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1. Introduction

There are five usual main motives for firms to patent their inventions: protection from imita-
tion, blocking competitors, technological image and reputation, exchange potential in co-operations,
and internal firm Research & Development (R&D) performance indicator. Patents help in sustaining
competitive advantages by increasing production cost of competitors, by signaling better quality of
products, and by serving as barriers to entry.

There is empirical evidence showing that patents through time are becoming easier to get and are
more valuable to the firm due to increasing damage awards from infringers. Shapiro (2007) notes that
patents are playing an increasingly important, and shifting, role in the United States (US) economy:
“There is evidence that firms in a number of industries adjusted their strategies in the 1980s and early
1990s in response to changes in the patent system. They began seeking more patents, but not necessarily
because they were devoting more resources to R&D. The observed increase in R&D efficiency through
the 1990s could be due to increases in R&D differentiation, the increase in the number of research fields
and technologies, and the use of more sophisticated patent strategies due to increases in competitive
pressure through time.” (Shapiro, 2007, p. 5)

We use patent and firm-specific data of 4,476 US firms from several industries over the period 1979
to 2000. Firms are classified in technological groups according to technological proximity. We focus on
a cluster of 111 firms that are mainly from the drugs product-market sector. We identify the patent
innovation leaders and followers of the technological cluster according to their knowledge stock. The
objective of this work is to learn about dynamic interactions (spillovers) between patent innovation
leaders and followers, allowing for different propensity to patent for different firms.

We consider different dynamic measures of innovation activity that may capture patented R&D (i.e.,
publicly disclosed innovations) and non-patented R&D (i.e., not appropriated R&D or trade secrets).
Patented and non-patented R&D are separated by using a latent-factor patent count data model. In
this model, propensity to patent is driven by a common latent factor, representing the level of market
competition. We call this factor the ‘common competitive factor’. We study dynamic R&D spillovers
among patent innovation leaders and followers by Panel Vector Autoregression (PVAR) models. The
econometric models applied involve variables that are observed by firm managers who choose what
proportion of the firm’s R&D output to patent or keep secret, but the same variables are not included

in the data set available for the econometrician.



As mentioned by Boldrin and Levine (2010): “We should protect not only the property rights of
the innovators but also the rights of those who have legitimately obtained a copy of the idea, directly
or indirectly, from the original innovator. The former encourages innovation; the later encourages the
diffusion, adoption and improvements of innovations” (Boldrin and Levine, 2010, p. 8). In this paper
we show that more competition increases the propensity to patent and the R&D investment to enhance
firm’s absorptive capacity, see Escribano et al. (2008), and therefore more innovation and more patents
are produced. This two-way transmission mechanism has an extra dynamic multiplier effect through
the spillovers between innovation leaders and followers.

In particular, we find positive dynamic spillover effects between patent innovation leaders and
followers, indicating that firms in the technological cluster are neck-to-neck in innovation activity. We
also find support for the well-known inverted-U relationship between market competition and innovation
of Aghion et al. (2005). Increases in market competition conditions within the technological cluster
are related with increases in the propensity to patent, and vice-versa (feed-back). This suggests that
pharmaceutical firms reacted to the increasing level of market competition by patenting a significantly
higher proportion of their innovation output after 1990, which at the same time increased the diffusion
of knowledge among competitors enhancing therefore innovation.

Remaining part of this work is structured as follows. First, we review the existing literature in
Section 2. Then, Section 3 presents the data set, technological clustering of firms, and definitions of
patent innovation leaders and followers. Section 4 describes the econometric models and summarizes
empirical findings. Finally, Section 5 concludes.

2. Literature review
2.1. Firm value and innovation activity

During recent decades, innovations protected by patents have played a key role in business strategies.
This fact motivated several studies about the determinants of patents, and the impact of patents on
innovation, firm value and competitive advantage.

Griliches (1981) constructs a stock of knowledge variable from lagged R&D expenses and the number
of patents. He finds a significant positive relationship between market value, R&D expenditure, and
number of patents for a panel of large US firms. Lev and Sougiannis (1996) estimate the inter-temporal
relation between R&D capital and stock returns of public firms in the US, showing that R&D capital is

associated with subsequent stock returns; see also Lev et al. (2005). Blundell et al. (1999) examine the



relationship between surprise innovations and firm performance by using a dynamic panel count data
specification and find a positive impact of innovation on market value of US firms. Chan et al. (2001)
show a positive relationship between R&D capital to market value variable and abnormal future stock
returns. Furthermore, they evidence a delayed association of R&D activity and future excess stock
returns, which could be due to a delayed reaction of the stock market or an inadequate adjustment
for risk (see Chambers et al., 2002). Hall et al. (2005) investigate the relationship between knowledge
stock and market value in the US during the period 1963 to 1995. Their results show that in addition
to patent counts, patent citations contain important information about stock market value.

2.2. Innovation leaders and followers

Technological improvements give innovator companies a competitive advantage. Nevertheless, the
non-rival nature of knowledge may create a business-stealing effect among competitors as innovator’s
effort decreases the cost of competitor firms’ subsequent innovations. Firms strategically decide to be
R&D leaders or followers. Companies that introduce innovative products are R&D leaders, while other
firms who mimic products of innovation leaders, are followers. There is a large literature of economics
and strategic management, which differentiates among firms by their R&D and patenting activity to
study the implications of a firm’s research intensity on its competitors’ market value and innovations.
Results in the existing literature suggest that R&D leaders have sustained future profitability.

Porter (1979, 1980, 1985) investigates the relationship between firms’ stock market value and R&D
by recognizing that R&D activities are different among companies. Caves and Porter (1977) introduce
a framework that explains intra-industry profit differentials based on precommitment to specialized
resources such as R&D. Gilbert and Newbery (1982) analyze a model where incremental innovations
are awarded to the firm that spends the most on R&D, and they show that the incumbent firm continues
to earn monopoly rents. On the other hand, Reinganum (1985) shows that incumbent firms have less
incentives to invest in innovation: even though incumbents make more profits in the short-term, entrants
are more profitable in the long-term and they overtake incumbents in the long run. Jaffe (1986) finds
evidence of knowledge spillovers by using various indicators of R&D activity. He evidences that firms
whose research is in a sector where there is high research intensity, obtain more patents per dollar of
R&D, higher accounting profits to R&D, and higher market value to R&D than firms in a sector with low
R&D intensity. Caves and Ghemawat (1992) investigate the factors that sustain profit differences across

firms within an industry and find that differentiation-related strategies which include R&D, are more



important than cost-related strategies. They find that differentiation related strategies are indicative
of research leadership in the product market by introducing new products, services, brands, etc., while
cost-related strategies include higher capacity and cost structure advantages. Jovanovic and MacDonald
(1994) point out that innovation and imitation tend to be substitutes. Though, benefits generated by
other firms’ R&D efforts depend on technological differences among firms and the absorptive capacity of
the imitator firm. Naturally, these factors create time lags in the adoption of technologies. For example,
Nabseth and Ray (1974), Mansfield et al. (1981), Rogers (1983), and Pakes and Schankerman (1984)
report that knowledge spills over gradually, in a dynamic fashion, to other firms. Aghion et al. (2005)
develop a model where competition discourages laggard firms from innovating but encourages neck-to-
neck firms to innovate. Due to the effect of competition on equilibrium industry structure, their model
generates an inverted-U shaped relationship between innovation and competition. They show that
the average technological distance between innovation leaders and innovation followers increases with
competition and the inverted-U is steeper when industries are more neck-to-neck. Lev et al. (2006)
differentiate between R&D leaders and followers and compare stock market valuation of R&D leaders
and followers. They show that R&D leaders earn significant future excess returns, while R&D followers
only earn average returns. Ciftci et al. (2011) find that R&D leaders obtain substantial risk-adjusted
returns during the first four to five future years. However, these excess returns converge to those of
R&D followers afterwards.
3. Data

The data set includes 4,476 US firms from several manufacturing and service industries of the US
economy over the period 1979 to 2000; 7' = 22 years. These firms published more than 500,000 patents
during the sample period. We created the data set based on the recommendations of Hall et al. (2001).

Data have been collected from several sources. Patent data have been obtained from the Na-
tional Bureau of Economic Research US Patent Citations Data File and MicroPatents Co. The patent
database includes the US Patent and Trademark Office (USPTO) patent number, application date,
publication date, USPTO patent number of cited patents, three-digit US technological class, and as-
signee name (company name if the patent was assigned to a firm) for each patent. Furthermore, annual
stock returns, collected from the Center for Research on Stock Prices, have been downloaded from the
Wharton Research Data Service. Additional company specific information has been obtained from the

Standard & Poor’s Compustat data files. The firm data set includes book value of equity, stock market



value, Standard Industry Classification (SIC) code, and R&D expenditure for all firms. Firm-specific
accounting data are corrected for inflation by using the US consumer price index, collected from the US
Department of Labor, Bureau of Labor Statistics. In the remaining part of this section, we describe the
technological clustering procedure applied to US firms and present the definitions of patent innovation
leaders and followers.

3.1. Technological prozimity

We perform a technology related grouping of all companies of the general US data set. Technology-
based grouping of firms is preferred to product-market based (for example SIC-based) grouping, as
under a technology-based grouping, the flows of knowledge are expected to be more important. Using
an incorrect grouping dilutes measurement of knowledge spillovers and makes it difficult to identify
competitors’ effects on firms’ innovation activities. Technological clusters of firms can be formed based
on the idea of firms’ technological proximity. In the past literature, researchers employed different
frameworks to capture technological proximity, which included patent-based, productivity-based and
alternative measures. Mohnen (1996), Cincera (2005), and Benner and Waldfogel (2008) review the
literature on technological proximity.

We use a patent-based proximity measure to classify firms in technologically similar groups. Tech-
nological clusters are formed as follows. To each firm, we assign technological categories using the
technological classification suggested by Hall et al. (2001). These authors create 36 technological sub-
categories from the patent technological classification of USPTO that contains about 400 technological
classes. We apply Ward’s (1963) linkage clustering to perform technological clustering, motivated by
Kuiper and Fisher (1975) and Jain et al. (1986). We use the angle distance measure to form techno-
logical clusters of firms, which is purely directional, therefore, it is not directly affected by the degree
of concentration of the firm’s research interests (Jaffe, 1986, p. 986). The technological clustering
procedure creates a technology related grouping of 16 clusters of the 4,476 US companies.

We focus on a cluster of N = 111 companies. Table 1 shows the product-market industries of
firms in the technological cluster according to two industry classifications. First, according to the
SIC, the technological cluster includes 87 firms from the SIC283 drugs sector. Second, the modified
SIC of Hall and Mairesse (1996) shows that 92 companies of the technological cluster are in the
pharmaceutical sector. Nevertheless, Table 1 presents that the technological cluster includes companies

from other product-market sectors as well. For example, it includes firms from the Grain mill products



(SIC2040), Beverages (SIC2080), Paints (SIC2851), Plastics products (SIC3089), and Electromedical
and electrotherapeutic apparatus (SIC3845) industries.

Fig. 1a) shows the evolution of total patent application count and total patent application intensity,
estimated for all firms in the technological cluster over the period 1979 to 2000; see Section 3 for patent
application intensity estimation. The figure shows a significant growth of patent applications counts
over the sample period. The level of patent applications per year was about 600 patents in 1979, which

increased to about 1,300 patents in 2000.

