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Combining search directions using gradient flows

Abstract. The efficient combination of directions is a significant problem in line search methods that either use
negative curvature, or wish to include additional information such as the gradient or different approximations
to the Newton direction.

In this paper we describe a new procedure to combine several of these directions within an interior-point
primal-dual algorithm. Basically, we combine in an efficient manner a modified Newton direction with the
gradient of a merit function and a direction of negative curvature, if it exists. We also show that the procedure
is well-defined, and it has reasonable theoretical properties regarding the rate of convergence of the method.

We also present numerical results from an implementation of the proposed algorithm on a set of small
test problems from the CUTE collection.
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1. Introduction

Our goal is to describe a procedure to combine search directions in algorithms that
compute local solutions for nonlinear optimization problems of the form

minx f (x)

s.t. c(x) = 0
x ≥ 0,

(1)

where f : R
n → R and c : R

n → R
m, and we assume all functions to be at least twice

continuously differentiable.
Standard procedures for computing these solutions are based on solving local ap-

proximations to the problem at successive iterates xk , and using the solutions for these
approximations as the next iterates. This basic scheme is complicated by the need to
ensure global convergence for the resulting algorithm, attained basically through the
use of trust-region schemes or searches along a parametrized line or curve (linesearch
methods); we will concentrate on procedures that are based on this second alternative.
Standard algorithms in this class (see for example Fletcher [14], Gill et al. [18]) rely
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on some modified version of the Newton direction and compute the next iterate on the
unidimensional subspace generated by this direction. In some cases, it may be useful or
efficient to take into account additional information to determine this next iterate. For
example, the use of directions of negative curvature is needed to ensure the convergence
of the algorithm to second-order KKT points, while perhaps improving the efficiency of
the algorithm. The use of additional descent information, obtained from the gradient, for
example, may provide more robust algorithms and may yield better iterates, particularly
away from the solution. Our goal is to derive a procedure that, by taking into account
additional search information in an efficient manner, requires a reduced number of iter-
ations to obtain a solution for problem (1), with a consequently reduced computational
cost.

Although these directions might be used in the line searches independently of each
other to generate the sequence of iterates, it seems more efficient to combine them before
computing the next iterate. Many proposals based on these ideas can be found in the
literature. The dogleg method (see Dennis and Schnabel [10], for example) combines
the gradient and Newton direction in an attempt to mimic the behavior of trust-region
methods. Moré and Sorensen [23] proposed a procedure to find the next iterate from a
direction of descent and one of negative curvature by following a quadratic curve on the
subspace spanned by both directions.

In this paper we present a proposal based on the approximate solution of a system
of ordinary differential equations. This idea was first proposed in Courant [8]; other
related proposals can be found in Behrman [1], Botsaris [4], Del Gatto [9], Schropp
[24] and Zang [29] for the unconstrained case, and Evtushenko and Zhadan [12] for the
constrained case. Our proposal is most closely related to that in [1] for the unconstrained
case, where the iterates were found by constructing a Krylov subspace in each iteration,
performing a standard univariate search on the steepest descent curve defined on this
subspace. We apply similar ideas to the combination of the search directions in a con-
strained optimization setting. The paper does not contain a global convergence analysis
for this proposal, although we have included some comments on the rate of convergence
of the algorithm.

The main difficulty when combining the different search directions arises from the
differences in the scales of these directions. While the Newton direction is in general
well scaled (a step of one is reasonable in many cases, at least when close to the solution),
this is not true either for directions of negative curvature or for the gradient direction,
our choices of additional search directions. One alternative to overcome this difficulty
would be to carry out a search on the reduced-dimension subspace spanned by these
search directions. Byrd et al. [6] compute the next iterate from a linear combination
of a direction of negative curvature and a gradient direction, and these coefficients are
obtained as the solution of a two-dimensional trust-region problem. Nevertheless, most
proposals in the literature reduce first the search to a univariate one, to attain greater
computational efficiency. This will also be our approach; we will construct a curve in the
subspace generated by the directions of interest: descent direction, negative curvature
and gradient. A reasonable curve in this subspace would be the one that corresponds to
the trajectory having the steepest descent at each point; this trajectory would lead to a
local solution at the fastest rate, measured in terms of the objective function. Unfortu-
nately, this curve is in general very expensive to compute, and we will satisfy ourselves
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with constructing a steepest descent curve based on a simple (quadratic) local model
of the problem. The next iterate is obtained as a point on the curve providing sufficient
descent for an appropriate merit function.

This proposal will be introduced as part of a complete algorithm for the solution of
problem (1), based on a primal-dual interior point method and the use of an augmented
Lagrangian merit function. The method computes approximate solutions for a sequence
of barrier problems of the form

minx f (x) − ∑
i (µk)i log xi

s.t. c(x) = 0,
(2)

where µk → 0. Note that we use a vector of barrier parameters µ ∈ R
n+. See Fiacco and

McCormick [13], Wright [26] for a theoretical analysis of a similar procedure based on
a scalar barrier parameter, µ ∈ R+.

In each iteration, the algorithm computes a descent direction and a direction of neg-
ative curvature for problem (2), if it exists. The search directions are obtained from the
application of Newton’s method to the primal-dual equations for problem (2), see [11]
for example,

∇f (x) − ∇cT (x)λ − z = 0,

c(x) = 0,

Zx = µ,

(3)

where the nonnegative dual variables z correspond in the limit to the multipliers for the
simple bounds in (1), and Z = diag(z).

These directions and the gradient of an augmented Lagrangian merit function (see
Bertsekas [2])

LA(x, λ;µ, ρ) = f (x) −
∑

i

µi log xi − λT c(x) + ρ

2
‖c(x)‖2, (4)

are then combined to generate a new iterate that provides sufficient decrease for this
merit function. This merit function has been extensively used in optimization packages,
see for example Conn et al. [7]. The derivatives of the merit function will play a sig-
nificant role in the definition of the algorithm; we indicate their expressions for future
reference:

∇xLA = ∇f (x) − X−1µ − ∇c(x)T λ + ρ∇c(x)T c(x) (5)

∇xxLA = ∇2f (x) −
∑

j

(λj − ρcj (x))∇2cj (x) + MX−2 + ρ∇c(x)T ∇c(x), (6)

where X = diag(x) and M = diag(µ).
The rest of the paper is organized as follows: In Section 2 we describe the general

algorithm to compute a local solution for problem (1). In Section 3 we motivate and
describe the proposal to combine the directions generated by the algorithm to obtain the
next iterate. In Section 4 we justify some basic properties of this procedure, such as for
example that it is well-defined, that sufficient descent can be achieved in each iteration
and that the algorithm attains superlinear convergence. Finally, Section 5 gives the gen-
eral structure of the algorithm, discusses some implementation issues and presents and
comments some computational results on a set of small test problems.
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2. The interior-point algorithm

Our main goal is to explore an alternative procedure for the combination of search direc-
tions in a line-search based algorithm. In this regard, we are interested in determining
the impact this approach may have in the practical behavior of a nonlinear optimization
algorithm. As a consequence, we will introduce an algorithm that uses the combination
procedure of interest, but that also computes efficiently the required search directions.
This algorithm is based on a primal-dual interior point approach to generate the search
directions, and uses a line search procedure on an augmented Lagrangian merit function
to ensure global convergence. An iterative algorithm of this sort carries out three main
tasks in each iteration: i) Compute search directions at the current iterate. In our case
we will obtain a descent direction and a direction of negative curvature from the KKT
system of linear equations, in addition to the gradient of the merit function. ii) Combine
the directions to obtain the next iterate. iii) Update the parameters in the algorithm.

Initialize variables (x0, λ0, z0), barrier (µ0) and
penalty (ρ0) parameters

repeat
From the Newton primal-dual equations: Section 2.1

Compute a descent direction, (dx)k ,
for the primal variables x

Compute directions, (dλ)k and (dz)k ,
for the multipliers λ and z

Compute dg as the gradient of the
merit function Section 2.1

Compute, if it exists, (dn)k , a direction
of negative curvature Section 2.1

Adjust the penalty parameter ρk Section 3.4
Combine the three directions dx , dn and dg Section 3.1
Update the primal variables Section 3.2
Update the multipliers Sections 3.3, 2.2.1
Decrease the barrier parameter vector µk Section 2.2.2

until convergence Section 5.2

The preceding table presents a schematic version of the algorithm, indicating the
Sections of the paper where the different steps are described. Section 3 will be devoted
to our main concern, the description of the combination of directions, while in this sec-
tion we will describe those issues related to the first and third items, providing only the
basic details of the procedures implemented in the algorithm. Additional information
can be found in Moguerza and Prieto [22].

2.1. Computing the search directions

In the proposed algorithm we solve a sequence of problems (2) such that µi → 0 for all
i, following [13]. The search directions are obtained from the application of Newton’s
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method to the primal-dual equations (3). It provides directions dx, dλ and dz, corre-
sponding to updates for the variables x, λ and z respectively. From the first-order Taylor
series expansion for the primal-dual KKT conditions (3) about the current values x, λ

and z, the resulting system of linear equations defining the search directions is (we omit
the dependence on the variables to simplify the notation):




H −∇cT −I

∇c 0 0
Z 0 X








dx

dλ

dz



 =



−∇f + ∇cT λ + z

−c

µ − Zx



 , (7)

where H = ∇xxL(x, λ), L(x, λ) is the Lagrangian function for problem (1), that is,
L(x, λ) = f (x) − λT c(x) − ωT x, and I denotes the identity matrix. From the last set
of equations in (7), we have

dz = X−1µ − z − X−1Zdx. (8)

Replacing (8) into the first two sets of equations in (7), the movement direction dx

can be computed as the solution of the symmetric system

K

(
dx

−dλ

)

=
(−∇f + ∇cT λ + X−1µ

−c

)

, (9)

where K is defined as

K =
(

G ∇cT

∇c 0

)

, (10)

for G = H + X−1Z. Any ill-conditioning that might arise from the diagonal terms in
G is benign, see Wright [27] for example.

