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Abstract

Sobolev orthogonal polynomials with respect to measures supported on compact
subsets of the complex plane are considered. For a wide class of such Sobolev orthog-
onal polynomials, it is proved that their zeros are contained in a compact subset of
the complex plane and their asymptotic zero distribution is studied. We also find the
nth root asymptotic behavior of the corresponding sequence of Sobolev orthogonal
polynomials.

§1. Introduction

1. Let {µk}m
k=0 be a set of m + 1 finite positive Borel measures. For each k = 0, . . . ,m

the support S(µk) of µk is a compact subset of the complex plane IC. We will assume that
S(µ0) contains infinitely many points. If p, q are polynomials, we define

〈p, q〉S =
m∑

k=0

∫
p(k)(x)q(k)(x)dµk(x) =

m∑

k=0

〈p(k), q(k)〉L2(µk) . (1)

As usual, f (k) denotes the kth derivative of a function f and the bar complex conjugation.
Obviously, (1) defines an inner product on the linear space of all polynomials. Therefore, a
unique sequence of monic orthogonal polynomials is associated to it with a representative
of each degree. By Qn, we will denote the corresponding monic orthogonal polynomial of
degree n. The sequence {Qn} is called the sequence of general monic Sobolev orthogonal
polynomials relative to (1).

Sobolev orthogonal polynomials have attracted considerable attention in the past
decade, but only recently there has been a breakthrough in the study of their asymp-
totic properties for sufficiently general classes of defining measures. In this connection, we
call attention to the papers [4], [5], and [7], in which the first results of general character
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where obtained regarding nth root, ratio, and strong asymptotics, respectively, of Sobolev
orthogonal polynomials with respect to measures supported on the real line. The corre-
sponding problems for the case when the measures are supported on arbitrary compact
subsets of the complex plane has not yet been studied.

In this paper, we deal with the nth root asymptotic behavior; therefore, we will only
comment on [4]. In that paper, for measures supported on the real line and with m = 1, the
authors assume that µ0, µ1 ∈ Reg (in the sense defined in [10]) and that their supports are
regular sets with respect to the solution of the Dirichlet problem. Under these conditions,
they find the asymptotic zero distribution of the zeros of the derivatives of the Sobolev
orthogonal polynomials and of the proper sequence of Sobolev orthogonal polynomials
when additionally it is assumed that S(µ0) ⊃ S(µ1). In [6], these questions were considered
for arbitrary m and additional information was obtained on the location of the zeros which
allowed to derive the nth root asymptotic behavior of the Sobolev orthogonal polynomials
outside a certain compact set.

The object of the present paper is to extend the results of [6] to the case when the
measures involved in the inner product are supported on compact subsets of the complex
plane. Under a certain domination assumption on the measures involved in the Sobolev
inner product, we prove in section 2 that the zeros of general Sobolev orthogonal polyno-
mials are contained in a compact subset of the complex plane. For Sobolev inner products
on the real line, we also study in section 2 the case when the supports of the measures are
mutually disjoint and give a sufficient condition for the boundedness of the zeros of the
Sobolev orthogonal polynomials. Section 3 is dedicated to the study of the asymptotic zero
distribution and nth root asymptotic behavior of general Sobolev orthogonal polynomials.
For this purpose, methods of potential theory are employed.

2. In order to state the corresponding results, let us fix some assumptions and addi-
tional notation. As above, (1) defines an inner product on the space P of all polynomials.
The norm of p ∈ P is

‖p‖S =

(
m∑

k=0

∫
|p(k)(x)|2 dµk(x)

)1/2

=

(
m∑

k=0

‖p(k)‖2
L2(µk)

)1/2

. (2)

We say that the Sobolev inner product (1) is sequentially dominated if

S(µk) ⊂ S(µk−1) , k = 1, . . . , m ,

and
dµk = fk−1dµk−1 , fk−1 ∈ L∞(µk−1) , k = 1, . . . , m .

For example, if all the measures in the inner product are equal, then it is sequentially
dominated. The concept of sequentially dominated Sobolev inner product was introduced
in [6] for the real case (when the supports of the measures are contained in the real line).

