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Abstract

In this paper we model the interaction between leaders, their follow-

ers and crowd followers in a coordination game with local interaction.

The steady states of a dynamic best-response process can feature a coex-

istence of Pareto dominant and risk dominant actions in the population.

The existence of leaders and their followers, plus the local interaction,

which leads to clustering, is crucial for the survival of the Pareto dom-

inant actions. The evolution of leader and crowd followership shows

that leader followership can also be locally stable around Pareto domi-

nant leaders. The paper answers the questions (i) which Leader should

be removed and (ii) how to optimally place leaders in the network to

enhance payoff dominant play
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1 Introduction

Many human activities are characterized by a coordination problem: while

there are several optimal actions for an individual, whether the chosen ac-

tion is indeed optimal depends on what the people she interacts with are

doing. Hence, multiple stable social situations can arise. Examples abound,

from technological standards (Farrell and Saloner 1988, Venkatraman and Lee

2004), to the multiple equilibria in repeated games that are pervasive in social

interactions (think specifically of contributions to climate change mitigation,

see e.g. Lempert et al. 2006).

In this paper we examine the impact of the behavior of leaders and their

followers on the adoption of an action that is good for the collectivity. The

previous literature has emphasized social conventions as a common way to deal

with the issue of coordination (Young 1993, 1998, Burke and Young 2011). But

how do those conventions arise? Humans, like most primates, are a species

where groups are rather hierarchical, something that has important impli-

cations in our psychology (Cummins 2005), social organization (Manner and

Case 2016), and health (Gilbert 2001). Some individuals take an action mostly

because that is what their leaders do. Alternatively, they can take an action

because they prefer to act like their peers. Bicchieri and Chavez (2010) or

Krupka and Weber (2013), for example, have measured the impact of others’

expectations about the “correct action” on our own choices. Our main aim is

precisely to analyze the interactions of those two ways of reaching a conven-

tion. We do this in an environment where two possible conventions may arise,

which differ in their societal level of welfare.

We model a game in which there are N players located in a circle. Each

of them interacts with their k closest neighbors located evenly to her left and

right. The interaction consists in playing a simultaneous move two person

coordination game with all people in the neighborhood. The players use the

same action, which is either payoff dominant or a risk dominant, in all their

interactions within a period. There are three types of players: Leaders (L),

Leader-Followers (LF ) and Crowd-Followers (CF ). Leaders always take the

same action independently of all other players’ choices. Additionally to the
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material payoff from the coordination games, Leader-Followers receive a payoff

of αL when following their leader, who is the leader closest to them. The level of

αL reflects the leader’s charisma. Finally, Crowd-Followers (CF ) care about

choosing the same action as their neighbors. Therefore, in addition to the

material payoffs from the coordination games, they receive an extra amount

αC multiplied by the fraction of k closest neighbors who choose the same action

as themselves, where αC captures the weight given to this peer influence.

We analyze the game as a dynamic process in which agents adjust their ac-

tions over time. We first analyze the steady states of population choices when

individuals start from an arbitrary action and best-respond to the population

choices in the previous period. Clearly, the steady states are equilibria of the

game. Then, when play reaches a steady state, we allow all agents except the

Leaders to switch not just their actions, but also their types.

The aim of the model is to capture situations in which there are different

norms competing for societal dominance. A good but weak norm (the Pareto

dominant, but risk dominated one) and a bad but strong one (the Pareto

dominated, but risk dominant one). There are numerous possible applications:

using a clean or a polluting energy (Ang et al. 2020), the adoption of a farming

technology (Müller et al. 2018), the choice of a software platform for developers

(Fang et al. 2021), language adoption (Iriberri and Uriarte 2012), the spread of

academic ideas (Sunstein 2000), expression of opinions on controversial social

topics (Buskens et al. 2008) among others. In many of these applications

Leaders and their Followers, or Crowd-Followers are crucial to which option

survives, and how.

We characterize the steady states of the system for fixed types, as well

as with evolving types. An important insight is that clustering is a crucial

factor for the simultaneous survival of multiple norms by allowing the “good

but weak” Pareto efficient norms to survive. Interestingly, the Leader-Follower

players are particularly important to achieve this clustering. But even if they

are useful for the survival, it is hard for them to take over.

Another insight delivered by the model is the stark asymmetry in im-

portance between the Leader of the good (payoff-dominant) and bad (risk-

dominant) norms. The risk dominant norm is guaranteed to survive in the
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population so long as there is one Leader subscribed to the risk dominant ac-

tion even if nobody gains from following her. However, if a Leader choosing

the payoff dominant action is not sufficiently charismatic (low values of αL)

the payoff dominant norm may disappear. This norm will only take over in

a cluster in part of the population if αL is sufficiently high, and there are no

risk dominant Leaders located inside the cluster.

We explore the possibility of a policy by which a social planner can remove

a Leader to improve welfare. One can think of this as the planner targeting for

“behavior change” by removing an influencer, in a context where she cannot

change them all. This policy can only work if payoff dominant influencers

are sufficiently charismatic. Since welfare is improved if the payoff dominant

norm spreads further, it is clear that the target can only be a risk dominant

Leader. But which one should be chosen? This depends on the moment of

the evolution of society this removal takes place. If a risk dominant Leader is

removed at the very beginning of the game, the removal can only be effective

in enhancing payoff dominant play if the targeted risk dominant Leader was

located between two payoff dominant Leaders. But here, the planner faces a

trade-off. If these two payoff dominant Leaders are very far away, the new

payoff dominant cluster would be very large if it was created. However, the

chances that it is indeed created, are lowest in that case.

Suppose now the removal of a risk dominant Leader happens after a steady

state with fixed types is reached, or after a steady state with evolving types is

reached. Then, it is not necessarily optimal to remove a risk dominant Leader

located between two payoff dominant Leaders. Sometimes it can be better to

remove a risk dominant Leader who only has one payoff dominant Leader as a

neighbor. This is true when payoff dominant Leader gains a very large sphere

of influence due to this removal.