The direction obtained from (9) may fail to provide descent for any reasonable mer-
it function, for example when the iterates are close to a stationary point that is not a
minimizer. We adapt system (9) to ensure that the direction dx is a sufficient descent
direction for the merit function (4). The modified system that we use to define these
search directions is

(
Ḡρ ∇cT

∇c 0

) (
dx

−dλ

)

=
(−∇f + ∇cT λ + X−1µ

−c

)

, (11)

where its coefficient matrix (and Ḡρ in particular) is computed from a modification of

Kρ =
(

Gρ ∇cT

∇c 0

)

, (12)

for Gρ = ∇xxL(x, λ − ρc) + X−1Z. The motivation for this definition of Gρ , instead
of using G as in (9), will be discussed in terms of the procedure to combine the search
directions, in Section 3.1.

To justify replacing Gρ with Ḡρ , consider the directional derivative for the merit
function along the search directions dx and dλ. From (5) and (11) we have

∇xL
T
Adx = (∇f (x) − X−1µ − ∇c(x)T (λ − ρc(x)))T dx

= −dT
x Ḡρdx − c(x)T dλ − ρ‖c(x)‖2.
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This directional derivative can be made sufficiently negative by increasing the value of
ρ whenever c(x) �= 0 (and dλ is bounded). Otherwise, it is enough that Ḡρ is sufficiently
positive definite in the nullspace of ∇c(x), as in this case ∇c(x)dx = −c(x) = 0.

An appropriate matrix Ḡρ for (11), such that WT
A ḠρWA is positive definite, can be

generated in the process of factorizing Kρ , where WA has columns that form a basis
for the null-space of ∇c(x). A modified Cholesky factorization of the reduced Hessian
WT

A GρWA could be used, as in Gay et al. [16]. This approach requires forming explicitly
the reduced Hessian, and as a consequence it is only useful for problems in which this
reduced Hessian is not too large. We have chosen to use a version of the symmetric in-
definite factorization, see Bunch et al. [5] for example, incorporating the modifications
proposed in Forsgren and Murray [15]. This alternative is able to obtain the desired mod-
ification for the reduced Hessian directly from system (11), it allows the computation
of appropriate directions of negative curvature, as we will indicate below, and it can be
applied to medium-sized and large problems. Additional details of the computation of
these directions and the factorization used in the algorithm can be found in [15, 22].

We also want to satisfy the necessary second-order condition at any limit point. For
problem (2) this condition requires that

WT
A

(
∇xxL(x, λ) + MX−2

)
WA is p.s.d. (13)

We will use directions of negative curvature to avoid converging to points that do not
satisfy (13), but as the direction of negative curvature is used to obtain iterates that de-
crease the merit function (4), we also need to ensure that such a direction is appropriate
for our merit function. A direction of negative curvature dn for our algorithm should lie
in the subspace spanned by the columns of WA and should satisfy

dT
n (∇xxL(x, λ − ρc) + MX−2)dn < 0. (14)

Note that from (6) if ∇c(x)dn = 0 then

dT
n ∇xxLA(x, λ;µ, ρ)dn = dT

n (∇xxL(x, λ − ρc) + MX−2)dn.

As we will justify in Section 3, in our case the choice of an appropriate sign for
dn (to ensure descent, for example) is not relevant, as the search for the next iterate is
performed on a subspace spanned by a combination of directions including dn, and the
combination chosen by the algorithm will take the best sign into account automatically.

Such a direction dn (assuming there exists one) is computed from the same sym-
metric indefinite factorization used to obtain the descent direction dx from (11). Let
Kρ be the matrix defined in (12), and assume that its symmetric indefinite factorization
Kρ = UT DU has been computed using the algorithm in [15]. Assume also that from
the factorization it has been determined that this matrix has more than m negative ei-
genvalues, implying that WT

A GρWA has at least one negative eigenvalue. Let P be the
permutation matrix associated with the pivoting choices in the factorization algorithm
and define w = P w̃, where w̃ satisfies

(
U11 U21

0 U22

) (
w̃1
w̃2

)

= ±
√

−λmin(D2)

(
0
uλ

)

, (15)
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for a partition of U and D such that D1 and U11 correspond to all the pivots taken
from elements of ∇c, λmin(D2) denotes the most negative eigenvalue of D2 and uλ is
a unit eigenvector corresponding to this smallest eigenvalue. The direction of negative
curvature dn is defined as the first n components of w. Additional details can be found
in [15]; in particular, it is shown there that ∇c(x)dn = 0, and consequently dn lies in
the correct subspace. Also, there exist positive constants k1 and k2 such that

dT
n Gρdn ≤ −k1λ

2
min(W

T
A GρWA) and dT

n dn ≤ −k2λmin(W
T
A GρWA).

The direction of negative curvature computed from (15) satisfies

dT
n (Gρ + X−1Z)dn < 0.

Although this condition is not sufficient to ensure that (14) will be satisfied, the pro-
cedure used to obtain the direction of negative curvature allows both dx and dn to be
computed from the same system of equations in an efficient manner. On the other hand,
if z−X−1µ is sufficiently small then X−1Z is close to MX−2, and if the constraints are
close to zero, ∇c(x)dn will also be close to zero. Under these conditions the direction
dn computed using the preceding procedure will satisfy dT

n ∇xxLAdn < 0 and (14). In
particular, this will happen close to a first-order KKT point for problem (2).

Nevertheless, it is important to ensure the satisfaction of (14) before dn is used. As
in general z − X−1µ may not be small, each time a direction of negative curvature is
computed we will also check if (14) is satisfied. If this is not the case, the direction of
negative curvature dn will not be used.

A third search direction that is used to generate the next iterate is the gradient of the
merit function. From (5) this direction is defined as

dg = ∇xLA(x, λ̄; µ, ρ̄) = ∇f − X−1µ − ∇cT (λ̄ − ρ̄c), (16)

where λ̄ and ρ̄ will be introduced later on.

2.2. Updating the parameters

In each iteration the algorithm must update the different parameters involved in the
specification of the barrier subproblems (2) and the merit function (4). In the following
paragraphs we describe the procedures used to change the multiplier estimates and the
barrier parameters.

2.2.1. The multipliers. Two sets of dual variables are generated by the algorithm, the
equality constraint multipliers λ and the approximations to the multipliers for the bound
constraints z. The multipliers λ are updated using dλ from (11), as described in Section 3.

The solution of the Newton equations (7) provides a search direction for the multi-
pliers z, dz, defined in (8). These dual variables are updated from

zk+1 = zk + (αd)k(dz)k.
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The only restriction on the values of the dual variables is their non-negativity. The scalar
αd is chosen as the largest reasonable value that satisfies this condition, as follows. Let

(αd)k = min

(

τk min

( −(zk)i

(dz)ki

∣
∣
∣
∣ (dz)ki < 0

)

, 1

)

, (17)

where τk is defined as

τk = max(0.995, 1 − ‖µk‖2). (18)

This definition is introduced to ensure reasonable local convergence properties for the
algorithm.

2.2.2. The barrier parameters. The vector of barrier parameters in (2) is also updated in
each iteration. The updating rule is based on the relationship between the satisfaction of
the first-order conditions, the complementarity conditions and the previous values of the
barrier parameters. Let F(x, λ, z; ρ) be a measure of the satisfaction of the first-order
KKT conditions for problem (1) at the current iterate, that is,

F(x, λ, z; ρ) =



∇f (x) − ∇c(x)T (λ − ρc) − z

c(x)

Zx



 , (19)

set

θ =
{

‖F(x, λ, z; ρ)‖2 if ‖F(x, λ, z; ρ)‖2 ≥ 1,

‖F(x, λ, z; ρ)‖2
2 otherwise,

(20)

and define y = Xz.
The new value for µ is chosen to ensure a reasonably uniform allocation of the

distance from optimality taking into account each complementarity gap. These new val-
ues are obtained, in a manner similar to the procedure in [22], from the solution of the
problem

minµ
1
2µT µ

s.t. yT µ = θ

µ ≥ 0.

(21)

This solution is given by µ∗ = ωy, where ω = θ/(yT y). Definition (20) has been
introduced to prevent µ∗

i from becoming too large when far from a KKT point. On the
other hand, if yi is small then µ∗

i may become too small. To avoid this situation we
compute a reference value µ̂, similar to that in El-Bakry et al. [11],

µ̂ = xT z

n
, (22)

and define the new value of µ at iteration k as

(µk+1)i = min(δk max(µ∗
i , µ̂), (µk)i), (23)

where δk = min(0.25, exp(−(1/θk))) and θk is given by (20). Note that µi will not
be decreased in every iteration, but only when a sufficient reduction in the satisfaction
of the KKT conditions has been achieved. This definition of µ ensures that µ → 0 if
problem (2) has a solution.
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3. The computation of a new iterate

We now describe how to combine in an efficient manner our search directions: descent
dx , negative curvature dn (if it exists) and gradient dg . Classical line search methods
compute a direction of movement (dx, dλ) and a scalar α such that the next iterate
(x + αdx, λ + αdλ) provides sufficient decrease for an appropriate merit function. This
approach works quite well in practice whenever there is a single search direction dx . In
our case we may have up to three search directions at a given iteration, and the preceding
procedure must be modified to take into account that we search the next iterate on a sub-
space of dimension three, as opposed to the univariate classical approach. Following our
previous discussion, we proceed first by combining these directions into a trajectory of
points of interest, and we then perform a conventional univariate search (a backtracking
search) on this trajectory.

