without requiring estimation of the structural model. We address this problem by relating the non-Gaussian
dimension of structural errors to the rank of a matrix built from the higher-order spectrum of reduced-form errors.
Our proposal is robust to the location of the roots of lag polynomials, generalizing the current procedures designed
for the restricted case of a causal structural VAR model. Montecarlo’s exercises show that our method satisfactorily
estimates the number of non-Gaussian components.

3.1. Introduction

In the mainstream macroeconometrics literature of structural vector autoregressive (here-
after SVAR) models, Gaussian behavior of shocks is assumed either explicitly or im-
plicitly, leading to exploiting only second-order information for identification and es-
timation purposes. This feature provokes the well-documented problem of the obser-
vational equivalence of any orthonormal rotation of structural disturbances. Several
strategies have been proposed for overcoming such identification issues, resorting to dif-
ferent sources of external information. Some strategies impose zero, linear, or non-linear
identification restrictions over the matrix of contemporaneous effects (e.g., Bernanke and
Mihov (1998); Blanchard and Perotti (2002); Blanchard and Quah (1989); Gali (1992);
Sims (1980), among others). Alternative strategies are: (i) establish agnostic restric-
tions over the impulse response functions, i.e., sign-restrictions (e.g., Arias et al. (2018);
Canova and Pappa (2007); Uhlig (2005)); (ii) estimate a structural shock using extensive
institutional information, known as narrative identification approach (C. D. Romer and
D. H. Romer (1989); C. D. Romer and D. H. Romer (2010)); or (iii) use proxy measures as
instrumental variables for some latent structural shock (e.g., Mertens and Ravn (2013);
Mertens and Ravn (2014); Stock and Watson (2018)).

Despite the usefulness of these identification schemes, they suffer from some draw-
backs. For instance, when external identification restrictions are imposed (zero, linear,
non-linear, or sign restrictions), these cannot be empirically evaluated unless the model
is overidentified. Besides, those restrictions may be pretty arguable in some cases. On
the other hand, when instrumental or proxy variables are used as identification devices,
only a subset of structural shocks can be identified and, as documented by Herwartz and

Liitkepohl (2014), the identification power of this strategy relies on how plausible the

44



relevance and exogeneity conditions.

Alternatively, the statistical identification strategy (hereafter SIS) has appeared on
the scene as part of the data-driven identification approach and has gained a spotlight
in recent years. The works of Guay (2021); Lanne, Meitz, et al. (2017); Maxand (2020)
identify and estimate the matrix of contemporaneous effects in a causal SVAR model
without imposing any external identification restriction because according to the result
in Comon (1994) such matrix is identified (up to signed-permutation) whenever the three
following identification assumptions hold: (i) structural shocks are an i.i.d. process; (ii)
the structural errors are mutually independent across their components; and (iii) at most

one structural disturbance in the model is Gaussian.

For more general stationary, linear processes, the third requirement in Comon (1994)
is insufficient for assuring identification. Chan et al. (2006) show that identification of
a general stationary, linear process needs -provided that shocks are an i.i.d. process
with mutual independent components and some other regularity conditions- that each
structural error in the system to be non-Gaussian distributed, with non-zero third order
cumulant and finite fourth order moment. This result permits dealing with the iden-
tification of parameters in a possibly non-fundamental structural vector autoregressive
moving-average (hereafter SVARMA) model, i.e., without imposing causality or invert-
ibility (see Gouriéroux et al. (2020); Lanne, Liitkepohl, and Maciejowska (2010) for ap-
plications with likelihoods methods and Velasco (2022b) for an equivalent identification
result through cumulant conditions). Notice that in this general context or the restricted
case of a fundamental model, even though i.i.d. and mutually independent components
conditions are met, non-Gaussian behavior of structural shocks is decisive for the feasi-
bility of the SIS.

The main advantage of the SIS is that it makes any economically motivated restric-
tion amenable to being empirically assessed. Thus, any identification constraint in the
standard macroeconometrics literature for causal SVAR models may be tested. In or-
der to perform these empirical exercises, it is central to determine the non-Gaussian
dimension of structural shocks before applying the SIS. Otherwise, this strategy would
be unfeasible and need external identification restrictions. Therefore, our ultimate goal
in this paper is to propose a method for determining empirically this identification con-
straint. Assessing identification restrictions is only sometimes feasible. When models
are overidentified, such a task is achievable. For just-identified models, economic ar-
guments often support the assessment of identification restrictions. We do not neglect
the relevance of such assessments; yet, in our context, they may be insufficient and

vague for justifying the size of the non-Gaussian dimension. Fortunately, we manage to
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design a method for evaluating the identification requirement about the magnitude of

non-Gaussian dimension before blindly applying the SIS.

There is a voluminous literature that copes with the problem of determining whether
a random variable (or vector) is Gaussian distributed or not. Some procedures are based
on the empirical distribution of data (Kolmogorov (1933); Massey Jr (1951); S. S. Shapiro
and Wilk (1965); Smirnov (1948)); other approaches employ the characteristic func-
tion (Epps and Pulley (1983); P. Hall and Welsh (1983)); and, others exploit third and
fourth centered moments (Bera and Jarque (1982); d’Agostino (1971); Lobato and Ve-
lasco (2004)). These approaches only assess the null hypothesis of joint Gaussianity,
which, in case of no rejection, would make it infeasible to apply the statistical identifi-
cation strategy of an SVARMA model. However, if joint Gaussianity were rejected, this
would support only the existence of at least one non-Gaussian component in the system,
which is only sufficient for employing the SIS if we were dealing with a fundamental

SVARMA model with only two endogenous variables.

In contrast, the literature for estimating the non-Gaussian dimension in a random
vector is limited. The proposals relate this dimension to the number of non-zero eigen-
values or the rank of some matrix constructed from third or fourth-order moments or
cumulants. Nordhausen et al. (2017) proposes both an asymptotic and bootstrap se-
quential tests to estimate the Gaussian dimension of an unobservable random vector
by analyzing the number of non-zero eigenvalues of the scatter matrix® constructed us-
ing information from an observable vector, an affine transformation of the unobservable
vector of interest.” They show that when the random vector contains r Gaussian compo-
nents, the scatter matrix has exactly r eigenvalues equal to 0.° Maxand (2020) adapts
this strategy for determining the non-Gaussian dimension in the vector of structural
shocks for a causal SVAR model. Her idea is to apply Nordhausen et al., 2017 approach
directly to estimated structural shocks because the non-Gaussian block is identified even
though there is more than one Gaussian shock. Alternatively, Guay (2021) relates the
non-Gaussian dimension in a causal SVAR model to the rank of a rectangular array

constructed employing third and fourth order cumulants of RF errors.’

6A scatter matrix contains fourth-order moments of a vector.

"Let x and & be an observable and unobservable d-dimensional random vectors, respectively. An affine
transformation is define as x = bg + Be, with bg possibly non-zero vector and B time-invariant, full rank,
square matrix.

8To be completely precise, there exists r eigenvalues equal to d +2, but Nordhausen et al. (2017) employ
a normalized version of the scatter matrix.

9When third and fourth order moments exist, the third order cumulant is the same as the asymmetry
coefficient, while the fourth order cumulant represents the excess of kurtosis. Gaussian distribution is the
only one with all cumulants of third or higher order equal to zero. See Marcinkiewicz (1939) for technical
details.
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The current approaches described above are helpful but restrictive for several rea-
sons. First, many structural macroeconomic models can be represented and fitted more
accurately by an SVARMA model rather than an SVAR one. Second, as discussed in
Gouriéroux et al. (2020); Velasco (2022b) and the references therein, the fundamental-
ness assumption is a restriction to avoid the dynamic identification problem -i.e., any
stationary linear process has a fundamental and non-fundamental representation which
are observationally equivalent when only second-order information is exploited. Besides,
as surveyed by Alessi et al. (2011), non-fundamentalness may be consistent with many
macroeconomic models and data features. Thus, it is paramount to design a method for
determining the non-Gaussian dimension in an SVARMA model that does not require
the root location of the dynamic polynomials as input. Notwithstanding, this task is
quite challenging because when the location of roots is not imposed, the reduced-form
(hereafter RF) errors from a fundamental VARMA approximation -call it RF VARMA
model- might not be a simple static rotation of structural shocks, but a dynamic filter of
those. This characteristic makes invalid Guay (2021) or Maxand (2020) approaches since
the rank or the non-zero eigenvalues of the matrix constructed from contemporaneous
fourth-order cumulants or moments of RF errors are not related to the non-Gaussian
dimension unless unrealistic assumptions are made. This paper aims to fill this gap
in the literature. We exploit third or fourth-order cumulant spectrums of RF errors for
constructing a matrix whose rank unveils the non-Gaussian dimension in the vector of
structural shocks. Our work can be seen as the extension of Lobato and Velasco (2004)
approach to a multivariate context and the robustification of Guay (2021) work against

possibly non-fundamentalness.

For estimating the rank of a matrix, there exist several strategies in the literature.
We follow Kleibergen and Paap (2006) (hereafter KP) approach. The KP statistic is built
from the singular value decomposition of the matrix of interest. The asymptotic distribu-
tion of the statistic is a standard chi-square whose degrees of freedom change depending
on the null hypothesis. Unlike KP work, our context changes the asymptotic distribution
of the test statistic for some particular rank values, specifically under joint Gaussianity.
For other null hypotheses, the asymptotic distribution is chi-square, but the degrees of
freedom are generally unknown. Thus, we propose a bootstrap strategy. This path im-
plies another challenge: to impose the null hypothesis in the resampled data. Montecarlo
exercises were performed to analyze the size and power of the bootstrap test; these show
that our strategy estimates satisfactorily the non-Gaussian dimension. We apply our
procedure to two well-known macroeconomic datasets. Our proposal detects a skewed
structural shock in the system described by Blanchard and Quah (1989) (hereafter BQ).
Using Blanchard and Perotti (2002) (hereafter BP), our approach detects at least two
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skewed and non-mesokurtic structural errors, unlike Guay (2021) whose procedure only
could detect one non-mesokurtic structural shock. In the case of imposing roots outside
the unit circle, this latter result implies that the SIS can be applied to BQ or BP datasets.

The remainder of this chapter is structured as follows: Section 2 describes our time
series model and states the main assumptions. Section 3 shows the connection between
the number of non-Gaussian structural shocks and the rank of an array constructed from
third and fourth-order spectrums of reduced-form errors. In Section 4, the test procedure
and estimation are detailed. Section 5 shows simulation results and the empirical appli-

cation. We conclude in Section 6.

3.2. Model and Assumptions

Let y, be a d-dimensional stationary, zero-mean, multivariate process generated from
an SVARMA model described by

@®(L)y, = O(L)Be;, (3.1)

where ®(L) = I, - Zle ®;L7, OL)=1I4+ Z?ﬂ ©,L’. L is the lag (back-shift) operator,
ie. L'y, =y, ;. & is a d-dimensional vector of structural shocks. B is a time-invariant,
full-rank, squared matrix of contemporaneous effect. If ¢ = 0, model in (3.1) repre-
sents a SVAR model. Representation in equation (3.1) is standard in the literature, see
Gouriéroux et al. (2020); Mainassara and Francq (2011); Velasco (2022b) for equivalent

expressions.

The autoregressive and moving-average polynomials, ®(z) and O(z), satisfy
det(®(2))det(®(2))#0, VzeT={zeC]|lz|=1}. (3.2)

The condition in (3.2) only rules out unit roots in both auto-regressive (AR) or moving-
average (MA) polynomials, otherwise it is not possible to find a stationary solution of
equation (3.1). Thus, we are not imposing an exact location of the polynomial roots'?,
meaning that the structural model in (3.1) permits for possibly non-fundamental repre-

sentations.

The vector of structural shocks, &;, satisfies:

Assumption 3.1.

10Compares this to alternative works such as Guay (2021); Maxand (2020), where they assume that
condition in (3.2) rules out roots on and inside the complex unit circle.
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(i) It is an independent, identically distributed (i.i.d.) process;
(it) the components of €; are mutually independent;

(ii1) there exists 0 <d,g <d non-Gaussian components in the vector of structural shocks,

Et;

(iv) Ele;]=0, Elese}]l =14 and E(lle;|®) < oo for any te Z.

Assumption (3.1.i) is common in the literature'!. It simplifies the analysis however,
it is a quite restrictive requisite because it implies structural errors do not exhibit any
linear or nonlinear dependence'?. Assumption (3.1.ii) is imposed in the work of Comon
(1994), the basis of Independent Component Analysis (hereafter ICA). This requirement
is not as restrictive as it may seem, e.g., in macroeconomics, it is standard to assume that
productivity shock is independent of monetary or fiscal policy shocks. Besides, Assump-
tion (3.1.iv) imposes structural errors that are centered and standardized with finite mo-
ments up to order eight. The high number of required finite moments is needed to find
the asymptotic distribution of the third and fourth-order cumulant spectrum. Finally,

condition Assumption (3.1.iii) does not impose a particular number of non-Gaussian
shocks.

For clearness, we group true values of structural parameters of the model in (3.1) in-
side a K-dimensional column vector, denoted by 9. Besides, we split this vector into two
blocks: one related to dynamic behavior (9 1) and another that governs the contempo-
raneous part (9o 2). Thus, we can write the elements in equation (3.1) as follows: ®(L) =
®(L,90,1), OL)=0O(L,90 1) and B = B(9 2). Therefore, the true structural model can be
written as ®(L,9¢ 1)y; = O(L,0¢,1)B(992)e;. The moving-average representation of the
observable vector is y;, = W(L, 80 1)B(9¢,2)€;, where W(L, 99 1) := dfl(L,ﬂo,l)@(L, dp,1)is a

possibly non-causal filter.'?

Structural parameters 9y are not identified under Assumption (3.1). In particular,
e.g., if AR and MA polynomials roots are known to be outside the unit circle, the block 99 o
is unidentified because B(92) is observationally equivalent to any orthogonal rotation
of it, unless, as showed by Comon (1994), under Assumption (3.1.ii) d,g =d —1. On the
other hand, if only unit roots are discarded from AR and MA polynomials, both blocks

90,1 and ¢ 2 are unidentified. The lack of identification of 9 ; comes from the fact that

HSee for instance Gouriéroux et al. (2020); Guay (2021); Lanne, Liitkepohl, and Maciejowska (2010);
Lanne, Meitz, et al. (2017); Velasco (2022b).

12This condition rules out some characteristics that may be relevant in the empirical analysis of macroe-
conomic outcomes such as stochastic volatility or conditional heteroskedasticity.

13 A non-causal filter is of the form W(L) = Z;’;_oo E 4 ij with non-zero ¥; for some j <0.
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there exist 9 such that y; = Y(L,9)e; with e; a white noise process. In such general
setup, identification requires Assumption (3.1) to be d,z = d (see Chan et al. (2006);
Gouriéroux et al. (2020); Velasco (2022b)).

Nevertheless, the identification of 9 is not the aim of this work but to empirically
verify the key identification restriction about the non-Gaussian dimension of the struc-
tural shocks vector. According to Wold’s Decomposition Theorem (hereafter WDT), the
stationary process y; can be represented as a square summable, infinite, causal mov-
ing average of serially uncorrelated errors (see Anderson (2011) for more details), i.e.,
y, = Y(L)u; with W(L) = %0 W¥;L/ such that X% ||‘i’j||2 <oo, ¥y =1, and u, is a white
noise process. Using our representation for a structural VARMA model, we could write
the WDT causal filter as W(L) = ® (L)O(L) with det (®(2)) det (6(2)) # 0 for all |z < 1.
Furthermore, we can write ®(L) = ®(L,9r), O(L) = O(L,9;) and W(L) = ¥(L,9;), where
9 denotes the parameters vector that generates the causal filter of the WDT of y,. We

call this the fundamental representation of y;, hence the subscript “f”.

The serially uncorrelated RF errors, u;, are defined as
Uu; = ‘P_I(L,‘ﬂf)yt = ‘I’_I(L,ﬂf)"I’(L,‘ﬂ(),l)B(‘ﬂo,z)Et - 6(L,‘3f,190)£t. (33)

If the structural model in equation (3.1) were fundamental, then 6(L,97,9¢) = B(9g ),
implying that RF errors are a linear transformation of unobserved structural shocks. In
general, when only unit roots are discarded from AR or MA polynomials in (3.1), the
filter 6(L,9r,90) is non-causal. Hence, RF errors are not a static rotation of structural
shocks but a dynamic combination of rotations of the structural errors. For simplicity,

we write 6(L,97,99) = 6(L,?y). Besides, serial no correlation of RF errors, u;, implies
8(e't,97)6% (e, 97) = Q (3.4)

where Q is positive definite, symmetric constant matrix and 6*(ei/1,1‘)f) denotes the
transposed, conjugate matrix polynomial of 6(eM,1‘)f). Baggio and Ferrante (2018); Ve-
lasco (2022b) and the references therein denominate filters satisfying equation (3.4) as

all-pass filter.1*

14To be completely precise, an all-pass filter requires that © = I ;. However, this is not a problem in our
analysis because Q is a constant matrix.
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3.3. Higher-order Spectrum and non-Gaussian Dimension

Equation (3.3) shows that the RF errors capture information of unobserved structural
shocks. Thus, the non-Gaussian dimension in &; may be addressed by analyzing u,. Like
Jarque and Bera (1987); Lobato and Velasco (2004), who interpret the non-Gaussian
behavior as exhibiting asymmetric or non-mesokurtic nature, we focus on the third and
fourth-order spectrum cumulant of RF errors to capture the asymmetry or the excess of

kurtosis in structural shocks.

3.3.1. Cumulants of Random Vector

The characteristic function of structural shocks is ¢¢(T) := E(exp(it'e)) with T = (11,...,74)
a d-dimensional vector of constants. The cumulant generating function is x.(7) := log (¢(7))

and the cumulant for a k-tuple (¢}, ¢,...,€j, ¢) is

ak

(011)F1... (0T g)kd ’ (3.5)

=0

K&:(T)

Cum (gjl,t, XX Ejk,t) =

where Z‘]?l:lkj =k=1land k; =0, j, €{1,...,d} for m =1,...,k. When moments exist,

Jammalamadaka et al. (2006) shows that the expression in (3.5) is equal to

Cum (€j,4,--,j,.4) = 3 (pl = DD T] [E( I1 g,-m,t), (3.6)
p Pep \jneP
where p is a partition of {j1,...,jz}, p| is the number of parts in partition p, and P a block
of partition p. For instance, if £ =2 and we choose the duplet (¢}, ;,€/,.:), Cum(eq s, €2,4) =
Ele;, t€j,,61 = Cov(ej, t,€5,,+). When k=3 and the chosen triplet is (¢}, +,€,¢,€j5,¢), then
Cum(e s, €2, €3,) = El€, 1€j,,¢€)5,¢]. With 2 =4 and the chosen 4-tuple, (€, ,€/,.t,€ /5,6, €j4,1)5
we get Cum (&, 4,y 1€y > €ju t) = EL€)y 1€)5 1€ 1€ 4 t1-ELEjy 1€ oy 1V ELE g 1y 1—Ele s 1€ JELE jy 1€y )=

Ele;y,¢€j,,¢1EL€y 1€ j5,¢]. The m-th marginal cumulant of order & is 5 = Cum (g, 4,...,€/,.¢)

,m

with j1 =jo=---=jr=m.

Collecting all the cumulants for any k-tuple in a single-column vector, we have

K(€) = [Cum(ey . .. ’gk,t)](jl,...,jk)ecrk({l,...,d}) 3.7

where 0({1,...,d}) is the set of all permutations of length £ formed with numbers in the
set {1,...,d}. Forinstance,ifd =2 and & =2, 09({1,...,2}) = {{1,1};{1,2};{2,1};{2,2}}. From
this, it clear that dimension of k() is d*, while the number of non-repeated elements

. . (d+k-1y _ (d+k-1)!
in k(&) is ( % )= R d—D! *
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Let v be a d*1 x d matrix such that x;(¢) = vec(vy). By assumption (3.1.ii-iv), all
non-marginal cumulants of &; are zero, then v; has the following structure

VZ: Kk,le‘fk_l Kk,gegk_l Kk,degk_l , (3.8)

where e; is the j-th canonical vector in RY.

3.3.2. Number of non-Gaussian shocks

From equation (3.8), it is feasible to identify the non-Gaussian dimension in &€ by deter-
mining the non-zero third or fourth order marginal cumulants x; . Besides, the number
of non-zero marginal higher order cumulants is equal to rank(v; ) Thus, if the structural
errors were observable, rank (vg) would be equal to the number of asymmetric shocks. In
contrast, rank (VZ) would provide the number of non-mesokurtic shocks in the structural
model. This relationship is behind the approach followed byMaxand (2020) work; since
the structural model is restricted to a causal SVAR, structural shock estimates can be
recovered. She employs Nordhausen et al. (2017) strategy, which relates the non-zero
eigenvalues of the standardized fourth-centered moments of the vector (scatter matrix)

with the non-Gaussian dimension.

In contrast, Guay (2021) approach does not employ v} directly. Like Maxand (2018),
his model is a causal SVAR, which implies that (¢ 1) is identified by estimating an RF-
VAR model. Therefore, as we explained above, the errors of the RF-VAR are a linear
rotation of structural shocks, that is u; = B(9¢ 2)e; where 9, 2 governs the contemporane-
ous or static part of the SVAR model and is not identified. According to Jammalamadaka
et al. (2006), KZ = B®* x}(¢) where B®* denotes the & order Kronecker power, i.e. the

Kronecker product of B with itself % times. Then, similarly to v; we define
vy = Vec_l(KZ) :B®k_1vZB’

Since B := B({g 2) is a squared full rank matrix, it follows that rank (v}':) =rank (vi) and
therefore, identification of structural shocks is not needed to determine the non-Gaussian

dimension in the structural model.

Even so, under a more general structural model like the one considered in this pa-
per, Maxand (2020) and Guay (2021) approaches are invalid. First, a possibly non-
fundamental structural VARMA is only identified if all shocks are non-Gaussian, which

we ignore. Second, the errors from the fundamental RF-VARMA model are a possibly
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non-causal filter of structural shocks. In this case:

j=—00
[e.0]

vi= ) 6?k_1V269 (3.9
Jj=-00

From (3.9), it is evident that rank (v¥) # rank (v£) in general. In fact, rank (v¥#) could be

smaller than rank (VZ) even though each 6; were full rank.

We employ the cumulant spectrum of order k& for RF errors to deal with this problem.

According to Brillinger (2001), the k-th order of cumulant spectrum is:

g (A) = @)t (6 (/T 9,) @ § s (e‘“k-f;ﬂf)}) K (€), (3.10)

where ®7:1Aj3: A1®As®---®A,.

Analogously to the definition of v}/, we construct the d*1 x d matrix G} (A) such that

g%(A) =vec(G¥(A)). Therefore
k_l . . —
GY(A) = (@ {s (e—”k—f;af)})v; CAGE=R ) (3.11)
j=1
Since 6(z,7¢) is an all-pass filter and (A ® B)(C ® D) = (AC ® BD), provided that AC and
BD are conformable, we define the d x d matrix GZ’Z(/Ik) as

GrP )= [GEW] GEA) =8 (e Tnitn 9, ) (v @2t Ve ) & (e T M 9y), (3.12)

where A* denotes the conjugate transpose of the complex-valued matrix A and A, =
- Z’fn;ll Am. Notice that GZ’Z(Ak) only depends on the scalar frequency A; € [-m, 7], hence

from now on we drop the lower-index % of the frequency.

From (3.12) and since 6(z,9y) is full rank for any |z| = 1, it is clear that rank (GZ’Q(A)) =
rank (v’ Q®k_1v2) =rank (v{'v%). Thus, we relate the non-Gaussian dimension in &; to
the rank of matrix GZ’2(7L). The following proposition summarizes our main finding in

this paper.

Proposition 3.1.
Let the structural model be described by equations (3.1) and (3.2), with structural shocks
3

satisfying Assumption (3.1). Consider the arrays G§’2(/1), GZ’2(/1) and Ggf(?t) = G2
4
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therefore
rank (Gg’z(/l)) =rank (v§'v§) =ds,

rank (GZ’Z(/I)) =rank (vyvy) =da,
rank (G4(0) = dsa, ¥ A€l-m,7)

where d3 and d4 are the number of skewed and non-mesokurtic structural shocks, respec-

tively, and ds4 is the number of asymmetric or non-mesokurtic shocks.

Proposition (3.1) can be interpreted as follows: the non-Gaussian dimension in the
vector of structural shocks is equal to the rank of a matrix constructed from higher order
cumulant spectrum of RF errors at a given frequency. In particular, if only the third-
order cumulant spectrum is employed, we obtain the non-Gaussian dimension delivered
by asymmetric non-Gaussian shocks. If only the fourth-order spectrum is utilized, we

capture the non-Gaussian dimension spanned by non-mesokurtic shocks.

Besides, notice that in case the condition in (3.2) holds for all ze T, ={x € C| |x| <1},
higher order cumulant spectrums are constant. Hence, array GZ’z(ﬂt) is constant, i.e.,
the same for any frequency. In particular, GZ’Q(A) =B(902) (VZ, Q.@k_lVZ)B,(ﬂO,Z) =vy'vy
for any A € [-m,m]. This setup is the case analyzed in Guay, 2021. Under this situation,
proposition (3.1) holds as well. In other words, if a fundamental structural VARMA
model generates y,, a rectangular array constructed from cumulant spectrums of order

3 or 4 based on RF errors identifies the non-Gaussian dimension.

3.4. Estimating the number of non-Gaussian elements

From the discussion above, to determine the non-Gaussian dimension in the structural
shocks vector, we need to find the rank of a rectangular array constructed from the cu-
mulant spectrum of order £ = 3,4. Thus, our empirical problem becomes the estimation
of the rank of a matrix. In the literature, this problem has been dealt with in two ap-
proaches: sequential testing or estimation by information criteria (see Camba-Méndez
and Kapetanios (2009) for a detailed review). We opt for the former approach because
it may be problematic to construct a pseudo-likelihood function for a non-causal filter.
Additionally, the parametric estimation of our matrix of interest is not feasible because
the possibly non-fundamental filter 6(z,9,9¢1) = ‘P_l(z,l‘)f)\l’(z,ﬂo,l) is not identified
unless we impose fundamentalness. Consequently, we decide to estimate gz(A) non-

parametrically.

54



3.4.1. Estimation of non-Gaussian Dimension

Dealing with GZ’Q()L) may be problematic since it implies working with complex-valued
terms. For simplifying the analysis, we use Re(Gi(ﬂL)) instead. At frequency zero, there
is no problem since GZ’Z(O) = Re(GZ’Z(O)). At other frequencies, Re(GZ’Z(/l)) is the sum of
two positive semidefinite quadratic forms; thus, we cannot lose rank, and we gain rank

only if both quadratic forms has linearly independent columns.

We now describe our estimation of the non-Gaussian dimension in structural shocks
through a sequential hypothesis test. At step s =1,2,...,d in the sequential procedure,

the null and alternative hypotheses are

H, :rank (Re(Gy* (1) =
Hy s :rank (Re(Gy (M) = 75 +1,

where r; denotes the rank under the null hypothesis at step s.

We start the sequential procedure (at step s = 1) by imposing r1 =0, i.e., joint Gaus-
sianity of the structural shocks. If this is rejected, we continue with the next step, s = 2,
and the null hypothesis is updated to ro = 1, i.e., only one asymmetric or non-mesokurtic
structural shock. We continue this way until we cannot reject a null hypothesis or reach
the final step s =d, where ry = d — 1. If this is not rejected, the non-Gaussian dimension

in the structural shocks vector is d — 1; on the contrary, the non-Gaussian dimension is
d.

The literature on rank estimation via hypothesis testing is extensive (see Al-Sadoon
(2017) for a complete survey). We center our approach on Kleibergen and Paap (2006)
(hereafter KP) proposal. They employ the singular value decomposition (hereafter SVD)
of a matrix of interest, II. The SVD of matrix II,,«, consists on finding squared or-
thonormal matrices R; and R of dimension m and n, respectively; and a quasi-diagonal

rectangular matrix %, «, such that'®
R NIR; = &, (3.13)

where £ is a rectangular array with a squared block %7 = diag(l4,...,l7) with m =
min{m,n} and 1 = lg = --- = I = 0 are the singular values of II. If Il is squared, then
!

&L =%Z+. Assuming that m>n, £ = | %% 0nxin-n)| -

From decomposition in (3.13) and selecting an integer r € {0,...,m — 1}, Kleibergen

158ee Golub and Van Loan (2012) for more details on SVD of a matrix.
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and Paap (2006) obtain that

I=C,D,+C, %D, (3.14)
Ri11 R 1o
where C,.D, = 21 [Rlz 11 Ryo1[3Cr1 %Dy = L2 Rj15 Rygl-
RS R R122  —
rxr o~ X ,(m—r)x(n-r) (n—r)xn

mxr m ><(m—r)
C, | and D, | are the orthogonal complements of C, and D, respectively. Thus, Kleiber-

gen and Paap (2006) approach consists in decomposing the matrix I into two linear in-
dependent parts: one that is made of the multiplication of two matrices that are full
column rank, C,.D,, and another with null rank C, | Z,D, . Therefore, rank(Il) =
rank(C,D,) = r. This result is only achieved if we place all the non-zero singular values

into £1. Accordingly, the null hypothesis of rank(II) = r is equivalent to £, = 0.

Since II is not observable, the SVD is applied to its estimator II. Thus, we can write
M= érﬁr+6r,L§rﬁr,L. Under the assumption of VT (vec[Il]-vec[II]) 4 Nmn(0,2) with
= positive definite, then under the null hypothesis of rank(II) = r the asymptotic distribu-
tion of 7, = vec (:@r) is VTP, 4 Nim-rn-r) (0,2,) where E, = (D, | ®C, )ED, 1 8C, ).
The KP-statistic is

=-1_
r

(T _mz = d 2
KPP =TOE, € X2 ynor» (3.15)

where E, is the consistent estimator of the asymptotic variance, =,.

In some dimensions, our problem departs from Kleibergen and Paap (2006) context.
First, our matrix of interest Il = Re(GZ’z(/l)) is symmetric, i.e. it contains repeated ele-
ments. Hence, the asymptotic variance of unrestricted estimator I, =, is only positive
semi-definite. Second, as we detail in the section where it is discussed the estimation of
higher order spectrum, the asymptotic distribution of the unrestricted estimator of our
matrix of interest changes under the null hypothesis of joint Gaussianity, i.e., under the
null of rank(IT) = 0. Finally, our convergence rates for the asymptotic distribution of the

statistic are lower in comparison to the standard speed of convergence, v'T.

Test Statistic at first step
For the first step in the sequential procedure, the null hypothesis is rank(IT) = 0, i.e., the
vector of structural shocks is an uncorrelated Gaussian process. The KP statistic under

this null hypothesis is

KPP = a4 0yaVar (Do, 2 Cy 1) Q) 2o, (3.16)
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where AT denotes the Moore-Penrose inverse of matrix A, @ is the vectorized form of a
linear combination of an inverse Wishart distribution, which parameters depends on the
asymptotic variance of spectrum estimates (see Section 4.3 below), and 50, L and 6:)’ N
represent the limiting values of lA)o, | and (Al'o, 1. ar is the convergence rate of spectrum

estimates.

Test Statistic under mixed cases

Now, when the null hypothesis is rank(IT) = r with r > 0, i.e., the vector of structural
shocks is an i.i.d process with mutually independent components and there are r non-
Gaussian distributed shocks. In this case, the asymptotic distribution of Il is Normal,

and the KP statistic adopts a similar form as in Kleibergen and Paap (2006),
D_ 27D oe &H o6 v 7
kP =a}Z,(|D,10C, )ED,, T, )| .. (3.17)

The statistic in (3.17) is asymptotically distributed as a chi-square with degrees of free-
dom v = rank (13,, 1 ® C'Ir l).@(f)r, 1 ®C"r, D ] Unfortunately, the exact value for v is not
easy to determine, because -although C’r, 1L and ﬁ’,’ | are full column rank matrices of
dimension d x (d —r)- the matrix (lA),’ L® C’,r 1) is full row rank matrix of dimension
(d —r)? x d? and the matrix = is only positive semidefinite, i.e. it is not full rank. From

this discussion, we can bound the degrees of freedom, 1 <v < min{rank(Z),(d — r,)?}.

3.4.2. Bootstrap Test

Because of the difficulties characterizing the asymptotic distributions of the KP statistic
for each step in the sequential procedure, we opt for a bootstrap strategy. Nonetheless,
this path entails other challenges. The most problematic is to accomplish that the boot-
strap sample appropriately reflects the null hypothesis of each step. Otherwise, it may
severely compromise the size and power of the test (see P. Hall and Wilson (1991); Portier
and Delyon (2014)).

It is a well-known result from the SVD of a matrix Il,, «, with m > n and rank(II) =r,
that null(IT) is spanned by the last n —r columns of Ry and the range ran(Il) is spanned
by the first r columns of R;. Thus, when rank(II) = r, the first » columns of R, span the
non-Gaussian dimension, while last n —r columns of R9 span the Gaussian one. Thus,
we follow Nordhausen et al. (2017) approach and use the estimates of Ry for a projection

of residuals into Gaussian and non-Gaussian dimensions.

Given the sample {yt}?:l, we estimate a RF-VARMA model and compute its RF resid-
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uals {at}thl. Based on these estimates, we construct our matrix of interest Il = Re (@Z’Z’(T)(A))
and the matrices @, Rl and IA{Q. Under Hj, : rank(II) = r and according to Nord-
hausen et al. (2017), we construct .Rg,r = [i’g’r.g_l - -f'z,d] and the projection matrix M, =
I- ﬁ}/ Zﬁz’rﬁé’rﬁgy 2 where 3, is variance of RF residuals vector. M, is the projection
matrix into the orthogonal space to the one spaned by R ,, i.e., M, is a projection into
non-Gaussian space. Based on these inputs, at any step s in the sequential testing pro-

cedure, each bootstrap sample is created following Algorithm 1.

Algorithm 1 Bootstrap Sample under Hy ; : rank(IT) =r;

1. Obtain an unrestricted bootstrap sample of RF residuals {ﬁt}?:l.

2. Draw a sequence of size T' of random vectors, {nt}tT:1 , from multivariate standard
Normal distribution, A4(0,14-,,).

3. Bootstrap sample of RF residuals consistent with Hy  is given by

* _ - 12
u;, =M, a;+2;°Ro,n,.

4. The restricted bootstrap sample of {y} };F: 1 1s built parametrically, i.e. using u; and
estimated parameters from RF-VARMA.

It is worth mentioning that the unrestricted bootstrap sample of RF residuals is not
performed by the usual independent bootstrap procedure stated by Efron (1979), but
by the proposed method in Politis and Romano (1994), called the stationary bootstrap.
According to the authors, this procedure is suitable for stationary weakly dependent
time series because, unlike other proposals such as Kunsch (1989); Politis and Romano
(1992), it exhibits the desirable property that the resampled time series obtained are
stationary conditional on the original data. This type of bootstrap sampling is necessary
because RF errors are only serially uncorrelated, but they are not independent unless
the fundamentalness of data is imposed or Gaussian is assumed. Besides, for obtaining
the restricted bootstrap sample for observable data, we employ a parametric approach;

otherwise is not possible to impose the null hypothesis in the data.

Once the restricted bootstrap sample has been obtained and we set a nominal size

a €(0,1) for all the steps in the sequence, the test proceeds as follows:
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Algorithm 2 Bootstrap Test

0. Set the initial step s = 1.

1. Given the step s, set the null hypothesis as Hy s : rank(Il) = 7; = s — 1 and compute
the KP statistic with original sample, K. Pg).

2. Use Algorithm 1 for obtaining B bootstrap samples. Compute statistic KPiT)l;*

each bootstrap sample b =1,...,B.

for

B (T) (T),%
1+x8_ 1(kPD <k PD)

3. Compute the bootstrap p-value for Hy ,, as pv,_ = T +B and we de-
cide in this fashion:

3.1. If ﬁ?}rs > a, then Hy; is not rejected, the estimated rank is 7# = r; and the
procedure ends;

3.2. elseif s <d -1, update s =s+1 and repeat since stage 1;

3.3. else, the procedure ends and the rank is 7 =d.

3.4.3. Estimation of Cumulant Spectrum of order %

This part briefly discusses some details of estimating higher order cumulant spectrum.
The discussion follows closely Brillinger and Rosenblatt (1967). The sample periodogram

for a k-tuple of RF errors is

1 k
(T)( A)= m}_[ (T)(/ltj) (3.18)

where ¢ = (¢1,...,cp) € 0 ({1, .. d}) A, —27r . for tj=1,...,T-1,j=1,...,k—1 and
Z 1A = O[mod(2)]. Besides, z )()Lt]) = Zt 0 Uc;te ~Att is the discrete Fourier trans-

form (DFT) of cj-th reduced-form error, Uc),t-

A consistent estimator of the cumulant spectrum of order % for a e-tuple of RF errors
is
ﬁ ™ o k-1 T-1 )
g7 = ( : ) > OWT (A= Aeysees A=A I Q) (3.19)
1oyl =

.....

0 and 711m TH7 k 1 = c0. The we1ght1ng function, W(a) is symmetric around 0 and satis-

fies conditions stated in Brillinger and Rosenblatt (1967, Assumption II).

The consistent estimator of g} (A) is the collection of all & Aa’( )(A) in a vector, which
we call gu T)(A). Thus, we can obtain the d*~1 x d matrix Gu( )(A) such that gr” D)=
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vec (GZ’(T)(A)). Besides, GZ’Z’(T)(A) =
is Re (GZ’Z’(T)(A)).