Theorem 1 Assume that the Sobolev inner product (1) is sequentially dominated, then
for each p ∈ P we have that

‖xp‖S ≤ C‖p‖S (3)

where
C ≤ (2[C2

1 + (m + 1)2C2])1/2 , (4)
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and
C1 = max

x∈S(µ0)
|x| , C2 = max

k=0,···,m−1
‖fk‖L∞(µk) .

As usual, two norms ‖·‖1 and ‖·‖2 on a given normed space E are said to be equivalent
if there exist positive constants c1, c2 such that

c1‖x‖ ≤ ‖x‖ ≤ c2‖x‖ , x ∈ E.

If a Sobolev inner product defines a norm on P which is equivalent to that defined by a
sequentially dominated Sobolev inner product, we say that the Sobolev inner product is
essentially sequentially dominated. It is immediate from the previous Theorem that
a Sobolev inner product which is essentially sequentially dominated also satisfies (3) (in
general, with a constant C different from (4)). Whenever (3) takes place, we say that the
multiplication operator is bounded on the space of all polynomials. This property implies
in turn the uniform boundedness of the zeros of Sobolev orthogonal polynomials.

Theorem 2 Assume that for some positive constant C, we have that ‖xp‖S ≤ C‖p‖S , p ∈
P. Then, all the zeros of the Sobolev orthogonal polynomials are contained in the disk
{z : |z| ≤ C}. In particular. this is true if the Sobolev inner product is essentially
sequentially dominated.

In a recent paper, see Theorem 4.1 in [9] (for related questions see also [1]), the
author proves for a large class of Sobolev inner products supported on the real line that
the boundedness of the multiplication operator implies that the corresponding Sobolev
norm is essentially sequentially dominated. Therefore, in terms of the boundedness of the
multiplication operator on the space of polynomials, we cannot obtain more information
on the uniform boundedness of the zeros of the Sobolev orthogonal polynomials than that
expressed in the theorem above. It is well known that in the case of usual orthogonality
the uniform boundedness of the zeros implies that the multiplication operator is bounded.
In general, this is not the case for Sobolev inner products as the following result illustrates.
In the sequel, Co(K) denotes the convex hull of a compact set K.

Theorem 3 For m = 1, assume that S(µ0) and S(µ1) are contained in the real line and

Co(S(µ0)) ∩ Co(S(µ1)) = ∅.

Then, for all n ≥ 1 the zeros of Q′
n are simple, contained in the interior of Co(S(µ0) ∪

S(µ1)), and the zeros of the Sobolev orthogonal polynomials lie in the disk centered at the
extreme point of Co(S(µ1)) further away from S(µ0) and radius equal to the diameter of
Co(S(µ0) ∪ S(µ1)).

The statements of this theorem will be complemented below. As Theorem 3 clearly
indicates, Theorem 2 is far from giving an answer to the question of uniform boundedness
of the zeros of Sobolev orthogonal polynomials. The main question remains; that is,
prove or disprove that for any Sobolev inner product compactly supported the zeros of
the corresponding Sobolev orthogonal polynomials are uniformly bounded. This question
is of vital importance in the study of the asymptotic behaviour of Sobolev orthogonal
polynomials.
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3. We mention some concepts needed to state the result on the nth root asymptotic
behaviour of Sobolev orthogonal polynomials. For any polynomial q of exact degree n, we
denote

ν(q) :=
1
n

n∑

j=1

δzj ,

where z1, . . . , zn are the zeros of q repeated according to their multiplicity, and δzj is
the Dirac measure with mass one at the point zj . This is the so called normalized zero
counting measure associated with q. In [10], the authors introduce a class Reg of regular
measures. For measures supported on a compact set of the complex plane, they prove that
(see Theorem 3.1.1) µ ∈ Reg if and only if

lim
n→∞ ‖Qn‖1/n

L2(µ) = cap(S(µ))

where Qn denotes the nth monic orthogonal polynomials (in the usual sense) with respect
to µ and cap(S(µ)) denotes the logarithmic capacity of S(µ). In case that S(µ) is a regular
compact set with respect to the solution of the Dirichlet problem on the unbounded
connected component of the complement of S(µ) in the extended complex plane, the
measure µ belongs to Reg (see Theorem 3.2.3 in [10]) if and only if

lim
n→∞

( ‖pn‖S(µ)

