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1
Introduction

The emergence of cooperation created a puzzle for generations of scientists across sev-
eral disciplines (Pennisi 2009). Why an individual would sacrifice herself for another
when natural selection favors the survival of the fittest? Charles Darwin himself re-
marked the paradox of a worker bee that labors for the good of the colony, although
its efforts do not lead to its own reproduction. He proposed that selection might favor
families whose members were cooperative, and it is accepted today that kinship helps
explain cooperation. But defectors, those who benefit without making a sacrifice, are
likely to evolve because they will have an advantage over individuals who spend en-
ergy on helping others, therefore jeopardizing the stability of any cooperative effort.
Yet cooperation and apparently even altruism have evolved and remained, on any level
of biological organization. Without cooperation, genomes, cells or multicellular organ-
isms would have never been formed (Maynard Smith and Szathmary 1995). There are
numerous examples of cooperation in both animal and human kingdoms and to this
date there is no widely acceptable explanation why.

The suitable theoretical framework to address this issue is evolutionary game the-
ory (Axelrod and Hamilton 1981; Axelrod 1984), which has been intensively used for
this research during recent years. Its main virtue consists in that it allows to pose the
dilemmas involved in cooperation, and the mechanisms proposed to explain it, in a
simple and rigorous manner. In what follows, we will introduce the basic concepts
from game theory and then we will discuss some possible mechanisms which lead to
the promotion of cooperation.



2 Introduction

1.1 Game theory

Game theory formalizes mathematically how individuals or groups interact with each
other. Each individual has a set of options she can choose from. Depending on their
choice and the choices of others, the individuals obtain some benefit. In the game
theory framework, we call individuals players, the decisions they make are actions, and
the series of actions which fully describe the players’ behavior are strategies. In the
case of one shot games the actions and strategies are equivalent. The benefits players
obtain in the game are referred to as payoffs.

If player a uses the same strategy i in every possible situation we call the strategy
i a pure strategy. However, player a can use different strategies i from the set Sa of
player a’s strategies, each with a probability pi. This is referred to as the mixed strategy
p. It is formally written as:

p = (p1, p2, . . . , pNa), pi ≥ 0,
∑
i∈Sa

pi = 1, (1.1)

where Na = |Sa| is the number of strategies available to player a (likewise Nb to player
b). In the special case when pi = 1 for strategy i and 0 otherwise, we say that player a
uses the pure strategy i.

A common situation is that where only two players, a and b, are confronted in the
game. If player a uses strategy i and player b uses strategy j, let aij denote the payoff
player a collects. The set of payoffs for all strategies within Sa when confronted to all
strategies within Sb is usually gathered in matrix form:

Aa =



player b

pl
ay

er
a

a11 a12 · · · a1Nb

a21 a22 · · · a2Nb

...
...

. . .
...

aNa1 aNa2 · · · aNaNb

. (1.2)

This matrix is known as the payoff matrix of player a. Player b also has her own payoff
matrix Ab, which needs not be the same as player a’s. In case that player a is playing
a pure strategy i and player b plays the mixed strategy q = (q1, q2, . . . , qNb

), then the
expected payoff of player a is

(Aaq)i =
∑
j∈Sb

aijqj . (1.3)

Finally, if player a plays mixed strategy p and player b plays mixed strategy q, then
the expected payoff of the player a is

p·Aq =
∑

i∈Sa,j∈Sb

aijpiqj (1.4)
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Elementary ideas of game theory could be found all through history, from Talmud
to the writings of Charles Darwin. Although there were some important papers before,
it is widely accepted that modern game theory starts with the classical work of von
Neumann and Morgenstern (1944). Building on their results, John Nash later gave the
game theory its modern methodological framework (Nash 1950). He introduced the
concept of Nash equilibrium. It is a combination of strategies in which none of the
players has anything to gain by changing only her own strategy. In other words, if
player A is taking the best decision she can, taking into account the action of player B,
and if player B is taking the best decision, taking into account the decision of player A,
then player A and player B are in a Nash equilibrium. Formally written, we say that
the pair of strategies p,q are a Nash equilibrium if the two inequalities

p·Aaq ≥ p′·Aaq q·Abp ≥ q′·Abp (1.5)

had for all strategies p′ 6= p, q′ 6= q. If the inequality is strict, we speak about a strict
Nash equilibrium.

Since it was introduced the Nash equilibrium is the most widely used “solution
method”. Nevertheless, just because the players are in a Nash equilibrium it does not
mean they earn the highest possible payoff. In many cases, players could obtain a
higher payoff if both simultaneously changed their strategy, as we will see later in the
example of the Prisoner’s Dilemma. The set of strategies which will give the highest
possible payoff for the all players is called Pareto optimal. More precisely, the set of
strategies is called Pareto optimal if there is no other set of strategies which improves
the payoff of one or more players while maintaining the payoffs of others.

1.1.1 Game dynamics and replicator equation

The Nash equilibrium gives us the solution set of strategies, but tells us nothing about
the dynamics of the game. We do not know how will the system come to that equilib-
rium. Furthermore, if there are more that one Nash equilibria in the game we do not
know in which one the system will end up. Also, the Nash equilibrium is the solution
of the game given two assumptions: rational players and perfect knowledge. Rational
player are players whose only aim is maximizing their own payoff. Perfect knowledge
means that all players are perfectly informed about the rules of the game and they can
calculate their best option. They also know that their opponents know the rules and can
calculate the best option. Furthermore, they know that their opponents know that they
themselves can calculate the best option, etc. These two assumptions are not always
applicable to the real situations, since people are not always able to calculate the domi-
nant strategy or they assume that other people are not able to do it. Furthermore, they
will just not always act rationally. For example, in experiments of the Ultimatum game
with humans, the players rarely choose the rational strategy (Henrich et al. 2001). In
the Ultimatum game, two players should split a certain amount of money. One play-
ers is the proposer and the other one is the responder. The proposer decides how to
split the sum and the responder can accept or refuse the proposition. If the responder
accepts the split, both players get the money; otherwise they do not get anything. The
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rational strategy for the proposer is to propose the smallest amount of money and for
the responder to accept whatever is offered (because something is always better than
nothing). However, in the experiments humans usually propose and accept fair splits.
If an unfair split is proposed people will react emotionally and punish their opponent
by refusing the offer, even at the expense of earning nothing.

Game theory was given a new framework by Maynard Smith and Price (1973); see
also (Maynard Smith 1982), who analyzed the games in a population-dynamics set-
ting. Unlike in classical game theory, instead of individuals we now have a population
of players which interact randomly with each other. The idea is that the successful
strategies spread by natural selection. Each individual in the population plays a fixed
strategy (pure or mixed) and the payoff they obtain is related to the reproductive fitness:
the higher their payoff the more offspring they have. Offspring will play the same strat-
egy as their parent. The reproduction is asexual. We assume that the population is large
and that players play an infinite number of rounds. Therefore, here no assumption of
rationality or perfect knowledge is necessary. The notions of rationality and perfect
knowledge are exchanged for the notion of fitness. Given these assumptions, the sys-
tem will eventually evolve to an evolutionarily stable strategy (ESS). Once adopted by
the whole population, the evolutionarily stable strategy cannot be invaded by a small
number of individuals of a mutant strategy. Therefore, strategy p is an ESS if it per-
forms strictly better in a mixed population whose huge majority of players play strategy
p and the rest play the mutant strategy q. Formally written,

p ·A[(1− ε)p+ εq] > q ·A[(1− ε)p+ εq]. (1.6)

Consequently, p is an ESS, if two conditions are satisfied:

(i) p is a Nash equilibrium
p·Ap ≥ q·Ap, (1.7)

(ii) if p 6= q and p·Ap = q·Ap, then

p·Aq > q·Aq. (1.8)

Therefore, ESS is actually a refinement of the notion of Nash equilibrium, but they are
not equivalent. Most notably not all Nash equilibria are evolutionarily stable.

The replicator equation (Taylor and Jonker 1978) incorporates all the previously
stated assumptions into an evolutionary game dynamics. If there are N different types
of strategists in the population, with frequencies given by x = (x1, x2, . . . , xN ) (where
xi is a frequency of strategy i) and A is the payoff matrix of the game, then we can
write the law of motion x(t) in the following way:

ẋi = [(Ax)i − xAx]. (1.9)

Here, the term (Ax)i is the expected payoff of the individuals using strategy i and
the term x · Ax is the average payoff in the population in the state x. Therefore if
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the payoff of the individuals playing the strategy i is larger that the average payoff of
the population in the state x, the frequency of these players will increase; otherwise
it will decrease. If these two terms are the same for all the strategies i, the system
will remain in that stationary state, also called a fixed point of the dynamics. Some
stationary states will never be reached unless the system started in that state. These are
unstable stationary states. However, some states act like an attractor and the system
will end up in that state starting from a larger set of initial states. These are stable
stationary states. All the initial states which end up in the same attractor form its basin
of attraction. The attractors are often evolutionarily stable states, but it is not always
like that. More precisely, an ESS is always an attractor, but an attractor is not always
an ESS (Taylor and Jonker 1978). An example of a game where we have an attractor
which is not an evolutionarily stables state is Zeeman’s game (Zeeman 1980), where
we have two attractors, but only one of them is an evolutionarily stable strategy. More
about this in Chapter 3.

The replicator equation is not the only way to model evolutionary game dynamics,
there are a few others (Nowak and Sigmund 2004; Hofbauer and Sigmund 2003). The
main property of the replicator equation is that it allows the fitness to depend on the
distribution of population types (the vector x). When the fitness does not depend on
x and the dynamics includes mutations, it is referred to as the quasi-species equation
(Eigen and Schuster 1977). The replicator-mutator equation adds the mutation to a
frequency-dependent selection. Adaptive dynamics describes how continuous traits or
strategies are changing under mutations on a frequency dependent fitness landscape
(Hofbauer and Sigmund 1990). Finally, the Price equation (Price 1970) provides a link
between the replicator framework and adaptive dynamics (Page and Nowak 2002).

1.1.2 Symmetric 2× 2 games

There are numerous examples of games, which can involve many players and many
strategies, like the Public goods game, also known by the phenomenon it leads to,
namely the Tragedy of Commons (Hardin 1968; Hardin 1971). Here we are going
to focus just on the simplest case of symmetric 2 × 2 games (Rapoport et al. 1976).
Those are the games between two players both having the same two strategies and the
same payoff matrices. We call the strategies cooperate (C) and defect (D). The payoffs
have illustrative names which come from the Prisoner Dilemma game, which we will
explain later: reward for mutual cooperation (R), sucker’s payoff (S), temptation to
defect (T) and punishment for mutual defection (P). The payoff matrix of the game is:

(C D

C R S

D T P

)
. (1.10)

For 2×2 games the notion of evolutionarily stable strategy and attractor are equivalent.
Let us solve these games. The replicator equation for 2× 2 games is
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ẋC = [(R− T )xC − (P − S)(1− xC)]xC(1− xC) ≡ F (xC), (1.11)

where xC denotes the fraction of cooperators (consequently 1 − xC is the fraction of
defectors). We have three stationary states, x̂C = 0, x̂C = 1 and x̂C = (P − S)/(R−
T + P − S). Therefore, full defection and full cooperation will always be rest points,
but that does not mean they are also stable. The stability of these strategies depends of
the values of the payoffs. The last fixed point is

x̂C =
P − S

R− T + P − S
. (1.12)

Depending on the values of the payoffs, x̂C can have a meaningful value for frequency
within [0, 1] and can be an attractor or repeller. To determine the stability of the fixed
point, we need to calculate the first derivative of the right hand side of the equation
(1.11) in those fixed points. Consequently

F ′(x)|x=x̂C
=


S − P, x̂C = 0,
T −R, x̂C = 1,
(R− T )(P − S)

R− T + P − S
, x̂C =

P − S

R− T + P − S

(1.13)

Depending on the values of of R, T , P and S, we have 12 possible non equivalent
games (Rapoport and Guyer 1966; Kilgour 1988). These games can be divided into 4
different categories with the following representatives: Harmony, Snowdrift, Stag Hunt
and Prisoner’s Dilemma.

The harmony game (Licht 1999) has payoff coefficients which satisfy P < S < R
and P < T < R and as its name says, it represents the situation when the best possible
outcome for both players is mutual cooperation. It is an example of the category where
R > T and S > P . For all the four games in this category there will be two fixed
points, full defection and full cooperation, with full cooperation being the only one
stable. Therefore, there is a unique strict Nash equilibrium in the pure strategy C, as
illustrated in Figure 1.1.

The situation of the Snowdrift game (Sugden 2004) resembles the case of two
drivers who are trapped on opposite sides of a snowdrift. Each of them has the op-
tion to shovel the snow (cooperate) or to seat in the car (defect). The best option is
to stay in the car while your opponent is doing all the shoveling (T), the next best op-
tion is to do the shoveling together (R), then to do all the shoveling on you own (S)
and finally the worst outcome is that both drivers stay in the car and nobody clears the
road (P). Therefore the payoffs in the Snowdrift game satisfy P < S < R < T . In
this game we have three Nash equilibria. Two equilibria are pure strategies, where one
players plays C and the other D and the other way around. This is why this game is
an anticoordination game, because the best response is to always do the opposite of
your opponent. There is also a mixed strategy equilibrium, where the probability of
cooperating is given by x̂C in (1.12) and that of defecting by 1− x̂C . Let us now look
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at this game in the population-dynamic setting. The only ESS here is equivalent to the
mixed strategy Nash equilibrium. Full cooperation and full defection will be unstable
rest points of the dynamics (Figure 1.1). The Snowdrift game is a representative of
the category P < S and R < T . There are two more games equivalent to the Snow-
drift game: Hawk-Dove (Maynard Smith and Price 1973), introduced to study conflicts
between animal species, and Chicken (Russell 1959).

The Stag hunt game (Skyrms 2003) describes the situation where two persons go
out to hunt. Each of them can decide individually to hunt a stag or a hare. The stag is a
much better catch than a hare, but one person cannot catch it alone; on the other hand,
if one goes for the hare, she can catch it alone, but the catch is much smaller. Therefore,
the highest payoff is obtained when both players go for a stag (both cooperate) then if
they both go for a hare (both defect), then if one goes for the hare and catches it alone
(defects and the other cooperates) and finally the worst outcome is for the player who
goes for the stag alone (cooperate but the other defects). Usually, it is R > T > P > S.
It is better to go for hare alone and laugh at the guy who went for stag alone! In this
game there are two Nash equilibria in pure strategies: if both players go for stag or if
both players go for a hare. Therefore the best option is to play the same strategy as
the other player (this game is a coordination game). However, if both players go for a
stag they obtain a higher payoff, therefore this equilibrium is Pareto efficient. But if a
player hunts a hare she faces a lower risk to lose, therefore this equilibrium is called
risk dominant. There is also another Nash equilibrium in mixed strategies, with a
probability of cooperating given by (1.12). In the population-dynamics setting this will
result in three fixed points of the dynamics: two stable (always cooperate and always
defect) and the third one unstable. Actually this unstable rest point separates the two
basins of attraction. The two attractors will be also ESSs. This game is an example of
the games in the category S < P and T < R (Figure 1.1).

The prototypical example of the last category of 2 × 2 games is the Prisoner’s
dilemma. Since in all the research presented here we have used this game, we will
devote a separate section to it.