GZ’(T)( /’1)] ) GZ’(T)(A). Finally, our matrix of interest

3.4.4. Asymptotics of spectral estimators

Brillinger and Rosenblatt (1967) show that

Vit |

where A4, represents a multivariate Gaussian random 2d*-dimensional column-vector
Re(A*(2,1)) -Im(A*(2,2))
Im(A*(2,2))  Re(A*(A,))

Re(g} (1))

Re(gr;;‘"”m))] B
Im(g}(A))

Im(gy ")

) L Nygn (0,7 (M) (3.20)

with mean 0 and variance 7 (A); V(L) = and Ak(ﬂl,p) =

AE (A, ] with
<c’b>( 2 (e,b)elop({1,...,dD)12

lim H5 17 Cov (2247 (1), 8550 () = AL, 5, (A, )

T—o00 L‘,k

k k
=21 Y [] ﬂ(/‘m—(Gu)m)gz,(cm,(cb)m(ﬂm)fW(ﬁ)W(Gﬁ)5D ( Y ﬁm)dﬁ

o({1,...khm=1 m=1
where ob = (bg,,...,bg,), 0 =(01,...,04) € 0({1,...,k}), Y% _ A,n = 0[mod(2m)], n(x) =
Z;";_oo Op(x+2mj) and dp(x) is the delta-Dirac function.

The estimator of our matrix of interest is II = Re {GZ’2’(T)(A)}. Besides, given that

GZ’(T)(A) =vec! (ng’(T)(A)), Il is a function of real and imaginary parts of gZ’(T)(A) as

the following equation shows

vec (II) = vec (Re {GZ’Z’(T)(A)}) = (I d® é%ﬁz)(ﬂt))w + (I a®8 Iﬁrﬁ?;;)(ﬂ))w vec(I(d)),

where g%’éi)(/l) and giﬂ)m) denote the real and imaginary parts of vector §Z’(T)(/l),
respectively; and I(d) = vecI g) vecI g)' ® I jr-1.

Consequently, the asymptotic distribution of vec (fl) depends on the null hypothesis
at step s, Ho,. Particularly, at the first step Hy 1 : rank(II) = 0, i.e., under joint Gaus-
sianity of the structural shocks, the population spectrum of order % is zero for & = 3,4.
This result implies that the Jacobian of vec (fl) at population values is null, making it
not feasible to use the standard Delta method for finding the asymptotic distribution of
vec (II). Proposition (3.2) states the asymptotic distribution for vec (II) at different stages

in the sequential testing procedure.
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Proposition 3.2. Assuming that result in (3.20) holds, then:
1. When s =1, under the null hypothesis Hg 1:

HE T (vec (T1)) 2 @, (3.21)

2. For s =22, under the null hypotesis Hy s:

VHET (vec (IT) — vec (ID)) LA N2 |0, I, 2(A)V(A)JG2(A) (3.22)

In Proposition 3.2, @ := (I 29X A qaz2m and A a2 is the vectorized Hessian'6
k

k

of vec (Re{GZ’2’(T)(/1)}) evaluated at zero. X:= vec[#1(7(A))] with #1(7(A)) denotes a
Wishart distribution with parameters 7(A) and 1 degree of freedom. Besides, < e (1) is

the Jacobian of vec (Re {Gi’(T)(/I)}) evaluated at population values of cumulant spectrum
of order k.

3.4.5. Asymptotic Equivalence between spectrum estimators of u; and @,

The results above are obtained for unobserved RF errors, u;. However, we employ the
estimated RF residuals using a finite sample of size T' using the estimated RF param-
eters, 9,«. In consequence, it is essential to show that asymptotic results remain valid
when using estimated RF residuals, &;. The spectrum of order & for the estimated RF
residuals can be obtained easily replacing u; by #@; in (3.19), denoted by & 50 (T) (A). The
rest of the estimators can be obtained as explained above using gu( )()l). ThlS analy-
sis is omitted in Maxand (2020) and Guay (2021) works, maybe explained because the

structural linear model is fundamental.

Proposition 3.3. Given our model is determined by (3.1)-(3.2) and under Assumption

3.1, it holds
E\/H:T

Proposition 3.3 states the asymptotic equivalence between estimators of higher-order

Au(T)(A) Au(T)(M<CH2

cumulant spectrum using unobserved RF errors and their sample counterparts. This

implies that the discrepancy generated by using gu (T)(A) decreases to zero at the rate of
k-1
CH T2 , which is slower than v/T. This convergence rate comes from the fact that we are

16The Hessian of a vector-valued function R — RY is a 3-tensor. Intuitively, the Hessian matrix is
3-dimensional array of dimensions d x d x q.
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using a non-parametric estimation for the higher order spectrum, which incorporates a
kernel with band-with Hr.

Corollary 3.1.
Let structural model be described by (3.1) but condition in (3.2) holds for any point in
T, then

E\H:T |

AU, (T)(A) Au(T)(A)‘ <CH 2 .
EVT

) _ i (T) -1
K, K, ‘ <CT

~u,(T) (T)

In Corollary 3.1, ®,”" " and Ku are the sample estimators for cumulant of order %

based on unobserved RF errors and RF residuals, respectively.

This corollary states that in the case of working with a more restricted structural
model, since the researcher imposes the location of roots, Proposition (3.3) still holds.
The asymptotic equivalence remains if contemporaneous higher-order cumulants were
employed instead of the higher-order spectrum. However, the convergence rate is faster
than in the general setting. This latter result is because the estimation does not use

kernel smoothing when using contemporaneous higher-order cumulants.

3.5. Simulation and Empirical Application

Show the validity of the restricted bootstrap sampling analytically is quite intricate. We
believe that following procedures that have been proven to be consistent may assure the
effectiveness of our approach, although this is not equivalent to formal proof. Addition-
ally, we present some evidence from different Montecarlo exercises as additional support

for the validity of our bootstrap sampling and test.

The data-generating process or the true structural model for all the exercises is a
non-causal SVAR(1). We employ different distributions for the structural disturbances.
Montecarlo and bootstrap repetitions are set to m = 250 and B = 500, respectively. The
nominal significance level is set to @ = 5%. The number of points for the DFT is set to
a minimum even integer greater than or equal to the sample size T, and the size of the
window is set to [77/4].

3.5.1. Simulation Results

Table 3.1 shows the rejection rates of our sequential procedure in the bivariate case

(d = 2). Besides, the values in a box represent the size of the test. At panel (3.1a),
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we employ the zero frequency (1 = 0). The first row is associated with the Gaussian
case. Its size is 4%. When we consider a mixed case (second row of the panel (3.1a)),
the rejection rate of Hy 1 represents the power, 32%; while its size is 7%. Finally, when
structural shocks are fully non-Gaussian distributed (third row in panel (3.1a)), both
rejection rates of Hp 1 and Hy o represent the power at each step. These values are 42%

and 26%, respectively.
Table 3.1: Estimating rank Re (G%(/lg)): Rejection Rates (Level: a = 5%, Sample: T = 250)

(a) Single Frequency (1 =0) (c) Grid of 11 frequencies

Distribution of €, Ho1 Hope Distribution of e, Ho1 Hope

N(0,13) 0.01 N (0,15) 0.01
(A(0,1); x3) 021 (A(0,1);7%)  0.20
(E(0,1);73)  0.42 0.26 (E(0,1);73) 045 0.29

(b) Grid of 26 frequencies

Distribution of e, Ho1 Hogo

N(0,13) 0.00
(A#(0,1); 73)  0.22
(E(0,1); x3) 0.42 0.28

Employ estimates at a single frequency of higher order cumulant spectrum may be
noisy, leading to imprecise results, especially when the sample size is small. To make our
procedure robust to this unpleasant characteristic, we use a grid of frequencies instead
of only the zero frequency. Let ¢ denote the finite grid of frequencies that are selected,
instead of constructing our matrix of interest as II=3 ), # Re (Gi(/lk )) where F denotes
a finite grid of frequencies, because it may entail the risk of gaining rank spuriously;
we use the following statistic ﬁ(rT) = maxjcg {KPﬁT)(/l)}, where KPﬁT)(/l) denotes the

KP-statistic for a particular frequency A.

In panel (3.1c) of Table 3.1, a grid of length 11 is selected. For this grid, the test
size when all disturbances are Gaussian distributed is 4%; when only one non-Gaussian
shock is present, the size is around 6%. The power is quite similar to when a single
frequency is employed. In panel (3.1b) of Table 3.1, a grid of 26 frequencies was selected.
The size test when &; is a Gaussian process is 5%; and when we have only non-Gaussian

shock, the size is around 6%.

Regarding power, the levels remain close to the previous exercises. Furthermore, in
Table 3.2, we can observe the effect of increasing the sample size. Regarding the test
size for each case, the results show that it remains close to the values obtained with

T = 250. Moreover, concerning the power, we observe a significant increment in the
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power, especially in the case where only one single frequency is employed.

Table 3.2: Estimating rank (G5(1)): Rejection Rates (Level: a = 5%, Sample: T = 500)

(a) Single frequency (1 =0) (b) Grid of 11 frequencies

Distribution of &, Ho1 Hoyp Distribution of &; Hoo Ho,1

N(0,15) 0.01 N(0,13) 0.00
(HO,1; 1) 035 (#0,1;43) 031
(E0,1);73) 049 0.38 (E(0,1);73) 041 0.32

Suppose we take a strategy for restricting the bootstrap sample as the one followed by
Guay (2021), which employs the first r; columns of R; for projecting the residuals into
the non-Gaussian dimension. In our case, since our matrix of interest is squared and
symmetric, R1 = Ro, thus we use the first r; columns of Rs. The rest of the components
d —rg are drawn from a multivariate normal distribution with mean zero and variance
I;_,,. In Table (3.3), we compute the rejection rates using Guay’s bootstrap sampling
approach. The size of the test when having fully Gaussian shocks is, disregarding the
length of the frequency grid, around 5%. The size when &; has one Gaussian component
is around 7% for the different grid lengths. Nonetheless, the power using Nordhausen
et al. (2017) bootstrap sampling is consistently higher than using Guay’s approach.

Table 3.3: Estimating rank (G2(13)): Rejection Rates (Level: a = 5%, Sample: T = 250)
(Restricted Bootstrap sample built following Guay (2021))

(a) Single frequency (13 =0) (c) Grid of 11 frequencies

Distribution of &; Ho1 Hoyp Distribution of &; Ho1 Hoz

N(0,15) 0.01 N(0,13) 0.01
(40,13 024 (#¥O,1;3) 021
(E(O,1); x3) 040 0.23 (E0,1);x2) 039 0.24

(b) Grid of 26 frequencies

Distribution of &; Ho1 Hoyp

N(0,1) 0.01
(HO,1;x3) 024
(E(0,1); x3) 0.42 0.27

For larger dimensional models, we choose d = 3,4. We perform these exercises with
sample size T = 250 and the grid A3 = 0. The results can be observed in Table (3.4). The
distribution M N7 is a mixture of two normal distributions (A4(10,0.75) and A (-2,4))
such that the distribution has a positive skewness coefficient. It can be noted that, while

the sample size is fixed, it is more difficult to reject the null hypothesis for larger r.
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Table 3.4: Estimating rank (G%(/13))2 Rejection Rates (Level: @ = 5%, Sample: T = 250)

Distribution of &; HO,l Hoyg H0,3 H0,4

N(0,15) 0.03 0.01 0.00 --
(E(0,1); MN7; 4(0,1)) 0.36 0.21 [0.08 --
(A(0,I); EO,1); x2) 057 0.27 [0.04 0.01

3.5.2. Empirical Application

We select two well-known data sets in empirical macroeconomics. The first data set is
used in the seminal work of Blanchard and Quah (hereafter BQ), where they introduced
the long-run restrictions as an identification scheme for causal structural VAR models.
This database contains two endogenous variables: the US GNP’s growth and the unem-
ployment rate. The second data set is taken from the work of Blanchard and Perotti
(2002) (hereafter BP). Their data includes three endogenous variables: tax revenues,
government spending, and GDP (all in real terms). In both cases, we use the exact SVAR
specification for each work, avoiding our conclusions from being affected by a specifica-

tion bias.

Table 3.5 shows the results of applying our proposal to the BQ database. We can
identify a single asymmetric structural shock using only third-order cumulant spectral
density. When information in the fourth-order spectral cumulant is employed, the pro-
posed method cannot identify any component with excess kurtosis. This result can seem
contradictory, though the limited sample size (T' = 148) might affect the precision of
fourth-order estimates. On the other hand, Table 3.6 shows the results of applying our
proposed method to the BP dataset. Using third-order information, we detect at most
two asymmetric structural shocks at a significance level of 10%. This result is consis-
tently found disregarding if only a single frequency or a grid of frequencies is employed.
When fourth-order information is used, at 10% of significance, we can detect three non-
mesokurtic structural shocks at zero frequency. When a grid of frequencies is employed
instead, the method does detect two non-mesokurtic structural shocks. Besides, if these
results are compared to those obtained in Guay (2021), our proposal can detect at least

one extra non-mesokurtic structural shock.
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Table 3.5: Number of non-Gaussian components in Blanchard and Quah (1989)

(a) rank (Re (GZ(1))) (b) rank (Re (G2(1)))
Frequency Null Hypotheses Frequency Null Hypotheses
Grid HO,l H0,2 Grid HO,l HO’Q
A=0 0.077 0.160 A=0 0.659 —-—
Grid of 11 fregs. 0.037 0.128 Grid of 11 fregs. 0.723 ——
Grid of 26 fregs. 0.093 0.157 Grid of 26 freqs. 0.741 ——
P-values reported, based on B = 1000 bootstrap samples. P-values reported, based on B =500 bootstrap samples.

Table 3.6: Number of non-Gaussian components in Blanchard and Perotti (2002)

(a) rank (Re (GZ(1))) (b) rank (Re (G%(1)))
Frequency Null Hypotheses Frequency Null Hypotheses
Grid Hy1 Hyo Hy3 Grid Hy, Hyo Hys
A=0 0.077 0.021 0.377 A=0 0.034 0.029 0.068
Grid of 11 freqs. ~ 0.066  0.041  0.729 Grid of 11 fregs. 0.042 0.044 0.103
Grid of 26 freqs. ~ 0.038  0.064  0.450 Grid of 26 fregs. 0.024 0.094 0.252
P-values reported, based on B = 1000 bootstrap samples. P-values reported, based on B = 250 bootstrap samples.

From the previous results, provided that structural shocks are independent across
time and components, if the researcher imposes fundamentalness, applying the SIS to
both BQ and BP datasets is feasible. A causal and invertible SVARMA model can be
identified without imposing external identification restrictions or using proxy variables.
Moreover, our results suggest that for the BP dataset, it is feasible to identify a possibly
non-fundamental SVARMA model. In the case of the BQ dataset, the most limiting factor

is the quite small sample size.

3.6. Concluding Remarks

This chapter aims to design a procedure to determine the number of non-Gaussian
shocks in a structural linear VARMA model which is robust to the type of dynamic rep-
resentation, i.e., whether the structural model is fundamental or non-fundamental. This
objective is mainly motivated because knowing the number of non-Gaussian shocks in

the structural model allows the researcher to implement an estimation procedure of
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structural parameters based on the statistical identification approach. In the funda-
mentalness of the structural model, the requirement is to have at most one Gaussian
structural shock; if the researcher does not want to impose the root location, the require-

ment is that all the structural errors are non-Gaussian distributed.

We generalize the procedure in Guay (2021) by exploiting that the rank of a matrix
constructed from the third-order cumulant spectrum of the RF errors reveals the number
of skewed or asymmetric structural errors in the SVARMA model. Meanwhile, the rank
of an array constructed from the fourth-order cumulant spectrum reveals the number of
non-mesokurtic structural shocks in the system. Simulation results show that our proce-
dure correctly estimates the non-Gaussian dimension. Additionally, from a practice point
of view, our proposal is intensive computationally, especially if we employ the cumulant
spectrum of fourth order or when the dimension of the structural model increases or the

sample size is large.
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4. CHAPTER III: IDENTIFICATION OF FUNDAMENTAL SVAR
MODELS USING HIGHER ORDER CUMULANTS AND
SIGN-RESTRICTIONS

The statistical identification strategy of causal structural vector autoregressive models has gained attention re-
cently because it permits the identification of the causal effects of structural shocks without resorting to external
identification restrictions. This strategy exploits higher-order information provided structural errors are mutually
independent and non-Gaussian distributed. This approach only identifies the structural model up to the signed
permutation, which implies a finite set of admissible models. The solution proposed in the literature for select-
ing a model relies on applying a mechanical procedure. This paper aims to study an alternative scheme based on
imposing economic-motivated sign restrictions over the causal effects of structural shocks. Only the permutations
matter when a single, strict sign restriction is applied to each shock. A sufficient condition for achieving global
identification is that the matrix of contemporaneous effects has a generalized recursive structure. A weaker suffi-
cient condition for accomplishing point identification of a single shock requires imposing as many sign restrictions
as the number of endogenous variables in the model and that the system of sign restrictions is sign-solvable. On
the other hand, when the model contains more than one Gaussian structural error, identification using higher-order
cumulants ensures that the non-Gaussian block remains identified, although the order is unknown.

4.1. Introduction

Afterward the publication of Macroeconomics and Reality (Sims (1980)), structural vector
autoregressive (hereafter SVAR) models have become one of the most popular toolkits in
empirical macroeconomics because they allow to summarize and forecast data, as well as
to identify the effects of meaningful economic shocks over outcomes of interest (Stock and
Watson (2001)). This latter is one of the aims of several scholars and policymakers. Al-
beit, such a task is not straightforward. As it has been surveyed by Rubio-Ramirez et al.
(2010), SVAR models are not identified since any orthogonal rotation of structural shocks
generates the same variance structure of the reduced-form (hereafter RF) errors, i.e.,
structural shocks and their orthogonal rotations are observationally equivalent. Thus,
several strategies relying on external identification restrictions have been proposed in
the macroeconometrics literature. Sims (1980) suggests performing a Cholesky decom-
position of the RF errors covariance matrix, called as recursive identification because it
implies sorting the observables variables from the most exogenous to the most endoge-
nous. However, this approach is sensitive to the chosen ordering of endogenous variables.
Bernanke and Mihov (1998) proposes introducing zero restrictions in the contemporane-
ous effects matrix following some theoretical macroeconomic model. And Blanchard and
Quah (1989) states a strategy by imposing zeros over the long-run effects of structural

shocks. Gali (1992) combine both long-run and short-run zero restrictions.

An alternative identification strategy, proposed by Canova and De Nicolo (2002);
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Peersman (2005); Uhlig (2005), is based on setting particular signs to the causal effects
(also called responses) of a subset of structural errors over some endogenous variables
at specific horizons. Such agnostic restrictions are usually extracted from a theoretical
structural economic model'”. A more economic-based strategy is the so-called narrative
identification approach, proposed firstly by C. D. Romer and D. H. Romer (1989). Such
a strategy is based on a profound analysis of how policies are conducted to measure the
policy shock. Alternatively, Braun, Briiggemann, et al. (2017); Stock and Watson (2018)
propose to employ such measures as instrumental variables for unobserved structural

economic shocks.

Except for the narrative approach, the other identification strategies introduce ex-
ternal information to complement the conditions obtained from second-order moments
of the data. The attention to second-order information is supported by explicitly or im-
plicitly assuming the Gaussian behavior of structural shocks. Nonetheless, Gaussianity
may not be justified by empirical evidence. Table 4.1 shows the p-values of individual
and joint Normality tests for the estimated structural residuals from selected empiri-
cal macroeconomic works. The results point out that non-Gaussuian behavior might be
supported by data. Theoretical foundations behind the non-Gaussian behavior of struc-
tural errors may be varied, e.g., non-linearities and time-varying volatility, among other
causes. For instance, Fernandez-Villaverde et al. (2018, pp. 5) find that financial frictions
“induce complex, non-linear behavior in aggregate time series, including bi-modalities,

skewness, and fat tails, in the ergodic distributions of the variables of interest”.

Additionally, linde2016challenges find empirical evidence that forecast errors and
some estimated innovations from an empirical model exhibit significant excess of kurto-

sis, specifically the shocks related to monetary policy and risk premium.

Therefore, although Gaussian behavior of structural errors simplifies the analysis,
since it allows to focus only on their serial and cross-correlation, it may be reasonable to
assume that economic shocks are non-Gaussian distributed. This feature enables the ex-
ploitation of higher-order information for statistically identifying structural parameters
without incorporating external restrictions or information. For instance, Herwartz and
Litkepohl (2014); Liitkepohl (2005); Rigobon (2003) employ unconditional or conditional
heteroskedasticity of structural shocks for obtaining additional moment conditions that
are employed to attain identification up to sign-permutation of the parameters in SVAR
model with time-invariant coefficients. On the other hand, Gouriéroux et al. (2017);
Gouriéroux et al. (2020); Lanne, Meitz, et al. (2017); Maxand (2020) exploit the non-

Gaussianity of structural shocks explicitly for identifying parameters of a causal SVAR

1"For instance, it is common to obtain some sign-restrictions for some shocks using RBC or DSGE models
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Table 4.1: Normality Tests of Residuals (p-values)

Cramer-von-Mises Watson Anderson-Darling Jarque-Bera

Stock and Watson (2001)
Cost shock 0.003 0.002 0.002 0.037
Demand shock 0.006 0.007 0.007 0.000
MP shock 0.000 0.000 0.0000 0.000
Joint Normality 0.000
Christiano, Eichenbaum and Evans (1996)
Supply shock 0.624 0.579 0.639 0.817
Cost shock 0.938 0.929 0.976 0.935
Commodity shock 0.758 0.718 0.715 0.925
Monetary shock 1 0.033 0.026 0.030 0.000
Monetary shock 2 0.001 0.001 0.000 0.000
Monetary shock 3 0.001 0.001 0.000 0.000
Demand shock 0.001 0.001 0.001 0.026
Joint Normality 0.000
Blanchard and Quah (1989)
Supply shock 0.187 0.212 0.073 0.012
Demand shock 0.002 0.002 0.001 0.027
Joint Normality 0.120

P-values reported.

model. Their identification relies on the work of Comon (1994), who requires at most one
Gaussian shock in the system for obtaining identification (up to signed permutation).
Alternatively, Lanne and Luoto (2019); Velasco (2022b) characterize non-Gaussianity by
its third and fourth-order moments, introducing additional moment conditions for iden-

tification purposes.

The statistical identification strategy (hereafter SIS) permits identifying a finite set
of feasible signed permutations of the structural shocks that are observationally equiva-
lent. This partial identification result affects the type of inference that can be performed.
Identification up to signed permutation is enough for learning about elements invariant
to permutations, such as the number of non-Gaussian elements or the rank of the con-
temporaneous effect matrix. Nevertheless, there are elements in a structural model that
are not permutation invariant, e.g., the causal effects of a structural error over a subset
of endogenous variables. Thus, testing these elements requires either having point iden-
tification of structural parameters or performing the testing exercise over all admissible
permutations. Furthermore, in the context of a finite identified set, point identification
requires selecting a particular model, such as choosing an admissible permutation. In
the literature, some procedures have been proposed to accomplish this. For instance,

Hallin and Mehta (2015) proposes a selection procedure based on assuming that the con-
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temporaneous effects’ matrix belongs to a broad class of matrices, which are equivalent

under permutation and scaling.

When a d-dimensional SVAR model is statistically identified, the number of admis-
sible signed permutations equals 2¢ x d!, whose amount increases with the number of
endogenous variables in the system. Thus, it is crucial to have a permutation selection
device. This paper investigates whether sign restrictions over impulse responses can be
applied to choosing a permutation instead of a mechanical procedure. Specifically, under
which conditions sign restrictions may lead to point identification of the structural pa-
rameters in the model. We find that: when each shock is subject to a single, strict sign
restriction, the number of admissible permutations reduces to d!. This result means the
following: once the sign of structural shocks is fixed, we only need to care about per-
mutations. A stronger sufficient condition is that the matrix of contemporaneous effects
has a generalized recursive structure to obtain point identification with single sign re-
strictions to each shock. Besides, when all shocks are asymmetric, it is possible to relate
the recursive structure of the matrix of contemporaneous effects. A weaker condition
for point identification of a single structural shock can be obtained using multiple sign
restrictions. In this case, we get that the number of strict sign restrictions must be, at
least, as many as the endogenous variables in the model, and the inequality system im-
plied by the sign restrictions has to be sign-solvable. For identifying multiple shocks, it
is found that the condition for a single shock identification must hold recursively. Ad-
ditionally, we discuss the necessary conditions for identifying multiple shocks with sign
restrictions using only second-order information since the sufficient conditions estab-
lished in the literature that assures the existence of identified sets for single shocks are
not enough when multiple structural errors are involved. Besides, we discuss identifying

a structural model in the system’s presence of multiple Gaussian shocks.

This chapter is organized as follows: Section 4.2 presents the structural model and
the basics of sign restrictions; Section 4.3 explains how cumulants are defined and states
the main identification results based on higher-order cumulants. Also, the role of the
mutual independence assumption is discussed. Section 4.4 provides the concluding re-

marks.
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4.2. Model and Assumptions

Let y, be a d-dimensional, observable random vector. y, is the stationary solution of the

following stochastic difference equation:
Loy, =D +T1y; 1+ +Tpy, p+ & (4.1)

The matrix coefficients {I' i}f _o are time-invariant and squared; I'g and I', are non-singular;
D is a d-dimensional column vector of constants. &; is a d-dimensional random vector,
known as the structural shocks, and it is assumed they are economically meaningful.

Equation (4.1) can be expressed as

y:=C+A1y, 1+ +Apy, ,+ Falet =C +k§: Ary;_;, +Beq, 4.2)
=1
where A; = I‘alI‘i fori=1,2,...p,C = I‘alD and B = 1"51. Throughout this paper, equa-
tion (4.2) is called the structural VAR(p) model. In this paper, we are not dealing with
dynamic identification. Therefore we impose that the polynomial A(L)=1,4— Zi: 1AkLk
satisfies
det(A(z))#0 V |z|<1. (4.3)

The condition in (4.3) implies that the structural model admits a causal or fundamen-
tal representation. This prerequisite implies that the Hilbert space generated by the
past and current values of observables, #(y) = #{y, : s <t}, is equivalent to the space
spanned by the past and present values of unobserved structural shocks, #(¢) = #{e; : s <t}.
The requirement in (4.3) assures the dynamic identification of the structural model. Oth-
erwise, there may exist a non-fundamental representation that is observationally equiv-

alent.

The description of the model in (4.2) is not complete until the structure of &; is es-
tablished. The following assumption states the main structure of the structural errors.
Let .# denotes the set of indices {1,2,...,d}, ¥, S .# is the index set of non-Gaussian

structural shocks with |ﬂn g| =dg.

Assumption 4.1. The structural shocks, €;, in the model satisfy
(a) {€:};c7 is an ergodic, serially uncorrelated sequence.
(b) &; has mutually independent components for all t.

(¢) Cum, [é‘i,t] # 0 for some n € {3,4} and all i € I, 4, where Cum,(x) denotes the marginal

cumulant of order n of variable x.
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(d) Ele;]1=0, Elese;] =14, Ellle; 1141 < oo for all t.

Assumption 4.1.(a) is the minimum requirement for structural errors. Although this
assumption allows for potential higher-order dependence of the structural shocks, this
does not represent a significant threat to identification, given that the dynamic iden-
tification problem is not a concern. Assumption 4.1.(b) is necessary since Gaussianity
of structural shocks is abandoned, otherwise even though errors are not contemporane-
ously correlated, higher-order dependence may exist, and non-linear forms of the others
could predict some structural error. On the other hand, Assumption 4.1.(c) states that at
least one non-Gaussian structural shock exists in the system with finite third or fourth-
order cumulant. This assumption is insufficient for achieving statistical identification,
though below, a refinement of this condition will be done to assure statistical identifi-
cation. Finally, Assumption 4.1.(d) is relatively standard in the literature but includes
the finiteness of at most fourth-order moments because, as it will be shown later, the

identification of structural parameters is based on higher-order cumulant conditions.

Calling u; = Be;, the structural model in (4.2) lead to the RF-VAR(p) model:
AL)y, =C +u;. 4.4)

The vector u; is known as the RF error. A(L)=14- Z‘Iz:lAkLk is the AR polynomial,
where L is the lag or back-shift operator, i.e. L°y, = y;_.. Condition in (4.3) implies that
the parameters of the RF model, {A j}le and Var(u;), are identified.

4.2.1. Impulse Response Analysis

Given the structural model in (4.2) and fundamentalness condition (4.3), y;, admits a
infinite, causal moving-average representation as follows
[e.@]
vy, =YL)C+u)=p+) ¥;Be_j, (4.5)
j=0
where W(L) = A~ }(L) = 220 ‘I’J-Lj with Wy = I4, and g = ¥(1)C. Based on equation
(4.5), the causal effect of a change in the /-th structural shock over the j-th endogenous
variables at horizon ¢ + A, also known as the impulse response (hereafter IR) of y; ;11 to

€14, 1s equal to

IR(yj s+nler,e) =Ely; t+nl¥1s-- o ¥e—1,€16 = U=ELy; t2nly1, - ¥5-1,€1,6 = 01 = [Wr1(Hb; = e}‘I’hBel,
(4.6)
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where e;. and e; select the j-th row and /-th column of a matrix, respectively.

When an orthogonal rotation is applied to the vector of structural innovations, £} =
Q¢€;, then the matrix of contemporaneous effects is rotated as well, B* = BQ'. Rotation
matrix @ satisfies QQ’' = Q'Q = I;. Thus, an equivalent expression to (4.6) for a change

in the /-th rotated structural shock is
IR(yj,t+h|EZt) = [‘Ph](j)b; = e;‘PhBQ'el = e;‘Pthl, 4.7

where q; is the /-th column of @'.

By comparing expressions in (4.6) and (4.7), it is evident that the causal effect or im-
pulse response function (hereafter IRF) of structural shocks is not invariant to orthog-
onal rotations. Besides, from this comparison, the static identification problem can be
interpreted as follows: although any orthogonal rotation of structural shocks generates
the same variance structure of the RF errors because Var(u;) = Var(Be;) = \/ar(B*eZ‘),
each orthogonal rotation implies different paths for IRF's of the structural shocks, gener-

ally.

Sign Restrictions

As Uhlig (2005) and Arias et al. (2018) explain, sign restrictions do not impose a partic-
ular value but a direction to the IR in (4.6). For example, it could be imposed that the
causal effect of the [-th structural shock over the first endogenous variable at horizon

t + 2 is non-positive, then

IR(yl,t+2|El,t) = ell‘PzBel <=0 o (-1 (e’l‘PzBeZ) = 0.

When the researcher imposes more than a single sign-restriction over the responses
to changes in ¢, the sign-restrictions form a system of inequalities, which can be rep-
resented as follows: let €(/) the set of indexes (A, ) of endogenous variables and time
horizons whose responses to the /-th structural shock are restricted. Specifically, € (1) is
defined as € :{1,...,d} = (NU{0}} x {1,...,d}'® and its cardinality is |6 ()| = r; < oo repre-
sents the number of responses to the /-th structural error that are sign-restricted. Since
%(1) is a finite discrete set, we can index each pair as (h;,j;) for i =1,...,r;. Hence, for

a pair (h;,j;) € €(1), the sign-restriction to the response of j;-th endogenous variable at

18¢¢(1) is a subset of {{NU{0}} x {1,...,d}}. In general, €(I) may have infinite elements. However, in this
work, we take finite € () for each [ structural shock.
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horizon ¢ + h; to a change in
IR(Y ),y t+hm |€1,6) = Sm (e'jm‘I’hmBez) 20 Y(hm,jm)€€l),m=1,...,ry,

where s, € {—1,1}, with m € {1,...,r;}, represents the direction for the sign-restriction.
For instance, if s,, = —1, we are imposing the effect of structural shock ¢;; is negative
over the response of y; :.5,. Gathering each of these restrictions in a vector, we can

write the previous system more compactly

[ IR(yjl,t+h1|£l,t) ’ '81 0O ... O - e}l‘l’hl
IR(yjy,t+n5l€0,) 0 s9 ... O e ¥,
IR(Yj0),t+h)€1,6) = i =l. . .. ) * | Bey =S, (Y)Y b, =0,
LIR(yj,l ,t+hrl |£l,t)_ | 0 0o ... Sr, ] e;’l ‘Phrl

(4.8)
where S; = diag(s,...,s,,) contains the signs of the restrictions, ¥(/) = [y1,...,y,,] with
Y= ‘I’;lie j; and Wy, is the A;-th matrix coefficient from the infinite MA representation
in (4.5).

If orthogonal rotated structural shocks are considered, the sign restrictions for the

[-th structural shock are
S {(P()Y BQ'e; =S;{¥()Y Bq; =0,

where q; is the [-th column of an orthogonal rotation matrix @’.

Now, in case multiple structural shocks are subject to sign restrictions, we can ex-
press the system of sign restrictions as follows: let #gr < {1,...,d} denotes the index
set of structural errors subject to sign-restrictions, with | -%sg| = dsr < d represents
the total number of sign-restricted shocks. Each shock is .#sr has associated a set of
sign-restrictions like in (4.8) and collecting each of them in a vector, the system of sign-

restrictions is

IRjamnanlens | [Sn 0 ... 0 ]| e, (¥
IR(Yj(y),t+n12) €15,8) 0o S, ... 0 e, o{¥(l)Y —
A IS I b vec(B) = Ssp ¥ vec(B) =0,
!/
TR jagp) t+hlagg) Elage )] [ 0 0 o Sy, | e, @ {Wlagp)} J
(4.9
where Sgr = diag (Sl1 .. S dSR) is a block diagonal matrix, whose blocks contain the

75



signs for restrictions to /-th shock, and Y= e, ®¥Y(y1) ... €y, ® Y(lggp)|-

According to Uhlig (2005) or Arias et al. (2018); Rubio-Ramirez et al. (2010), a valid
value for matrix B must satisfy the system of sign-restrictions in (4.9). Identification
with sign-restrictions works as follows: if an initial value B violates the system in (4.9),
this is rotated, i.e., B* = BQ', such that system (4.9) holds. Therefore, it is clear that sign-
restrictions identify many different models, each of them associated with a particular

rotated B*, whose are consistent with the sign-restrictions to shocks in #gp.

Additionally, the sign restrictions are a linear system of inequalities of the form
¢ = {A’x < 0}. The solution set of this system is F(¢) and we define F1(¢) = {x | X'y =
0 for some y € F'(¢)}. Besides, F°(¢c) denotes the interior set of F'(¢). For instance, the
sign-restrictions associated to shock ¢; ; is qu ={-S;¥Y'(1)Bx <0} and F(ch) represents
the set of vectors consistent with the sign-restrictions. In case of restrictions to multiple
shocks, the system of inequalities is ¢S = {—SSRW’vec(B) < 0}. Also, let o1 x o5 be the
Cartesian product of sets «; and ofy; then GS (of; x o) is the set of tuples obtained by
applying Gram-Schmidt algorithm to each element of /1 x o%5. For instance, consider
that (x1,X9) € o x ofo, then (Xx1,X2) is the element of GS (o] x ofp) with X9 = x5 — Xl'xléxl.

lIx1]

An alternative way to state that a matrix B satisfies system (4.9) follows Granziera
et al. (2018). Let ¥4 : R — R, be a distance mapping, defined as

_ 2
%(B) = min HSSR\P’vec(B) _vy

veRf

>

where d = Z;lff ri;, denotes the slackness vector of the system of sign-restrictions in
(4.9). Thus, it is evident that B satisfies the system of sign-restrictions in (4.9) if and
only if 4(B) = 0.

4.3. Identification using Cumulants conditions

This section discusses the identification of the structural model using cumulant con-
ditions. Also, it is discussed the conditions under which sign restrictions may lead to
achieving point identification. Nonetheless, before continuing, let us introduce some
notation and concepts to avoid confusion. 2(d) is the space of real-valued, squared,
non-singular matrices of size d. By denotes the “true” value of contemporaneous effects
matrix; while B1, a solution to the population cumulant conditions. In general, By # B;.
B denotes the set of all solutions to the population cumulant conditions up to order n,
while 938 , 1s equivalent to % ,, but generated by orthogonal rotations @ of B;. Besides,
.%f{fR denotes the sign-restricted set, i.e., the set of all orthogonal rotations of any B,
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that satisfy the sign-restrictions system in (4.9). It is clear that @gfﬂ) c @gn c Bon.-
Finally, since cumulants are employed for identification purposes, let us explain what is

a cumulant of order n for a random element.

4.3.1. Cumulants

Let ¢.(rv)=E [e”'et be the characteristic function of a strict stationary, random vector &;,

where T = (11,...,74) € R? is a constant vector. Unlike the moment generating function,

¢:(t) is well defined for any T even though &; does not possess any finite moment. The

cumulant generating function is defined as
K(T) = log(¢p:(7)). (4.10)

A cumulant for an n-tuple of elements of vector &;, or a cumulant of order n, is

6”1(,3(1)

— (4.11)
6‘[]'1 ...aTjn =0

Cum(ej, 4,...,€5,4) =
where (j1,...,jn)€0,(1,...,d}) and 0, ({1,...,d}) represent the set of all permutations
of the elements in the index set {1,...,d} taken in n-tuples.'® This implies there are
d" cumulants of order n constructed with the elements of &;. Since Cum(e;, ¢,...,€;,+)
is invariant to permutations. Thus, repeated values exist among the d* cumulants of

order n. The number of non-repetated cumulants of order n is equal to (r'f!w__ll))!!. More-

over, it can be distinguished between marginal and non-marginal cumulants. Specifi-

&£ ._

cally, the marginal cumulant of order n for the j-th element in the vector & is x}, s

Cum(ejy,...,€j ).

When n = 3, the values {’Kg j}?:l are known as the skewness coefficients; while for

n=4, {x are called the excess-kurtosis coefficients. Marcinkiewicz (1939) shows

a1
that the Gaussian distribution is the only one whose cumulant generating function is
a quadratic polynomial. Thus, non-Gaussian distributions have, in general, non-zero
cumulants of order n = 3. Petrochilos and Comon (2006) demonstrate that it is possible to
find non-Gaussian distributions with zero-cumulant up to order 3 or 4, although higher-
order cumulants must be different from 0. Jammalamadaka et al. (2006) shows that a

cumulant of order n can be expressed in terms of moments when these latter exist.