We also study how to optimally place a given number of leaders on the

network to enhance payoff dominant play. The optimal distribution can always

be achieved by clustering leaders of the same type. While for very charismatic

leaders clustering risk dominant leaders at a minimum distance will limit their

area of influence, for less charismatic leaders payoff dominant leaders should

be clustered at a distance which optimally solves the tradeoff of a bigger area
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of influence and the probability of inducing payoff dominant play.

A general takeaway of this model is that “good but weak” (i.e. payoff

dominant, but not risk dominant) social norms need clustered groups of sup-

porters, and very charismatic leaders. These two features play an important

role in explaining, for example, the survival of Apple at a time when it seemed

it could have been taken over by Microsoft. Both the community of graphics

designers (Holmberg, Logander, and Lindqvist 2005) and having an appealing

leader like Steve Jobs were very important in this story (Ruijuan, Wang and

Hao 2020). Staying true to its aspiration of being different and its focus on

innovation and design has allowed Apple to establish a credible brand identity.

Steve Jobs’ charisma and visions did not only result in Apple having highly

dedicated employees despite Job’s demanding managing style (Levy, 2000),

his visionary leadership also led to a consumers’ cult (Belk and Tumbat, 2005)

where many Apple customers worshiped their Leader.

The remainder of the paper is organized as follows: the next section dis-

cusses the related literature. The model is laid out in Section 3 and the steady

states with fixed types and evolving types are analyzed in Sections 4 and 5

respectively. Section 6 discusses the importance of Leaders for the survival of

risk versus payoff dominant norms and answers the questions (i) which Leader

should be removed and (ii) how to optimally place leaders in the network to

enhance payoff dominant play. Section 7 concludes and suggests directions for

future research.

2 Related literature

There are several important strands of the literature that connect to our work.

Most obviously, Acemoglu and Jackson (2015, 2017) have explored the role of

social norms and leadership in coordination games. They follow on the seminal

contributions of Young (1993, 1998), Binmore and Samuelson (1994).1 Our

contribution to that literature is twofold. On the one hand we emphasize

the local aspect of social norms enforcement, and the possibility of multiple

1Later expanded expositions can be found e.g. in Burke and Young (2011) or Binmore
(2010).
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social norms in steady state through local clustering. On the other hand,

we emphasize the importance of agents who follow leaders, versus those who

simply follow crowds, and their interaction.

Methodologically we borrow tools and models of learning and evolution

with local interaction developed by Ellison (1993), Eshel, Shaked and Samuel-

son (1998), and Morris (2000), and later extended by Alós Ferrer and Weiden-

holzer (2008, 2016), or Chen, Chow and Wu (2013).

Our paper is also related to the vast literature on social norms that are

sustained through community enforcement. Elinor Ostrom proposed them as

a way to explain the collective solutions to social dilemmas (see, e.g. Ostrom

2000) and Cristina Bicchieri was instrumental in showing how they could be

measured, as well as the importance of empirical and normative expectations

from contacts (Bicchieri 2005, 2016). We add to that literature the importance

of Leaders and their Followers for the establishment and survival of norms.

There is a large literature of coordination games in networks, starting from

Jackson and Watts (2002) or Goyal and Vega Redondo (2005) and going to

Cui (2014), Khan (2014) or Bilancini and Boncinelli (2018). Ushchev and

Zenou (2020) explicitly work social norms, rather than coordination games,

in a linear in means model for networks. We contribute to this literature the

study of leadership and social norms.

There is also a literature in evolutionary biology (King, Johnson, Van Vugt

2009, Van Vugt, Hogan, Kaiser 2008), which considers leadership as a way for

evolution to solve coordination problems. They do not consider the interaction

of leader followers with crowd followers, and they do not take into account the

local interaction aspect we study.

A recent paper by Levine, Modica and Rustichini (2022) models leadership

in societies with potential group conflicts as games between Leaders. There

are two types of leaders, the group leaders who share their group’s interest

and a common leader who cares about both groups. Each leader makes a

recommendation to her potential followers which strategy to play in a 2 × 2

game with the other group. Followers compare the proposed strategy of their

group leader with the proposed strategy of the common leader and follow the

recommendation with the highest implied promised payoff. They will punish
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the leader they followed if the realized payoff falls short of the promised payoff.

The paper shows that due to competition between the common leader and the

group leader the leaders can solve cooperation problems, such as those arising

in the Prisoners’ dilemma or the Battle of the Sexes, as well as in coordi-

nation games but only if the followers’ capacity of punishment is sufficiently

high. This is a complementary approach to ours because it assumes competi-

tion between leaders and also that followers will blindly choose their leader’s

recommendation. The Leader-Followers in our paper only choose the leader’s

preferred action if it is in their best interest. Their paper shares with our

paper that there is no endogenous choice of becoming a Leader.

3 The model

The society consists of N players, located on a circle. Each person plays a

coordination game with her k (even number) nearest neighbors in k games

using a single action x ∈ (A,B). Action A has baseline utility uA and action

B baseline utility uB given by

ux =
1

k

∑
j∈nk

u (x, xj) .

Action A is payoff (Pareto) dominant and action B is risk dominant in the

coordination game which has the following payoff matrix:

A B

A d, d e, f

B f, e b, b

where d > f, b > e, d > b, d+ e < b+ f .

In addition to the “baseline utility” from the coordination games, players

experience an additional utility that depends on their type and the action of

their neighbors. Each players’ type is either a Leader, denoted by L; a Leader

Follower, denoted by LF ; or a Crowd Follower, denoted by CF .

The L player does not have a baseline utility. She can be an A supporter,
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meaning she has utility 1 if she uses A and 0 otherwise. The L player can also

be a B supporter, with utility 1 if she uses B and 0 otherwise.

The LF player has utility ux + αLIL when using action x. Here IL is an

indicator function taking the value 1 if she uses the action of the leader closest

to her and 0 otherwise and αL ≥ 0 reflects the charisma or influence of the

leader L.

The CF player has a neighborhood of reference, comprising the k closest

players on the left and right with whom she plays the coordination games.

Her utility of using action x is ux + αCkx/k where kx is the number of her

k closest neighbors using action x and αC ≥ 0 captures the relative weight

given to conforming with the reference neighborhood of their peers, “the

crowd”. Notice that since players are playing a coordination game, there is

already a premium for conformity. We introduce αC because it is important

to understand the evolution of types.