1.1.3 Prisoner’s Dilemma

Prisoner’s dilemma (PD) is a canonical example of a game analyzed in game theory.
It was originally introduced by Merrill Flood and Melvin Dresher in 1950 as part of
the Rand Corporation’s research in game theory. Rand Corporation’s interest in the
subject was motivated by possible applications to the global nuclear strategy. The
title, Prisoner’s dilemma, and its most common interpretation today are due to Albert
Tucker, who wanted to make Flood and Dresher’s ideas more accessible to an audience
of psychologists. In this interpretation of the game, police have arrested two suspects
but do not possess enough information for a conviction. Therefore, they interrogate
them in separate rooms. If nobody confesses then the police is left with circumstantial
evidence, only enough to imprison them for a period of six months. In this case we
say that prisoners cooperated. On the other hand, if both of them confess, now the
police have enough evidence to imprison them for a period of 2 years. In this case
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Figure 1.1: Dynamics of different 2× 2 games.

we say that the prisoners defected. However, if one of them confesses (defects) and
the other one does not confess (cooperates) the one who confesses goes free and the
other one is imprisoned for 5 years. Therefore, no matter what the other prisoner does
it is always better to defect, making defection a dominant strategy and the outcome
of double defection a Nash equilibrium. However, if they both defect they will go to
prison for 2 years whereas if they both cooperated they would serve a smaller sentence
of 6 months each. Accordingly, this Nash equilibrium is not Pareto efficient. In the
population-dynamics setting full defection will be an ESS, and full cooperation an
unstable fixed point (Figure 1.1).

The names of the payoffs in 2× 2 games come from the Prisoner’s dilemma. They
represent the sentence reductions. Accordingly a player obtains, the highest sentence
reduction by defecting while her opponent cooperates (T - temptation to defect), the
second best outcome is if both players cooperate (R - reward for mutual cooperation),
then if both players defect (P - punishment for mutual defection) and finally the smallest
payoff is for the players who cooperated while the other player defected (S - sucker’s
payoff). Hence, the following inequality holds: T > R > P ≥ S.

The case when P = S is known as weak Prisoner’s dilemma. It has been of
particular relevance in the study of the influence of spatial structure on social dilemmas
since the pioneering work by Nowak and May (1992), and will be the case we will use
along this work.

If two players play a Prisoner’s dilemma more than once in succession, remember
previous actions of their opponent, and change their actions accordingly, the game is

G\~:::::::::Jle Ha,mony 

GIc:::::=?I~e snowd,;ft 

G~i'c:::::::~?e sta9 Hunt 

Glr-----::::~'O P';,on.,', 
L...-- fV' dllemma 
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called iterated Prisoner’s dilemma. In addition to the general pattern of payoffs above,
the iterative version also requires that 2R > T + S to prevent alternating cooperation
and defection yielding a greater reward than mutual cooperation.

1.2 Promotion of cooperation

Without any mechanism for the evolution of cooperation in a PD, defection is the dom-
inant strategy. However, several mechanisms have been proposed that can promote
cooperation. The most prominent mechanisms are: kin selection, direct reciprocity,
indirect reciprocity, group selection and network reciprocity (Nowak 2006). Here we
will present the first four, and in the next section we will focus on network reciprocity
which is the main focus our work. There are some other interesting mechanisms like
the “green beard” effect (where players can recognize each other (Cohen et al. 2001)),
making the game voluntary (Hauert et al. 2002), or introducing punishment (Yamagishi
1986; Fehr and Gächter 2000; Rockenbach and Milinski 2006).

1.2.1 Kin selection

The earliest mathematically formal treatments of kin selection were introduced by
Fisher (1930) and later by Haldane (1932). Haldane is the one to whom the follow-
ing sentence is attributed: “I will jump into the river to save two brothers or eight
cousins”. Later on, this work became the basis for what is known as Hamilton’s rule
(Hamilton 1964a; Hamilton 1964b). The idea behind this rule is that altruistic acts
can be justified if the donor of the act is a genetic relative. That way the sacrifice will
help individual’s genes to survive. The rule is widely known as “kin selection”, a term
coined by Maynard Smith in 1964, or “inclusive fitness”. Therefore, the higher is the
relatedness between the two individuals the more justified is the altruistic act. There-
fore the fitness of the behavior induced by a gene is not just determined by its ability to
help the survival of the individual carrying it, it is also determined by the influence this
behavior has on relatives which might carry the same gene. That way the cooperative
behavior is the consequence of “selfish genes” (Dawkins 1976).

1.2.2 Direct reciprocity

Kin selection provided an explanation for some of the cooperation observed in human
and animal societies. However, cooperation is not observed only between related indi-
viduals, often it can be seen between individuals who do not share any common genes
or even belong to different species. A mechanism which could explain this kind of
cooperation is proposed by Trivers (1971). The idea is that in an iterated Prisoner’s
Dilemma, since the players have repeated encounters it might pay off to cooperate in
order to encourage your opponent to cooperate later. In the late 1970’s Axelrod set
out to find the best strategy in this framework (Axelrod 1984). He invited a number
of well-known game theorists to submit their strategies in the form of a computer pro-
gram, which would be played against each other. The payoffs used in the tournament
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were

(C D

C 3 0

D 5 1

)
, (1.14)

The winner of the tournament was a strategy called Tit for tat, submitted by Anatol
Rapoport. In the strategy, the player’s first actions is cooperation and in every other
round it just repeats the action of her opponent from the previous round. Few years
later Axelrod organized another tournament. A much higher number of strategies was
submitted, many of which would have won the first tournament, but once again the win-
ner was Tit for tat. However, it turned out that Tit for tat had a weak spot. Namely, in the
presence of even very small noise in communication, Tit for tat’s performance declines
(Fudenberg and Maskin 1990; Selten and Hammerstein 1984). The problem with Tit
for tat is that it cannot correct mistakes, therefore erroneous defections will lead to long
chains of retaliations. To correct for this, Generous tit for tat was introduced (Nowak
and Sigmund 1992). This strategy responds to cooperation with cooperation, but shows
some level of forgiveness to defection. Namely, it will start with cooperation and copy
unconditionally the previous action of the opponent if it is cooperation, just like Tit
for tat, however if the opponent defected in the previous round it will still cooperate
with some probability. For the payoffs in Axelrod tournament that probability is 1/3.
However, Generous tit for tat cannot exploit pure cooperators. Therefore it was eventu-
ally exchanged for the Win-Stay-Lose-Shift strategy (Nowak and Sigmund 1993). As
the name says, in this strategy, if the player is satisfied with the benefit obtained she
repeats the action from the previous round, otherwise she will switch the action to the
opposite one. The satisfying payoffs are T and R, whereas P and S are unsatisfying.
This strategy is capable to correct mistakes, but also exploits pure cooperators. A de-
tailed study of one memory strategies for 2 × 2 game has been recently performed by
Martı́nez-Vaquero et al. (2012).

1.2.3 Indirect reciprocity

Direct reciprocity can explain how cooperation evolves if we have repeated encounters
between two individuals. However, in real life relationships are not always reciprocal.
Many times we are in a position to do a favor to people although we do not need a favor
from that person. We even help individuals we know we are never going to meet again.
The proposed mechanism for the promotion of cooperation in this case is reputation.
By helping somebody we earn a good reputation in the society and later people help
us because of our good reputation. The process is called indirect reciprocity as you
do not reciprocate directly to you benefiter, but indirectly through society. There are
two flavors of indirect reciprocity: downstream and upstream. Downstream reciprocity
(Nowak and Sigmund 1998; Wedekind and Milinski 2000; Milinski et al. 2002; Oht-
suki and Iwasa 2004; Brandt and Sigmund 2004; Nowak and Sigmund 2005; Milinski
et al. 2001) occurs when a person who provided help in the past has higher chances of
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receiving help in the future. Upstream reciprocity is when a person receives help and
because it feels good about it helps a third person. Although it is difficult to explain
how would upstream reciprocity evolve (Boyd and Richerson 1989) it is observed in
laboratory experiments with human subjects (van Damme et al. 2001; Nehring et al.
2001). Indirect reciprocity is almost exclusively a human phenomenon, although in
some simpler form it is also noticed in animals. It is a very cognitively demanding task,
it requires memory, observation and development of language to communicate one’s
experience. The calculations involving indirect reciprocity are very difficult and there
is yet a lot to be discovered about its mechanisms.

1.2.4 Group selection

Although cooperative individuals will have lower fitness than non cooperative ones,
groups of cooperative individuals will be able to perform tasks beyond the reach of
individuals, and therefore might have higher fitness than non cooperative groups. This
is called group selection. In a thorough study of the spatial dispersion of animal pop-
ulations, Wynne-Edwards (1962) proposed that this principle applies to much of the
animal kingdom. Maynard Smith can be credited with what has become known as the
“haystack model” of group selection (Maynard Smith 1964). In this model, mice live
in a field full of haystacks. Each haystack houses a group of mice. Cooperators benefit
the group they live in, in such a way that the whole group reproduces faster, while the
cooperators themselves reproduce less than defectors in the same group do. After a life
cycle the haystacks are removed and all the mice mix up. The groups that contain many
cooperators will contribute more to the metapopulation than groups with few coopera-
tors when the haystacks are removed. Next year a new set of haystacks is set up and the
process is repeated. After this model was proposed, there was some controversy about
group selection. A few authors suggested that group selection is just a generalized kin
selection, or that the effects of groups selection are negligible or both. Nevertheless,
despite all this controversy, groups selection has been recently resurrected under the
name of “multilevel selection” by Wilson and Sober (1994). Wilson, the developer of
Multilevel Selection Theory, compares the many layers of competition and evolution
to the Russian Matryoska Dolls within one another. The lowest level is the genes, next
come the cells, and then the organism level and finally the groups. Multilevel Selection
Theory does not lean towards individuals or groups selection but can be used to eval-
uate the balance between group selection and individual selection on a case-by-case
scenario.

1.2.5 Network reciprocity

In the previous section we presented several mechanisms to explain how cooperation
can emerge and be sustained under natural selection. The mechanism we are going to
focus on here is the existence of a (social, spatial, geographical) structure that deter-
mines the interactions among individuals in the population (Axelrod 1984; Nowak and
May 1992). Until now, we have assumed that the population is well mixed, meaning
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that everybody interacts with everybody. This is not a very realistic assumption. In
everyday life people never have the opportunity to interact with everybody else on this
planet. Their interactions are more often limited to their family, neighbors, co-workers,
etc. Therefore, it is logical to introduce spatial structure into our models. In the spatial
variant of the iterated PD players are placed on a network and they simultaneously play
with each of their neighbors. They take only one action, either to cooperate (C) or to
defect (D), the action being the same against all the opponents. The resulting payoff is
calculated by adding interaction payoffs with all of their neighbors.

A pioneering model of network reciprocity was studied by Nowak and May (1992).
They simulated a set of agents located on a square lattice, playing a PD with their
Moore neighborhoods (all eight surrounding neighbors) and showed that cooperation
could thrive even under very adverse choices of the payoffs. The authors explained
this promotion of cooperation on the network as a result of the formation of clusters
of cooperators. Namely, if a group of cooperators formed a cluster, where they mostly
played with each other, then the cooperators in the cluster would earn more than the
surrounding defectors. Therefore, cooperation, as the most successful strategy in the
neighborhood, would spread and the cluster would grow until reaching the huge major-
ity of the system.

Many papers were published after this seminal work (Szabó and Fáth 2007) with
consistent results. Yet, in 2004 another import paper was published by Hauert and
Doebeli (2004). In this paper they investigated a Snowdrift game and surprisingly got
that promotion of cooperation is not nearly as large as in Nowak and May’s paper. The
change of the game cannot introduce such a difference, especially since the Snowdrift
game allows more cooperation than the PD. Moreover it was previously shown that
there is indeed promotion of cooperation in the Hawk-Dove game, which is equivalent
to the Snowdrift game (Killingback and Doebeli 1996). The surprising result comes,
not from the difference in the game, but from the difference in the update mechanism.
In Nowak and May’s paper the update mechanism used was unconditional imitation.
Unconditional imitation is a deterministic rule where each player will imitate the ac-
tion of the most successful neighbor in the previous round. However in Hauert and
Doebeli’s paper the update mechanism used is the replicator rule (Schlag 1998; Hel-
bing 1992b). This rule, also known as proportional update (Helbing 1992a), is inspired
by the replicator dynamics. If the players in the populations are labeled i = 1 . . . N , si
is a strategy of player i, and Wi the payoff of that player, when we choose at random
a player j from the neighborhood of player i, the probability that player i adopts the
strategy of player j is given by

ptij ≡ P{stj → st+1
i } =

{
(W t

j −W t
j )/Φ, W t

j > W t
i ,

0, W t
j ≤ W t

i ,
(1.15)

where Φ is a constant appropriately chosen to keep the probabilities within the limits
[0, 1]. These results shed light on the importance of the update mechanisms on the
promotion of cooperation (Roca et al. 2009b). However, unconditional imitation and
the replicator rule are not the only two update mechanisms available. Some of the most
widely used ones are Moran’s update (Moran 1962) and the Fermi rule (Szabó and
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Töke 1998). Unlike unconditional imitation and the replicator rule, in the Moran and
Fermi rules, the players also can, with a small probability, adopt the strategy of a less
successful neighbor. Moran rule is inspired by the Moran process, which in biology
is a prototypic dynamic update rule for asexual replication. At each time step, one
individual is chosen for reproduction with a probability proportional to its payoff. An
identical offspring is produced, which replaces another individual in the neighborhood.
It can be regarded as a type of imitation, where the probability that player i will change
the strategy to the strategy of her neighbor j is

ptij ≡ P{stj → st+1
i } =

W t
j −Ψ∑

k∈N∗
i
(W t

k −Ψ)
(1.16)

where N∗
i is the neighborhood of player i including herself and Ψ is added to ensure

that the probabilities are positive, since the payoffs can be negative. Therefore, the
probability of imitating a neighbor is given by the relative success of that neighbor
in the neighborhood. In the Fermi rule, based on the Fermi distribution function, the
probability of imitating depends of the relative success of that neighbor compared to
the focal player. Furthermore, it allows us to control the intensity of the influence of
the payoff difference in the probability of imitation. Formally

ptij ≡ P{stj → st+1
i } =

1

1 + e−β(W t
j−W t

i )
(1.17)

where β can be interpreted as an inverse temperature or noise and it tunes the intensity
of selection.

To properly understand the influence of the spatial structure on the promotion of
cooperation, apart from the update mechanism, we also need to consider different
topologies. The main mechanism behind the promotion of the cooperation is clus-
ter formation, which can be largely influenced by the network topology (especially the
clustering coefficient) (Roca et al. 2009c). In the case of complex networks, where
nodes with many connections appear, these nodes, called hubs, also play a key role in
governing the emergence of cooperation (Gómez-Gardeñes et al. 2007; Santos et al.
2006b). Additionally the existence of hubs cannot be considered as the only reason for
the promotion of cooperation. Other structural properties like node-node correlation
should be taken into account in order to capture properly the mechanisms that help
fixation of cooperation in real complex networks (Poncela et al. 2009; Poncela et al.
2010).