Cum (g, ¢,---5€j,4) = 3 (IPI = D=DF ] [E( I1 gjm,t), (4.12)
B peP  \Umep

9For instance, let the set of numbers {1,2}. o5({1,2}) ={(1,1,1);(1,1,2);(1,2,1):(1,2,2):(2,1,1);(2,1,2);(2,2,1):(2,2,2)}.
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where 13 is a partition of {ji,...,/,}, [Pl is the number of parts in partition 33, and p

is a block of partition 3. For instance, if n = 2 and we choose the duplet (¢}, +,€,.¢),
Cum(es,€2,) = Elej, 1€j,,1]1 = Cov(ej, t,€;, +). When n = 3 and the chosen triplet is (&}, ;,€/,.¢,€/3,¢),
Cum(er s, €2,,€3,¢) = Elej, 1€, 1€j5,¢]. However, with n = 4 and the 4-tupleis (€}, ,€, ¢,€j3,t,€jy,t)s
Cum (Ejl,t’€j2,t’5j3,t’£j4,t) = Ele ), 180,08 ja 1€ ju t )= ELE 1 1€yt VELE g 1€ 1] —Ele jy 15 1N ELE o 18y 1=

Elejy t€j,,t1ELE jg 1€ s ).

We can gather all cumulants of order n in a column vector

k& = [Cum(gj, t,-.-,€),.t) 41> Whose dimension is, evidently, d". When ¢,

] 115ee0sJn)E0 R ({1,...,
satisfies Assumption 4.1 (Z; arid) (b)(,{then all the non-marginal cumulants are zero. The
vector ¢ has a particular structure. Let v be a d"~! x d matrix, such that k& = vec(v%)
with

v = [Kfl’le?”_l, Kfl’zegn_l,..., KfL,deS”_l forn=2,
where e;""_l denote the (n — 1)-th Kronecker power. To see a simple example of this
structure, consider a bivariate SVAR d = 2 and third-order cumulants, n = 3, thus

£
K31

0
0 0
0 0
0

£
K32

Since the RF errors are linear combinations of structural shocks, i.e., u; = Be;, and
according to Jammalamadaka et al. (2006), the cumulants of u; and &; are connected as
follows

g, (BkE )7 ) = xt -B's =0, n 2. (4.13)

In this paper, we characterize non-Gaussian behavior through possibly non-zero third or
fourth-order cumulants, i.e., n < 4 because it might be troublesome to provide economic
interpretation for 5-th or higher-order cumulants. The system in (4.13) is called the
population cumulant conditions (hereafter PCC) up to order n. This system is satisfied,
evidently, by By and the generic solution B;. Also, the cumulant conditions in (4.13)
only consider the marginal higher order cumulants since x§ = vec(I2). The higher order
non-zero, marginal cumulants of non-Gaussian shocks in (4.13) for n = 3 can be retrieved
in terms of B and «};. Thus, we can concentrate g,(.) in terms of B only, g,(B). Now, let

us define a population criteria using the PCC up to order n:
~ 1 & . -
M B)=3 ) EnBWngy(B), (4.14)
m=2
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where W, is positive definite weighting matrix. It is clear that (B1) solves the PCC if
and only if #/"(B1) =0.

4.3.2. Identification with Second Order Cumulants

The set of all matrices B that solves the PCC in (4.13) up to order n =2,
Bo2=1{B e B(d)| M*B)=0}, (4.15)

also known as the identified set, contains a continuum of admissible values for B, imply-
ing that is an infinite set. A prominent element of this set is Z¢, the Cholesky decom-
position?? of T, = Elu;u;]. Setting B1 = X, the rest of elements of %2 can be found
as B* = B1Q' with @ an orthonormal matrix. Thus, the identified set using orthogonal

rotations is (see Appendix ?? for a formal proof of this statement):
B2, = {B|.4*B)=0for B=3cQ',Q € O(d)},

where 0(d) is the space of orthonormal square matrices of size d.

From this discussion, it is evident that %82 =%o,2. Also, %32 can be seen as the im-
age set of the linear transformation 9 : 0(d) — %(d) with 9 = Z¢Q’. Then, %82 is just
an homeomorphism of the set G(d) and inherits some of its properties, such compactness.
Finally, the identification problem in the standard macroeconometrics literature can be
seen in this way: using only second-order information captured by the cumulants of sec-
ond order, the identified set contains any orthogonal rotation of Zc. This result means

the RF errors are identified, not structural shocks.

Sign restrictions can shrink the set %6‘22. The identified set using second-order cu-

mulants and sign restrictions over the responses to structural shocks in Zgg is

9889,59}3 — {B | #Z%B) =0, SSR@Ivec(B) >0, for B=XcQ withQ € @’(d)} = %82,2 NF(SE),
(4.16)
where ¢SF = {—SS Rﬁlvec(ZcQ’ )< 0}. In case a sign-restrictions is imposed only for iden-
tifying €; ;, the system of inequalities that are employed is c}gR . Under this scenario, the
rest of the shocks are unrestricted. Therefore, the attention is on under which condi-
tions F(c*lgR) is non-empty. However, when multiple structural shocks are subject to sign
restrictions, the existence of each F(ch) does not guarantee the existence of identified

set e%(?’ZSR. Additionally, we can employ the distance function %(.) for measuring if the

20By Assumption 4.1 is a finite, positive definite matrix.
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orthogonal rotations satisfy the sign restrictions, then

BYSE = (BAA(2cQ) =0, 9(Q)=0 for Q € 6(d)},

_ 2
with 9(Q) = minyg ‘SSR ¥ vee(ZoQ') - vH .

Lemma 4.1 (Identification by second order cumulants and sign-restrictions).
Consider the structural model in (4.2) satisfying condition (4.3). Under Assumption 4.1

and imposing sign-restrictions over the structural shocks in Zsg, then

(a) The solution set F (ch) exists, and it is not a singleton if and only if
Aq,eR?, st S;¥'()Bg;=0

(b) F(c}gR) is unbounded, closed and convex.
(c) %?’QSR is:
i. Not empty if and only if X e g, F(cJSR)ﬂGS (Xjefw F(cJS.R)) £ Q.

ii. Not a singleton if and only if X je g5 F°(c‘]sR)ﬂGS (Xjeﬂsze F°(c}sR )) £ Q.

When |#gr| = 1, i.e. only one structural shock is signed restricted, Lemma 4.1 is
equivalent to Proposition 1 in Granziera et al. (2018). When |#sg|> 1 and r; =1 for all
l € Zsg, the results in Lemma 4.1 is straightforward, since such restriction splits the
space into two parts. Lemma 4.1.(a) is a direct application of the existence result in R
Tyrrell Rockafellar (1970) for cones formed by linear inequalities. Besides, Lemma 4.1
makes evident that the identified set with sign-restrictions and second-order cumulants,
%3,281%, is, in general, a continuum of admissible permutations of X¢, implying that re-
searcher is identifying an infinite number of models whose are only coherent with the
sign restrictions over a subset of shocks. At the same time, the rest of the responses
are unrestricted. This feature makes inference a challenging task (see Granziera et al.
(2018) and the references therein for details on inference with frequentist tools) because
it is difficult to separate the model from the sampling uncertainty. This is similar to the

criticism made by Fry and Pagan (2011).

Lemma 4.1.(c) is relevant when the researcher looks to identify multiple structural
shocks since even though F(c*lgR) exists for each [ € .Zgp, the existence of F(¢cSE) is not
assured since it is necessary to obtain a d-tuple of mutually orthogonal vectors. In a
simple bi-variate context, the condition in Lemma 4.1.(c.i) is equivalent to require that
set Fi(c‘fR) intersects F(ch ). Let us exemplify the result in Lemma 4.1.(c) with a simple
example. Let structural model with d = 2 and By such that Bg j,, > 0> B ji, for all j < j'
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and m. If we impose r; = 2 for [ € {1,2} over the contemporaneous effects matrix such that
S1=diag(+1,-1) and S = diag(—1,—1). Nonetheless, if a third sign restriction over the
second shock is added such that S¢ = diag(—1,—-1,+1) and it is a non-convex combination
of the edges of F(c‘lgR) (represented by the thicker green line in Figure 4.1), then there
are no compatible solutions. Thus, the signs associated with the restrictions, contained

in Sy, play a crucial role in the existence of the identified set.

Figure 4.1: Identified sets and Sign Restrictions

(a) Compatible Sign Restrictions (b) Incompatible Sign Restrictions
(5 F)
FH(ciR), (1™ NG G
SR
Fey™)
(PP (B

4.3.3. Identification with Higher Order Cumulants

When structural errors in the model are non-Gaussian distributed, information from
higher-order cumulants can be exploited for identification purposes, e.g., if all structural
shocks exhibit asymmetric behavior (Kg’j #0 for j=1,...,d), there are w extra
linear independent cumulant conditions. Therefore, the identified set using cumulants

up to order n is
PBon={BeB|M"(B)=0}, n=34.

When n = 3, third-order cumulants are employed for identifying the parameters of the
structural model. In case the third-order cumulants were informationless, e.g., when
structural errors are Gaussian or non-Gaussian but symmetric shocks, then 9 3 = % 2.

In that situation, cumulants of order n =4 should be employed.

Since non-zero third or fourth-order cumulants have characterized non-Gaussian be-
havior, it is possible to relate the number of non-Gaussian shocks in the system to the
number of asymmetric or excess-kurtosis structural errors. This amount can be related

to the rank of the matrix v§ or v§. Let d3 = rank (v§), d4 =rank (v}) and d34 = rank (v§,)
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!
with v§, = [vg’,vi’] . Notice that d3 +d4 = d34 = min{d3,d4}. If v{ and v§ are linear in-
dependent block, then d34 = d3 + d4. In case third-order cumulants are informationless,
d3s =dg.

Assumption 4.2. Let d, g be the number of non-Gaussian shocks.

(@) When n =3, it is assumed that d,g =d3z =>d - 1.

(b) When n =4, it is assumed that d,g =d3s=>d - 1.

The implications of Assumption 4.2 are twofold. On the one hand, when informa-
tion up to third order is exploited, Assumption 4.2.(a) imposes that the number of non-
Gaussian shocks is equal to the number of asymmetric errors and this is greater or equal
tod — 1, i.e., there is at most one symmetric shock in the structural model. On the other
hand, Assumption 4.2.(b) states that when information up to fourth order is used, the
number of non-Gaussian shocks is equal to the rank of v§,, which reflects the amount of

asymmetric or non-mesokurtic errors.

Let B € 98(d) be a non-singular matrix such that ﬂg’(B 1) =0, i.e. solves both second
and third order cumulant conditions. It is worth mentioning that, in general, when
third-order cumulants are informative, B1 # Z.. Thus, like in the previous section, under

Assumption 4.2 the identified set using up to cumulants of order 7 is
Bo.n = 888n = {BI./%Z"(B) =0,B=B1Q’, Q' € 2(d)}, (4.17)

with 22(d) c 0(d) denoting the space of all signed-permutation matrices of size d. In

Appendix ??, we prove that this set is invariant to the choice of Bj.

Intuitively, the expression in (4.17) may be interpreted as follows: when structural
shocks are mutually independent and, at least, d —1 are asymmetric or show an excess of
kurtosis, the matrix of contemporaneous effects is identified up to signed-permutation.

It is important to remark that no external identification restrictions have been necessary

Q
0,2

@gn. Also, notice that ‘%éQn is a finite set with cardinality equal to ‘%gn’ =29 x d!. The

power of the SIS for narrowing the identified set is unequivocal, but this still implies that

to achieve such a result. Besides, like in the case of 4 ,, the true value B, belongs to

there is no unique minimizer for the population criterion, though a finite set of isolated

minimizers. In this sense, the SIS only provides a local identification of the SVAR model.
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4.3.4. Role of Mutual Independence Assumption

Before discussing the permutation selection using sign restrictions, let us review the role
of the mutual independence assumption, i.e., Assumption 4.1.(b), on identifying struc-
tural parameters. For simplicity, consider a tri-dimensional SVAR model with the vector
of shocks &; = [e14, €2, €3] and assume that only fourth-order cumulants are informa-
tive. The number of fourth order cumulants is 3* = 81, though only 15 of them are unique

as follows:

(i) Of the type [E[sé1 J=x5 ,+3 for i €{1,2,3} (3 unique coefficients);
(i1) of the type [E[Elztgj,tgs,t] =0fori#j+#s,1,j,s€{1,2,3} (3 unique coefficients);
(iii) of the type [E[e?tej,t] =0fori#j,i,je{1,2,3} (6 unique coefficients); and

. 2 2 _ . . . . . .
(iv) of the type [E[ei’tgj’t] =1fori#j,1,j€{1,2,3} (3 unique coefficients).

Given that structural errors are independent, the identification conditions from second-

d(d+1) t d(d-1)
2 2

order information are = 6, then it is necessary at leas = 3 extra identifica-

tion restrictions. Under Assumption 4.1.(b), type-(i) kurtosis condition does not help to
identify B, because x
are informative. Therefore, provided the non-Gaussian behavior of shocks, Assumption

; is unknown. However, type-(ii), type-(iii), and type-(iv) conditions

4.1.(b) gives the extra identification conditions. Only a subset of them is necessary for
identifying the structural model, implying that it could be possible to relax the mutual

independence.

This feature is pointed out and exploited by Lanne and Luoto (2021) to relax the
mutual independence assumption. According to these authors, statistical identification
can be achieved without assuming mutual independence and exploiting only type-(iv)
cumulant conditions, while the rest could be non-zero. However, more is needed to solve
the identification problem up to the signed permutation. They consider half of the type-
(iii) conditions to solve this local identification result. Therefore, the model would be
globally identified if the rest of the cumulant restrictions are non-zero. Let us see the
mechanics of our reasoning with a simple example. Considering only type-(iii) conditions,

then the matrix of fourth-order moments are

Eled] Eledes] Eledes)
H = |Eleder]  Elej]l  Eledes)
Eleie1] Elehes]  Eles]
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Furthermore, let us impose the following identification restrictions:

E[e?] 0 0
H = [E[egel] [E[£‘2L] 0o 1,
Eleie1] Eleies] Eles]

the elements on and below the main diagonal are not zero. This identification discards
many permutations of structural shocks because many of these permutations may lead
to an incorrect H matrix in the sense that the order of elements would not be the correct

one. For instance, consider £* = Pe with

P =

S R O

10
00
01

Then, the permuted vector of shocks is €* = [eF, €2, €X]' = [eg, €1, €3]' and its associated
p 1825 €3

H matrix is:

Elel ] Ele} jexnl Ele5 jex 3] Ele;] Eledeq] O
H* = |El€} jex1]  Ele,]  Elelsen3l|=| O Elef] 0
Ele5 gex1] Eled gexpl  Ele) g Elejeo] Elede;] Eles]

Since H and H* do not have the same structure, this permutation would be invalid.
Therefore, under the structure of H, the structural model is globally identified. Never-
theless, since the researcher only observes the structural errors after applying the iden-
tification restrictions, when these are imposed over the model errors, the identification
up to the signed permutation is not avoided because model errors are a permutation of
the true structural shocks. Thus, if marginal independence is relaxed, it is necessary to
incorporate information about the ordering and which structural errors are marginally

independent.

4.3.5. Permutation Selection with Sign Restrictions

According to many researchers (see Gouriéroux et al. (2017); Herwartz and Liitkepohl
(2014); Lanne and Litkepohl (2008); Lanne, Meitz, et al. (2017); Rigobon (2003), among
others), identification up to signed-permutation of the SVAR model is sufficient to per-
form inference (e.g., testing), in particular regarding IR functions of structural shocks.
However, this is partially right. Inference about parameters or measures invariant to

signed permutations, such as the rank of B or the number of non-Gaussian shocks, can
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be implemented with a model identified up to signed permutation. Nevertheless, as is
shown in (4.7), the IR functions are not invariant to rotations or permutations. There-
fore, inference about these objects depends on the chosen permutation. Lanne, Meitz,
et al. (2017) employs a mechanical procedure for selecting a permutation proposed by
Hallin and Mehta (2015). On the other hand, Gouriéroux et al. (2017) propose to per-
form any testing procedure about the impulse responses or the elements of B over all
the admissible permutations in the identified set %g{n. According to them, the hypothe-
sis Bg = B* implies the following H : By = B*P’ with P € 22(d). For example, suppose
the researcher would like to assess whether the contemporaneous response of policy rate
to a demand shock is positive using a structural model with 3 endogenous variables. In
that case, it is necessary to consider 22 x 3! = 48 admissible models. Moreover, to re-
ject the null hypothesis of no contemporaneous effect, it would be necessary to do it in
each of the 48 scenarios. Then, the problem of labeling structural innovations may affect
the power of such a procedure. In that sense, we can introduce “meaningful economic

restrictions” that help us to label structural innovations.

Like in the case of using second-order information combined with sign restrictions,

let us define the identified set using higher-order cumulants and sign restrictions:
,_%’g?,nSR = {B|.4"(B1Q") =0, 9 (Q) =0 for Q € 2(d)}.

Proposition 4.1 (Identification Higher Order Cumulants and a single sign-re-
striction).
Suppose Assumptions 4.1-4.2 hold, 1 <|%sgrl=dsgr <d and r; =1 for all |l € #sg. Then:

(@ 2005t xdi < |BI | <29 x di (1-%F) <2 xd! = |25 |
Moreover, when sign restrictions hold strictly:
(b) 20-dsn <| TR <29-dsr x
Additionally, When Y(l) =¥ for all | € $sr and rank (diag(‘I"B 1)) =m:
© |BG"| =drx2dm.

Propostion 4.1.(a) states that when a weak sign restriction is imposed over each of
the system’s structural shocks, the total number of admissible permutations reduces to
at least half of the number of admissible models without any sign restriction. On the

other hand, Proposition 4.1.(c) states that when the sign restriction is strict, the number
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of possible models reduces to d!. This latter result means that only permutations matter
once the sign of each shock is fixed. Based on Proposition 4.1.(c), a strict sign-restriction
can be imposed for labeling each structural shock in the system. For instance, it is
a consensus in the macroeconomic literature that a monetary policy shock decreases
inflation contemporaneously or that a government spending shock increases the real
output. Therefore, we can incorporate a shock definition as part of By. This feature is

stated in the following assumption.

Assumption 4.3. (Shock definition)
The elements of the diagonal of By are strictly positive, that is By ;; >0 forall 1 =1,...,d.

Assumption 4.3 states that any structural innovation increases, contemporaneously,
its endogenous correspondent variable. It is evident that when this assumption holds,
the identified set '%(?,n reduces the number of admissible permutations to d!. This result
means that if the structural model satisfies all the assumptions from 4.1 to 4.3, the SVAR
model is statistically identified up to permutation. However, these types of restrictions
do not yet provide global identification. In what follows, we will discuss the necessary

and sufficient conditions for achieving global identification.

Point Identification with Single Strict Sign Restriction

Let us consider a simple example. Suppose we have a trivariate SVAR, i.e., d = 3, whose
matrix of contemporaneous effects satisfies Assumption 4.3. Therefore, a solution By =
[B1,i J']i, i=1.2,3 to the PCC should hold such restrictions, meaning that By j; > 0 for j =
1,2,3. The condition in Assumption 4.3 can be interpreted as a strict sign-restriction
over IR(y;|€;+). Thus, the conditions implied by Shock-definitions are IR(y; ;l€; ;) > 0 for
j=1,2,3%1. The key question is to find under what conditions there is no possibility to
find B = B1P with P # I3 such that IR(yj,t|EJ*~’t) >0 for j =1,2,3, where 5;} is a permuted

structural shock. The sign-restriction is

IR(yj,tIfS;t)=e}Blpj= Bij1 Bij2 Bij|p;>0,7=1,2,3.

If B; satisfies Assumption 4.3, an obvious solution to the former restrictionis p; = e;

for j =1,2,3, thatis P = I'3 is an admissible permutation. Nonetheless, if By 12081 23B1,31 #

211f B; does not satisfy innovation definition, we can apply a permutation matrix P such that Assump-
tion 4.3 is satisfied and we can do the analisys with B P

86



0, then the permutation matrix

0 0 sgn(B131)
Py = [sgn(By,12) 0 0
0 sgn(B1,23) 0

is an admissible permutation, that is B{P; satisfies the sign-restriction implied by As-
sumption 4.3. Therefore, the set of admissible permutations coherent with Assumption

4.3 is formed by any combination of three vectors taken from the sets

1 o |[ o
For J =1:410 , sgn(B1712) , 0 4
0 0 | |sen(B1,13))
'Sgn(31,21)‘ o] [ 0 -
For j=2:4 0 , | 1], 0 r
| 0 ] .04 _sgn(BL23)‘
senBis)] [ 0 0|
For j=3:4< 0 , |sgn(B1,32)|,|0] ¢
0 |1 0 1

that is linearly independent. The number of admissible permutations is 6. To obtain
P = I3 as the unique admissible permutation, it is sufficient to impose, for instance,
that B121 = B123 = B131 = 0. However, this is not the only configuration that may be
sufficient for assuring a unique admissible permutation coherent with Assumption 4.3.
Let C.¢':= #\ ¢ with .# ={1,2,3} and .¢' = .#. The 6 possible cases of zero restrictions

over B can be summarized as follows:

For je.# and s€C{j}: By jr =By g =0 for all k € C{j}, £’ € C{j, s}

The following assumption summarizes the previous discussion and describes the condi-

tion above for a generic B of dimension d.

Assumption 4.4. (Generalized Recursive Structure)
Let By be a d xd non-singular matrix and % ={1,2,...,d}, an index set. It is said Bg has

a generalized recursive structure if:

d-3 J
A sge#,s1€C({so}),...,84-2 €C(U {sk}) such that Bos,m =0 Vm EC(U {sk}) and j=0,...,d - 2.
k=0 k=0

Some noticeable examples of By satisfying Assumption 4.4 are the following: when
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sj=j+1for j=0,1,...,d -2, By is lower triangular; when s;=d —j for j=0,1,...,d -2,

B, is upper triangular matrix.

Proposition 4.2. Let Assumptions 4.1-4.2 hold. If By satisfies Assumptions 4.3 and 4.4,
then
|BG0F| = 1.

Proposition 4.2 states that when structural shocks in the model in (4.2) are mutu-
ally independent and at least d — 1 are skewed or non-mesokurtic, the parameters of the
structural model are point identified once the contemporaneous effects matrix follows a
generalized recursive structure, i.e., if By = PZZCPI*é with P;, and Pr some permutation
matrices. In Appendix E, we explore some consequences of Cholesky (or some right and
left permutation) being a solution to %8y ,. The result in Proposition 4.2 is unsatisfactory
because recursive systems are very restrictive structures that may arise only in spe-
cial cases. Moreover, if Assumption 4.4 holds, the model would be identified using only
second-order cumulants (see Rubio-Ramirez et al. (2010) for details). Thus, third-order

cumulants introduce overidentifying restrictions.

There exists a relation between the recursive structure of matrix B and the form of
array v,. For illustrate the idea, let consider n = 3 and d = 3; as it has been showed
above: v :B®2V§B’ . Wlog, assuming that B has a Cholesky structure. Then,

BllB 0 0 K3,1€1 0 0
B®2: leB BZQB 0 , and ng 0 K3,2€2 0
Bng B3zB Bg3B 0 0 K3,3€3
Thus
3111(3,1361 0 0
B®2V§: 3211(3,1391 Bgng’gBez 0
B3i1x31Be1 BgsgkzoBes BgskzsBeg
Bi1 Boi B3z
SinceB'=| 0 Bgs Bsgy|, this implies the following:
0 0 Bss

1. The first block 0fB®2V§, ie. [BllKg,lBel 0 0] , multiplied by B’ is

B11
Biix31Be1 0 O]B'=311K3,1 Bo [311 Bg1 Bgi| =Biiks1b1b],
B3
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Moreover, its rank is equal to 1.

2. The second block ofB®2v§, i.e. [lekg,lBel BosxsoBes 0|, multiplied by B’ is

Boi1xs1Be1 BagkzoBes O]B'=B21K3,1b1b'1+322K3,2b2b'2,

and its rank is equal to 2.

3. The last block OfB®2V§, i.e. [B311<3,1Be1 332K3,zBez 333K3,3383 s multiplied by
B'is

! ! ! !
B3ix31Bei BsskzaBes B33K3,3Be3]3 = B31x3,1b1b7+B32k32b2b,+B33k33b3b,

and its rank is equal to 3.

Thus, it is clear that the rank of the d x d blocks of v§ can be employed for discovering
whether B has a recursive structure or not. For generalizing this idea in the case of using
third or fourth-order cumulants, let us introduce some definitions previously. Based
on the set of indexes .# ={1,...,d}, let define an one-to-one, ordering function f, : ¥ —
#. For instance, when d = 3, the identity ordering function is f,(j) = j, or the inverse
ordering function is f,(j) =d +1—j. Also, if A is a d™ x d, A denotes the j-th block of

size d™ 1 xd.

Proposition 4.3. Let the structural model described by (4.2) satisfying condition (4.3)

and structural shocks meet Assumptions 4.1-4.2.

e When d3 =d, B has a (generalized) recursive structure if and only if for some one-

to-one ordering mapping, fo(j)
rank (vg,fo(j)) =J, forj=1,...,d.

o When d4 =d, B has a (generalized) recursive structure if and only if for some one-

to-one ordering mapping, f,(j)

rank (vifo(j)) =j, forj=1,...,d.

Point Identification with Multiple Sign Restrictions

Here, it is discussed whether adding more non-redundant sign restrictions may lead
to global identification without requiring the very restrictive sufficient condition in As-

sumption 4.4. As we have detailed above, the system of sign restrictions ch is not
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empty but contains a continuum of elements. Besides, in case structural shocks are
non-Gaussian distributed, the identified set is a mapping from the space of all signed-
permutation matrices; the structural model is identified up to sign-permutation. The set
of admissible permutations for each shock is the set £:= &7 U&~, where & :={eq,...,e4}
and & :={—eq,...,—ey}, while the set of matrices of signed permutations is any collection
of d vectors from & that are linearly independent. Furthermore, for a signed-restricted
single shock €; ;, the set of admissible permutations consistent with the sign restrictions
isén ng.

According to F. Hall and Li (2007), a sign-pattern matrix is an array whose entries
are {+1,-1,0}. If A is some real-valued matrix, A := sgn(A) denote the associated sign-
pattern matrix to A. A non-negative elemnt-wise array has A with only {0, +1} entries; a
non-positive element-wise matrix has A with only {0, -1} entries. A sign-pattern class or

qualitative class associated to a d x d matrix A is defined as:
2(A) = {B eR¥? : sgn(B) = sgn(A)}.

That is, 2(A) contains all the matrices with a similar sign pattern to A. According to
Brualdi and Shader (2009) the equations system {Ax = b} is said to be sign-solvable if
and only if

1. For each A € 2(A) and b € 2(b): the system Ax = b is solvable.

2. For some A € 2(A) and b € 2(b): the solution set of Ax = b is one qualitative class.

We say a is a mono-sign if sgn(a) contains only values in either {+1,0} or {—1,0}, i.e.
either a is non-negative or non-positive element-wise. It is called strictly mono-sign if
sgn(a) =1t or sgn(a) = —t where ¢ is a vector of ones. Additionally, following Brualdi and
Shader (2009), a matrix A is called an L-matrix if all the members of its qualitative
class 2(A) have linear independent rows. Also, D is a row sign-change matrix if it is a
diagonal matrix with D;; € {+1,—1}. Theorem 2.1.1 in Brualdi and Shader (2009) states
that: A is an L-matrix if and only if for each row sign-change matrix D, D A has a mono-

sign column for any A € 2(A). Finally, S¢ denotes the unit sphere?? in RY.

Lemma 4.2. Let x € S%, and A € R**" such that rank(A) = r < d. Consider the homoge-
nous system of inequalities ¢ = {A'x < 0} with non-empty, non-singleton solution set F(¢).
Then,

ENF()#@ o A'isan L-matrix.

2254 denotes the sphere of radius 1in R?, ie. $%:= {xeR? | |x| =1}
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Lemma 4.2 provides a sufficient condition for the existence of § N F(¢). Being an
L-matrix implies that at least one of the columns of A’ does not belong to the same
qualitative class of the remaining columns. Moreover, the number of mono-sign columns
may decline with the number of linearly independent rows in the L-matrix, implying
that the number of elements in & NF(¢) declines as well. For determining the cardinality
of the set & N F(¢) we use the following elements: let A’ = [al ay - ad], 1(a;#0)
denote a binary vector taking 1 if the element is non-zero and ¢'a; is the sum of elements
in column a;. Thus, ¢'1 [a i 7 0) is equal to amount of non-zero elements in a;, and
t'sgn(a;) is the sum of elements of the sign-pattern of @;. It is clear that a; is a mono-
sign column vector whenever 1’1 (a; #0) = |//sgn(a;)|. Let denote v; =¢'1(a; #0) and

0; = |t'sgn(a;)|.

Lemma 4.3.

Given a system of inequalities ¢ = {A'x < 0} with A’ an L-matrix.

(@) If v; >0, then |{ej, —ej}nF(g)| =levj-0;=0.

() Ifv; =0, then {e;,—e;} < F(c) and |{ej, —e;}nF(¢)| = 2.

Lemma 4.3.(a) implies that when the column a; of matrix A’ is non-zero, then if
this column is mono-sign, then either e; or —e; is an admissible signed-permutation
consistent with the inequalities system ¢. Otherwise, if @; is a null column, both signed
permutations are admissible and satisfy the inequalities in ¢. Finally, let denote m; =
|{ej, -e;} CF(c)| and the vector m = (111,...,Mmy) . Therefore, it is clear that | NF(¢)| =
Z?:l m;.

The following assumption incorporates the sufficient condition stated in Lemma 4.2
as a feature of the system of inequalities implied by the sign restrictions over a structural

shock & ;.

Assumption 4.5.

Let the sign-restrictions over the IR functions of l-th structural shock, c?R ={S;Y'(1)B1x =
0}, where Y'(1) is a d x r; full column rank matrix and r; <d, S; be a diagonal sign-
pattern matrix and B1 € @3 g It is assumed that Y'(1)B1 is non-zero element wise and

an L-matrix.

Based on this assumption, we state the following.

Proposition 4.4.
Consider the structural model in (4.2) satisfying conditions in (4.3) and Assumption 4.3;
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the shocks in the model meet Assumptions 4.1 and 4.2; and the sign-restrictions system for
identifying shock 1*, c}g*R ={S;xV'((*)B1x=0}. If rank(¥'(I*)B1)=r;x =d and ¥'(I*)B;
satisfies Assumption 4.5, then:

’é" r‘uF(cffe)’ =1.

Proposition 4.4 can be interpreted as follows: if a shock-definition restriction were
imposed on all structural errors, i.e., if we fixed the sign of each shock, and we add
d — 1 sign-restrictions over only a specific structural error /* such that ¥(I*)'B; is an
L-matrix, then such a structural shock is point identified. Although, the rest of the
shocks remain identified only up to permutation. Therefore, the number of admissible
permutations reduces to (d — 1)!. Notice that the previous result is sufficient for point
identification in the case of a bivariate SVAR model. Nonetheless, to identify a subset of
structural errors by sign-restrictions, i.e., | Zsr| = dsr > 1, the result in Proposition 4.4

applied to each shock separately is not sufficient.

Notice that & mF(ch) is the identified set for a particular shock ¢;; subject to sign-
restrictions. By the previous result, this set is a singleton, e.g., & mF(c}gR) ={ejp}. The
point identification of a pair of shocks, say (¢;,£; ;), requires that the set & ﬂF(cf,R) is
non-empty, containing at most 2 elements and one of them is linear independent from
e ). Under the general case in which W'(7) # W'(l'), it is complicated to find a sufficient
condition for assuring the point identification of the pair of shocks (& ¢,£; ;). However, if
W/(I) =W for all [, it is feasible to provide a sufficient and necessary condition. Further-
more, let A be a d x d matrix and the set of indexes {j1,...,jz} of length &, [A]_(;, i,
denote a (d — k) x (d — k) matrix obtained by eliminating columns and rows indexed by
{/1,...,Jr}. For instance, [A]_(2 3} is the (d —2) x (d —2) submatrix obtained by dropping

second and third rows and columns. Moreover, we take the convention that [A]_4 = A.

Assumption 4.6. (Coherent Restrictions)
For the subset of sign-restricted structural shocks, .Zsg, the sequence of sign-restrictions

{efR} ledsp’ with Y(I) =Y for all |l € Fsg, are coherent if the following recursion holds for
J=1,....dsr

(a) Given jandl;jeC (fSR \U‘]i_:%) {lk}), the matrix [‘P/Bl]—Ui_l 0 is an L-matrix.
=0

Assumption 4.6 implies the existence of a sequence {q;}ic.s5;, € Qjc.vyp {& mF(c}gR )}

whose elements are mutually orthogonal.

Proposition 4.5.

Consider the structural model in (4.2) satisfying conditions in (4.3) and Assumption 4.3;
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the shocks in the model meet assumptions 4.1 and 4.2. Assuming that the sign-restrictions

for shocks in Zsg satisfy Assumption 4.6 and r; =d, then

|B5F| = @-dsn

From Proposition 4.5, it is clear that when $sr = .#, then d = dgsg and point identifi-
cation is achieved, i.e. )%ng) =1.

4.3.6. Identification with more than one Gaussian error

Now, we explore what are the implications of relaxing 4.2, i.e. do not assume that
dpg=d—1,but 1=<d,s <d-2. In other words, there is more than one Gaussian struc-
tural error in the SVAR model in (4.2). From Comon (1994), it is clear that structural
parameters are not statistically identified. However, the following proposition states a

partial identification result.

Proposition 4.6.
Consider the structural model in (4.2), which satisfies condition (4.3), and the structural
shocks satisfy Assumption 4.1. If 1<d,g<d -2, then

B2 ={B|.A"(B)=0,B=B1Q}, ne{3,4},

where
P, xdn, 04, x(d-dyg)

>

0 d-dng)xdng  Qd—dng)x(d—dng)

and P, xd,, € P(dng) is a signed-permutation matrix and QReoWd —dng) any orthogonal

matrix of size d —dpg.

Proposition 4.6 expresses that, even though the number of Gaussian structural errors
in the SVAR system is more than one, the non-Gaussian block remains still identified up
to the signed permutation. Nevertheless, since the order is unknown, it is necessary
to impose an order. In Proposition 4.6, it is assumed implicitly that the first d,, com-
ponents in the vector of structural errors are non-Gaussian distributed, while the rest
are Gaussian shocks. This result is similar to what is found by Maxand (2020). Like
in the case of having at most one Gaussian structural error, to reduce the total number
of admissible permutations for the non-Gaussian block, 20ng x dng!, shock-definition re-
strictions may be imposed. This result is relevant, especially in empirical analysis using

SVAR models, because it provides identification of a subset of structural shocks. How-

93



ever, a significant limitation is the necessity of prior knowledge about ordering Gaussian
and non-Gaussian errors. Furthermore, for estimation purposes under this scenario, if
we're not interested in the Gaussian block and assuming the researcher knows the valid
order of shocks, the estimation of structural parameters of non-Gaussian block fits in the
literature of estimation of partially identified models, where the parameters of the Gaus-

sian block and the ordering of errors act like reduced form and nuisance parameters.

4.4. Concluding Remarks

This chapter investigates if sign restrictions over impulse response functions of struc-
tural shocks can be employed to select a particular permutation. Fixing the sign of
response of each shock deals with the sign of permutations and permits focusing only
on no-signed permutations. However, the sign restrictions systems may satisfy the sign-
solvable property to achieve point identification. Such a requirement is not immediately
satisfied for any model. Therefore, sign restrictions impose identification restrictions

that data may not support.

Additionally, we find that in the case of having all skewed structural shocks in the
model, it is possible to relate the recursive structure of the contemporaneous effects ma-
trix to the rank of third-order moments of reduced form errors. Finally, in the case of
having non-fully identified models, because of the existence of more than one Gaussian
structural error, the non-Gaussian block remains identified. However, the ordering be-

tween Gaussian and non-Gaussian shocks matters.
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5. APPENDIX - CHAPTER I

5.1. Proof Theorem (2.1)

The population loss function, defined in section (2.2.5), is

7

Lo(D) ==
0=
_T f
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1 &1
27'[J-:1]

it is evident that £, (9) = 0 for any 9 € 7. According to our definition of model residuals,
€:(9) and the identification Assumption (2.2), then &:(9g) = &€; and, therefore, £,(9y) = 0.
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Now, the key question is whether there exists 9 # 9y € 7 such that £y(9) = 0 or not.

Given that our loss function is a distance, this implies that £(9) =0 if and only if

d d
08(3)(11,12) - { I1 0115, 79;) - I1 (Pe(ﬂ)(Tli)(PE(a)(TZi)} =0 (5.1)
i=1 i=1

afJF;‘”(rl,rz) =0, forall jeZ\{0} (5.2)
thus, our problem is equivalent to look if there exists 91 # 99 € 7, such that &;,(9,) =
Y1(91;L)¥(9o;L)e; satisfies conditions (5.1)-(5.2). Chan et al. (2006) demonstrated
that when the random vector &; (and each of its components) follows a non-Gaussian
distribution with third-order cumulants different from zero, the equivalence holds if and
only if 6;(91) = 6;_,(99)P for some integer m and &;(91) = P&;_,,(99), where P is a
d x d permutation matrix. In this proof we follow a different strategy. We show that

£:(91) =6(L;91)€;, and two situations arise

(1) 6(L;9) is possibly two sided filter;

(i1) 6(L;9) is a constant matrix.