The L players are placed at random in the circle and their type A or B is

also random. They are given a neighborhood with a fixed number of LF to

their right and left, call it lL > k. All players that are not LF or L are CF .

Define by lC the number of CF between two groups of LF players. We assume

lC > 2k.The combined assumptions of lC and lL is the distance between two

Leaders is at least 2lL + 2k. We assume that this distance is an even number

to avoid players with two closest leaders.

One key feature of the model is the local interaction. The coordination

games are only played with the k closest neighbors in the circle; the L players

affect only LF players that are “close by” and the CF are concerned whether

their actions are the same as those of their neighbors. The other important

distinction is between the LF players, who only get a boost by imitating the L

player, and the CF, who get a boost by imitating their “peers.” We believe this

is a realistic feature of human interaction. We are a hierarchical species, but

the group also matters to us. These concerns are probably present in different

degrees in all people, but we simplify the analysis by assuming that only one

of those is relevant at a given point in time. We allow for the possibility of

types shifting over time between CF and LF , if the payoff of one is clearly

higher than the other, and this will play an important role in our analysis.
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4 Steady states with fixed types

We first analyze the steady states of a dynamic process in which, at time t = 0,

the LF players play the action of their closest leaders and CF players take a

random action. From that period onwards, every player best responds to the

actions of the players relevant to her in the previous period. The types of the

players stay fixed throughout. We thus follow best-response dynamics.

The results depend on the parameter values, in particular, the baseline

payoffs b, d, e, f , and the followership extra payoffs αL.

Proposition 1 Suppose d + e + 2αL < b + f − 2(d−f+b−e)
k

. Then everyone

converges to playing B except the A−leaders. Suppose b+ f > d+ e+ 2αL ≥
b+f− 2(d−f+b−e)

k
. Then everyone converges to playing B except the A−leaders

and the players between two consecutive A leaders, who can converge to all

playing B or all playing A depending on initial conditions.

Suppose on the other hand, that d + e + 2αL ≥ b + f . Then, the LF

regions next to A and B leaders stay loyal to the leader. The region of CF

surrounding a B-leader converges to playing B until it runs into an LF next to

an A−led region. And CF regions that are between two consecutive A leaders,

can converge to all playing B or all playing A depending on initial conditions.

Proof. We will proceed by establishing several claims that are proved in

Appendix 9.1.

Claim 1 LF with a B leader always follows their leader choosing strategy B.

Claim 2 All CF that are located in an area where at least one of the leaders

is a B leader choose strategy B.

Claims 1 and 2 establish that in steady state B leaders will be surrounded

by a cluster of B play: their LF play B but so do all CF adjacent to the LF .

Hence areas that have B leaders on both sides will always turn into an all B

cluster. The next claim establishes what happens if there is an A-leader on

the other side of the cluster, in particular under which conditions this cluster

can invade the LF region of an A leader.
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Claim 3 Any B cluster of CF can invade the LF region of an A leader till

it runs into that leader if d+ e+ 2αL < b+ f and jump to the LF followers

on the other side of the leader if d+ e+2αL < b+f − 2(d−f+b−e)
k

in which case

all the LF of the A leader will switch to strategy B.

The next claim confirms that the condition that the B cluster cannot invade

the A − led area of LF players is identical to the condition that guarantees

that all LF with an A leader follow their leader choosing strategy A.

Claim 4 If d+ e+ 2αL ≥ b+ f all LF with an A leader follow their leader

choosing strategy A

Claims 3 and 4 establish what happens to the LF next to an A−led region.

It remains to show what happens to the CFs between two A leaders.

Claim 5 There is no stable configuration that is not a cluster of all A or all

B among CFs between two A leaders

Joining the different claims yields the proposition.

If the neighborhood parameter k is not too small, there are three possible

outcomes in a steady state of this game. In one of them, for a sufficiently low

impact of leadership αL and sufficiently high k, only the risk dominant strategy

B is capable of surviving. For a very small k the condition d + e + 2αL <

b+ f − 2(d−f+b−e)
k

cannot hold even when αL = 0. This condition guarantees

that a B cluster of CF which invaded the LF region of an A leader (making

them play B) jumps to the LF followers on the other side of the A leader.

Observe, that the LF located on the other side of the A leader next to the

leader has the A leader as a neighbor and a LF playing A. If this is her entire

neighborhood in the coordination game, she will continue playing A since she

is not affected at all by the LF s playing B on the other side of her leader.

But if her neighborhood grows, she will encounter B players; the bigger her

neighborhood, the bigger her incentives to switch to playing B.

For intermediate αL (or low αL and sufficiently low k) there is a possibility

of the Pareto dominant strategy A surviving, but this can only occur in regions

between two adjacent A leaders and if the initial conditions happen to be
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good enough in the sense that sufficient CF s played strategy A as their initial

random action. But even between two A leaders initial conditions may favor

convergence to all B play. In all other regions everyone plays the risk dominant

strategy B.

Finally if the leadership value is sufficiently important, then the LF players

certainly play the same strategy in the coordination game as their closest leader

all the time. In addition the CF players in between A leaders can converge

to playing the Pareto dominant strategy A for good enough initial conditions.

And all other CF players will play the risk dominant strategy B in the limit.2

Note that a key aspect of this result is that once a sufficiently large cluster

of agents playing one strategy or the other forms, the action happens at the

boundaries of the cluster. And this is why risk dominance is so important.

Someone in the boundary has half the neighbors playing one strategy and half

of them playing the other. In the absence of extra elements, such as leadership,

the risk dominance would take over the population.

This explains why in this result, clustering and relatively strong A leaders

are crucial for the survival of the Pareto dominant, but risk dominated strategy

in the limit. The risk dominant strategy does not need leadership as much,

since norm following and even the pure dynamic reaction over time is sufficient

to keep it in play.

5 Steady states for the evolution of types

In this section we study the evolution of types after convergence to a steady

state over strategies in the coordination games has been reached. The CF

can be transformed into an LF if the payoff of CF in the steady state, at

the current position of the player and the given the current population state,

is lower than that of CF and vice versa. In other words, players choose the

current period expected utility maximizing type.