Very many models have explored analytically and by simulation the effects of topol-
ogy and update mechanisms on cooperation (Szabó and Fáth 2007; Roca et al. 2009b).
It turns out that the only rule that will significantly promotes cooperation in the spatial
PD in a system without self interactions is unconditional imitation. The game in which
more positive effects of the spatial structure are found is the Stag hunt. This effect is
also robust against the update mechanism. Furthermore, it was found that the influence
of the spatial structure on the promotion of cooperation is directly linked to the high
clustering of the network.
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Unfortunately, in spite of the large body of theoretical work devoted to this issue,
it has not been possible to reach a general conclusion about whether the existence of
structure in a population can promote cooperation. Since the survival of cooperative
behavior depends so crucially on the details of the models (Roca et al. 2009b; Roca
et al. 2009a), its applicability to real life situations is dubious, at best. Therefore, exper-
imental work beyond the large body of results on the PD in unstructured populations
(Ledyard 1995; Camerer 2003) is needed to ascertain both the relevance of the popu-
lation structure and the types of dynamics that are actually at work in real situations.
To progress towards answering these two questions, we have carried out a few exper-
iments which were followed by theoretical analysis. These works are the core of this
thesis.

In Chapter 2 we describe a laboratory experiment with human subjects playing a
PD on a sizable network, with a setup as close as possible to the one studied by Nowak
and May (1992). This experiment was intended to see whether cooperation emerges
in a spatial setting and to analyze what kind of update mechanisms players actually
use. Chapter 3 presents a theoretical study of the coexistence of the three strategies
observed in the experiments reported in Chapter 2 by means of the replicator dynamics.
In Chapter 4 we discuss the analysis of an experiment carried out on a smaller network
by another group (Traulsen et al. 2010). Here we focus on the different update mech-
anisms and their influence on cooperation with and without spatial structure. Finally,
in Chapter 5 we present the results of another experiment where players were not on a
network, but rather they were playing in groups of different sizes, in which we intended
to probe further the existence of moody conditional cooperation and the effect of the
number of players involved. The last chapter presents the conclusions of our work and
includes a preliminary comparison of our lattice experiment with that of Traulsen et al.
(2010) and a larger, more recent one by Gracia-Lázaro et al. (2012). In the appendixes
we include further details on the experiments, the manual and the technical instructions
for the software developed, and specific details of different issues of the work which
are too technical to include in the main text. At the end we present and the publications
which resulted from the work described here.



2
Cooperation in a mesoscale experiment with
human subjects

As established in the previous chapter, many models have explored analytically and
by simulation the possibilities of network reciprocity on the promotion of coopera-
tion. However, the results of these models largely depend on details such as the type
of spatial structure or the evolutionary dynamics. In order to determine how popu-
lation structure influences the promotion of cooperation and what type of dynamics
players actually use, experimental work especially designed for structured population
is needed.

To progress towards answering these two questions we have focused on the pio-
neering model studied by Nowak and May (1992). They simulated a set of agents
located on a square lattice, playing a PD with their Moore neighborhood (i.e., playing
a PD with each of their eight surrounding neighbors, but using the same strategy with
all of them), and showed that when they imitated the behavior of the neighbor who
obtained the largest payoff in the previous round (including themselves), cooperation
could thrive even under very adverse choices of the payoffs. We set a laboratory exper-
iment with human subjects, on a sizeble network, mimicking as close as possible the
setup of Nowak and May’s simulations. In this respect, it is important to note that in
those simulations agents do not have memory and update their strategies with a specific,
fixed rule, whereas we are implementing the same system with humans. It is clear that
the rules used by humans are unknown a priori (they are not instructed to follow any
particular rule). As a matter of fact, the goal of the experiment is precisely to unveil
the way they behave.



16 Cooperation in a mesoscale experiment with human subjects

Specifically, 169 volunteers were located on a (virtual) 13×13 square lattice with
periodic boundary conditions, on which they were able to interact anonymously. At the
time we carried out the experiment this was by far the largest experiment of this kind
ever carried out. The organizational burden and the cost of the experiment increase
geometrically with its size, so going to larger systems is increasingly higher. It is only
recently that our record has been surpassed (Gracia-Lázaro et al. 2012), but at the time
the only experimental work on this issue had been conducted on networks an order of
magnitude smaller. In what follows we will review the most relevant ones.

Cassar (2007) studied an iterated Coordination game and a PD. She compared three
structures: a local network (players were placed on a circle and interact with a few of
their neighbors), a random network (players were randomly connected) and a small
world network (built from the local networks by randomly rewiring some percentage
of the connections). In the PD experiments, the percentage of cooperation started at
around 50% and declined during the game. Therefore, there was no promotion of
cooperation in any of the examined networks. Statistical analysis showed that indi-
vidual decisions depend significantly on the number of cooperating neighbors in the
previous round as well as on the focal player’s own previous action. Kirchkamp and
Nagel (2007) performed iterated PD experiments on two types of structure: circles and
groups. The circle setting was the same as the local network in the experiments of
Cassar (2007). On the other hand, in the group setting players were interacting with
all members of their group and has no interactions with players of other groups. The
experiment was repeated for two different groups sizes: small (5 partners in a group,
as in the circle setting) and big (with groups sizes of 8 to 10 neighbors). As found
by Cassar (2007), there was no promotion of cooperation in any of the settings. The
initial level of cooperation was around 40% to 60% and then declined over time. The
authors concluded that players do sometimes imitate their neighbors, but that they pri-
mary learn from their own actions. The only one experiment that has addressed the
questions we are interested in here was carried out by Traulsen et al. (2010). In this
experiment humans played an iterated PD on 4 × 4 lattice. Like in previous experi-
ments, although the cooperation started at a high level (70%) it declined rapidly during
the game. The authors found that players use the Fermi rule as an update mechanism.
However, not all of the behavior can be explained with the Fermi rule. Sometimes the
players would switch their action although they are surrounded only by players who
use the same action. They refer to this as a spontaneous change of strategy and claim
that it corresponds to mutations.

In all the experiments above the sizes of the network were very small (18 nodes the
largest). However, the question of the size of the network is very important because
the putative mechanism leading to the emergence of cooperation (Roca et al. 2009a;
Langer et al. 2008) is the appearance of clusters of cooperators. Cooperator clustering
can be difficult to observe in small systems, hence the necessity of studying larger ones
and, in addition, for times as long as possible (Helbing and Yu 2010).
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2.1 Experimental setup

In our experiment, volunteers played a 2×2 PD game with each of their eight neighbors
(Moore neighborhood) taking only one action, either to cooperate (C) or to defect (D),
the action being the same against all the opponents. The resulting payoff was calculated
by adding all eight interaction payoffs. Payoffs of the PD game were set to be 7 cents of
a euro for mutual cooperation, 10 cents for a defector facing a cooperator, and 0 cents
for any player facing a defector (weak PD (Nowak and May 1992)). With this choice
(a cooperator and a defector receive the same payoff against a defector) defection is not
a risk dominant strategy, which enhances the possibility that cooperation emerges. In
addition, to avoid framing effects (Levin and Gaeth 1988; Brañas-Garza 2007), the two
actions were always referred to in terms of colors (blue for C and yellow for D), and
the game was never referred to as PD in the material handed to the volunteers. This
notwithstanding, players were properly informed of the consequences of choosing each
action, and some examples were given to them in the introduction. After every round
players were given the information of the actions taken by their neighbors and their
corresponding payoffs in the form given in Fig. 2.1.

Figure 2.1: Information given in the experimental setup. After every round players saw the
information in the screen as depicted here. Given are the strategies of the player’s neighbors
(color coded) and their earnings in the previous round (in cents of a euro). To the right the player
had two clickable buttons with the two actions to choose from for the next round under the label
“Elija un color:” (“Choose a color:”).
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The full experiment consisted of three parts: experiment 1, control, and experiment
2. In experiment 1 players remained at the same positions in the lattice with the same
neighbors throughout the experiment. In the control part we removed the effect of the
lattice by shuffling players every round. Finally, in experiment 2 players were again
fixed on a lattice, albeit different from that of experiment 1. On the screen players saw
the actions and payoffs of their neighbors from the previous round, who in the control
part were different from their current neighbors with high probability. All three parts of
the experiment were carried out in sequence with the same players. Players were also
fully informed of the different setups they were going to run through. The number of
rounds in each part was randomly chosen between 40 and 60 in order to avoid players
knowing in advance when it was going to finish, resulting in 47, 60, and 58 rounds for
experiment 1, control, and experiment 2, respectively.

2.2 Global cooperative behavior

We begin the presentation of the results of our experiment by discussing the first is-
sue, namely the global cooperation level. Figure 2.2 represents the total percentage of
cooperative actions in every round of the three parts of the experiment. Experiment 1
begins with a very large percentage of cooperation, above 50%, that rapidly decays to
reach a more or less constant level after some 25 rounds. Experiment 2 exhibits the
same behavior, but the initial cooperation level is much lower, a 32%, and the transient
shorter. On the contrary, the control part shows a constant fraction of cooperative ac-
tions, fluctuating around 20%. This is a clear indication that players did realize that
the fact that neighbors changed after every round made it hopeless to try to achieve a
mutually profitable environment, which they did attempt to establish at the beginning
of experiment 1 (particularly so) and experiment 2. On the other hand, after the initial
transient, the amounts of cooperation observed in the two experiments and in the con-
trol part coincide approximately, showing that the existence of a fixed lattice structure
has little influence on the players’ asymptotic behavior.

Our conclusion that the lattice has little influence for the global cooperation level
and our observed results are in good agreement with those reported by Traulsen et al.
(2010), although in their case they also observe high initial cooperation levels in the
well-mixed case, most likely because in their setup these players were beginning their
participation without prior experience. We note also that their experiment is shorter
in time than ours, with a duration comparable to the length of our transient (they do
not observe a stationary state, as we do, as noted also in Helbing and Yu (2010)). In
spite of that, it appears that their asymptotic value for cooperation is compatible with
the 20% value we found. On the other hand, the differences between the results of
experiments 1 and 2 cannot be attributed to the different distributions of players on
the lattice: A learning process has occurred that has led players to use a better defined
strategy in experiment 2. This is not only evident in the shorter transient period and the
lower starting level of cooperation in experiment 2 compared to experiment 1, but it
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Figure 2.2: The cooperation level declines to a low but non-zero level. Fraction of cooperators
in every round of the three parts of the experiment (in the first and the last ones players remain
in the same node of the lattice along the whole experiment, whereas in the control part players
are shuffled every round).

also shows up in many other features that we will be commenting on in the remaining
of this article.

2.3 Testing the ‘imitate-the-best’ strategy

Our experiment has been set up to mimic Nowak and May’s simulations as close as
possible. As the system sizes considered in Nowak and May (1992) were larger than
our experimental lattice, we have repeated their simulations on a 13×13 lattice with
the payoffs of the experiment. We also used the same update rule, “imitate-the-best”
—copying the action of the neighbor that performed the best provided it was better than
their own—. The results show that the asymptotic level of cooperation is either 0 or a
large value close to 1, depending on the initial condition, while an outcome with the
level of cooperation observed in the experiment is never found. This suggests that ei-
ther players do not update their actions with an imitate-the-best rule, or memory effects,
absent in Nowak and May (1992), are important —or both. We will analyze the behav-
ior of the players in terms of their previous actions and those of their neighbors in the
next section. Presently, we will check to what extent imitation plays a role in our exper-
iment. To that purpose we have computed the fraction of actions that can be interpreted
as imitation of the best action in the neighborhood along the experiment, yielding the
values 0.7149 for experiment 1 and 0.7687 for experiment 2. In spite of their being
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both above 70% one should bear in mind that there are only two actions to choose
from and pure chance may be mistaken for imitation. To ascertain the statistical sig-
nificance of these values we applied a non-parametric bootstrap (Efron and Tibshirani
1993) method, consisting of performing a thousand random shufflings of the positions
of the players while keeping their sequences of actions during the experiments, and
computing the corresponding fractions of imitation. This provides the empirical proba-
bility distributions of the null hypothesis “imitation is due to chance”. The mean values
of these distributions are 0.7145 ± 0.0014 for experiment 1 and 0.7678 ± 0.0013 for
experiment 2, and values larger than the one we find can be obtained with probability
p = 0.425 in experiment 1 and p = 0.282 in experiment 2 (see Appendix A, section
A.2.2). This proves that the observed imitation is not significantly different from the
apparent imitation yielded by pure chance. This result, which is consistent with the
low level of cooperation observed (players using imitate-the-best should lead the sys-
tem to higher cooperation) and with the responses to the questionnaires at the end of
the experiment (no one claimed to have imitated the best neighbor), makes it plausible
to conclude that imitate-the-best is not an appropriate explanation of players’ behavior
(although strictly speaking, this statistical analysis does not allow us to definitely rule
out this strategy).

2.4 Analysis of players’ strategies during the experiment

To make further progress towards clarifying the question of the dynamics of strategies,
we considered as an alternative update strategy the possibility that players react to
the number of cooperative neighbors (k = 0, 1, . . . , 8) they observed in the previous
round (henceforth context), i.e., we assume that they have one-step memory. This
is a reasonable assumption in view that questionnaires suggest that players take into
account what their neighbors do. Furthermore, Traulsen et al. (2010) briefly report that
cooperative actions are more frequent in more cooperative environments. Therefore,
we specifically computed from the experimental data the average frequency with which
players cooperated, conditioned to both their previous action and their context, and
made linear fits to these frequencies [Figures 2.3 (top) and 2.4 (top), and Table 2.1].
The first observation is that players’ reactions to the context depend strongly on the past
action of the focus player, something that to our knowledge has never been reported.
The significance of this result can be assessed by comparing with the result obtained
averaging over a thousand shufflings of the players in the lattice [Figures 2.3 (bottom)
and 2.4 (bottom)], which show no dependence on the context. The parameters of the
linear fits can be found in Table 2.1. The plots demonstrate that there is a strong
dependence on the context for players that cooperated in the previous round (i.e., were
in a “cooperative mood”), the cooperation probability increasing rapidly as a function
of the number of cooperative neighbors in a way similar to the conditional cooperators
found by Fischbacher et al. (2001). However, after having defected, players behave in
a way that shares features of exploiting behavior, cooperating with equal or less
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Figure 2.3: Probabilities of cooperating after playing C or D, conditioned to the context for
experiment 1. Top panel shows results for all players, whereas the middle panel shows results for
the group of players referred to as conditional cooperators. Bottom panel shows the probabilities
of cooperating after playing C or D, conditioned to the context (number of cooperative neighbors
in the previous round), averaged over 1000 random shufflings of players in the lattice.
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probability as the number of cooperators in their neighborhood increases. The very
different behavior of players in the control experiment illustrates that conditional co-
operation arises as a direct reciprocity effect —which is pointless if neighbors change
every round. The conditioning of cooperation to the previous round is different in both
experiments, which provides a strong indication that players learned to play as the ex-
periment proceeded, moody conditional cooperation being more clearly observed in
the plots corresponding to experiment 2. Finally, the bottom panels on Figures 2.3, 2.4
and 2.5 show the probabilities of cooperating after playing C or D, conditioned to the
context, averaged over 1000 random shufflings of players in the lattice. The results
show that there is no dependence on the context, proving that the dependence revealed
in the top panels is statistically significant.

Table 2.1: Linear fits to the probabilities of cooperating as a function of the context.

type of data αC βC αD βD

exp. 1, all 0.021± 0.005 0.441± 0.015 −0.013± 0.005 0.225± 0.015

exp. 2, all 0.091± 0.009 0.381± 0.022 −0.013± 0.002 0.149± 0.005

exp. 1, c.c. 0.031± 0.003 0.413± 0.008 0.002± 0.007 0.254± 0.018

exp. 2, c.c. 0.080± 0.010 0.345± 0.022 −0.009± 0.004 0.224± 0.009

Fits are defined by Pr(C|X, k) = αXk + βX, where X = C,D is the player’s action in the
previous round and k = 0, 1, . . . , 8 is the number of cooperators in the neighborhood in the
previous round.