Let analyze the first case. For gaining intitution, we study first the following situation
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when |j| > 2k1, £,(9) L £;_;)(9), implying that it{e,(9) L it,e;_;(9) and Uslal)(‘l'l,‘l'g) =0.

Now, when |j| <2k we have to check if it is possible to find (Tf;lﬂl)(‘l'l,‘l'g) =0.

1. We start taking k1 =1, i.e. €,(91) = 0_1(91)€s+1 +60(91)€e; + 61(91)€;—1. Computing

ai(ﬂl)(‘rl,‘rz) and Gg(ﬂl)(‘l'l,‘l’g):
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and these two dependence measures are zero if and only if, for any four vectors

X1,X9 € Rd

P (x] +X9) = 9 (x])p°(x5) (5.3)
pF(x] +Xp)p° (x5 + X)) = 9 (XDP" (x5) 0 (x3)° (x) (5.4)

These condition holds in the following cases:

(a) Trivially, when either x; = 0 or X3 = 0; and either x3 =0 or x4 = 0.

(b) If £; were Gaussian distributed with E(e;) = 0 and Var(e;) = I, its characteristic
function is ¢*(x] +x) = e~ 3X1+%2) (%1 +X2) and it would be equal to ¢®(x})¢p?(x;) if and

only if x; and x9 are orthogonal.
(c) If &; were Gaussian distributed, with ¢®(x] +x5) = e~ 3(X1H%) (X1 +%2) gp PE(x; +x)) =
' !
e~ 3(x3+x4) (*3+X4)_then (5.4) holds when x| x5 +x,%x4 = 0 or, equivalently, when [x’l xé]

!/
is orthogonal to [x’2 xﬁl] .

Since only Gaussian distributions produce characteristic function to be e_%(xl+x2)'(xl+"2),
non-Gaussian distributions will satisfy the condition (5.3) only in case (a). Now, in the

Gaussian case, if §(L, 91) were not an all-pass filter, equation (5.3) would not hold as well.



On the contrary, when 6(L, 1) generates uncorrelated model residuals, £;(91), then
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making ai(ﬂl)(‘rl,rz) = 05(191)(11,1'2) =0.

A similar idea can be applied when 1 < k1 < co. In such case, we need to analyze up to

£(91)
k+1

function for a Gaussian process and the fact that y‘;(ﬂl) = Z;";_oo o J-({)l)&;_ 5 (91) =0 for all
heZ.

o (Tt1,T2). When k1 — oo, we take adavantage of the functional form of characteristic

Now, when 6(91;L) = 60(91), it is clear that &;(91) L &_;(91) for all |j| > 0, then
afgl‘() )(1'1,1'2) = 0. Hence, in this case, any rotation of structural innovations, &;, preserves
the pairwise independence. Now, let analyze if condition (5.1) under this case. Since
model residuals must be standardized errors, 6(L;91) = d¢(91) is an orthonormal matrix,

then j-th and i-th element of &;(9), with i # j, are

Etmy = [60(19)]m18t

Etmg = [60(19)]m25t

In Gaussian case it would be enough that [60(1‘))]m1[60(1‘))];”2 =0 for condition (5.1) to be

fulfilled. However, when innovations are non-Gaussian, the condition [60()]y,,[60(9)],,

0 does not imply marginal independence, but only assures Cov(&; i, €¢m,) = 0, thus con-
dition (5.2) does not hold.

Therefore, under ICA, it is necessary and sufficient that

0
Ermy =0 (D)ern,

0
€tmg = 6£n)2n2 (‘9)8t,n2



where m1 #Zmg #Zn1 # ng, and 652%(19) is an sign-scaling factor. Thus, d¢(91) should be a

sign permutation matrix. This implies that elements of m1-th row of §¢(9) is

) 0, for some mq
5ij D)= (5.5)
0, otherwise

with 6 € {-1,1}.

Given our parameterization, we look for that 6(L;9;) = PD !, with D an sign-scaling,
diagonal matrix and P a permutation matrix. Since, 6(L;9;1) = ¥~ NL;91)¥(L;9,) and
Y(L;9) = ® XL;9)0(L;9)B(9), then

8(L;91) =Y NL;9)Y(L; )
=B 1910 1(L;9)®(L; 91)® 1(L; 90)O(L;9)B(9y)

From what we discuss in the previous part, @ N(L;9;)®(L;9;)® N(L;90)OL; ) = I4,

otherwise pairwise independence does not hold. Thus:
8(L;91) =B~ (91)B(@9)=PD ™"

from this it is evident that
B(91) =B(9y)DP’

By the definition of vector 91, and calling [91];. the elements from position % to &’ of

vector 91 and by = vec(B(9y)), we have:
[D1la2p+g)+1:a2(p+q+1) = VeCB@1) =[PD @I 41bo = [PD @ 14]-[90lq2(p+g)+1:42(p+q+1)
therefore, = %y(91) =0 if and only if
=P, (5.6)
Liopeg)  Oa2(p+q),a

Odz,d2(p+q) PD®I,;
size d. |

where P = ,and P € 22(d), the space of permutation matrices of



5.2. Proof Theorem (2.2)

We proceed as in Appendix (5.1). From the loss function, defined in section (2.2.6), we
have that 2y(9) = 0 if and only if

A(l’o)aj(ﬂ)(O, 19)=0, j>0 (5.7)
Cov (£1,1(8), 2:(72,1, ) [121 9* P (x2,)
A(l,O)O_(s)(t‘))(o, To)— : =0 (5.8)
Cov (&,4(9), 2:(12,0,9)) [1j2a 9* P (72,)
by our parameterization and the identification assumption, conditions (5.7)-(5.8) are sat-
isfied for 9 = 9. Then, it is straightforward to see that 2Z((9y) = 0.

Now, the question is if there exists 91 # 99 € 7 such that £;,(91) = 6(L;91)e; satisfies
conditions (5.7)-(5.8). We start by analyzing condition (5.7).

If £;(91) satisfied equation (5.7), then it should hold E[e;(91) | £€;—;(91)]1 = 0 for j > 0.

Let analyze this latter condition.

Ele;(91) | &1 ;QDI=E| > 8:(91)er

Y. 6:(D)erjy ]

l=—00 l=—00
= ) 86 (9DE|ey | Y, 6:(D)Er—jy
l=—0c0 l=-00

Taking a similar argument like Rosenblatt (2000) applied. The former conditional expec-
tation satisfies the p.m.d.s property if and only if E [&;; | Y50 81(01)e,_j;] is a linear
function. When {¢;} is a Gaussian process, then this expectation is linear. In case of
non-Gaussian innovations, the answer depends. There exists some multivariate non-
Gaussian distributions, such as the multivariate Pearson distribution, which marginals
are Gaussian. Rosenblatt (2000) establish the sufficient condition of having, at least,
third order cumulant different from zero for all the components in the non-Gaussian in-
novation vector. A similar characterization of non-Gaussianity is made by Chen et al.
(2017), who assumes that all the third order cumulants must be different from zero. Ve-
lasco (2020) characterizes a non-Gaussian vector by having at least third or fourth order

cumulants different from zero. In our case, we only require that necessary condition

o0
[=—00

holds, non-linearity of E [&;—; | ¥ 8:(91)€,—j—1 ] is a linear function. When {g.}.

Now, we analyze the case when &;(91) = 8¢(91)€;. In this situation, it is obvious that
€4(91) satisfies p.m.d.s property. Thus, condition (5.7) holds for j > 0. Since residuals

must be standardized, ¢(91) is an orthonormal matrix. Like in the case of independence



sequences, condition (5.8) holds if 6¢(91) = PD, where P a permutation matrix and D a
diagonal sign-matrix. Thus, B(91) = B(9¢)DP’. Since, we are using Hallin’s permutation
selection method, and as it was proved by Lanne, Meitz, et al., 2017, we can pick a unique
P and D. O

5.3. Proof Theorem (2.3)

By triangle inequality

Sup| £7/(9) ~ £(0)| < sup | £r(D) - Zr(9)|+ sup EZOREAC)

where £ 7(9) is the same as %r(9) but employs population model residuals, £,(9), in-

stead of sample residuals, £:(9).

By using results stated in sections (5.3.1) and (5.3.2), it follows

[Eslgp |Z7(9) — Zo(9)] < o(1) (5.9)

Therefore, Theorem (2.3) holds. O

5.3.1. Convergence of supy ‘Q%T(z‘)) —@T(f))‘

We have

4 2
As(ﬂ)(‘rl,fz) { H dﬂ)(ﬁm,sz)— H <,0£('9)(T1m,0) E(ﬂ)(O T2m)}

Lr®)-Zr@9) =" f {

2
}W(d‘l’l,dtz)

d
75Ty, 79) - { H ST 1, Tom) — H 7501, 0005 ><o,r2m>}

=1 m=1
””f{

Now, notice for z1,z9 € C that |z1|2 — |22/ = (|121| — |Z2]) (1Z1] + |22]). By triangle inequality

2 2
“fj(lm(n,rz)‘ —’Ef}'ﬂ)(n,m)’ }W(dflvdW)

|z1| — |z2| < |z1 — 22| and |z1| + |z2| < |z1 — Z2| + 2|2z3[; thus

|z1|% — |22|? < |21 — 22|% + 2|21 — 72| - |23|. Hence

A 6(19)
|]|

(T1,T2)‘ ’ o CIR ’ |('9)(11,T2)—0 (11,12)‘ +2‘ |('9)(11,T2)—U (TI,TZ)’ ’ o D1, 19)



From Lemma (5.9.3), we obtain

2
Esup | P m)| [P m)| | < Cory e T 1D, 20 (5.10)
besides, note that
) @) L o) @) i £(0) () 2
Gy (T1,T2) - H@e (T1im>Tom) — l_[1<i)3 (T1m, 0@ " (0,T2m) ¢| <107 (T1,T2)’ SICA(TI,T2)‘
m=
. ~e(d
Ug(ﬂ)(fl,fz)‘ : )UgfzéA(Tl’”)‘
d d 2
—e(9) —£(9) —£(9) £(9) —e(9) 2 |=e@® 2
o (T1,T2) ~ Hl% (Tim,Tom) = Hl% (T1m, 0095 (0,T2m) s‘ao (T1,Tz)) +‘00,ICA(T1,T2)‘
m= m=
9)
('9)(1'1,1'2)‘ S(ICA(TLQ)’

where US(IéA(Tl,Tg)_ H‘,in Ag(ﬂ)(rlm,rzm) H‘,in 1(p0('9)(11m,0)<p0( %(0,79,,) and

f)(,éA(n,rz):H‘fn 1<p0“‘”<nm,r2m> M1 P52 (01, 00PE (0, T2m).

Thus, applying a similar procedure than in previous parts, we get:

2

Esup
9

d d
611,72 - { [165P 1,120 - [1 05 (11,0005 00, Tzz)}
i=1 i=1

2
-1
= C(T1,T2)T

d d
58(1‘))(.’71712) _ { ljllag(ﬂ)(‘[li, T9i)— ljllag(a)('l'luo)(po(m(o TZL)}

Therefore
Esup ].,%T(ﬂ) —§T(a)] <z f (ClLIT1? + 121?17 2) W(dT)W(dT2)
9
L 7=
" on Z f (CUITLI® + 1721 )T — 1) %) W(dT)W(dTs)

-1 1 1 In(T-1
<C-T2+C { M}

T g = o T
s (T - |J|)2,]2 T2 T3



5.3.2. Convergence of supy ‘grp(f)) - 30(8)’
Like in part (5.3.1), we have

sup| Zr(9)- Zo(9)| < sup [ 209 - 20(9)| + sup| Zr(9) ~ Zo(9)

where Zp(9) is similar to £7(9) but defined using the population centered asl“) )(1'1, T9)
instead of its sample counterparts. Thus, it is sufficient if we prove the uniform
convergence of each term in the right hand side. Using the results stated in sections
(5.3.2)-(5.3.2), therefore

Esgp‘Z?T(ﬂ)—uﬁ%(ﬂ)‘S(Kl) (5.11)

Uniform convergence of |.£2T(1‘)) - 30(19)|

By definition

2

5 - d d
Pr(@) == og"‘”(n,r2>—{ [T ¢*P@1m,t2m)— [ ¢* D@ 1) P (wam) | W(dT1,dT2)

m=1 m=1
1 T— f

&(9) 2
oy (T1,T2)) W(dt1,dt2)

then

|J|

- 1 |1
Pr(9) - Lo() = %{ y —2f

E(a)(fl,fz)' W(dTI,TZ)}
j=TJ

and
2
Sup‘ o (T1,T2)‘ W(dty,72)
C (IlT1ll® + Iz2l?) |j|2_2”°W(d11,T2)}

S 1122 = ¢ Z |1 2H0
j:T ]=T

<CT 20 < T3

where the second inequality employs Lemma (5.9.2) and last line follows from the fact

that we are taking po > 2.



Uniform convergence of ’§T(1‘)) - 5:”71(3))

Note that

—&(9)

_e(®) 2
(71,72) =0 704 (1, T2)| —

I - 2
Zr(9)- Zr(9) == f { o6 P(r1,79) - 00, (71,72)| }W(dn,drz)

f 16501, 7)? - of D1, 7)1} W(dT1,d o)

where Ugf%A(rl,rg) = anzl 0D (11, Tom) — H;in:1 OED(11,,)9p P (19,,). Thus

~&(9)

I - T 2
Esup Zr(9)- Zr9)| < gfEsup o Or1,79) - 550, (71, 7)| -

Oy, 79) - 0% (11,70 | Wid1,dro)
Oy T1,T2 UO,ICA T1,T2 T1,4T2

]_Tl

f [Esuphaf“")(n,rzn ~ 10§, 7| WidTs,d75)

using the results below, we get:
— - 7T _
Esup|Z1(0)- Z10)| < % [ Clr1+ ma) T AWy, 7o)
9

T-1 1
+y 7 | CUIT1+ 72T - D2 +(T = 1D d W (1, T2)
j=1J

<oTv2 . Z 1 Tzl 1 1 _CT‘1/2+Tili 1
]2 (T - _])1/2 2u0 (T - J)1/2 s j2 (T J)1/2
SCT_I/Z-G-CID(V T)+In(vT +1):o(1)
TVT

where before last inequality uses po > 2.

Convergence of supy ‘I&‘c’gﬂ)(‘rl,‘tz)IZ IUE(ﬂ)(Tl,Tz)l ‘
Using 08('9)(11, T9), which uses population centered z;(7,9) instead of its sample

counterpart, and applying triangle inequality

\wf“‘”(n,rz» ~lot Py, )| < ( \|a£"‘”(n,rz)| 1681, 7o) + ) \|a£"‘”(n,rz)| 1ot P(z1, 7)1 )

For the first term in the right hand side (RHS), we have

"‘TlsJ(lm(Tl’Tz)l Iag(ﬂ)(rl,tz)l‘ )0 (T1,79) - o) (T1,Tz)‘ +2‘ |('9)(T1,T2)—0 (71772)) )0 (71’72))

171



using lemmas (5.9.4) and (5.9.5), and Holder inequality, we get:

Esup 6" (x1,72)l - 16§ (@1, 72| < ClTl(T - 1)

where we take advantage that supy ‘(7?"9)(11,12)‘ <4.

Now, the second term in right hand side can be expressed as

‘IUE(a)(r1,Tz)I - |0'£(8)(TI,T2)| ‘ 8(‘9)(11,72)

8(‘9)(11,1'2) 0 (T1,T2)‘ +2

57,1, 72) -0 (‘9)(11,12)‘
using lemmas (5.9.2) and (5.9.5), we get:

Esup 105771, 7) ~ {7 (01, 22| < CTal + o) (7 =107 4+ (7 = 215 20

Hence

Esup 101,72 ~ {7 (r1, 22| < CTal + T2 (7 =107 4+ (7 = )~ 215240

£(9)

2
9
( )(Tl,Tz) O-OICA(TI’Tz)‘ - &(9)

@) 2
00 (Tlarz)_UO’ICA(Tla"’.Q)

Convergence of supy
Like above

£(9)

2
('9)(T1,T2) UOICA(Tl,Tz)‘ - £@)

£(9) 2
oy (T1,T2) -0 ICA(TLTZ)

<

—&(9) ~&(9)

+

ARG N O'OICA(TI,T2)‘ ‘ S('())(Tl,fz)—agf%A(Tl,

Analyzing the first term in the RHS:

—£(9)

2
('9)(T1,T2) a, ICA(TI,T2)) 7€)

52 2
(T1,T2) -0 ICA(TI,T2))

2
- (‘76("))(11,12) 00(:‘))(1.1’1.2) {g(%A(TLW) ‘78(}9(),%(71’72)}‘

£(9)

+2|0 561, 10) - UOICA(Tl,Tz)’

c(r1,79) ~ 5P (11,79) - {8(}9()3A(T1,72) Ug(%A(ﬁ,Tz)}

notice that

2 2
6P (r1,79) ~ 6P (11,79) - { o A(T1,T2) =G (T1,T2)H <C 68('9)(T1,1'2)—58(‘9)(1’1,‘52))

OICA 0,ICA

_e(9) ~ £(9)

2
+C 10 7c4(T1,T2) =0 ICA(T1,T2)‘




Notice

m=1

d d
G6.10aT1T2) =05 10,4 (T1,72) = —{ H Pt P(r1m,0)- [] wf"")(nm)}{ H P20, 72m) - [] <P£('9)(sz)}
m=1

hence
@) ®) 2 o) e i
6SJCA(1'1,1'2) O'SICA(Tl,TQ)‘ <2 Hl(pé (T1m,0) — Hl(ps (T1m)
m= m=
2
[Esup S(IéA(rl,Tz)—6gfféA(rl,rg)‘ <C|lT T2

where last inequality comes from applying Lemma (5.9.4).

Thus

2
[Esup 0 D(r1,19) - 65 (11,79) - {OICA(TI,TZ) og‘,gAm,rz)}] < C(lTyl + ITo DT~

2
a5 (r1,19) - 08(%A(T1,T2) ;
therefore
2
— (9 ~ (9 ~ (9 -
Esup o5 ’(n,m)—ao,CA(n,rz)\ ~ |ot @1, 1) - 550, (e1, )| | = CllmLl+ 1w T

Now, the second term in RHS

Dry,19)-065 ICA(T1,T2))

~&

8(1‘))
0 (Tl,Tz)—UO ICA(Tl’T2)) ‘

2
=<

~_£(D e( 9 9
5EP(r1,79) — 0P (11, 79) - { S(IéA(Tl,Tz)—USEI();A(TLW)}

£(9)

£(9)
+2 0-0 (Tl’Tz)_UO,ICA(Tl’T2)

~&(d e(d U 9
O'S( )(T].,TZ) 00( )(T].,TQ) { g(lé’A(Tl’Tz)_GgfIéA(Tl’TZ)}‘.

since ‘0’8(0)(1’1, T9)— Ug(% A(T1, 1‘2)‘ is bounded for each 9 € 7 and after applying Lemma
(5.9.4), we get

&(9)

2
a6 P(r1,19) - UOICA(TLTz)‘ - o)

&(9) 2 ~1/2
O-O (Tl’r2)_00,ICA(T1’T2) SC1(||""1—*_"'-2”)T‘

Esup
9

Therefore, taking the convergence results for the two terms in RHS

£(9)

£(9) 2 £(9)
‘00 (T1,72) - UOICA(T1,T2)‘

2
9 -1/2
E( (T1,79)— o, ICA(Tl,Tg)‘ T

[ESUP <C(lr1+72l)




5.4. Proof Theorem (2.4)

Assumption 2.1 guarantees that space parameter is compact. Besides, Assumption 2.2
joint with the Hallin and Mehta (2015) procedure assure that %y(9) is uniquely mini-
mized at 9y. Now, notice that Z7(9) is a measurable function for each 9 € 7. Moreover,

it €4(9)

given the transformation we use, e , Which is an smooth function with all deriva-

tives well defined. £7(9) is continuous for a provided sample {Yt}z;l.

Thus, all the requirements of Theorem 4.1 in Amemiya (1985) are fulfilled. Addi-
tionally, the potential multiple local minimum we can find in the optimization process,
something typical in non-linear optimization problems, comes from the fact that the or-
der (p.+,q+) is not determined. Then, it is possible to find minimizers in causal/invertible
and non-causal/non-invertible situations. However, given the correct order (p,q+), we
have a unique minimizer. Thus, applying Theorem 4.1 in Amemiya (1985), we have that
P (197 —9oll >¢| — 0 as T —oo. O

5.5. Proof Theorem (2.5)

5.5.1. Convergence of Hessian Matrix

. . . 62 ~
The Hessian matrix is W.,%T(QT).
Before proceed, let explain the intuition behind the proof. Assume that f7(9) is our
objective function. Assuming that 97 L, 9. If we want to assure the convergence of

fr(d1) we can do a first order Taylor approximation of f7(9r) around 99. We would get
fr@r) = fr(90) + fr(00) - (87 — 9o)

Hence, |f7(97) - fr(90)l < CIfr00)l- | (87 — o) |. If | f1(90)| < 0o and given that |I7 — 9| =
0p(1). We would obtain that \fr(d7) — fr(9o)| < op(1).

With this, and given E f7(90), we will get that fr(d7) 2 E fr(90).

Proof:
In our case, given that we have a parameter vector instead of a scalar parameter, we have

K3 third-order derivatives of Zp(9), thus we take the maximum of these derivatives.



Then

3

a ~
e sup |——————Zr@)|l9r -9
(k,l,m)ell,...K}3 gp 00,00,00,,  © 197 — 9ol

2 2
H Zr(9y)| =C

Lr(dr)—
3909 21~ o507

For simplicity, we work with the model residuals and not with the sample model residu-

als. This do not affect the proof, but keeps it simple.

Now, notice that:

0
WffT(w‘))——fﬂ{e{( {D(ry,10) - O'S(I()jA(Tl,T2)) 39, ( c(ry,19)- US(IéA(n,Tz))}dW
2T 11 0 <o  _
fQRe{ AE(m(Tl,Tz) 8(8)(T1,T2)}dW
J ]_J f)m
_® @) == | 2Re!(65(z1,72) - 6P, (x1,7 )) ( €O (r),79)- 650, (71,7 )) dw
619[619 T 3 1,82 0,ICA 1,82 6191619 1,82 0,ICA 1,82

v/

0 (e 9 0 (e
+ §f2Re{0191( (t1,72) - O'(E)ICA(TLTZ)) 39, ( (t1,72)— 0 (Tl,Tz)) aw

N 9T-11 sz { ) 540 ) 0 o) )46
=Y = e T1,T2)—065"(11,T2) + 0F
= 09, g \FLT2 09,, |J| 1,2

02 s(ﬂ)
|J| (1'1,1'2)6191619 Jl (T1,T2)}dW

and

03 ~e(®)  ~ed) 0> T o0 e
09,,09,00m, Zrd)=7 f 2Re{0k ( %0 UOJCA) 09,00, (UO - UO”CA)}dW
f 9Re { 5€0) _ 5e(9) ) o ( GE® _ 55D )} dW
3 O ICA aﬁkaﬁlaﬁm 0 0,ICA

+§f2Re{ o (Ae(f)) 5€®) ) 9 (63(3) 5®) )}dW

0,ICA 61‘) 0,ICA

T 0 (.60 ~e®) O Te® @
+ gsze{a—ﬁl(O'g US,ICA)W(US _US,ICA) dW

271 02 0 . O >
L2 — [ 9r ~ () 560 5€(9) Afﬂt")}dW
j; j2f e{aakal Pl 39, " T 39, 71 39,00, Ul

QI S

T-1 1 0 9 62 3 9 63 3
> ,—2f2Re{—Ale(| G )}dW
=y 09; V' 89,09, V! Ul 09;,00;09,, V!



where

0 0 0
£(19)
_619 Ul (1,72 = 0., ——¢j|(T1,T2) — 39, —¢1j1(t1,0)-9;(0,72) - (p|J|(1'1,O) (pm(O T9)
62 AE(I‘)) 62 02 62
59,59, 0 ()= 39,00, —a o P - 39,90, ~o 70 PO @) =@ () 39,90, —==aP1i10)
0 0 6 0
T 59 P35 <P|J|() <P|j|() <P|J|()
63 Ag({)) 03 A 03 A A A 03 A
59:00,50. 21 = 3553,59 1~ 35 ag00. AU QU = BuI0) Sooe—d0)
0% ) ) 2
_Oﬁzaﬁm(pm() 09, (Pm()_ (PU'() aalaﬁm"’“'(')
2 ) 02 )
_aakaam"’"'() 39, — @i )—a19 39, P 5 <P|J|()
o 02 a a2 R
_E%'() 39,00, ——Pi()— <P|J|() m(ﬂm(-)
with

9 &
E@ﬂ(‘rl,‘rz) = T_l H 1Z| ‘| {exp [i (v €:(0) + T5€-)(9)) ] (‘r'ldagm)(ﬂ) + r;as‘t”")ﬂ(ﬂ))}
t=1+y

02 o i 4 () / (,m) .(l,m)
59,50, QU1 T2) = _|J|tzém{exp[t(‘rlet(t‘))+12£t_|j|(1‘)))](‘rlet @)+ 7hel m(f)))}
-1 T
D 5 exp i (¢yed®) + Ther(9))] (7,06 @)+ 7506, (@) (7106 (®) + 7506, (9}
T-l =
ey {exp[i (vheu® + Ther 1@)] (T ™ @)+ TpE o)}
D TP L A 2,
( 1) 4 I A (k) I A (k) (I,m) (l m)
o 1+|]|{exp[L T\ e,(0) + The, ,J|(a))](rlast (1‘))+120£t_|j|(1‘)))( ™) + il ||(f)))}
( 1)

{exp[t 60 + 196 ()] ] (1'168(“)(3)+T’26£(“).(1‘)))}

t—1j
=7l =13 aelk,l,m) !

(l)T

exp [i (v)£u(®) + The,j(D)] (Tie{" ™ @) + Thel (@) (7100 + Thoel, (@)}

|J|t 1+|]|{
(1) T {

— 7l =13

exp [i (7} £u(®) + The, ;i (@)] (7106 (D) + Thoel™), () (71800 + Tl @) |



and

a o0
06" () = 5o—e(®) =06 (L, Der = Y 05" Dher-s

2 00
(m)yay O FLm _ «(1,m)
&"™®) = 59,50 /D= (L,ﬂ)st—s;was (De;-s
03 x .
<k 1,m) (k,1,m) (k,1,m)
9= ——¢£,9)=8%""L,9)e, = S, e,
(9) GﬁkaﬁlaﬁmEt( ) ( )Es s;oo (Des—s

Since K = d%(p + ¢ + 1) and given the structure of 9 = [¢',, ¢’ , 0., 0", b']. By the

results obtained in section (5.10), we have that

B oL, 0)(el(i)e’ ) @ (L;p )RL; 9L, e,
B 0)071(L,0)0.(L;$.) exel, | WL 9oL [T, Died_
06(L,9)={ -B"L(b)0-1L,0_)0;(L, 9+)(elme ) 0. 1(L,0,.)OL;p)P(L; 9L/, 9,e0.,
~B7U5)07(L,0.)(e1e), ;)| 0L, 000THL,0 )DL PV 9L, €0
L) (ewirel, ) 6L, D), 0;¢b

based on this:
(i) when 9; € ¢,

0, Ve,
B7(5)071(L,0) (ewirel, | (€€l ) WL 9L T+, 9,
8L, 9)={ ~B B0 UL,0) (€€l ) €7 1L.0.) (exirel )| @ (Lsp IWEL; 9L+ g,
~B Y5)0-Y(L,0- )(el(J)em(J))@) (L, 0)(el(l)em(l)) ®_(L;p )W(L; 9L #1411 9. cg_
“1(p) (el( J)em(J)) a89N(L, 9), 9;eb

m(i ))

(i) when 9; € ¢_

B0 UL,0) (exje, ) (erirel | R 9L+, 9ep,

0, 0,€¢_

8L, 9) = -BHDIOUL,0) (e1el, ;) 07T, 000 (Lip.) (errely | WL 0L T+ ;e p,
~BUB)OUL,0.) (el )| O7NL O (L b, (exel )| WL OILIETHIET e
~B7l(b)(expel, ;) 96(L, D), 9,eb




(i1i) when 9; €0,

5L, 9) =4

B L0 UL, 0) (erirel )| O71L,0.) (exgel, ) O (Ls g )RW; 9LV e p,
—B‘l(b)@)‘l(L,B)(el(i)e i) 0 4L,0,)®.(L;p,) (el(j)e;n (j))\P(L;ﬂo)Lfi/d21+rj/d21, 9,
B0 1L,0){(e1pe), )| 071X, 0.) (exnel, )
+(erel ) OTHL,0.) (erpel, )} 07,0 VBL; W L; 9L g0,
B'®)0ZUL,0) (ewpel, ) 07U, 0) (ewiel, ;) OTHL,0.)x
®(L; p)W(L; 9o)L 17471+ 71471 9;€0_
—B—l(b)(el(j)e;n (j))66(i)(L,f)), 9;cb
(iv) when 9; € 0_
~B UB)OZUL,0.) (erisel, )| 0L, 0) erpel, ) @ L p IR W; 9LV g e p,
-B Y»)0-1(L, 0_)(el(i)e »)O7NL, 0, (L;p.) (el(j)e;n (j))W(L;f)o)Lfi/d21+ff/d21, 9,€d_
B l»)0-1(L,0_ )(el(l)em( ))@) (L, 0)(el(J)em(j)) 071(L,0,)x
@(L; p)W(L; 9)L 7471+ [7/d*] 9,€0,
B'®)07ML,0){(ewpel, ) 071,00 (exnel, ;)
(el(i)em(i)) e- (L,B—)(ezg)em(j))} 0 1 (L,0)DL; )W (L; 9L 1+ 9.eq_
~B7\(®) (ewpel, ) 067X, 9), 9;eb
(v) when 9;€0_
B~ b) (el )| 08V(L, D), died,
~B7b) (el )| 05V(L, D), gied.
B~ 1(b)(el(”emm)ad(j)(L,w‘)), €0,
(b)(el(L)e aa‘J')(L 9, 9;€0_




From these expressions, it is clear that

|B=1®)] |0711,0)] | excre | [ @-Ls )] 1% (19001, Dicd,
B ®)] |07 1.0)] [@+1:9)] | ervey, | 1¥CL: 0001, Oich.
sup |060c1,9)] < sup? |B7®)] [07'(1L,0)] |erivel | 105,00 |@@ 9] 1¥CT; 0001, 0: <.
IB'®)| [©-'(1,6.)] Hezu)e’ |01, 0 |@@;e)| IPa;001,  9:€6-

m(i)
|B-1®)] |eve,

m(i) ”6(1, 19)” ’ "9i (S b

by assumption (2.1), we do not have unit roots for any 9 € 7, and the model comes from a
linear VARMA representation, then any of the filters ®(L,9), O(L,9), ¥(L,9), and their

inverses are absolutely summable. Besides, el(i)e;n(i) H =1, considering different matrix

norms (Frobenius, || - ||, or || - [loo). Thus
sup Haa(“u,a)” <o
)

(/1)

In case of 8 7°"(L, 9) and 6 %/)(L, 9), since they are multiplication of absolutely summable

filters for each (j,i) and (%, j, i), respectively. Then
sup 08” D, 1‘))” < oo
9
sup H'g(k’j’i)(l,ﬂ)u <00
9
With this, the following results hold under the assumption of E || &; I3 < oo and for any
rell,3]

[EsupHdsffm)(q‘)) <oo, Vm
9

[Esup“é(tl’m)(n‘)) <oco, Vi,m
9

[Esup“"é;k’l”")(a) <oco, VEI,m
9

Besides, for r €[1,3] and applying Ho6lder’s inequality:

o
E%ﬂ(‘[l,"z)

r C T T
Esup < T—1J] { Z Esup ||1’la£§m)({))||r+ Z Esup ||T,26£(m) ({'))”r}
P _

t—Ijl
t=1+j| 9 t=1+j| 9

<C(lzyl"+ IITzII’)[ES‘;p H‘”gm)(ﬂ)“r

=CUz1l" +lT2DENel" < oo



Now, for r € [1,3/2]

2 r C T T
Esup @j1(T1,T2)| < . Esup lT) ™ @) + Esup ||l zhe™. (9)]"
39,00, — 1/ tzém 9 tém PR
c d ) a2 L e L ALm) av2r
. Z Esup ||T}0e,™ (DI + Z Esup ||T268t_|j|(19)||
T-Ul =51 0 =14l 9

2 2 2
=CUT1lI" + lT2l*)Elle ™ < oo

By applying triangle and Hoélder’s inequalities together, and using the previous re-

sults, we obtain:

63
Esup ‘Wwﬂ(n,rz) < CUlT11P + I1T2l?)Elle:l® < 00
With this, we have
0 3
Esup W"m (z1,72)| <CUT1l?+lITall?)
3/2
] Frars 677 (@1,72)|  <CUlT1l®+ITa2l®)
~€(D)
ESUP‘W 65 (T1,T2) <C(lT1l? +lIT21®)
and
@ 0 ® ° 5) 3 3
E 65V ————— 68| < 2E —6""| <C +
sup a4l 00;,00;00,, V! Sup‘aﬁkaﬁlaﬁ Ljl (lTall®+lIT2l)
1/3 3/2\ 2/3
0 00 O =@ 0 &) )
[Esup‘aﬁl 94 09,09, b [Esup aﬁl 94l [Esup 00300, 94
3

< CUril + 2Tl + IT2l®) < CT1l? + I 721)

As consequence, by triangle inequality and the previous results:

3 T-1 1
3 3 3 3
[Esup ‘—aﬁkdf)ldf) ZLr(9) SC{f(II‘nII + T2l )dW(T1,T2)+J;J.—2f(IIT1II + T2l )dW(TLTZ)}

T-2
sC{1+T_1}sC

thus, the third derivative of sample loss is bounded in L!. Therefore, since 97 = 9, we



have:
2 2

5000 Lrd7) - 555 =o(1) (5.12)

[Esup ZLr(9o)

5.5.2. Asymptotic Distribution of s Z(99)

We want to establish the asymptotic distribution of \/Tsf (99). Since we have proved the
asymptotic equivalence between using sample model residuals and population model

residuals, we use £;(9) instead of &;(9). Now, notice that

0
7@ = —$T(t‘))— 3f2Re{ ('9)(1'1,1'2)—685}91)014(1'1,1'2))%(68(3)(11,‘52)—585}9}CA(11,12))}dW(Tl,T2)

9T-11 _
+ = Z sze{ fj(l )(Tl,‘l’z)aﬂ R (T1,12)}dW(T1,T2)

T 4=1 J?
where
£(9) ) 1 L s . R R
aol]l (71,72) = _U|J| (TI,TZ) e — Z [aZt(‘ﬂ,Tl)Zt_Lﬂ(’ﬂ,TZ) +Zt(‘ﬂ7 Tl)aZt_L”(l(),TQ)]
0 -1l t=1+|j|
02,(9,T1) = —5,(9,17) = ' 11 (it}0e4,(9)) - Y e’ 15D (i1 9e(9))
09 — =131
_0 3 3 f)
0e(9)= el ®) = | e ghed® - @et(ﬂ)]
if:‘t(f))— i[(S(L e 1 =069 (L;0)e, = i 9 (6;(9) &
89; 89; 89; *’ I

Jj=—o00
66(L;ﬂ):[66(1)(L;8) 06D(WL;9) - a(s@)(L;f))]
0e.(9) = 08(L; 9) (I ; ® ;)

where 06'V(L;9) = Zoo - 61‘; (6;(9)L7 and 53 ( 6 (9)) is a d xd matrix. Using numerator

layout we are using, 08 Jl ('9)(11,1'2) isalx d Vector and 2 sg€t(P)isadx d matrix.

Let f(11,T2,a) = e!T71@+72h2(@) = cog(71 h1(a) + Toha(a)) + i sin(t1h1(a) + Toha(a)), its
conjugate m =cos(t1hi1(a)+19ho(a))—isin(t1hA1(a)+Toha(a)). Since sin(x) is odd
and cos(x) is even, then f (11,79, a) = f(—71,—72, ). Additionally, z; +z3 = z1 + 23 for all
21,29 € C. Thus:

0 0 .
6'3( (ﬂ)(leTz) O-OIch(TI’TZ)) 6'3 (8)( Tl: TZ)_% 8(}91)CA(_T1’_T2)
0
8(19) _ ~ €(9)
619 |,]| (T].)TZ) %Ul‘ll ( T]_’_T2)



For obtaining this asymptotic distribution we procedure in two steps. First, we prove

\/T(S"}f (90) - 87 (1‘)0)) 2, 0, where 87 Z(9p) is defined using population centered sample au-

~£(9)

tocovariance (7 (‘rl) and d, 11C

of VT§F (89)

A(T1,7T2). Second, we have to find the limit distribution

Convergence of VT {s7(9y) —87(9¢)}

Notice
0 0
Ae(:‘) ) ~&(@o) ~&(00)  AIICA e(@o)  ~€(9o) ~£(@9) ~e(09)
s7(99) —87(9g) = — 3 fRe{ ’ UO,I?CA) 59 (U ’ Se(f)o)) (00 0 Uo,I?CA) 09 (U ' UO’I?CA)}dW
4T Lol @) 0 (e0))  ~e90) O (=e@0)
Z (1__)J_fRe{“|j| @(Ulﬂ )_“m 019( ¥ )}dW

where we omit 71 and 79 because of space constraints.

