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1 Introduction 

Learning in classifier systems (CSs) can be pursued in two broad classes of 

problems. One distinctive feature of these classes is the nature of the assumed 

relationship between consecutive input vectors (or states ofthe world) in the data stream. 

say z(t) and Z(H1). In the most general case. the distribution of Z(H1) depends on both 

z(t) and the particular action(s). say u(t). taken by the system upon observation of z(t). 

An often encountered case further assumes that z(Hl) is completely determined by z(t) 

and u(t). The problem faced by the CS here is essentially a control problem: given z(t) -­

and possibly the messages posted in the internal memory or message list --o the system 

must learn to activate the particular u(t) that renders either direct reward oro more 

typically. sorne "profitable" state z(t+1). State z(t+1) is profitable in that it makes it 

possible for the system to visit a series of states leading to reward. yet this reward may be 

unreachable if a different u(t) is chosen. Hence. this framework brings up the issue of 

sensible credit apportionment. that is. the problem of promoting rules that "set the stage" 

but do not attain reward directly. 

On the other hand. in stimulus-response (S-R) problems. the sequence of input 

vectors Z= (z(l). z(2).... } is assumed exchangeable. that is. the distribution of Z is the 

same regardless of the order in which the z(i) are arranged. Altematively. given the 

knowledge of the generating probability distribution F. the components of a finite 

segment Z(t)={z(l). z(2)..... z(t)} are assumed conditionally independent with identical 

distribution F. Thus. in contrast with the control problem. here z(t) is informative about 

Z(H1) only in that. together with all previous z(t-l). z(t-2)•...• it helps to mitigate the 

uncertainty about F. Since the message list is so much rooted on the idea of recency and 

this is a vírtually meaningless notion in exchangeable sequences. it is not obvious how to 

incorporate a useful message list in this context. AIso. because there are no stage-setting 

rules. the credit apportionment problem is much simpler than in control problems. For 

these reasons. CSs addressing the S-R problem are easier to analyze and usually 

constitute the first testbed for developing ideas. 

- ------------------------------------¡------­
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In this paper, we focus on sorne basic dirnensions to the general S-R problern. In 

this problern, input z is split into two components -- referred to as stirnulus and response 

respectively, say z=(x,y) -- and the CS rnust solve aprediction problern: for any given x, 

it rnust learn to provide a good approxirnation to the associated y. For sirnplicity, 

univariate responses are assurned throughout. If the response is categorical, the 

fonnulation corresponds to a standard c1assification problern. If the response is 

continuous, the analysis is usually carried out in the context of function approxirnation. 

Traditionally, stirnuli have been represented as binary strings of fixed length. Often 

the stirnulus vector is rnade up of several features or predictors. While continuous 

predictors can be encoded as substrings and concatenated together with discrete 

predictors, it is well-known that hiperplanes are simply not well suited to function 

approxirnation problerns (the resulting representation becoming too fragrnented). A 

nurnber of altemative schernes borrowing frorn fuzzy logic theory have been proposed to 

deal with this situation. These schernes either use bit strings to encode rnernbership 

functions or handle rnernbership functions directly in both the condition and action part of 

c1assifiers, and sorne successes have been reponed in problerns ofrncxlerate cornplexity, 

(Valenzuela-Rendón, 1991), (Parodi and Bonelli, 1993), (Carse and Fogarty, 1994). 

Learning is accornplished via the standard CS rnechanisrns. However, an altemative 

architecture, also based on fuzzy reasoning but exhibiting monotonic learning, has 

proved superior to a CS in a larger c1assification problern, (Carpenter, Grossberg, 

Markuzon, Reynolds and Rosen, 1992). Moreover, the radial basis function neural 

rncxlel has been recently shown to bear sorne resernblance with the fuzzy CS approach 

and rnay bring about yet additionallearning algorithrns (Jang and Sun, 1993). 