3.1. Combining the search directions

In the unconstrained case, and given our three search directions, it would seem reason-
able to select the new iterate as a point on the trajectory defined by the steepest descent of
the objective function from the current iterate, see [1] for example. For our constrained
problem (2), we have chosen to apply these ideas to our merit function (4). In partic-
ular, we construct this trajectory from the gradient field of the merit function starting
from a given iterate xk . The trajectory is given by the solution of the system of ordinary
differential equations (we omit the iteration subscript to simplify the notation)

γ̇ (t) = −∇xLA

(
x + γ (t), λ̄; µ, ρ̄

)
, γ (0) = 0, (24)

where the reference value for the multipliers, λ̄, and the penalty parameter value, ρ̄, will
be defined later on.

Computing this trajectory is too expensive for most practical cases; we will restrict
ourselves to solving an approximation to it, in the following two senses:

– We will approximate locally the right-hand side of the first part of (24) by a linear
function, to obtain a linear system of ODEs, having a closed-form solution.

– We will also restrict ourselves to those points lying on the subspace spanned by
our three search directions, to reduce the dimension of the problem and to limit the
computational cost.

From (6) and (16), the local linear approximation to the first part of (24) is given by

η̇(t) = −∇xLA − ∇xxLAη(t)

= −dg − (∇xxL(x, λ̄ − ρ̄c) + MX−2 + ρ∇cT ∇c)η(t). (25)

Note that the Hessian matrix ∇xxL(x, λ̄− ρ̄c) in this approximation coincides with that
in the definition of Gρ , introduced in (11). In Section 4 it will be shown that using Ḡρ

instead of G to compute dx from (11) allows the final point of the approximate trajectory
to be x + dx , the Newton step.
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From (25), the ODE that defines the modified trajectory β(t) on the two- or three-
dimensional subspace of interest will have the following form:

β̇(t) = −BT dg − BT (V + ρ̄∇cT ∇c)Bβ(t), β(0) = 0, (26)

where B denotes an orthonormal basis for the subspace spanned by the search directions
and dg = ∇xLA(x, λ̄; µ, ρ̄). The matrix V is equal to Gρ , as defined in (12), whenever a
direction of negative curvature is available, to ensure that this negative curvature is also
present along the curve. If no negative curvature is available or it has been discarded,
then V is chosen as Ḡρ . In the absence of negative curvature we wish to preserve the
property that the final point coincides with the Newton step, and this property holds for
Ḡρ but not necessarily for Gρ .

If we introduce the notation H̃ = BT (V + ρ̄∇cT ∇c)B and g̃ = BT dg , we can
obtain a closed-form solution for this ODE. If this solution is transformed back to the
full space, we obtain the trajectory of interest, γ̄ (t), given by:

γ̄ (t) = Bβ(t) = BH̃−1
(

exp(−H̃ t) − I
)

g̃. (27)

Note that the computation of this trajectory requires only the determination of the ex-
ponential of a square matrix of dimension two or at most three.

Interior-point methods ensure the positivity of all iterates, to guarantee that the ob-
jective function in (2), and in particular its barrier term, is well defined in each iteration.
As a consequence, the trajectory defined by γ̄ (t) must be transformed into another tra-
jectory that lies within the strict interior of the positive orthant. In our algorithm, this is
achieved by projecting each infeasible point on the trajectory (27) onto the (perturbed)
simple bounds,

γ̂ (t) = α(t)γ̄ (t), (28)

where the scalar α(t) is chosen for each t as

α(t) = min

{

1, τ min

{
xi

−γ̄i (t)

∣
∣
∣
∣ γ̄i (t) < 0

}}

, (29)

and τ is defined as in (18).
The next step is to determine an acceptable value for the parameter t in γ̂ (t). As we

will show in Section 4, when H̃ is positive definite we have γ̄ (t) → −BH̃−1g̃ = dx , a
reasonable step, as t → ∞. As a consequence, we may need to handle infinite values of
the parameter t to determine the next iterate. To avoid the complications associated with
these values, the curve is reparametrized so that points of interest, such as this Newton
step, can be found by moving a finite distance along the curve projected onto the bounds,
γ̂ (28).

We have chosen to use the following reparametrization, see for instance [1, 21],

s =





−1

δm

(
e−δmt − 1

)
if δm �= 0,

t if δm = 0,
(30)

where δm ≤ . . . ≤ δ1 are the eigenvalues of H̃ . Under this reparametrization, if δm > 0
then s ∈ [0, 1/δm].
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3.2. Computing the step

Once the trajectory γ̂ (s) has been computed, we obtain the next iterate in the variables
x from an appropriate step along the curve, xk+1 = xk + γ̂ (s). The value of s is cho-
sen to ensure sufficient descent for our merit function, and it is found by performing a
backtracking search starting at s0 = 1/δm. We determine the step si as the first value in
the sequence {s0/2i}∞i=0 that satisfies the following sufficient descent condition:

LA(x + γ̂ (si), λ̄; µ, ρ̄) ≤ LA(x, λ̄; µ, ρ̄) − σsi min(‖dg‖2, ‖dx‖2). (31)

The scalar σ is chosen as a small value σ ∈ (0, 1).

3.3. The multiplier estimates

The value of λ̄ in (24) should be defined to ensure that the sequence of iterates in the
algorithm is associated to a decreasing sequence of values for the merit function, to
guarantee the global convergence of the algorithm. This value is kept fixed at all trial
points in the trajectory. For the search of the new iterate we define

λ̄ =
{

λ + dλ if dn = 0
λ otherwise,

(32)

In practice, this approach may not be satisfactory for all iterations. At the end of the
search procedure, the next iterate λk+1 is defined as λ̄, if there is no negative curvature,
the step s0 is accepted and α(s0) ≥ 0.95. Otherwise, we use an approach similar to [16]:
the value of λk+1 is chosen as the least-squares estimate at the accepted step.

3.4. Adjusting the penalty parameter

The traditional role of the penalty parameter in a merit function that includes penalty
terms, such as (4), is to enforce convergence to points satisfying the constraints c(x) = 0.
Although the use of the Newton direction generates iterates that satisfy feasibility in the
limit, if the penalty parameter is not chosen to be sufficiently large, the Newton direction
may not be a descent direction for the merit function and no valid step will be found.

In the proposed algorithm, the combination of directions to define the trajectory
γ̂ (s) automatically ensures that sufficient descent is available at all iterates. As a conse-
quence, the penalty parameter is used to attain other reasonable properties for the search
trajectory. In particular, we wish to ensure that the Newton step corresponds to the final
point in the trajectory whenever there is no negative curvature in the null-space of the
constraints at the current iterate. Note that this may not be true in all cases; a sufficient
condition is that the matrix H̃ introduced in (27) is positive definite, as we will show in
Section 4.

In the absence of negative curvature, the matrix V introduced in (26) is positive
definite in the subspace spanned by WA. If we assume that ∇c has full row rank then
V + ρ∇cT ∇c is positive definite for large enough ρ. As we wish H̃ to be positive defi-
nite, from its definition this condition will hold if and only if BT V B +ρ(∇cB)T ∇cB is
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positive definite. Under the preceding assumptions and the properties of V , this is true
for all large enough values of ρ, and we only need to determine a “large enough” value
for ρ. From our assumption that there is no direction of negative curvature, the matrix
BT V B + ρ(∇cB)T ∇cB has dimension 2, and its eigenvalues can be found as the roots
of a four-degree polynomial. We determine an acceptable value for ρ, ρ̄, such that

λmin(B
T V B + ρ̄(∇cB)T ∇cB) ≥ βm, (33)

where βm is a prespecified positive value; if λmin(B
T V B) ≥ βm, we set ρ̄ = 0. Finally,

we define ρk+1 = ρ̄.

4. Properties of the search

In this section we present some basic properties of the procedure to compute the next
iterate. Our aim is not to provide any convergence proof for the algorithm; a detailed
proof of this sort will be a matter for a different paper. We only wish to establish that the
procedure to combine the search directions is well defined, and has reasonable properties
regarding the global convergence of an algorithm that uses appropriate search directions
and parameter updates.

We will assume that certain properties are satisfied by the functions defining prob-
lem (1) and the iterates generated by the algorithm. A global convergence proof should
include some of these assumptions and prove that the algorithm satisfies the others.

A.1 The iterates xk generated by the algorithm remain in a compact set, C ⊂ R
n+.

A.2 The functions f and c have continuous second derivatives in C.
A.3 For a given value of the barrier parameter µk , the iterates xk are bounded away

from zero, xk ≥ β(µk) > 0 for some function β.
A.4 The multiplier estimates λ remain bounded in norm at all iterates.

Regarding Assumption A.3, it can be shown that it holds from the descent properties
of the merit function and the logarithmic terms in this function. See [21] and [22] for
additional details.

We will ignore the iteration subscript in what follows, whenever the context is clear.
We start by establishing that the algorithm is well-defined.

Lemma 1. At any iteration k, the search described in Section 3 finds a step satisfying
(31) in a finite number of iterations.

Proof. From the continuity of γ̄ (t), γ̄ (0) = 0 and assumption A.3 there exists a value
t̄ (µk) > 0 such that α(t) defined in (29) takes the value one for all t ∈ [0, t̄(µk)). From
the reparametrization in (30) and this property, there exists a value s̄(µk) > 0 such that
γ̂ (s) = γ̄ (s) for all s ∈ [0, s̄(µk)). We will only consider these values of s in what
follows. We will also omit the iteration subscript k to simplify the notation.

From the definition of the function LA in (4), the definition of the curve (27), the
reparametrization (30) and the Taylor series expansion around s = 0 we have

LA(x + γ̂ (s), λ̄; µ, ρ̄) − LA(x, λ̄; µ, ρ̄)

= s∇xLA(x, λ̄; µ, ρ̄)T
dγ̂ (0)

ds
+ s2

2

(
dγ̂ (0)

ds

)T

∇xxLA(x̃, λ̄; µ, ρ̄)
dγ̂ (0)

ds
,

12



where x̃ = x + ζ γ̂ (s) for some ζ ∈ [0, 1] and

d

ds
γ̂ (0) = d

dt
γ̄ (0)

dt

ds
= −Bg̃ = −BBT ∇xLA(x, λ̄; µ, ρ̄).