‖pn‖L2(µ)

)1/n

= 1 (5)

for every sequence of polynomials {pn},deg pn ≤ n, pn 6≡ 0. Here and in the following,
‖ · ‖S(µ) denotes the supremum norm on S(µ).

Set
∆ = ∪m

k=0S(µk) .

We call this set the support of the Sobolev inner product. Denote by gΩ(z,∞) the Green’s
function of the region Ω with singularity at infinity where Ω is the unbounded connected
component of the complement of ∆ in the extended complex plane. When ∆ is regular then
the Green’s function is continuous up to the boundary and we extend it continuously to all
of IC assigning it the value zero on the complement of Ω. By ω∆ we denote the equilibrium
measure of ∆. Assume that there exists l ∈ {0, . . . , m} such that ∪l

k=0S(µk) = ∆, where
S(µk) is regular, and µk ∈ Reg for k = 0, . . . , l. Under these assumptions, we say that
the Sobolev inner product (1) is l-regular.

The next result is inspired in Theorem 1 and Corollary 3 of [4].

Theorem 4 Let the Sobolev inner product (1) be l-regular. Then for each fixed k = 0, . . . , l
and for all j ≥ k

lim
n→∞ ‖Q

(j)
n ‖1/n

S(µk) ≤ cap(∆) . (6)

For all j ≥ l

lim
n→∞ ‖Q

(j)
n ‖1/n

∆ = cap(∆). (7)

Furthermore, if the interior of ∆ is empty and its complement connected, then for all j ≥ l

lim
n→∞ ν(Q(j)

n ) = ω∆ (8)

in the weak star topology of measures.
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The following example illustrates that (8) is not a direct consequence of (7). On the unit
circle, take µj , j = 0, · · · ,m, equal to the Lebesgue measure. This Sobolev inner product
is 0-regular and thus (7) takes place for all j ≥ 0. Obviously, {zn} is the corresponding
sequence of monic Sobolev orthogonal polynomials whose sequence of normalized zero
counting measures converges in the weak star topology to the Dirac measure with mass
one at zero. Under (7), (8) takes place if it is known that limn→∞ ν(Q(j)

n )(A) = 0 for
every compact set A contained in the union of the bounded components of IC \S(ω∆) (see
Theorem 2.1 in [2]). But finding general conditions on the measures involved in the inner
product which would guarantee this property is, in general, an open problem already in
the case of usual orthogonality.

If the inner product is sequentially dominated, then S(µ0) = ∆; therefore, if S(µ0) and
µ0 are regular the corresponding inner product is 0-regular. In the sequel, ZZ+ = {0, 1, . . .}.
An immediate consequence of Theorems 2 and 4 is the following.

Theorem 5 Assume that for some positive constant C, we have that ‖xp‖S ≤ C‖p‖S , p ∈
P and that the Sobolev inner product is l-regular. Then, for all j ≥ l

lim
n→∞ |Q

(j)
n (z)|1/n ≤ cap(∆)egΩ(z;∞), z ∈ IC. (9)

Furthermore,
lim

n→∞ |Q
(j)
n (z)|1/n = cap(∆)egΩ(z;∞) , (10)

uniformly on each compact subset of {z : |z| ≤ C} ∩ Ω. Finally, if the interior of ∆ is
empty and its complement connected we have equality in (9) for all z ∈ IC except for a set
of capacity zero, S(ω∆) ⊂ {z : |z| ≤ C}, and

lim
n→∞

Q
(j+1)
n (z)

nQ
(j)
n (z)

=
∫

dω∆(x)
z − x

, (11)

uniformly on compact subsets of {z : |z| ≤ C}.