It appears then that further evaluation of the relative rnerit of these representation 

schernes and learning algorithrns is rnuch needed, especially in connection with the type 

of problern being faced. For exarnple, the analysis of large rnasses of data exhibiting 

only "weak" (or stochastic) regularities and lots of noise seerns of forernost interest, if 

only because appropriate tools are scarce -- see (Muruzábal and Muñoz, 1994) for ~ 

sirnulation study. It is our working hypothesis that CSs have a great potential in this area 
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-- addressing pattern extraction objectives as c1ass identification, dependency analysis or 

deviation detection in a highly robust way, (Matheus, Chan and Piatetsky-Shapiro, 1993) 

--, yet, in order to achieve the best efficiency, the basic algorithm probably needs to be 

enhanced. Sorne of such possible enhancements in the S-R context are the subject of this 

paper: while we focus throughout on representation issues, we will also consider briefly 

the cooperation with another learning procedure and the addition of a new triggered rule 

discovery mechanism. 

The organization is as follows. Section 2 discusses the general S-R problem. 

Section 3 reviews sorne fuzzy CSs. Section 4 is concerned with probabilistic ideas. 

Finally, section 5 summarizes the material and proposes sorne directions for research. 

2 The general S-R problem 

All CSs cany out induction by evolving a population of predictive rules called 

c1assifiers {Cj}. All c1assifiers have the same basic structure: "IF Qj, TIIEN Rj (WITH 

STRENGTII Sj)". The scalar quantity Sj summarizes the c1assifier's previous success. 

While a variety of choices are available for the Q and R substructures, the performance 

subsystem is always the same: a classifier is activated when an incoming x(t) "excites" 

condition or category Qj, suggesting Rj as "expected response" or prediction. Beliefs Rj 

from activated c1assifiers are then combined in sorne way -- observing the respective 

strengths -- to yield the system's overall prediction R+. 

The learning system can also be described succinctly. Reinforcement proceeds at 

each step on the basis of the actual response y(t), with the result that those rules currently 

providing the best predictions tend to raise their strength. In addition, new c1assifiers 

(based on the genetic and other heuristic algorithms) replace low performance rules in the 

population. Such mechanisms act either periodically or in a steady-state fashion or when 

sorne triggering conditions are meto 

To elaborate further into the nature of the problem, write the underlying joint 

distribution F=F(x,y) as the product ofthe marginal distribution G(x) and the conditional 
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distribution H(y/x). Different S-R problems follow from assuming different G and H 

distributions as follows. In function approximation. for example. G is usually uniform 

and all H are deterministic. that is. the same response is observed whenever the same 

stimulus is presented (Wilson, 1987), (Bonelli. Parodi, Sen and Wilson, 1990), 

(Valenzuela-Rendón, 1991), (Parodi and Bonelli, 1993). While the various systems 

involved in these works solve the problems they are confronted with, the question 

typically remains about scale-up factors. For a discussion of the efficiency of S-R ess in 

boolean function learning problems, see (Liepins and Wang, 1991). 

An interesting frrst variation occurs when the H distributions are still degenerate but 

Gis no longer uniformo that is. sorne stimuli show up less often than others. Unless 

special care is taken. c1assifiers "attending" to the atypical data will tend to be 

overwhelmed by those attending to the mainstream data. simply because the latter are 

rewarded more often and hence have a better chance to proliferate. Ultimately. of course. 

the best design decision will depend on the importance of predicting such atypical data 

correctly. In general. the issue of implicit niching in ess is a delicate one which has 

begun to be rigorously approached only recently. (Horn. Goldberg and Deb. 1994). 

In many applications. interest is often paid to the case where. in addition to 

nonuniform G. H'distributions are no longer degenerate: two identical stimuli may have 

different responses -- see (Bonelli and Parodio 1991) for an example in a medical 

diagnosis problem. We then say that the es faces an uncertain problem. This 

uncertainty may be inherent to the problem. or it may be partially explained by one or 

more "responsible" predictors left out of the stimulus. 

On the other hand. it is often reasonable to assume that responses associated to 

certain stimuli present all the same stochastic behavior (sorne predictors may be simply 

irrelevant). For example. in the car insurance business. Siebes (1994) analyzes the 

problem of finding groups of c1ients that share the same probability of filing a c1aim in a 

given time periodo The important point is that we are now interested in finding useful 

partitions in stimulus space. reproducing the training data perfectly does not make sense. 