On the other hand, the differences observed in the fits of the two experiments pro-
vide another hint that players are using a better defined strategy in experiment 2, after
having “learned” in the two previous phases of the experiment. Using these fits as a
model (henceforth homogeneous model), we made simulations in a 13×13 lattice in
which all players react according to these rules, with an initial condition similar to the
one found in the experiments. This model is able to reproduce the observed asymptotic
level of cooperation in both experiments, predicting an asymptotic value of 28% for
experiment 1 and of 22% for experiment 2, but fails to reproduce other features. For
instance, it leads to a histogram of total earnings much narrower than the experimen-
tal one, and the distribution of fractions of cooperative actions among players reveals
that it does not capture a significant fraction of stubborn defectors and cooperators that
appear in the experiment (see Figure 2.6).

We then tried to distinguish different kinds of behavior shown by players. First
we found a sizeable number of pure defectors, as well as a few pure cooperators, in
all three stages of the experiments —i.e., players who always defected/cooperated irre-
spective of the actions of their neighbors. Taking these individuals out, we still were
able to classify the remaining players into three groups: Mostly defectors (people who
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defected more than 2/3 of the times in any context), mostly cooperators (cooperated
more than 2/3 of the times in any context), and generalized conditional cooperators
(players who seem to react to the context as before), which we hereafter refer to as
moody conditional cooperators —indicating that their propensity to cooperate depends
on their previous action, or “mood”. Their amounts are listed in Table 2.3 and we have
checked that this classification is consistent with the answers that players provided in
their questionnaires. It is remarkable that the classification is very similar to the one
reported by Fischbacher et al. (2001) in public goods experiments, and confirmed in
subsequent papers (see, e.g., (Gächter 2007) for a review and (Ledyard 1995) for a gen-
eral review about public goods experiments), even if they do not report the “moody”
behavior of conditional cooperators. This is an important feature of their behavior be-
cause, as can be seen in top panels of Figures 2.3 and 2.4, the probability that a moody
conditional cooperator cooperates after having defected in the previous round turns out
to be slightly non-increasing as a function of the number of cooperators in the context.

It is worthwhile to compare the behavior of conditional cooperators in the two ex-
periments [either top and middle panels of Figures 2.3 and 2.4] and in the control part
[top and middle panels of Figure 2.5]. The different behavior that can be observed
strongly suggests that this strategy arises as a result of direct reciprocity. Whereas
in the two experiments conditional cooperators who cooperated in the previous action
cooperate more the more neighbors cooperate, it is quite the opposite in the control
experiment. Indeed, it makes no sense to reciprocate or retaliate in this control experi-
ment because the recipients of your action are —with high probability— no more your
previous opponents.

2.5 Cooperator clustering

Once we have a classification of the players, we are in a position to address another
issue about the lack of global cooperative behavior, namely the assortment or cluster-
ing of cooperators. The low level of cooperation we observe is in agreement with the
fact that cooperative players —i.e., players whose actions are always or almost always
cooperative— do not cluster in space even if they are initially a majority, as in ex-
periment 1. Interestingly though, the few cooperators in experiment 2 are somewhat
clustered, and in both experiment 1 and 2, defectors show a slight anti-clustering trend:
This can indeed be seen in Table 2.2, where we collect the average number of neighbors
of the same type for the three types of players (pure and mostly cooperators, pure and
mostly defectors, and conditional cooperators), as obtained from the experimental data.
This average is computed, for each type of player, as the sum of pairs of neighbors of
the given type divided by the number of players of that type. We resorted again to non-
parametric bootstrapping to assign significance to those values, computing the average
number of neighbors of the same type in a thousand random shufflings of players. The
experimental values are always within the confidence interval of the null model, except
for a few cases (in boldface in Table 2.2) that are particularly important because they
suggest some cooperator clustering as well as some defector anti-clustering, precisely
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the cooperation fostering mechanism put forward by theoretical models. It would nev-
ertheless be bold to speak about clustering of cooperators when the largest number of
them we observe (that of experiment 2) is just nine.

Table 2.2: Average number of neighbors of the same type.

type experiment 1 experiment 2

exper. mean SD exper. mean SD

cooperator 0.0000 0.0946 0.2383 1.3333 0.3905 0.2740
cond. coop. 5.8560 5.9048 0.0819 4.1758 4.2855 0.1438
defector 1.6585 1.9163 0.2353 2.9565 3.2404 0.1823

The column exper. lists the average number of neighbors of the same type for the three types of players,
computed, for each type of player, as the sum of pairs of neighbors of the given type divided by the number
of players of that type. The columns mean and SD list the means and standard deviations of the values
obtained in 1000 random shufflings of players.

2.6 Heterogeneous model

In order to assess the validity of our understanding of the players’ behavior we de-
signed a new model implementing heterogeneity by starting from the same amounts
of each of the five types of players (the model is referred to as heterogeneous model).
In the simulations every player behaves according to her type, and for the generalized
conditional cooperators we employed a model similar to the homogeneous one, but
this time computing the average probabilities only for conditional cooperators [middle
panels of Figures 2.3 and 2.4 and Table 2.1]. This heterogeneous model succeeds in
reproducing even the features that the homogeneous model does not capture. To begin
with, the global cooperation level is 28% for experiment 1 and 23% for experiment 2,
in agreement with the experimental results. Furthermore, Figure 2.6(a) and (b) shows
a comparison of the histogram of earnings, for all players aggregated and separated by
types, as obtained from the two models (homogeneous and heterogeneous) and from
the experiment. We can observe that experimental data are consistent with the simula-
tions of the heterogeneous model, whereas the homogeneous model deviates from the
experimental results (typically, as we already mentioned, it has a noticeably narrower
distribution of earnings). This picture also shows that the distribution of earnings is
the same for all kinds of players, clearly in the simulations but also in the experimen-
tal data, mainly in experiment 2. The slight advantage of defectors in experiment 1 is
surely due to the longer cooperative transient. This advantage disappears in experiment
2, where players are supposed to have learned and to be using a more definite strategy.
We note that the fact that payoffs are very similar for the different strategies supports
their coexistence, as there is no real incentive (on average) to switch between them. In-
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terestingly, a similar result was found in experiments on modified public goods games
by Kurzban and Houser (2005). A further evidence in favor of the heterogeneous model
is revealed by the histogram of cooperative actions occurred in both experiments [Fig-
ure 2.6(c) and (d)]. The homogeneous model shows a Gaussian-like peak, whereas the
heterogeneous model shows a more widespread distribution, closer to the experimental
one.

Table 2.3: Evidence for heterogeneity in the behavior of the population.

type of player experiment 1 control experiment 2

pure cooperators 1 1 6

mostly cooperators 2 2 3

conditional cooperators 125 92 91

mostly defectors 26 36 36

pure defectors 15 38 33

Frequency of the different types of players in the three parts of the experiment. Mostly
defectors are people who defected more than 2/3 of the times in any context, mostly cooperators
are those who cooperated more than 2/3 of the times in any context, and conditional cooperators
follow the strategy described in the main text.

2.7 Alternative interpretations of players’ strategies

The fact that Figures 2.3 and 2.4 reveal that the probability of cooperating after hav-
ing defected in the previous round is both low and independent on the context, might
suggest that the strategy actually employed by conditional cooperators is a version of
GRIM. GRIM is a strategy of the so called “trigger” type, first introduced by Friedman
(1971). This strategy amounts to cooperating until disappointment (by the lack of co-
operation of the partners), and defecting from then on. Thus defined, GRIM plays an
important role for proving theoretical results in game theory (see, e.g., (Hegselmann
and Flache 2000; Buskens and Wessie 2000)). For our present purposes, let us note
that if all or a majority of agents use this strategy, it is clear that as soon as one defects,
a cascade of permanent retaliation is initiated until full defection dominates the sys-
tem. This is the reason why in the famous experiments by Axelrod about the PD game
GRIM did not perform very well (cf. (Axelrod 1984), where GRIM is referred to as
FRIEDMAN). In our experiment we observe a background of cooperative actions near
20%, but perhaps players are using a weaker version of GRIM in which the final de-
fection is ‘noisy’ in the same percentage. Alternatively, players could be progressively
switching from an initial conditional cooperative strategy to a more defective strategy
through some learning process (see, e.g., (Camerer 2003) for a review of the different
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Figure 2.6: The heterogeneous model reproduces the earning and cooperation histograms and
supports the coexistence of different types of players. Panels (a) and (b): Histograms of earnings
in simulations of the heterogeneous model, for all players aggregated (black line, hidden by the
blue line) as well as for the three basic types of players: pure and mostly cooperators (red line),
pure and mostly defectors (green line), and conditional cooperators (blue line); histograms of
earnings in simulations of the homogeneous model (orange line); and experimental histograms
of earnings for all players aggregated (black dots). Results are presented for both experiment 1
(a) and experiment 2 (b). Simulations results are averages over 1000 runs. Crosses (×) represent
the mean earnings in the real experiments (their Y coordinate is arbitrary). Error bars span two
standard deviations. Clearly, simulations of the homogeneous model do not fit the experimental
data, thus supporting the introduction of the heterogeneous model. There is a reasonable con-
sistency between experimental results and numerical simulations for the heterogeneous model,
more so in experiment 2, where players are supposed to be playing with a better defined strat-
egy. In experiment 1, the longer cooperative transient makes defection a more favorable strategy.
The fact that the histograms for the different kinds of players are indistinguishable supports the
coexistence of strategies, as there is no real incentive (on average) to switch from one strategy to
any other. Panels (c) and (d): Number of players who cooperate a given number of rounds, both
for experiment 1 (c) and experiment 2 (d). The experimental results are plotted together with
the results of simulations with the homogeneous and the heterogeneous models, averaged over
1000 realizations. Once again, the homogeneous model is not able to reproduce the experimental
results.
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2.4 and 2.5 for the probability of cooperating after having cooperated in the previous
round would just be a consequence of the actions taken by these players during the tran-
sient, in the first rounds of both experiments, and the asymptotically surviving strategy
would be noisy defection, regardless of the context.
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Figure 2.7: Conditional cooperators’ strategies (almost) do not change over time. Same as
the top panels of Figures 2.3 and 2.4. Straight lines are the fits appearing in Figures 2.3 and 2.4,
whereas points are the strategies as obtained only from the first 20 rounds (full symbols) and only
from the last 20 rounds (empty symbols). The strategies are statistically the same for experiment
2, and for the experiment 1 after having played C in the previous round. After having played D
in the previous round in experiment 1, the probability of cooperating noticeably decreases over
time down to a value compatible with that observed in experiment 2.

To test this alternative explanation, we have carried out an analysis of the condi-
tional strategies at different times during the game. If any of these two strategies is at
use, this analysis should reveal a change in the probabilities shown in Figures 2.3 and
2.4 over time; in particular, we should observe a decay of the probability of cooperating
after having cooperated in the previous round. We do not have enough statistics to test
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the strategies every round of the game, but we can do it along two different intervals:
in the first 20 rounds and in the last 20 rounds. Did the player use any GRIM-like
strategy, either as such or through a learning process, the results of the analysis in these
two periods should be different, as least as far as cooperative strategies are concerned.
In Figure 2.7 we show the results of this analysis. We do not observe any significant
change in the results for experiment 2, and for experiment 1 we only appreciate a small
decay of the probability of cooperating after having defected. These results rule out
the interpretation of players’ strategies as GRIM or as ‘learning-to-defect’, with the ex-
ception, in this last case, of the small effect just pointed out. Our result is in agreement
with recent experimental findings (Dal Bó and Frechette 2011) that in an infinitely re-
peated PD game GRIM explains some of the data, but its proportion is not statistically
significant. It seems that during experiment 1 the probability that a player restores co-
operation gets adjusted as time passes, decreasing towards values compatible with the
stable value found in experiment 2. On the other hand, there is, of course, the differ-
ence in the cooperative strategy between both experiments, also attributable to some
kind of learning. Particularly interesting is the stability of the strategies along experi-
ment 2, consistent with the idea that players had a more precise idea of how to play in
this second experiment than they had in the first one.

2.8 Discussion

The large size of our experimental setup and the data analysis presented above allow
us to contribute to the two questions we wanted to address. First, we have observed
that the existence of a lattice giving structure to a population playing PD does not lead
to an increase of the cooperation level, even if as in our case the PD is weak. Thus,
subjects behave as if they were playing a repeated public goods game, the fact that the
game in which a player is involved overlaps with those of their neighbors having very
little influence on the observed asymptotic level of cooperation. Second, regarding the
manner in which people update their strategies, we have not found evidence in favor
of imitate-the-best behavior, in agreement with the analysis in Kirchkamp and Nagel
(2007, Traulsen et al. (2010). These two observations imply in turn that the model
simulated in Nowak and May (1992) does not describe our experiment with human
subjects —albeit it may of course be applicable in many other instances such as, e.g.,
experiments with bacteria. We then analyzed the way subjects behaved by considering
that they might be influenced by the previous actions of their neighbors. This analysis
has allowed us to make some progress in understanding human behavior, reaching two
important conclusions about individual learning models. The first one is that there is a
large degree of heterogeneity, with an important fraction (25–45%) of players sticking
to a strategy of (almost) always defect or cooperate. This is a crucial observation be-
cause the experimental results are not recovered unless those individuals are included
in the modeling. The analysis of the total earnings of players also suggests that this het-
erogeneity can be evolutionarily stable, in the sense that all strategies are (on average)
equally profitable, as observed also in Kurzban and Houser (2005) (some theoretical
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support for the evolutionary stability of a simplified model of conditional cooperation
in the presence of social norms has been already provided (Spichtig and Traxler 2009)).
The second conclusion is that the rest of the players are well described as moody condi-
tional cooperators, i.e., players whose probability to choose one action depends on the
amount of cooperation they observe in the previous round and their own previous ac-
tion. Our clearest results, those of experiment 2, show that players have a high chance
to continue cooperation (larger than 50%) if 3 or more neighbors cooperated, whereas
if they had defected in the previous round, their chances to cooperate in the current one
are small and slightly decreasing with the number of cooperating neighbors. This is
consistent with an exploitation strategy which tries to incentive cooperation in low co-
operative environments and also with a mutualistic strategy aiming at achieving better
global results, something that many players claim to have done in their responses to the
questionnaire. Indeed, the small resumption of cooperation at the beginning of exper-
iment 2 as compared to the lack of it in the control indicates that a number of players
hope they can restart cooperation for either of those two reasons. Our observation that
the probability to cooperate depends on the context agrees with the results in Traulsen
et al. (2010), and improves them by identifying that this probability depends in turn
on the focal individual’s previous action. In addition, our values for the probabilities
are also consistent with their observation of high levels of “mutation”, albeit our re-
sults provide a more intentional interpretation of these probabilities. A more detailed
comparison between these two experiments as well as some more recent ones, will be
presented in Chapter 6.