These results will be complemented in the sections below. In the rest of the paper, we
maintain the notations and definitions introduced above.

§2. Zero location

We fix an inner product of the form (1). For simplicity in the notation, we write

〈·, ·〉L2(µk) = 〈·, ·〉k , ‖ · ‖L2(µk) = ‖ · ‖k.

Proof of Theorem 1. Take C1 and C2 as in the statement of this theorem. Straightforward
calculations lead to the estimates

‖xp‖2
S =

m∑

k=0

‖(xp)(k)‖2
k =

m∑

k=0

‖xp(k) + kp(k−1)‖2
k ≤ 2

m∑

k=0

(‖xp(k)‖2
k + k2‖p(k−1)‖2

k) ≤

2
m∑

k=0

(C2
1‖p(k)‖2

k + k2C2‖p(k−1)‖2
k−1) ≤ 2[C2

1 + (m + 1)2C2]
m∑

k=0

‖p(k)‖2
k = C2‖p‖2

S ,

5



which imply (3) with C as indicated in (4).

Proof of Theorem 2. Let Qn denote the nth Sobolev orthogonal polynomial. Since it
cannot be orthogonal to itself it is of degree n. Let x0 denote one of its zeros. It is obvious
that there exists a polynomial q of degree n − 1 such that xq = x0q + Qn. Since Qn is
orthogonal to q, and using the boundednes of the multiplication operator, we obtain

|x0|‖q‖S = ‖x0q‖S ≤ ‖xq‖S ≤ C‖q‖S .

Simplifying ‖q‖S(6= 0) in the inequality above, we obtain the bound claimed on |x0| inde-
pendent of n. The rest of the statements follow from Theorem 1.

Now, let us consider the special case refered to in Theorem 3. For the proof of the
corresponding result we need some auxiliary lemmas. Let I be a given interval of the real
line (open or closed) and q a polynomial. By c(q; I) and κ(q; I) we denote the number
of zeros and the number of changes of sign respectively that the polynomial q has on the
interval I.

Lemma 1 Let I be an interval of the real line and q a polynomial such that deg q = l ≥ 1.
We have that

c(q; I) + c(q′; IC \ I) ≤ l .

Proof. By Rolle’s Theorem, it follows that

c(q; I) ≤ c(q′; I) + 1.

Therefore,

c(q; I) + c(q′; IC \ I) ≤ c(q′; I) + 1 + c(q′; IC \ I) = c(q′; IC) + 1 = l

as we wanted to proof.
As above, let Qn denote the nth monic Sobolev orthogonal polynomial with respect to

(1) where all the measures are supported on the real line.

Lemma 2 Assume that n ≥ 1. Then

κ(Qn; (Co(S(µ0)))o) ≥ 1.

Proof. If, to the contrary, Qn does not change sign on the indicated set, we immediately
obtain a contradiction from the fact that Qn is orthogonal to 1 since then

0 = 〈Qn, 1〉S =
∫

Qn(x) dµ0(x) 6= 0 .

Unless otherwise stated, in the rest of this section we restrict our attention to the case
presented in Theorem 3. That is, m = 1, the supports of µ0 and µ1 are contained in the
real line and their convex hulls do not intersect. By (Co(S(µk)))o we denote the interior
of the convex hull of S(µk) with the usual euclidean topology on IR.
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Lemma 3 Under the hypothesis of Theorem 3, for n ≥ 1, we have that

κ(Qn; (Co(S(µ0)))o) + κ(Q′
n; (Co(S(µ1)))o) ≥ n− 1 . (12)

Proof. For n = 1, 2 the statement follows from Lemma 2. Let n ≥ 3 and assume that (12)
does not hold. That is

κ(Qn; (Co(S(µ0)))o) + κ(Q′
n; (Co(S(µ1)))o) = l ≤ n− 2 . (13)

Without loss of generality, we can assume that

Co(S(µ0)) = [a, b], Co(S(µ1)) = [c, d], b < c.