[APPROXIMATE LOCATION OF TABLE 1; FIGURE 1]

3.2 Patent innovation leaders and followers

We define the permanent Innovation Leader (IL) firm, based on the absolute temporal dominance
observed in the evolution of the knowledge stock built up from the citations weighted annual patent
counts. The evolution of firm ¢’s knowledge stock is computed by ZZ:O 5f7i515i5(1—5)t_5 fort=1,...,T,
where ]57;5 denotes the number of successful patent applications and ¢y is the number of citations
received from subsequent patents (i.e., forward citations) corrected for sample truncation bias. We
use ¢y to weight patent counts since Lanjouw and Schankerman (1999) and Hall et al. (2001) report
that the number of forward patent citations is an appropriate measure of patent quality. Nevertheless,
more recent patents in the end of the sample have less chance to receive citations from later patents
than earlier patents, creating a sample truncation bias for the forward citations count. We correct
for this bias by the fixed effects method suggested by Hall et al. (2001). Furthermore, motivated by
Hall (1993) and Hall et al. (2005), we use the 6 = 15% annual depreciation rate to account for the
decreasing value of past knowledge.

The firm with the highest knowledge stock in every year during the observation period is called
the permanent IL of the technological cluster. We define the dummy variable D; (i = IL) taking the
value one if firm 7 is the permanent IL and zero otherwise. Other firms in the technological cluster are
assigned to the permanent Innovation Follower (IF) group. We define the dummy variable D;(i € IF)
taking the value one if firm 7 is in the permanent IF group and zero otherwise.

Table 2 shows the first 20 firms of the technological cluster, ranked according to (V4) mean knowl-
edge stock over the period 1979 to 2000. The table shows the average of the following variables

computed over the sample period: (V1) patent applications count, Py; (V2) forward citations received



count, cy;; (V3) forward citations received count corrected for sample truncation bias, ¢f;; (V4)
knowledge stock, >\ _ &7isPis(1 — 8)17%; (V5) log R&D expenses, 7; (V6) log book value, z; (V7)
log stock market value, m;;; (V8) log R&D expenses to log sales, 7 /si; (V9) log R&D expenses to log
stock market value, 7 /m;;. For seven out of the nine variables considered, Merck & Co., Inc. (Merck,
henceforth) is the leader.

Table 3 presents the evolution of knowledge stock for eight firms with the highest mean (V4) over the
period 1979 to 2000. The table shows that the knowledge stock of Merck was permanently higher than
that of other firms in every year. These results support our conclusion that Merck is the permanent
IL of the technological cluster. In addition, Fig. 1b) shows the number of patent applications and
knowledge stock for the IL (Merck) and the cross-sectional mean knowledge stock of IF during the
period 1979 to 2000. This figure also supports the selection of Merck as the permanent IL since both
variables of Merck are above the mean knowledge stock and the mean number of patent applications of
IF in every year from 1979 until 2000. The companies not presented in Table 3 from the technological
cluster are assigned to the IF group.

In the R&D literature, different definitions of R&D leadership were also proposed. Lev et al. (2006)
measure R&D intensity by two proxies: R&D expenditure to sales and R&D expenditure to market
value. Furthermore, Chambers et al. (2002) and Ciftci et al. (2011) indicate R&D leadership by the
R&D capital to sales ratio. We consider the variables (V8) R&D to sales and (V9) R&D to market value
to check the robustness of the patent innovation leadership clustering procedure of our work with these
authors. The results of the rankings obtained for (V8) and (V9) are not consistent with the clustering
method of the present study, at least, due to the following reasons. First, the present work implements
a technology-based and not a product market-based industry classification as Chambers et al. (2002),
Lev et al. (2006), and Ciftci et al. (2011). Second, the contemporaneous and dynamic cross-correlation
between market value and (V8)-(V9) are negative (countercyclical), while the correlation coefficients
between market value and (V1)-(V4) are positive (procyclical), motivating the choice of variable (V4)
for the definition of innovation leadership.

In addition, we also classify firms according to their knowledge stock to Group of Leaders (GL) and
Group of Followers (GF). We form these groups based on the (V4) mean knowledge stock variable, using
Ward’s (1963) clustering method. We define the dummy variable D;;(i € GL) taking the value one if

firm i is in the GL cluster and zero otherwise. Moreover, we define the dummy variable D; (i € GF)



taking the value one if firm ¢ is in the GF cluster and zero otherwise. The patent innovation leader group
is formed by the following eight companies: Merck; Eli Lilly; Abbott Laboratories; Warner-Lambert;
Pfizer; Bristol-Myers Squibb; American Home Products; Alza. See the mean knowledge stock and the

evolution of knowledge stock of these firms in Tables 2 and 3, respectively.
[APPROXIMATE LOCATION OF TABLES 2-3]

4. Econometric models and empirical results
4.1. Benchmark innovation and market value model

Innovation activity has a positive impact on the future cash flow and the current value of a company,
which motivates owners to promote innovative activity within their firm. As profits on R&D are usually
realized during several years in the future, current accounting-based net profit is a rather noisy measure
of R&D benefits. Pakes (1985) focuses on the dynamic relationships among firm’s number of successful
patent applications, R&D expenditures, and stock market value. Pakes concludes that events that lead
the market to reevaluate the firm are significantly correlated with unpredictable changes in both the
R&D and patents of the firm. This work avoids the problem of timing differential of R&D expenses and
the associated future cash flow to equity, since current stock prices are determined by a forward-looking
perspective of investors.

The benchmark model of our empirical analysis is Pakes (1985), who studies the stock market
valuation, log R&D expenditure, and log patent application count for a panel of 120 US firms over
the period 1968 to 1975. Pakes (1985) formulates the following system of three equations to measure
the dynamic and simultaneous interaction among stock return, ¢;+; log R&D expenses, r;:; log patent

application count, In Pj:

Qit €it 1 Mt
Tit = Z:io Cor€it—r (4.1)
In Py > 0 Car€it—r Do o b3 M3it—r

where 115 ~ N(0,0%), € ~ N(0,03), and 03z ~ N (0, ag) are independent.
Equation (4.1) specifies contemporaneous and dynamic interactions among the endogenous variables
according to a restricted Vector Moving Average, VMA (c0) representation. Similar to Pakes (1985, p.

396), in each equation of the system (4.1), we include time effects and a dummy variable controlling



for zero patent application count. Furthermore, in the models of Sections 4.3 and 4.4, we also include
in each equation the firm size measured by log book value of equity; extending Pakes (1985).

Pakes (1985) is consistent with the empirical results of Fama (1970) and LeRoy and Porter (1981),
since he uses the no arbitrage condition to model the one-period stock return as the sum of the excess
return and an uncorrelated error term. According to this condition, the noise term process does not
allow to make excess returns on the market for those investors who use publicly available information
and simple trading rules. An unexpected research-related event shifting the firm’s value motivates
managers to change the firm’s R&D program, and R&D expenses are determined by the weighted
sum of current and past excess stock returns, €¢;;. Furthermore, patent applications are influenced by
current and past excess returns, €;;, and also by current and past values of an i.i.d. adjustment factor
representing the propensity to patent, ns;; (see Scherer, 1965a, 1965b).

Pakes (1985) assumes that €;; = 6¢;; + v so that v and g;; are orthogonal. Then, Equation (4.1)

in VAR(00) representation with contemporaneous relationships imposed can be written as

Qit = €t + Mt
it = 200¢it + Ca2(L)Tit—1 + Cc20vit (4.2)

In Py = yorit + (32(L)rie—1 + (33(L) In Py + 1344

To obtain a VAR(1) in structural form, we assume that the coefficients in Equation (4.2) satisfy that
Cmr = ¢, for m = 22,32, 33. Then, (4.2) can be written in VAR(1) reduced form as

it 0 0 0 qit—1 1 0 0 €it + Nt
Tit =10 (22 0 Tit—1 T 00 1 0 C20Vit (4.3)
In Py 0 70Ce2 + (32 (33 In Py c200v% Y 1 N3t

We can also write Equation (4.3) with a vector of standard normal i.i.d. error terms as follows:

it 0 0 0 Qit—1 o1 0 0 €1t
Tit =10 G2 0 Tit—1 t | 12 2 O €2it (4.4)
In Py 0 ~0le2+ (32 (33 In Py Y012 Y002 03 esit

where (e14t, €2it, €3it)’ ~ N(03x1, I3). Furthermore, &1, 12, and 5 can be expressed by the parameters
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of Equation (4.3). See Appendix A where Equation (4.4) is derived from Equation (4.3). Equation (4.4)
is the restricted VAR(1) formulation of Pakes (1985). The diagonal elements of the lower triangular
matrix are positive. Therefore, the Cholesky decomposition of the covariance matrix of errors is unique
and the covariance matrix of errors is positive definite.

Model 1.—We extend the benchmark model of Pakes (1985) to a restricted PVAR(1) model by

considering fixed effects, a; in Equation (4.4):

Qit Ag,i 0 0 0 qit—1 o1 0 0 €e1it
Tit = a; |[T]0 (22 0 rie—1 | T| G122 G2 0 eoir | (4.5)
In Py ap; 0 7022 + (32 (33 In Py Y012 Y002 O3 esit
¢ O

fori=1,...,111 firms and ¢ = 1979, ...,2000. The spectral radius of ¢, p({) is less than one.

We can also formulate Model 1 in a compact matrix notation. The endogenous variables of the
three-dimensional PVAR(1) model are Yj; = (g, rit, In Pi)’. In the PVAR equation, fixed effects are
denoted by a; = (aq,i,ari,ap;) and error terms are summarized by e;; = (€1, €2it, €3i¢)’. Then, Model
1 can be written as Yj; = a; + (Yi—1 + Qe;. The Impulse Response Function (IRF) matrix, ©; is given
by ©; = (7Q; see Appendix B.

Model 2.—The unrestricted PVAR(1) model with fixed effects is given by

it Qg i ¢i1 (o Gi3 Qit—1 of 0 0 elit
re | = | as | T G Gy G ri-1 | T | oty o3 0 e2it (4.6)
In P ap; (31 (3o (33 In Py 1 Oly 033 O3 esit
I O*

for ¢ = 1,...,111 firms and ¢t = 1979,...,2000, where o] > 0, 05 > 0, 03 > 0, and the spectral
radius of ¢*, p(*) is less than one. We can formulate Model 2 in a compact matrix notation as
Yit = a; + ("Yie—1 + Q%e;. The IRF matrix, ©; is given by ©; = (¢*)7Q*; see Appendix B.
Estimation results—Models 1 and 2 are estimated by the Quasi Maximum Likelihood (QML)
method (see Hsiao et al. 2002). Table 4 presents the parameter estimates, QML standard errors, and
model diagnostic tests. Fig. 2 presents the off-diagonal elements of the IRF matrix until 30 leads.

We start with the model diagnostic results. The residual diagnostics part of Table 4 shows average p-
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values corresponding to: a) t test for Hy : Eley] = 0 for i = 1,...,111; b) x? test for Hy : Varley] = 1
for i = 1,...,111; ¢) Ljung and Box (LB, 1978) test for Hy : {e; : t = 1,...,T} are uncorrelated
for 2 = 1,...,111. The table shows that, on average, we are not able to reject Hy at the 10% level
of significance. According to Table 4, the spectral radius of ( is less than one for both models, i.e.,
the PVAR(1) is covariance stationary. The likelihood based model selection metrics support Model 2,
compared to the nested alternative. The Likelihood Ratio (LR) test shows that Model 2 is superior
at any level of significance and the Akaike Information Criterion (AIC) also supports the more general
model.