The results of this experiment have implications that go beyond the specific case
study of PD on networks. Thus, the dependence on the player’s own previous action we
have found may be relevant to deepen our understanding of the conditional cooperation
observed in public goods games (Fischbacher et al. 2001; Gächter 2007). In addition,
we have proposed a model that, in spite of its simplified description of heterogeneity,
provides a more thorough picture of the way human subjects might behave in these
experiments, as we show that apparent mutation can be also understood (at least partly)
as conscious changes of behavior arising from cooperative or exploiting strategies. In-
deed, for the first time to the best of our knowledge, a model is able to reproduce the
observed features in the experiment, from the decline of cooperation through the earn-
ings distributions to the coexistence of strategies. In this regard, it is worth noting that
recent experiments by Fischbacher and Gächter (2010) led to an explanation of the de-
cline of cooperation in public goods games in which heterogeneity seemed to matter
only at the end of the experiment. This is similar to what we have observed, in so far as
our homogeneous model could also explain how cooperation evolved in time, but other
features crucially required the introduction of heterogeneity. On the other hand, our
observations are not consistent with a vast majority of the theoretical models of evo-
lutionary games on graphs studied and simulated so far (Szabó and Fáth 2007; Roca
et al. 2009b). Our experiment should therefore be a reference for future, more accurate
modeling of these important social systems, as they strongly indicate that heterogene-
ity, that only recently has been considered in theoretical models (Moyano and Sánchez
2009; Szabó et al. 2009; Szolnoki and Perc 2008), is a key ingredient to understand
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human behavior. This is crucial for the design of mechanisms that promote or at least
support cooperation, one of the goals of this line of research. In this respect, our work
points to avoiding early disappointment of the agents that leads them to a “defective
mood” as an important aspect to act upon. Finally, the issue of finding an evolution-
ary explanation of this coexistence of strategies is a challenge which should also be
addressed to understand human cooperative behavior.



3
Coexistence of cooperators, defectors and moody
conditional cooperators

The analysis presented in Chapter 2 suggests an alternative way to understand the ex-
perimental observations by building upon the idea of reciprocity (Trivers 1971), i.e.,
the fact that individuals behave depending on the actions of their partners in the past.
In iterated two-player games, this idea has been studied through the concept of reac-
tive strategies (Nowak and Sigmund 1989a; Nowak and Sigmund 1989b; Nowak and
Sigmund 1990; Nowak and Sigmund 1992) (see Sigmund (2010) for a comprehensive
summary on this matter), the most famous of which is Tit-For-Tat (Axelrod and Hamil-
ton 1981). Reactive strategies generalize this idea by considering that players choose
their action among the available ones with probabilities that depend on the opponent’s
previous action. For the simple case of two strategies (say C and D), players choose C
with probability p following a C from their partner and with probability q after a D from
their partner. Subsequently this idea was further developed by considering memory-one
reactive strategies (Nowak et al. 1995; Sigmund 2010), in which the probabilities de-
pend on the previous action of both the focal player and her opponent —i.e., the focal
player would choose C with some probability following a (C,C) outcome, with some
other following (C,D) and so on.

In iterated multiplayer games, such as public goods games or multiplayer Pris-
oner’s Dilemmas (IMPD), reciprocity arises in the form of conditional cooperation
(Fischbacher et al. 2001; Gächter 2007): individuals are willing to contribute more to
a public good the more others contribute. Conditional cooperation has been observed a
number of times in public goods experiments (Croson 2006; Fischbacher and Gächter
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2010), often along with a large percentage of free-riders. The experiment by Traulsen
et al. (2010) showed also evidence for such a behavior in an spatial setup. In Chapter 2,
we extended this idea to include the dependence of the focal player’s previous action,
introducing the so-called moody conditional cooperation (cf. Figures 2.3 and 2.4). In
this strategy, players are more prone to cooperate after having cooperated than after
having defected, and in the first case they are more cooperative the more cooperative
neighbors they have. This behavior has not been reported before in spatial games and
appears to be a natural extension of the reactive strategy idea to multiplayer games
(among the very many other extensions one can conceive). On the other hand, and
from an economic viewpoint, which is an important part of the analysis of human be-
havior, this type of strategy update scheme responds to the often raised questions on
payoff-based rules. In economic interactions it is usually the case that agents perceive
the others’ actions but not how much do they benefit from them, and therefore the use
of action updates depending, e.g., on the payoff differences, may be questionable. This
seems to be the case even if this information is explicitly supplied to the players (see
Chapter 2).

Compared to the other two experiments (Kirchkamp and Nagel 2007; Traulsen et al.
2010), we have a new feature in our conclusions, namely the heterogeneity of the pop-
ulation: aside from the already mentioned moody conditional cooperators, there was a
large minority of defectors, i.e., players that defected all or almost all the time, and a
few cooperators, who cooperated practically all rounds. This heterogeneity, also found
to be very important in public goods experiments (Fischbacher and Gächter 2010) had
also been observed in four-player experiments by Kurzban and Houser (2005), who
reported that their subjects could be roughly classified in three main types, including
defectors, cooperators and conditional cooperators (called reciprocators in the original
work), albeit they did not check for dependence on the past actions of the focal players
either. In our experiment as well as in Kurzban and Houser (2005) the payoffs obtained
by every type of player were more or less the same, thus suggesting that the population
in the lattice experiment might be at an evolutionary equilibrium.

In this chapter we address the question of the existence and stability of such a het-
erogeneous or mixed equilibrium in the multiplayer iterated Prisoner’s Dilemma. It
is important to understand that we are not addressing the issue of the evolutionary ex-
planation of moody conditional cooperation. This is a very interesting but also very
difficult task, and in fact we do not even have an intuition as to how can one address
this problem in a tractable manner. Our goal is then to understand whether or not the
coexistence of moody conditional cooperators, defectors, and a small percentage of
cooperators, as observed in the experiment, is theoretically possible. In so doing, we
will shed light on experimental and theoretical issues at the same time. On the experi-
mental side, our results show that there is coexistence for groups of 2 or 3 players for
parameters reasonably close to those found in the experiment, but not for larger groups.
As we will see in the discussion section, this prediction has important consequences
related to the adequacy of replicator dynamics to describe the experimental result or
to the cognitive capabilities of human subjects in dealing with large groups. We will
also discuss there the ways in which our theoretical approach and the experiment may
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differ, something that can also have implications of its own. On the theoretical side,
we present an analysis of a population of players interacting through a multiplayer Pris-
oner’s Dilemma including strategies that generalize the ideas behind reactive strategies,
as mentioned above. To our knowledge, this has not been carried out before, at least
to the extent we are doing it here, in which we are able to show how this coexistence
depends on the size of the groups considered. We believe that the approach we are
presenting may be useful for other researchers working on related problems.

With the above goals in mind, we introduce below a model in which populations
consisting of the three types of individuals discussed above, namely cooperators, defec-
tors, and moody conditional cooperators, play a multiplayer iterated Prisoner’s Dilemma
with populations evolving according to the replicator dynamics. We have considered
different group sizes, from n = 2 through n = 5 players, a size whose outcome is well
described by the limit n → ∞, which we analyze separately.

3.1 Game, strategies and payoffs

Let us consider a well-mixed population of players who interact via IMPDs. In these
games, players interact in groups of n players. Every round each player adopts an
action, either cooperate (C) or defect (D), and receives a payoff from every other player
in the group according to a standard prisoner’s dilemma payoff matrix (a cooperator
receives R from another cooperator and S from a defector; a defector receives T from
a cooperator and P from another defector; payoffs satisfy T > R > P > S). We
note that this is a generalized version of a public goods game: In the latter, if there
are k cooperators, a defector receives bk whereas a cooperator receives b′(k − 1) − c
(b′ = b in a standard public goods game). In an multiplayer PD, a defector receives
(T − P )k + P (n − 1) whereas a cooperator receives (R − S)(k − 1) + S(n − 1),
and hence choosing b = T − P , b′ = R − S and c = (P − S)(n − 1) the IMPD
becomes a generalized public goods game. Notice an important difference with respect
to the standard public goods game: in this generalized version (b 6= b′) the difference
between the payoff received by a cooperator and a defector depends on the number of
cooperators. Only when T + S = R+ P the standard public goods game is recovered.

Inspired by the experimental results from Chapter 2 but keeping at the same time
as few parameters as possible, we will classify players’ strategies into the three stereo-
typical behaviors that mimic those found in the experiment: mostly cooperators, who
cooperate with probability p (assumed relatively close to one) and defect with proba-
bility 1 − p; mostly defectors, who cooperate with probability 1 − p′ and defect with
probability p′ (for simplicity we will assume p′ = p); and moody conditional coopera-
tors, who play depending on theirs and their opponents’ actions in the previous round.
Specifically, if they defected in the previous round they will cooperate with probability
q, whereas if they cooperated in the previous round they will cooperate again with a
probability

pC(x) = (1− x)p0 + xp1 (3.1)
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where x is the fraction of cooperative actions among the opponents in the previous
round, and p0 < p1.

To complete the definition of the model, we need to specify how the populations of
the different strategies are going to evolve in time. Players interact infinitely often in
an IMPD, so payoffs both increase in time and depend on the whole history of play. It
thus make sense to use the (time) average payoffs to study the evolution of the game
in terms of the abundance of the three strategies considered. As these strategies are
defined depending on players’ actions in the round immediately before, a multiplayer
game with n players and given populations of each type of player can be described as a
finite state Markov chain whose states are defined by the actions taken by the n players.
Of course the chain is different for different compositions of strategies in the group. In
any case, given that all outcomes have non-zero probability, the chain is ergodic and
therefore there is a well defined steady state (Karlin and Taylor 1975). Average pay-
offs are readily obtained once the probability vector in the steady state is known, and
subsequent evolution is described through imitation via replicator dynamics (Hofbauer
and Sigmund 1998).

3.2 Two-persons game (iterated PD)

3.2.1 General scheme of the approach

In the case n = 2 the states of the Markov chain are described as CC, CD, DC, and
DD, where the first action is the focal player’s and the second one is the opponent’s.
The transition probability matrix will be denoted as

M =


CC CD DC DD

CC m11 m12 m13 m14

CD m21 m22 m23 m24

DC m31 m32 m33 m34

DD m41 m42 m43 m44

, (3.2)

where mij gives the probability that players who played i in the previous round play
j in the present round (i, j ∈ {CC, CD, DC, DD}). The matrix M will of course de-
pend on the nature of the two players involved, so there will be nine different matrices.
Denoting ‘mostly cooperators’ by C, ‘mostly defectors’ by D and ‘moody conditional
cooperators’ by X, the six combinations are CC, CD, CX, DD, DX, XX. As we stated
above, the Markov chains so defined are always ergodic; consequently, the correspond-
ing stationary probability vector, which we will term π = (πCC, πCD, πDC, πDD), is
obtained by solving the equation π = πM (Karlin and Taylor 1975). Note that there
is such a stationary probability distribution π for each of the six combinations of two
players, as we will see below. Now, once the probability distribution is known, the
payoff matrix W = (wij), providing the average payoff that a player of type i gets
when confronted to a player of type j (i, j ∈ {C, D, X}) in an IMPD (in this Section,
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n = 2, an iterated PD) can be computed as

wij = RπCC + SπCD + TπDC + PπDD. (3.3)

These payoffs can then be used in the replicator dynamics to finally find the evolution
of the three strategy population.

3.2.2 Payoff computation

Of the six combinations of players, three yield a trivial stationary vector π because they
do not depend on the previous actions, namely those which do not involve the strategy
X. The corresponding payoffs are therefore straightforward to compute, and we have
(recall the focal player is denoted by the first subindex):

wCC = p2R+ p(1− p)S + (1− p)pT + (1− p)2P, (3.4)

wCD = p(1− p)R+ p2S + (1− p)2T + (1− p)pP, (3.5)

wDC = (1− p)pR+ (1− p)2S + p2T + p(1− p)P, (3.6)

wDD = (1− p)2R+ (1− p)pS + p(1− p)T + p2P. (3.7)

The payoffs for the cases where the moody conditional cooperators, X, play, require
computing the corresponding stationary probability. Let us begin with the Markov
matrix (3.2) for a mostly cooperator (C) and a conditional cooperator (X), given by

M =


pp1 p (1− p1) (1− p)p1 (1− p) (1− p1)
pq p (1− q) (1− p)q (1− p) (1− q)
pp0 p (1− p0) (1− p)p0 (1− p) (1− p0)
pq p (1− q) (1− p)q (1− p) (1− q)

 , (3.8)

from which the stationary probability vector is given by

π =

(
pq, p[1− pC(p)], (1− p)q, (1− p)[1− pC(p)]

)
1 + q − pC(p)

, (3.9)

where pC(x) is given by (3.1) (notice that it represents the average probability for a
conditional cooperator to cooperate, given that she cooperated in the previous round,
whereas her mostly cooperator opponent cooperates with probability p). Therefore,
inserting (3.9) in (3.3) and having in mind who the focal player is, we arrive at

wCX =[1 + q − pC(p)]
−1
{
pqR+ p[1− pC(p)]S + (1− p)qT

+ (1− p)[1− pC(p)]P
}

(3.10)

wXC =[1 + q − pC(p)]
−1
{
pqR+ (1− p)qS + p[1− pC(p)]T

+ (1− p)[1− pC(p)]P
}
. (3.11)
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The case for a mostly defector facing a moody conditional cooperator can be ob-
tained immediately by realizing that the defector behaves as a mostly cooperator whose
probability of cooperating is 1− p instead of p, hence we find trivially

wDX =[1 + q − pC(1− p)]−1
{
(1− p)qR+ pqT

+ (1− p)[1− pC(1− p)]S + p[1− pC(1− p)]P
}
, (3.12)

wXD =[1 + q − pC(1− p)]−1
{
(1− p)qR+ pqS

+ (1− p)[1− pC(1− p)]T + p[1− pC(1− p)]P
}
. (3.13)

Finally, if two conditional cooperators confront each other, the Markov matrix be-
comes

M =


p21 p1 (1− p1) (1− p1) p1 (1− p1)

2

p0q p0 (1− q) (1− p0) q (1− p0) (1− q)
qp0 q (1− p0) (1− q) p0 (1− q) (1− p0)
q2 q (1− q) (1− q) q (1− q) 2

 , (3.14)

and has a stationary vector π which, up to normalization, is proportional to a vector α
with components

αCC = q2(1 + p0 − q),

αCD = q(1− p1)(1 + p1 − q),

αDC = q(1− p1)(1 + p1 − q),

αDD = (1− p21)(1− p0 − q) + 2qp0(1− p1).

(3.15)

From this result one can compute wXX as in the other eight cases. With the payoffs we
have computed, we are now in a position to proceed to the dynamical study.

3.2.3 Replicator dynamics

Denoting x = (xC, xD, xX) (with xC + xD + xX = 1) the vector with the population
fractions of the three types of players, the dynamics of xi is described by the replicator
equation

ẋi = xi[(Wx)i − x ·Wx], (3.16)

where W is the payoff matrix obtained above.
In order to use this dynamics in connection with the experiment from Chapter 2, we

need to recall the payoffs used in that work, namely T = 10, R = 7, P = S = 0 [i.e., a
weak prisoner’s dilemma as in Nowak and May (1992)]. Two consecutive experiments
were carried out, leading to two different sets of parameters for the behavior of the
players. Figure 3.1 shows the dynamics resulting for both sets of parameters, whose
specific values are listed in the caption. As we may see, there are no interior points,
which would indicate equilibria in which the three strategies coexist, as observed in
the experiment. The only equilibria we find for these parameters are in the corners of
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X D

C

X D

C

Figure 3.1: There is no coexistence for the parameters of the experiment. Phase portraits of
the replicator dynamics for 2-players IMPD games with three strategies (C, D, and X) for the
parameters inferred from experiment 1 (left; p = 0.83, q = 0.26, p0 = 0.44, p1 = 0.60) and
experiment 2 (right; p = 0.83, q = 0.21, p0 = 0.34, p1 = 0.98). Rest points marked in the plot
can be repeller (white), saddle points (gray) or attractors (black).

the simplex, C being always a repeller, D an attractor and X being a saddle point or an
attractor depending on the parameters. In the case where D and X are both attractors
it is X that has the largest basin of attraction (almost the entire simplex), Therefore,
the results for this model do not match what is observed in the experiment. However,
it is important to keep in mind that in the experiment players played with their eight
neighbors, this being the reason why we will later address the dynamics of IMPDs with
larger groups.