We start with a Lemma that explains under which conditions a CF does

2Notice that αC does not play a role in the results of this section. This is because the
coordination game already provides the premium to play the action that is more prevalent
in the neighborhood of a CF player.
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better or worse than an LF playing the same strategy in the coordination

games. It states that the extra payoff for leadership following has to be higher

than the extra payoff for crowd following weighted by the proportion of people

playing the strategy in the neighborhood.

Lemma 1 A LF following her leader outperforms a CF playing the same

strategy as the leader iff

αL >
xk

k
αC (1)

where xk are the number of neighbors playing the same strategy than the player

under consideration. A LF following her leader is outperformed by a CF

playing the same strategy as the leader iff (1) does not hold

Proof. Since LF and CF play the same strategy they get the same payoffs

from playing the coordination games, while the LF gets additionally αL since

she follows her leader and CF gets the extra payoff from conforming to the

crowd xk

k
αC . The strategy with the higher extra payoff outperforms the other

strategy.

The lemma 1 makes clear that if αC = 0, then LF always has an advantage

if playing the same action as a CF, so the introduction of the αC parameter

allows for types to be more balanced.

Now we are ready to state the main propositions of this section. For ease

of expositions, we divide them according to the three relevant cases derived in

Proposition 1.

Proposition 2 Suppose d + e + 2αL < b + f − 2(d−f+b−e)
k

. If αL < αC ,

everybody converges to a CF playing B. If αL > αC all A leaders will be

surrounded by CF playing B while the B−leaders will be surrounded by LF

playing B. In both cases everybody except the A leader plays B.

Proof. See Appendix 9.2.

Recall that for αL relatively low and k, sufficiently high risk dominant

play on one side of an A leader can invade the LF on the other side when

types are fixed. Since the evolution of types takes place after convergence to

the steady state in strategies played in the coordination games (which leads
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to everybody playing B except the A leaders), the LF next to an A leader

clearly prefer to become CF since by playing B they don’t follow their leader’s

strategy anyway. If, in addition, αL is low relative to αC , the LF will do worse

than the CF in general and even the LF next to a B leader with become CF .

If on the other hand, αL is high relative to αC , then at least the LF close to

A leaders play the Pareto dominant strategy. If on the other hand, αL is high

relative to αC , then at least the LF close to B leaders will remain LF s.

Proposition 3 Suppose b + f > d + e + 2αL ≥ b + f − 2(d−f+b−e)
k

. In this

case:

All-B regions before the evolution of types remain all-B regions after the

evolution of types. Within these all−B regions everybody closest to an A-leader

now is a CF while all players closest to a B-leader are LF iff αL > αC and are

CF otherwise. For all-A regions before the evolution of types different cases

apply:

1. they remain in an all-A regions after the evolution of types

(a) everybody becomes LF playing A if

d+ e+ 2αL > b+ f + αC

(
1− 2

k

)
− 2 (d− f + b− e)

k
(2)

and αL > αC

(b) all former CF playing A remain playing A and will partially invade

the LF playing A but not all the way up to the A−leader if (2) holds

and αC > αL > (1
2
+ 1

k
)αC The first LF not to convert is the LF

with the smallest y where y is the number of her neighbors playing

B such that by Lemma 1 condition (1) holds for xk = k − y.

(c) all players become CF playing A if

αL <

(
1

2
+

1

k

)
αC (3)

and

b+ f < e+ d+ αC
2

k
+

2 (d− f + b− e)

k
(4)
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2. they become part of an all-B region after the evolution of types with only

CF when both (2) and (4) do not hold.

Proof. See Appendix 9.3

This intermediate case for αL is more nuanced. In the regions where every-

body played B before the evolution of types , all players keep playing B but

there may be shifts between CF and LF depending on the relative sizes of

αL and αC . Regions where everybody played A before the evolution of types

can remain all A regions or become all B regions. The latter case requires

that neither αL nor αC are sufficiently high and converts everybody into a

CF . If αL and αC are sufficiently high, the Pareto dominant A regions before

the evolution of types are robust to the evolution of types: there can be shifts

between CF and LF depending on the relative importance of αL and αC , but

everybody will play A. If αL is too low relative to αC everybody becomes a

CF : when αL increases sufficiently the LF s closest to an A leader resist the

CF invasion while for sufficiently high αL the LFs will take over.

Proposition 4 Suppose that d+ e+ 2αL ≥ b+ f .

1. Suppose that

d+ e+ 2αL > b+ f + αC (5)

(a) If (5) holds and αL > αC all players will become LF following the

strategy of their closest leader.

(b) If (5) holds and αL < αC all players will play the same strategy as

the closest Leader in the coordination game, but some will be CF

and some will be LF , in particular:

i. All players located between two leaders of the same type will be

CF .

ii. For players located between two leaders of different types, those

furthest away from their closest leader will be LF imitating

their leader while those sufficiently close to the leader will be

CF . By Lemma 1 the number of neighbors xk who play the

same strategy in the coordination game as the player in question

is defined by the lowest xk for which condition (1) is violated.
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2. If (5) does not hold, so that b + f + αC > d + e + 2αL ≥ b + f ,

all players between two leaders with different strategies will play B in

the coordination game where everybody closest to an A-leader becomes a

CF , while all players closest to a B leader are LF iff αL > αC and CF

otherwise. All players between two B-leaders will also play B and are

LF iff αL > αC and CF otherwise. We have to distinguish the following

cases for players between two A−leaders:

(a) If before the evolution of types the CF converged to playing B, those

CF invade the area of A-LF and in the long-run all players become

CF playing B.

(b) For all-A regions between two A leaders before the evolution of types,

the results of proposition 3 apply.

Proof. See Appendix 9.4.

In this last case, with αL sufficiently large, there are more possibilities for

the Pareto dominant strategy to survive.