The parameter estimates of the ¢ matrix (Model 1) evidence significant Granger causality (Hamil-
ton, 1994) of log R&D expenses on log patent application count, since vg(22 + (32 is significant. Fur-
thermore, the IRF analysis of Model 1 presented in Fig. 2 suggests positive dynamic impact of stock
return shocks on log R&D leads (©2;) and also positive impact of stock return shocks on log log patent
application count leads (O3;1). These results are similar to the findings of Pakes (1985, pp. 403-404).
The estimates of ¢* (Model 2) show significant Granger causality of log R&D on stock return ({y),
stock return on log R&D (¢3;), and log R&D on log patent application count (¢3,). The IRF analysis
of Model 2 presented in Fig. 2 provides the following evidence. First, stock return shocks have pos-
itive effects both on log R&D (O9;) and log patent application count (©31). These effects are more
significant for log R&D which are observed contemporaneously and for all lags. For log patent counts,
the positive effects start from the second leading year. Second, log R&D expenditure shocks have
significant positive impact on both stock return (©12) and log patent application count (©33) for all
leads.

The previous three-dimensional dynamic models are extended in the following sections. In Section
4.2., we propose a dynamic specification for the latent propensity to patent factor by using the latent-
factor patent count panel data model of Blazsek and Escribano (2010). Then, in Sections 4.3 and 4.4,
we extend Blazsek and Escribano (2012) and use four-dimensional dynamic models for stock return, g;;
log R&D expenses, r;;; log patent application count, In Py (i.e., log patented R&D); log non-patented
R&D, In P} .

[APPROXIMATE LOCATION OF TABLE 4; FIGURE 2]
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4.2. Patented and mon-patented RED investments

We model the conditional distribution of patent application count, Py, by the Poisson distribution
with patent intensity parameter, \;; = P;,;p;; (see Hausman et al. 1984). In this model, PZ‘Z is a function
of total R&D investment and ]5;; € (0,1) captures propensity to patent. ]-:’;; represents the percentage of
the total R&D investment submitted to the patent office. ]5;; adjusts total R&D investment for trade
secrecy instead of revealing R&D information by patents (e.g., Kahn, 1962; Machlup, 1962) or the
firm’s absorptive capacity of rents from R&D (e.g., Scherer, 1965b; Arora et al., 2008). If ]5;; ~ 1, then
it ™~ ]512 and the total R&D investment is submitted for patents. However, in general, \;; = ]5;;]5;;,
i.e., only part of the total R&D investment is submitted to patents. The higher the FN’;; is, the higher
the firm’s absorptive capacity is or the lower portion of innovation productivity is kept secret; see
Escribano et al. (2009).

The conditional probability mass function of Py is

exp(— PPy (P Py)
Pyl

f(Pi|F2) = (4.7)

fori=1,...,111 firms and t = 1,...,22; from 1979 to 2000. The conditional expectation of patent
application count is given by the patent intensity parameter, F(Py|F;) = Ai. The conditioning set in

the latent-factor count data model is
Fr = |(Pa, 71, ey diny [7)s -« oy (Pit—1, Tit—1, Cit—1, dit—1, 1)y (Fity City dig, 7)) 16 = 1,...,N|  (4.8)

where 7;; denotes log R&D expenditure; ¢;; is the number of backward patent citations to other firms’
past patents in the technological cluster (technologically related firms); d;; is the number of backward
patent citations to other firms’ past patents not in the technological cluster (not technologically related
firms); [} is a latent factor that drives propensity to patent in the technological cluster.

The log total R&D investment function is specified as

In 155 = o + Mt + Yotfir + y37e + Yazit + v5 Pi1+

~ (49)
ko BrTit—k + Db WhCit—kTit + o Prit—kTit + Y gy Kk I PY_,

where g is the constant parameter, «v; and o control for linear time trend; 3 captures non-linearities
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in log R&D expenditure; 74 measures the impact of firm size (log book value); 5 controls for initial
conditions; [ captures distributed lags of log R&D expenses; wy and ¢y control for the interaction of
distributed lags of intra-industry and inter-industry backward citations, respectively, and current log
R&D expenses; ki controls for AR dynamics. The same specification is used by Blazsek and Escribano
(2010).

The propensity to patent component is specified according to the Probit model as 15;’; = O(ui+oil}),
where ® is the cumulative distribution function (c.d.f.) of the standard normal distribution; p; is firm-
specific fixed effect; o; € R is a firm-specific scaling parameter for the latent factor since competition
in the market affects firms differently; [} is an underlying common factor for propensity to patent in

the technological cluster. This common latent factor represents the level of market competition in the

technological cluster. We call [ the common competitive factor. The latent factor is specified as

lF =plf { +uw  with w ~ N(0,1) i.id. (4.10)

where |p*| < 1 measures the average persistence of market competition in the technological cluster.
The constant term in this equation is restricted to zero and the dynamic parameter p* is assumed to
be the same for all firms since these are determined by common knowledge on market competition.
Moreover, these restrictions also help parameter identification. We extend the specification of Pakes
(1985) since the propensity to patent series for firm i, {P;;s :t=1,...,T} are serially correlated and are
driven by the common competitive factor of the technological cluster. Nevertheless, ]5;; is firm specific
due to the level parameter p; and the scaling parameter o;.

We estimate the latent-factor patent count data model by the simulated QML method, applying
the Efficient Importance Sampling (EIS) technique of Richard and Zhang (2007); see Appendix C.
See applications of this method in Liesenfeld and Richard (2003), Bauwens and Hautsch (2006), and
Blazsek and Escribano (2010).

The parameter estimates and QML standard errors are presented in Table 5. This table shows
that the common competitive factor is covariance stationary with dynamic parameter p* = 0.91. Fig.
la) presents the evolution of total patent application counts, Zzlill Py, and total patent application
intensity, leill Ait for the technological cluster over the period 1979 to 2000. The figure evidences

that the latent-factor patent count data model fits well to the patent application count time series
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for most years. The only exceptions are 1995 and 1996 when there are significant differences between
observed patent counts and fitted patent intensity estimates. These outliers, partly, may be due to
the implementation of the General Agreement on Tariffs and Trade on 8 June 1995, which influenced
effective pharmaceutical patent life (see Grabowski and Vernon, 2000).

We compute the filtered estimates of the common competitive factor by estimating E[lf|Fy] for all

t. In this expectation, we condition on the following observable information set:

FP = |(Pa,Tits ity din)s - -, (Pit—1, Tit—1, Cit—1, dit—1), (Tit, Cit, dig) : i =1,..., N (4.11)

The estimation of E[lf|F?] involves the proportion of two high dimensional integrals, each evaluated by
the EIS technique; see Appendix D. Evolution of this factor is presented in Fig. 1c), showing E[l}|F7]
over the period 1979 to 2000. Fig. 1c) shows that the common competitive factor decreases until 1990
and jumps to a higher level afterwards. Fig. 1d) presents the evolution of mean percentage of total
R&D submitted to the patent office, ]5;; over the period 1979 to 2000. The figure shows that during
the 1990s, the percentage of patent applications increased from about 7.2% to above 10%. In the years
1996 and 1997, we see outliers for this variable and afterwards the level seems to stabilize above 10%.

Fig. 3 presents first and second order polynomial regression results about the determinants of
propensity to patent in the technological cluster. The figure shows fitted values of (1/22) Z?il In 15:;
for i = 1,...,111 firms, regressed on the variables (V1), (V2), (V5), and (V7) over the period 1979
to 2000. The figure exhibits the estimates of the regression model fitted to mean In ]3; and the
corresponding R-squared values to inform about the explanatory power of each variable. The first
panel shows an inverted-U relationship for the log mean patent application count (V1) and mean log
propensity to patent. For most firms in the technological cluster, a higher patent application count is
associated with a higher propensity to patent level. Nevertheless, for some firms with high number of
patent applications, we see that propensity to patent is relatively low. The second panel shows a linear
increasing relation between log mean citations received count (V2) and mean log propensity to patent.
Similar to the first panel, we can see that some firms with high number of citations received from
subsequent patents, exhibit relatively low propensity to patent. The third panel shows an inverted-U
relationship for mean log R&D expenses (V5) and mean log propensity to patent. For most firms

in the technological cluster, higher R&D expenses are associated with higher propensity to patent.
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Nevertheless, some firms that exhibit high R&D expenditure values have relatively low propensity to
patent level. The last panel shows a positive linear relation between mean log stock market value and
log propensity to patent. We can see that a high level of propensity to patent is significantly associated
with high firm value.

We use the estimates of ]555 and ]51’; in the extended PVAR models presented in the following section,
to capture the simultaneous and dynamic effects among stock return, log R&D expenses, log patented
R&D intensity, and log non-patented R&D intensity. Non-patented R&D intensity is approximated by

the estimates of PJ(1 — P}).
[APPROXIMATE LOCATION OF TABLE 5; FIGURE 3]

4.3. Extended innovation and market value model

We extend the three-dimensional innovation and market values Models 1 and 2, by proposing four-
dimensional dynamic models for stock return, ¢;;; log R&D expenses, r;;; log patent application count,
In P (i.e., patented R&D); log non-patented R&D, In Py .

We start with a Pakes (1985) like restricted VAR(o0) specification (structural form) of a system of

four equations, extending Equation (4.2), as follows:

Qit = €t + N4t
rit = c200it + Co2(L)rit—1 + c20vit (4.12)
In Py = vorit + (32(L)rie—1 + C33(L) In Piy—1 + C34(L) In P | + 134

In P = dorit + ¢o In Pyt + Cao(L)ri—1 + Cag(L) In Pip—1 + Caa(L) In P | + Nai

where 714 ~ N(0,02), €;x ~ N(0,03), n3it ~ N(0, 032,), and 7 ~ N(0,02) are independent. Suppose
that €; = 0qi + vyt so that vy and g are orthogonal. To obtain a VAR(1) in structural form, we
assume that the coefficients in Equation (4.12) satisfy that (,,» = (7, for m = 22,32, 33,34, 42,43, 44.

Then, (4.12) can be written in VAR(1) reduced form as

it 0 0 0 0 Git—1
Tit 0 (22 0 0 Tit—1
= +
In Py 0 Y0G22 + (32 (33 (34 In Pt 1
| In Py | | 0 (0 +7000)C2 + Pols2 + a2 Polss + Cas Caa | | ImPy ;|
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1 0
6200 1
+
20070 Y0
| c20000 + 2007000 do + Y0%0

We can also write (4.13) with a vector of standard normal i.i.d. error terms as follows:

qit
Tit

In Py

In P}

012

Y0012

(00 + Y0¢0)012

0
G2

0 0
0 O
1 0
$o 1

Y0G22 + (32

Y002

(00 + 70%0)02

03

$003

(00 4+ Y0%0)C22 + D032 + Ca2

0

04

€it + Mit
C20Vit
N3t

Nait

0
0

(33

€14t
€24t

€3it

$0(33 + C43

€44t

o ][ qit—1
0 Tit—1
(34 In Pty
Caa | | mPy

(4.13)

(4.14)

where (e14¢, €2it, €3it, €4it)’ ~ N(O4x1, I4). Moreover, &1, 512, and G5 can be expressed by the parameters

of Equation (4.13). See Appendix A where Equation (4.14) is derived from Equation (4.13). The

diagonal elements of the lower triangular matrix are positive. Therefore, the Cholesky decomposition

of the covariance matrix of errors is unique and the covariance matrix of errors is positive definite.

Model 3.—We extend the model of Equation (4.14) to a restricted PVAR(1) model by considering

fixed effects, a; as follows:

qit
Tit

In Py

In P}

Qq,i

Q.

0
(22

Y0G22 + (32

(00 + Y0¢P0)C22 + P02 + Ca2

0 0

0 0

(33 (34
PoCs3 + Ca3 Caa |

qit—1

Tit—1
In Py
In P*
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01 0 0 0 €1t

012 op) 0 0 €23t
n (4.15)
Y0012 Y002 o3 0 €3it

(60 +7000)a12  (d0 +7000)T2 Poos o4 | | €ait

Q
fori=1,...,111 firms and ¢ = 1979, ...,2000. The spectral radius of (, p({) is less than one.