Specifically. the implicit assumption is that there exist disjoint Xr (r=1 .... , L) such that. 
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whenever XE Xr , H(y/x)=H(y!Xr); in óther words, there are only L distinct pattems of 

response (or niches) covering the entire sampling space. We sometimes refer to the 

partition {Xr} as being sufficient in this sense. In the binary response problem just 

discussed, each of the H(Y!Xr) corresponds to a different Bemouilli parameter, say Pro 

This distribution reflects in general the best prediction that can be attached to the various 

stimuli lying in Xr. 

Uncertain problems and uncertainty measuring are of course not new in es 

research. Goldberg (1990) analyzes the behavior of a simple es when 1..=1, responses 

follow independent Bemouilli distributions with parameter p, and the system is endowed 

with just two c1assifiers (predicting Oand 1 respectively). It tums out that the es 

exhibits probabiliey matching behavior, that is, the system predicts 1 about 100p% of the 

time. In this sense, ess measure uncertainty implicitly (via the strengths). Related ideas 

can be found in (Holland, Holyoak, Nisbett and Thagard, 1986; section 6.2.2). In this 

paper, we will be concemed instead with explicit representations of uncenainty. 

It may well be the case that not all stimuli have predictable responses, that is, sorne 

of the H(Y!Xr) may be relatively flat (or uninformative); if the response were binary, that 

would be the case when sorne of the Pr are 1/2. Naturally, we would like to bias the 

system so that the informative components are favored. AIso, as mentioned earlier, sorne 

stimuli may occur rarely. If such stimuli can be safely ignored, the primary task of the 

es facing an uncenain problem consists of organizing a population of c1assifiers such 

that all regions in stimulus space that have relatively high probability under G and exhibit 

exploitable regularities (in terms of relatively sharp H distributions) are simultaneously 

covered. Once such regions are reasonably approximated, the system must also 

determine as c10sely as possible the quantitative aspects of such regularities. 

Depending on the particular representation scheme used, it may be possible to 

capture each regularity with a single c1assifier, but this seems too demanding in general. 

In other words, each of the informative Xr must be approximated by (a subset 00 the 

available categories Qj, and each of the associated distributions H(Y!Xr) must be 

approxima:ted in tum by (a subset 00 the available Rj. Thus, besides the obvious 
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coupling between the Qj and the Rj, weak cooperation must also occur amongst 

classifiers, (Horn et al., 1994). The task is of course complicated by the fact that sorne 
, 

i 
useful Qj may not be reinforced appropriately because they are coupled to the wrong Rj. 

I 

As discussed below, this problem may be aHeviated to sorne extent by allowing 

classifiers to be modified dynamically (beyond the usual strength revision process) by the 

data they "filter out". 

A source of theoretical complication relates to identifiability of the various 

(infonnative) H distributions. For an illustration of these complications, see ego (Siebes, 

1994). It is clear, however, that the number of niches is of no direct concern to the work 

of the ess, so no special attention needs to be paid to this point until we are in a position 

to prove theorems about their behavior. 

Many inductive systems other than ess work on the basis of these or similar 

assumptions. Tree-oriented systems like eART, ID3 and their offspring, for example, 

build up a strict partition in essentially a top-down way, for which they require the entire 

data set at hand. In the next sections we consider sorne eS-based alternatives that attempt 

to approximate the "trUe" partition in a bottom-up way without having to record aH data. 

We will also examine the extent to which these systems can provide useful surnmaries of 

uncenainty. 

3 Fuzzy knowledge structures in S-R c1assifier systems 

In this section we examine the fuzzy approach to ess in the S-R problem. We do 

not consider learning mechanisms so much as we focus on representation issues and 

performance subsystems: how is information represented and how is used to provide 

predictions. While the following original work addresses the multivariate case, we 

assume xe Rn and ye Ras mentioned earlier. We review fifst the work of Parodi and 

Bonelli (1993), hereafter P&B. 