Notwithstanding this first result, as we will now see it is very interesting to dwell
into the n = 2 case in more detail. For the purpose of illustrating our results, let us
choose the behavioral parameters to be p = 0.83, q = 0.20, p0 = 0.40, and p1 = 0.80,
which are values we could consider representative of both experiments. Inserting these
parameters into the calculations above, we find that the payoff matrix is given by 0 −0.3366 0.4367

1.6434 0 −0.1800
1.0026 −0.0526 0

 . (3.17)

This type of matrix belongs to a class of games studied by Zeeman (1980). He analyzed
the evolutionary dynamics of three strategies games. Apart from the well known rock-
paper-scissors (Hofbauer and Sigmund 1998) he identified a game with the canonical
payoff matrix for the strategies C, D and X, given by 0 −a2 b1

b2 0 −a3
a1 −b3 0

 , (3.18)
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(c)(b)(a)
C

DX

C

DX

C

DX

Figure 3.2: Three different phase maps that can emerge for the Zeeman game. There may (panels
(a) and (b)) or may not be (panel (c)) an interior point, and it may be an attractor (panel (a)) or
a saddle point (panel (b)). Circles mark the rest points and arrows indicate the direction of the
flux. White circle denote unstable rest points, gray circles denote saddle points, and black circles
denote stable points.

where all coefficients are positive. Any 3 × 3 payoff matrix can be transformed into a
zero diagonal one because the replicator equation remains invariant if the same constant
is subtracted from every element of one of its columns (Hofbauer and Sigmund 1998).
The coefficients of the payoff matrix (3.18) represent the payoff an invader gets when
it invades a homogeneous population. Thus a D or X individual invading a homoge-
neous C population will get b2 or a1, respectively. As both are positive a homogeneous
C population is unstable. Similarly a C or X individual invading a homogeneous D
population will get −a2 or −b3, respectively. Therefore a homogeneous D population
is uninvadable (hence stable). As for a C or a D individual invading a homogeneous X
population, it will obtain b1 or −a3, respectively. It is therefore a saddle point because
it cannot be invaded by D individuals but it can be invaded by C individuals.

This simple analysis fixes the flux of the dynamics at the boundary of the simplex
(Figure 3.2). It also implies the existence of two rest points on the boundary of the
simplex: one on the D–X edge and another one on the C–X edge. These points are
given by (

0,
a3

a3 + b3
,

b3
a3 + b3

)
,

(
b1

a1 + b1
, 0,

a1
a1 + b1

)
. (3.19)

Besides, an interior rest point (yC, yD, yX)/(yC + yD + yX), with coordinates

yC = b3(a3 + b1)− a2a3,

yD = b1b2 − a1(b1 + a3),

yX = a1a2 + b2b3 − a2b2,

(3.20)

appears provided all three components have the same sign (Figure 3.2(a)). The yD
component is proportional to the difference between the payoff of the population at
the C–X mixed equilibrium and the payoff of a D invader. When it is negative the
C–X rest point becomes a saddle and the interior point is an attractor (the situation
depicted in Figure 3.2(a)). When it is positive a D individual cannot invade the C–X
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equilibrium, which then becomes an attractor and the interior point becomes a repeller
(this is illustrated in Figure 3.2(b)). If no interior point exists the behavior will be as
plotted in Figure 3.2(c) (Zeeman 1980). In the region of parameters near those that can
be inferred from the experiments from Chapter 2 the game behaves as in the first case
(Figure 3.2(a)), known as a Zeeman game. This game has five rest points: an unstable
one at the C corner, a stable one at the D corner, a saddle point at the X corner, and
two mixed equilibria on the C–X and on the D–X edges of the simplex. Besides, under
certain constraints (c.f. (3.20)) there is also an interior point.

Turning now to our example matrix (3.17), its non-trivial rest points turn out to be
(0, 0.7739, 0.2261), (0.3034, 0, 0.6966), and (0.1093, 0.3876, 0.5031). The stability of
these mixed, interior equilibria depends on the parameters. For the present case, the
situation is similar to that shown in Figure 3.2(a). Thus the evolution of this system is
governed by the presence of two attractors: the interior point and the D corner, each
with a certain basin of attraction. A key feature of the class of problems we are con-
sidering is that the precise location of the interior rest point is very sensitive to the
values of the parameters. Figures 3.3–3.6 illustrate what happens to it when each of the
four probabilities that define the strategies are changed around the values given above.
Generally speaking, the figures show that the interior point approaches either one of
the rest points on the edges C–X and D–X, while these in turn move along their edges.
The specific details depend on the parameter one is considering as can be seen from the
plots. We have also found that larger changes in the parameters can make the interior
point coalesce with the mixed equilibrium on the C–X edge —thus transforming the
dynamics into the one sketched in Figure 3.2(c)— or even change the Zeeman struc-
ture of the payoff matrix yielding different stable equilibria (generally at the corners).
Notice that —particularly so in experiment 2— the values of the parameters are not
far from those producing the plots of Figures 3.3–3.6. This indicates that, while we
would not expect a two-person theory to describe quantitatively the experiments, the
existence of an interior point with the same kind of mixed population as observed is
possible with minor modifications of the parameters.

3.3 Games involving more than two players

Having discussed in depth the replicator dynamics for the IPD with mostly cooperators,
mostly defectors and moody conditional cooperators, with the result that an interior
point with a sizable basin of attraction exists for a wide range of parameters, we now
increase the number of players to check whether the theory is a valid description of
the experimental results. The mathematical approach for the case when more that two
players are involved is similar to that for two players, only computationally more in-
volved. The Markov transition matrix (3.2) now describes a chain containing 2n states,
n being the number of players. These are described as all combinations of C or D
actions adopted by each of the n interacting agents. On the other hand, there will
be (n + 2)(n + 1)/2 such matrices displaying all possible combinations of the three
strategies (C, D, X). Obtaining the expressions for them is of course straightforward,
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Figure 3.3: Phase portraits for 2-players for different values of p. The replicator dynamics for
IMPD games with three strategies (C, D, and X) for the following values of p: 0.80 (left), 0.83
(middle), and 0.90 (right). Other parameters: q = 0.2, p0 = 0.4, p1 = 0.8. Rest points marked
in the plot can be repeller (white), saddle points (gray) or attractors (black). In all three cases the
inner point as well as the xD = 1 point are the only attractors of the system.
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Figure 3.4: Phase portraits for 2-players for different values of q The replicator dynamics for
IMPD games with three strategies (C, D, and X) for the following values of q: 0.10 (left), 0.15
(middle), and 0.30 (right). Other parameters: p = 0.83, p0 = 0.4, p1 = 0.8. Rest points marked
in the plot can be repeller (white), saddle points (gray) or attractors (black). In the last two cases
the inner point as well as the xD = 1 point are the only attractors of the system. In the latter
case the point xD = 1 has merged with the saddle in the edge xC = 0 becoming a saddle point.
Correspondingly, the basin of attraction of xD = 1 has disappeared.
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Figure 3.5: Phase portraits for 2-players for different values of p0 The replicator dynamics for
IMPD games with three strategies (C, D, and X) for the following values of p0: 0.20 (left), 0.40
(middle), and 0.50 (right). Other parameters: p = 0.83, q = 0.2, p1 = 0.8. Rest points marked
in the plot can be repeller (white), saddle points (gray) or attractors (black). In all three cases the
inner point as well as the xD = 1 point are the only attractors of the system.
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Figure 3.6: Phase portraits for 2-players for different values of p1. The replicator dynamics
for IMPD games with three strategies (C, D, and X) for different values of p1: 0.70 (left), 0.75
(middle), and 0.85 (right). Other parameters: p = 0.83, q = 0.2, p0 = 0.4. Rest points marked
in the plot can be repeller (white), saddle points (gray) or attractors (black). In all three cases the
inner point as well as the xD = 1 point are the only attractors of the system.

but doing it analytically for n > 2 is out of question. Once the matrices are obtained
computing the vector π containing the 2n stationary probabilities for each of the states
simply amounts again to solving the linear system π = πM , readily providing the pay-
offs for any strategy i when confronted with any set i1, . . . , in of strategies of the n−1
opponents. The result can be cast in a tensor W = (Wi,i1,...,in−1). For a population
composition x the payoff received by an individual of strategy i will thus be

Wi(x) =
∑

i1,...,in−1=C, D, X

Wi,i1,...,in−1
xi1 · · ·xin−1

, (3.21)

and the average payoff of the population will be

W (x) =
∑

i=C, D, X

xiWi(x). (3.22)

Finally, the replicator dynamics is then given by

ẋi = xi[Wi(x)−W (x)]. (3.23)

Expression (3.21) can be further simplified if we exploit the symmetry implicit
in public goods games, where the identity of the players is not at all relevant, only
the number of them using a given strategy. This means that many payoffs are equal
because

Wi,i1,...,in−1 = Wi(nC, nD, nX), (3.24)

i.e., the payoff obtained by an i strategist only depends on the number nC of coopera-
tors, nD of defectors, and nX of conditional cooperators (nC + nD + nX = n− 1) she
is confronted to. Then

Wi(x) =
∑

nC+nD+nX=n−1
nC,nD,nX≥0

(n− 1)!

nC!nD!nX!
Wi(nC, nD, nX)x

nC

C xnD

D xnX

X . (3.25)
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As in Section 3.2, for the parameters obtained from the experiments there is no
interior point that describes the coexistence of the three strategies. We subsequently
proceeded as in the previous case and tried to find ranges of parameters for which such
an interior point exists. It turns out that for groups of n = 3 players sets of parameters
can also be found where the dynamics is similar to that for n = 2 (see Figure 3.7 for
an example), albeit the parameters for which this happens are a bit different —but still
reasonably close to those of the experiments from Chapter 2. As in the two player case,
the structure displayed in this figures turns out to be extremely sensitive to variations in
the parameters. Although we will not go into the details of those modifications here, we
find it interesting to note that Figure 3.7 shows an evolution of the interior point with
increasing p very similar to that for n = 2 (cf. Figure 3.3), albeit with more drastic
changes, indicating that the existence of an interior point is less generic. For IMPDs
with larger groups we find that, although for groups of n = 4 players it is still possible
to find a Zeeman-like phase map, one has to choose values for p very close to one
(meaning that cooperators and defectors are nearly pure strategies) and on top of that
the region where this behavior can be obtained is extremely narrow. It can be clearly
observed in Figure 3.8, where several of these maps are shown for different values of
p1, that variations of about 1% noticeably displace the location of the interior point.
Importantly, it can be also observed from Figure 3.7 and Figure 3.8 that the basin of
attraction of the interior point, when it exists, shrinks upon increasing the number of
players, i.e., for n = 4 the fraction of trajectories that end up in the D attractor is larger
than those ending in the interior point. Finally, for the largest group size we could
handle computationally, n = 5 players, we have not been able to find an interior point
for any choice of parameters. It turns out that the outcome of this game for n ≥ 5 is
well represented by the large group limit n → ∞, which unlike the case of arbitrary
but finite n, is amenable to analysis —as we show in the next section.

3.4 Infinitely large groups

Obtaining the payoffs (3.24) amounts to finding the stationary state of (n+2)(n+1)/2
Markov chains, each made of (nC+1)×(nD+1)×(nX+1) states, where nC+nD+nX =
n defines the composition of the n-player group. The size of the corresponding Markov
matrices grows as n3, which makes it feasible to study groups even larger than n = 5
players. This will not be necessary though, because the resulting chain can be studied
analytically in the limit n → ∞, which characterizes well the behavior of large groups.

To determine how a group with nC + nD + nX = n players of each type will
respond in a given iteration of the prisoner’s dilemma we only need to record the vector
(kC, kD, kX) whose components count how many players of each strategy cooperate in
a given round. Then the probability to observe the Markov chain in a certain state given
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Figure 3.7: Phase portraits for 3-players dynamics for different values of p. The replicator
dynamics for IMPD games with three strategies (C, D, and X) for the following values of p: 0.90
(left), 0.92 (middle), and 0.95 (right). Other parameters: q = 0.10, p0 = 0.20, p1 = 0.95. Rest
points marked in the plot can be repeller (white), saddle points (gray) or attractors (black). In all
three cases the inner point as well as the xD = 1 point are the only attractors of the system.
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Figure 3.8: Phase portraits for 4-players dynamics for different values of p1. Phase portraits of
the replicator dynamics for IMPD games with three strategies (C, D, and X) for different values
of p1: 0.95 (left), 0.97 (middle), and 0.98 (right). Other parameters: p = 0.95, q = 0.20,
p0 = 0.30. Rest points marked in the plot can be repeller (white), saddle points (gray) or
attractors (black). In all three cases the inner point as well as the xD = 1 point are the only
attractors of the system.

that in the previous round the state was (lC, lD, lX) is

Pr
{
kC, kD, kX|lC, lD, lX

}
=

(
nC

kC

)(
nD

kD

)
pnD−kD+kC(1− p)nC−kC+kD

×
kX∑
j=0

(
lX
j

)(
nX − lX
kX − j

)
pC(x)

j [1− pC(x)]
lX−j

× qkX−j(1− q)nX−lX−kX+j ,

(3.26)

with the usual convention that
(
a
b

)
= 0 for b > a and where we have introduced the

short-hand notation

x ≡ lC + lD + lX − 1

n− 1
.
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Extracting analytical information for finite n from this matrix is not an easy task. How-
ever, let us focus on the limit n → ∞. It is straightforward to show that

E

(
kC

n

∣∣∣∣ lC, lD, lX) = p
nC

n
,

E

(
kD

n

∣∣∣∣ lC, lD, lX) = (1− p)
nD

n
,

E

(
kX

n

∣∣∣∣ lC, lD, lX) = pC(x)
lX
n

+ q
nX − lX

n
,

(3.27)

and

Var

(
kC

n

∣∣∣∣ lC, lD, lX) =p(1− p)
nC

n2
,

Var

(
kD

n

∣∣∣∣ lC, lD, lX) =p(1− p)
nD

n2
,

Var

(
kX

n

∣∣∣∣ lC, lD, lX) =pC(x)[1− pC(x)]
lX
n2

+ q(1− q)
nX − lX

n2
.