Note that B has columns that form an orthonormal basis for a subspace spanned by
∇xLA(x, λ̄; µ, ρ̄) and other directions. This implies BBT ∇xLA(x, λ̄; µ, ρ̄) = ∇x

LA(x, λ̄; µ, ρ̄) = dg . As a consequence,

LA(x + γ̂ (s), λ̄; µ, ρ̄) − LA(x, λ̄; µ, ρ̄) + σs‖dg‖2

= −(1 − σ)s‖dg‖2 + 1
2 s2dT

g ∇xxLA(x̃, λ̄; µ, ρ̄)dg

and also,

LA(x + γ̂ (s), λ̄; µ, ρ̄) − LA(x, λ̄; µ, ρ̄) + σs min(‖dg‖2, ‖dx‖2)

≤ −(1 − σ)s‖dg‖2 + 1
2 s2dT

g ∇xxLA(x̃, λ̄; µ, ρ̄)dg, (34)

for some value x̃. For sufficiently small s and σ < 1 the right-hand side is negative and
(31) holds. ��

To prove global convergence for an algorithm based on this search we should have
sufficient descent on the merit function in every iteration, this function should be bound-
ed below and we would also need the value of the parameter s to be bounded away
from zero. In Lemma 2, we show that a bound on s that depends on µ can be derived
using the same arguments as for the preceding proof. As a consequence, the preceding
convergence arguments can be applied for fixed µ.

Lemma 2. The step s along the curve in each iteration is bounded away from zero by
a positive value, s ≥ ŝ(µ) > 0.

Proof. From the definition of ∇xxLA, (6), and Assumptions A.1 to A.4, it follows that
there exists a positive constant β̄ such that

dT
g ∇xxLA(x̃, λ̄; µ, ρ̄)dg ≤ β̄‖dg‖2 + dT

g MX̃−2dg ≤
(

β̄ + ‖µ‖
β(µ)2

)

‖dg‖2.

Given this bound, it follows that

−(1 − σ)s‖dg‖2 + 1
2 s2dT

g ∇xxLA(x̃, λ̄; µ, ρ̄)dg < 0

for all s ∈ (0, s̄), where

s̄ = 2(1 − σ)

β̄ + ‖µ‖/β(µ)2
.

As a consequence of (34),

LA(x + γ̂ (s), λ̄; µ, ρ̄) − LA(x, λ̄; µ, ρ̄) + σs min(‖dg‖2, ‖dx‖2) < 0,

for all s ∈ (0, s̄), and from the backtracking search implemented in the algorithm, the
computed step satisfies s ≥ ŝ ≡ (1 − σ)/(β̄ + ‖µ‖/β(µ)2). ��
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We prove another result in this section, related to the desirable local convergence
properties of the algorithm. We show that if the initial trial value s0 is accepted, in that
iteration we update the variables using the Newton direction. The superlinear conver-
gence of the algorithm must follow from this result if we are able to accept this step and
we update µ appropriately. Lemma 3 is an extension of a similar result for unconstrained
problems in [1].

Lemma 3. In those iterations where no negative curvature is used and the multiplier
estimate is taken as λ + dλ, if ρ̄ has been chosen as indicated in Section 3.4, we have

lim
t→∞ γ̄ (t) = γ̄ (s0) = dx.

Proof. From the assumption that no negative curvature is present, the comments in
Section 3.1 imply V = Ḡρ , a positive definite matrix, and λ̄ = λ + dλ. From (27), as ρ̄

has been chosen to ensure that H̃ is positive definite,

lim
t→∞ γ̄ (t) = lim

t→∞ BH̃−1
(

exp(−H̃ t) − I
)

g̃ = −BH̃−1g̃.

From (11) we have

(V + ρ̄∇cT ∇c)dx = −∇xLA(x, λ + dλ; µ, ρ̄),

and using the definitions of H̃ and g̃, as B has columns that form an orthonormal basis
for a subspace containing dx , implying BBT dx = dx , we obtain

lim
t→∞ γ̄ (t) = −B(BT (V + ρ̄∇cT ∇c)B)−1BT ∇xLA(x, λ + dλ; µ, ρ̄)

= B(BT (V + ρ̄∇cT ∇c)B)−1BT (V + ρ̄∇cT ∇c)dx

= BBT dx = dx. ��
The barrier parameter update rule (23) is another unconventional part of the algo-

rithm, and the analysis of some of the theoretical properties associated with this rule may
be of interest. A similar algorithm, based on a different procedure to combine the search
directions but using a similar update rule, was described in [22]. In that reference some
global convergence properties were analyzed, and in particular it was shown that under
reasonable assumptions µk → 0. In the remainder of this section we study the impact
of the update rule on the rate of convergence of the iterates generated by the algorithm,
something not analyzed in [22].

We tighten one of the preceding assumptions and introduce additional assumptions
on problem (1), to ensure that the directions computed close to a solution are suitable
for attaining superlinear convergence.

A.2m The functions f and c have continuous third derivatives in C.
A.5 The Jacobian matrix ∇c(x) has full row rank at all second-order KKT points of

problem (1).
A.6 Strict complementarity holds at all second-order KKT points of problem (1).
A.7 The sufficient optimality conditions hold at all second-order KKT points of the

problem.
14



As we wish to concentrate on the analysis of the impact of the barrier parameter
update rule, we will also introduce assumptions on the behavior of other aspects of the
algorithm.

A.8 The sequence of iterates generated by the algorithm converges to a second-order
KKT point of problem (1).

A.9 The penalty parameter ρk remains bounded in the algorithm.

From these assumptions some convergence results can be derived for the search
directions in the algorithm.

Lemma 4. Under the preceding assumptions, the primal and dual search directions in
the algorithm converge to zero.

Proof. From Assumption A.8 it holds that

lim
k→∞

‖∇f (xk) − ∇c(xk)
T λk − X−1

k µk‖ = 0, lim
k→∞

‖c(xk)‖ = 0,

and the right-hand side of system (11) converges to zero. By construction of Ḡρ and As-
sumption A.5, the coefficient matrix of this system is invertible and bounded away from
a singular matrix. Thus, it holds that limk→∞ ‖(dx)k‖ = 0 and limk→∞ ‖(dλ)k‖ = 0.

The matrices in the sequence {(WA)Tk (Gρ)k(WA)k} are positive definite for all large
k, from Assumptions A.7 and A.8, implying that (14) cannot hold and (dn)k = 0 for
large enough iterations k.

Consider the dual update direction (dz)k and its definition in (8). From Assump-
tions A.7 and A.8 for all large enough iterations k, (Ḡρ)k = (Gρ)k = ∇xxL(xk, λk −
ρkc(xk)) + X−1

k Zk . From (11),

X−1
k Zk(dx)k = −∇xxL(xk, λk − ρkc(xk))(dx)k − ∇f (xk)

+ ∇c(xk)
T (λk + (dλ)k) + X−1

k µk. (35)

Assumptions A.7 and A.8 and limk→∞(dx)k = 0 imply that the right-hand side of (35)
goes to zero. As a consequence, limk→∞ ‖X−1

k Zk(dx)k‖ = 0. From Assumption A.8, it
holds that limk→∞ ‖X−1

k µk − zk‖ = 0. Using these limits in (8) it follows that

lim
k→∞

‖(dz)k‖ = lim
k→∞

‖µk − X−1
k zk − X−1

k Zk(dx)k‖ = 0. ��

We next present two results related to the size of the steps selected by the algorithm.
The first result shows that the maximum steps that ensure feasibility for the primal and
dual variables are eventually arbitrarily close to one in the algorithm. To simplify the no-
tation in what follows, let αk ≡ α((s0)k), the feasibility correction for the initial primal
step.

Lemma 5. There exists an iteration index r such that for all k ≥ r ,

αk ≥ 1 − ‖µk‖, (αd)k ≥ 1 − ‖µk‖.
15



Proof. FromAssumption A.8, let x∗ and z∗ denote the limit points for the sequences {xk}
and {zk}. Consider first the bound for αd and let Iz denote the set of positive components
in z∗, Iz = {i : z∗

i > 0}. From Lemma 4, limk→∞(dz)k = 0 and there exists an iteration
index r1 such that |(zki/(dz)ki | > 1 for all k ≥ r1 and i ∈ Iz.

For i �∈ Iz, from Assumption A.6 it holds that x∗
i > 0. From (8) it also holds that

zki + (dz)ki = zki

xki

(
µki

zki

− (dx)ki

)

. (36)

From Assumption A.8, µki/zki → x∗
i > 0, and from Lemma 4, limk→∞(dx)k = 0,

implying the existence of an iteration index r2 such that µki/zki − (dx)ki ≥ x∗
i /2 > 0

and from (36), zki + (dz)ki > 0 for all k ≥ r2 and all i �∈ Kz. For these iterations, if
(dz)ki < 0 then −zki/(dz)ki > 1.

Combining the preceding results it holds that −zki/(dz)ki > 1 for (dz)ki < 0 and
all i. Using (17) and (18) we obtain

(αd)k ≥ τk ≥ 1 − ‖µk‖,

for all k ≥ max(r1, r2).
Repeating the preceding arguments for the sequence {xk} and using Assumption A.6

it is straightforward to show that there exists an iteration index r3 such that

αk ≥ τk ≥ 1 − ‖µk‖, (37)

for all k ≥ r3. ��

Our next result shows that the algorithm eventually accepts the Newton step in all
cases, under some conditions.