P&B propose the following fuzzy es for learning a functional relationship between 

x and y. Each classifier Cj consists of n+1 membership functions (mapping R into the 
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c10sed unit interval). The first n, say mji, i=I,2, oo., n, form the condition pan or fuzzy 

category Qj; the (n+l)th function, mjo say, constitutes the action pan or fuzzy prediction 

Rj,j=I,,,.,J. All mji share the same basic shape, so they are determined by their 

respective centers CjiE Rn and widths Wji>O, i=O,I,... ,n. They can have, for example, 

the familiar gaussian form 

P&B actually use symmetric triangular functions. An input vector x=(xl,.",xn) 

"excites" c1assifier j to the extent given by the fuzzy AND operator applied to its condition 

pan; P&B use 

the altemative 

e; = rrmjj(x¡); 
;=1,...... 

is sometimes considered. Each c1assifier produces an output function Oj defined as Oj = 

ej mjo; the system's overal1 output function is computed as the weighted average of such 

functions 

A point prediction is obtained by simply taking the centroid of o (other mechanisms 

are possible as wel1, see below). 

Jang and Sun (1993) note that, under cenain conditions, fuzzy inference systems 

like P&B's fuzzy es are functionally equivalent to a simple radial basis function (RBF) 
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network (Poggio and Girosi, 1989), namely, a network consisting of J receptive 

neurons, aH of which receive input x and feed forward to a single output neuron. The 

output of receptive neuron j is computed according to a multivariate gaussian 

where Xj and O>j are the neuron's parameters, and D(O>j) is the diagonal matrix with 

entries the squares of the O>j- In a simple implementation, the network's output is 

computed as the weighted sum 

where fj is the (adaptive) function value associated with each receptive neuron. 

Parameters Xj and Wj are typically fixed beforehand using sorne clustering algorithm; 

simultaneous learning of the Xj and the fj is addressed more rarely. 

P&B's fuzzy es is then functionally equivalent to the simple RBF network 

provided (i) gaussian membership functions are used in the antecedent of c1assifiers; (ii) 

the excitation function is taken to be e*; (iii) all Wji (i=1,... ,n) are the same for each j; and 

(iv) mjo(y)=Cjo for all y and for aH j; (of course, aH strengths Sj should be fixed and 

equal to 1). As noted by Jang and Sun, this equivalence makes it possible to exchange 

terminology, results or even learning algorithms between the two paradigms; we can talk 

freely, for example, of receptive fields when referring to the c1assifiers' antecedents. 

Let us briefly comment on these conditions next. The frrst two clearly refer to 

choices to be made; criteria to guide these choices seem presently unclear. P&B suggest 

that gaussian membership functions may yield smoother fits to continuous mappings. 

Other authors consider yet different membership functions, see ego (Valenzuela-Rendón, 

1991). It is likely that performance is relatively robust under these options, although a 

systematic study may be in order. Expressing a preference between e and e* does not 

seem easy either. This choice can perhaps be related to the amount of noise anticipated in 
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the data: function e* might seem more resistant to outliers in that a single "misplaced" 

coordinate in an input vector -- otherwise close to sorne receptive field center -- has the 

same effect on a classifier than a really distant vector. 

The last two conditions do extend in principIe the scope of the RBF network. 

Generalizing (iii) seems useful in that allows modelling of differently shaped receptive 

fields. In a similar fashion, replacing D(coj) by an arbitrary positive definite matrix in Ej 

goes one step further to allow for arbitrary correlation among input coordinates, yet it will 

be computationally prohibitive unless n is small. It is well known in cluster analysis that 

decorrelating the entire set of input vectors before learning is not helpful in general, so 

P&B's choice seems to strike a reasonable balance between complexity and flexibility. In 

their paper, however, they argue that the centers are the really decisive entities and keep 

the widths fixed, thereby moving closer to the generalized RBF approach discussed in 

(Poggio and Girosi, 1989; section 5.2). This simplification makes extension (iv) perhaps 

hardest to justify. 

A related framework is proposed by Valenzuela-Rendón (1991). As P&B's fuzzy 

es, his system also combines ideas from fuzzy logic and classifier systems. The main 

difference is that the set of membership functions that classifiers can use for each 

individual input (or output) coordinate is restricted to the set of arbitrary fuzzy OR 

functions (defined by simply replacing "min" with "max" in the right hand side of ej 

aboye) that can be constructed from a finite "basis" of M prespecified membership 

functions (whose peaks are equispaced along the range of that coordinate). For example, 

when M=5, condition (10001) represents a bimodal function yielding high excitation 

when the associated input coordinate presents either very low or very high values. This 

is a potentially interesting possibility not available in P&B's system. Unfonunately, 

Valenzuela-Rendón does not discuss whether his fuzzy es does indeed use bimodal 

conditions on input variables when it would be economical to do so -- he tests out, for 

example, the symmetric map y=4(x-.5)2. 