6 The relative importance of A and B leaders

We have claimed that Leadership is less important for the long run survival

of the risk dominant but Pareto dominated strategy B than for the Pareto

dominant but risk dominated strategy A. To explore how much this is true,

we study what happens when the charisma of leaders disappears. In particular

we analyze the case where αLB
= 0 and αLA

> 0 and then check what happens

for αLB
≥ 0 and αLA

= 0. Observe that even when αLB
= 0 when types are

fixed all LF including the furthest away form a B leader will follow this leader

choosing strategy B simply because B is risk dominant (see Claim 1). On the

other hand, when types are fixed unless the A leader has a minimum charisma

namely αLA
> αLA

= b+f−(d+e)
2

(see Claim 4) the LF furthest away form this

A leader might not follow this leader and deviate to the risk dominant strategy,

which will unravel to the LF closest to the A leader. So the steady states with

fixed types as described in Proposition 1 are unaffected when αLB
= 0, but
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when αLA
= 0 payoff dominant play can only occur between two A leaders

when d+ e ≥ b+f − 2(d−f+b−e)
k

and initial conditions are favorable for the CF

followers.

Given this result, to understand the implications of αLB
= 0 for the evolu-

tion of types, we only need to check how this assumption affects Propositions

2, 3 and 4. It is immediate from Proposition 2 that if k is sufficiently high

and aLA
is sufficiently low, everybody will become a CF playing B since under

these conditions only B leaders could have LF but now there is no value in fol-

lowing a B leader. Setting αLB
= 0 will eliminate the possibility to have all-B

regions with LF followers in Proposition 3 for intermediate aLA
but the rest

of the proposition is unaffected. Similarly, the only effect of setting αLB
= 0

in Proposition 4 with αLB
= 0 is to convert LF players choosing strategy B

into CF players choosing strategy B.

Summarizing, with αLB
= 0 the only difference with respect to previous

results, is that in regions close to B Leaders, there will be CF players, because

B Leaders now cannot attract LF . But strategy A still cannot invade regions

with a B Leader: these regions will be populated by CF playing B. This

is so because a CF playing B does better than a CF playing A when half

her neighbors are playing B and half are playing A.While the existence of B

leaders guarantees the formation of risk dominant clusters, their charisma, i.e.

how attractive they are, does not matter for the choice of actions.

On the other hand since αLA
= 0 already affects the steady states with fixed

types it also has important implications for the survival of all A regions when

types can evolve. Introducing this assumption into Proposition 3 we learn

that an all-A cluster between two A leaders can only survive the evolution of

types with everybody becoming CF between the two A leaders if the payoff

from rule following is sufficiently high, in particular condition (4) needs to hold

which leads to

αC > αC =
k (b+ f − (e+ d))

2
− (d− f + b− e)

The above results lead to the following remarks providing further insights.

Remark 1 If there were only A Leaders, then for sufficiently high αL the
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steady state could converge to the whole population playing A.

Remark 2 The risk dominant action B is always guaranteed to survive so

long as there is a B Leader somewhere, while the risk dominated action disap-

pears if αL is low and its expansion is always limited by the existence of a B

leader. In other words, the risk dominated action can never infiltrate regions

where the closest Leader is a B Leader. The B Leader is a shield against

infiltration no matter how charismatic A leaders are.

6.1 Removal of Leaders

We now study another question related to Leadership. Suppose a social plan-

ner wanted to increase as much as possible the number of A players. One

possibility to do this is to remove B Leaders.3 To avoid the simplistic case

where all of them can be removed, suppose she can remove just one Leader.

Which removal would lead to the largest increase in A play for fixed types?

Proposition 5 Suppose a B Leader is taken out before the game starts, and

the LF surrounding that B Leader become CF s and all other Leaders are

already located, and initial conditions are random.

If d+ e+ 2αL < b+ f − 2(d−f+b−e)
k

. No removal of B Leaders can make a

difference in final outcome.

Suppose d + e + 2αL ≥ b + f − 2(d−f+b−e)
k

. Then, the only removal of a B

Leader that can make a difference in increasing A play, is when a B Leader

whose nearest Leaders on both sides are A Leaders is removed.

Proof. This is a corollary of Proposition 1

The situation now is identical to the beginning of the game in general but

with one less B leader. Then we know from Proposition 1 that if d+e+2αL <

b + f − 2(d−f+b−e)
k

, everybody except A Leaders will play B in the limit so

the removal of B Leaders does not make a difference. When d + e + 2αL ≥
b+ f − 2(d−f+b−e)

k
, again from Proposition 1, there can be clusters of A players

3One alternative “policy” which produces qualitatively similar results is to “rewire” the
network in a way that gets an A leader in the proximity of a B cluster of LF players.
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in between two A Leaders, hence the only change can occur if the extirpated

B Leader is in between two A Leaders.

By Proposition 1, for sufficiently high αL, CF regions between two consec-

utive A leaders can converge to either playing all A or playing all B depending

on initial conditions. The following proposition explains how the distance be-

tween these leaders affects the probability of convergence to one or the other

strategy.

Proposition 6 From a random initial condition between two A Leaders, if the

distance between them becomes large enough, then all CF converge to playing

B.

Proof. If a k-cluster of B players form, all players will end up playing B.

The chance of a k-player cluster forming at random at t = 0 increases as the

distance between two A Leaders grows.

Remark 3 From Proposition 6 we can see that a social planner who can only

remove one B leader surrounded by the two A leaders faces a trade-off between

increasing the ex ante probability of reaching an A cluster (this probability is

maximized by removing a B leader between to A leaders that have the shortest

distance among them) and increasing the size of the A cluster should it be

reached (this size is maximized by removing a B leader between two A leaders

that have the biggest distance among them).

Suppose, on the other hand, that one B Leader can be removed after play

in the game with fixed types has reached the steady state. The first round

after the removal, the LF types stay as LF , and the CF players stay as CF

but they reoptimize the strategy in the coordination game .

Proposition 7 Suppose d + e + 2αL < b + f . The removal of B Leaders

after the game with fixed types has reached the steady state can never make a

difference in final outcome.

Proof. When d+e+2αL < b+f we are either in the context that everybody

converged to playing B except for players between two consecutive A leaders
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with favorable initial conditions in case d + e + 2αL > b + f − 2(d−f+b−e)
k

before any leader is removed. By Propositions 2 and 3 no new all A regions

can evolve, and some might be preserved if we already have an all A region

between two A leaders before the evolution of types, so removing a B leader

will not create a new all A region.