Analyzing the last term, notice

GEo 9 (5e@0)| _ 5200 9 ~e@0)| _ [ 5600 _ &egﬂo)] 9 (5200, 5200 | O (e@0)| _ 9 (~e@0)
Jl a9\ Ul U 59\ Ll 11 U 19\ Ul 11 09\l 09\ Ul
thus
Le(99) O (20| _ ~e90) 9 (Ze(80) &(90) _ 5e(00) —e(90) 0 (=) _ 0 (=00
E i ag( 11 ) 91 5,9( i )‘ H [0 91 ]61‘)( 91 )‘ 2[EH619( 9 ) 09 9

~e(90)
| |

where this inequality comes from the fact that |& < 2. And, by applying Hoélder’s

2 | 9 (Zewdo

0
~€(99) ~ &(9p)
mEH ( ji 0)_@(%1 0)

inequality, we get:

172

1,

5500 _ 5&(00)
1l 1Jl

£l 5e00 9 (5600 _ se00) 9 (@0
Ul 59\ Ul U 59\ Ul

and by Lemma (5.9.5), we obtain:

£l 5600 9 (500 _ se00) 9 (@0
U 59\ Ul U 59\ Ul

‘ <CUTel?+ IT2l®HAT - 17D (5.13)

thus

0 0 0 0
A 8(190) ~e(@0)| _ ~e(Do) ~€(9o) ~€(90) ~ €(90) ~€&(9o) ~€(90)

i 89\ Ul Ul a9\ Ul
=C(lTol? + I T2lHAT - 17D (5.14)




therefore

4T 1 1 6 CT !
fR {As(l‘)o) (As(am)_&s@o) (~s(f)o>)}dw" - = J—(T N~

Jl-] ¥ 91 Ul 59 94 =
C(2 1T-2
—|=n(T-1)- =—— T!
= (T2 ( ) TT- 1) T

(5.15)

Now, for analyzing the first term of the difference s7(9¢) — §7(9¢) it is better to split
it into two terms. First, let analyze 08(30) 2 (68(80)) 68('90) z (68(80)).

By the previous part, we have

As(m‘)o) 0 (é_s(a‘)o)) _ 6,8(190)1 (5_8(190))

E
90 59 0 59

‘szrﬂP+wrﬂFf@Gv‘) (5.16)

Second, let analyze

5500 0 (e@y) | _se@) O (—e@q) | _ sed0)
011cA 5g |Z0.11CA 011cA5g |Z0.11cA | T Po,11CA

0 (7edy) 0 (Zzd9)
pY;) (‘7 O,I?CA " 39 UO,I?CA

5500 _ &) | 0 (~eo)
9o11ca ~ 90,1104 | 59 |%0.11CA

~&(99) ~ &(o)

For any 9, 6 1704 = 1104

is equivalent to

SH
SH

As( ~&(8) —
0 IICA(T]"T2) - UO,IICA(TI’Tz) -

d
$0(0,721) = [ [ p(rar)
=1

d
[T #0(x1,0) - [ o(z11)
= =1

and, since £,(9¢) = &, then both factors in the right-hand side are independent. Thus:

d

d d
[T#0G1,00-[]eGr1)|E
=1 =

~e(90)

&(9do)
Oo,11CA

E (t1,T2) - GOIICA(T1’12)‘ =E

Besides, we know that:

||’:|&

-1 n;
(T1l,0)—H<P(T11)— Z Z{ [T @o(z1;,00—(1) [] (p(Tu)}

i=0 c=1 | je.g 109,

SH

-1 n;
H 0(0, Tzz)—H(P(Tzl)— Z Z{ [T @0(0,79))—p(r2;) [] (P(Tzl)}

=1 i=0c je']i,c l€EJi’c



thus

SH

||M§

{ H E|@o(r17,00—pGi)|| [I ¢Gu) }:O(T‘l/z)

lECJiyc

d _
E|[] @o(r1,00 - [] o(z10)| = Z
=1 20

‘&

d d -1 n;
E|[] 900,72 [ @(zar)| < Z Z T1 El@o(0, 72— | TT @a) 0T
= =1 i=0c=1 | jeSi. 109,
hence
E|65 oo a(T1,T2) 5 1o A(T1,T2)‘ =0(T™) (5.17)

~€(D9) 0 ~ £(99)
Now, analyzmg 39 ( 99 IICA) T 99 (OO,IICA)'

0
59 (68(}9?)014) Z 0@o(t11,720) [ [ Po(1),72))

091 = Jj#l
- Z {800(t11,0)¢0(0,72;) + Po(T17,000900(0, 7o)} [ [ Po(T1/,0)P0(0,T2;)
=1 J#l
0 (&)
59 (Uo IICA) Z 0Po(t11,720) [ | PolT1),725)
> J?fl

- Z {09(T1)90(0,721) + 9(111)0P0(0, 72} [ | 0o(r1,/)P0(0,72;)
=1 J#l

- Z {0@0(r11,0)9(t21) + Po(r17,000¢(r21)} [ Po(T15,0)¢p(72;)
=1 J#L

+ Z {0p(r1)(T2) + 9(t1)09(T2)} [ [ 9(T1))9(T2))
J#l

d (. 0 d d d

%(Uﬁff}’é/;)—@ (555??():,4) Z{&P(wz)l—[w(%) 090(0,721) [ [ #0(0, rzj)} H(pO(Tll,O)—H(p(Tll)]
J#l J#l I=1 =1

d

d
[19¢00,72) -] @(xar)
1=1

=1

d
+) {(3(/)(711) [TeG1)-090(r1,00[] @o(TU,O)}
J#l J#l

notice that

[19000,72)—[] (p(T2j)]
J#l Jj#l

0p(t21) [ | ¢(72) = 0900, 720) [ | #0(0,72)) = = (3¢(T21) — 300, 720) [ | #0(0,72)) — dep(r2:)
J#l J#l J#l



then

E (| 0¢(t2r) [ | o(r2;) — 090(0,72:) [ | #0(0, 72)|| < E|[{00(0,721) — dp(z21)} [ | $0(0,72;)
J#l J#l J#l
+E O(P(Tzz){ [1#00,72)— ] cp(sz)} ”
J#l J#l

by Cauchy-Schwarz, we have:

9, 1/2
E [|{00(0,751) — dp(tap)} [ $0(0,72;) 5{[E||a¢’0(0,T2z)—6(p(121)||2[E [T30(0,75,) }
9, 1/2
t a‘/’(”l){n‘f’o(oﬂﬂ‘H‘P(sz)} S{[E||0<P(T2l)||2[E [1#000,72)) =[] (72 }
Jj# Jj# Jj#l Jj#l
since
E[|0¢0(0, 721) — dp(za1)||* < O(T ™)
2
E|[]¢o0,72)|| =C
J#l
2
E([]900,72/)— []9(r2) <o(T™)
J#l JjAl
thus

E <C(lT T2

0p(tap) [ [ @(r27) — 090(0,72:) [ | 90(0,72;)
J#l J#l

as consequence:

~&(99)

0 (.90 -1
E " (o0 ) - o (o5t )| < cam+ e

This implies that

i

Se00) _ 5e@0) | O [ e@o) _ ~e(@0) <o) _ ~e@0) | O (~e(0) _ ~e(o) -1
Re{("o _Uo,UCA)@(Uo _Uo,UCA)_(Uo _UIICA)%(UO _UO,HCA)}”SC(||T1||+|IT2II)T

therefore
E|VT (57 90)-57 90)]| = 0T = (1) (5.18)



Weak Convergence of vT§7Z Ts7 (Do)

Now, 87 Z(9y) is defined as follows:

0
7(00)=< f 2Re{ (067 x1,72) - ag(,;gA<r1,rz))—ﬂ( P71, T9) - ag‘;";’CAul,rz))}...

411 ~e(9) 0 )
+;;J fZRe{ o (Tl’Tz)af) Ui (T1,T2)}

we have proved

0 0 oy — .
[EH 50 ~|£J(|‘90)(T1,‘l'2) [Eaf) lej(l‘%)(rl’rz) < C(lT1ll + lT2I(T - 1j]) 1, jl<T-1
0 0 .
E"%égf??)cA('l”Z) E—5 06012 = CUTLl + T2 )T

Thus

7T 0
§¥(ﬂo)=—f2Re{( 8('90)(11,r) UO(I}%A(TLTZ))[E_(08(80)(1 ,T2) — US(I%A(n,rz))}...

09
4T 1 ( ) 0 N
t— Y P sze{ 50 (T1,T2)[E619 fjl 0 (11,1'2)}+op(1)
t=1
s1nce (319 8(190)(1.1’1_2)_60,8(190)( T1,— T2) and 55 ~g(}9;)éA(Tl,T2)_ao.g(}9;)éA( Tl,_Tz)- Then

E05 1" (—1,~79) = i (7106 (91 3 OFF [£re™ 1% | 00 (=75 + 7508 1 1(89)I 3 OF [/

171

Eaﬁg(%)(—‘tly _-,72) =—1 (Tl + 12),060(30) (I(_i ®F

a ~£(9o)

+ 74080(90) (I3 8 E | £e /"

)(p(aw(n)}

o.r1cA-T1— Tz)—zasl?(%)( 111, -72) [[ 0§ (~71j,-72))

J#l

o)

ete—i(rl+rz)’£t]) i {1,1060(190) (Iél oF [ete—if'let])(p(z‘)o)(‘rz)

d
-y {Gw(ﬂO)(—le)fp(ﬂo)(—Tzz) + (p('9°)(—T11)5<p('9°)(—T21)} l_[ (p('9°)(—T1j)<p('9°)(—T2j)

=1 j#l
Ele e T80 1 9 P0(=71;)

_. !
E [ete &

Ele ge ' T14d] ] 2q pP0(~11;)



The term E0G§ ' (—T1,~T2) ~E057 1,5 (~T1,~T2) = Ag = A1 — Agz — Agz, where

Ag1 = —i(T1+T2) {S_giagl01080(90)} (I(;l ®F [ste‘i(”*”yft ])

Ay = —i‘l'll {S_diag[0]660(190)} (I[i ®FE [Ete_irll‘gt E [e_irést )
Ao = i)y {S_aiaglo1080(80)} (I3 B E | £e ™| E [e7ma% )
1 ... 1
|
where S_giao = 1gxqg—Iq = and [o] denotes the penetrating face product
g A
1 11 ... 0

(see Slyusar (1999)). Be51des calling A; = [EOUE(’LJO)( T1,—T2) for j=1,...,T - 1. Then:

§7 (90)= — ZRe{f 3 (Zt(i‘)o,fl)zt(t‘)o,fz) US(I?éA(Tl,Tz))AOdW}
+ ?);Re{fzt(f)o,tl)z 4 2 (90, T2)A, dW}+op(T v2y (5.19)
therefore
TVSE (90) = ZRe{ f 2?” (24080, 71280, 72) — 05 0, A(rl,rz))AodW}

Tk ZRe{fzt(n‘)o,tl)Z —21-j(00,T2)A,; dW} +op(1)  (5.20)

note §7; Z(90) is an 1xd row vector. For simplicity, we take the the column form vec ( ‘é’:p (1‘)0))

and it is denoted in the same way, as §7 Z(9o). Besides, notice

- ; T
(Do) (90) t 0 —it
|£J| (11,72 )[E fjl (T1,T2) = _TTjt ;L .z(t)(‘rl)zt_j(rg) [1’106|j|({)0)(1a ®[E [ete iT)E

=1+

i)

)

+ 7508 _11(90) (1& oF [Q_J.e—ir;et, ,-] E [e—ir’lgt

then, the vectorized form of the RHS is

T

_Tl—jtz-{

=1+j

(Ia@[E[b‘ ~iT)e

)®zt(‘r1)‘rl]vec(66|J|({)0))gt J(Tz)[E[ ~iThe, J]

+ [ (17 o [erje ™| ) @20 (za)eh| vee (98 1;(90)) 22(xE [eTie

}



and, remember that if X,,x,9, .1 is a n x 1 column vector, then Xy = vecXy) = (y' ®

I,)vec(X). Then, the term above is equivalent to

=irj{(vec (06;1(90))’ ®13)Vec [(IEi ®F [ete—ir’lst] ') ® r’l] Z?(Tl)zg_j(‘l'g)[E [e—ir;st_j]

+(vec(aa_|j|(ao))’®13)vec[(Ia®[5[et_je—if’z£t—j]’)@rz]zt [E2)2)(T1E [emmE

i
T-j,

}

Thus
veCURe{ 8(80)(‘51 T9E— 0 550 )z, Tz)}) - i (vec(66 90)) ®1; )e X
’ 59 |J| ’ T_jt=1+j 171 d t—j

+ (Vec (55—|j|('90))’®15l)e?-fx?]

. !/ .
where e? = %fvec [(I(-i ®F [ete_”lft] ) ® ‘r’l] 2%(r1)dW(r1), and x(t)_j = fZ?_j(Tz)[E [e‘”zftﬂ'] dW(to).

For the contemporaneous term, first notice

1 T
?”i Z {f (zt(,c)o,rl)zt(ao,rz)_agf}"%A(rl,rz))Ao(n,rz)dW}) =
2 1
vec (g— ZRe{fZt(ﬂo,T1)Zt(190,T2)AO(Tl’72)dW})
27 R 8(190) A dW
—vec| —-Re 001104 (T1,T2)A0(T1,T2)
and notices that

vec(Ao(T1,T2)) = vec(Ag1) — vec(Agz) — vec(Ap3)
vec(Ag1) = —i [vec(S_giaglo]080(90)) ® I ;] vec [(Ic-i ®F [ste_i(””Q),Et ] ,) ®(T1+ 12)’]
vec(Age) = —ipP9(—1y) [vec(S_diagl]060(90)) ® I ;] vec [(Ic'i ®F [ete_”rlst] ,) ® ‘r'l]

vec(Ags) = —ipP9(—11) [vec(S_diaglc1080(90)) ® I ;] vec [(Ic-l oF [ete_”lzgt] /) ® ‘r'z]
thus

vec(Ao(r1,72)) = i [vec(S_aiaglo1080(00)) @ I] {vec (I3 8 E [ere ™| )@ (v + 1)

— P (_zy)vec [(I[i oF [Ete—”'ﬁt] ,) ® r’l] — P01 )vec [(I(-i ®F [ete_”ésf]/) ® 1'2] }



then

2n 1

T
3;2 {ffZt(Tl)Zt(Tz)VeC(Ao(Tl,Tz))dW(Tl)dW(‘rg)}

1 T
T Z [Vec(S_aiaglo1080(D0)) © 1] (&) +&)7 + &)

_2n
3
27 5£@0)
vec ?Re OIICA(TI’Tz)AO(T]"TZ)dW =
2n
-3 [vec(S_diagl0]080(90)) ® I7] (6% + %2 + &°2)

where

&l = ( 20Tz (Ts)vee | (I [0/ TrH7e] )®(rl+12)]dW(rl,rg))

)m;])

oy dW(rl,Tg))

:Re( ffzt(‘n)zt(‘rz)(ps(ﬂo)( T2)V€C[(Id®[|—:[£ o iTiE

~02
~03: Re ffzt(‘rl)z (‘rz)<p£('9°)(—1'1)vec[(I(;lcb[E[ste_”é”
§0.1

. T
Re( g(??)CA(Tl’W)VeC [(Ia ®F [fte_l(nm) et] ) ® (11 +T2)'] dW(Tl,Tz))
Re( g(??)CA(Tl,Tz)we(ﬁo)(—rz)vec [(I& ®F [ste it )@rl])

o ; 9 _i7
eO,S;Re (_lffUSEI%A(TLTz)we(%)(—U)VeC[(Igg@’[E[fte iTHEs

o] dW(rl,r2))

Therefore

1 T
TY?87 (80) = — [vec(S_giagl©1080(90)) ® I 5] { i & (6D + D%+ D% - 01— 02— 603) }

1
STz Z (X710 +E)_1x;]
=9
/ St,O
[ [vec(S_diag[©1080(90)) ® 1 ;] I] T1/2 S,
t=2 | St,1

where X0 | = Y71 -4 (vec(08(80)) @ I)+)_, B ; = ¥'2} 4 (vec (38 1(90)) @ I5)e?_;, and

By assumption (2.2), when 9 = 9, S; is formed by components that are independent
between them. Then, they formed a martingale difference sequence. Denoting .%;_1 the

information set up to period ¢t —1. We have E[S;|%#_1] = 0. For applying the CLT for



MDS, we have:

VTsZ(90) L N (0, Q(99)) (5.21)

Now, applying mean value theorem of the score function at 9:

. 0
s"}’p(ﬂf) s (190)+(—S (19))

] @7 9o
9=0

where ||9T -9 || < 012)”;{ -9 H and 97 LN 9y. Since 12)}? is a zero of the score function (and

local minimizer of Z£7(9)), then s;; (1‘)T ) = 0 and assuming that ( 39ST Z(9)) | 0=y is non-

singular. Thus

N 0
VT@7 —90) = [— (%s%)(t‘))) ) \/_s (90).
9=07
(I
5.6. Proof Theorem (2.6)
Like in the proof of Theorem (2.3), we proceed as follows:
sup | Z7(9) — Ro(9)|| < sup | Zr(9) — Z1(9)|| + sup | %1r(9) — R (9)| + sup | Zr(9) - Zo(D)|
9 9 9 9
where Z7(9) and %Z1(9) are similarly defined as Z7(9) but employing £,(9) and
aj('())(‘rl, Tg), respectively.
Hence
_ T 1 1
Rr(9) ~ Fer(9) = = f {HA“ 95400, 73)| " - \A“ V57 0,75)| }

MDIC MDIC

+ { HA(I 0)0.8(19) 0,79) — [F(}ﬂo)) (0,T2) 'A(l ,0) & 8(19) 0,79)— [F(:(l{)o))] (O, TZ)

B 5 T 1 1
%T(ﬂ)—%(a): f { |a*9557 o, Tz)H

(9)

i I B FNC V) £(6) 1,0]M ?
[ {200 (M)—[F “om)| -

2
}dW

‘A(IO) “0) g, 12)0 }dW

£(9)

2
faw

“ 20550 (0,75) - [F; O)] ‘0,72

r@ -0 =) 5 [ [a10010 02| 'aw
z

Using the results below, we obtain

[ESl;P I 1(9) — Zo(D)l = o(1)



5.6.1. Convergence of supy | Z7(9)— %Z7(9)||

Note that

’ {H AL 5D g 1 )0 - |200659 0,1, }“ AW

_ 2711
sgp |21 (9) - %1 (9)|| < - F; ﬁfsgp ¥ 91

+”f
— su
3 5%P

and notice for two vectors x,y € R?: |x]% = (x,x) = |[x—y|2 + 2(x—y,y) + |lyll?. Thus:

0,72)

MDIC
] dw

1

(1,0) A&(9) _[pa,0)
H“A 567 ©0,72) - |Fify)

H A0 G (g 1) [ F(%ﬂo)) " 0,72)

HAu 0) A fJ(f))(O - )” ”A(l 0) A |eJ(|f))(O - )H HA(I 0) A lej(la)(o ) — AL |€J(|ﬂ)(0 TZ)H

+ 2(A(1 ,0) A£(19) 0,79)— A(l 0) A£(1‘)) (0 79), A(l 0) As(l‘)) 0,79))

Applying results in Lemma (5.9.7), we obtain

[Efsup
9

Besides, notice that

HHA(lo)As(f))(O . )0 0A(10)As(a)(0 12)H }“dW<C(T e

2 2
“ AL SED (g 1) [ Fg}ﬂo))] “0.1| - H ALDGE®) (g 7,) [ F(}ﬂ())) o <c 0 A‘LO)&g("’) (0,7)— A0
MI
a, 0) A(1,0)
+C " [F 8(9) (O’ T2) - [F £(9)

by applying Lemma (5.9.7) again

A 2
Esup [A00657 (0,75)- A1065? (0,75)| < CT!
)

1,0) MDIC

2
-1
) <CT

E sup

|75 (0,72) - [F‘iﬂ‘)))] ‘0,72

thus

_ C CT 1
Esup | 27(9) - Zr(9)| < ?”T-1 = Z —(T Dt
9

1,201 {T—l - }
T F=P =1 |J|(T D
1

T

T
1(1 2 o
i{T_1+iln(T—l)}sCT




5.6.2. Convergence of supy ||?Z’T(1‘)) - ,%"0(1‘))”
Note that

sup | Gr(®) - Zo@®)| <> Y. = f sup|| AM00" (0, TQ)H AW
9 i=rJ 9

By Lemma (5.9.2), we have

20 & 1 =
sup |%7(9) - %ow>||<—2 5[ ot aw sy S soy e
] ]:T J:T

<C f JYER G < C(T -1) V2 Ho = O(T~ V2710 < T2, g = 1/2
T-1

5.6.3. Convergence of supy | Z7(9) — Z1(9)||

Since

R 7 41 (1, 0)’\5(1‘)) (1,0) 8(1‘))
T(f))—%(ﬂ)-—J = f{()A 52, Tz)H - |440652 0,75 }dw

1,0) MDIC

) 0,72)

+ 7T {HA(IO) 8(19)(0T )—[F(

2
faw

MDIC
uA(l ,0) 6(19) (0 T )_ [F(:(lgo)) (O, TZ)

using the results below, and choosing m = [;/2]:

T 1
4 f[ESup{ ’A(l O)AE(I‘))(O TQ)H HA(I ,0) 8(1‘))(0 TZ)H }

4T11 C
- Z {(T |jD12

= {0(1) +O(Y27H0) + (1+O0GVZH2)\(T - 1|
J 1

c = 1/2- 1/2110/2 = p10/2
<7 L, o 5 {0+ 0GY2H0) + (1+ OGV2H)(T — 11702} =
Uniform convergence of “A(l Dg 5(8) (0, 1'2)” ”A(l Dg 8('9) (0, rz)H

We use the following equivalence for the difference of two modules for any pair of

d-dimensional complex vectors

IxI% -zl = (x-2,X-Z) +2(x—2,2) = |x— 2| + 2(x — 2,Z)



and

I o N R O R

from results below:

O(1) + O(m 12 Ho)

[Esup HA(l 0) A 8(1‘))(0 - )H HA(I ,0) £(19)(0 12)“ ‘

|J| |]|

|)1/2 {
+(1+ O(ml/z_”"/z))(T —1—| j|)‘“°/2} (5.22)

2
Uniform convergence of “A(l’o)&f;ﬂ“)) 0, 1'2)” - ”A(l Dg 8(‘9) (0, rz)H

Note that
+2<A(1 0)A£(1‘))(0 1,2) A(l 0) ~ 8(19)(0 1.2) A(l 0) ~ 8(19)(0 T2)>

since AL06517 (0, 72) = a%(im(n,rz)‘n arl<P|J|(Tl,0)’ o ?111(0,72) and
A(I’O)ﬁsf)) 0,79) =
o PTLTD| = f'(”"’)’n P(T9)— 5> (n)\ (P0,72)+ 52 (n)j o(T3).
Thus:

ATO65P (0,72) - A5 (0, Tz)——(i(i)m(‘l'l,o) - i(p(rl) )[¢|j|(0,fz)—<p(fz)]
J J oty =0 071 T1=

9 41i(x1,0) . LS @) iHe @ —— Y @)

—@(T1, - —op(T1 = - &t — L& = €t

611 ! 71=0 aTl 71=0 T - |J| t=1+|j] T- |J| t=1+|/|

where last line comes from the fact that {¢;};c7 is an m.d.s.. Then:

2 2
1 4 .
Esup HA(IO) €0 (0, 7)~ A0 g, TZ)” = ————FEsup| > &@)| sup| ) z;(D,72)
9 J J (T -1 9 |[¢=1+1)] 9 [t=1+])]
T 2
<——_Fsup £4/(9)
(T—-1j)? 9 t:§|j|t

Now, note that

2

T T T
Esup Z )| = Z Z Esup (€:(9),e4(D))
9 |[t=1+1/] t=1+jl¢'=1+j] 9



where

(£:(9),£4(0)) = (£,(9) — €:(9,m), €,(9)) + (€:(9,m), £(I))
= (€4(9) — £/(9,m), £4(9) — £,(9,m)) + (€,(9) — £,(9,m), £4(9, m))
+(e/(9,m), 4(9) — £,(9,m)) + (£,(9,m), e, (9, m))
=( ), 6;Derj, Y 8;Dep_p)+( ). 8;Der—j, Y. 8;(Dey_;)

l7I>m ljI>m ljI>m ljl=sm
(Y 6;Desj, Y 8 Dep_p)+( Y, 8;(Derj, Y. 6;( ey
ljl=m lj1>m l7l=m ljl=m
=/ Z 6j(19)£t_j, Z 6j(19)£tl_j>+2< Z 5j(19)8t_j, Z 5j(19)8tr_j>
ljI>m ljl>m ljl>m ljlsm
+( ), 8Derj, Y 8;(Dey-;)
ljlsm ljl=m

and notices that

Esup( ) 6;(Der—j, > 6j(@ey_;)=Esup ) )Y 6;—(19)82_J-£t/_j/6j/(19)

9 \jl>m lj1>m 9 |jl>mj'1>m

<c Y ¥ |

lj1>m|j'[>m

Esup( ) 6j(De,—j, Y, 6j(Dey_;)=Esup ) Y. 6}(8)£;_j£tr_j16j1(1‘))

1| Ellev-y | < Cm2-2s0

9 ji>m ljlsm 9 \jl>m|j'|=m
<Esup ). 6}(8)£;_j£t/60(1‘))+ﬂ£sup o) 6;—(19)82_j£t/_j/6j/(19)
9 |jl>m 9 1jI>mo<|j'I=m

< Cm!' M0 4 Cm22H0

Esup( ) 6;(Der—j, > 6j(@ey_;)=Esup ) ) 6;—(19)82_J-£t/_j/6j/(19)

9 |jl=m ljl=m 9 |jlsm|jl'<m

<c{le-¢) 0,

t—t'|>0
thus

Cm?2 20 4 Cml=ro +C{|t—t’|1‘“°}, lt—=¢'|>0

Esup (e:(9),ep(9)) <
o Cm? 20 4 Cml~Ho 4 C, lt—=t'|=0



Hence

T 2 T T
Esup Z &) = Z Z Esup (&:(9), &4 (D))
9 |lt=1+/1 t=1+jl¢'=1+j| 9
T-1-|j] .
<(T-|j)C[Cm?> 2o +Cmi o+ Cl+ Y C[Cm2 2o + Cmt™ /‘°+C{|t t| “OH
[t—¢'|=1
<(T-1jDC+C(T -1—-|j)m? 2H0 + C(T -1 - |j)m Ho + C(T —1— | j|)*Ho
therefore
C
Esup|AM065” (0,72) - AM055" 0, 12)0 T LT =1ty
9
Now

- - 1/2
[Esup)m(l OG0 (0, 75) - A5 (0, 75), 410550 (0, m») ([Esup HA‘“” 5590, 12)” )
9

1/2
([Esup |A%0657 0,72) - AM055 0,75)| )
U

since Esupy H AL 6(‘9) (o, 12)“ <ooand

O _ 1-4g L
[Esup‘(A(lo) f](l{'))(o 12) A(IO) f](l{'))(o TZ) A(lO) 8(19)(0 T2)>‘<C(T |]|) 1/2{1+m T +(T—-1- |J|) 5 }
9
therefore

<C@ -1 1em @ -1- 1) )
(5.23)

2
H ALO 4 E(F)(O’Tz)n H ALO 5 E(lm(o TZ)H

Esup
9

2
Uniform convergence of “A(I’O)&Sf) (0, 1'2)” ”A(l Dg 8('9) (0, rg)H
Notice that:

[a%96¢0 0,7 ~ | A%00E0 0,7 = [ %0650 (0,72) - A5 P (0, 72)|

(1,0) 5£(9) (1,0) ;&) (1,0) &(8)
+2¢A ) 0,72)-A o 0,72),A ol 0,72))



since A0 8('9)(0 T9) = 3 <p|J|(11,1'2)‘ (1'1)‘ ¢(T2), we have:

01’1

0
AL 5 f‘"’)(Or) AL GED (g 1,) = —<p|J|(r1,Tz)

0
- T(P|J|(T1,T2)

ljl 71=0 0 1 71=0
—[—A-(r 0) —i(r) ¢(T2)
aﬁ‘l’l;l b 71=0 aTl(p ' 71=0 2
0
- —(t1) [¢1j1(0,72) — @(T32)]
0Ty 71=0
since airl(p(rl))n:o =iE&/(9) and
0 0 i r
—@j1(T1,T2) - —I(T1,72) =—" (1(D,T2),
o 51 ! 71=0 0ty ! 71=0 T- |J|t:§|j| ‘
where (;(9,72) = £/(9) exp(itye;_j1(9)) — Ee(D) exp(iThe—i(9)).
Then
i r i r
ATO5690,79) - A5V (0,75) = T L (@t = | ——— 3 &) g(ra)
=213 T-l=1=
and
T 9, 172
Esup HA(17O)&|""§|'9)(0,12)—A(1 0) £('9)(0 12)“ {[Esup Z &:(0) | p(T2) } +
9 / 9 - |J| t=1+|/|

r 9y 1/2) 2
Esup &7, 15)
{ N |J|t=§|j| '
Since |@(t2)|” = O(1) uniformly in 9, thus
T 2 T 2
Esup Z £:/(9)| p(r2)| =CEsup Z £4(9)
b] —1Jl =1+ 0 =1 Jl t=1+

IA

C
T {1+ml7Ho 4+ (T -1~ |j])t Ho}

Assuming Esupy H T |J|Z |Jl(:‘) TQ)H =0T -7~ with n = 1, consequently

t= 1+|]|

L=Ho (T —1— 1) Ho +(T - 1)}

Esup “A‘l‘” #9)(0,75)— A5 5D (0, m)”
9



Therefore

B 1-ug 1
Esup||A®055" 0,7 )H - [a%00r P, ‘rz)H <CT - 1 em @ -1 (@ - 1) 7
9
(5.24)
Uniform convergence of
2 MDIC 2
HA(l 96590, 7) - [FL9)" 0,7 - HNLO)ag("’) 0,72~ [Fe) | 0,72)
As above:
9 1,01M ? 1,0) e (1,0 MPIC ?
“A‘LO)&S( ©,)-|Fl “o, )H - HN Dge®0,.)— [Fs(ﬂ) ©,)| =
. MDIC MDIC 2
H A(I,O)ag(f)) ©,.)— [Fg:g(;) _ H A(I,O)d.g(l‘)) ,.) - [Fiz(lf)(;)] ,.)
2
lacose® g - [ 0™ _ H AL Ge® (g y_ [ et 0)] bre .
0 > £(9) 0 > £(9) i

with the results below, we have:

(1,0) 5 €(9) (1,0) 1,0) &) (1,0) 2

,U) A E s £
[Esgp HA Gy (0,.)— [Fe(m ] - ‘A o (0,.) - [Fe(ﬂ) (0,.)
1- 1-
= % [1+m=" +@-D="}
=0(1)
if m grows at smaller rate than O(T'), the last line follows immediately.
Uniform Convergence of
MDIC MDIC 2
HA” 056®(0,75) - |FG) (0,72) ”A(l 056 (0,75) - |FG) 0,72)
We have
1,0 2 a,0|M ?
HA(I,O)OA.g(ﬂ) (0,72)— [F((,c))) (0’1-2) — HA(I,O)ﬁg(I‘)) 0,79)— [F ) (0,1‘2) =
2

MDIC
HA(l V5D (0, 79) — AL05ED) (0, 7 )—{[F(%ﬂo)) 0,72)— [F‘is‘)))] (O,Tz)}

MDIC
+2(A006ED (g 7, A(LO)&S("’) 0, 74) - { [ F(%ﬂo))] (0 o) - [ F(}ﬂ(’)) (0,12)},

A(l,O)ag(ﬂ) (0,79)— [F(%ﬂo)) (O, 72))



By Minkowski inequality:

2
(1,0) ~&(9) (1,0) ~&(9) 1, 0) 1, 0)
Esup ‘A 559 (0,79) - A0 5¢ (0,12)—{[F L0 0,7,) - 7% (0,12)} <
12
({[Esup HA(I ,0) A 8(19)(0 T9)— A(l 0) ~ 8(1‘))(0 1.2)“ }
2
MDIC 9, 1/2
1,0]M (1,0
{[Esup [P0 0,7 - [P 0,72) } )
Using results above:
Esup |a%066® (0,75) - A5 0, rg)H 0(1)+0(m1 2H0) 4 (1+ O(mHo))(T - 1)#0)
Now, notice
[ %Zz;l €¢1(9)211(9,72,1)T121 $0(0,72) |
£L0 MDIC(OT)_. :
8(3) ,T2) =1 :
2T &1 a@)20,0(9,T2,0) 1 2a Po(0,72,)) |
' %Zz;l €4,1(9)241(9,72 1121 $0(0,72 ;) ‘
FLOMI (0 2y = :
£(19) s 02) — :
|+ XL & a@)20,0(,T2,0) 120 90(0,72,5) |
hence
MDIC [ X £01(9)(8:1(9,721) — 26,1(9,72,1)) [T P0(0, 7o, )
st 0| M (1 0) . .

AT £0a(0)(80a(0,T2,0) — 26,a(9,72.0)) T 2d Po(0,T25)
' % YT e19)(90(0,72,1) — ¢(12,1)) [Lj#1¢0(0,72,;)

23T £1a() (000, 72,0) — 9(T2.0)) 124 P0(0,72,7)



and

2 d|q T 2
A(1,0 1,0 " .
Fg(m) “0,72)- Fg(ﬂ)) “ 0,72 :Zl T; £,,i(9) ((PO(O,TZ,i)—(P(T2,i))]l_[#(l’0(0,72,j)
d 1 T 2 2
=) ? Z £::(0)(90(0,72,) —p(x2.))| |[[ 900,72,/
i=1|* ¢=1 J#i
d 1 T 2 1 T 2 2
=Y =Y e, | =) 2:9,72)] |[]$000,72,)
i-1|T iz TH J#i

since |%Z;";1zt(19,12,i)|2 and \H#i (i)()(O,Tz,j)|2 are uniformly bounded in 9 by some
constant. And Esupy |%ZtT:1 az,f,,~(1‘))|2 is the univariate version of Esupy || % Zf: 8,5(19)”2.

Therefore:
Esup 99" 0,70 - [FE9])" 0,72 2:%{0<1)+0(m1—2“°)+(1+0(ml—“°))<:r—1>—”°}
therefore
Esup HA“’O)ag“‘”(o,.)— [Fi};’))] (0,.)“2— “A‘l"))&g“’)(o,.)— 7% IC oo
T?/z {0()+00nY27H0) + (14 O M2 Ho2)(T - 1)~H02}
Uniform Convergence of
H A5 0, ) | FS;))] (0’.)“2_ “ AP 0, ) | a0 21e oo
We have
H AL ® (g ) [F%;)] (0,-)”2_ H AL (g ) [F,(;.}ﬂo)) upic o 2
HA(l,O)ég(a)(o,_)_A<1,0)Ug(a)(0,.)_{[Fgﬂo)) €0,)- [Fgﬂo)) MpIc (0’.)} ?
+2(A0GED (0 ) ALOGED g ) { [FSBO)) 0,.)_ [ Fii;’)’ MDIC(O’.)},

DIC
A(l,O)O-S(‘ﬂ) (0, ) _ [F:iﬂo)) (0’ ))



Esup
9

s?(l‘)) =

H A(I,O)é.g(l‘)) (0’ ) [F(l 0)] (0 )H H A(l 0) 8(19) (0 ) [F(l 0)

using previous results, we have

() (9)

= 1% {O(l)+0(m1/2 H0) 1+ (1+O(m M F2))(T - 1)~ “0/2}—0(1)

5.7. Proof Theorem (2.7)

Assumption (2.1) guarantees that space parameter is compact. Besides, Assumption (2.2)
joint with the Hallin and Mehta (2015) procedure assure that 2y(9) is uniquely mini-
mized at 9y. Now, notice that Z7(9) is a measurable function for each 9 € 7. Moreover,

”,St(")), which is an smooth function with all derivatives well

the transformation we use, e
defined, and the linearity of our model residuals, £,(9) = 6(L,9)¢;, the function Z7(9) is

continuous for a provided sample {Yt}thl.

Thus, all the requirements of Theorem 4.1 in Amemiya (1985) are fulfilled. Addi-
tionally, the potential multiple local minimum we can find in the optimization process,
something typical in non-linear optimization problems, comes from the fact that the or-
der (p+,q+) is not determined. Then, it is possible to find minimizers in causal/invertible
and non-causal/non-invertible situations. However, given the correct order (p,q+), we
have a unique minimizer. Thus, applying Theorem 4.1 in Amemiya (1985), we have that
P (197 — 9ol > €] — 0 as T — co.

5.8. Proof Theorem (2.8)

To prove the asymptotic distribution of minimum distance estimator 19?, we use a similar
approach that we employed for showing the asymptotic distribution of ?);‘,{f Firstly, we

will show the uniform boundedness of the derivative of the score S‘?({)).