We can formulate Model 3 in a compact matrix notation. The endogenous variables of the four-
dimensional PVAR(1) model are Y;; = (git, rit, In Py, In P )’. In the PVAR equation, fixed effects are
denoted by a; = (ag,i,ari, api, ax ;)" and error terms are summarized by e;; = (e1it, €2it, €3it, €4i)’ . The
Model 3 can be written as Yj; = a; + (Yj—1 + Qe;;. The IRF matrix, ©; is given by ©; = Q) see
Appendix B.

Model 4.—The unrestricted PVAR(1) model with fixed effects is given by

qit Qg ¢ G2 Gz (g Git—1 of 0 0 0 etit
Tit Qrj 1 CGo 3 G Tit—1 oy 03 0 0 €2it
= + + (4.16)
In Py ap, G Gz Ci3 Cay In Pty oy 033 o3 0 €3t
X X * * * * X * * * * X
| In Py | L axi | [ S G2 Gz G | [Py | | o1q 034 034 05 | | et |
¢ Q-

for i = 1,...,111 firms and ¢ = 1979,...,2000, where o7 > 0, 05 > 0, 05 > 0, o5 > 0, and the
spectral radius of (*, p({*) is less than one. We can formulate Model 4 in a compact matrix notation
as Y = a; + (*Y—1 + Q%e;. The IRF matrix, ©; is given by ©; = (¢*)7Q*; see Appendix B.
Estimation results.—Models 3 and 4 are estimated by the QML method. Table 6 presents the
parameter estimates, QML standard errors, and model diagnostic tests for both models. Figs 4 and
5 present the off-diagonal elements of the IRF matrix until 30 leads for Models 3 and 4, respectively.
According to the residual diagnostic tests, on average, we are not able to reject model specification
assumptions at the 10% level of significance. Both the LR test and the AIC metric suggest better
performance for the more general Model 4. We find that both Models 3 and 4 are covariance stationary.
The IFR figures of Models 3 and 4 show the same effects among ¢;;, 7+ and In P;;, as Models 1 and

2; see Figs 2, 4 and 5. Therefore, we focus on the IRFs involving non-patented R&D, In P;;. Both Figs
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4 and 5 show that stock return (O4;), log R&D expenses (©42), and log patent count (043) shocks
have positive impact on non-patented R&D. These positive effects can be seen more clearly in the IRF's
of Model 4; for Model 3 they are not always significant. Furthermore, Fig. 5 (Model 4) shows that
the effects of non-patented R&D shocks on other variables (014, ©24, and ©34) are not significant,
although, the average IRF is positive.

The four-dimensional dynamic models presented are further extended in the following section. We
consider different interaction effects for patent innovation leaders and followers in the technological
cluster. This way, we measure the simultaneous and dynamic interaction among patent innovation
leaders and followers of stock return, g¢;;; log R&D expenses, r;;; log patent application count, In Py;

log non-patented R&D, In Py
[APPROXIMATE LOCATION OF TABLE 6; FIGURES 4-5]

4.4. Extended model for patent innovation leaders and followers

We extend Models 3 and 4 by considering different contemporaneous and dynamic effects for patent
innovation leaders and followers in the technological cluster. Models 5 and 6 use the IL and IF, while
Models 7 and 8 use the GL and GF clusters. Models 5 and 7 are the Pakes (1985) like restricted PVAR
models; extending Model 3. Models 6 and 8 are unrestricted PVAR models; extending Model 4.

We formulate Models 6 to 8 in a compact matrix notation. The endogenous variables of the four-
dimensional PVAR(1) model are Y;; = (git, rit, In Py, In P )’. In the PVAR equation, fixed effects are
denoted by a; = (aq;, ari,ap;, ax ;) and error terms are summarized by e;; = (e1it, €2it, €3it, €4it) -

Model 5—Model 5 is formulated as follows:

Yie = a; + (Yi—1 + QLY —1 D (i € IF) + (p (Z th—1> Dj(i = IL) + Qey (4.17)
kelR

The structure of (1, and (ir is the same as that of the restricted ¢ matrix; see Model 3. The spectral
radius of ( is less than one. € is a lower triangular matrix with positive diagonal elements. Appendix

B shows that the IRF matrix, ©; is ©; = ¢/Q and the matrices of dynamic interaction multipliers are
I;(IL — IF) = (effects of Yir,;—; on Yy for i € IF) = /¢y, for j = 0,1,2,...,00 (4.18)

I';(IF — IL) = (effects of Y3 ;—; on Yy, for k € IF) = CGp for j=0,1,2,...,00 (4.19)
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Model 6.—Model 6 is formulated as follows:

Yie = a; + "Y1 + (LY —1 D (i € IF) + (fp <Z thl) D (i = IL) + Qe (4.20)
keIF

where (7} and (fp are unrestricted as (*; see Model 4. The spectral radius of ¢* is less than one. Q*
is a lower triangular matrix with positive diagonal elements. Appendix B shows that the IRF matrix,

0, is ©; = (¢*)7Q* and the matrices of dynamic interaction multipliers are
T;(IL — IF) = (effects of Y, 4—; on Yy for i € IF) = (¢*)/¢fy, for j =0,1,2,...,00 (4.21)

T;(IF — IL) = (effects of Yj;—; on Yir for k € IF) = (¢*)/(fy for j =0,1,2,...,00 (4.22)

Model 7—Model 7 is formulated as follows:

Yie = a; + (Yie-1 + CenYar—1Di(i € GF) + Car ( > th—1> Dy (i = GL) + Qe (4.23)
kEGF

The structure of (g1, and (g is the same as that of the restricted ¢ matrix; see Model 3. The spectral
radius of ( is less than one. €2 is a lower triangular matrix with positive diagonal elements. Appendix

B shows that the IRF matrix, ©; is ©; = ¢’ and the matrices of dynamic interaction multipliers are
I';(GL — GF) = (effects of Ygr,+—; on Yy for i € GF) = Car for 7 =0,1,2,...,00 (4.24)

[;(GF — GL) = (effects of Y} ;_; on Ygr, for k € GF) = (/(gr for j =0,1,2,...,00 (4.25)

Model 8—Model 8 is formulated as follows:

Vit = a; + "Y1 + (G Yar—1Din(i € GF) + (ip < > th1> Dit(i = GL) 4 ey (4.26)
keGF

where (¢ and (¢ are unrestricted as ¢*; see Model 4. The spectral radius of (* is less than one. Q*

is a lower triangular matrix with positive diagonal elements. Appendix B shows that the IRF matrix,
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0, is ©; = (¢*)7Q* and the matrices of dynamic interaction multipliers are

I';(GL — GF) = (effects of Yg1,;—; on Yy for i € GF) = (¢C*)/¢gy, for j =0,1,2,...,00  (4.27)

I';(GF — GL) = (effects of Y} ;—; on Ygr, for k € GF) = (¢*)/(&p for j =0,1,2,...,00  (4.28)

Estimation results.—Models 5-8 are estimated by the QML method. Tables 7-10 present the pa-
rameter estimates, QML standard errors, and model diagnostic tests for Models 5-8, respectively. Figs
6, 9, 12, and 15 present the off-diagonal elements of the IRF matrix until 30 leads for Models 5-8,
respectively. Figs 7-8, 10-11, 13-14, and 16-17 present the matrices of dynamic interaction multipliers
until 30 leads for Models 5-8, respectively.

According to the residual diagnostic tests presented in Tables 7-10, on average, we are not able to
reject model specification assumptions at the 10% level of significance. Both the LR test and the AIC
metric suggest better performance for the unrestricted Models 6 and 8, compared to Models 5 and
7, respectively. We find that all models are covariance stationary. The IRFs of the extended models
presented in Figs 6, 9, 12, and 15 show similar dynamic effects to the IRFs of Models 3 and 4. In the
remaining part of this section, we focus on the dynamic effects among patent innovation leaders and
followers for Models 6 and 8, supported by the likelihood-based model selection metrics.

Fig. 10 (Model 6) shows the dynamic interaction multipliers measuring spillovers from the IL
(Merck) to IF companies, providing the following results. First, we see positive spillover effects of all
IL variables on IF stock return, starting from the first and second leads; see I'11, I'12, I'13, and I'y4.
The highest spillover effects are associated with patented and non-patented R&D variables of the IL on
the stock market valuation of IF firms. We can also see that IL R&D expenses have contemporaneous
negative effect on IF stock return, however, this effect changes to positive from the first lead; see I'ys.
Second, we see significant positive dynamic effects of IL non-patented R&D on IF log R&D expenses
(T'24) and IF non-patented R&D activity (I's4). For both variables, Fig. 10 shows a clear spillover
pattern over several years. Third, I's4 shows that IL non-patented R&D has negative contemporaneous
effect on IF patent applications, however, from the first lead this effect changes to positive for all
subsequent years. Fourth, we observe positive dynamic effects of IL log R&D expenses on IF non-

patented R&D; see I'y2. These findings suggest positive dynamic R&D spillovers from the IL (Merck)
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to IF firms for future year. For stock market and patent count we observe negative contemporaneous
effects which change sign for all leading years. Moreover, the results also evidence that IF firms are
more influenced by the non-patented R&D of Merck than by its patented R&D activity, emphasizing
the importance of measuring non-patented R&D activity.

Fig. 11 (Model 6) exhibits the dynamic interaction multipliers capturing the spillovers from IF
firms to Merck, providing the next findings. The results show evidence of positive dynamic effects over
future years. First, we see positive effects of all IF variables on Merck stock return, starting from the
first and second lead. The highest positive effects are observed from the non-patented R&D of followers;
see I'11, I'12, I'13, and I'14. Second, we find that both patented R&D and non-patented R&D of Merck
are influenced positively by all IF variables, starting from the third lead. These results indicate positive
R&D spillovers from IF firms to the IL and also show the importance on non-patented R&D activity.

Furthermore, the dynamic multiplier estimates reported in Figs 16 and 17 (Model 8), which measure
spillovers between GL and GF firms of the technological cluster, are similar to the dynamic multipliers
of Model 6. This suggests that the spillover effects identified between Merck and its followers are robust
for different clustering procedure of patent innovation leaders and followers.

Comparing the effects reported in Figs 10 and 11, we can see positive spillovers between IL and IF
in both directions. We discuss these results in the context of the competition and innovation model of

Aghion et al. (2005). We assess the level of competition by computing the following measure:

R 1 operating profit financial costs;
COr=1—— Lly=1-— i i 4.29
K 111 ; * 111 ; sales;; (429)

where LI;; is the Lerner Index or price cost margin; see Nickell (1996) and Aghion et al. (2005). High
values of this competition measure indicate competitive industry, while low values indicate market
power. COy is an alternative observable measure of market competition to our latent common com-
petitive factor, If. The framework of Aghion et al. (2005) provides the following discussion of our
results.

First, Fig. 18a) presents that market competition, in general, increases in the technological clus-
ter over the period 1979 to 2000. Aghion et al. (2005) conclude that increasing market competition
discourages laggard firms to innovate while encourages neck-to-neck firms to innovate. The positive

dynamic spillover effects estimated in both directions in the drugs industry indicate that, in the tech-
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nological cluster analyzed, firms are neck-to-neck in innovation activity. The estimation results show
that Merck has rapid contemporaneous impact on followers, and for the IFs it takes about three years
to influence Merck. This finding is consistent with Nasbeth and Ray (1974), Mansfield et al. (1981),
Rogers (1983), Pakes and Schankerman (1984), and Jovanovic and MacDonald (1994), who report that
innovation spills over gradually to competitors.