Proposition 8 Suppose b + f < d + e + 2αL. The removal of a B leader

after the game with fixed types has reached the steady state will only make a

difference in final outcome when d + e + 2αL > b + f + αC implying that (5)

holds and at least one of the closest leaders of the removed B leader is an A

leader.

1. If the removed B leader was located between two A leaders, all players

under the former influence of this B leader will play A.

2. If the removed B leader was located between an A and a B leader, the

number of players using A will grow in the new area of influence of the

A leader.

3. The best candidate for removal of a B leader located between two A lead-

ers is the one with the greatest distance among these two A leaders.

4. The best candidate for removal of a B between an A leader and a B

leader is the one resulting in the biggest new area of influence of an A

leader who was the unique closest A leader of the removed B leader.

5. The overall gain in A play is greatest by removing the B leader between

two A leaders if the area of influence of this B leader is bigger than the

biggest new area of influence of an A leader who was the unique closest A

leader of the removed B leader. Otherwise the latter should be removed.

Proof. If condition (5) does not hold, no new A clusters can be created, since

the B-CF of the removed B leader will invade any A − LF and there is no

difference in final outcome.

Clearly eliminating a B leader that is located between two B leaders will

never make a difference.
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When b + f < d + e + 2αL, all LF players with an A leader follow their

leader choosing strategy A before the types are allowed to change. Thus, if

we eliminate a B leader between two A leaders all the LF of that eliminated

B leader will now have as their closest leader an A leader and play A. This

proves (1). Similarly, if the eliminated B leader is located between an A and

a B leader, the LF of the eliminated leader closest to the A leader will play

strategy A while those closest to the B leader will play strategy B in the first

round after the removal. All the CF will continue playing B since B is risk-

dominant and at least half of their neighbors play B. We have shown in the

proof of Proposition 4 that if (5) holds when the possibility to change types

holds, A − LF will invade the B − CB regions and everybody will play the

same strategy in the coordination game as their closest leader. Therefore if

a B leader between two A leaders is removed the entire influence area of the

removed B leader turns into playing A while if the removed B leader only had

one closest A leader, A play grows in the new influence area of this A leader.

This proves (2). Then (3), (4) and (5) are straightforward implications of (1),

and (2).

Finally, assume the removal of one B Leader happens after a steady state

in the evolution of types has been reached.

Proposition 9 Suppose b + f < d + e + 2αL. The removal of a B leader

after the steady state in the evolution of types has been reached only makes a

difference in final outcome when d + e + 2αL > b + f + αC implying that (5)

holds and at least one of the closest leaders of the removed B leader is an A

leader.

1. If the removed B leader was located between two A leaders, all players

under the former influence of this B leader will play A.

2. If the removed B leader was located between an A and a B leader, the

number of players using A will grow in the new area of influence of the

A leader.

Proof. Clearly eliminating a B leader that is located between to B leaders

will never make a difference.
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Assume d+e+2αL > b+f +αC .When a B Leader between two A Leaders

is removed, in the first round, the B LF players around the removed B Leader

become A LF . By Proposition 4 if αL > αC this is the final outcome. If αL <

αC , then in the first round, the B CF around the removed B Leader stay

B CF , because at most half of their neighbors play A. From the next round

onwards, the B CF start being invaded by the A LF , while on the other side

the A LF is is invaded by the A CF that border the A LF . At the end,

though, all those players will be A CF , hence all players formerly under the

influence of the removed B leader will be added A players. This proves (1).

When a B Leader between an A and a B Leader is removed, in the first

round, only the B LF around the removed B Leader who fall into the new

area of influence of the A leader become A LF . If αL > αC all players in

the new influence area of the A leader becomes A LF and this is the final

outcome. If αL < αC then by Proposition 4 the former B LF that become

A LF in the first round are those located furthest away from the removed B

leader and hence bordering the A LF area before the removal of the B leader.

The B-CF now under the influence of the A leader continue playing B since

B is risk-dominant and at least half of their neighbors play B. Since (5) holds,

A-LF can invade these C−LF while on the other side the A LF is is invaded

by the A CF that border the A LF . At the end, though, everybody under the

influence of the A leader will play A with those closest to the A leader being

CF and those furthest away being LF , so everybody in the new influence area

of the A leader will be a new A player. This proves (2).

Observe that independently of the timing of the removal of the B leader,

the removal of a B leader between an A Leader might enhance all A play.If A

Leaders are sufficiently charismatic (αL is large), then this is guaranteed if the

removal happens either after the steady state in strategies is reached with fixed

types, or after the steady state of the evolution of types is reached. In both

cases, the biggest impact happens if the B Leader that is removed is located

between the two A Leaders that are furthest apart. If the removal of the B

Leader happens at the beginning of the game, it depends on initial conditions

whether A play is enhanced. This is more likely the closer the two consecutive

A Leaders surrounding the eliminated B Leader are located. Of course, at the
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same time, if they are close to one another, the number of affected players is

smaller.

If A Leaders are sufficiently charismatic (αL is large) A play also grows

if a B-leader located between an A-leader and a B-leader is removed either

after the steady state in strategies is reached with fixed types, or after the

steady state of the evolution of types is reached. The area of influence of

the neighboring A-leader will grow and everybody in this area will play the

Pareto dominant action, hence the size of the growth of Pareto dominant

play corresponds to the size of the increase in the area of influence of this

neighboring A−leader.

6.2 Strategic placement of leaders

Suppose again that a social planner wanted to increase the number of people

playing the Pareto efficient outcome A and could strategically place a fixed

number of A Leaders in the circle. What would be the optimal location of

those Leaders? Since from Propositions 1 and 2 A play by non-leaders can

only occur in steady state when A Leaders are sufficiently charismatic, this

question is only relevant when d+ e+ 2αL ≥ b+ f − 2(d−f+b−e)
k

. We start our

analysis with the case when leaders are highly charismatic.