(3.28)

Hence, introducing the random variable ri ≡ ki/ni and denoting xi ≡ ni/n, in the
limit n → ∞ the probability density of ri becomes a delta function around rC = p,
rD = 1− p and rX, this last quantity arising from the solution to the equation

rX =
{
p0 + (p1 − p0)[pxC + (1− p)xD + rX]

}
rX + q(1− rX). (3.29)

If p0 = p1 this is a linear equation with solution rX = q/(1− p0 + q). If p0 6= p1 it is
a quadratic equation with two solutions. The one that reduces to the solution found for
p0 = p1 is

rX =
2q

∆+
√
∆2 − 4q(p1 − p0)xX

, (3.30)

∆ ≡ 1− p0 + q − (p1 − p0)[pxC + (1− p)xD]. (3.31)

Notice that ∆ > 0 as long as p1 > p0 > q, as required.
Factors ri yield the asymptotic, stationary fraction of cooperative actions among

players of type i in the group. Hence the stationary level of cooperation is given by

κ ≡ pxC + (1− p)xD + rXxX, (3.32)

and the corresponding payoffs of the three type of players are

WC(x) =pκR+ p(1− κ)S + (1− p)κT + (1− p)(1− κ)P, (3.33)
WD(x) =(1− p)κR+ (1− p)(1− κ)S + pκT + p(1− κ)P, (3.34)
WX(x) =rXκR+ rX(1− κ)S + (1− rX)κT + (1− rX)(1− κ)P. (3.35)
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Notice that

WD(x)−WC(x) = (2p− 1)[κ(T −R) + (1− κ)(P − S)], (3.36)

so as long as p > 1/2 we have WD(x) > WC(x) i.e., cooperators are always dominated
by defector irrespective of the composition of the population (provided xD > 0). This
implies that no interior point exists in the limit n → ∞, a property that suggests that
the fact that we have not been able to locate an interior point for n = 5 is generic for
larger values of n.

On the other hand,

WC(x)−WX(x) = (rX − p)[κ(T −R) + (1− κ)(P − S)], (3.37)
WD(x)−WX(x) = (rX + p− 1)[κ(T −R) + (1− κ)(P − S)], (3.38)

so any solution to rX = p (rX = 1− p) determines a rest point on the xD = 0 (xC = 0)
edge of the simplex. Taking the first equation and assuming xD = 0 we obtain(

2q

p
−∆

)2

= ∆2 − 4q(p1 − p0)xX.

Upon simplification this equation becomes

q + p2(xC + xX) = p(1− p0 + q).

Given that xC + xX = 1 on the xD = 0 edge of the simplex, it turns out that rX = p
does not hold for any point of this edge. A similar argument yields the same result for
rX = 1−p on the xC = 0 edge of the simplex (the equations are the same just replacing
p by 1− p and xC by xD).

We have thus established that, depending on the parameters p1 > p0 > q and p >
1/2, on the xD = 0 edge of the simplex either WC(x) > WX(x) or WC(x) < WX(x)
irrespective of the composition, and on the xC = 0 edge of the simplex either WD(x) >
WX(x) or WD(x) < WX(x) irrespective of the composition. In order to decide which
one of the inequalities holds on each edge we can set an arbitrary composition, namely
xX = 1. At this corner of the simplex

rX =
2q

1− p0 + q +
√
(1− p0 + q)2 − 4q(p1 − p0)

=
1− p0 + q −

√
(1− p0 − q)2 + 4q(1− p1)

2(p1 − p0)
.

(3.39)

Then WC(x) > WX(x) on xD = 0 if, and only if,

1− p0 + q −
√
(1− p0 − q)2 + 4q(1− p1)

2(p1 − p0)
> p >

1

2
, (3.40)
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Figure 3.9: Phase diagrams for infinitely large groups. The only three phase portraits of the
replicator dynamics for IMPD games with three strategies (C, D, and X) played in infinitely
large groups. Rest points marked in the plot can be repeller (white), saddle points (gray) or
attractors (black). Map (a) appears if inequality (3.40) holds (a necessary condition for this is
q + (p1 + p0)/2 > 1); map (b) appears if inequality (3.40) does not hold but inequality (3.41)
does; map (c) appears if neither (3.40) nor (3.41) hold (a sufficient condition for maps (b) and
(c) to appear is q + (p1 + p0)/2 < 1).

and WD(x) > WX(x) on xC = 0 if, and only if,

1− p0 + q −
√

(1− p0 − q)2 + 4q(1− p1)

2(p1 − p0)
> 1− p. (3.41)

Notice that if (3.40) is true so is (3.41) (but the converse does not hold).
For (3.40) to hold a necessary condition is that the left-hand side is larger than 1/2,

a condition that boils down to

1− p1 + q >
√
(1− p0 − q)2 + 4q(1− p1)

=

√
(1− p1 + q)2 + 2(p1 − p0)

(
1− q − p1 + p0

2

)
.

As p1 > p0, the only way that this can hold is if q + (p1 + p0)/2 > 1. When inequal-
ity (3.40) is satisfied, D is an attractor, X is a repellor, and C a saddle point. Otherwise C
is a repeller (obviously, a sufficient condition for this to happen is q+(p1+p0)/2 < 1).
In this case D is an attractor and X a saddle point if (3.41) holds and vice versa if it
does not.

A summary of our results for n → ∞ is shown in the sketch of Figure 3.9. As
we can see from the plot, the main results are that there never exists an interior point,
that homogeneous C populations are not stable, and that in two out of three cases the
final result of the dynamics is a homogeneous D population. Therefore, although there
is a region of parameters in which a homogeneous population of moody conditional
cooperators is actually stable, we never observe coexistence even of pairs of strategies.

3.5 Discussion

Motivated by the experimental work from Chapter 2, where conditional cooperation
depending on the player’s previous action was observed in a spatial prisoner’s dilemma
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coexisting with cooperation and defection, we have studied the replicator dynamics of
the IMPD with these three strategies. The fact that the experimental results indicated
that all three strategies were getting on average the same payoff suggested that they
were in equilibrium; on the other hand, as the presence of a lattice had no significant
consequences on the level of cooperation, it seemed likely that the spatial game could
be understood in terms of separate multiplayer games.

Assuming a stylized version of the behaviors mentioned above, we have focused
on the problem of their coexistence in well-mixed populations, when they interact in
groups of n ≥ 2 players through an IMPD. For n = 2, in a region of parameters
compatible with those of the experiment we do find a mixed equilibrium in which all
three types of players coexist, and they do it in a proportion similar to that found in the
experiments. The phase portrait of the replicator dynamics reproduces that of a three-
strategies game introduced by Zeeman (1980). However, upon increasing n, the region
of parameters of this Zeeman-like dynamics shrinks, and for n = 5, the maximum size
we could analyze with our analytical approach, we could not find a mixed equilibrium
anymore.

Given that our Markov chain technique becomes computationally untraceable for
larger sizes, we have carried out a rigorous analysis of the replicator dynamics for this
game in the limit n → ∞. The analysis reveals that in this limit, all rest points other
than the three corners of the simplex —that can be found for small n— disappear. The
dynamics in this limit is determined by who beats who, depending on the parameters.
Cooperators are always defeated by defectors, but depending on the parameters, condi-
tional cooperators are displaced by any other strategy, or only by defectors, or they can
displace the other two strategies.

Putting together our numerical results for small n and our analytical calculations
for large n, we can conclude that an imitative evolution like the one represented by
replicator dynamics cannot account for the coexistence of strategies observed in the
experiments, at least in groups as large as n = 9 (the case of the experiment). The
reasons for this can be many. The most obvious one is that replicator dynamics might
not be what describes the evolution of strategies in human subjects. In this regard, we
have to make it clear that we are not studying the evolution of the players during the
experiment, as it was shown in Chapter 2 that there is no learning. Our evolutionary
approach would apply to much longer time scales, i.e., these strategies would have
arisen from interactions of human groups through history. It may then well be the case
that this slower evolution of human behavior requires another approach to its dynamics.
By the same token, it might also occur that the typical number of iterations of the game
is not very large, so the stationary probability density obtained from the Markov chains
is not a good approximation to the observed behavior. All in all, it is clear that our
analytical model might not be the most appropriate one to describe human behavior on
IMPDs.

Nevertheless, another possible explanation for the discrepancy between our predic-
tions and the coexistence of moody conditional cooperators with the cooperator and
defector strategists might come from bounded rationality considerations. Thus, people
may behave in a IMPD as though they were playing a (two-person) IPD with some kind
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of an “average” opponent, something that can be reinforced by the computer interface
of the experiment that isolates the subjects from the other ones with whom they inter-
act. Such a heuristic decision making process might be the result of cognitive biases or
limitations, among which the inability to deal with large numbers may be of relevance
here (Kahneman et al. 1982), or else it could arise as an adaptation itself (Gigerenzer
and Selten 2001). Whatever the underlying reason, the fact that for n = 2 and n = 3
players we can easily find wide ranges of parameters for which the three strategies co-
exist and, furthermore, this coexistence have a large basin of attraction, suggests that
the idea that people may be extrapolating their behavior to larger groups should at least
be considered, and tested by suitably designed experiments.

On the other hand, it should be borne in mind that the strategies reported in Chapter
2 are aggregate behaviors, as they attempted to classify the actions of the player in a
few archetypal types. Therefore, there may actually be very many different moody con-
ditional cooperators, defined by different p0, p1 and q parameters and different propen-
sities to cooperate (parameter p) among cooperators and defectors. Alternatively play-
ers who were classified as conditional cooperators might be using a totally different
strategy, different for every player, which aggregated would look like the conditional
cooperation detected in the experiment. This is not included anywhere in our replicator
dynamics. It is certainly possible that considering several different subclasses of the
strategy X in the replicator dynamics might actually provide an explanation for coex-
istence in larger groups. However, the corresponding calculations become very much
involved, and whether this variability can sustain mixed equilibria is an interesting
question that remains out of the scope of this work.

As a final remark, we would like to stress that, notwithstanding the issue that the
agreement between our results and the experiments is problematic, this study proves
that, under replicator dynamics, even for n → ∞ our work predicts the dominance
of moody conditional cooperators for certain regions of parameters. It is important to
realize that this type of strategy had not been considered prior to the experimental ob-
servation, and as we now see it can successfully take over the entire population even
from defection when playing an IMPD. This suggests that this or similar strategies may
actually be more widespread than this simple case as they might also be the best ones
in related games, such as the public goods game. It would be worth widening the scope
of this work by analyzing the possible appearance of this conditional cooperators who
are influenced by their own mood in other contexts, both theoretically and experimen-
tally. In this regard, an explanation of the evolutionary origin of moody conditional
cooperators would be a particularly important, albeit rather difficult goal.



4
Strategy updating in spatial and nonspatial
settings

In Chapter 2 we presented the analysis of a laboratory experiment with human subjects
playing an Iterated PD on a square lattice. Here we analyze the data of a similar lab-
oratory experiment performed by a different group (Traulsen et al. 2010) in order to
ascertain the strategy used by the players to update their actions. One important ques-
tion from the perspective of a theoretician is whether human subjects condition their
decision making on the population structure, i.e. whether they use the same strategy
updating in spatial and non-spatial experiments. Traulsen et al. (2010) conducted two
type of experimental treatments, one on the spatial structure, analogous to the experi-
ment treatment of Chapter 2 and controls, analogous to the control treatment in the ex-
periment of Chapter 2. Unlike the experiment from Chapter 2, here the two treatments
were always conducted with different groups of volunteers who had no previous expe-
rience from playing the other type of treatment. This makes the experiment suitable
for a detailed comparison of the way players behave in different settings. Previously,
these data have only been used to infer the strategy updating in the spatial system, but
no systematic comparison between the two treatments had been provided.

4.1 Experimental setup

The experimental setup in Traulsen et al (2010) is similar (but not identical) to the
experiment described in Chapter 2. We will now describe the way this experiment was
carried out and then we will discuss similarities and differences in Chapter 6.
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Participants in the experiment treatment discussed here were virtually located on
the nodes of a 4×4 square lattice with periodic boundary conditions (as if players
would be located on a torus). They played a PD game with each of the four neighbors
in their von Neumann neighborhood (the four cells orthogonally surrounding a central
cell on the lattice). Players had to choose one action, the same for all four games
with their four neighbors. The payoffs were calculated by adding the four payoffs of
individual games with each neighbor. There were no self-interactions1. After each
round, players were informed about their action and payoff, as well as the actions and
payoffs of their four neighbors. Based on this information and their experience from
previous interactions, they had to decide on their next action. The payoffs were chosen
as T = 0.40 e, R = 0.30 e, P = 0.10 eand S = 0.00 e. Notice that this payoffs
correspond to a strict PD game. This is an important difference with respect to the
experiment reported on in Chapter 2 and we believe that some of the differences in the
outcomes of the two experiments can be attributed to this fact.

The experiment had two different treatments. In the experiment treatment players
had fixed neighbors, which stayed the same throughout the whole game. This treatment
was repeated 15 times, each with 16 players and 25 rounds. In the control treatment
(repeated 10 times with 16 players and 25 rounds), the players were assigned to a new,
random location on the lattice after each round and consequently, the neighbors of each
player changed in each round. In both treatments, players were informed every round
about the actions and payoffs of the neighbors they played with. However, at the mo-
ment they had to make a decision about their next action, they were not informed about
the previous actions or payoff of their new neighbors. In contrast, it was easy to remem-
ber the previous actions of the neighbors in the experimental setting. We emphasize
that each player was identified by a letter ranging from a to p (e.g., a has the follow-
ing neighbors: b, d, e, and m). Therefore, in the experiment treatment players could
see that their neighbors were always the same, for example: f, d, e, and a. Subjects
were told in the instructions that their neighbors would stay the same throughout. On
the other hand, in the control treatment, players could see that in each round they had
different neighbors. Subjects were told in the instructions that their neighbors would
change after each round. Consequently, it is highly unlikely that the players misunder-
stood their specific rules of the game. A detailed explanation of the experiment can be
found in Traulsen et al. (2010).

4.2 General observables in the two treatments

Let us compare the general outcomes of the experiment and control treatments.
We find no significant differences in the fraction of cooperative actions between the

two treatments. Figure 4.1 illustrates that the errors bars of the treatments are overlap-
ping to a large extend, which suggests that there are no large differences between the
treatments. This can be backed up by several statistical tests. First, we fit the difference

1Although self-interactions were considered in the simulations of Nowak and May (1992) they make no
sense in a social context, so no experiment includes them.
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between the two treatments with a linear function. We find an intercept of 0.001±0.017
and a slope 0.001128 ± 0.001153. Since both values are smaller than their errors, it
suggests that the values are close to zero. Second, we constructed a nonlinear regres-
sion model with a dummy variable for the experiment and the control treatments. This
and other regression models were done in The R Project for Statistical Computing (R
Development Core Team 2011). In this model, the fraction of cooperative actions C(t)
in round t is given by

C(t) = (C(1) + s∆C(1))(Γ + s∆Γ)t−1 (4.1)

Here, the parameters of the model are C(1), measuring the fraction of cooperative ac-
tions in the first round of the control treatment, ∆C(1), measuring the difference in
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Figure 4.1: Comparison of the experiment and control treatments. (a) The fraction of players
that have chosen to cooperate is decreasing over time, but remains substantial throughout the
experiment (Traulsen et al. 2010). The error bars are the standard deviations of a binomial
distribution,

√
C(1− C)/n, where n is the number of samples, and C is fraction of cooperation.

(b) The distribution of cooperative acts per player. We do not observe unconditional cooperation,
and very little unconditional defection (5 out of 240 players in the experiment treatment and
6 out of 160 players in the control treatment). (c) The distributions of cumulative payoffs are
peaked with median of 15.4 e for the experiment and 15.0 e for the control treatment. The
standard deviation is 2.3 e in both cases. (d) Correlation between the frequency of cooperation
on the x-axis and the cumulative payoff on the y-axis. Each point is one player.
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cooperative actions in the first round between the two treatments, Γ, measuring the
decay on cooperative actions in the control treatment, and ∆Γ, measuring the differ-
ence in this decay between the two treatments. In addition, we introduced the dummy
variable s, which equals 0 for the control treatment and 1 for the experiment treatment.
From the nonlinear regression model, we find C(1) = 0.49 (p < 10−3) and Γ = 0.94
(p < 10−3). For the differences, we obtain p = 0.75 for ∆C(1) and p = 0.33 for ∆Γ,
showing that the dependence on the dummy variable is not statistically significant. All
this suggests that the difference between two treatments is not significant.