This reduction is always possible by means of a linear change of variables.
Let x0 be the point in (a, b) closest to [c, d] where Qn changes sign. This point exists

due to Lemma 2. There are two possibilities, either

Q′
n(x0 + ε) ·Q′

n(c + ε) > 0 (14)

for all sufficiently small ε > 0, or

Q′
n(x0 + ε) ·Q′

n(c + ε) < 0 (15)

for all sufficiently small ε > 0. Let us consider separately each case.
Assume that (14) holds. Let q be a polynomial of degree ≤ l with real coefficients, not

identically equal to zero, which has a zero at each point of (a, b) where Qn changes sign and
whose derivative has a zero at each point of (c, d) where Q′

n changes sign. The existence
of such a polynomial q reduces to solving a system of l equations on l + 1 unknowns (the
coefficients of q). Thus a non trivial solution always exists. Notice that

l ≤ c(q; (a, b)) + c(q′; (c, d))

with strict inequality if either q (resp. q′) has on (a, b) (resp. (c, d)) zeros of multiplicity
greater than one or distinct from those assigned by construction. On the other hand,
because of Lemma 2 the degree of q is at least 1; therefore, using Lemma 1, we have that

c(q; (a, b)) + c(q′; (c, d)) ≤ deg q ≤ l.

The last two inequalities imply that

l = c(q; (a, b)) + c(q′; (c, d)) = deg q .

Hence, qQn and q′Q′
n have constant sign on [a, b] and [c, d] respectively. We can choose

q in such a way that qQn ≥ 0 on [a, b] (if this was not so replace q by −q). With this
selection, for all sufficiently small ε > 0, we have that q′(x0 + ε)Q′

n(x0 + ε) > 0. All the
zeros of q′ are contained in (a, x0) ∪ (c, d), so q′ preserves its sign all along the interval
(x0, c + ε), for all sufficiently small ε > 0. On the other hand, we are in case (14) where
Q′

n has the same sign to the right of x0 and of c. Therefore, q′Q′
n ≥ 0 on [c, d]. Since

deg q ≤ n− 2, using orthogonality we obtain the contradiction

0 =
∫

q(x)Qn(x)dµ0(x) +
∫

q′(x)Q′
n(x)dµ1(x) > 0.
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So, (14) cannot take place if (13) is true.
Let us assume that we are in situation (15). The difference consists in that to the

right of x0 and c the polynomial Q′
n has different signs. Notice (see (13)) that we have

at least one degree of freedom left to use orthogonality. Here, we construcrt q of degree
≤ l + 1 with real coefficients and not identically equal to zero with the same interpolation
conditions as above plus q′(c) = 0. Following the same line of reasoning as above we have
that qQn and q′Q′

n preserve their sign on [a, b] and [c, d] respectively. Taking q so that
qQn ≥ 0 on [a, b] one can see that also q′Q′

n ≥ 0 on [c, d]. Since deg q = l + 1 ≤ n − 1,
using orthogonality we obtain that (15) is not possible under (13). But either (14) or (15)
must hold, thus (12) takes place.

Corollary 1 Set I = Co(S(µ0)∪ S(µ1)) \ (Co(S(µ0))∪Co(S(µ1)). Under the conditions
of Theorem 3, we have that

c(Qn; I) + c(Q′
n; I) ≤ 1.

Proof. It is an immediate consequence of Lemmas 1 and 3 applied to Qn.

Proof of Theorem 3. We will employ the notation introduced for the proof of Lemma 3.
According to Lemmas 1 and 3

n− 1 ≤ l = κ(Qn; (a, b)) + κ(Q′
n; (c, d)) ≤ n .