Second, Figs 18b) to 18d) present the inverted-U relationship between competition, CO; and three
measures of innovation: total R&D investment, Jsl‘t’, patented R&D, P;;; non-patented R&D, ]53(1—]5;)
This result is very similar to Aghion et al. (2005). The figure shows that the maximum level of
innovation is achieved at the 95% —97% level of competition, which is equivalent to an average 3% — 5%
price cost margin in the drugs industry.

Third, Fig 18e) presents the estimates of the common competitive factor, [; and market competition,
COy;. The figure shows the least squares estimates of the linear regression model, suggesting positive
relationship between the common competitive factor and the observable market competition metric.
This provides support for the interpretation of [ as level of market competition. The least squares
estimates also suggest that the common competitive factor, [} in the technological cluster is driven by
the level of market competition.

Finally, Figs 1c) and 18a) present that the common competitive factor and the level of market
competition jump simultaneously in 1990. This suggests that drugs firms reacted to the increasing
level of market competition by patenting a significantly higher proportion of their innovation output

after 1990. This finding supports Shapiro (2007).

[APPROXIMATE LOCATION OF TABLES 7-8; FIGURES 6-18]

5. Summary and conclusions

We study dynamic interactions between patent innovation leaders and patent innovation followers
in a technological cluster, by allowing for different propensity to patent for different firms. We use
patent and firm-specific data of 4,476 companies from several manufacturing and service industries
of the US economy for the period 1979 to 2000. Firms of the data set are classified into different
technological clusters, where each group includes technologically similar firms. We study a specific
cluster of 111 firms that are mostly from the drugs product-market sector. In the technological cluster

analyzed, the permanent IL, permanent IF, GL, and GF in patent innovation activity are identified.
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We extend the approach of Pakes (1985) by considering different dynamic measures of innovation
activity that may capture patented R&D (i.e., publicly disclosed innovations) and non-patented R&D
(i.e., not appropriated R&D or trade secrets). Patented and non-patented R&D is separated by using
the latent-factor patent count data model, which estimates different propensity to patent for each firm.
In the patent count data model, propensity to patent is driven by a latent common competitive factor,
representing the level of market competition. Given the estimates of patented and non-patented R&D,
we study dynamic R&D spillovers among patent innovation leaders and followers by PVAR models.

The PVAR estimates support the findings of Pakes (1985) about dynamic effects among stock
return, R&D expenses, and patent application counts of U.S. firms. The extended PVAR models
evidence that non-patented R&D is an important dynamic determinant of both patented and non-
patented R&D activity in the cluster of technologically similar firms. We find positive spillover effects
between patent innovation leaders and followers of the technological cluster in both directions. We also
find that the level of competition has increased over the period 1979 to 2000. The positive spillover
effects indicate that firms are neck-to-neck in innovation activity in the drugs industry. We also evidence
an inverted-U relationship between competition and innovation in the drugs technological cluster.
According to the inverted-U relation, the maximum level of innovation is achieved at the 95% — 97%
level of competition, which is equivalent to an average 3% — 5% price cost margin in the drugs industry.
Finally, the results evidence that market competition is a possible driver of the common latent factor
affecting firms’ propensity to patent. This suggests that firms have patented a higher proportion of
their innovation output due to the increasing level of competition in the technological cluster during

the 1990s.
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Appendix A
Deriving Equation (4.4)

We derive Equation (4.4) from Equation (4.3) as follows. Equation (4.3) is

Qit 0 0 0 Qit—1 1 0 0 €it + N1t
Tit =10 (22 0 Tit—1 Tl 00 1 0 C20Vit (A1)
In P 0 70C2 + (32 (33 In Py c200v% Y 1 N34t

The first and second error terms are not orthogonal in this system since €;; = 0¢q;; + v;;. First, we derive

the covariance matrix of the errors in (A.1). The covariance between the first and second errors is

Cov(€ir + Nuit, c20vit) = Cov(0gsr + vir + N1it, C20Vit) = c20 Var(vie) (A.2)

where second equality uses that 114, gi, and v;; are orthogonal. We express v;; as

Vit = €t — O0qir = € — O(€it +mit) = (1 — 0)er — Oz (A.3)

Taking the variance of this equation, we have

Var(vi¢) = (1 — 0)*Var(e;;) + 0*Var(nii) = 0?07 + (1 — 0)%03 (A.4)
Therefore,
Cov(eir + Mit, Coovi) = cl6%07 + (1 — 0)?03] (A.5)

Then, the distribution of errors in (A.1) is

€it + Mt 0 ot + 03 c[0%0F + (1 —0)%03] 0
Co0Vit ~ N 0 |, e [020% +(1- «9)205] C%O[QQU% +(1- 9)203] 0 (A.6)
N3t 0 0 0 o3
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We introduce the following notation:

0?4+ 03 ca0l0%0% + (1 —6)%02] 0 62 619 0
coo[0202 + (1 — 0)202] Z 0202 +(1—-6)202 0 | =| 612 62 0 (A7)
0 0 o2 0 0 o2

The Cholesky matrix of the error covariance matrix is

1/2
O'% 12 0 g1 0 0
. -2
612 63 0 = 32 /65— %2 0 (A.8)
0 0 of 0 0 o3

Using this Cholesky matrix, we rewrite Equation (A.1) to make the error vector orthogonal:

it 0 0 0 Qit—1
Tit =10 (22 0 ri—1 | T
In Py 0 G2+ 32 (33 In P4
o1 0 0 eLis
051 + 912 2%
+ C20001 + 5 92 7 %2 €2it (A.9)

: 012 =2 i, .

Y0 (020901 + 71) Y04/ 05 — 7 03 €34t

where (e14¢, €2it, €3it)’ ~ N(03x1,I3). We simplify the notation in Equation (A.9) by defining new

parameters:
it 0 0 0 Qit—1 o1 0 0 €1t
Tit =10 (22 0 Tit—1 +| 612 2 O e2it (A.10)
In Py 0 G2+ (32 (33 In Py Y0012 Yo02 03 esit

where 71, 612, and &3 can be expressed by the original parameters based on Equations (A.7) and (A.9).

Deriving Equation (4.14)
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We derive Equation (4.14) from Equation (4.13) as follows. Equation (4.13) is

1 0 0 O €t + Mt
co0b 1 0 0 C20Vit
+
20070 Y0 10 N3t
| c20000 + c2007000 do+0d0 o 1| | aa

o | o 0 o 0 || @
re | |0 G22 0 0 Tit—1

In Py 0 Y0G22 + (32 (33 (34 In Pty

| InPy | | 0 (do+7000)C22 + doCs2 + Caz doCsz +Cas Caa | | Py

(A.11)

The first and second error terms are not orthogonal in this system since ¢;; = 0¢q;s + v;s. We derive the

distribution of errors according to (A.2)-(A.6) and obtain

€it + M4t 0 O'% + O'% 020[920% + (1 - 9)20'%]
C20Vit Nl ° ca0[0?0F + (1= 0)%03]  c30[0%07 + (1 - 0)%03]

M3it 0 0 0

M4it [\ 0 0 0

We introduce the following notation:

0?4+ 03 cl0?0? +(1-0)%03) 0 0 62 612
cool0?0? + (1 — 0)%03] 3pl0%07 +(1—0)%03] 0 0 | o2 o3
0 0 o3 0 0 0
0 0 0 o} 0 0

The Cholesky matrix of the error covariance matrix is

1/2
62 612 0 0 a1 0 0 0
612 62 0 0 BERGEE B
0 0 of O 0 0 o3 0
0 0 0 of 0 0 0 o4
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Using this Cholesky matrix, we rewrite Equation (A.11) to make the error vector orthogonal:

qit
Tit

In P

In P}

0 0 0 0
0 (22 0 0
0 Y0G22 + (32 (33 (34
0 (do +70%0)C22 + PoCs2 + a2 P03z + Caz  Caa |
o1 0 0 0
6200('714-%112 “d%—% 0 0
Y0 <0209C'f1 + %112) Yoy /03 — (ilzz o3 0
. -2
(do +v0¢0) <620951 + %2) (0o +7000)4/ 55 — %22 P03 04

qit—1
Tit—1

In P4

it—1

In P

€14t
€9;

" (A.15)
€3it

€44t

where (€15, €2it, €3it, €4it)’ ~ N(04x1, I1). We simplify the notation in Equation (A.15) by defining new

parameters:

qit
Tit

In -Pit

In P}

01
012

Y0012

(00 + Y0¢0)T12

0

0

0 Co2
0 YoC22 + (32
0

(00 + Y0%0)C22 + $0C32 + Ca2

0 0
09 0
Y002 o3

(00 +Y090)02 P03

0

04

0 0
0 0
(33 (34
®0C33 + (43 Caa
[ €14t ]
€24t
€3it
| Cdit |

qit—1
Tit—1

In Py

In P,

(A.16)

where 71, 612, and G2 can be expressed by the original parameters based on Equations (A.13) and

(A.15).

Appendix B

Models 1-/
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We use the following general notation for Models 1 to 4:

Yit = a; + (Yir—1 + Qe (B.1)

where Yj; is a K x 1 vector of the endogenous variables; a; is a K x 1 vector of fixed effects; 2 is a
lower triangular matrix with positive elements in its diagonal; e;; ~ N(Ox 1, [x) is the vector of error

terms. We rewrite (B.1) as

(IK CL) it — Qg + Qezt (B2)

Vi = (Ix — CL) " Ya; + (Ix — CL) ' Qe (B.3)

Y=Y Jai+ ) Qe (B.4)
§=0 j=0

By taking derivatives, we get the IRF matrices

OYittj

9= Oeiy

={Qfor j=0,1,2,...,00 (B.5)

Models 5-6

We use the following general notation for Models 5 and 6:

Yie = a; + (Yie—1 + QY1 D (i € IF) + Gp (Z Yk,t—l) Dit(i = IL) + Qeit (B.6)
keIF

where Y}; is a 4 x 1 vector of the endogenous variables; a; is a 4 x 1 vector of fixed effects; €2 is a lower
triangular matrix with positive elements in its diagonal; e;; ~ N (04x1, [4) is the vector of error terms.

We rewrite (B.6) as

Yie = (Is — CL) ta; + (Is — CL) " GquYiL—1D(i € IF)+

+(Iy — CL)™ (Z GrYis 1) D(i =1L) + (Iy — (L) ' Qey (B.7)
kelF
Yie = Z Jai + ZCjCILYIL,t—l—j D(i € IF)+
j=0 j=0
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(S0 i | DG =T0)+ 3 e (5.5)

j=0 keIF Jj=0

By taking derivatives, we get the IRF matrices
0, = for j=0,1,2,...,00 (B.9)

and the dynamic interaction multiplier matrices

I;(IL — IF) = (effects of Yi1,;—; on Yy for i € IF) = ¢/ ¢y, for j = 0,1,2,...,00 (B.10)
I';(IF — IL) = (effects of Y, ;—; on Yir,; for k € IF) = CGp for j=0,1,2,...,00 (B.11)
Models 7-8

We use the following matrix notation for Models 7 and 8:

Yie = a; + (Yie-1 + CenYar—1Di(i € GF) + Car ( > Yk,t—l) Dit(i = GL) + Qe (B.12)
kEGF

where Y}; is a 4 x 1 vector of the endogenous variables; a; is a 4 x 1 vector of fixed effects; €2 is a lower
triangular matrix with positive elements in its diagonal; e;; ~ N(04x1, I4) is the vector of error terms.