As regards the output, each classifier posts a (fuzzy) message identical to the string 

in its consequent parto Each of such messages carries along an activity level which 
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depends on both the excitation value (computed via the e function as discussed aboye) 

and the strength of the c1assifier that posted it. The system's output is produced by first 

transforming the previous set of messages into a set of equivalent minimal messages (ie., 

strings that contain a single ti} ti), whose activity levels are obtained by adding up the 

activity levels of the original messages that tlcontaintl them. A fuzzy OR operation is then 

performed on the set of basic membership functions multiplied by their associated activity 

levels. Crisp output is obtained as the centroid of the resulting function. 

As an aside, Furuhashi, Nakaoka and Uchikawa (1994) build on Valenzuela­

Rendón's representation but only al10w minimal conditions for each input coordinate. 

They tackle a control problem in a novel way by connecting several fuzzy es in series, 

that is, the output of one system becomes (part of) the input to the next system; only the 

last system is directly involved with decision making. They study the behavior of the 

joint system when information is transferred from es to es via both fuzzy messages and 

crisp values. Their results suggest that defuzzification is required to achieve learning. 

Note that, in contrast with the standard es representation, neither of the aboye 

systems al10ws for wildcard characters in the syntax of their c1assifiers' receptive fields. 

However, were the widths of membership functions al10w to evolve, wildcards could be 

implicitly implemented via diverging widths. 

4 The role oC probability distributions in uncertain S-R 

problems 

In section 2 we argued that uncertain S-R problems differ markedly from the more 

common function approximation ones in that there is no necessarily a single best point 

prediction and we are interested instead in accurate summaries of uncertainty. In section 

3 we discussed sorne proposals incorporating fuzzy logic ideas into the S-R es 
architecture. These proposals treat the condition and action part of c1assifiers in exactly 

the same way, a decision for which no supporting arguments are provided. In our view, 

fuzzy logic seems quite useful in the antecedent part of c1assifiers: it allows for sensible 
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handling of continuous data, introducing an easily interpretable notion of partial 

matching. In contrast, fuzzy sets may not be the best choice at the right side of the 

arrow. An obvious question refers to the precise meaning of membership functions 

when looked at as predictive statements. More specifically, what quantitative sense can 

we make out of their widths with regard to prediction? At least in uncertain problems, 

probability distributions may have an advantage over fuzzy predictions on the following 

grounds: 

• They constitute a readily interpretable measure of uncertainty from which a variety of 

conc1usions can be extracted. For example, in clinical trials we are not only interested in 

the average survival time but also in the probability of survival beyond certain point. 

Similarly, we can construct predictive intervals with given coverage probability reflecting 

faithfulIy the underlying tail behavior. Because membership functions are not easily 

interpretable in probabilistic terms, it is not clear how to draw similar inferences from 

fuzzy predictions. 

• There exists a vast catalogue of probabilistic results and techniques that can be brought 

into play to our advantage. For example, we will discuss below how coherent, on-line 

updating of beliefs can be accornmodated as an additionallearning mechanism in CSs. 

We briefly review now a prototypical system, called PASS, incorporating 

probability distributions Rj in classifiers, (Muruzábal, 1993). Because this system has 

been so far primarily concemed with boolean stimuli, it sticks to the traditional schema­

based representation of receptive fields, which means that c1assifiers either are or are not 

excited by any given input. In addition, a subset of winning c1assifiers is selected among 

those excited -- an idea emanating from the original interest in default hierarchies, (Riolo, 