If l = n, then by Rolle’s Theorem we have that all the zeros of Q′
n are simple and contained

in (a, b) ∪ (c, d) which implies our first statement.
Suppose that l = n− 1. We consider the same two cases (14) and (15) analyzed in the

proof of Lemma 3. Following the arguments used in the proof of Lemma 3 it is easy to see
that (14) is not possible with l = n− 1. If (15) takes place, then Q′

n has an extra zero in
the interval [x0, c] and again by use of Rolle’s Theorem we have that all the zeros of Q′

n

are simple and contained in (a, d).
In order to prove the second part of Theorem 3 we use the following remarkable result

known as Grace’s Apollarity Theorem (we wish to thank T. Erdelyi for drawing our
attention to this simple proof of the second statement). Let q be a polynomial of degree
greater or equal to two. Take any two zeros of q in the complex plane and draw the
straight line which cuts perpendicularly the segment joining the two zeros at its middle
point. Then q′ has at least one zero in each of the closed half planes in which the line
divides the complex plane. For the proof of this result see Theorem 1.4.7 in [8] (see also
pp. 23-24 of [3]).

For n = 1 the second statement is certainly true because from Lemma 1 we know that
for all n ≥ 1, Qn has a zero on (a, b). Let n ≥ 2. If Qn had a zero outside the circle with
center at d and radius equal to |a− d|, from Grace’s Apollarity Theorem Q′

n would have
a zero outside the segment (a, d) which contradicts the first statement of the theorem.
Therefore all the zeros of Qn lie in the indicated set.

Remark 1. The arguments used in the proof of Lemma 3 allow to deduce some other
interesting properties which resemble those satisfied by usual orthogonal polynomials. For
example, the interval joining any two consecutive zeros of Qn on (a, b) intersects S(µ0).
Analogously, the interval joining any two consecutive zeros of Q′

n on (c, d) intersects S(µ1).
In order to prove this notice that if any one of these statements were not true then in
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the construction of the polynomial q in Lemma 3 we can disregard the corresponding
zeros which gives us some extra degrees of freedom to use orthogonality and arrive to a
contradiction as was done there. From the proof of Theorem 3 it is also clear that the
zeros of Qn in (a, b) are simple and interlace the zeros of Q′

n on that set.

Remark 2. The key to the proof of Theorem 3 is Lemma 1. It’s role is to guarantee that in
the construction of q in Lemma 3 no extra zeros of q or q′ fall on (a, b) or (c, d) respectively.
Lemma 1 can be used in order to cover more general Sobolev inner products supported
on the real line as long as the supports of the measures appear in a certain order. To be
more precise, following essentially the same ideas we can prove the following result.

Consider a Sobolev inner product (1) supported on the real line such that for each
k = 0, . . . ,m− 1

Co(∪k
j=0S(µj)) ∩ S(µk+1) = ∅.

Then for all n ≥ m the zeros of Q
(m)
n are simple and they are contained in the interior

of Co(∪m
j=0S(µj)). The zeros of Q

(j)
n , j = 0, . . . , m − 1 lie in the disk centered at z0 and

radius equal to 3m−jr, where z0 is the center of the interval Co(∪m
j=0S(µj)) and r is equal

to the half the length of that interval.
For m = 1 this statement is weaker than that contained in Theorem 3 regarding the

location of the zeros of the Qn because in the present conditions we allow that the support
of S(µ1) have points on both sides of Co(S(µ0)).

§3. Regular asymptotic zero distribution

For the proof of Theorem 4, we need the following lemma which is proved in [6] and is
easy to verify.

Lemma 4 Let E be a compact regular subset of the complex plane and {Pn} a sequence
of polynomials such that deg Pn ≤ n and Pn 6≡ 0. Then, for all k ∈ ZZ+,

lim
n→∞

(
‖P (k)

n ‖E

‖Pn‖E

)1/n

≤ 1 . (16)

The guidelines for the proof of the next result are essentially contained in [4] (for m=1)
and [6].

Proof of Theorem 4. We start out showing that

lim
n→∞ ‖Qn‖1/n

S ≤ cap(∆) . (17)

Since each of the sets S(µk), k = 0, . . . , l is regular, so is the support ∆ of the Sobolev
inner product. Let Tn denote the monic Chebyshev polynomial of degree n for the set ∆.
It is well known that limn→∞ ‖Tn‖1/n

∆ = cap(∆). Then, by Lemma 4, for all j ∈ ZZ+

lim
n→∞ ‖T

(j)
n ‖1/n

∆ ≤ cap(∆) . (18)
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Therefore, by the minimizing property of the Sobolev norm of the polynomial Qn, we have

‖Qn‖2
S ≤ ‖Tn‖2

S =
m∑

k=0

‖T (k)
n ‖2

k ≤
m∑

k=0

µk(S(µk))‖T (k)
n ‖2

∆ .