5.8.1. Uniform Convergence of %s?(ﬂ)

For simplicity, we employ model residuals instead of sample model residuals. Notice
S‘%(f))'
7 (9):

(1,0) MDIC

2 %(l—m)f% HA(l g 8(19)(0 TZ)” dW(TQ)"‘ 3f HA(l 0g 8(1‘))(0 T9 )_ [Fe(g)

2
P i

0,72)

2
dW(



where

i ”A(l 0)*\8(19)(0 T )H [i “ i Et(ﬂ)ét—l 'I(ﬂ 79) i
al™ v 00| T =171 =151 ’ LK
) MDIC 2 0 MDIC 2
ALO 5 (a) 0,74)— FLO) 0 _ [_”A(l 0500, 14)— FLO 0 ]
5 H 0,79 [EGD]"0,7) 35 0,79~ [EGD] 7 0,7) .
and
o |2 i £/(9)3,_;1(9,7T3) 2 2Re{(A(1 052 1 )) ( 0 A 06e0 0,7 ))}
_ _ 21 — _—
619[ T_|J| t=1+j] ‘ et lJl 2 19 2
0 2 ) ;
30, ALO5ED (0, 75) - Fgﬂo)) " 0,72) :2Re{(A(1’°’ag“‘”(o,rz)—[Fgﬂo)) (0,1’2))
0
1,045 8(19) _ a4, oM
aemestioms- e )
0 005500, 7) = a A(l 06590, -73)
39; v 27 = i 2
0 A4 1) 1 i { O @20 (9,72)+ (,9) 9 )}
T2)= €:\U)zt—);|\VU,T2) + & Zt—|‘| » T2
09, lJl —1Jl 4= 1+1/] 09, ! ’
0 MDIC
5572005 7(0,7) - [F(}{,O)’ “0,m=2 5 0 NG0GED g gy Yy [Fgﬂ‘)))] (0,-72)
(1 0) MDIC B
019 Feo) 0,72)=
N ~Ei(D n )
(%A(l’O)Ugl(m(O,Tzl)) Hj;él(PgJ( )( 9.7)+ AL 61(3)(0 P 1)(5,9 H_];’fl(pgj( )(O,Tz,j))
( Al 0)Ugd(m(O T d)) l_.[_];fd(pgj( )(0 T9 J)+A(1 04 Ed(ﬂ)(O T d)(aﬁ [Tjzd (pgj(ﬂ)(O,Tz,j))
Now
0 (f))—[ s%(9) —[ P
097 00 meto kL0000 etk
2
0 2T-11 7] o} 1 T
R (1‘))—— ( —)[ - g/(D)2-1;)(9,T2)|| dW(T2)+
00,00, Z T)) 39,00, | T~ J|t:§|j| AR ?
MDIC 2
A(l 0)0,6(19)(0 5 )_ F(l 0) (O,T ) dW(T )
f 09,00, [ &(9) 2 2




with

2

0 0
_ (1,0) 5£(9) (1,0) €D
_2Re{(619mA g o, )) ( 39, A g 0,79)

1 T
£1(9)2:-11(9,72)
-1l t=§|j| ’

62
00,,00;

{4

0
(1,0) 5-£(0) (1,0) 4€)
2Re{(A g o,r )) (01‘) 019;A am (0,1’2))}

(A(l 0550, ) [Fu 0]M

62

ALO 5@ y_ [HLO
99,00, G5 (0.) [ ]

£(9)

2
=2Re { £(9)

00,

0
7A(1’0)6'5(8)(0, )— [F(l 0 M ) }
l

(1‘))

(1,0) 5 () (1, oM
2Re{(A 5670,)- |F

&(9)
9
L0 AL y_ [pLO)
( 55-55,2070570,) [Few)] (0,.))}

Following the same strategy as in the case of i.i.d. errors

3
<C max ‘
(k,1,m)e{1,...,

0
) - —s2(9 S A—
s7#(dr) ST( 0) 11;1) 39,00,.09,

H 39 %T(t‘))” |97 — 90|

one of the most problematic terms in W?M‘%T(ﬂ) is (A(l ,0) A e(ﬂ)(o Tz)) ( ALO)G e(ﬂ)(o Tz))

0, aﬁ n00;
and notices

3 2

0 0

e (0)2 (0, ~T2) + 90— 2,10, ~T2) | +
619k619m61918t( )24-1j1(D,—T2) 619m6191£t( )aﬁkzt 1j1(9,—72)

2 2

0 0 0
Er_i; 9 Zi_11(9, — —&4(9
T}l Oﬂkaf)lgt( )aﬂmzt 1j1(9, 72)"'619161,‘( )af)kaam

62 2

0 0 0
9)—2;_1;)(9,-T2) + 9 D, -T2) | +
aﬁkaﬁmet( )aﬁlzt 119, —T2) 39, £4( )08 39, 2719, -72)

2 3

0 0
Ep_; ) 2119, — + &) ——
T—1jl Oﬁkgt( )aﬁmaﬁzZt |J|( ,—T2)+ &4( )619k019m6191

0
00109,,00;

AQ, O)OA'E(a)(O T2) =E7_| [

2:j1(9,-T2) | +

Er—ji

21719, -72)

Thus

63

09;,09,,09, }

( ALO 5 5(“”(0,12))’(

)i AL, 0’08(‘9)(0 Tz))

< {[Esup ”A(l 04 E(m(o Tz)H
9

{Esup

Esup
9

3

—  AQ05£@)
39,0000, Oul (072

9/5 >5/9




and appliying Minkowski inequality

3 9/51 5/9 3
{[ESUP ‘WA(I O)UE(F)(O,Tz) } < {[ESUP Er-jji [mft(ﬂ)ét—ljl(ﬂ,—‘rz)
3
{[Esup |ET_|J'| Et(‘ﬂ)mét_|j|(ﬂ,—1'2)
2
C{[Esup |ET_|J'| [af)maf)l Et(ﬂ)aak ét_|j|(19,—‘l'2)
0 2
C{[Esgp ET—Ijlla £t(79)619 aﬁlzt—|j|(l9,—fz)

9/5

9/5

5/9
} ;
5/9
} R
9/5 5/9

} R
}5/9

9/5

and each of these terms is bounded by a factor proportional to C lToll? if and only if
Ellel*® < oo, given that data is generated by the finite SVARMA model. For the rest of

the terms, the previous condition is sufficient for their boundedness.

The other problematic term in 6191,#36191‘%7'(3) is

!
2Re{(A(1O)AE(’9)(0 - [F,(g:(lﬂ(;) (0,.)) (mﬁ(lo)w(m(o )—[F(}:‘)O))] (0,.))}where
0’ ALOGED (@ ) _ [F(lo) C(O )= o ALOGED(Q 7 &’ [F(I,O)]MDIC(O 1)
09},00,,00, 0 . @ 7 00,00,,00; 09,09,,09; | €D ’
o° paoMpPIc o’ £r,4(9)
7 0,-T9)= |——F 9)2, (9, o200, - 14,
09,09,,09; 8(19) ( T2) 59,00,,00, T(en t( )Zn #( T2n))rl;ll ( T2,) .
Thus, by applying Holder inequality
(1,0) 5 £(9) (1,0 ' ° (1,0) 4£9) (1,0 MPIC
, A E - - R A E _
Esup (A 5620, - B ({,)] (o,.)) S5r90-05, 200670, 7% (o,.)) <
([Esgp ‘A(l’o)(}gw)(O,—Tz) [F‘({,;] “(0,-2) ) x
5/9
93 1 1 MDIC /5
[E A(I,O)AS(I()) 0 _ _ F(l,o) O _
( Sup‘aﬁkaf) a9, ) %0 (0,-T2) aakaﬁmaﬁ,[ &) 0,-72)




by Minkowski inequality

MDIC o/4) 49 o/a\4/9
([Esup ‘A(I’O) ('9)(0 -T3)— [F(%ﬂ(;) (0,-72) ) ([Esup “A(l 0) 5 e(f))(O T )” )
9
MDIC 9/4) 49
(1,0
([Esup [F ) (0,-79) )
5/9
03 . 101 MDIC 95
E —A(l,O) ~ €(9) 0, _ F(I’O) 0, -
( sup’(wka19 39, Gy (0,—T2) 30,99,.00, L «® (0,-T2)
5/9
[ESup LA(LO)@'E(Q)(O _Tz) o +
9 |100;00,,00; o =
/51 5/9
03 . (1.0y|MDIC 9
E - ) 0,—
( SUP | 59,09,,00, Lt U
which are bounded as long as the condition E||&;]|*% < oo holds.
Therefore
i 2711 (Ul x
Esup|———— <ciy (1M 209 gy +C_f 209 JW (7o) < C
*9" 1169,60,,09, P L7 ( T ) [ 11 aws + 0% [ e awery)

Since 9 — 9 = Op(T~2), then

=op(1)

H Y s (dr) - ST(t‘)o)



5.8.2. Weak Convergence of \/Ts?(ﬂo)

2T 1 17l 2
T1/2 (‘ﬂ ) Tl/QT[ ( J )faﬂ HA(I ,0) ~ 6(190)(0,1.2)” dW(Tz)

_1J 911
2
+T1/2z _ A(l,O) (190)(0 T )_ [ 10) (0 T ) dW(T )
619 £(9o) > U2 2
T1/24T ! 1 1_m Re A(l 0) ~ £(190)(0 T )) A(l 0) 8(190)(0 —1o) |V dW(T0)+
= 1J b 41 b2 2
211 MDIC MDIC
1/2 1, 0) (19) (1,0) 1, 0) (19 ) (1 0)
T fRe{(A £00,75)- [Fp ©, 12)) (aﬂA €000 _y )__[ oo (0,—12))}
+0p(1)
where

0 Z AL0) Do)
09 i

(0, ‘rz)—zﬂiov(et,ai)zt 100, — 12))+LCOV(6(L 0)et,2¢-11(90,—T32))
=iCov (st,—i‘rQS(L 1‘)0)£t_|j|e‘if'z€t—|j|) +iCov(6(L 90)e;, e—iT'zft—m)
:—iz[E(E gje To "‘) oy |(190)T2+16|J|(190)[E(£t e —iTyE- ‘J')
=&y |J|(T )+ EY IJI(T2)

0
550100670, -12) =) 0(r2) + £,°(x2)

m#n

p] MDIC 10
@[ Sﬁ?)] 0,-72)=1i [%{COV(Et,n(ﬂo),zt(_TZn,ﬂO)) I1 (PE(ﬂO)(_TZm)}‘ =6g’°(rz)
n=1,...,d

.....

— Cov (e0,2(80),26(~ 2,1, 90)) = €}, 80(B0)E |10 77270 | — it e}, E [£1efe ™20 | Gy(Boen

0
%{ I1 <p£<"’°>(—r2,m)}

Z e;ll[E L('s(L"BO)ste—iTQ,nlEt,nl] l_[ (pE(IL)O)(_Tz,m)

m#n nies,

m#n1
= Y e E|do@oee mmen | [T ¢ P (-12,) = £30(72)
nies, m#ni ’
with %, ={1,...,d}/{n}, the set of indexes from 1 to d excluding the n-th value. Thus:
(1,0) 5£(90) 9 \@0) @) 1 g (ol 0,1/
(400570, 7)) | =AM00 (0, ~73)| = T, 20, T) (FRECHRTICS)
1 T

T Y {ze1i00, 7€l V() + 201190, ~T2)E LYV (7))
t=1+|jl



and

T

1 .
f (AM06500 0, 7)) ( ATOGED(Q, 1) AW == 3 & f 211100, ~T2)E (T d W (z2)
- t=1+|jl

1 r .
= ) ngzt—|j|(19o,—12)€g’m(12)dW(Tz)
T -1/l t=1+|j|
1 r,
= - e |EY . +8°
T_|J|t:§|j| t( t=IJjl - |J|)

and

4 11 1 T
— (1_M) f Re { (42955990, 7)) ( 5000 SPO)(O,—Q))}dW(Tz):iZ£;(E?_1+S?_1)

4t-11
0
Ei 1=~ Zz t-1jl

4t—l 1 0

SYi==Y =8
-1 ”];1]2 =17l
On the other hand
0 MDIC
A(l’o)ﬁg(ﬂ)(O,TQ)— [F(}{)O)) (0 1.2)) ( 19 (1 0) (190)(0 -7 )_ % Fi%ﬂoo))] (O, _TZ)) —
!/
(A(l ,0) ~ 8(19)(0 To)— [F(%ﬂo)) (0,12)) EO’O(TQ)

T €:12(90,72) ]
Th
€¢424(90,T2) |

d d .
2:(90,72) = [] e - [] E elm’met’m]
m=1

m=1

MDIC 1 T .

FLO

D= [etnzen (@0, T2n) [ n E (ei2meem)|
9 ’ t,n<t,n\V0, 12 n m#n _
Feo ?tzl n=1,..d
mpric 1 T . .
A(l 0) ~ 8(19)(0 T9)— [F(:(lao)) (O’?)Z: 5t,ne”2’n£t’n H [E(elTZ,mEt,m)]

t=1 m#n n=1,...d

thus

o P 9 MDIC 1Z
= f Re{(A<LO>&g("’)(0,T2)— [Fg};y “, 12)) ( 5200570, ~7a) - [Fgﬂ?)] (0,—T2))} = i_ZlX?



. . !
Where X? = 2?7[ {ZZ:lgt,n fE;gO,O)(T2)elT2,n€t,n Hm;én E (elTQ,mEt,m)dW(T2)} and Ego,o)(,l_z) rep-

resents the n-th column of (E%%(ry))'.

Therefore

Xl (E) +87 )
TV2s7(90)=T"2 1 1| +op(1)
1vT
thle?

it is straightforward to notice that ¥ 7_, &} (E 9 +8? )and YT X9 are m.d.s. under the

Assumption (2.4).

5.9. Auxiliary Lemmas

5.9.1. Lemma 1

Since det (®(z,9)) x det (O(z,9)) #0 for all z € T, then their inverses

d)_l(z,ﬂ) = i d);_l)(f))zj

J=—00
07'(z,0)= ) 6 V@2
j=—o00

hold the following
sup ||(D_1(z,1‘))|| X sup ||@)_1(z,19)” =C<oo
IS4 OV

and we can assume

sup | @ V()] < clji
eV

sup|@( V@) < c1j17#0
eV
with yo > 1 and |j| > 0.

Now, without considering the matrix of contemporaneous effects, ¥(z,9) = ®~1(z, 9)0(z, 9)



which is equivalent to

¥(z, a)_( Y, @ D(z‘))zf)(z @J(ﬂ)zJ)

Jj=-00 Jj=0

Z Z @' V(9)0,,(9)z/1 72 = f W ()2

J1=—00j2=0 Jj=-00

— (G
where ‘I’j(n‘))—zq 0@, (D)0,(D).

From above, it is straightforward to notice

q .
) 0(9)z’

J=0

q .
Y 0@ | <C

w .
Y oY@z

J ‘
J=0

j==00

IW(z, Dl <

<00

also note

sup |¥;9)]| = 3up

Zocp‘ L (ﬂ)ajz(f))H
J2

supH(D( 1)(1‘))@]2(1‘))” <C Z |j = Jal HOjolHO

5=00€V

2+ [ 12l 72, j=0

1+ [{ o] Ho, j=1,...,q
<CA fl 4

lg =170+ [ 1jal7H0, j=q+1,g+2,...

I7HO + [ ol o, j=...,—2,-1

this implies that for j =0, supgey ||‘I’J~(z‘))|| < C and for |j| > 0, it holds supycy ||‘I’j(t‘))|| <
C|j|1_“°. Then, selecting po > 2, we obtain supycy ||‘I’J~(1‘))|| < C|j|~Fo with fig > 1.

A similar procedure can be applied to show absolute summability of ¥~1(z,9) and to

find out that supycy )‘I’;‘l)({))” < C|j| o, -

5.9.2. Lemma 2

Under Assumptions (2.1)-(2.3)

sup 0P (x1,72)| < Cay ry) 1770, j #0 (5.25)



Under Assumptions (2.1)-(2.3.(ii-iv)) and (2.4)
sup |AD0 5P (0, 79)| < Crylj1V* 70, j #0 (5.26)
9
where C(;, ,) is a constant term depending on 71 and 73.

Proof.

For (5.25):

In case of causal and invertible representation, given the existence of second order mo-
ments, which provides the sufficient condition of [ |&; I° < 0o for § > 1, and the strong
mixing behaviour of structural innovations, the process z;(r,9) is a strong mixing pro-
cess as well for any 9 € 7. Unfortunately, such a result is not guaranteed for possibly
non-causal/mon-invertible process. Doukhan and Louhichi (1999) provide useful tools for
bounding covariances when one faces non-causal Bernoulli transformations of indepen-
dent errors. Using the results in Dedecker et al. (2007); Doukhan and Louhichi (1999),
we have that for each (point-wise case) 9 €7/, 0;".('9)(11,1'2) =CUT1ll + T2 ||)|j|1_“0 where
Lo > 2 is the decay rate of VARMA coefficients. For showing the uniform boundedness,

we use the following:
2i(t;9) = 2;"(7;9) + §(;9)

where 2]*(7;9) is defined similary to z;(7;9) but using £*(9) = 6(L;9)e;1{|t| < m}. Notice
that when m — oo, €/*()) — &;(9). For convenience, we take m = [;/2], where [x] denotes

the nearest integer to x; and ;" (7;9) = z;(7;9) — 2" (7;9). Now, notice
$7(;9) = exp(it'€4(9)) — exp(iT'e]"(9)) — E [exp(iT'€4(9)) — exp(iT'e]"(9))]
thus
sgp[E |¢7(;9)| < sgp[E lexp(it'e,(9)) — exp(iT' €] (9))| + sgp |E [exp(it':(9)) — exp(iT'e]"())]|
<2 sgp E |exp(it'e:(9)) — exp(it'e}* ()|
< 4s1l;p[E |7’ (£0(9) - €] (9))|

=C(lzl) Y. sup|8;@]=2CIzl) }_ sx;pllaj(ﬂ)nsc<||r||>|j|1‘“°

[j1>m j>m



Now, note that
E[2e(v1,9)20-(71,0)] =E |27 (x1,0)2]" (32, 0)| +E {71027 (72, 9)]
E (67 (20390200, 0)] + E [¢7 10087 (7239)]

sup|E [2:(z1,8)2¢-(71,9)]| < sup E [ 7" (x1,0)2]" ((72,0)] | + sup [E[ ¢} (x1;0)2]" (72,9
9 9 9

+sup [E[¢r w00, 0] [+ sup [E[¢7 ;087 (x2:9)]|

when m = [|_]|/2], 8;” = ZIZIS[IjI/Z] 6l(ﬂ)£t—l and 8;:]' = ZIlIS[IjI/Z] 6l(8)£t—j are independent,
then [E[z;"(rl,ﬂ)z;’ij(‘rz,r‘))] = 0. Besides, |z}"(71,9)| <2, and [E(;’ij(‘rg;t‘)) =E&} (713 9).

Hence
sup|E[eu(r1, 0)ze-(71,9)]| < 26up|E 7' (71;0)] | + 25up €[ 29|
+sup E (¢ (rus 98] j(2:9)
< 25up|E[¢]"(r1;9)]| + 4sup [E [¢7" (72 9)]|
9 9
< C(l Tl + I z2lDl I He

where before last inequality uses the fact that |C’t"(12;1‘))| < 4. Then, Equation (5.25)
holds.

For (5.26):
Take m =[j/2] and, as in the previous case, we use £:,(9) = £/"(9) + {[*(9) with ¢*() =

£4(9) — €' (9). Besides

supk |exp (i7'e,(9)) —exp (i7'€]"(9))| = supE |exp (iT'e,(9) — iT'e,(0,m)) - 1]
9 9

<2supE (7' ) 6;(Desy
U ll|>m
<Cllizll Y. supllé; (@l < Cllzll|j|* o
l|>m 9

and

2

Y. 8(0e| =Clzl?|jI* 2

|l|l>m

supk |exp (i7'e,(9)) —exp (it'](9)) |2 <2|7l?supE
9 9



where we use

2

supE £ (O)]" = sup | 3. &;(Der-

lj1>m

<Cm!2r0

thus

2
supkE [¢7(, 19)|2 < supE |exp (i7'e,(9)) — exp (iT' €] (D)) |2 +2 (sup[E lexp (i7'€,(9)) —exp (iT'e}* (9))|
9 9 U]

+ sgp |E [exp (iT'e,(9)) —exp (iT' €] ()] |2

2| :12-2
<Cllzl® |17

Hence, since A(Lo)asl‘()) (0,72) = i E(&,(9)z—;)(9,T2)), we get
SUPE e1(0)z0-1j(9,72)] = supk £ ()27 (v2, 0] + supE 67 D)7 (2,00 + supE €7 0167 (22,0

by Horner inequality:

5\ 2 9\ /2
sgp[EHzT(a)z;ﬁm(rQ,a)u s(sng”E;”(ﬂ)” ) x(sgpm(z;'iljl(rzﬂ)‘ )
< C|j|2Ho
9\ /2 o\ V2
sgpﬁ\\f?(a>z;'i|jl<rz,a)(( s(sgp[E\z;’im(rz,m\ ) x(sgp[Ell«f’t"(ﬂ>|| )

.13/2-2
< Cllzal j15H0

9 1/2 9\ 1/2
Sll;p[E"E?l(ﬂ)(?i|J|(72ya)“ = (SgP[E”b’;n(l‘))” ) X (Sll;P[E’C%ﬂ(Tz,ﬂ)‘ )

L1—
=ClzallljI "

where we use the fact that supgE ||£;"(1‘))||2 < oo. O]



5.9.3. Lemma 3

Under Assumptions (2.1)-(2.3), it holds

Esup 652 (01,72 -T2 (w1, 79)| = Cary (T = 1! (5.27)
Esup o7 7(x1,72) — afjﬂ"’)(rl,rg)f = Cry, e (T = 1j1) 72 (5.28)
[Esup 8(}92,A(11,T2) -0, ICA(Tl,‘rz)‘ CirponT ! (5.29)
[Esup S(IéA(n,‘rz) —ngféA(rl,rz)‘ = Cley e T2 (5.30)

where ag(%A(rl,rz) =% 052 @ 1, T2m)~T1% -, G P @1, 005 P(0,75,) and Ug(?();A(Tl,Tz) =

Hiln 1 (po(ﬂ)(Tlm, Tom) — H';ln 1 (po(ﬂ)(Tlm, 0)(/70(19)(0 T2m)-

Proof.
For (5.27):
Notice
o7V, 72) -7, (T1,72) = ¢ (x1,72) - 9, (71, 70) - ((PlsJ(lﬂ (1,007,725 (71, 093”0, 72))
o1 P, -5 11, 7)| < |05 (11, 70) - T a1, 7|+ |0F D1, 0005170, 72) - T (71, 00570, 72)|
and
®) —(9) 1 &
PL T, T) — 9] (1, T2) = Tl Y {exp[it)&,(0) +ith8,-;)(D)] —exp [iT)e:(0) + iThe,— ;) (D)]}
T V=145
By Triangle Inequality and the result stated in Billingsley (2008, Section 26-pp.343):
) 1 4 !/ A !/ A
<P|J| (T1,72) - <p| (11,12)‘ Tl Y |7 (E(9) - &49)) + T (€4-)(D) — 84-1,(D))]
t=1+j1
1 r (=1) o (-1)
= . Z L (0D SRESED B SR() e
T_ljlt—1+|j| 1200 I=t-T+1

t— [e’e]
+1'2( Y ¥POY, o+ Y llfg‘l)(a)Yt_j_l)
l=—00 I=t-T+1




hence

T (t-T-1
[Esup we(ﬂ)(‘n,rz) <p|('9)(‘r1,1’2) <Clzl Z { Z supH‘I’( 1)(1‘))H Zsup”‘l’( D(ﬂ)H}

— 115
1 ¢ t_m_T ! (-1) -1)
+CInlz— X 1 L sw [ @]+ ¥ sup| ¥
T-Ul=Tj | 1= 1= t byl 9
C + r
c CUmil+Iwa) Y AT +1-p) o+t (= GO+ (T + 1l + 1 - 1)
—lUh =T
2C + gl T _C +
_2C0ml .||Tz||)(z T o) PR TR T
=1/l t=1 t=1+j] =1/l

where second inequality exploits the fact that E||Y ;|| < oo for all ¢ € Z. Besides, by Trian-
gle inequality and the fact that I(,bf(l‘t) )(t1,0)| <1 and @fﬂﬂ (11,0)| < 1:

D1, 00700, 1) 75 (21,075 0,5)| < |05 "(x1,0 - FEP(x1, 00| +] 970, 72) - FE (0, 72)
hence, using the previous result twice, we get:
[Esup (s)(11’0)¢| 90, 1) — ‘pi(f))(fl’o)"’|w)(0 )) Cllz.l wlLJI:erI)
and
Esup |of1Pr1,72) 7701, )] = ST = Clp (T i)
where C(z, 1,) = C (71l + lIT2l).
For (5.28):
Note that
o7 "1, 72) -] )(71,72)‘ < |0} LT - (8)(71’72)‘2 +[@] 1, 00770, 72) (1, 0091570, 12)‘
+2 (pfj(l"))(rl,rg) (pfj(l )(11,12)‘ (pﬁf())(‘rl,o)(PU(F)(O T2)— <P|'€J(|{))(T1,0)<P|(ﬂ)(0 72)‘




¢ (T, 72) -9 “O(zy,79)|

First, analyzing the term

2
T
) o (FLEU@+The (@) _ i @) +Ther (D)

2
[Esup (pe(ﬂ)(‘[l,fz) (pljﬂ)(rl’-rz)‘ :[Esup
9 = 1Jl t=1+j]
4 (T & ! & e 1
= [Esup — Z l(Tlft("))+12£t—\j|(f))) _ et(rlst(ﬂ)+12£t_|j|(z‘)))} y
(T— 712 52
Jlt'=1+|j|

{ei(r’lét/(ﬂHr’zétrl JO) _ i(thes@hes ;9) }

1 T T

—_—_— E 1(€:(0) — 8,(9)) + T4 (4-11(9) — &) (D)

(T —j])? t=1+lj|t’:;r|j| S‘;P{|T1 & € LA Gy €t )|X
|7} (€0(8) — &0(8) + T (£41(9) — 2 (9)) |}

1 . . 9 1/2
T X {[Esup |71 (£(9) — &) + 75 (€4-11(9) — &1 (D) | } "
(T =i =Fjre=ti U 9

1/2
{[ESI;P |71 (e0(9) — 80(9)) + T3 (€411 (9) — &0 (D)) |2}

1 T 1/2
(T 1j)2 (t 1Z| .I{Esgp|fﬁ(£t(ﬂ)—ét(ﬂ))+r’2(et_|j|(8)—ét_|j|(ﬂ))|2} )

and using the results for equation (5.27), we get

. _ leeli?+llTll?) [ L _ _
Esup ¢Sf9)(rl,rz)—<pf§|‘9’(n,rz)‘ <c! T07 ) Y {(T+1-p gl Hoy
9 |7l t=1+j]

2
(t = 1jDYH + (T + ]+ 1 - )t o}

2 2 T—|j] 2
olImil® +iTel )( i s tl_#o)

(T - 1j1)?

t=1+1/ t=1
9 2
SC(IITlII +||T22|| ) Z R
(T-15D =1

<C(lT1l®+l72l®) (T = 1j1)72, for po>2

2
Second, for (pg(ﬂ)(rl,O)q)e(ﬂ)(O T9)— <p€(‘9)(11,0)<p£('9)(0,12)‘ : we apply the same proce-

dure and get

2
Esup|gfi" (21,0000, 72) - B{ (1,010, 75)| = C (I711? + I7212) (T~ 1jD2,  for o >2
J



For the last term, we use Cauchy-Schwarz and get:

[Esup (p| ('9)(1'1,1'2) —@Ul )(1'1, 12)‘

oD @1, 0010, B (11,0050, 72)|

1/2
s([Esup‘(,bl (11,79) - (pl (1'1,12))) X
9

[

<C (||r1||2 +1T2l®) (T = 1j1)72, for po>2

1/2
o1, 00000, -5 (1,057, (0,7) )

For (5.29):

Note that
) d £(9) £(9)
6S,ICA(71’72)_00 ICA(Tl’TZ = H Do (Tim,Tam)— H @y (Tim>T2m)

m=1

{( [T #5P(1m,0) - H P P(11,,,0)

m=1

H A} m)}
m=1

{ [1 ag“’)(nm,m(]‘[ PED(0,72m) — H A () rzm))}

m=1

after some laborious algebra, it can be shown:

m=1 m=0c

d A
IT1¢ ()(Tlm,sz)— Z Z{ I1 ((i’gw)(flm,fzm)—58('9)(T1m,f2m)) I1 @8(3)(T1m,fzm)}

JE€Im.c jefrEL,c

where #, . c{1,2,...,d}, Zm ={Fmn, 1 <j<ny} with n, = (dd

¢ ) such that %, , ex-
cludes m elements from index set {1,...,d}. For instance, if d =4 and m =2, then n,, =

(@) =52y =6and F=1{ o1, Fos,.... o6} with fo1 ={1,2}, Fop=1{1,3}, Fos =114},
F24=12,3}, Fo5=1{2,4} and #r6=1{3,4}.



Thus

d
H pe@ )(Tlm,TQm)_ H (Pe(ﬂ)(TlmyTQm):
m=1 m=1
S 2(9) @ @
Z Z I1 (@8 (T1m,T2m) — @ (Tlm,sz)) [T 267 @im,12m)
m=0c=1 | je _Zm ¢ jefr?zc

[ESUP H <P8( (T 1msTom) — H <P8( (T 1ms Tom)| <

m=1 m=1
! = £(9) 0) ®)
Z Z[ESUP I (AS (T1m,>T2m) — @, (T1m,T2m)) [T @57 @1m,t2m)
m=0c=1 9 |je g jesh .

and given that Esupy |95 (71m, Tom) = (T1m, 72m)| < CUIT1ml +72m DT and supy |75 (71, Tam)| <
1, then

[ESUP H <Pf)('9)(T1m,T2m)— H wS‘”)(rlm,wm)

d-1

= C( Z {ITiml + |72m|})
m=1

applying this result to the terms {(Hfl Ag(a)(rlm, 0)— Hizlag(ﬂ)(rlm, 0)) ngzl (2)5('9)(0, sz)}

and {]_[d _75P(z1,,,0) (Hd L PED(0,72m) - 12, _, P50, sz)) }, and using triangle inequal-

ity, we get:

d-1

Esup|d G5 reaT1,T2)— ag<;"gA<n,rz)\sc(Z {|nm|+|rzm|}) Tl <ClTill + 72T
m=1

For (5.30):
Using a similar procedure than in %arts (5.27)-(5.29), we obtain
<C(ty;i* + 12T 2.

NG —&(D
[Esupa‘q)f)( )(T1i,T2i)—<P8( (711, 721)

Thus

) ) 2 —
S(Ing(Tl’TZ) U(E)(ICA(Tl’Tz)‘ <C(Z {T1ml® +T2m*} | T2

m=1

E sup

<C (Il +lT2l?) T2



5.9.4. Lemma 4

Under Assumptions (2.1)-(2.3)

Esup o8P, 72~ 51D, 72)| < CTUNT - ) (5.31)
2

Esup|31;”(T1,72) - ot P, 19| = CUTT - |2 (5.32)
Proof.
Part (5.31):
Since
o T
f(| (z1,72) = Y 2o,z j(T1,9)
’ =l

=9 D(r1,72) - wfj(l (11,009 (z2) - (pfj(l 10,7209 P(11) + p* P (1) P (75)
thus
(z1,79) - 67 (x1,79) = — {00 (01,00 - o V) G 7(0,72) - 9" P aa)}
|J| 1,82 1,82 1] 1, 1 1] s U2 2

applying Horner inequality

9 9\ 1/2
510 -0 1, m)| = (Esup 777 11,0) - ot Esup 750,72 - Pt [

2

Esup |0
9

T
Z Zt(T]_, 19)

=17l t=1+|]|

2
< [Esup (ps(ﬂ)(‘rl,O) - (pfw)(‘rl)‘ =[Esup
9

<ClT1I(T - 1) F < Cllr1 (T -5~ 2

last inequality uses Lemma (5.9.5) with yg > 2 and pg = u; = 1.

Part (5.32): Notice

2
908(8)(0, 73) - p*V(zy)

1,0 - Oy

8('9)(1'1,‘52) 0 )(71,72)‘

<4

70,0~ V)|
as a consequence, we have:

0) 2 12
Esup|5”x1, 72) -5 x1, 72| = CUTIT - 1))



5.9.5. Lemma 5

Under assumptions (2.1)-(2.3), it holds

T
Y. z(r,9)

=1+l
T

Z Zt(Ta 19)

=1+/1

Esup <CUlTIXT -1jD"*, us>0 (5.33)
9

T_|j|t

2
<CUTIXT-1jD7*, @>0 (5.34)

Esu -
f)p T_l.]lt

Proof.
For (5.33):

We proceed in three steps.

1. First, we take £:,(9) = 6¢o(9)¢;. The objective is to prove the uniform law of large
numbers. Since &; is an i.i.d sequence, then {€;(9)} inherits that feature. The
function z(£:(9),t), by definition, is bounded and continuous. Besides, following
Hoffmann-Jgrgensen (1985) or Peskir and Weber (1994), and their definition of

eventually totally bounded, the function z(&;(9), ) satisfies

T
Z (24(9) — 249))

t=1

<e,Ve>0

inf 1 E
inf —E sup
TE].T 19,19€U€

where U, € U(¥') and U(¥') the family of finite covers of 7. Then, following Hoffmann-
Jergensen (1985); Peskir and Weber (1994), we get

I P
sup -0

z1(9)
eV 1

1
T

t=

and
T
Esup -0

z:(9)
OevV 1

1
T

t=
That is, the uniform law of large numbers holds for stationary sequence of i.i.d

random vector {&;(9)}.

2. Now, let consider the case &,(9) = §(9;L) = Z;?l:_m 6;(9)e;_;, where 6;(9) is coeffi-
cient of the infinite possibly two sided polynomial 6(9;L) for i =0,+1,...,+m with
m < oo. Given the finiteness of m and the fact that &; is and i.i.d process satisfying

the strong mixing property, it is straightforward to see that the process £;(9) has



an a(k)-strong mixing coefficient that converges to zero as long as %k goes to infinity.

We assume that a(k) = O(|k|™#1) for some p; > 0. Under this condition, Nobel and
Dembo (1993) showed that:

sup |P(A1)-P*(Ay)| slaj, Aeo(e9),&j(D),...,E041;(D))

where P* is probability measure under independence.

Now, taking a grid of size I7 = [%J , and noticing that T'=Ilrnr+ R7 with Ry €
{0,...,n7 —1}. Thus, the set of integers {1,...,T} = U:;T_lﬂm, with

Im={m,m+np,....m+nrylr}, l<=m=Rrp

Ip=m,m+nrp,....m+np(lpr—-1)}, Rr+l<m<nr

then, for the measurable function z;(9;T) = exp(iT'£;(9))—Elexp(iT'€:(9))], we have:

1 T 1 Rp np
=Y z00=—|Y Y @0+ Y Y 971
T= T | n=1jes, m=Rp+1j€%y,
1 Ly nrooq
=—|Ur+1) Z Z z;9,t)+I7 Z — Z zj(9,7)
T mo1lr+1,55 m=Rp+1'T j&5,

calling {7(9,7) = %Z:{:lét(f),‘r) and {7(9,7) = #(%m) Y ieq, 2:(0,7), then:

. Ip+1|8r l nro Ip+1|"L _
Cr@,0)| < = | Y Ir@w, 0|+ —=| Y c%<ﬂ,r>|s T2y oo,
T m=1 m=Rr+1 T m=1
thus

- Ip+1 2% =m
Esup|Cr(9,7)| < —=— ) Esup|(7(9,7)|
JeV m=1 eV

Given the mixing condition, and the fact that uniform convergence in mean under

independency holds, Nobel and Dembo (1993) showed

Esup [{7(9,7)| —Eps sup |{F (9, 7)|| < 2an,.
deV deV

Besides, since Ep+ supgey |Z é,(z‘),r)| — 0, without loss of generality, we can assume
Ep* supgey |Z’$(1‘),‘r)| = O(T~#2) with ug > 0. Consequently

Esup {r(9,7)| < % [0 (U7 +1)7#2) + O (n /)] = O(T~™nkL22) (5 35)



it is clear that (ZTJ“% =0(1), and assuming that [7 and nr are O(Tl/z), then last

equality arises.

3. Now, for extending the result to the general case of a Bernoulli shift we use the

previous step and make the following decomposition
z2((9;7) = [24(9;7) — 2,(9; T)] + 2,(9; T)
and
21(9;7) - 24(9;7) = exp(iT'&,(9)) — exp(iT'€4(9)) — E [exp(iT'€4(9)) — exp(iT'&,())]

where Z;(9;T) was defined in the previous step.

Thus

1z 1z

T Y (24(9;1) - 2,(9; 7)) = T Y (exp(it'e,(9)) — exp(iT'E4(D)))—E [exp(iT'e,(D)) — exp(iT',(D))]

t=1 t=1

and

1Z 1Z

Esup |= Y (2:(9;T)— 24(9;7))| <Esup | = Z (exp(it'e,(9)) — exp(iT',(9)))| + sup |E [exp(iT'e,(9)) — exp(iT'&,(H
o9 | T (32 oev | T 131 PE%

Now, using the fact that E | & < oo, we get

1z 1
Esup|= ) (exp(it'e,(9)) —exp(iT'e,(9)))| < = > _ Esup exp(it'e,(9)) — exp(iT',(9))]
JeV t=1 Tt:1 0ev
1z T||E|€e
< 23" Esup|e'fex(®) - 20 < L -l ” 1Y Esup| T 8,0
T = oey =1 067/ ljl>m
<[TIElel| ), sup||6j(t‘))||‘ =C|zllO(m ™)
|/1>m 9e
besides

sup |E [exp(iT'e4(D)) — exp(iT'€,())]| < supE|7'[£,(0) — €,(D)]| = C T O(m ™)
oV OV



Hence

1z 1z
Esup —Zzt(ﬁ;‘r) <Esup|— Z(zt(ﬁ T)—2:(9;7))| + Esup —Z +(9;71)
JeV t=1 JeV T JeV T t=1
T
<C|r|O(m ") +Esup|—= Z z2:(9;7)
JeV Tt:1
For m = VT, we get
Esup Zzt(z‘) 7)| < C|lT|O(T~#3) (5.36)
JeV =1

with pg = $ min {uo, min{us, ps}}.