1989). With this exception, the performance subsystem is basically the same as above: 

the system's overall predictive distribution R+ is obtained as a mixture of the selected 

distributions Rj weighted by their respective strengths. 
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How are such distributions represented? Reported experiments involve discrete 

distributions spreading mass over a "small", connected subset of the response range. For 

example, if 10 bits were used to depict this range, a prediction would be encoded as two 

structures, namely, a binary vector of length 10 with at most k contiguous ones (selecting 

k equispaced subintervals as the support of the distribution), and a set of k associated 

probabilities(kS4, say, is a system parameter). This representadon is related to 

Valenzuela-Rend6n's approach discussed earlier, yet the contiguity restriction implies in 

effect that each c1assifier can only describe a unimodal distribution. Unimodal 

distributions mean no constrain in principIe because they might be combined to yield 

bimodal predictions when needed. However, Muruzábal points out that the required 

speciation and cooperation phenomena do not occur frequently in practice, so more 

general families of distributions may be needed. 

Another peculiarity of this system is the ability to dynamically modify individual 

classifiers as data are processed. Following the spirit of the original es architecture, 

most systems rely on strength updating and rule recombination as sole leaming 

mechanisms. It is sometimes argued, however, that ess may greatly benefit from a more 

active processing of the data stream. In PASS, two related, non-standard procedures 

have been implemented so faro They are briefly described as follows. 

The first procedure updates the set of probabilities comprising a given RJ At the 

outset, each of these distributions is initialized as the uniform distribution over its support 

(whose location is itself initialized at random and remains fixed throughout). Any 

incoming response -- whose stimulus excited the c1assifier -- may or may not fall on this 

support. When it does, the probability of the particular subinterval containing the 

response is incremented slightly. In the long run, the resulting set of probabilities reflects 

the (truncated) distribution of the responses witnessed by the c1assifier. Hence, a useful 

receptive field Qj enjoys sorne time to have its prediction corrected. This effect would be 

more important if the support were allowed to evolve or were equal to the entire response 

range (see below). 
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The seeond procedure enables an individual c1assifier to temporarily remember data 

which proved it wrong (that is, the stimulus satisfied the schema, but the response fell 

outside the support). This form of mid-term memory is implemented as a (small) buffer 

attached to each c1assifier. When the buffer is filled up, a special-purpose operator is 

triggered to scan its contents in search of additional regularities. Were these detected, 

new classifiers depicting them would be injected into the population -- see (Muruzábal, 

1993) for details. In any case, the list is emptied after each callo While this operator 

signifies an additional burden on the system, it seems very helpful in preliminary 

experiments. For example, using 6-bit precision Gray code for stimuli, PASS can solve 

(a stochastic version 00 the y=x problem with 40 c1assifiers in about 2,000 trials; this 

compares very favorably with the results reported in (Valenzuela-Rendón, 1991) and 

(Parodi and Bonelli, 1993). 

Departing slightly from Muruzábal's work, but continuing along the same line,
 

assume now that the conditional distributions H(Y/Xr) can be approximated by (mixtures
 

00 densities of sorne fixed parametric form <I>(y/e), with e in sorne 8. When viewed as
 

a function of e, <I>(y/e) is called the likelihood function; typically, the support of <I> will
 

be the entire response range. Once "correet" approximating schemata are found, the
 

system faces the problem of inferring the best parameter choice, say ej, in each case.
 

The multinomial family is an irnmediate generalization of Muruzábal's discrete case, 

although we will use a continuous family for illustration. As originally suggested by 

Lane (1992), the idea of updating the c1assifier's predictive distribution can be 

implemented in a fully coherent way by adopting a bayesian approach. To do this, we
 

only need to specify a prior distribution for each ej, say 1tj(e), and set up the equation
 

describing the transition from prior to posterior, narnely
 

This posterior surnmarizes our uncertainty about ej after each datum is received. The
 

process is repeated iterative/y -- the posterior after the ith response playing the role of
 

______________1 
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prior for the next response --, and in paraUe/, but of course c1assifiers are exposed to 

different responses. The distribution Rj after data Dj=(Yl, Y2, ... , Yd} have been 

processed is given by 

It is acknowledged that these calculations may be too demanding in general. The 

usefulness of the approach relies on the existence of suitable choices for likelihood and 

prior from which c1osed-form formulae can be derived and "hard-wired" into the system. 