This estimate, together with (18), gives (17).
From the regularity of the measure µk and of its support (see (5)), we know that for

each k = 0, . . . , l

lim
n→∞


‖Q

(k)
n ‖S(µk)

‖Q(k)
n ‖k




1/n

= 1 . (19)

Since
‖Q(k)

n ‖k ≤ ‖Qn‖S ,

(17) and (19) imply
lim

n→∞ ‖Q
(k)
n ‖1/n

S(µk) ≤ cap(∆) . (20)

Taking into consideration Lemma 4, relation (6) follows from (20).
If j ≥ l, (6) takes place for each k = 0, . . . , l. Since

‖Q(j)
n ‖∆ = max

k=0,...,l
‖Q(j)

n ‖S(µk) ,

using (6), we obtain
lim

n→∞ ‖Q
(j)
n ‖1/n

∆ ≤ cap(∆) .

On the other hand
lim

n→∞
‖Q(j)

n ‖1/n
∆ ≥ cap(∆)

is true for any sequence {Qn} of monic polynomials. Hence (7) follows.
If the compact set ∆ has empty interior and connected complement, it is well known

(see Theorem 2.1 in [2]) that (7) implies (8).

Remark 3. We wish to point out that in Theorem 4 eventually some of the measures
µk, k = 2, . . . , m − 1, may be the null measure in which case µk and S(µk) = ∅ are
considered to be regular and ‖Q(j)

n ‖∅ = 0. With these conventions Theorem 4 remains in
force.

The so called discrete Sobolev orthogonal polynomials have attracted particular atten-
tion in the past years. They are of the form

〈f, g〉S =
∫

f(x)g(x) dµ0(x) +
m∑

i=1

Ni∑

j=0

Ai,jf
(j)(ci)g(j)(ci) . (21)

where Ai,j ≥ 0, Ai,Ni > 0. If any of the points ci lie in the complement of the support
S(µ0) of µ0, the corresponding Sobolev inner product cannot be l-regular. Nevertheless,
a simple modification of the proof of Theorem 4 allows to consider this case.

Theorem 6 Let the discrete Sobolev inner product (21) be such that S(µ0) is regular, and
µ0 ∈ Reg. Then, (7) takes place for all j ≥ 0, with ∆ = S(µ0) and so does (8) under the
additional assumption that S(µ0) has empty interior and connected complement.
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Proof. Let Tn denote the nth monic Chebyshev polynomial with respect to S(µ0). Set

w(z) =
m∏

i=1

(z − ci)Ni+1 .

Let N = deg w, and take n ≥ N . Then,

‖Qn‖2
0 ≤ ‖Qn‖2

S ≤ ‖wTn−N‖2
S =

∫
|wTn−N |2 dµ0 ≤ µ0(S(µ0))‖w‖2

S(µ0)‖Tn−N‖2
S(µ0) .

Since µ0(S(µ0))‖w‖2
S(µ0) > 0 does not depend on n, we find that

lim
n→∞ ‖Qn‖1/n

0 ≤ C(S(µ0)) .

From the regularity of the measure µ0, it follows that

lim
n→∞ ‖Qn‖1/n

∆0
≤ C(S(µ0)) .

Using the regularity of the compact set S(µ0) and Lemma 4 (for E = S(µ0)), we obtain
that

lim
n→∞ ‖Q

(j)
n ‖1/n

∆0
≤ C(S(µ0)) ,

for all j ≥ 0. This inequality is necessary and sufficient in order that (7) takes place (with
∆ = S(µ0)), which in turn implies (8).

Proof of Theorem 5. Fix j ∈ ZZ+. Set

vn(z) =
1
n

log
|Q(j)

n (z)|
‖Q(j)

n ‖∆

− gΩ(z;∞).