We rewrite (B.12) as
Vi = (Is — CL) a; + (Is — CL) *¢arYar—1D(i € GF)+

+(Is—¢L)™! < > <GFYk,t_1> D(i = GL) + (I4 — ¢L) " 'Qeq (B.13)

keGF

o o
Yi = Z a; + ZC]CGLYGL,t—l—j D(i € GF)+
=0

j=0
+{ 303 FlarYie-1-; | DGi=GL)+ Y /ey (B.14)
j=0 keGF §=0
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By taking derivatives, we get the IRF matrices

0, = for j=0,1,2,...,00 (B.15)
and the dynamic interaction multiplier matrices

T;(GL — GF) = (effects of Ygr,4—; on Yy for i € GF) = (?Car for j =0,1,2,...,00 (B.16)

T[;(GF — GL) = (effects of Y} ;_; on Ygr, for k € GF) = (/(gr for j =0,1,2,...,00 (B.17)

Appendix C

The Poisson-type patent count data model involving the common competitive latent factor is es-
timated by the simulated QML method (Gouriéroux and Monfort, 1991). The likelihood function is
evaluated by using the EIS technique of Richard and Zhang (2007).

The conditional density of [j is given by

E S £ 2
Pl ) = i) ()

1
V2T P { 2

The likelihood of a realization (P,L*) = (Et,lf t=1,....,T;i=1,...,N) is

N T N T ~ 0TS Mo Tx P * % 7% 2
>, ENSEINES exp(—P%P?)(P%P;)PR 1 |: (lt — M lt—l) :|
Py|F ) = w2 e _ C.2
J:ll t||1 F (P Fe) £ (U511 1) J:ll t||1 { B = OXP 5 (C.2)

The likelihood of patent counts is obtained by integrating out all latent variables from (C.2):

N T B * * Tk 2
= exp(—Aip) N 1 [ (Il — W'l y) ]
L(P|F.;0) = / = L exp |————— | dL* C.3
(Pl ) RT }:[1 tl;ll P! V2 P 2 (C.3)
where 6 denotes the vector of parameters of the model and
Fe = {Fitycit;dit fori=1,...,.N;t=1,... ,T} (C4)

is the information set generated by the exogenous variables. We represent the likelihood of patent
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counts with the following compact notation:

L(P|Fe;0) = /HHg Py, 1| F; 0) (C.5)

i=1t=1

where g is the joint density of ( i, ). We introduce the auxiliary sampler, m and include it in the

likelihood function, as follows:

K3 7l ) *| 7% * *
L(P|F.:0,0%) / 111 —li JTED) om0 (C.6)
RT —1t=1 |t 1 )

where 0* = (67,...,0}) denotes the parameters of the auxiliary sampler. The parameters of the
auxiliary sampler are different in each period, however, the functional form of the sampler is constant

over time. The importance Monte Carlo estimate of £(P|F;0,6*) for given 6* is

R N T
(P|f 0, 9 1 ZH 9( ztaltr|~7'—ta )
e R

r=1i=1t= 1ml;(7"lt 17” )

(C.7)

where {l}. : t = 1,...,T} denotes the r-th trajectory of i.i.d. draws from m. Richard and Zhang (2007)

suggest defining the auxiliary sampler, m with its density kernel, k:
k(I 115 07) = m(l [l -1; 07)x (-1 67) (C.8)

where

MU /k: 5,00 67)dI; (C.9)

denotes the integrating constant associated to k. Richard and Zhang (2007) suggest choosing k as a
kernel of the normal distribution. Moreover, we include f* into the auxiliary sampler, m; as suggested

by Bauwens and Hautsch (2006). The normal density kernel is given by

(C.10)

(I — it y)?
2

B I3 07) = exp [070F + 03,(17)?] x exp [_

where 6 = (03,,05,) determines the conditional mean and variance of the auxiliary sampler for period
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t. The conditional mean, y; and conditional variance, 7 of the normal auxiliary sampler, m are

pe =77 (03, + L) (C.11)
1
2
S — 12
T 1203 (C.12)
A trajectory of {l; : t =1,...,T} can be generated from the auxiliary sampler, as follows:
lz( = Ut + TNt (013)

where 7, ~ N(0,1) are i.i.d. common random numbers. Richard and Zhang (2007) suggest using
the same set of random numbers (i.e., common random numbers) for every iteration of the maximum
likelihood procedure. In the EIS method, the parameters of the auxiliary sampler minimize the variance

of the Monte Carlo estimator of the likelihood function:

R N T

g Zt7ltr“7:t’ )
RZHH—) (C.14)

0" = argmmVar Lr(P|F.;0,6" )] = argmm\/ar -
r=1i=1¢=1 ltr‘lt Ir

This variance is minimized by choosing such values for 6 for which there is a good fit between g and
m. To achieve this, Richard and Zhang (2007) suggest solving the minimization problem of (C.14) by

estimating a recursive sequence of Ordinary Least Squares (OLS) problems, each of the following form:
n g( By, 15| Fi; 0) + I x (I3 05 1) = 05y + 05,05 + 05, (15,)% + ugy with r =1,... R (C.15)

fort =1T,...,1, X(Z*T,é}ﬂ) =1 and é;:rl is the OLS estimate of 0, ;. These regressions are run
backwards, from T to 1 and the sample size of each regression is equal to the number of trajectories
drawn, R. In our estimation, we choose R = 50.

The right side of Equation (C.15) includes the log kernel of the auxiliary sampler. Normal dis-
tribution is used for the auxiliary sampler since the log kernel of the normal distribution is a second
order polynomial, therefore, its parameters can be estimated by OLS. The EIS technique involves the
estimation of a large number of auxiliary sampler parameters over the maximum likelihood iterations.
Therefore, it is essential to estimate these parameters very fast to make the EIS procedure feasible.

The OLS estimation provides the auxiliary sampler parameter estimates rapidly, making the EIS based
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QML estimation feasible in practice.

We can summarize the EIS method as follows:

e Step 1: We draw R = 50 trajectories {I}.}1_; from the distribution N(u*I}_4,,1).

Step 2: For each t =T,..., 1, we estimate by OLS (C.15) to get the parameters of m.

Step 3: We draw R = 50 trajectories {/},.}._, from the auxiliary samplers.

We iterate Steps 2 and 3 five times.

Step 4: We estimate the value of the likelihood function according to (C.7).

With these steps, the likelihood maximization procedure shows proper convergence to the optimum

and we can compute the QML standard errors by the sandwich estimator without numerical problems.

Appendix D

To approximate the value of the common competitive factor, I}, we compute its filtered estimates,

E[lf|F?], conditioning on the observable information set

F = [(Pilyfiljcilydil)a ooy (Pit—1, Fit—1, Cit—1, dir—1), (it Cit, dig) i =1,..., N (D.1)

The conditional expectation of [} is

B[ FY] = /leh(lflff)dli‘ (D-2)

where h denotes the conditional density of [;. We introduce P=(Py:i=1,...,N;s=1,...,t) and
Lf=(f:s=1,...,t). We compute h as follows:
(P, |77

RN FY) = f(lst——m = (D.3)

_ thfl g<]5t—17 l?? L;—l’ff)dl’:—l —
Jreo1 G(Pe1, Ly |FP)dL; 4

_ S G(Pry, Ly g |FOV G| Py, Ly, FP)ALT
th,1 g(Pt—la L;fk—1|fto)dL;fk—l
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Jrees P3NPy, L | FO)AL;
Jre-1 §(Peer, L 4 |FP)dL}

where ¢, f, g, g, and f* are conditional density functions of the corresponding random variables or
vectors. Substituting Equation (D.3) into (D.2), and using the fact that the denominator in (D.3) is

not a function of [}, we obtain that

i S RY P L |FO)dL?
E[l}|F?) = th if (t‘ t~—1)g( : 1 Ot—l’ *t) t (D.4)
th—l g(Ptflv Lt71|ft )st,1

where the joint density, g is given by

P, * * J% 2
18 (S 1 ls - s—

Nl exp(—A\
(P, Tl =TT 22 ﬂﬁwP '

i=1s=1 &

The high-dimensional integrals in Equation (D.4) are estimated by the EIS technique.
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Table 1
Product market based industry classification in the technological cluster.

SIC industry name SIC K HM industry name K
Pharmaceutical preparations 2834 47  Pharmaceuticals 92
Biological products (no diagnostic substances) 2836 31  Non-manufacturing 10
In vitro and in vivo diagnostic substances 2835 7 Computers and inst. 4

Perfumes, cosmetics and other toilet preparations 2844 3 Chemicals 2

Surgical and medical instruments, and apparatus 3841 3 Food 2

Medicinal chemicals and botanical products 2833 2 Rubber and plastics 1

Wholesale-drugs, proprietaries and druggists’ sundries 5122 2

Services-medical laboratories 8071 2

Grain mill products 2040 1

Beverages 2080 1

Chemicals and allied products 2800 1

Soap, detergents, cleaning preparations, perfumes, cosmetics 2840 1

Paints, varnishes, lacquers, enamels and allied prods 2851 1

Agricultural chemicals 2870 1

Plastics products, NEC 3089 1

Electromedical and electrotherapeutic apparatus 3845 1

Wholesale-medical, dental and hospital equipment, and supplies 5047 1

Fire, marine and casualty insurance 6331 1

Services-hospitals 8060 1

Services-engineering, accounting, research, management 8700 1

Services-commercial physical and biological research 8731 1

Non-operating establishments 9995 1

Total number of firms 111 111

Notes: Standard Industry Classification (SIC). Number of firms (K). Hall and Mairesse (HM, 1996) classification.
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Table 2
Patent innovations leadership classification of firms.

Firm name (SIC) Cluster (V1) (V2) (V3) (V4  (V5) (V6) (V7) (V8) (V9)
1. Merck (2834) IL GL 217.6 1367.5 136.7 1472324 12.39 847 1320 082 1.16
2. Eli Lilly (2834) IF GL 1160 613.6 586 436455 1221 815 12.69 0.83 1.17
3. Abbott Lab. (2834) IF GL 975 7208 739 40954.3 11.89 7.91 1267 0.80 1.13
4. Warner-Lambert (2834)  IF GL 81.7 6562 61.3 315420 10.64 7.23 1055 0.75 1.29
5. Pfizer (2834) IF GL 103.0 553.2 49.1 23373.0 1221 832 1279 081 1.16
6. Bristol-Myers (2834) IF GL 697 3074 342 11509.1 1211 827 1295 0.80 1.14
7. Am. Home Prod. (2834) IF GL 528 330.7 30.7 83969 10.82 805 11.38 0.72 1.25
8. Alza (2834) IF GL 355 5476 409 76830 824 528 992 078 1.01
9. Mallinckrodt (2835) IF GF 235 1819 169  2007.8 925 6.92 982 0.68 1.11

10. Pharmacia & U. (2834) IF GF 214 45.9 8.5 1922.6 1096 7.45 1034 0.79 1.34
11. Church & Dwight (2840) IF GF 123 83.4 9.9 1537.8 796 510 9.74 0.66 0.89

12. NeoRx (2835) IF  GF 6.5 68.4 7.8 500.5 725 4.12 7.92 1.07  0.96
13. Alliance Pharma. (2834) IF GF 4.2 69.9 6.9 369.8 742 433 8383 1.06  0.87
14. Xoma (2836) IF GF 6.9 48.7 5.0 329.6 8.11  4.21 8.84 1.15 0.96
15. Enzon (2836) IF GF 4.2 471 6.0 235.9 6.95 413 879 1.08  0.83
16. Guilford Pharma. (2834) IF GF 3.5 23.0 4.9 216.5 6.75 420 698 098 1.01
17. Sugen (2836) IF  GF 4.4 23.8 4.0 216.2 6.50 4.02 6.42 095 1.05
18. Inhale Therap. (2834) IF GF 2.5 31.3 7.0 169.3 6.33 417 715 092 097
19. Corvas (2836) IF GF 3.5 16.3 2.1 122.5 6.58 4.07  7.00 1.00 1.00
20. Molecular Bios. (2835) IF  GF 2.0 57.5 4.8 90.5 6.97 423 797 1.02 0.93

Notes: Standard Industry Classification (SIC); Innovation Leader (IL); Innovation Follower (IF); Group of Leaders (GL);
Group of Followers (GF). The table presents nine variables for 20 out of the 111 firms of the technological cluster analyzed
for the period 1979 to 2000. The following variables are presented:
(V1) mean patent applications count, (1/7) 3/, Py
V2) mean forward citations received count, (1/7) Zthl Cfit
3) mean forward citations received count corrected for sample truncation bias, (1/7) 3/_, &7
4) mean knowledge stock, (1/7T) Zle S o CrisPis(1—6)°
5) mean In R&D expenses, (1/7) 3 _, it
6) mean In book value, (1/T) Zthl Zit
7) mean In stock market value, (1/7) 3/, ma:
8) mean In R&D expenses to log sales, (1/T) ZZ;I Tt Sit
9) mean In R&D expenses to log stock market value, (1/7) 3"/, it /mi
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Table 3

Evolution of the knowledge stock for firms in the group of patent innovation leaders.