For example, if we assume cI> to be a gaussian distribution with mean Il and variance t, 

and if the usual (non-informative) prior 7t(S)=7t(Il,t) oc lit is chosen, then the posterior 

given Dj is 

where SSy =±(Yi - y)2, and y =.!.±Yi' Upon integration, the predictive distribution 
i:1 d i=1 

is well-known to be of t type, so the system's overall prediction R+ would be a weighted 

mixture of t distributions. 

In practice, once the likelihood has been decided upon, the analysis will often be 

based on its conjugare family, that is, a family such that, if the prior is a member thereof, 

so is the posterior (and simple updating formulae exist for the hyperparameters). In the 

example aboye, it is easy to show that the conjugate farnily is precisely the gaussian­

inverted-garnma family whose basic form is given by 7tj(S/Dj) aboye. Of course, the 

initial prior is eventually overwhelmed by the data, so the particular member chosen to get 

the process started is in no way crucial. When an increasingly sharp posterior obtains as 

d increases, we can aIternatively consider predictive distributions of the form 

Rj (y) = cI>(y I 9), where 9 is, for example, the posterior mean. 
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Note the local character of the present bayesian mechanism. It is in contrast to other 

proposaIs which use bayesian ideas to globally organize the knowledge base (the 

minimum description length principIe, for example, adrnits an interpretation of this son). 

Aside from computational complexity issues, global organization ideas may seem too far 

away from the es spirit. 

FinaIly, note aIso that the previously discussed idea of remembering a few data 

pairs can aIso be incorporated into this formulation. For each excited c1assifier, define 

the score of any given response y* as the value Rj(Y*). Then, an observation would be 

deemed an exception (wonh remembering) whenever its score fell below certain 

threshold. IncidentaIly, Rj(Y*) should prove a useful quantity in the assignment of 

individual c1assifier reward. 

5 Surnmary and concluding remarks 

Learning in uncertain S-R problems may be accelerated by letting data "mold" 

classifiers while the standard learning procedures act on the population. This is an 

attempt to increase the power of ess by providing c1assifiers with additional processing 

abilities. It is not intended to downplay the importance of triggered rule discovery in ess 

(Booker, 1989); in fact, both sets of ideas are expected to coexist and benefit each other. 

We have reviewed sorne fuzzy ess and discussed their connection with the RBF 

neural model. The learning task faced by fuzzy ess is harder than that typically taken up 

in the neural setting. This suggests that sorne molding process of the envisaged son may 

be crucial to achieve successfullearning in a reasonable time span. It is proposed that 

probability distributions can be treated in general in a way akin to fuzzy sets in the 

consequent part of c1assifiers, providing also a potentially more useful interpretation. In 

addition, to the extent that bayesian updating can be blended in at a reasonable 

computational cost, probability distributions allow for an interesting implementation of 

the suggested refinement. An empirical test of these ideas is caBed foro 
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We conclude with sorne extensions and open questions. Probability disnibutions 

and local bayesian learning can also be considered in principIe when the response is 

multivariate, although the increase in memory and computationaIload should be 

monitored carefully. It would be interesting to determine whether certain dependencies 

among response components can be learned probabilistically, for the current form of the 

fuzzy representation presents a number of limitations in the multivariate case, cf. (Parodi
1 

and Bonelli, 1993). Once again, the tradeoff between accuracy and computationaI effort 
11 

i,l
I needs to be anaIyzed in depth.11 

;11 

111 

i'l

I1 
Tough competition to the CS-based family of inductive systems is coming aIso 

li ' 

from next door!: sorne recent advances in genetic programming (Gathercole and Ross,
lit 

1994) stress the fact that CSs currently lack the ability to create new predictors and, 
I 

therefore, may be handicapped in problems involving relatively complex patterns of 
I 
I interaction among predictors. Future CSs should perhaps try to make their job easier by 
I 
I incorporating operators that propose tentative transformations. Can we do any better thanI! 

1, 

11: 

the random strategy found in genetic prograrnming? 
I11 
, 

1 Finally, how should we proceed when we have predictors ofboth categorical and
lli 
' 

I11 continuous type? Can we paste boolean and fuzzy representations in a graceful way? 
'IJ 

l'li 
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