Let us show that
vn(z) ≤ 0, z ∈ IC ∪ {∞} (22)

This function is subharmonic in the Ω and on the boundary of Ω it is ≤ 0. By the
maximum principle for subharmonic functions it is ≤ 0 on all Ω. On the complement of
Ω we also have that vn(z) ≤ 0 because by definition (and the regularity of ∆) Green’s
function is identically equal to zero on this set and the other term which defines vn is
obviously at most zero using the maximum principle of analytic functions. These remarks
imply (9) taking upper limit in (22) and using (7) (for this inequality no use is made of
the boundedness of the multiplication operator on P).

From Theorem 2, we have that for all n ∈ ZZ+, the zeros of the Sobolev orthogonal
polynomials are contained in {z : |z| ≤ C}. It is well known that the zeros of the
derivative of a polynomial lie in the convex hull of the set of zeros of the polynomial itself.
Therefore, the zeros of Q

(j)
n for all n ∈ ZZ+ lie in {z : |z| ≤ C}. Using this, we have that

{vn} forms a family of uniformly bounded harmonic functions on each compact subset of
{z : |z| > C} ∩ Ω (including infinity). Take a sequence of indexes Λ such that {vn}n∈Λ

converges uniformly on each compact subset of {z : |z| > C} ∩Ω. Let vΛ denote its limit.
Obviously, vΛ is harmonic and ≤ 0 in {z : |z| > C} ∩ Ω and because of (7) vΛ(∞) = 0.
Therefore, vΛ ≡ 0 in {z : |z| > C}∩Ω. Since this is true for every convergent subsequence
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of {vn}, we get that the whole sequence converges uniformly on each compact subset of
{z : |z| > C} ∩ Ω to zero. This is equivalent to (10)

If additionally the interior of ∆ is empty and its complement connected, we can use
(8). Since the measures νn,j = ν(Q(j)

n ), n ∈ ZZ+, and ω∆ have their support contained in
a compact subset of IC. Using this and (8), from the Lower Envelope Theorem (see page
223 in [10]), we obtain

lim
n→∞

∫
log

1
|z − x| dνn,j(x) =

∫
log

1
|z − x| dω∆(x) ,

for all z ∈ IC except for a set of zero capacity. This is equivalent to having equality in (9)
except for a set of capacity zero because (see page 7 in [10])

gΩ(z;∞) = log
1

cap(∆)
−

∫
log

1
|z − x| dω∆(x) .

Let xj
n,i, i = 1, . . . , n− j, denote the n− j zeros of Q

(j)
n . As mentioned above, all these

zeros are contained in {z : |z| ≤ C}. From (8), each point of S(ω∆ must be a limit point
of zeros of {Q(j)

n }; therefore, S(ω∆ ⊂ {z : |z| ≤ C} Decomposing in simple fractions and
using the definition of νn,j , we obtain

Q
(j+1)
n (z)

nQ
(j)
n (z)

=
1
n

n−j∑

i=1

1
z − xj

n,i

=
n− j

n

∫
dνn,j(x)
z − x

. (23)

Therefore, for each fixed j ∈ ZZ+, the family of functions
{

Q
(j+1)
n (z)

nQ
(j)
n (z)

}
, n ∈ ZZ+ , (24)

is uniformly bounded on each compact subset of {z : |z| > C}.
On the other hand, all the measures νn,j , n ∈ ZZ+, are supported in {z : |z| ≤ C} and

for z, |z| > C, fixed, the function (z − x)−1 is continuous on {x : |x| ≤ C} with respect
to x. Therefore, from (8) and (23), we find that any subsequence of (24) which converges
uniformly on compact subsets of {z : |z| > C} converges pointwise to

∫
(z − x)−1 dω∆(x).

Thus, the whole sequence converges uniformly on compact subsets of {z : |z| > C} to this
function as stated in (11).

References

[1] V. Alvarez, D. Pestana, J. M. Rodŕıguez, and E. Romera, General-
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