Proposition 10 Suppose d+e+2αL > b+f+αC ,i.e. condition (5) holds and

there are at least two A-leaders to be placed. Then one way to maximize A play

is to place all B leaders in a cluster next to each other at the minimal possible

distance and place on each side of the cluster an A leader at the minimal

possible distance to the B leaders limiting the cluster.

Proof. If condition (5) holds, by Proposition 4 everybody will play the same

strategy as their closest leader. Hence A play is maximized by minimizing the

area of influence of B leaders.

If condition (5) is violated, A-play after the evolution of types can only

be achieved in steady state between two consecutive A leaders and requires

favorable initial conditions. Now, as per Remark 3 there is a first decision as

to the optimal distance between the A Leaders trading off the probability of
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converging to all A play and the area of influence of the consecutive A leaders.

Assume that the planner has solved this trade-off and call this optimal distance

h∗. Then the only remaining question is the relative position of the A Leaders

among themselves and other B Leaders.

Proposition 11 Suppose b+ f +αC > d+ e+2αL ≥ b+ f − 2(d−f+b−e)
k

. The

location of A Leaders which maximizes the possibility of A play is clustering

them next to one another at distance h∗.

Proof. Taking an A Leader which is surrounded by B Leaders and placing

her next to a cluster of A Leaders clearly increases the likelihood of steady

state A play. The reason is that an isolated A leader will never induce A play

but two consecutive A leaders might do so. Similarly, merging two clusters of

A Leaders increases the likelihood of A play at the new boundary between the

two clusters.

Clustering leaders of the same type always maximizes the probability of

the Pareto efficient outcome. However, the reasons for clustering and the

optimal distance between leaders depends on their charisma. If leaders are so

charismatic that everybody in their area of influence chooses their preferred

action, the area of influence of B leaders should be reduced to the minimum.

For less charismatic leaders A play requires clustering of A leaders at the

distance which optimally resolves the trade-off between the area of influence

of the A leaders and the probability of converging to all-A play.

7 Conclusion

We have postulated a game in which leadership and the following of norms

interact, in an environment where individuals play a coordination game with

local interaction. We find that the survival of Pareto efficient outcomes over

time is very dependent on clustering and on the existence and strength of

Leaders willing to support the actions leading to that outcome.

There are several important extensions that could be considered for this

model. We assume that people either follow the Leaders, or follow their peers.

Mixed motivations could be important. The extent of peer influence is limited
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to a small environment, which is consistent with the evidence about the cogni-

tive limitation on human relationships (the Dunbar numbers, see e.g. Dunbar

1992 and Dunbar and Shultz 2007). But we have focused on a particularly

simple network structure, where the evolution is relatively tractable. More

complex structures might produce interesting results. In particular, Leaders

that can reach different sizes of the population seem a worthwhile avenue for

future research. In the same vein, a model that allows for Leaders to influence

the size of their followership and compete with other Leaders for followers

seems like a fruitful avenue for future research.
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9 Appendix

9.1 Proof of the Claims leading to Proposition 1.

Claim 1: LF with a B leader always follows their leader choosing

strategy B.

Proof. It suffices to look at the most distant LF to her B leader who has a

payoff at least 1
k

(
bk
2
+ f k

2

)
+αL choosing B and at most 1

k

(
dk
2
+ ek

2

)
choosing

A, so from b+ f > d+ e strategy B is the best response.

Claim 2: All CF that are located in an area where at least one

of the leaders is a B leader choose strategy B.

Proof. Take a CF that is located next to a B-led region where all LF play

B by Claim 1. Her payoff from playing B is at least 1
k

(
bk
2
+ f k

2

)
+ αC

1
2
. Her

payoff from playing A is at most 1
k

(
dk
2
+ ek

2

)
+ αC

1
2
. Hence she will choose B

because b+ f > d+ e. By induction, all the CF next to a B-led region flip to

B.

Claim 3: Any B cluster of CF can invade the LF region of an

A leader till it hits the leader if d + e + 2αL < b + f and jump to

the LF followers on the other side of the leader if d + e + 2αL <
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b+ f − 2(d−f+b−e)
k

in which case all the LF of the A leader will switch

to strategy B.

Proof. We know that the most distant LF to her A leader facing a B cluster

invasion (from the left) has a payoff 1
k

(
dk
2
+ ek

2

)
+αL choosing A 1

k

(
bk
2
+ f k

2

)
choosing B, so from d+ e+ 2αL < b+ f she flips to playing B. By induction

this frontier keeps advancing until it hits the A leader. Now the LF to the

right of the A leader has a payoff d
k

(
k
2
+ 1

)
+ e

k

(
k
2
− 1

)
+ αL. Her payoff from

playing B is b
k

(
k
2
− 1

)
+ f

k

(
k
2
+ 1

)
so she flips if

d+ e+ 2αL < b+ f − 2 (d− f + b− e)

k

Claim 4: If d + e + 2αL ≥ b + f all LF with an A leader follow

their leader choosing strategy A.

Proof. Again it suffices to look at the most most distant LF to the A leader.

She has a payoff of at least 1
k

(
dk
2
+ ek

2

)
+ αL choosing A and of at most

1
k

(
bk
2
+ f k

2

)
choosing B, so from d+ e+ 2αL ≥ b+ f she stays playing A.

Claim 5: There is no stable configuration that is not a cluster of

all A or all B among CFs between two A leaders

Proof. Take a CF person that is in a sector with x A neighbors and k−x B

neighbors. The payoff of A is xd+(k−x)e
k

+αC
x
k
. The payoff from B is xb+(k−x)f

k
+

αC
k−x
k
. A is better than B if

x

k
>

(f − e) + αC

(d+ f)− (e+ b) + 2αC

(6)

Suppose 6 holds for an A sitting next to a B to the left of B. Then we will

show B wants to flip to A. Observe that the difference in the neighborhood

between A and B is that there is one person to the extreme left of A interval,

call it C that does not belong B′s interval and one person to the extreme right

of B′s interval that does not belong to A interval, call it D, and A has B as

a neighbor and B has A as a neighbor. Assume first that 6 holds.

Case 1. C is A and D is A.Then B has one more A neighbor than A, so B

wants to switch to A.
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Case 2. C is A and D is B. Then B has same amount of A neighbors than

A, so B wants to switch to A.