For (5.34):

Given any x € C, |x|2 =x-x* where x* is the conjugate of x. Thus

2 T

1 T N 1 T 1 T 1 T T
Z 2@ || =X @0 | = =) 200 || =D 2:(8;-7) —Z Zzt(t‘);r)ztr(z‘);—r)
Tt=1 Tt=1 Tt=1 T t=1¢'=1

1 ; v £(9) 1L E o
=72 ; Z:: {Zt(t‘);‘r)zt/(z‘);—‘r)—alt_t,l(‘r,—‘r)} + 73 t;tglalt_t,l(r, —1)

Ly
—) 24(9;7)
T3

Now, notice that |t —¢'| €{0,1,...,T — 1}, then

2
L -
"L Z{zt(ﬂ;ﬂzt/(ﬂ;—r)—af“’)(r o)+ - Z ngjff)(,,_,)
: g—

- i
—) 2:(9;71)
T3

with ;= {(¢,¢) : [t —¢'| = j}. Consequently

2 T-1 -
f)up Zzt(n‘) T) ST—sup Z Z{zt(f) T)zp(9;—T)— 03(3)(1 ‘r)} +—sup Z ZUSF‘))(T’_"')
eV eV | j=0 T eV | = T;
and
1
Esup {zt(a‘);r)zt/(f);—‘r)—05(‘9)(1 ‘r)} <C|zI(T-|j)~*
oy | (T F

From Lemma (5.9.2) and given that #(9;) = O(T - |j),

sup Za‘“m(r —7)| < ClITI(T = DI+

9V




Accordingly to these results, we get

2 1 T-1 1 1
E <Clrl|= Y (T-1jD*+ =
1s;;%) IITII(T2 L (T -1 T2

1 T
?Zzt(f);‘r)

t=1

T-1
T+ (T- |j|)|j|1‘”°])

j_
T
sCIl‘rII(T—Z I+ T = Z Fikn “O)

<Clzl [T +T  +T "] <ClzIT*

where i = min{1, us, uo — 1} > 0. Selecting us =1 and o >2,then fi=1

O
5.9.6. Lemma 6
Under assumptions (2.1)-(2.3), it holds
0 (e09) 9 (~e@0) el
E 39\%7 | 39\% < C(lzall + IT2I(T =171 (56.37)
o — 55 |* < Cllzal2 + 172l - 172 (5.38)
H (~|£J<|ao>) < C(lT1l® + 17201 (5.39)
Proof.
For (5.37): notice that
0
~£(9) ~£(9) £(9) £(9)
@(Um )_@(Um ) 06" (~=71,~T9) =00 ;7 (~T1,~T2)
and
£(9) 0 &) 1 &
00 ; (T1,T2)—a19 Ul (71,72)_ﬁ [024(9,T1)z4—j)(D,T2) + 2:(9,T1)02;- (9, T2)]
t=1+|j|

02:(9,71) = 15D (i7] 04(9)) — Ele 1 D(i7} 9,(9))]

hence (without including the terms (71, 72))

T

1] IZ| '| {(02:21-)j1 — 0z121- 1) + (24021 jy — 2002 )}
t=1+|y

067 7(x1,79) ~ 057" (x1,79) =



with

02:81-)) — 02124 = (0p(T1) — 091(T1,0)) 21 (T2;0) + (p(T2) — P10, T2))02(T1; D)
21084 — 21021 |j| = (0p(T2) — 0910, T2)) £:(T1;9) + (p(T1) — P1j1(T1,0))024— | (T2; D)

replacing these terms into the equation above, we get

T 1 T
06517 = 057" = (p(x2) = 9|0, T m—= Y 92T ;) +(P(TD) =Py, === D 024 ji(T2;9)
T—1j1 =131 T=jl =t

=(p(72) = 91j1(0,72))(0¢|(T1,0) — dp(T 1)) + (p(T1) — @1;)(T1,0))(0P| (0, T2) — 0p(T2))

where last equality comes from the fact that

T T
8¢ :1(t1,0) — 0¢p(T1) = : e Te D 56 (9)—E [eT18 @i’ 5e,(9) |} = : 024(11;9)
PIT1 LALA T_|J|t=1+|j|{ 10€t 10€t ]} T_|J|t:§|j| t{T1

It is clear that E[0z;(71;9)] = 0 whenever the term [E [e”i”(ﬂ)ast(ﬂ)] is bounded. By
Cauchy-Schwarz:

N 1/2
’[E e”lst(ﬂ)‘ [E|68t(19)|2}

eiT’lst("))ast(a‘))] ‘ < {[E

then, we need to show boundedness of E|0e.(9))2. Using Frobenius norm, we have

d .
E|0e,(9)|? = ETr (Z a8 (L, f))ets;aa‘”’(L,ﬂ))
=1

d | |
=TrY E[067(L, 9)e,£105" (L, 9)]
=1

o 2
Y 069)

l=-0c0

d
<E ||£t||2Tr Z sup
i=1 9

so, it is bounded because of 36®(9) is the multiplication of absolutely summable filters

and the Assumption (2.3.(iv)) about finiteness of E || &; 2.

0 (. on 0 (Ton
E H @(a@fl"’“) - @(af;f‘”) < C(lT 1l + 172D E || (@(=T2) — §1j1(0, —T2))0)j(—T1,0) — dp(—T1))|

R 9 . 9 1/2
<C(lzyll + ||T2||){[E|(p(—‘l'2)—<p|j|(0,—‘l'2)| E|0¢j1(-T1,0) — dgp(—T1)] }
= C(lz1ll + T2 NDOUT - )™



For (5.38): note that

T T
5600 ~e@0) _ 1 1
G . z2i(Do, )| | 77— 2¢-1j1(00,T2)
l 71 T-1jl t:ém -1yl t:ém ¢

hence, given that z;(99,71) and z;_;(9¢, T2) are independent:

T T 2
E al;f(’) U(f(’) ‘- T_Lljlt:;mzt(t‘)o,n) T+|j|,¢=§|j|2t_|jl({)0’r2))
IR PR 5 zt_|j|<ﬂo,rg)2
T-1Jl =13 — =13
=0(T-j)™?

For (5.39): note that

~ 5(190)
11

0 5200 —[Ea 5600
09 v 09 913

el 0 ~£<ao)
09 i

then
~ 8('90) <E - 8(1‘)0) - E(r‘)o) - 5(1‘)0)
|J| - |J| |J| |J|
RTS) RTS) )
+2EH (a )— 3ol )\ 0 ol
with
9 1 4
fjﬂ Ty, 2)——. Y [024(80,T1)21-1j1(80,T2) + 24(D0, T1)024 (Do, T2)]
29 — =135

020(11) = 02,(80,T1) = €M1 (i T} 0€,(D0)) — Ele' 1% (1T} 0e(9))]

0 _ 9

E—507) (71,72 = (@(TDE |i7)e ™ 1060,(I; @ £1-1)| + p(r)E | iTheT108% (I 0 1)

note that, under boundedness assumption of d¢;|(T1,T2), [E%&Sfo)(rl,rz) is bounded by

some constant that depends on the size of 71, T9.

~e<ao) B i 5600
I ag 9

Besides

=o0(1)




5

|

0
09

Nsm()))_[E 0 (NEG)O))
9 09 )i

Now, by Minkowski inequality:

2
IE

T —jl t=1+1]]

1 d 0 0 A0 0
E ; Z {azt(rl)zt_|j|(r2) [Eazt (Tl)zt_|j|(72)}

1/2

|

T 9\ 1/272
T— 1] > . {z?(‘rl)az?_m(‘rz)—[Ez?(rl)az?_ljl(rz)} )
J =1+
since
2
1 T . —
T —1j] t=§|j| {02?(71)2?—|j|(72) - Eaz?(fl)zg_|j|(rz)} <CUT1 1%+ T2l NT - 15D}
therefore
— _ 12
E i(d‘éﬂo)) [Ei(~g(i90)) < C(”T]_”2 + ||1.2||2)(T_ |J|)_1 (540)
09\ VI 5971l
Furthermore
e T A . it
(T|J| 0 (T1,792) ”(p(‘tl)[E [zf’lelrgft—ula(s&(la ®8t_|j|)] “ + H(p(-rz)ﬂg [Llee Tl£t669|j|(1[1 ® st)] H

<Cl1l H[E

eIy @ e, )| |+ Clral |E[e ™=@z 00|

<ClT1lEILz® &)1+ CllT2l EN; ® £11% < CUIT1 ] + T2

a ~ ed0) 2_
EH%(%' ) -

hence

CllTil®+lT2ll®

5.9.7. Lemma 7
Under assumptions (2.1), (2.2), and (2.4)

Esup [ AT 0677 (0,72~ 0057 0,7)] = Clralr -

[ESllp HA(I ,0) As(f)) (0 T ) A(l 0) ’\f(‘l‘)) (0 T2)H < C(T |J|)—

2

MDIC MDIC
[0 0,20~ [FED]" 0,70 <ccn -1

() €))

Esup
9

Proof.
Part 5.42:

(5.41)

(5.42)

(5.43)

(5.44)



Notice

T
T-171=15

1 T
)= £,(9)¢,(0, — £,(9)p, (0,
l{T—ultﬂﬂﬂgt( U0 T e TZ)}

Analyzing the first term in the RHS

1 r o L 1
- Y e @e P gy @ P = S [0) - /@)
T=1j1 =13 U=
1 i £.(9) eir’Zét(ﬂ)_eir’zet(f))]
T—171=13
with
T C T t—2 00
sup Y [84(9) - e/(0)] e TH D) | < sup|| ). WSP@Y, .+ ) WP@OY,
bV =1/l t=1+| =1l 1+j] 9 |[I=-oc0 I=¢t-T+1
T PN T 1 T T PN T
sup Y &(9) e”Zet(ﬂ)—e”W(ﬂ)] > Sup“b‘t(ﬂ) e”Zet(ﬂ)—e”2£t('9)]H
eV —1J t=1+1 |J|t 1+ @
and
t— s}
Esup Z \11< Yoy, + Y W;‘l’(a)Yt_l <C{T+1=6)17H0 4 ¢17H0 4 (¢ — | iIHO 4 (T + || + 1 — 1) 7H0}
9 |10 1=t-T+1
o ., -2 00
Esup|e(®) [¢#® - e D) | < |Esup e @2 Esup| ¥ W@V, + Y W@y,
9 U 9 |[|I=—c0 [=t—-T+1
<Clral {(T+1-) Fo+ 1 7H0 4 (¢~ |FDIH (T +|jl +1- )Y
these results exploit the finitenes of E||&;]|2 and the summability of filters.
Hence
T T-ljl T
Esup Y [8/9) - (@)1 TE P < Z LD S U S o[¢ ARV e
eV =17l t=1+1l |J| t=1+,1
T e I A -/
Esup Y ed®) D ol < Caa (T - 1D
0V = Jl t=1+1




and by applying triangle inequality and selecting po > 2

T

>

<Cllzell (T -1
— 7l =13

2,(9)eiTaED) _ et(ﬂ)eir;s,(a)]

Esup
9

Now, the second term in the RHS

£4(9)9;(0, - '9_((), = 7 £,(9) - ) A'O,
T_|J|t=§|jl{£t( $171(0,72) — &N, rz)} T_|J|t=§|j|{£t( )—€:()}9)1(0,72)
1 T _
T — |_]| . ;l 'let(ﬂ){¢|j|(0,72)_ (,0|j|(0, Tz)}
=1+l
hence
T
Esup S {2(8) - 400} 11(0,T2)|| < C(T - |j])!Ho
0ev =/l t=1+|j]
T
Esup > et(w‘)){<i)|j|(0,rg)—@lﬂ(o,rg)} < C T2l (T —|j)~Ho
0V =17l t=1+]j]

Therefore, ensambling these two previous results and selecting o > 2, we get

Esup [AT0677 (0,72~ A0 0,7)] = Clral (T -

Part 5.43:
Note
T o y 2
HA(lo) e(:‘))(or) ALO s(a)(o 12)“ <C - 3 £,(9)e D _ ¢ (9)eiTher®)
~ W=t
T 2
+C Tl Y. &0)P;(0,72) — £/(9)p);(0,72)
t=1+1
The first term in the RHS
1 T 2! 2,8) 2 64(0) 2 T .,A(ﬂ)z
T, [ —e(@e i) Y [8d®) - @O
_|.]| t=1+|j| _|J| t:1+|j|
1 2 2

) [eir’Qét(ﬂ) _ eir’zet(z‘))]
T -1/l t=1+|]




note

2 1 T T

Z Z V{-A,‘lt(ﬁ)vlA-,‘tr(ﬂ)enéét(ﬂ)e”éét/(ﬂ)

[249) - £(D)] 5P| = ——
(T -1j)? t=1+jl¢'=1+|]|

H — il 1+|J|

where V&,(9) = ,(8) - &,(9) = X/ WS P@Y,+ X2, 5, ¥ V@OY, . And

t—2 00 "y- 00
vét(ﬁ)Vétr(ﬂ):( > @Y.+ Y ‘I’§'1)(19)Yt_l) ( DI S () EEEED I Sae(C) O
l=—00 I=t-T+1 l=—00 I=t'-T+1
‘2 1 1 - - 1 1
=Y Y Y _ wWow oy, + Y Y Y, ¥VOw VoY,
l=—00l'=-00 I=t-T+1!'=t'-T+1
i o) o) t'-2
+ Y Y Y Vo @Y.+ Y Y Y, eV @w @y,
l=—ocol'=t'-T+1 I=t-T+1l'=—0c0
which implies
t'-2 1- 00 00 1
[Esup||Vé;(a)v£t,(a)||<c Z Z TR e Y Y e
l=—0c0l'=—00 I=t-T+1l'=¢'-T+1
- 00 t'-2
Y T e §OY el
l=—ocol'=¢t'-T+1 I=t-T+1l'=-00

<Clt—2 0| — 2" —Clt—T+ 12| —T + 1770

And

T 2 C
su [£48) — e, D || < ———{(T—1j)% 2} < C(T - i), po = 3
96713 - |J| tzéljl ¢ t (T - |,]|)2 { J } J Ho

Now, the term

2
T
S Y @[ i)
T_ |J| t=1+|j|
T T . ; iT) 7
_ Y ei@ep(@) | TP — oD [t D) im0
T -1j t=1+jl¢'=1+|]|
and

Cle-¢|"", |t-¢|>0

Esupe,(9)e, () | e 2P — eir;s,(f))]
C, lt—#']=0

OV

ei‘l',zétr(f)) _ eiT,zft/(ﬂ)] < C[Esupglt(ﬂ)gtr(ﬂ) < {
]



thus

iThEn (D)

Esupel(9)ey(9) | i@ — eir’zetw)] _ eir’zst/(f))] <
OV
1 Tl .
————=C(T—1jh+C Y I <C(T-1j), o =3
(T -1 =1
Now, the second term in the RHS
1 Z 2 1 Z ?
£4(9)j1(0,72) — £, ;(0,T2)|| <C ”( . Vét(f))) $j1(0,T2)
H -1l t:ém ! 4 -1l tzém !
1 & ?
C ( 253 et(a)) |911(0,72)-5);0,72)]
— 171131
thus
1 Z ?
Esup ( -y v:et(ﬂ))@ﬂ(o,m) <C(T-1j1)"2, po=3
9 —1Jl t=1+1/
and
T 2
Esup Y £t(1‘))) [@ﬂ(u,n)—aul(o,rz)] <O =170, o =3
0 =17l t=1+1/
Therefore
[ESllp H A(l 0) ~ 8(19) (0 T9)— A(l 0) f](lt‘)) (0 12)0 <C(T - |J|)—
9
Part (5.44):
Notice that
£ (0 ) [0 DIC(O ) ?_
Fyo) T2)= [ £(9) T2 =
d |l1 I ®) —&(9) i
Z ?Z Et,m2t(Tom,D) H (IA)S (0, T2n)_?zgt mZt(Tam,9) l—[ <PS (0,72n)
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and

~

1 R —
T Z t,mZt(Tam, D) H (.08(0)(0 Ton) — T Z et,mZt(Tom, D) l_[ (pg(ﬂ)(o Ton) =

t=1 n#m t= n#m

(em —€m) 26(T2m, ) ] PEP(0,72,)

1 T
T ; n#m

1z _ |
T Z tm{émm,ﬂ) [T #5200,720) — Z:(r2m, 9 [] 7520, 725)

nzm nZm

applying the similar procedure than above

T
Z Etm Etm Zt(T2m,19) l—[ (pS("))(O Ton) SCT_1

n#m

il

Esup
9

2
- Zetm {zt(rzm,m [T 9®(0,790) — 222, 9 [] 2200, rzn)} <CcT™!

Esup
U t=1 n#m n#m
therefore
(1, 0) (1,0) 2
esup |[F09]""" 0,72~ [FU9]" 0,70 <acT™
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5.10. Closed Form Solutions

In this section we detail the closed form solution when dW(t1,72) = dW(t1)dW(T3) and
dW(r)=@2n) 2exp(-37'7)dT.

5.10.1. Estimation with i.i.d innovations

9
f‘Uo(Tl,Tz) SHCA(Tl,Tz)‘ dW(ry1,72)

Since

2
A JICA
Go(t1,72)—8C (T1,T2)‘ Go(t1,72)—8L1C4 (T1,T2)) (Uo(Tl,T2) SHCA(TLTz))

. AICA
=0(T1,T2)(00(T1,T2) SHCA(T1,T2))—SO (T1>T2)(0'0(T1,T2) SHCA(T1,T2))




with

00(T1,T2)(00(T1,T2) SHCA(Tl,Tz)J 00(11,72)00(71,72) — Uo(Tl,T2)SHCA(T1,T2)

. . A JICA
=060(11,72)00(=71,-T2) = 00(71,72)8; ~(=T1,—T2)

sl A ~———~
¢ (T1,T2)(00(T1,T2) SHCA(TLT )) [ICA (11, 19)G0(T1,72) $o [ICA (g, Tz)SHCA(Tl,Tz)

_ AIICA JIICA JICA
=8, (11, (71, (=71,

12)60(=71,-T2) = $ 72)8, —79)

then

2
f‘Uo(TLTz) SHCA(Tl,Tz)‘ dW(Tl,T2)—f|00(T1,T2)| dW(Tl,Tz)Jrf‘SHCA(TLTz) dW(t1,72)

9 f 60(t1,79)8HCA T, 19)dW(r1,72)
5.10.2. Computing [16¢(71,72)|>dW(r1,72)

160(T1,T2)I? = 60(11,72)F0(~T1,—T2)
= {#0(r1,72) = Po(r1,0)0(0,72)} {io(~71,~T2) — Po(~71,0)60(0, ~T2)}
= Po(11,72) {Wo(-71,—72) — Wo(—71,0)¢0(0,—-T2)}
—o(11,0)0(0,72) {io(—T1,—T2) — Wo(—71,0)¥0(0,—T2)}
= o1, 72)|* + [$0(r1,0)* [d0(0, 72)|?
—Po(r1,72)P0(—71,0)P0(0, —72) — Po(—T1,—T2)W0(71,0)170(0,72)

Now, for W(r1,72) = W(11)W(79) multiplication of standard Gaussian weight functions,

with W(r) = (2m)"¥2exp (-11'7).

1z 1z
T Z exp{i(t}e(9)+ Téet(ﬁ))}) (? Z exp{-i(t}e(9) + T’2€t(19))}) dW(r1,72)

f |¢0(T1,T2)|2dW(T1,T2) =f

(2].[)—d T T
B Y Y e[ len® - en @ exp -5 len® - en @)

T
T t1=1t9=1



[ Virow1,00P 700, 720 aW (e, 120 = [ [otra, 02 aWee [ o0, w2 awers)
2
. { | |¢o<n,0)|2dW(n>}

or)-d/2
2m)~ Z Z exp(—_”“?tl(ﬁ) e, (9 )

T t1=1t9=1

[l 0P aw =

fiffo(ﬁ, 79 o(—71,0)%0(0,—72)dW(71,79) = f

1z 1Z
T Y exp{i(The () + T'zet(%)))}) (? ) exp {—ir'let(q‘))}) x
t=1 t=1

1 T
;ZeXp{—ir'zetw)})dwm,m
t=1

~ (27.[)—d T T

3 % 3 exp- 3 feq@- e @ exp -3 low e

3
T t1=1t2=1t3=1

= fﬂ/o(—n, —To)Wo(11,0)00(0,72)dW(T1,72)

Then

fIﬁo(Tl,Tz)lde(TLTz)=f|1/70(T1,T2)|2dW(T1,T2)+f|1l70(T1,0)|2|1/70(0,T2)|2dW(T1,T2)

—2[@o(TLTz)iﬁo(—Tl,O)UAfo(O,—Tz)dW(n,Tz)

5.10.3. Computmgf|sHCA(Tl,Tz)|2dW(Tl,Tz)

surea 1ICA ICA JICA
(Tl,T2)‘ —80 (11,72)8 €A (11,79 )= 1A (71, 19)8 1 CA (<11, ~19)

§lCA(T1,19) = H Poltj1,7)2) — H Po(71,0090(0,72)
J=1 Jj=
thus
1ICA 2 d d d
5o (T1,T2)‘ = (H Polrj1,7j2) - [] 1/70(Tj1,0)1/70(0,Tj2)) (H Yo(—7,1,—Tj2) — [ [ ¥o(—7j1,0090(0, -7 j2)
j=1 =1 =1 =1

d d d d
= [TdoGjn, 72 [ ¥o(—1j1,—7j2) + [ [ ¥0(71,0090(0,72) [ | #o(-T1,0000(0, -7 o)
j=1 j=1 j=1 j=1

d d d d
— [T oG jn,7j2) [T ¥o(=7j1,009000, -7 2) — [ do(—7j1,—7j2) [ ¥o(Tj1,0)90(0,7 j2)
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and

d d d

H‘Po(Tﬂ,sz) H Po(—7j1,-Tj2) = H |1/70(Tj1,7j2)|2

Jj=1 Jj=1 Jj=1
d
[ 90(71,0)90(0,7,2) H%( 7;1,0000(0,~72) = H 901,00 [#0(0,72)|
J=1 J=1 J=1

Since W(7r1) and W(79) are standard Gaussian weight functions, then:

d d
fH |¢0(Tj1,Tj2)|2dW(T1,T2)= I |1/70(Tj1,Tj2)|2dW(Tﬂ,sz)
Jj=1

Jj=1
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J:
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—

d d d
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(27t)‘
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5.10.4. Computing fU()(Tl,Tg)SHCA( 7T1,—-T2)dW(71,72)

Now
JICA d d
60(t1,72)8) (=71, —72) = {$¥o(71,72) — Po(r1,0)90(0, Tz)}{]_[ ol le,—sz)—Hlf/o(—Tﬂ,O)lﬁo(O,—sz)}
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T t1=1t9=1;=1 Tt3—1 Tt4=1
1 T T d
=73 Zl le_[ T_ Z Z exp(iT;1(€j 4, — €1.4))eXP(T j2(€ 1 — €1.2,))
t1=1ts=1j=1 3=1t4=1
thus
. d . 1 T d T 1 9 1 9
fWO(TLTz)HUJO(—Tﬂ,—sz)dW(TLTz): T2 Y II1 ) exp(_§|€j,t1_€j,tz| )eXp(_§|€j,t1_€j,t2| )
j=1 t1=1j=1ts=1
1 T d 1 T 9
= H e exp(— €it1 €5t )
Tt§1j21 thzzl{ |J 1 J 2| }

. d . 1 L Z 1 1 :
f‘lfo(fl’fz)HWo(—fjl,O)WO(O,—sz)dW(Tl,Tz)— Z H [T— Z 2 exp(=3lejs —ej,tz|2)exp(—§|€j,t1 ~€jt
=1t3=1

Jj=1 t1 15=1

. ) d A 1 T T d 1 T 1 1
fillo(fl,o)lllo(O,Tz)HWO(—le,—sz)dW(Tl,Tz)— — Z Y. [I= D exp(-= |€j,t1_€j,t3|2)eXp(——|€j,t2_€j,t3|2)
j:1 T : :ljletSZJ. 2 2

d
f@o(fl,o)iﬁo(o,fz)H1/70(—Tj1,0)1/70(0,—sz)dW(Tl,Tz)=
j=1
1 T T 1 T T 1 9 1
T2 Z: Z: Hl ﬁtz > eXP(—§|€j,t1—€j,ts| )eXP(—§|€j,t2—€j,t4

1j= 3=1t4=1



5.10.5. Asymptotic Variance - i.i.d innovations
For estimating the asymptotic variance of f)f, we use &; = ét(wf)i,if) and é?(r) = iT'é —(,bg(‘r)
with ¢i(r) = £ X1 Lei™'e,
Estimation of x’
According to previous definitions, we have
20 _ | 50/ A2
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Therefore, é? is given by
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Estimation of &,

We know that
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where
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f f [(1(—1 ®Er [étle—“fﬁ””étl]) ®(T1+ 12)] el T8 R (T )dW(T1,T2) =
I; ®ff [[ET [étle_i(ﬁﬂzyétl] ®(T1 +T2)] eir/zét¢)£)(‘l'1)dW(T1,T2)
f f (13 0Er [ ™50 )@ (21 + 72| 9f(rOE(TIAW (1, 72) =

I; ®ff [[ET [étle_i(”””,é‘l] ®(T1+ 1'2)] (i)g(rl)(i)g(rz)dW(rl,rz)

and
ff [[ET [9tle_i(rl+r2)lé‘1] ®(T1+ Tz)] e TR GW (g, 79) =

ff [[ET [@tle_i(rﬁm)lét1 ] ® Tl] T AW (11, T5)

+ff[[ET

ff [[ET [étle_i(”JrTZ)'étl] ®(T1+ ‘rz)] e 1E OF (T2)d W (1, 7o) =

ff[[ET [étle_i(T1+T2)’ét1]®T1

; f f [Er [e,e 80 | @ 1| oM G r)d Wirs, 7)

ét e—i(‘l’1+‘t’2)/£‘t1] ®T2] ei(‘l’1+‘l’2)/étdW(T1 12)
1 ’

oA
iT &

e T1E G (T2)dW (1, T2)

[ f [Er [er,e7 ™80 | & (21 + 79)] DT 1P} (E)AW (71,72) =
ff [[ET [étle—i(rﬁrz)’étl] ®Tl] (i)g(rl)(ﬁg(rz)dW(Tl,Tz)

. f f [Er [20,e7 7% | @1, @ )pf(r2)d Wz, 2)



notice that
ff [[ET [étle_i(rﬁm)létl] ® Tl] e T W (11, 75) =
d 2
Z —||€t £l )®{£‘t—§t1}

eirllé’ PE(T2)dW (T1,T3) =

ff [[ET [étle—i(11+12)’£‘tl] ®T1

T2 Z Z £t1eXp(——II£t &l )eXp(——Ilst2 &l )®{ét—ét1}

t1=1t9=1

M8 G (19)dW (11, T9) =

ff [[ET [étle_i(””?)’étl] ®Ty|e

T_ Z Z £t1eXp(——II£t &l )eXp(——Ilst2 &l )®{ét2—ét1}

t1=1t9=1

| [ [Er[gue e | o] pfnpsraawe, s -

i T T T A 1 . . 9 1 A A 9 A .
o5 X 2, D Enexp|—cllén —&nl” |exp| ~ ey — &% | ® &, — &)

t1=1te=1¢3=1

Therefore
~0,1 .9 1 N ~ A 2 ~ A~ !
e, =i2 T ZVec(Ia®£t1exp(—||£t—£t1|| J®{& — &}
N 1 A A 2 1 A A 2 A a& 1/
vec|I;®&, exp — € =24 11" Jexp| ~Cl1&, — 24| ® (& — &}
I N 1 N ~ 2 1 ~ A 2 {A A }/
—75 L X vee|I5 @& exp|—C e~ & exp |~ llén, — &0, 17| ® (&, — &1,
t1=

1L T T
+EZZZVec

t1=1t2=1t3=1

1 . R 1 . " "
I;®¢&] exp (—gu% — &, ||2) exp (—§||st3 — &, ||2) ® (&1, — etl}/)}

(5.47)

. . 0,2
Estimation of &,

We know that

’ !




Let start by

| [ [er(euemen) o] ph-rorzdazdanawi, e -
ff [[ET (@‘tle_ir/létl) ® Tl] (i)g(—‘rz)ei(rﬁrz),étdW(Tl, T9)
- [ [ [Er(ene ™) o1 gf-rore e i rmaw i, r

_ffr[ET (étle_iriétl)Qle @g(—rz)e”ft o(TdW(T1,72)

v [ [ [Er(ene ™) om f-rarirnobrawie, 2

and
ff [Er (&n,e7771%0 ) 0 71| @f(-T2)e ™ AW (31, 75) =

— Z Z etlexp(——nst &y )exp(——uet & )®{ét—ét1}
T? t1=1tg9=1
| [ [Er(eueme) o] ph-raremétaianamw i, e -
T3 Z Z Z stlexp(——nst | )exp(——netg | )®{ét—ét1}
t1=1te=1t3=1
| [ [er(ene ™) o1 gf-roremséaieawr, ra) -
Z Z Z etlexp(——net & )exp(——uetg &l )®{ét3—ét1}
t1 ltg=1t3=1
f f [Er (€718 ) oy @S(—Tz)t,bg(ﬁ)¢S(T2)dW(Tl,Tz) =

1 . 9 1 . 9 . .
Z Z Z Z Erexp| =5 181 — & I |exp| —S 18, — 1,17 | © &1, —&11)

t1 lto=1t3=1%4=1



thus

T

T 1
- 21 21 Zlvec(ldtastlexp(——llet £l )exp(——llst3 &l )®{£t3 gtl})
t1 to t3

1 R 1 . . .
1 Z Z vec(Id®£t1exp( ||8t3—8t1||2)exp(——||8t4—8t2||2 ®{8t3_8t1},)
t1=1te=1¢t3=1¢4=1 2
(5.48)

. 50,3
Estimation of &,

We know that

~03—Re( f f a0 (T ovee [(I; 0F [ee e

Similar to previous part

Jer]

~ 21 L & 1
é?,3:—l2{T_ Z Y vec(Id®£t1exp(——llet—£tlll )exp(——llst—etzll )®{£t—et1})
=1t9=1
1 LI Z N 1 A A 2 1 A A 2 A A 1/
73 X X X vee(lao i e | gl - Enl’ Jexp| 5 e ~&u | o @ &)
1 T T T Al 1 A A 2 1 A A 2 A A
73 2 Z Y vec|I;®&) exp|—=l1&;—&;,]1° |exp|—Sll&s;, — &, 1% | @ {81y — &4}
T3 =0 2 2
1 T
Tl L

T T T 1 1
Z Z Z (Idmtlexp( —l\&g, — & )exp( —ll&e, - et2||)®{et3 etl})

(5.49)

t1=1to

Estimation of %1

We know that

. Y
&1l = Re(iffagff%A(rl,rz)vec [(I(-i ®F [ste_‘(””” et] ) (T + 12)’] dW(Tl,Tz))



Let start by

ff [[ET (étle_i(rl-'—TQ),étl) ® (Tl + 72)] a-g’IICA(TlaT2)dW(T17T2) =
ff [[ET étle_i(rl+12),ét1) ®T1] é'g,[]CA(Tl,TZ)dW(TLTZ)

ff[ET & e L(Tl+‘l’2)€t1)®‘[2] g ICA(Tl’T2)dW(Tl’T2)

and
ff [[ET (étle_i(””” étl) ® 11] 63,HCA(T1,T2)OZW(T1,T2) =
[ [ er{enemrmsa) o
[ [ [rfeneemrnony

P11, T2)dW(T1,T2)

S le)(,bg(rzz)dW(rl,rg)

f
f

thus

d - T
N -1 /& £ l N A
ff[ET(ftle e ) o, H Po(T1, Ta)dW(T1,T2) = 75 ) &y @My,

t1=1

(M1 3 X5y exp (=120, — 20,012)} (3 ztz 1 €XD (=111~ 0, 1121, 1 — 24, 1))
where 7y , =
{Miza # XL -y exp (18,0 - 2,11%) (5 zt2 1€XD (~181,a = E1,a12) 1,0 — E1,,})
Also

. I d N N
[ [ er(eue e m)om] [Taf@mpienaw, v =

;T d 1 T 1 )
T > &[] T > eXP(—§|€t3,l — &7 g,
t1=1  \I=11 t5=1
1T 1a g &, 112)(E 3
{Hl¢172t2:1exp(_§|gt2’ —&1,11%) }( Il L exp(—31&,1— 841 ){£t2,1—€t1,1})

where 7y, =

1vT 1a A A A 2\1a A
{Hl#d thzzlexp (_Elgtg,l - 8t1,l| } ( to= ]_exp( 2 |€t2,d - gtl,dl ){gtz,d - Etl,d})



Therefore

T
201 {% Z’ ( ®é;1®ﬁ/1,t1) Z vec(Id®£t

d 1 T A 0 ¥
H T Z ex ——|€t3l €117 || ® Mgy,
=1~ t3=1

(5.50)

Estimation of &2

We know that

-t
&% = Re (—iffagf?%A(‘rl,12)<p£(‘9°)(—1'2)vec[(Ig@[E[ete &

,)®1'1])

Let start by
| [ [Er(ene ™) om0 rcater morpf-roraWers, z -
PN ~ d N
ff ['ET (étle_nletl)@ﬁ] P52 [[ 96(r 11, T20)dW(T1,732)
i=1
N N d A A
_ff[[ET (étle—men)®11]@5(—72)H@S(Tll)@S(Tzl)dW(ﬁ,Tz)
i=1

and

- T T
f f [[ET(?:t -ity ftl)ml]wo( Tz)H(po(Tu,Tzz)dW(Tl,Tz)— 7z 2 ) En®Ty,
t1=1t2=1

l1,t2
[ [ [Er(eneion) o] e [T dheuriiieandiie, v =
=1
i T T d 1 T 9
72 X X e |17 X exp(-Glews et o,
t1: : =1 :
where
{Hz;ﬂ%ZtT 1e—%|ét3,z—ét1,z|Ze—§|ét3,z—ét2,z|2}( Z e ~3letg 180y 117, |ét3,1—ét2,1l2{§t31—ét1 1})
- , ,
Yitie =

1A A 2 1, ~ 2 ~ ~ 2
15T =581 1—811 117 ;= 51E40 145 11 Herg a—8 d| IEt d—Etg.d" 1 _2
{l_[z;édTZtg:le gl TEIT @ TR Etg L T Ly Z e 2t sd 2 d {8y, q — €4y ,d)



therefore

1

02 1 I T T T

™ . al o/

=t m Y ZveC(Ia ©8, 071 00) 7 2 L vee|Ig
: :]_ tl 1t2 1

ﬁ— i exp(—lhf:t 1 =& zl2))®fl' )}
> > 2,
l=1Tt3=1 2 ? ? f

(5.51)

Estimation %3

We know

. —. !
e0,3 =Re (_lffUgf}t)}%A(Tl,TZ)‘PE(ﬂO)(_Tl)V@C [(I& ®F [ste iTHEs

o] dW(rl,rg))

which is equivalent to 2. Thus

FR ii ivec(l-@é’@” ) Z Z
T = P d i1 Yl,tl,tg vec

t1 1t9=1

ﬁ_ i exp(—1|§t 1— &t l|2))®ﬁ, )}
b 9 2
AT 2 2 o

(5.52)

Estimation of 6(L,9,)

From the definition of residuals we have that 8(L,9) = ¥~ 1L, 9)W(L,9,). Besides, from

asymptotic distribution part, we know
BL, D)= |Z6L.0) 26L,9) ... F55(L,9)

and we take K = d. Moreover, from the structure of parameter vector, we have: d2p.
non-causal parameters, d2p_ causal parameters, d2q, non-invertible parameters, d2q_
invertible parameters and d? static parameters. We can see 9 = [¢'+, ¢ ,0.,0", b]. The
column vector ¢, has dimension d?p.; the column vector ¢_ has dimension d?p_; the
column vector @, has dimension d2q.; the column vector 8_ has dimension d?g_; and b

has dimension d2.



When p. >0, the derivative of (L, ) with respect to i-th element of ¢, :

0 5L:9)=

: v 9)WY(L;9
a¢+,i a¢+,i ( ( ¥ 0))

= ‘P‘I(L;a‘))) W(L:9,)
(5¢+,i 0

:B—l(b)@)—l(L,e)

)‘I’(L Do)

¢
=B 1(5)07\(L,0)(ee] ()Lf”d Mo (L;¢wE;90)

:B—l(bxa—l(L,e)( )Q_(L;¢_>\P<L;z90)

=B ()0 1(L,0) el(,)em(l))d)_(L;tp_)‘P(L;ﬂo)Lr’/d 1 (5.53)

where [(i) = j(i)— V(ic)l_lJ d, m@i@)=1+ [J(C%J and j(i)=1i- [’;—;J d2. e;ie’ . is amatrix

with 1 at (I(i),m(7)) position, O otherwise.

m(i)

When p_ >0, the derivative of 6(L,9) with respect to i-th element of ¢p_:

ey B0 L, 000, (L;h.) (€1 €| PEL;OLITT (5.54)

When ¢, > 0, the derivative of 6(L,9) with respect to i-th element of 9., :

5(L:9)=B 1(b)( e, o>) O(L; $)¥(L; 9)

69+,i

,l

=B ()0 1(L,0_ )(%@'I(L 0+)) O(L; p)¥(L;9o)

_  plima-l -1
— _B(5)0-\(L,0.)0; (L,o+>( -

0

T ‘®+(L,0+)) 0. 1(L,0.,)D(L;p)¥(L;9o)
=-B Y»)0-'(,0.)0; (L, 0+)(el(t)emm)QII(L,0+)(I)(L;¢)‘P(L;1‘)O)L [i/d?]
(5.55)

When g_ > 0, the derivative of 6(L,9) with respect to i-th element of 6_:

0
00_ ;

=-B~ 1(b)® l(L 0_ )(el(L)em(l))@:1(L,0_)911(L,0+)(I)(L;(p)\II(L;{)O)L[i/d21

(5.56)



For elements in contemporaneous effect matrix

d 0
—&(L;9)=-B!
abié( ;9) (b)(abi

= —B7(b) 1€}y B (0)OH(L; DD(L; 9)W(L; D) (5.57)

B(b))B‘l(b)('B_l(L;ﬂ)Q(L;8)‘P(L;190)

Evaluating these derivatives at 9y, we obtain:

8(L;99) =B 1)@ 1(L,0) (el(i)e/ ) ‘I)Il(L;(Po,+)®(L;00)B(bO)L [i/d?]