Lemma 6. There exists a fixed value σ̄ = 0.45β2
m > 0 such that if σ ≤ σ̄ in (31) then

there exists an iteration index r such that for all k ≥ r it holds that

xk+1 = xk + αk(dx)k, λk+1 = λk + (dλ)k.

Proof. As a consequence of Lemma 4 there exists an iteration index r1 such that (dn)k =
0 for all k ≥ r1. Both Lemma 5 and limk→∞ µk = 0 imply the existence of an iteration
r2 ≥ r1 such that αk ≥ 0.95 for all k ≥ r2; the update rule in Section 3.3 implies
λk+1 = λk + (dλ)k for all k ≥ r2.

For the primal variables, xk , the desired result follows if condition (31) is satis-
fied for s0 = 1/(δm)k and all large enough values of k. To simplify the notation, let

k(x) ≡ LA(x, λ̄k; µk, ρ̄k). From Lemma 3 for k ≥ r1 it holds that 
k(xk + γ̂k(s0)) =

k(xk+αk(dx)k). From (4) and (16), the Taylor series expansion for this function around
x = xk is given by
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k(xk + αk(dx)k)

= f (xk + αk(dx)k) − ∑
iµki log(xki + αk(dx)ki)

− λ̄T
k c(xk + αk(dx)k) + 1

2 ρ̄k‖c(xk + αk(dx)k)‖2

= 
k(xk) + αk

(
∇f (xk) − X−1

k µk − ∇c(xk)
T

(
λ̄k − ρ̄kc(xk)

))T

(dx)k

+ 1
2α2

k (dx)
T
k

(
∇xxL(xk, λ̄k − ρ̄kc(xk)) + MkX

−2
k + ρ̄k∇c(xk)

T ∇c(xk)
)

(dx)k

+ o(‖(dx)k‖2)

= 
k(xk) + αk(dg)
T
k (dx)k + 1

2α2
k (dx)

T
k

(∇xxL(xk, λ̄k − ρ̄kc(xk)) + MkX
−2
k

+ ρ̄k∇c(xk)
T ∇c(xk)

)
(dx)k + o(‖(dx)k‖2). (38)

Consider terms of the form (dx)
2
ki(µki/xki − zki)/xki . If i ∈ J ≡ {i : x∗

i > 0},
Assumption A.8 implies (dx)

2
ki(µki/xki − zki)/xki ≤ ε(dx)

2
ki for any ε > 0 and large

enough k. If i �∈ J , then both terms µki/x
2
ki and zki/xki converge to infinity and a more

detailed analysis is required. Nevertheless, the presence of terms of the form X−1
k Zk in

the coefficient matrix of system (11) implies that the size of the corresponding compo-
nents (dx)ki must be very small compared to other components of the search directions.
To formalize this statement, from (11),

X−1
k Zk(dx)k = −∇f (xk) + ∇c(xk)

T (λk + (dλ)k) + X−1
k µk

− ∇xxL(xk, λk − ρkc(xk))(dx)k.

The definition of the gradient direction (dg)k in (16), the definition of λ̄k , (32), and
Lemma 4 imply

X−1
k Zk(dx)k = −(dg)k + ρ̄k∇c(xk)

T c(xk) − ∇xxL(xk, λk − ρkc(xk))(dx)k.

Using (11) again, it holds that ρ̄k∇c(xk)
T c(xk) = −ρ̄k∇c(xk)

T ∇c(xk)(dx)k , yielding

X−1
k Zk(dx)k = −(dg)k − (∇xxL(xk, λk − ρkc(xk))

+ ρ̄k∇c(xk)
T ∇c(xk)

)
(dx)k. (39)

From Assumption A.6, z∗
i > 0 for i �∈ J and as a consequence of (39) and Assumptions

A.2, A.9, we have (dx)ki/xki = O(max(‖(dx)k‖, ‖(dg)k‖)). Thus, for i �∈ J it holds that
(dx)

2
ki(µki/xki − zki)/xki ≤ o(‖(dx)k‖ max(‖(dx)k‖, ‖(dg)k‖)). Combining the results

for the different components i,

(dx)
T
k

(
MkX

−2
k − X−1

k Zk

)
(dx)k = o

(‖(dx)k‖ max(‖(dx)k‖, ‖(dg)k‖)
)
. (40)

From Assumptions A.2, A.8, A.9 and (32),

(dx)
T
k

(∇xxL(xk, λ̄k − ρ̄kc(xk)) − ∇xxL(xk, λk − ρkc(xk)
)
(dx)k

= o(‖(dx)‖2). (41)
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From the definition of Gρ , (38), (40) and (41), for large iterations it holds that


k(xk + αk(dx)k) = 
k(xk) + 1
2α2

k (dx)
T
k

(
(Gρ)k + ρ̄k∇c(xk)

T ∇c(xk)
)

(dx)k

+ αk(dg)
T
k (dx)k + o

(‖(dx)k‖ max(‖(dx)k‖, ‖(dg)k‖)
)
. (42)

Using (11), for these iterations ∇c(xk)(dx)k = −c(xk) and

(dx)
T
k (Gρ)k(dx)k = −(dg)

T
k (dx)k + ρ̄k(dx)

T
k ∇c(xk)

T c(xk)

= −(dg)
T
k (dx)k − ρ̄kc(xk)

T c(xk).

Replacing these results in (42) we obtain


k(xk + αk(dx)k) = 
k(xk) + αk

(
1 − 1

2αk

)
(dg)

T
k (dx)k

+ o
(‖(dx)k‖ max(‖(dx)k‖, ‖(dg)k‖)

)
. (43)

From (11) and (33) we have

(dg)
T
k (dx)k = −(dx)

T
k ((Gρ)k + ρ̄k∇c(xk)

T ∇c(xk))(dx)k (44)

⇒ (dg)
T
k (dx)k ≤ −βm‖(dx)k‖2. (45)

Similarly, from (11) and Assumptions A.2 and A.9 it holds that

(dg)k = −((Gρ)k + ρ̄k∇c(xk)
T ∇c(xk))(dx)k ⇒ ‖(dg)k‖ = O(‖(dx)k‖). (46)

From Lemma 5, for all large enough iterations k, 1 ≥ αk ≥ 0.995, implying αk(1 −
0.5αk) ≥ 0.497. Replacing this bound, (44) and (46) in (43) we obtain


k(xk + αk(dx)k) ≤ 
k(xk) − 0.497βm‖(dx)k‖2 + o
(
‖(dx)k‖2

)
. (47)

From the definition of δm and (33) it follows that s0 = 1/δm ≤ 1/βm. Consider iter-
ations k large enough to satisfy o

(‖(dx)k‖2
) ≤ 0.047βm‖(dx)k‖2 and let σ ≤ 0.45β2

m,
then from (47)


k(xk + αk(dx)k) ≤ 
k(xk) − 0.45βm‖(dx)k‖2

≤ 
k(xk) − σ

βm

‖(dx)k‖2

≤ 
k(xk) − σ(s0)k‖(dx)k‖2

≤ 
k(xk) − σ(s0)k min(‖(dg)k‖2, ‖(dx)k‖2),

and condition (31) is satisfied, implying that the value xk + αk(dx)k is accepted as the
next iterate. ��

We are now able to analyze the local convergence of the iterates generated by the
algorithm. We introduce the following notation: let w = (xT , λT , zT )T denote the set
of all primal and dual variables for problems (1) and (2). Also, let w∗ denote the cor-
responding values for a second-order KKT point of problem (1), a limit point of the
algorithm from assumption A.8. Finally, let w∗(µ) be a second-order KKT point for
problem (2), closest to w∗. Note that under the preceding assumptions for small enough
values of µ these KKT points exist and are unique, see [19] for example.

Under the preceding assumptions, we can show the following asymptotic result for
the sequence {wk − w∗}.
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Theorem 1. For large enough k the sequence of iterates {wk} satisfies ‖wk+1 −w∗‖ =
o(‖wk − w∗‖).
Proof. We can write

‖wk+1 − w∗‖ ≤ ‖wk+1 − w∗(µk)‖ + ‖w∗(µk) − w∗‖. (48)

For the second term in the right-hand side of this inequality, using an argument sim-
ilar to that in [19], the definition of F in (19), F(w∗) = 0 and Taylor series expansions
yield




0
0
µk



 = F(w∗(µk)) = ∇F(w∗)(w∗(µk) − w∗) + o(‖w∗(µk) − w∗‖).

From assumptions A.5, A.6 and A.7 the matrix ∇F(w∗) is nonsingular, see [19], and as
µk → 0 and w∗(µk) → w∗ in the algorithm, we have that

‖w∗(µk) − w∗‖ = O(‖µk‖). (49)

Consider now the term ‖wk+1 − w∗(µk)‖ in (48). From Lemma 4, close enough
to the solution we do not have negative curvature on the relevant subspace, (dn)k = 0,
and (Ḡρ)k = ∇xxL(xk, λk − ρkc(xk))+X−1

k Zk . Using Taylor series expansions on the
right-hand side of (7) and F(w∗(µk)) = (0, 0, µT

k )T , we have

Fk −



0
0
µk



 = ∇F(w∗(µk))(wk − w∗(µk)) + o(‖wk − w∗(µk)‖), (50)

where Fk = F(wk). Note that the higher derivative terms in the preceding expansion
are bounded from assumption A.2m.