Merck  Eli Lilly Abbott  Warner- Pfizer Bristol- American  Alza
Year Lab. Lambert Myers Home P.
1979 31,215 4,269 4,467 571 4,804 778 1,087 1,049
1980 51,807 13,245 6,246 1,411 6,131 1,237 2,269 2,805
1981 65,132 21,253 6,629 3,498 7,800 1,679 3,108 3,014
1982 73,959 21,034 7,164 4,159 8,658 1,739 3,135 3,681
1983 79,546 22,916 7,026 8,318 9,752 2,061 3,422 3,815
1984 83,616 25,138 6,928 16,406 11,298 2,521 3,433 4,806
1985 89,006 25,415 6,517 30,040 16,978 3,292 3,961 5,523
1986 97,238 23,248 7,754 43,104 18,579 3,694 5,771 6,628
1987 110,944 20,924 9,491 46,594 20,046 4,022 7,457 7,599
1988 108,461 19,228 12,499 50,251 24,377 4,988 7,516 9,036
1989 115,519 18,659 22,947 51,266 24,662 5,125 8,781 8,867
1990 136,414 18,617 28,476 52,747 29,798 6,483 8,892 9,472
1991 168,611 18,200 41,039 48,972 29,716 6,086 12,374 10,247
1992 204,970 20,146 50,468 44,339 31,188 8,039 13,667 11,131
1993 201,721 33,182 59,326 43,195 29,225 13,129 12,963 10,693
1994 213,937 46,093 70,367 41,515 31,009 15,414 14,425 10,754
1995 224,626 125,948 103,236 42,818 31,387 22,760 14,590 11,092
1996 233,309 112,243 100,738 37,540 29,102 26,825 13,133 9,837
1997 246,212 108,158 100,803 34,863 31,735 28,880 11,966 10,861
1998 248,862 98,847 91,705 33,734 30,075 30,646 10,735 10,660
1999 235,728 86,997 83,547 31,169 42,459 32,501 10,286 9,403
2000 218,279 76,439 73,621 27,414 45,426 31,301 11,762 8,054
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Table 4
Parameter estimates and model diagnostics for Models 1 and 2.

Model 1 Model 2
¢ matrix Residuals diagnostics ¢ matriz Residuals diagnostics
Yo 0.05%(0.032) ¢ test p-value (71 —0.06"7(0.029) t test p-value
Mean e+ 1.00 (s 0.05"**(0.016) Mean e 1.00
Mean eo;s 1.00 (i3 —0.01(0.029) Mean ez 1.00
Mean €3it 1.00 (;1 0-09***(0.018) Mean €3it 1.00
Coo 0.78"%(0.032)  x? test p-value (35 0.77°*%(0.032)  x? test p-value
Var €14t 0.12 ng 002(0025) Var €1it 0.12
Var €24t 0.18 (51 —0.01(0.033) Var €2it 0.17
32 0.05(0.032)  Var es;s 0.13 (3 0.09"*(0.023)  Var esi: 0.12
(33 0.23"7*(0.045) LB test p-value (33 0.23***(0.045) LB test p-value
o(2) 0.777 LB et 0.50 p(2) 0.780 LB et 0.52
Cholesky matriz, Q LB e2;t 0.49  Cholesky matriz, 2 LB ezt 0.50
61 0.63"7*(0.067) LB ess 0.33 o7 0.62""*(0.067) LB esi 0.33
G2 0.57"7*(0.036)  Model diagnostics o3 0.57"**(0.036)  Model diagnostics
o3 0.74***(0.025) LL —7151 o3 0.74***(0.025) LL —7132
G12 0.03"**(0.011) LR 37.85 oia 0.04***(0.011)
LR p-value 0.000 o073 —0.01(0.019)
AIC 15002 o33 0.03*(0.019) AIC 14978

Notes: Model 1 is Yt = a; + (Yie—1 + Qei with Yie = (qit, Tit, In Pit)’; Model 2 is Yi¢ = a; + (*Yi—1 + Q%e;r with
Yit = (git, mit, In Pi)’. Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion (AIC).
p(¢) denotes the spectral radius of ¢. *, ** and *** denote parameter significance at the 10%, 5%, and 1% levels,
respectively. QML standard errors are reported in parentheses. For each error term, we report average of p-values
computed over i = 1,..., N for the following tests: t test for Ho : E[ei] = 0; x* test for Hy : Varlei;] = 1; LB test for
Hy:{ei:t=1,...,T} are uncorrelated. The LB test is performed for 5 lags.
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Table 5
Parameter estimates of the latent-factor patent count data model.

wo 0.00**(0.000
w1 0.00(0.000
w2 0.00(0.000
w3 0.00(0.001

2o 0.50***(0.090) ( ( ) )
Mt 0.14*7(0.002) p1 —0.04™*(0.009 ( ) )
Yo trie  —0.017*(0.001) B2 0.02***(0.007 ( ) )
v3 1% —0.04"*(0.003) B3  —0.03***(0.004 ( ) s 0.00(0.000)
Y4 Zit 0.01**(0.001) B4  —0.03*(0.002) ws 0.00(0.001) ¢4 0.00(0.000)
( ) ( ( ) )

( ) ( ( ) )

( ) ( ( ) )

( ( ) )

( ( ) )

Bo 0.63**(0.016) (
) (
) (
) (
; ) (
Bs 0.03*** 0.005) ws 0.00(0.001 )3 0.00(0.001
) (
) (
) (
) (
) (

®o 0.00(0.000
P1 0.00(0.000

o2 0.00(0.000

Y5 Pil 0.05*** 0.001

K1 0.00(0.000) s —0.01""*(0.002 we 0.00(0.004)  ¢s 0.00(0.001

w 0.91"**(0.007) B~ —0.01"*(0.002 wr 0.00(0.005 b7 0.00(0.004
Bs —0.01"*(0.002 ws 0.01(0.005 o] 0.00(0.007
Bo —0.01(0.006)  wq 0.00(0.006 b9 0.00(0.007
Bio  0.02°**(0.008) wio  0.01(0.007) ¢10 —0.01(0.013)

Notes: The latent-factor patent count data model for patent count intensity is Ay = PSP}, where In PS = po + 71t +
Yo tFit 4 V372 +Yazit +75 Pil + 2116020 BrTFit—r + Z,ICO:O WkCit—kTit + Z,ICOZO rdit—rFit+k1In P_; and In P = In (s +0ilf).
We do not report the estimates of u; and o;. *, ** and *** denote parameter significance at the 10%, 5%, and 1% levels,
respectively. QML standard errors are reported in parentheses.
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Table 6

Parameter estimates and model diagnostics for Models 3 and 4.

Model 3 Model 4
¢ matrix Residuals diagnostics  { matrix Residuals diagnostics
Yo 0.06%(0.032) ¢ test p-value (71 —0.06"7(0.029)  t test p-value
3o 0.25"*(0.034) Mean e 1.00 (i 0.04***(0.015)  Mean e14 1.00
do 0.017*(0.005) Mean e+ 1.00 (i3 —0.01(0.030) Mean e2;: 1.00
Mean €3it 1.00 Cf4 000(0016) Mean €3it 1.00
Mean e+ 1.00 ¢35 0.097**(0.018)  Mean ez 1.00
(a2 0.77***(0.033)  x? test p-value (35 0.77***(0.039)  x* test p-value
Var ei 0.12 (33 0.02(0.025)  Var et 0.12
Var ea;t 0.18 (34 —0.01(0.120)  Var ez 0.17
Var esit 0.13 (31 —0.01(0.034)  Var es;; 0.12
(32 0.05(0.033)  Var e 0.10 (32 0.097*(0.024)  Var e4s: 0.10
(33 0.23***(0.045) LB test p-value (33 0.23"*(0.045) LB test p-value
Caa 0.02(0.024) LB ey 0.50 (34 0.02(0.028) LB ey 0.51
LB ezt 048 (n 0.03***(0.008) LB et 0.49
Ciz —0.19"*(0.032) LB e 034 (i 0.00(0.016) LB es 0.34
Ca3 0.01(0.008) LB eust 0.10 (i3 0.01(0.011) LB east 0.14
Caa 0.32***(0.072)  Model diagnostics Cia 0.31**(0.085)  Model diagnostics
o(2) 0.774 LL —6976  p(2) 0.778 LL —6956
Cholesky matriz, ) LR 39.66  Cholesky matriz, 2
o1 0.63***(0.000) LR p-value 0.000 o7 0.62***(0.067)
G2 0.58***(0.000) AIC 14894 o5 0.57**(0.036) AIC 14876
o3 0.74***(0.000) o3 0.74***(0.025)
04 0.23***(0.000) o 0.22***(0.016)
12 0.03***(0.002) ofs  0.04"%(0.011)
o13 —0.01(0.019)
053 0.03%(0.018)
oi4 0.01***(0.005)
o3 0.14"77(0.016)

o5 0.01**(0.004)

Notes: Model 3 is Yt = a; + (Yie—1 + Qe with Yy = (qit, Tit, In Pyt In PY)’; Model 4 is Y = a; + (*Yie—1 + Q% e with
Yit = (git, mit, In Py, In Pf ). Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion
(AIC). p(¢) denotes the spectral radius of ¢. *, ** and *** denote parameter significance at the 10%, 5%, and 1%
levels, respectively. QML standard errors are reported in parentheses. For each error term, we report average of p-values
computed over i = 1,...,N for the following tests: t test for Ho : Efeit] = 0; x? test for Hy : Var[ei] = 1; LB test for
Ho : {e;t : t =1,...,T} are uncorrelated. The LB test is performed for 5 lags. The LR test is performed for Models 3

and 4; see Table 7.
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Table 7

Parameter estimates and model diagnostics for Model 5.