0, m(i)
59 090 =B7(60)0 (L0004 (L;$y ) (€1(€ sy W(L; 9L
iy
6 .
g OL;90) = ~B1(b0)0~1(L,00 )0, 1(L,0 ) (el(i)e;n (i)) ©_(L,080_)B(bo)L!"4"]
+,0
)

m(i)

30 .6(L§190) = —B_l(bo)("):l(L,Bo,_) (el(i)e’ )B(bO)L [i/d”]

0 -1
abia(L;w‘)o) =-B " (bo) (el(i)e;n(i))

In general, these terms are infinite polynomials, with the exception of derivatives respect

to coefficients of static component. In particular cases, they simplify to.

1. Causal SVARMA(p,0): In this case ¢ =0 and p, = 0. Thus, we have:

o '6(L;80):B_l(bO)(el(i)e;n(i)) ®-N(L; ¢ _)B(bo)L "]

_ v p-1 ! -1 1+[i/d?]
=0

0 -1
a—bia(L;a‘)o) =-B "(bo) (el(i)e:n(i))

then, the coefficient at j-th lag of 8(L, ) is

11,42,®00: —B ' (bo)®e, i —B '(bo)®e,’ - —B '(bg)®e,|, j=0

: NEr ~ d’p .
5,00 =1 B ®olewn e}, @ 2 n(@0BBO} " 15,4200,

i=

,J>0

ldz(p+1) ®0d2, ] <0




2. Non-Causal SVARMA(p,0): In this case ¢ =0 and p_ = 0. Thus, we have:

0
a(,b+,i

8(L;80) = B~ (bo) (€16 i)| @3 (L3 g, IBBOL ]

m(i)
00 ~ B .
:ZZ B l(bO)el(i)e;n(i)q)(Jr,Pl(‘Po,+)B(bo)L[/d1 l
=P+

0 -1
3%, 6(L;90) = —-B ~(bo) (el(i)e/m(i))

then, the coefficient at j-th lag of 6(L, ) is

d?p

: -1 d _
i=1+d2(p—1) : {_B (b0)®e;}i=l > J = 0

m(i)

1ia2p-1) ®0a : {B L B0)esnrel, OS2, (0B (b))}

d2

8,;(80) = 4 {B‘l(bo)ezu')e' q’fﬁ,dz]_j(tl’o)B(bo)}

m(i)

p.
L :llxd2®0d ,j<0

i=

]'dz(p+1) ®0d2, J >0

3. Invertible SVARMA(O, q): In this case p =0 and ¢, = 0. Thus, we have:

0 .
= .6(L;1‘)o):—B_l(bo)(@:l(L,Ho,_)(el(i)e;n (i)) B(bo)L [0
iy
N _g-1 (=1 ! 1+[i/d?]
=ZZO—B (60)0" (80, e, B(bo)L
)

9. _p-1
a—bi(S(L,f)o) =-B (bo)(el(i)e;n(i))

then, the coefficient at j-th lag of 8(L, ) is

11,402,004 —B (o) e} i —B '(bg)®ey:--- —B l(bg)®e/,|, j=0

d2

. e ~ q.
6,;(Do) = < {—B 1(b0)®(_,J1.i ri/d2] (90,_)el(i)e;n(i)B(b0)} ) 11,2004

i=

,J>0

1d2(q+1) ®0d2, J <0



4. Non-Invertible SVARMA(O, ¢): In this case p =0 and ¢g_ = 0. Thus, we have

6 .
8(L;90)= -B ' (0)0;(L,00,+) (el(i)e:n(i))B(bo)L [i/d*]

66+,i
[e,@] _ _ l 9
= Y. B 000500, (erely )| BBOL 1
l=q+
9 5(L:9y)=—B~1(b )( e )
abi yVO) — — 0 el(l)em(i)
then, the coefficient at j-th lag of 6(L, ) is
[ (e _ d%q ) B d i
1ia2g-n®0a : {B 1<b0)ez<i>e;n(i)d>(+,2,(¢0)B(bo)}izhd?(q_l) H{-B lbo)wel}_, |, j=0
, d*q . ,
)B(bo)}i:1 11y, 42©04],j<0

5 (90 =4 [ p-1 -1
6](190) 4 {—B (bO)®+’_j+ |'i/d2'| (00,+)(el(i)em(i)

1d2(q+1) ®0d2, J >0

5. General SVARMA(p, q): Now, consider 0 < p, < p and 0 < g+ < ¢q. Then, in this

case
1 e D7l & ;D! S v DDyl
oL o=| Y o P Y oCPrl = Y Y o Pl Ll
l=—0c0 l=—c0 lc=—c0lp=—00
o0
_§ ot
l=—00

(=1
+,0-1.°

with cp‘_"ll) =0 for <0, cp(;,ll’ =0forl>-p,+L;and ® V=y® ‘I’(-_,zlc)q’

And
-1 I achrill = acbrilll v v acDaCD 7L+
o won-( £ o) £ ou)- £ 5 etperpin
S orw
l=—00

Da-1
- l®+>l_lL.

with 8 =0 for 1 <0,0( ) =0forl>-g,+1;and O] "=y _ 0"



Hence

(&)

6(L;9¢) = Z Z Z B 1(b0)@)( l)el(z)em(l)q)( ®l3B(b )Lll+lz+13+[z/d2]

l1=—0c0lg=—00l3=0

0+ i
0 P+

0
59 0 B0)= Y Yy E 'B0)8}, VD 1,e10€),) Vi, BBOL' 2 T
iy

l1=—00lg= 0l3——oo

0 oo |
60 6(L 190)— Z ZB l(bo)@) el(l)em(l)@)_’ZQB(bO)LZH.IQ+|’L/d21
ot l1=—00l3=0
6 .
96 == 3 Bb0e “Deiiyel i Blb)LT14"]
i l1=—00
0
0b; i90)=-B" (bO)(el(z)em(L))

However, dealing with an infinite, two-sided polynomial is problematic. For that
reason, we truncate them. Besides, since ®_(L,9y) and ®.(L, ) are analytic out-

side and inside unit circle, respectively; we get:

ln=—l-ps+1 I=—I-p,+1

J P+
(i)_l(L,ﬂO) = ( Z (D(_—ll)Llc) ( Z (I’:_ll)Lln) — Z (I) 1)Ll
I=0 ¢ -

(-1) i -D g (-1
WlthCI) _Zlc [0}y q)+l I

Similar to AR polynomlal, for MA polynomial we truncate and obtain:

0 '(L,9) = (Z e Lk

L

lmz_l__Q++1 I=—I- g++1

5 e E e

with G)( b —Zl 0@)( 1)®(+ ll)l



Thus, the truncated derivative polynomials

_ I-q+ P+
Go 0Lt = ) 2 ZB '(80)0;; Verne;, ;) 01,B(bo LI+ 1]
+5 li=—l-q4+1l9=—I-p,+113=0
I-p+ P+ 20-pi—q.+
0 o . _ - & 1b @( )(I) ¥, B(b Lll+lz+l3+|-i/d2-|
ob_ : ’ Z Z Z (bo) +l2el(l)em(1) 15B(bo)
P l=is p++112:ol3:—2l_—p+—q++2
_ I- —9+ )
30 .6(L;19()):— Z ZB l(b())@ el(l)em(l)(’)—,ZQB(bO)Lll+lz+|'l/d2-|
+l ll——l q++112=0
5 1 (- 11+[i/d?
00_ ; ZIZB (b0)0_, el(l)em(L)B(bO)L v+l
0

ﬁﬁ(L 99)=-B~ (bO)(el(i)e:n(i))

and the j-th coefficient of each polynomial is

Bb0) Y0 X, p++1®;_—1f)i/d2] 1, €10€ ) @', 01, B(B0), JEl-2l=(ps+q =Dl +q g,
Vi€,
- + 2l-p+—q+ -1 . o =
B l(bO) 5;:0 21321_721‘_qp+_q++2 65_ |—)i/d2-| - (I)+ lgel(l)em(L)\I’lgB(bO), JE [_3l - 2p+ —-q++ 3,31 — D+ —(
; €d_
@) _ . - -
6, (90)=4 -B~ 1(b0)2q 0@5 1[)/032] lzel(i)e,m(i)@—,lzB(bO)’ Jel-l-q++1,l+q—q+]
’81 € 0+
-B~ 1(b0)® el(z)em(L)B(b0)> JjE€ [O,Z_]
ﬁi €0_
B1(bo) (exnel, ). j=0,0;€b
5.10.6. Estimation of £ 0060’ Zr(9g)

From Theorem (2.5) we know that

52 ?
E Lr(90) = —— LoD
5909 700 = a5 “000)
_4 °° 1 (6
f £6500 1y, —5)] (6501, 7)) W1, T+
4n
(E~£(80)( T1,—T9)— E~§(f?3;A( T1,— ‘rz)) ([EUO( (r1,79) - [E~g(l?2‘A(Tl’T2))dW(Tl’12)



From what we obtained in the proof of Theorem (2.5), we get:

1o .
([Eas(r‘)o)( 71,_72)) ([Eé_slﬂo)(rl,‘tg)) =

71

{130 |ele ™| g™ (-72)} 8] (80071718180 {I 4 B E | 21071 | p ™ (72)}

<!
A1 [efe-me

./
115 0 [ele-imi

-1
+{I5 o €)o7

since

IEl ®F [Etei‘r’lst (p(l‘)o)(.l.2) —

718)7(90) =

3|’j|(190)T17l16|j|(190) =

thus

{Ic_i oF [ege_”,let

(10 [ele-ime

[[E(s;e‘”'l“'t)w""(’)( 2)6(11) Do)t 11'26 |(190)|E(£ e”zet) @)(¢ 1)]

{Ia ®F [e'te_”'ft
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5.10.7. Estimation with m.d.s. innovations
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5.11. Proof of Proposition 3.1

Given G2(1) =6 (e™**;9y) (VZIQ®(k_1)VZ) 6’ (e'*;9¢) and the fact that either the SVARMA
and RF-VARMA do not present roots on the unit circle (by condition (2.2) in the paper),
then det(8(z;9)) = det (@ 1(2;97)®(2;90,1)) # 0 for all |z| = 1. This implies that §(z;9;)

is full rank for any z on the unit circle. Thus

rank (G2(1)) = rank [6 (e_M;w‘)f) (VZ,Q®(k_1)VZ) &' (ei’l;w‘)f)]
=rank [VZIQ®(k_1)VZ]
=rank [v§v§],
where last equality comes from the fact that Q is squared, full rank matrix, implying
that Q®%*~D is also squared and full rank matrix. Thus, this implies that the dimension
of null space spanned by Q®(k_1)vz is equal to the dimension of null space generated by

vz. This conclusion holds because of

Q@(k—l)vz — 0&k-1) [Kk,lef(k_l) Kk,des(k_l)]

_ [ ®(k-1)

®(k-1)
Kk,10¢ Kk dOy ]

Therefore
rank (G3(1)) = dp, k= 3,4

where d}, is the number of non-zero marginal cumulants {x;, 1}7:1

5 G3(M)| .
Now, the rectangular array G3,(1) = | is
G (1)
P _M;{) 0 e/Q®2 £ )
G§4(A,) — (e f) 0 v3 3v3 6/ (el/l;ﬂf) ,
8 (e7M97) | | v]Q%V,
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k-1 k-1 k-1
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thus, it is evident that
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For simplicity, let assume that d = 2, then:

EIOY®2,E
vy Qv

E1Y®3«,E
vy Qv

2 2
K31011
2
K3,1K3,2079
2 3
K4,1%11

3
K4,1K4,20 {9

we can distinguish the following cases:
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a. k3 #0and x4 ;=0 for j=1,2. In this case | 3 3 31=1"3 3|, therefore
VZ’.Q® VZ 02><2
v£/Q®2v£
rank( 3 3 ) = rank(vd' Q®%v%) = ds.
®3 3 3
Ve Qv
. . Ve Qe2vE 022
b. x4 #0and x3; =0 for j = 1,2. Similarly to above ©3 = o3 e | there-
vy Qv vy Qv
fore
V£IQ®2V£
rank|| 3 31| = rank(vd'Q®3v%) = d4.
( Vi Qv ) B
o o ]
k31071 0
) o ve Q®2v§ 0 0
c. k3,k4,; # 0 for only one j € {1,2}. Assuming j =1, thus a3 o] =1 2 3 .
v, Qv K11011 0
0 0
Therefore ‘
vle®2v£
rank|| 3 311 = rank(vd' Q®%v%) = rank(vZ' Q®3v) = 1.
vE Q®3yE 3 3 4 4
4 4
[ 2 2
K31911
E1)O2, €
d. x3 ;x4 i #0for only one j # j' € {1,2}. Assuming j = 1, then V3 2y = 0
AN ’ ’ £IQ®3 £ 0
V4 V4
0
Therefore
v£/Q®2v£
rank §,9®3 3| | = rank(v§ Q®?v§) + rank(v§ Q**v§) = 2.
Yy Vy

For higher dimensions a similar analysis can be performed, the number of cases in-

creases but the idea is similar. Consequently

1O ®2.€
vy Q%°vg

2 _
rank (G34()L)) = rank( Vi/ﬂ®3vi

)=dm

where d34 is the number of asymmetric and/or non-mesokurtic structural shocks.



5.12. Proof of Proposition 3.2

5.12.1. Asymptotic Distribution under H) ;

At the first step (Hy 1 : rank(IT) = 0), the asymptotic distribution for 7t = vec(II) cannot be
obtained by standard Delta method procedure. When 1 =Re (Gi’(T)(/l)), then

®2 ®2
7= |(lao &g, +(lae g, ()| vecd(@)

For understanding the idea behind our result, let assume for simplicity that d = 1 (uni-
variate case). Thus

=

2 2
el + g0,
and its Jacobian (gradient) evaluated at population values ggrex(A) and gim x(A) under

the null of joint Gaussianity:

0
o[, 0,80 ()

®=d =280, 250, W) ’(

80, (.80 L () =(8Re r (V),g1m k(D)

:2[0 0]:0

In consequence, the standard Delta Method (based on mean value theorem) cannot be
employed. We need to employ second order approximation. That is, under joint Gaus-

sianity

1 &0 ™
Tt= ivec(if)'( Re.% )

g,

A(T) ®2 A(T)
) &n. . (A) 85, (M) (. X )
Notice that ( A g?)’k ) =vec (( A(RTe)’k D (g(RTe), k(A) g(IQk(/l)) , and since

Im,k gIm,k
~(T)
gRe k(A') O d
Y - — (0,7 (A
ar { (é‘(lz;l),k(ﬂ,) 0 2( ( ))

thus

A(T) 2 ®2
agr{(gRe,k( )) }iVec(%(o,V(A))%’(o,V(M))=X-

g,



Therefore

1
aZ@-0)L ;X ved )

When d = 2 (multivariate case), we follow the same idea and we obtain equation (4.9)
in the paper:
2 I _ 2 _2~d
ap (veed)-0) = a7 (F-0)=af7% — Q,

with ar = \/H’:;,_lT, Q = %(Id ®X’) A% and A3 the vectorized Hessian matrix of 7

evaluated at zero.

Now, under Hj 1, it holds that II =0 and £, =0, then
ﬁ:ﬁ—HZéO,Lgoi)o,L
thus

vec (I -1I) = (IA)EM ® éo,L) vec [@0]

1 -m)l = (D). 8 Co,1) 2o

=6 (Do. 0, ) (D) #Cou) o
=6 (Do D}, 0 1.) 8= Ty due 1) 2o = 0]

since E |7t — 71l = O(az?), then E || €0 || = O(az2). Thus, ||a2.€o|| = 0,(1).
Assuming that Hf){), 1 ® 60, L —5:), 1 ®Co1 H converges to 0 in probability, therefore

a?pvec [@0—.,%0] :a%w?() i (EO’J_ ®6£)’J_)Q (5.58)

and the rank statistic is

" 002 Q (D, ©Co.1)Var| (Do, 0Cy 1)@ (Do Ty )@
(5.59)

KPE]T) = a‘;%m ((EO’J_ ®6£)’J_) Q)



5.13. Proof of Proposition 3.3

Given the definition of &; = ¥ (L, )y, = Zj.;%) ‘I’;_l)(f)f)yt_ ; and consider the approxi-

mation of the truncated filter ¥~ 1)(L,qe) £
D O LS
(L, 19 ) =¥ Z (L 19f)(19fn—19f n)
n:
1 K K .
t5 Z Z ni, nz(L lt)f)(ﬁf n1 = O N Of ny = f ny)

2 ni=1lng=1
1 & & $eD = A R .
g Z Z Z ni,ne, ng(L7‘9f)(19f,n1 =0 ) Of g = no ) O ng = Of ng)

where f),e is random and ||1Z)f - 1‘),c|| < ||9f - f)f”.
Besides ‘i’;_l)(L,ﬂf): %\i'(_l)(L,?)f)‘a 0
n f=Yf

a(—1) QN _ ik ( 1)
and ‘Pnl,nz,ng(Lfﬂf)_ W (L 19f)

(_ ) 62
n1 nz(L 1c)f) - agnlagnQ

\i,(—l)(L’lz)f)

9,=9; r=0;

Then

(e K . 1 : (1)
a0 =P L0y 4 3 W L0 D=0y + S Y S Oy~ 01 ) oy~ 1)

n=1 ni= 1n2 1
1 & K . . . .
ts > Z WG LDy D ny —O0f 0Dy — 01 ) Bf iy — Of ng)
ni=1lng=1n3=1

Z(n)(ﬁf n— 19}” Y R Z Z X(n)(ﬁf,nl - ﬁfynl)(éf,’w - 197?7”2)

Il

N

_|_
[\/]m

n=1 ni1=1lng=1
1 K K K .o ) A R R
= Z Z Z ‘Pn1 ng, ns(L’ﬂf)yt(ﬁf,nl - 1()f,nl)({)f,m - 1()f,nz)({)f,ns - 1()f,n3)
6 ni=lng=1ng=1

—(=
where £ =W, Y@, 9p)y, and X" =¥, nZ(L 95)y,.

Hence

T-1

]

7-1 .
Z ﬁtGe_l b=
t=0 t=

K (T-1 . )
it, ® Z { Y z,gn)oe—l“}(f)f,n ~9f.0)
-1

+ { X(n) —iAt } (9f,nl — ’ﬁf’nl)(éf,nz - 19f7n2)
1

ni=1lng

+

Dl= NIH= <
M=
M=

“?IMN

ni

Z { Z ‘P;Sr)zz,ng(l”'z)f)yt oe M } (éf,m - 19f,n1)(19f,nz - 19f,nz)(éf,n?, - 19f,n3)
1ns=1

—iAt

where Z;F:_ol w;0e is a vector containing finite, discrete Fourier transform of vector-



valued random element #%;. The higher-order periodogram I @, (T)(%}t 1,...,2”%) is the

multiplication of any k-tuple of the elements of Zf: i, ©e M, Thus:

A 2ty 2ty 1 _ 2 1) (27t 2mty,
I"’(T)( ) ce Tt LR = I o L RILR
ek \TT T )T @k 1TH Z”“ T T

where R contains several terms of higher order.

Therefore, the difference gu (T)(/l) 5% (T)(A) is equivalent to

om\k-1 T-1 2nt1 27ty ™ (27t 27ty . 27ty 27ty
— Wrldg— 22 A, = R )(— —)—Iu’(T)(— —)}
(T) tzt‘;eo T(l T s /LR T){c’k T’ T ek T’ v
2n)k_1 -1 2mtq 21ty
+|—= WT(/ll——,...,/lk——)R
( T tL---%:k:O T T

2mt 27t
W (- 28, 4y

Now, let focus on the first term and denoting Fr = (27”) Ztl . =

k=

[ET{I“’(T)(% %) _Iﬁ,(T)(27Tt1 2ntk)}

ek T T ek T ,...,T

1 k 2t 2t 1y 2t ; 27t ;
T( {Z I z?,:fT) m) 1 - u(T) m)[ (1) J) u(T)( J)

k-1 4
(271') T Jj=1mey; m ej

i ( 1 { I Zg,;(T) 27Ttm) 11 - u(T) 27t o, )[ u,(T) ”tj) u(T)(2”tJ) }

(2m)k-1T me.; mied;

where .#;:={j' | j<j' <k}, #;:={j' |1 j < j} and

2mt; . o2nt; L=l 2mty o T-1 2t

T J (T J - i1 I Rt

u( (=) - uj( [ )_ Z {ucj, ucj',t}e Pl = Z Z‘IJ( 1)('9)yt s] e ' T
t=0 Ls=t c

calling v, = ¥, W V(@)y,_, with

E\Q =0

Ev,v) = Z Z v D@1y WV 0p)

s1=tsg9=t

[e.®] o0
1 -1
Evivig,= 2 2 ¥ @pr, W@
s1=tsg=t+h

given that r, Y = Y. (90)¥' <+1,(D0) and our data is generated by an SVARMA mode,

S_—OO



ITY | < CER_ools+hITMls| 0 = CY2, [s+h|710]s| 71 < C|h|™™ for 9 > 1. Then, it is

stralghtforward to show

Z IR ST S

=0s1=t
<CZ I3l Z 5117 ls1 — Al "°<CZ I | Z 511 '7°<CZ T3 || 121270 < C#tmo
s1=t s1=t

[Evivt ] =CE

[Evevi] <c <C Z I3 Z Jeeropw Dion|

then ||[Ev;v,| — 0 as ¢t — oo and ||[Ev;v},, | — 0 as h — oo for no > 1. This implies that v;

is stationary and converges in probability to zero.

Hence
E Iu’(T) 27Tt1 27Ttk _Iﬁ,(T) 27'[t1 27Itk
T c.k _T ,...,_T c,k _T ,...,_T

k 1 - 2ntm i, 2ntm
:J;I-[ET (m l_[ ZC,;(T) ) 1_[ (T)( Z [Vt]cj ] )

mEjJ meﬂ

[E‘\/Bk‘lT[ET{I"’(T)(—zntl —2”“)—1’1”’(—2”“ —2”tk)}'
T c,k T ’ ’ T c,k T ’ ’ T

L Nt 2wt 27”
2 5 u (T) m
<CBj T?E ((2n)k IT{ H Z [Vele, e })‘
in order to bound [E‘[ET (m {Hm 92 ffnfT) 2m’") [Z? o il e 7t t] })‘, it is necessary
to bound its variance.
1 k T 2wt T-1
Var{ Er [ ———— Pt il Vile,e VTt =

1 u,(T) Zﬂtm v,(T) 27Tt1 k u(T) 27‘[t V(T) 27!25’1
(2ﬂ)2k_2T2 COV{ H Zem (—)z Zeq ) l_[ (—=)



with
Cov{ l—[ Zu(T) 27Ttm VD) 27Tt1) ﬁ (T 27”5 v(T)(2nt1)}
Cc1

k ot oty K 2!, 27t
[E{H u(T)( nm)Z{(T) 7T1) 1—[ u(T) ATy v(T)( 1)

m=2

kb ), 2Tt 1), 27t ku ot 2nt/)
—[E{]_[ L )CI(T)(“)}[E{H e )}

m=2

and

k ont onty. & 2nt), ont'
[E{ l—[ u(T)( T m) (\:/1,(T) Y 1 l_[ u(T) V(T)( 1)

m=2

T-1 _i(zk_ 2ntm +Zk— 2nt;n) k
Z e U BT TE [V ley [Vapley H [, len (@, e,

T1,...,Top =0 m=2

k
[E([VTI]CI[VTZ]CI H [uTm+1]Cm[uTm+k]cm) =

m=2
E(

k
E ([VTl]Cl [VT2]01 H [u’fm+1]cm [uTm+k]Cm)

S w1
Z ‘Ils yTl—S

S=T1

o -1
Z \Ps yT2—S
c1 S=T9

00
l_[ Z ‘P( l)mi+l S} [ Z \P(S_l)y’rm+k _S} )
L m= 2 [s= em s=0 em

1- 1-
< Cltq|710|Tg|* 710
m=2

given that the filter ¥~ 1(L, 9¢) is absolute summable and that [E(y®2k) < oco. Besides, it

is easily to show that

k
E ( l_[ [uTm]Cm [uTerk]cm)

m=1

k
[E([VT1]C1[VT2]C1 H [uTm+1]0m[uTm+k]Cm) =

m=2
with strict inequality if max{t,To} #0.

Then

ot omty. & 27t y, 2mt)
{H u(T) altlm vl,(T) 1) H u(T) V(T)( )} EC(TZk—2+T2k+2—2nO)

k 2t 2mf
E{Hzc“,;f“ ”’”) H i <cr*

m=1
{l—[ u,(T) 27’[tm) l—[ u(T) 27[15 }')

2t 27t 27rt 2nt
{1—[ u(T) 4Tl m vl,(T) 1) H u(T) V(T)( )}




where the last is for all ng > 1.

Similarly

[E{ ﬁ u(T)(Zﬂtm) V(T)(%)}‘ (
m=2

k 2t
u,(T) m
{nglzcm T )H)

and
k u,(T) 27’[tm V(T) 27l't1 k u(T) 27[t V(T) k u,(T) 27’[tm k u,(T) 27Tt,m
Covi [] ze (T)zcl’ —), H ( T ) =o|Cov3 [] zen (=), [ 2e (=2
m=2

1 k u,(T) 27”Lm —! _iZh
\/ar{ET(m{WH ( ) ;)[Vt]cle Tt =0

Therefore
2wt 2wt - 2wt 2wt
/nk-1 u(T) 1 k w,(T) 1 k _
' B T[E { ( ""’T)_Ic,k (T,,T)}‘—O(l)

Now, one of the elements in E7 R is

1 T-1 .27ty T-1 . 27ty K T-1 . 27tg ~
R{=Fp (ZJI)TlT{ ;} [vele, e—th} { I;) [Vile, e—tTt}{ Z { Z [Egn)]we‘th}(f)f,n —ﬁf,n)}

=1 {t=0

K 1 -1 n —l—
T;I(ﬁf,n —0f ) ET 1T { t;) [Vile, e } { Y Vil e” } { ) [E,( )]03 t}

<CO,(T™YH0(1)

hence -
VHEITEIR | <CH,?
The most problematic term in R is
K T-171 co

8 4 1 ot T-1[
R; = Z H (19f,nh - ﬁf,nh)[ET (ZJT)T:[T { Z Z ‘P(s_l)(ﬂ)yt—s] e_llet} { Z Z Tg_l)(ﬂ)yt—s
t ¢ =

ni,ng,n3h=1 =0 ls=t¢ t=0 lLs=t

.27ty
e—th}
c2

T-1 - 2nt3
{ Z [‘Pglllr)m n3(L’ﬂf)yt]cge T t}



thus

sup |Ro| < C
1‘)f€7/f

. 2nitg

19f I‘Lh)
X sup S (L,19f)yt C3e ~irtt

! Z[C] -t t}{Tf[C] e—iz”%t}{Ti
ﬂfEVf (2 )k ]‘T t Cl P tlco =

E sup |Ral < CO(T~??)x O(TY) = cO(T~?)
tz)f€7/f

ni,n2,n3

where [(;]., = [Zgit‘l’(s_l)(ﬁ)yt—s]cl

Therefore

Au(T)(M Au(T)(/,l)<CH2

E\/HEIT




APPENDIX - CHAPTER III

5.14. Proof of Proposition 4.1

Wlog, let assume that g =1{1,2,...,dgr}, i.e. the first dgr structural innovations are
subject to sign-restrictions. Since Assumption 4.2 holds, we know that the unrestricted
identified set (%o ) contains all the signed-permutations of one solution of cumulant

conditions, Bi; and the cardinality of this set is equal to 2% x d!.

Now, consider the sign restrictions for each structural innovation i € Zgg:
S;¥(i)b; =0
From what we have been discussed above, this problem can be translated into:
S;¥(i)q; =0

where (i) = ¥(iYB; and q, is the i-th column of a signed-permutation matrix P € 22(d).

Let consider the following elements:

1. First,
&il ¢i2 1V‘1n
o | e e,

..1’[75‘1‘1 ’(pi‘lﬂ '&f‘in‘
then fuj.l represents the value of the j-th row and /-th column of 1]/: Since r; =1,

‘i’; is row vector. Thus, the sign restriction looks like:

q1;

S i ]| 9%
Si Vi Vig - Via)| . | 20

| ni |

2. 6? = {qISi‘i’gq >0,q € n(el?—L)} is the set of signed permutations of the elements
of the unitarian vector e; that satisfies the sign restrictions for innovation i. Let
m; =#(OF).



3. Let m; be an n-vector which j-th entry, 71; ;, denotes the number of elements of the
set {e;, —e;} that satisfy the sign restriction. Thus, 7i2; ; could take only the values
{0,1,2}. Since r; = 1, it is straightforward to notice that rm; ; is equal to 1 if u~/ij #0,
or 2 if 1Vlj = 0. Therefore, m; = Z;‘:l m; .

For instance, if Si‘i’; =la,0,...,0] with a > 0, hence 0? ={eq, +eq, .-+ e,}, i.e. the
sign restriction discriminates only the permutation vectors for the first dimension.
In this example, m2; =[1, 2,...,2]. It is easy to check that Z;l:l m;;j=2d-1= #(9{").

This discussion leads to the following step.

4. Let 10¥) = [1(§, #0),..., 17 #0)]and 1(¥)) = [1, =0),...,1(F =0)]. Then
mi=109))+21(F)°
since ]1(‘?’;) + ]l(‘i’;)C =1, where ( is a vector of ones. Hence:
=2 —1(F)

In our previous example, ]l(‘i’;) =[1,0,...,0], then 2!t — ]1(‘i’;) =[1,2,...,2], which is
;. Additionally, for any j € C.9sg, m =2

5. Once {9?}?:1 is determined, we can find the elements of 3831: as the admissible com-
binations of the elements of {0%LB }'_;- An admissible combination is defined as the
n-tuple {p1,...,pn}, with p; € 9?, such that p; L p; for i # j. Then, %{{n c xyzlefi’.
For example, if n =3 and 9? ={e;,—e;} for all i =1,2,3. Then, it is straightforward
that the number of admissible combinations is 8. Using the previous defined ele-
ments, in this example we have m =[2,0, 0], 29 =1[0, 2,0] y rizg = [0, 0, 2]. Then,

the total number of admissible combinations is equal to:

Mi11 XMoo XxMm33+my1XMo3gxmge+migxmo1Xmgs...

+MmigXxmogxmg1+tmy3XxXmg1Xmge+my3xmgexmg1=38

6. The previous result can be generalized. Let _# be the set of all n-tuples of mutually

different indexes {1,2,...,n}. For instance, if n = 3, then

F=11,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}



That is, ¢ is the set of all permutations of the set {1,...,d} of size d. Hence
s d
#Bo)= Y | [ M, (5.60)
ae g \i=1
where a =[a1, ag,...,a,]is a vector of indexes. This formula is equivalent to
#(eB ) =247 ( [1 m)
' a€ ¢ \ieIgp
adding the convention that if Fsg = @ (unrestricted case), then [[;c gy, Miq; = 1.

Thus, #(%Bo,,) = 2¢ x d..

Now, we can analyze the two extremes cases we can face in the restricted case. First, the

least informative case in the unrestricted case occurs when m; = m for all i € .£gr, where

m

1, forone je{l,...,d}
2, forall j/#J

This represent the case where S, ¥ has a unique non-zero entry in the same position j
for all i € #gg. Then, if we apply the formula given above we have that the total number

of possible permutations in this least informative case is
#( B =297 dsr = gd~dsk [2dSR—1(d ~ Dldgg +295F(d! - (d - 1)!dSR)]
=297 x [(d - D!{dsr +2(d —dsr)}]

=291« [(d - DN2d — dgg)] = 2¢ x (d — 1)!

d_dﬂ)
2

dsr

d R
—od —1)! _i —od ! —

Since we restrict at least one structural innovation, we have dgg = 1. Thus, 1— dz%f is

strictly smaller than 1, therefore #(%gf:) <#(PBon).

On the other hand, the most informative case is 72; = for all i € £gr, where t is a

vector of ones. Then, the cardinality of the restricted identified set is

#( By ) = 29795 x[1 x nl] =277 x |



5.15. Proof of Proposition 4.4

Wilog, let consider that [* =1, i.e. the sign-restricted shock is the first structural error.
The system of inequalities implied by the sign-restrictions is c‘fR ={S1¥'(1)B1x = 0}. By
hypothesis, ¥/(1)B; is an L-matrix, therefore by Lemma 4.1

ENecit #o.

Now, by condition rank (¥/(1)B;) = r; = d. Implying that ¥'(1)B; is full-rank L-
matrix. Besides, by hypothesis W/(1)B1 has all entries different from zero. Then, being
an L-matrix and being full rank with r; = d implies that its column and row rank are
equal. Therefore, if we assume that S;¥/'(1)B1 has more than one mono-signed column,
i.e. they would be positive or negative element-wise. However, in such scenario ¥'(1)B;
would not satisfy the property of being an L-matrix, because there may exists a real-
valued matrix in the class 2(S;¥'(1)B;) that is not full rank.

Therefore, matrix S1¥/(1)B; has only one a mono-signed column. Then
[eNes®|=1.
5.16. Proof of Proposition 4.6

When the structural shocks in the system includes more than one Gaussian shocks, i.e.
rank(v§) = d,g <d -2 or rank(v,) = d ;o < d — 2. For simplicity, we use only second and
third order cumulants and wlog assume the skewed non-Gaussian components are the
first d,; elements of &, i.e. ’Kg,j #0 with j=1,...,dpg. Besides, ’K;,J- # 0 denotes the

skewness coefficient of rotated (permuted) structural shocks.

The cumulants conditions are

ai; (K;,iei - ngjqj) =0, Vie(l,..,dhje{l,2,...,dng} (5.61)

Kg‘iqijei =0, Viefl,...,d},jeld,g+1,...,n} (5.62)
Equation 5.61 is equivalent to:

—qijkg,quJ':O, Vs#i,j€{l1,2,...,dyg}
CIij(Kg,i_Kg,jCIij):O, Viell,...,d},je{l,2,...,dng} (5.63)



Hence, this discard the possibility of having q;; # 0 for all i and j € {1,2,...,d,,}. This
means that the first d,; columns of € cannot be any column of a orthogonal matrix.

Although, if q; = +e;, we have that x} , = ing for j€{1,2,...,dng}.

The previous discussion determines d,; of the skewness coefficients of the rotated
structural innovations. The question now will be if it is possible to have more than &
skewness coefficients different from zero, that is whether or not rank(vg’*) > rank(vg).

The equation 5.62 implies:
Kg,iqij =0, Vief{l,...,n},jeldng+1,...,n} (5.64)

Then, q;;=0forallie(1,...,d}, je{dng+1,...,d}. Implying that orthogonality condition
of @ is violated. Something similar can be done for discarding the case of having less

skewed rotated innovation. Therefore rank(vg )= rank(v§ ;

Finally, for a clear exposition of the idea behind the result, let assume q ; = te; for all
!
i,j €{1,2,...,d,g}, that is the first d,s columns of @ have the form P;"g, 04, x(d—dng) | -

Now, the orthogonality condition for @ (Q'®Q = I;) implies:

9iq;=1, j=12,..d (5.65)
9,9,=0, s#] (5.66)

This is satisfied for all q; with j € {1,2,---,dng}. Besides, it implies that the first d
elements of g, are zero for all s € {d,; +1,...,d}, leaving the d —d,; components unre-

stricted. Therefore:
+
Q = Pdng Od"gx(d_dng)
Od-dn)xdng  Qd-dyy
with @)y Qd-d,, = Qd-dQy_a,, = Ld-dns-

This means that, identification of the non-Gaussian components up to permutations

persists, while the Gaussian part will not be identified without further restrictions.

5.16.1. Proof of Lemma 4.1

Given the finiteness of the coefficient matrices of moving-average representation of y;,

assured by assumption on the location of roots of AR polynomial.

Part (a) in 4.1 is a direct application of results in Ralph T Rockafellar (1969). Notice
F(ch) is the dual cone of K;, which is the cone generated by the columns —B'l‘l’(l IS,



and by definition
F(c)={xeR":x'y<0VyecK;}.

Part (b) in 4.1 is straightforward. If x; and xo belongs to F(ch), then any X = Ax; +
(1-A)xg, with A € (0,1) also belongs to F(ch). Besides, the unbounded-ness follows from
the former discussion by taking multiples of x1, X2 and Xx.

Part (c): When the |.£sr| = 1, then existence of F(c?R) is sufficient for the existence of
%g’SR. Because for any x € F(ch) it is feasible to find a tuple of d — 1 components such

that it is mutually orthogonal.

When the |.£ggr| = 2, existence of F(c}gR) is not sufficient for the existence of the iden-
tified set, because the existence of each solution set of the inequality system CZSR does
not assure the existence of having at least one pair (x;,,x;,) € F(ciR ) xF(ciR ) that is

mutually orthogonal.

Thus, if identified set ,%’g’SR exists, this implies that there exists (x;,,x;,) € F(giR ) x F(ciR )
such that x;,/x;, = 0. Then, the Gram-Schmidt algorithm apply to the pair (x;,,x;,) de-

livers the pair (x;,,%;,).

Now, consider the set GS (F(cflR) X F(ciR)). When GS (F(giR) x F(CiR )) ﬂF(C}glR) y F(CiR) »
@, then a pair (x;,,%;,) belongs to F(¢;F) x F(¢PF), i.e. x;, € F(¢;F) and %;, € F(¢)). The
rest of components can obtained by finding orthogonal vectors to the pair (x;,,X;,), be-

cause they are not sign-restricted.

5.16.2. Proof of Lemma 4.2

Provided the existence of solution set F(¢) of the system ¢ = {A’x <0}. If A’ is an L-
matrix, then for any row sign-changing matrix D, DA’ has mono-signed column. Be-
sides, the set & = &7 U&~ contains all the vectors that selects a column or changes its

sign. Therefore:

F(©)(é # 9.
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