We need a relationship for the iterates wk+1. The left-hand side of (50) can be relat-
ed to the search directions using their definitions in (11) and (8). From assumption A.7,
close enough to the solution we have

−Fk +



0
0
µk



 = ∇Fkdk +



ρk

∑
j cj (xk)∇2cj (xk) 0 0

0 0 0
0 0 0



 dk (51)

= ∇Fkdk + Ykdk, (52)

where dk = ((dx)
T
k , (dλ)

T
k , (dz)

T
k )T denotes the vector of all search directions and Yk

denotes the required modification of the ∇Fk matrix in (51). From (50) and (51) we
obtain

(∇Fk + Yk)(wk + dk − w∗(µk)) + (∇F(w∗(µk)) − ∇Fk − Yk)(wk − w∗(µk))

= o(‖wk − w∗(µk)‖). (53)

From assumption A.8 we have c(xk) → 0 and assumption A.9 then implies Yk → 0.
Using this condition, wk − w∗(µk) → 0 and assumption A.2m it holds that ‖∇Fk +
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Yk − ∇F(w∗(µk))‖ = o(1). As a consequence, for large enough iterations the matrix
∇Fk + Yk is invertible and (53) implies

wk + dk − w∗(µk) = o(‖wk − w∗(µk)‖). (54)

The definition of the iterates in (28) and Section 3.2, as well as (32) and (17), together
with Lemmas 5 and 6 and the preceding result yield

wk+1 − w∗(µk) = wk + dk − w∗(µk) +



(1 − αk)(dx)k

0
(1 − (αd)k(dz)k





= o(‖wk − w∗(µk)‖) + o(‖µk‖), (55)

where we have also used (54) and ‖dk‖ = O(‖wk − w∗(µk)‖), a consequence of (51)
and the preceding remarks. Thus, from (48), (49) and (55)

‖wk+1 − w∗‖ ≤ ‖wk+1 − w∗(µk)‖ + ‖w∗(µk) − w∗‖
≤ o(‖wk − w∗(µk)‖) + O(‖µk‖)
≤ o(‖wk − w∗‖ + ‖w∗(µk) − w∗‖) + O(‖µk‖)
= o(‖wk − w∗‖) + O(‖µk‖). (56)

Given the results in (49) and (55), all that is left is to analyze the relationship between
the sizes of µk and wk − w∗(µk). Consider the update of µk in (23), and the sizes of
µ∗

k , µ̂k and θk . From (20) and

Fk = ∇F(w∗)(wk − w∗) + o(‖wk − w∗‖) (57)

we obtain for large enough k,

θk = ‖Fk‖2 = O(‖wk − w∗‖2).

From the definition of µ̂k in Section 2.2.2, the fact that the vector Xkzk is a subset of
the components in Fk and (57) we have

µ̂k = eT Xkzk/n = O(‖wk − w∗‖).
Finally, from the definition of µ∗

k in Section 2.2.2 we have

µ∗
k = θk(Xkzk)/‖Xkzk‖2. (58)

To derive an upper bound for this value we need a lower bound for its denominator.
Consider first those components such that (xi)k → x∗

i > 0 and (zi)k → 0. For any 0 <

δ � (xi)
∗ and all large enough iterations we have |xi −x∗

i | ≤ δ and |xi +(dx)i −x∗
i | ≤ δ.

The definition (8) then implies (we omit the iteration subscript to simplify notation)

µi = zi(xi + (dx)i) + xi(dz)i

= x∗
i (zi + (dz)i) + zi(xi + (dx)i − x∗

i ) + (dz)i(xi − x∗
i )

≤ (x∗
i + δ)(zi + (dz)i)
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and also

(xi + (dx)i)(zi + (dz)i) ≥ (x∗
i − δ)(zi + (dz)i) ≥ µi

x∗
i − δ

x∗
i + δ

= (1 − ε)µi,

where ε = 2δ/(x∗
i + δ) can be chosen to be arbitrarily small. Note that, using the sym-

metry in (8) between x and z, we can apply a similar argument to those components
such that zi → z∗

i > 0 and xi → 0 and derive the corresponding bound. Assumption
A.6 implies that no other cases are possible. As a consequence of this bound and Lemma
5 we have

Xkzk = (Xk−1 + (Dx)k−1)(zk−1 + (dz)k−1) − (1 − αk−1)(Dx)k−1zk−1

− (1 − (αd)k−1)Xk−1(dz)k−1

≥ (1 − ε)µk−1 + o(‖µk−1‖) ≥ (1 − ε̄)µk−1,

for some small positive constant ε̄, where Dx = diag(dx) and we have also used
(dx)k−1 = o(1), (dz)k−1 = o(1) from Lemma 4. Using this bound in (58) we obtain

µ∗
k = O(‖wk − w∗‖3/‖µk−1‖2).

As a consequence of (23) and the preceding bounds, we have that

‖µk‖ ≤ K1 exp(−K2‖wk − w∗‖−2)‖wk − w∗‖ max(1, ‖wk − w∗‖2/‖µk−1‖2),

(59)

for some positive constants K1, K2.
Consider two cases regarding the size of µk−1:
(i) If ‖µk−1‖ ≥ L exp(−K2‖wk − w∗‖−2/2)‖wk − w∗‖−δ/2 for some positive

constants L and δ ≤ 1, then

K1 exp(−K2‖wk − w∗‖−2)‖wk − w∗‖ ≤ (K1/L
2)‖wk − w∗‖1+δ‖µk−1‖2.

From this bound and (59) it follows for large k that

‖µk‖ ≤ (K1/L
2)‖wk − w∗‖1+δ max(‖µk−1‖2, ‖wk − w∗‖2)

≤ (K1/L
2)‖wk − w∗‖1+δ,

as from Assumption A.8 it holds that max(‖µk−1‖2, ‖wk − w∗‖2) ≤ 1 for all large
enough iterations k. Using (56), for some positive constant K3 and large enough k,

‖wk+1 − w∗‖ ≤ K3‖µk‖ + o(‖wk − w∗‖)
≤ (K1K3/L

2)‖wk − w∗‖1+δ + o(‖wk − w∗‖) = o(‖wk − w∗‖).
(ii) Otherwise, if ‖µk−1‖ < L exp(−K2‖wk − w∗‖−2/2)‖wk − w∗‖−δ/2, as (23)

implies ‖µk‖ ≤ O(‖µk−1‖) and for large enough k and any positive constant K̃1 we
have

exp(−K2‖wk − w∗‖−2/2) ≤ K̃1‖wk − w∗‖1+3δ/2,

we obtain ‖µk‖ ≤ K̃2‖wk − w∗‖1+δ for some constant K̃2. Equation (56) yields again
the desired result. ��
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5. Implementation and numerical results

5.1. The algorithm

We present a detailed scheme of the proposed interior point algorithm (Gradient Flow
Interior Point Method - GFIPM), summarizing those aspects described in the previous
sections.

Algorithm GFIPM

Choose initial values for x0, λ0 and σ0.
Choose initial values for the scalar ρ0 and the vector µ0
Set k = 0
repeat

Compute dx and dλ from (11) using the factorization described
in [15], and dz from (8)

Compute, if it exists, dn, a direction of negative curvature
from (15)

Set dn = 0 if (14) is not satisfied
Compute ρ̄ from the procedure in 3.4
Compute λ̄ from (32)
Compute s using a backtracking search until (31) is satisfied
xk+1 = xk + γ̂ (s)

Update λk+1 from λk and dλ using the procedure in 3.3
Compute αd from (17)
zk+1 = zk + αddz

Compute the updated barrier vector µk+1 from (23)
ρk+1 = ρ̄

k = k + 1
until convergence

5.2. Numerical results

We have conducted a set numerical experiments on a collection of test problems using
algorithm GFIPM. The algorithm has been implemented and the tests have been carried
out in MATLAB. The test set we have considered is composed of 150 small problems
from the CUTE collection, see Bongartz et al. [3], selected from those nonlinear con-
strained problems having less than 100 variables and continuous derivatives (note that
exact first and second derivatives have been used). This test is the one used in [22], with
the addition of some convex quadratic problems. The algorithm has been implemented
to include both lower and upper bounds in the barrier terms.

Whenever possible, the initial points given in CUTE have been used. Sometimes
these initial points do not satisfy the bound constraints. Such points have been trans-
formed following an automatic strategy similar to that described inVanderbei and Shanno
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[25]. Table 1 shows the results obtained by GFIPM for these problems. The termination
criterion used has been

‖F(x, λ, z; ρ)‖ ≤ ε(1 + ‖∇f (x)‖),
where ε = 10−8, except for problems DISC2 and HS91, where ε = 10−7 (for these
two problems the algorithm did not converge when ε = 10−8 was used).

Table 1. Results for small-size problems

Prob. Obj. Const. KKT Iter. Eval. NC

AIRPORT 47952.7017 3.1e-14 9.9e-12 15 15 0
ALJAZZAF 75.005 2.5e-09 8.9e-07 20 37 0
ALSOTAME 0.08208499 0 7.1e-11 8 8 0
BIGGSC4 -24.499999 1.5e-15 5.2e-08 21 26 2

-24.5 1.8e-15 1.9e-15 21 21 0
BT13 0 1.3e-08 1.3e-08 20 26 0
CANTILVR 1.33995636 3.1e-11 3.3e-11 16 58 0
CB2 1.95222449 6.9e-12 7.6e-12 11 14 0
CB3 2.0 2.5e-12 2.5e-12 10 23 0
CHACONN1 1.95222449 1.6e-11 2.8e-11 8 9 0
CHACONN2 2.0 2.5e-11 4.3e-11 10 11 0
CONGIGMZ 28.0 8.5e-12 8.9e-12 21 34 0
CSFI1 -49.0752 1.3e-10 1.5e-09 11 13 0
CSFI2 55.0176056 1.2e-13 1.7e-13 14 17 0
DEMYMALO -3.0 2.3e-11 2.5e-11 11 13 0
DIPIGRI 680.63006 1.6e-08 3.6e-08 11 26 1