Case 3. C is B and D is A. Then B has two more A neighbors than A, so

B wants to switch to A.

Case 4. C is B and D is B. Then B has one more A neighbors than A, so

B wants to switch to A.By induction this unravels to all CF players between

two A leaders.

Suppose 6 does not holds for an A sitting next to a B to the left of B.

Then a analogous argument shows that A wants to flip to B. By induction

this unravels to all CF players between two A leaders.

9.2 Proof of Proposition 2

Suppose d+e+2αL < b+f− 2(d−f+b−e)
k

implying that everybody except for the

A−leaders chooses strategy B before the evolution of types.Then the LF next

to an A leader who played B will switch to a CF playing B because she does

not get any benefit from following the leader but gets benefits from following

the crowd that all play the same strategy. For the LF and CF closest to a B

leader, they choose to be LF by Lemma (1) iff αL > αC since xk = k because

all neighbors play B.

9.3 Proof of Proposition 3

Suppose b+ f > d+ e+ 2αL ≥ b+ f − 2(d−f+b−e)
k

. In this case, all the regions

playing B stay playing B but the CF playing B will invade the LF who play

B in regions next to an A leader because these LF don’t follow their leader

and choose B, so they are better following the crowd. All the players in an B

region that are closest to a B leader will become LF iff αL > αC since they

are surrounded by only all−B neighbors and becomes CF iff αL < αC .

Now we study what happens to the regions between two A−leaders that

converged to playing A before the evolution of types sets in.

Consider the first LF playing A next to an A Leader. She prefers staying
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LF playing A instead of switching to a CF playing B if

d

k

(
k

2
+ 1

)
+

e

k

(
k

2
− 1

)
+ αL >

b

k

(
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k
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+ e
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(
1

2
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k

)
+ f

(
1

2
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1

k

)
+ αC

(
1

2
− 1

k

)
d+ e+ 2αL > b+ f + αC

(
1− 2

k

)
− 2 (d− f + b− e)

k

She prefers switching to CF playing A instead of staying LF playing A

d

k

(
k

2
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)
+

e

k

(
k
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d

k

(
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2
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e

k

(
k

2
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)
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αC

k

(
k

2
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)
2αL < αC

(
1 +

2

k

)
which is equivalent to (3).

So the condition to stay a LF is

2αL > max{αC

(
1 +

2

k

)
, b+ f − (d+ e) + αC

(
1− 2

k

)
− 2 (d− f + b− e)

k
}

(7)

Notice that for that person being a CF playing B is worse than a CF

playing A if
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k
+

2 (d− f + b− e)
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which is (4).

1. Assume (2) holds and αL > αC which implies that (3) is violated. Then

everybody between two A Leaders becomes an LF playing A since LF -A

dominates CF − A even when all neighbors play A.

2. Assume (2) holds and (3) is violated. Moreover, αL < αC so that com-
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bined with (3) violated the parameter restriction becomes αC > αL >

(1
2
+ 1

k
)αC . In this case the CF playing A invade the LF regions but

do not take it over completely. The CF invasion stops at the biggest

distance k− y from the A (where y is the number of neighbors on the B

region of the A Leader.) satisfying αL > k−y
k
αC which guarantees that

condition (1) of Lemma 1 is satisfied.

3. Assume (3) holds and (4) holds. The CF playing A dominates both CF

playing B and LF playing A, so everybody will become CF playing A

4. Assume (2) and (4) are both violated. Then CF playing B dominates

both CF playing A and LF playing B, so the former all A region becomes

and all-B regions with all players between the A Leaders becoming CF

and play B

9.4 Proof of Proposition 4

Look at the B region boundary with an A LF who has to decide to switch to

CF playing B (she cannot switch to CF playing A because with half of the

neighborhood playing B a CF always plays B). That person stays LF if

1

k

(
d
k
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+ e

k

2

)
+ αL >

1

k

(
b
k

2
+ f

k

2

)
+ αC

1

2

d+ e+ 2αL > b+ f + αC

which coincides with (5). Under (5) all the CF players playing B next to an A

LF playing A decide to switch to A playing LF as long as their closest leader

is A since they face exactly the trade-off described to derive (5). When the

closest leader becomes B then the CF playing B have to decide whether to

become a LF playing B. The first one who is surrounded on one side by all B

players and on the other by all-A players, she compares

1

k

(
b
k

2
+ f

k

2

)
+ αL >

1

k

(
b
k

2
+ f

k

2

)
+ αC

1

2

b+ f + 2αL > b+ f + αC
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which definitely holds because b + f > d + e and (5) holds. The next player

compares

1

k

(
b
k + 1

2
+ f

k − 1

2

)
+ αL >

1

k

(
b
k + 1

2
+ f

k − 1

2

)
+ αC

k/2 + 1

k

so the frontier keeps advancing until xk

k
< aL

αC
= d∗ > 1

2
so that condition (1)

of Lemma 1 is violated.

If aL
αC

= d∗ > 1 this will never happen and then all CF playing B closest

to a B leaders will become LF playing B.

Proof. If (5) holds and αL > αC or equivalently d∗ > 1 the A LF will advance

as long they are closest to an A leader and everybody closest to a B leader

becomes an LF playing B. All areas between two A leaders are converted two

A-LF who either invade the former B − CF area (since (5) holds) or the

former A−CF area (since αL > αC) located in the middle between these two

A leaders. All players located between two B leaders are surrounded by only

B neighbors and will become B − LF since αL > αC .

If (5) holds and αL < αC or equivalently d∗ < 1 then at the frontier of and

A LF area with an B-CF area the A LF will invade the neighboring B −CF

players as long they are closest to an A leader and players closest to a B leader

play B. Those with the closest B-leader closest to the frontier of the all A area

so that xk

k
> d∗ are LF playing B. And all the others with a closest B leader

are CF playing B. Everybody located between two leaders of the same type

will become a CF playing the strategy of its nearest leader since αL < αC and

the leader is always surrounded by players playing the same strategy as the

leader in the coordination game.

If (5) does not hold, then the A LF switch to B CF until we hit the A

Leader. From that point on, the analysis that we did in the previous proposi-

tion holds.

32