¢ matrix

Yo 0.08**(0.033)
do 0.22*7*(0.033)
®o 0.02***(0.005)
Ca 0.78***(0.029)
(32 0.04(0.033)
(33 0.17°7%(0.047)
C3a 0.05"%(0.026)
Ca2 —0.18"*%(0.035)
a3 0.02*%(0.009)
Caa 0.39**(0.071)
p(Z2) 0.783
Cholesky matriz, Q

o1 0.63***(0.067)
02 0.57"*(0.036)
o3 0.72"77(0.024)
o4 0.21%**(0.014)
012 0.03*"*(0.012)

Ci matriz

CiLaz  0.2777(0.062)
GiLz2 —0.74777(0.148)
(1,33 0.28(0.222)
Css  —0.42%(0.223)
QIL,a2 0.16™*(0.044)
CiL a3 ~0.10(0.087)
Cras  0.17(0.046)
Crr matriz

(o 0.017(0.003)
Cip.32 0.01(0.007)
sz —0.017*(0.003)
CIF,34 —0.04(0.022)
Cip a2 0.00(0.003)
QI 43 0.00(0.004)
CIr 44 0.01(0.012)

Residuals diagnostics

t test p-value
Mean €1it 1.00
Mean eg; 1.00
Mean esz;¢ 1.00
Mean eq;¢ 1.00
x? test p-value
Var eqt 0.16
Var €24t 0.16
Var es;¢ 0.16
Var esit 0.10
LB test p-value
LB €14t 0.50
LB €2it 0.51
LB €3it 0.35
LB €44t 0.22

Model diagnostics

LL —6716
LR 238.63
LR p-value 0.000
AIC 14402

Notes: Model 5 is Yy = a; + (Yie—1 + CILYFILytleit(Z‘ (S IF) + (e ZkeIF Yii—1 Dit(i = IL) + Qe;r with Y, =
Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion
(AIC). p(¢) denotes the spectral radius of (. *, ** and *** denote parameter significance at the 10%, 5%, and 1%
levels, respectively. QML standard errors are reported in parentheses. For each error term, we report average of p-values
computed over i = 1,..., N for the following tests: t test for Ho : Ele;] = 0; x? test for Hy : Var[ey] = 1; LB test for
Ho : {e;t : t =1,...,T} are uncorrelated. The LB test is performed for 5 lags. The LR test is performed for Models 5

(qit,mit, In Py, In P ).

and 6; see Table 8.
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Table 8
Parameter estimates and model diagnostics for Model 6.

¢ matrix (1, matrix Residuals diagnostics
(1 —0.07**(0.033) (i 0.06(0.103)  t test p-value
Cla 0.04(0.039)  (ini2 —0.54"*(0.138) Mean e 1.00
(s —0.01(0.026) (it s —3.47(9.555)  Mean e 1.00
(is 0.00(0.133)  ¢iLag  0.877%(0.197) Mean es; 1.00
(31 0.08"(0.036)  (ip..o1 —0.12(0.092)  Mean e 1.00
(32 0.75777(0.021) (1, 22 0.05(0.141)  x? test p-value
Cas 0.06"*(0.026)  (iL.03 —4.45(11.771)  Var ey 0.14
(34 0. 07*(0 038)  (ivoa 1.12°*%(0.193)  Var eai 0.17
Ch 02(0.029)  (ins —0.17*(0.100)  Var ez 0.17
Coo 0. 09***(0 035) (Lo —0.10(0.100)  Var e 0.10
Cis 0.19"*(0.019) (L. 3 4.20(11.215) LB test p-value
C3a 0.07(0.111)  (iLsa  —0.7777(0.195) LB e1a 0.50
Ci 0.02(0.018)  (ina —0.05%(0.032) LB eas 0.49
Cla —0.02*%(0.008) (it 42 0.22°7*(0.056) LB eai 0.33
Cis 0.04"**(0.012) (it a3 —1.32(3.376) LB eq 0.25
Cia 0.41777(0.012) (i1 44 0.36""*(0.076)  Model diagnostics
o(Z2) 0.763  (rr matriz LL —6597
Cholesky matriz, Q Civ 11 0.00(0.253) AIC 14221
of 0.62°**(0.005) (.12 —0.01(0.337)
o3 0.55"**(0.009) (.13 0.00(0.140)
o} 0.72°*%(0.012)  (fp 14 0.00(0.711)
o 0.217**(0.002)  (ipon 0.00(0.959)
o 0.02(0.028) i 20 0.00(0.406)
ot 0.00(0.023) (i 03 0.00(0.252)
o3 0.06"%(0.026) (i o4 0.01(1.255)
o4 0.01(0.018)  (irs 0.00(1.180)
o34 0.13"*(0.006) (¥ 32 0.00(1.363)
o 0.01(0.013)  (ir.a3 0.00(1.523)

(iv.34 0.01(2.708)

Gira 0.00(0.307)

(i a2 0.00(0.104)

(a3 0.00(0.044)

(iv.aa 0.01(0.339)

Notes: Model 6 is Y;'t = a; + C*Y;'t—l + CI*LYIL,tleit(i [S IF) + CI*F ZkEIF th,1 Dlt(l = IL) + Q*eit with Yit =
(qit,mit,In Py,In P¥)’. Ljung-Box (LB); Log Likelihood (LL); Akaike Information Criterion (AIC). p(¢) denotes the
spectral radius of (. *, ** and *** denote parameter significance at the 10%, 5%, and 1% levels, respectively. QML
standard errors are reported in parentheses. For each error term, we report average of p-values computed over i = 1,..., N
for the following tests: t test for Ho : Eles] = 0; x* test for Hy : Var[e;] = 1; LB test for Ho : {e; : t = 1,..., T} are
uncorrelated. The LB test is performed for 5 lags.
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Table 9

Parameter estimates and model diagnostics for Model 7.

¢ matrix

Yo 0.07(0.045)
do 0.23**(0.008)
®o 0.02(0.017)
Ca 0.77"*(0.021)
(32 0.06(0.046)
(33 0.16"**(0.018)
(34 0.05(0.092)
Ca2 —0.19"*%(0.008)
Ga3 0.02(0.013)
Caa 0.39"**(0.005)
p(Z2) 0.766
Cholesky matriz, Q

o1 0.63***(0.004)
02 0.57**(0.008)
o3 0.72"77(0.012)
o4 0.21***(0.002)
012 0.03(0.027)

Car matriz

Cor,22 0.01***(0.005)
Carsz  —0.03"%(0.006)
¢cL,33 0.10(0.151)
CaL,34 0.01(0.018)
CGL,42 0.017**(0.002)
Car 43 —0.02(0.045)
CGL,44 0.00(0.004)
Car matriz

Car 22 0.01*(0.007)
CGF,32 0.00(0.901)
CaF,33 0.01(0.783)
CaF,34 0.01(3.419)
CaF a2 —0.01(0.046)
¢cF a3 0.01(0.045)
CaF,a4 0.04(0.124)

Residuals diagnostics

t test p-value
Mean €1it 1.00
Mean eo;t 1.00
Mean ezt 1.00
Mean €4it 1.00
x? test p-value
Var eyt 0.16
Var €2it 0.16
Var es;t 0.17
Var es;t 0.10
LB test p-value
LB €14t 0.50
LB €24t 050
LB €3it 0.36
LB €44t 0.20

Model diagnostics

LL —6718
LR 183.78
LR p-value 0.000
AIC 14406

Notes: Model 7 is Yis = a; + (Yit—1 + CarLYor,i-1Dit(i € GF) 4+ (o Y jcqp Yar—1 Diu(i = GL) + Qei with Y =
(qit,Tit, In Py, In PY)'. Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion (AIC).
* %% and *** denote parameter significance at the 10%, 5%, and 1% levels,
For each error term, we report average of p-values
computed over i = 1,..., N for the following tests: t test for Ho : Ele;] = 0; x? test for Hy : Var[ei] = 1; LB test for
Ho : {e;t : t =1,...,T} are uncorrelated. The LB test is performed for 5 lags. The LR test is performed for Models 7

p(¢) denotes the spectral radius of (.
QML standard errors are reported in parentheses.

respectively.

and 8; see Table 10.
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Table 10
Parameter estimates and model diagnostics for Model 8.

¢ matrix

Gl —0.05(0.032)
Cia 0.05(0.039)
(i3 —0.01(0.026)
Cia 0.00(0.128)
(a1 0.10***(0.035)
(32 0. 77***(0 022)
o3 04(0.026)
(24 0. 07 (0.038)
G 0.02(0.030)
Cdo 0.11%**(0.034)
¢34 0.177%(0.019)
Caa 0.06(0.108)
Cia 0.02(0.019)
Cia —0.01(0.009)
Cis  0.03"*%(0.013)
Cia  0.4177(0.013)
p(Z) 0.781
Cholesky matriz, Q
of 0.62***(0.005)
o5 0.55***(0.008)
o 0.72***(0.012)
oi 0.21***(0.002)
ols 0.03(0.027)
oy —0.01(0.023)
oy 0.05%(0.025)
oty 0.01(0.017)
o5, 0.13*%(0.006)
ok 0.01(0.013)

Car matrix

CGr11 —0.02(0.012)
TR 0.00(0.006)
CIRE —0.06(0.213)
CGn1a 0.00(0.018)
C&n 21 —0.027(0.013)
C&n22  —0.02777(0.007)
CG 23 —0.92(1.323)
(G4 0.06*(0.018)
CEL 31 —0.01(0.010)
C&rnz2 —0.02%77(0.008)
CGn33 0.34(0.534)
CEL 34 0.00(0.022)
CGn a1 —0.01(0.005)
(G a2 0.017(0.004)
CEn a3 —0.19(0.275)
CGL, a4 0.0177(0.007)
Car matriz

CEran 0.00(1.935)
CEF. 12 0.00(0.528)
C&r3 0.00(1.379)
CEraa 0.00(4.218)
C&F .21 0.00(0.271)
CEr 22 —0.01(0.180)
CEr 23 0.01(0.504)
CEF 24 0.05(1.474)
C&r.31 0.00(0.822)
CEr 32 0.00(0.456)
CEF 33 0.01(1.060)
CEr 34 0.02(3.451)
CEr a1 0.00(0.537)
CEF a2 0.00(0.041)
CEr a3 0.01(0.140)
CEr a4 0.05(0.298)

Residuals diagnostics

t test p-value
Mean €1it 1.00
Mean eo;t 1.00
Mean esz;t 1.00
Mean €4it 1.00
x? test p-value
Var eq;t 0.15
Var €2it 0.17
Var esit 0.17
Var es;t 0.10
LB test p-value
LB €1it 0.52
LB €24t 050
LB €34t 034
LB €4it 0.22
Model diagnostics

LL —6626
AIC 14280

Notes: Model 8 is Yiy = ai + ("Yie—1 + (& Yar,i—1Di(i € GF) + (Gr ZkeGF Yie—1 Di(i = GL) + Q%e; with Vi =

(qit,mit,In P, In P ).

spectral radius of (.

X kK
’

uncorrelated. The LB test is performed for 5 lags.

: Elei] = 0; x? test for Ho

Ljung-Box (LB); Log Likelihood (LL); Akaike Information Criterion (AIC). p(¢) denotes the
, and *** denote parameter significance at the 10%, 5%, and 1% levels, respectively. QML
standard errors are reported in parentheses. For each error term, we report average of p-values computed over i = 1,...,
for the following tests: t test for Hy
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Fig. 1. Patent applications, patent intensity, and propensity to patent.
Notes: 1a) shows the evolution of leill P;; and Zzlill Ait; 1b) shows patent application count and knowledge stock per
firm for IL and IF; 1c) shows the estimates of E[lf|F¢] for all ; 1d) shows the evolution of (1/111) 3°/'} P, in percentage.
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Fig. 15. Impulse response function, ©; for Model 8 for j =0, ..., 30 leads.
Notes: Each figure shows ©; and the confidence band defined by ©; + 25(0;). The figure does not show the diagonal

elements of ©;.
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18a) Competition over the period 1979 to 2000 18b) Competition and total R&D investment
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18¢) Common competitive factor and competition
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Fig. 18. Competition and innovation. R ~
Notes: Competition is COy; total R&D investment is (1/111) 3.1} P5; patented R&D is (1/111) 3211} P,4; non-patented

~ ~ =1 =1
R&D s (1/111) 311 P (1—P;;); common competitive factor is /;. Panels 18b) to 18d) present the fourth-order polynomial
regression least squares estimates of the dependent variable over the period t = 1979, ..., 2000.
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