680.63006 1.7e-11 4.4e-11 12 18 0
DISC2 1.5624999 2.4e-08 2.4e-08 63 208 0
DUAL1 0.035012968 1.9e-16 7.0e-12 21 21 0
DUAL2 0.033733671 6.1e-16 9.0e-09 13 13 0
DUAL4 0.746090649 2.1e-16 2.3e-08 14 14 0
EXPFITA 0.0011366117 1.8e-14 1.0e-09 32 32 0
FCCU 11.14910914 4.4e-15 4.2e-14 8 8 0
GIGOMEZ1 -3.0 1.9e-14 2.0e-14 11 20 0
HATFLDH -24.5 2.7e-15 3.5e-15 14 20 1

-24.5 2.9e-15 3.9e-15 13 14 0
HIMMELBI -1735.569579 8.0e-14 3.2e-11 29 29 0
HIMMELBK 0.0518143 3.5e-12 3.5e-12 18 18 0
HIMMELP2 -8.19803189 3.8e-14 3.8e-14 11 15 0
HIMMELP3 -59.0131239 5.2e-10 4.9e-09 8 23 0
HIMMELP4 -59.0131239 9.7e-13 9.8e-13 11 12 0
HIMMELP5 -59.0131239 3.5e-09 3.6e-09 44 148 0
HIMMELP6 -59.0131239 5.7e-12 5.9e-12 16 39 0
HONG 22.57108736 0 6.4e-13 7 7 0
HS10 -0.9999999 1.4e-08 1.4e-08 13 46 0
HS11 -8.49846422 1.4e-14 2.4e-14 7 7 0
HS12 -30.0 1.2e-08 1.2e-08 8 8 0
HS13 -- -- -- -- -- --
HS14 1.39346498 5.1e-12 2.2e-11 9 38 0
HS15 306.50 8.1e-13 3.1e-10 16 34 0
HS16 0.25 1.1e-16 2.5e-16 13 14 0
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Table 1. (cont.)

Prob. Obj. Const. KKT Iter. Eval. NC

HS17 1.0 1.7e-12 5.5e-10 17 79 0

HS18 5.0 0 5.6e-17 28 188 0

HS19 -6961.81388 2.1e-11 2.0e-08 14 18 0

HS20 40.19873021 2.1e-09 1.6e-06 6 16 0

HS21 -99.9599999 3.6e-15 2.9e-14 5 5 0

HS21MOD -99.9599999 0 9.7e-16 11 11 0

HS22 1.0 3.3e-09 1.5e-08 5 5 0

HS23 2.0 1.8e-12 1.8e-12 8 9 0

HS24 -4.0e-97 0 6.4e-19 13 31 1

-1.0 7.1e-19 7.0e-11 6 6 0

HS29 -22.62741699 7.4e-10 8.7e-10 7 8 0

HS30 1.0 2.4e-09 5.0e-09 5 5 0

HS31 5.999999 9.4e-12 3.9e-09 5 5 0

HS32 1.0 7.8e-11 4.5e-10 8 9 0

HS33 -4.5857864 3.2e-11 3.2e-11 8 8 0

HS34 -0.83403244 4.3e-12 4.3e-12 8 8 0

HS35 0.11111111 1.1e-17 1.9e-10 7 7 0

HS36 -3299.9999 3.5e-15 9.8e-12 8 8 1

-3299.9999 2.9e-27 9.7e-12 8 8 0

HS37 -3456 2.8e-21 9.7e-14 6 6 0

HS41 1.92592592 0 1.4e-12 7 7 0

HS43 -44.0 6.5e-12 3.2e-11 9 9 0

HS44 -13.0 1.0e-15 2.2e-15 9 9 0

HS44NEW -13.0 1.0e-15 2.2e-15 9 9 0

HS53 4.0930232 1.8e-15 6.2e-14 4 4 0

HS57 0.0306476 5.9e-10 6.7e-10 20 50 7

0.0306476 5.6e-10 6.4e-10 25 50 0

HS59 -6.749505 1.0e-14 1.2e-14 66 202 0

HS60 0.03256682 6.5e-12 1.8e-11 7 7 0

HS63 961.7151721 1.2e-08 2.4e-08 6 9 0

HS64 6299.84243 1.1e-16 9.1e-13 17 22 0

HS65 0.95352886 3.5e-15 4.4e-15 10 14 1

0.95352886 7.1e-15 7.2e-15 11 12 0

HS66 0.518163274 5.1e-15 5.3e-15 10 10 0

HS67 -1162.119226 2.3e-12 2.3e-12 8 10 0

HS68 -0.920425 1.2e-16 1.2e-14 27 72 0

HS69 -956.712887 1.1e-10 1.6e-07 12 12 0

HS70 0.1870436431 2.9e-11 1.2e-09 22 39 0

HS71 17.0140173 4.1e-08 4.1e-08 8 8 0

HS72 727.67936 3.4e-16 1.2e-13 22 42 0

HS73 29.894378 1.0e-08 1.1e-08 11 11 0

HS74 5126.4981 1.4e-12 4.6e-10 8 8 0

HS75 5174.4127 6.8e-13 2.0e-09 8 8 0
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Table 1. (cont.)

Prob. Obj. Const. KKT Iter. Eval. NC

HS76 -4.681818181 8.3e-16 1.3e-09 7 7 0

HS80 0.0539498 3.0e-10 3.1e-10 7 9 0

HS81 0.0539498 1.5e-10 1.5e-10 8 8 0

HS83 -30665.539 3.2e-14 7.7e-13 18 18 0

HS84 -5280335.13 5.6e-08 1.6e-04 19 23 0

HS86 -32.348679 1.0e-14 3.6e-08 14 14 0

HS88 1.362656815 3.2e-14 5.0e-10 24 314 0

HS91 1.36265681 4.4e-11 4.8e-08 18 167 0

HS92 1.3626568 4.2e-13 1.4e-07 20 39 5

1.3626568 5.0e-14 2.6e-08 27 32 0

HS93 135.075963 3.2e-15 1.5e-07 9 9 0

HS95 0.0156195 3.4e-12 3.4e-12 11 11 0

HS96 0.0156195 1.7e-12 1.7e-12 11 11 0

HS97 4.0712463 2.2e-10 4.4e-08 12 34 0

HS98 4.0712463 6.8e-14 6.7e-11 15 33 0

HS99 -8.3108e+08 2.9e-11 0.49945443 6 6 0

HS100 680.630057 1.6e-08 3.6e-08 11 26 1

680.630057 1.7e-11 4.4e-11 12 18 0

HS104 3.9511634 4.4e-10 2.4e-09 9 12 0

HS105 1044.725129 2.0e-17 1.1e-10 16 19 1

1044.725129 2.6e-18 5.0e-11 16 19 0

HS106 7049.24802 3.9e-10 3.9e-10 10 54 0

HS107 4797.98188 2.6e-10 1.0e-05 10 78 0

HS108 -0.6749814 1.5e-14 1.9e-14 12 15 0

HS109 5362.06918 4.8e-08 4.9e-08 12 32 0

HS110 -45.7784697 -- 4.8e-13 5 5 0

HS111 -47.7610913 2.7e-08 4.9e-08 12 32 0

HS112 -47.7610908 2.5e-06 1.8e-08 11 11 0

HS113 24.306209 1.6e-11 2.9e-11 33 55 0

HS114 -1768.80696 2.1e-11 7.9e-11 16 16 0

HS116 97.5875096 5.6e-09 7.6e-09 33 40 0

HS117 32.3486790 3.4e-10 1.0e-09 17 19 0

HS118 664.820450 2.1e-14 1.1e-12 14 14 0

HS119 244.899697 6.3e-16 2.9e-07 11 11 0

HS268 4.9e-9 9.7e-15 9.8e-09 17 19 0

HUBFIT 0.016893495 2.9e-17 2.8e-09 7 7 0

KIWCRESC 1.2e-09 3.3e-09 3.8e-09 11 16 0

LAUNCH 9.004903149 6.8e-08 6.8e-08 22 24 1

9.004903149 5.1e-10 3.8e-07 15 15 0

LIN -0.020198312 4.4e-17 7.5e-15 15 16 0

LOADBAL 0.4528510391 1.3e-13 2.0e-10 13 13 0

MADSEN 0.616432435 9.7e-12 4.7e-11 15 33 0

MAKELA1 -1.414213564 1.1e-13 1.8e-11 19 24 0

MAKELA2 7.1999999 6.4e-11 8.5e-11 7 7 0

25



Table 1. (cont.)

Prob. Obj. Const. KKT Iter. Eval. NC

MAKELA3 0 2.0e-10 2.1e-10 15 22 0

MATRIX2 0 8.0e-13 9.2e-09 26 27 2

1.7e-31 9.1e-19 5.7e-12 39 45 0

MIFFLIN1 -1.0 3.2e-09 1.5e-08 5 5 0

MIFFLIN2 -0.9999999 1.4e-10 1.8e-10 13 28 0

MINMAXBD 115.7064397 6.4e-11 6.4e-11 25 36 0

MINMAXRB 3.5e-17 1.3e-11 1.3e-11 7 13 0

MISTAKE -1.0 5.6e-09 6.3e-09 10 10 0

ODFITS -2380.026775 8.0e-13 8.4e-13 8 8 0

POLAK1 2.718281833 3.5e-14 6.1e-14 8 8 0

POLAK2 54.59815 1.7e-09 2.1e-09 16 25 0

POLAK3 5.9330033 2.2e-09 4.7e-09 15 50 0

POLAK4 6.0e-17 3.9e-14 3.9e-14 20 22 0

POLAK5 49.99999 1.4e-08 1.7e-08 6 6 1

49.99999 2.0e-08 2.0e-08 47 69 0

POLAK6 -44 2.9e-09 2.6e-09 14 32 0

PRODPL0 58.79009997 2.3e-09 4.5e-08 16 16 0

PRODPL1 35.73896744 2.4e-12 1.7e-11 23 37 2

35.73896744 2.1e-14 3.4e-13 14 16 0

QPCBLEND -0.0078425 5.3e-15 4.1e-11 43 43 0

QPNBLEND -0.00913614 1.4e-14 5.8e-08 23 23 0

RK23 0.8333333 2.3e-10 3.4e-09 7 7 0

ROSENMMX -44.0 1.7e-13 1.7e-13 31 87 0

S268 4.9e-09 9.7e-15 9.9e-15 17 19 0

TAME 3.1e-33 0 2.0e-15 3 4 0

TENBARS4 368.4931619 9.9e-12 9.9e-12 15 18 0

TRUSPYR1 11.22874087 2.4e-12 1.1e-11 9 9 0

TRUSPYR2 11.22874090 5.9e-12 6.0e-12 12 12 0

TRY-B 1.2e-25 1.9e-10 1.9e-10 10 11 0

TWOBARS 1.508652417 2.3e-15 4.0e-15 13 170 0

WOMFLET 6.6e-13 5.6e-10 5.6e-10 11 23 0

ZECEVIC2 -4.125 6.3e-16 9.0e-09 8 40 0

ZECEVIC3 97.30945002 7.0e-09 3.1e-08 10 10 0

ZECEVIC4 7.557507769 4.8e-16 7.3e-15 9 13 0

ZY2 2.0 3.8e-09 3.8e-09 6 6 0

The columns in the table correspond to:

– Prob.: problem name.
– Obj.: value of the objective function, f (x), at the solution.
– Const.: norm of the constraint vector, ‖c(x)‖, at the solution, including slacks.
– KKT: norm of the first-order KKT conditions at the solution, ‖F(x, λ, z; ρ)‖.
– Iter.: iteration count (number of factorizations of the primal-dual system).
– Eval.: number of evaluations of the objective function and the constraints.
– NC: number of iterations in which directions of negative curvature were used.
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In those cases where negative curvature was detected the problem was solved a sec-
ond time, setting the direction of negative curvature to zero. Table 1 includes two lines
for those problems, one for the results from each of the two versions of the algorithm.

5.3. Analysis of the results

The algorithm was able to solve all problems but one, problem HS13 (that does not satisfy
a constraint qualification at the solution). For some of the problems the code finds better
local minimizers than those given in [20] (this happened for problems HS105, HS106,
HS107, HS112 and HS116), while for other problems these local minimizers are worse
(HS59, HS70, HS97, HS98 and HS108). Problem HS99 is an example of a badly scaled
problem. The termination tolerance is satisfied when the norm of the first-order KKT
conditions is 0.4994. Introducing a more demanding stopping criterion (a tolerance of
10−14), the norm of the KKT conditions goes down to 10−6 after 3 additional iterations,
but the value of the merit function remains basically unaltered.

In general, the number of iterations required to solve the problems is fairly small.
The number of function evaluations is higher, but no particular care was taken when
implementing a strategy to find a value of the parameter s that satisfied (31); a standard
backtracking search was used. It is also interesting to note the large number of cases in
which a step s0 (the equivalent to a unit step) was accepted.

Table 2 presents a brief summary of the results, both iteration counts and function
evaluations, for all problems that make use of negative curvature, as well as the size of
these problems. The last four columns in this table correspond to:

– Iter.nc: iteration count (with negative curvature enabled).
– Iter: iteration count (with negative curvature disabled).
– Eval.nc: number of function evaluations (with negative curvature enabled).
– Eval: number of function evaluations (with negative curvature disabled).

The first part of the table (the first eleven problems) corresponds to the cases where the
algorithm used negative curvature when started from the standard initial point (the one
specified in CUTE). The second part of the table corresponds to problems where the
algorithm in [22] used negative curvature. When the algorithm described in this paper
was given the standard initial point for these problems, it made no use of this negative
curvature. This is due to the fact that the gradient of the merit function usually has a sig-
nificant amount of negative curvature information; also, the updating rule for the penalty
parameter is more demanding than other proposals based on descent conditions for the
merit function, resulting in more frequent updates that force the direction of negative
curvature to be discarded. To obtain additional results taking advantage of directions of
negative curvature, alternative initial points were introduced for these problems. These
initial points were chosen to ensure that negative curvature was detected and used by
the algorithm, at least in the first iteration.

For the whole test set and the standard initial points, negative curvature was used in
only 7% of the cases. In [22], where a standard line search procedure is used (without any
gradient information), negative curvature was used for 23% of the problems in a similar
test set. Note that the use of the gradient incorporates negative curvature information in
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Table 2. Problems using directions of negative curvature

Prob. Var. Cons. Iter.nc Iter. Eval.nc Eval.

HS24 2 3 13 6 31 6
HS36 3 1 8 8 8 8
HS65 3 1 10 11 14 12
POLAK5 3 2 6 47 6 69
BIGGSC4 4 7 21 21 26 21
HATFLDH 4 7 14 13 20 14
DIPIGRI 7 4 11 12 26 18
HS100 7 4 11 12 26 18
HS105 8 1 16 16 19 19
LAUNCH 25 28 22 15 24 15
PRODPL1 60 29 23 14 37 16
CSFI1 5 4 7 8 8 8
EXPFITA 5 22 18 19 22 19
HIMMELP2 2 1 13 14 27 15
HIMMELP3 2 2 8 10 30 15
HIMMELP4 2 3 13 12 21 14
HIMMELP5 2 3 10 10 11 10
HIMMELP6 2 5 13 13 50 58
HS44 4 6 6 8 7 8
HS44NEW 4 6 6 8 7 8
HS59 2 3 10 37 80 555
HS113 10 8 21 21 31 28
LIN 4 2 6 6 6 6
MISTAKE 9 13 17 19 27 28
POLAK4 3 3 15 17 68 31
ROSENMMX 5 4 29 85 32 68
WOMFLET 3 3 16 17 25 24
ZEZEVIC3 2 2 9 9 9 18
TOTAL 372 488 698 1129
AVERAGE 13.3 17.4 24.9 40.3

an implicit manner. For the whole set of 28 problems where the algorithm used negative
curvature, an average reduction of 4.1 iterations was observed (compared to the case
where the negative curvature was disabled).

The preceding table also includes a certain number of cases in which using negative
curvature was worse than ignoring it. Globally, the reductions in iterations and function
evaluations seem to be more significant than the increases. The largest deterioration in
the number of iterations amounted to 9 iterations (39%) for problem PRODPL1 and 25
function evaluations (56%) for problem HS24, while the largest improvement was 41
iterations (87%) and 63 function evaluations (91%) for problem POLAK5. Nevertheless,
from the observation of the different behavior in the numbers of iterations and function
evaluations, special care should be taken when computing the parameter s in the search,
in order to reduce the number of function evaluations whenever negative curvature is
used. For example, a procedure based on polynomial models for the univariate search
would be likely to contribute to the improvement in the behavior of the algorithm.

Table 3 compares the results from the proposed algorithm (with and without negative
curvature) to those of other codes reported in the literature, in particular those from [25],
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Table 3. Iteration counts for different nonlinear interior point codes

Prob. GF+nc GF VS Y GOW

HS64 17 17 28 29 32.5
HS65 10 11 14 15 9
HS71 8 8 12 8 16.5
HS72 22 22 21 43 11
HS73 11 11 20 12 11
HS83 18 18 15 16 14
HS84 19 19 18 21 25
HS93 9 9 10 29 17
HS95 11 11 18 13 20
HS96 11 11 22 12 20.5
HS97 12 12 18 22 31
HS98 15 15 19 20 27
HS100 11 12 11 16 10
HS104 9 9 14 19 12
HS106 10 10 33 39 45
HS108 12 12 23 62 13.5
HS109 12 12 49 21 32
HS113 33 33 16 25 13
HS114 16 16 31 47 15
HS116 33 33 33 82 --
HS117 17 17 22 36 33
HS118 14 14 17 34 17

Average 15.0 15.1 21.1 28.2 20.2

[28] and [16], on a set of 22 HS problems (all the problems that were reported in all of
the references). The columns in the table correspond to the number of iterations (matrix
factorizations) required by:

– GF+nc: the proposed algorithm, using negative curvature.
– GF: the proposed algorithm, when negative curvature was disabled.
– VS: iteration counts for LoQo, as reported in [25].
– Y: iteration counts reported in [28].
– GOW: iteration counts reported in [16].

From these results the proposed algorithm works better on the average than any of the
other three codes. Note that none of the three algorithms uses negative curvature ex-
plicitly. All initial points for the algorithms are those indicated in [20]. For the GOW
algorithm, the noninteger results represent the average for all the starting points given
in [16].

6. Conclusions

We have described a procedure to combine different search directions, including direc-
tions of negative curvature if they exist, and an algorithm to solve general nonlinear
optimization problems, based on a primal-dual approach, that uses the combination
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procedure. A local convergence analysis has also been conducted to prove that the rate
of convergence of the algorithm using the proposed barrier parameter update is super-
linear.

The algorithm has been shown to be efficient on a set of small test problems. The
combination of the directions is also very efficient, as shown in the reduced number of
iterations required by the algorithm. A clear advantage is that the scaling of the different
directions is done in a natural way.

Although this procedure has been applied to cases in which we had either two or three
directions to combine, it would be straightforward to extend it to additional directions,
such as for example additional directions of negative curvature if they are available.

The impact of the negative curvature is not very significant on these small problems
(it is used in only 7% of them), due to the use of the gradient in the search, but it can be
quite important in some cases. If the use of negative curvature is forced by choosing an
appropriate initial point, the decrease in the iteration count is more significant. Given
the limited cost of computing a direction of negative curvature whenever an appropriate
factorization is used to obtain the movement directions, it is reasonable for nonconvex
problems to take into account this second-order information.

The proposed procedure would also be able to take into account other directions than
the ones used in this paper. This alternative would have particular interest in the case of
large-scale problems, as the computational cost of conjugate-gradient based directions
might be significantly smaller than that of the Newton direction. Further research would
be needed to determine the best combination of directions to use in these cases.
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