Next, we address the distribution of cooperative actions per player, the distribution
of cumulative payoff per player, and the correlation between the two. Figure 4.1 illus-
trates that these two distributions are very similar in the two treatments. To compare
the distributions between the treatments quantitatively, we performed a Kolmogorov-
Smirnov test. We found p = 0.69 for the comparison of the two distributions of co-
operative acts and p = 0.13 for the comparison of the two distributions of cumulative
payoffs. These p-values indicate that we cannot accept the hypothesis that the two
distributions arising from the two treatments are different. In order to compare the
correlation between the cumulative payoffs and the number of cooperative acts, we
developed a linear regression model,

E(NC) = E0 + s∆E0 + ρNC + s∆ρNC , (4.2)

where E is the cumulative payoff, NC is the number of cooperative acts, E0 is the
intercept for the control treatment and ∆E0 the difference between the intercepts of the
two treatments. The slope in the control treatment is measured by ρ and ∆β measures
the difference of the slope between the two treatments. Again, s is a dummy variable
which is equal to 0 for the control treatment and 1 for the experiment treatment. We
obtained E0 = 16.9±0.3 (p < 10−3), ρ = −0.30±0.05 (p < 10−3), ∆E0 = 0.9±0.5
(p = 0.022), and ∆ρ = −0.7 ± 0.6 (p = 0.17). The large p-values for ∆E0 and ∆ρ
show that there is no significant difference between the two treatments.

4.3 Update strategies

In this section, we depart from the level of aggregate information on the system level
and address the individual decisions of our players in more detail. Many theoretical
models have shown that the kind of update strategy used by players can have a profound
impact on the outcome in such models (Hauert 2002; Santos and Pacheco 2005; Szabó
and Fáth 2007; Roca et al. 2009b).

In order to understand the dynamics of the system in more detail, we fitted two
different update mechanisms that are popular in theoretical studies to the data of the
experiment plus the kind of update strategy uncovered by the experiment of Chapter 2:

(i) Unconditional imitation, where each players switches to the action that per-
formed best in the past in the neighborhood. In addition, we assume that some
decisions are made at random and that this fraction changes over time.
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Figure 4.2: Unconditional imitation test in the experiment treatment (top) and in the control
treatment (bottom). The main panels show three different type of data: the fraction of inferred
imitations, the level of defection and the fraction of decisions in which defection was the best
performing strategy in the neighborhood. The inferred level of imitation is the fraction of actions
in which the players action coincided with the action of the best neighbor in the previous round.
Since defection is almost always the best performing strategy, a defecting player seems to be im-
itating. Therefore, the level of defection is almost identical to the level of the inferred imitations.
However, the randomization test illustrated in the inset shows that there is still more imitation
than expected in a random setting. The vertical lines show the inferred imitation observed in the
experiments and the gray bars show the distribution of the inferred imitation in the randomized
sample.

(ii) Fermi rule, where action with higher payoffs are imitated with higher probability.
In addition, sometimes a random decision is made.
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(iii) Moody conditional cooperation, where cooperation is conditioned upon the own
action in the previous round and the number of cooperators in the neighborhood.

In the pioneering studies of the promotion of cooperation on lattices, unconditional
imitation has been assumed (Nowak and May 1992; Nowak et al. 1994b; Nowak et al.
1994a).

In this case, players update their strategies by imitating the previous action of the
neighbor with the highest payoff. In Figure 4.2, we illustrate how often the player’s
action is the same as the action of the highest scoring neighbor in the previous round.
The probability of this inferred imitation is around 75% and is growing during the
game. However, before we conclude that the unconditional imitation is the update
strategy players use frequently, we should notice that defection is almost always the
most successful strategy in the neighborhood. Therefore, if a player defects it seems
that she is imitating the best neighbor. Consequently, the level of defection is very
similar to the level of inferred imitation (Figure 4.2). To further test the hypotheses of
unconditional imitation we applied a non-parametric bootstrap (Efron and Tibshirani
1993) method. In this test, the action of the players is kept, but the neighborhood
is randomized. This gives a reference model for imitation, because with randomized
neighborhoods there can be no imitation. We repeated the randomization 10 000 times
to compute the distribution of probabilities of inferred imitation from a random setting.
The results are presented in the insets of Figure 4.2. We see that distributions are very
narrow and that the value from the experiment is slightly higher than the randomized
average. The p-value is p = 0.001 for the experiment treatment and p = 0.0283 for the
control treatment, indicating that the difference between the observed imitation and the
randomized one is fairly significant. The difference between this results and the same
test on the data from Chapter 2 will be discussed in Chapter 6.

The second mechanism we tested is typically referred to as Fermi rule (Blume 1993;
Szabó and Töke 1998; Traulsen et al. 2006). For this rule, the better the neighbor per-
forms the higher the chances that she will be imitated, see Fig. 4.3. More precisely, the
probability of switching action increases with the payoff differences between the focal
player and the best player with the opposite strategy according to a Fermi function,
(1 + exp[−β∆π])−1. Here, β measures the intensity of selection: for β → 0 imitation
is random and for β → ∞, we recover unconditional imitation. Note that this is slightly
different from the original Fermi update mechanism. In the original mechanism a ran-
dom player is chosen and then imitated with the probability given above. However, the
additional randomness would make it difficult to analyze the original rule in the exper-
imental data. Therefore we measure the probability of imitating the most successful
neighbor who played the opposite strategy instead. To analyze this dependence, we
again fitted the data to a logistic regression model,

PC↔D(∆π, s) =
1

1 + e−(α+s∆α+β∆π+s∆β∆π)
. (4.3)
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Figure 4.3: Probability of imitating depending on the payoff difference. Top: probability of
switching to another strategy depending on the payoff differences for both the experiment and
control treatment. The payoff difference is between the focal player and the best player of the
opposite strategy. The results are consistent with imitating the neighbors with higher payoffs.
However this imitation is not unconditional, but the higher the payoff difference the larger is the
probability of imitation. In addition, players might spontaneously switch their strategies even
if they have no neighbors playing the other strategy, resembling mutations. Error bars are the
standard deviations of a binomial distribution,

√
PC↔D(1− PC↔D)/n, where n is the number

of samples and PC↔D is the probability to change the action. Bottom: Probability of mutations
in time. Mutations are defined as the probability that a cooperator surrounded by four cooperators
would change the strategy in the next round or that a defector surrounded by four defectors will
change the strategy in the next round. We see a large number of mutations, which decreases over
time, but always stays substantial. Again in both treatments the players show a similar pattern
of behavior. Error bars are the standard deviations of a binomial distribution,

√
M(1−M)/n,

where n is the number of samples and M is the probability of mutation.
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Here, α measures the probability to switch strategy in the case of zero payoff differ-
ences and ∆α measures the difference between this quantity in the two treatments.
The parameter β measures the intensity of selection and ∆β is the difference in the
intensity of selection between the treatments. As above, s is a dummy variable with
s = 0 for the control and s = 1 for the experiment treatment. The p-values for ∆α and
∆β are 0.7 and 0.6, respectively, so the dependence on the treatment is not significant.

However, the players can switch their strategies even if they are surrounded by
players with the same strategy as theirs. This corresponds to mutations or exploratory
behavior (Traulsen et al. 2009). This exploratory behavior decreases over time in a
manner comparable to the decrease of the global cooperation level (Figure 4.2). To
analyze the difference between the experiment and control treatments, we use the non
linear regression model

M(t) = (µ+ s∆µ)(Γ + s∆Γ)t−1, (4.4)

where M(t) is the fraction of exploratory behavior in round t. The initial level of
exploration is measured by µ and ∆µ, and its decay is measured by Γ and ∆Γ. The
p-values for the parameters ∆µ and ∆Γ are both 0.48. Thus, the dependence on the
treatment is statistically not significant. However, the behavior shows a significant
compatibility with the Fermi rule.

The last update mechanism we analyzed is moody conditional cooperation, first
proposed to explain the experiment of Chapter 2. This behavior is based on the own
previous action and the number of cooperators in the neighborhood. In Figure 4.4, we
show the probability of cooperating depending on the number of neighbors who coop-
erated in the previous round and the action of the focal players in the previous round.
In the case that the focal player cooperated, the probability that she cooperate increases
linearly with the number of cooperating neighbors, as in the experiment presented in
Chapter 2. On the other hand, if the player defected, the probability that she cooperates
decreases linearly with the number of cooperating neighbors. We developed a linear
regression model with two dummy variables,

PC(l) = γ0l + γ1λ+ γ2s+ γ3lλ+ γ4ls+ γ5λs (4.5)

where PC(l) is probability of cooperation after l of your neighbors cooperated in the
previous round. The γi are the parameters of the model, etc. Again, s is a dummy
variable which is equal to 0 for the control treatment and 1 for the experiment treatment.
The second dummy variable λ is equal to 1 if the focal player cooperated herself in the
previous round and 0 otherwise. P (l) depends significantly only on γ0 and γ3 (p-values
< 10−4). Therefore, the probability of cooperating does not depend on the treatment.
It does not depend either on the number of cooperators in the previous round if we do
not control for the players own action. We could also consider a term γ6λcs; however,
it turns out that dependence on that term is not significant, and therefore we did not
include it in the model.
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Figure 4.4: Moody conditional cooperators. Probability of cooperating depending on the previ-
ous action and the number of cooperators in the neighborhood in the previous round. We see
that there is a clear difference between the behavior after the cooperating and defecting. After
cooperating, the probability of cooperating increases with number of cooperating neighbors and
after defecting the probability of cooperation decreases with number of cooperating neighbors.
Again, in both the experiment and the control treatment the behavior is very similar.

4.4 Simulations

In the experiments, there is no hint for a significant difference between the treatments.
In order to understand why this happens, we have performed simulations with the three
update mechanisms fitted to the experimental data: unconditional imitation (with ran-
dom strategy exploration), the Fermi rule (also with random strategy exploration) and
moody conditional cooperation. Simulations were performed for an experiment and a
control setting. In order to analyze the influence of the size of the lattice, we carried
out simulations for lattice sizes 4 × 4 and 100 × 100. Figure 4.5 shows the levels on
cooperation in these simulations.

The unconditional imitation with random strategy exploration obeys the equation

PA→B(∆π) = µΓt−1 + (1− 2µΓt−1)Θ(∆π) (4.6)

where PA→B is the probability that a player with action A will change her action to
B, provided B is the action of the best performing neighbor. The round of the game
is t, ∆π = πB − πA, where πA is the payoff of player A and πB is the payoff of
her best performing neighbor playing B. Θ(x) is the Heaviside function, which is
one for positive arguments and zero otherwise. From the experimental data, we found
µ = 0.380 ± 0.013 and Γ = 0.962 ± 0.003. For the simulations with imitation only
we set the random strategy exploration parameter µ = 0. In the first round, C is played
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with probability 70% and in the every other round the probability of imitating the best
player is determined according to the probability given by Eq. (4.6).

If the player does not imitate she/he will play C or D with equal probability. We
see that the simulations with µ > 0 reproduce the cooperation level well, but as we
saw before, the best performing neighbor will almost always be a defector. Therefore
the above update mechanism is equivalent to the mechanism where the next action
is determined only by the term µΓt−1 in Eq. (4.6). Promotion of cooperation can
only occur through the formation of clusters of cooperators, which is prevented by the
random strategy exploration. Therefore, since clusters of cooperators cannot be formed
anyway, both experiment and control treatments show low levels of cooperation driven
by µ > 0 only. On the other hand, for µ = 0, the two simulation setups display very
different dynamics. In the experiment treatment, the level of cooperation drops at the
beginning, until clusters start forming and expand in a sufficiently large system. In the
control treatment, such clusters cannot form and the cooperation level drops to zero.

In the Fermi update rule, the probability of switching to the opposite strategy de-
pends on the difference of the payoffs between the focal player its neighbors. The
dependence is given by the Fermi function, see above. While conventionally a random
neighbor is chosen for comparison, in the analysis of the experimental data we have
focused on the neighbor with the opposite strategy and the highest payoff. In our sim-
ulations, we take the same approach. If there are no players with the opposite strategy
in the neighborhood, players will still switch their strategy with some probability. We
call this mutations or exploratory behavior. In contrast to Traulsen et al. (2010), here
we assume that this quantity is time dependent. In the top panel of Figure 4.3, we
present the probability of mutations over time. Summarizing this approach we find for
the probability of changing strategy

PC↔D(∆π) = µΓt−1 + (1− 2µΓt−1)
1

1 + e−β∆π+α
. (4.7)

Note that for β → ∞ we recover unconditional imitation. For the simulations, we
used the parameters obtained from fitting to the experiment, β = 0.15 ± 0.01, α =
0.45 ± 0.07, µ = 0.45 ± 0.05, Γ = 0.954 ± 0.007 for the experiment treatment and
β = 0.17±0.02, α = 0.52±0.11, µ = 0.49±0.07, Γ = 0.947±0.009 for the control
treatment. We can see that in both treatments the same kind of behavior emerges. It
appears that for this update strategy the spatial structure is irrelevant.

The last model we simulated is moody conditional cooperation. The probability of
cooperating is given by

PC|C(l) = aC + bC l PC|D(l) = nD + kDl (4.8)

where PC|C(l) is the probability of cooperation after l neighbors cooperated and the
focal player cooperated, PC|D(l) is the same probability after the focal player defected.
The parameters are aC = 0.20, bC = 0.35, aD = 0.22, bD = −0.08. Independently of
the spatial settings (whether experiment or control) the behavior stays the same. Like
the Fermi rule, the moody conditional cooperation rule leads to the same level of co-
operation in the experiment and the control treatments. This is in an agreement with
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Figure 4.5: Simulations for different update strategies. Left figures are for the experimental
treatment and the right ones are for the control treatment. Top to bottom: unconditional imitation,
Fermi rule and moody conditional cooperation. Comparing the results for the experiment and
control treatments we observe that the only update strategy for which the spatial structure is
relevant is unconditional imitations without random strategy exploration.

results by Gracia-Lázaro et al. (2012), where they show that in a population of coop-
erators, defectors and moody conditional cooperators, the structure of the population
does not promote or inhibit cooperation with respect to a well mixed population.

Summarizing, we find that these three update mechanisms will not promote coop-
eration on lattices and that for them the spatial structure does not make any difference,
even for much larger systems.

---------
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4.5 Discussion

We have compared a spatial (experiment) and a non spatial (control) behavioral experi-
ments with human subjects playing an iterated Prisoner’s Dilemma. We have found no
significant differences between the two treatments, neither in macroscopic properties
such as the level of cooperation, nor in the way that players update their strategies. On
the one hand, this is good news for theorists, because their assumption of consistent
strategy updates in spatial and non spatial systems seems to be justified. On the other
hand, our results strongly suggest that the idea that spatial structure promotes coopera-
tion cannot be carried over to human experiments in a straightforward way. This result
is in line with previous results from other experiments. Thus, Cassar found that cooper-
ation was hard to reach on different, albeit small networks (Cassar 2007). Kirchkamp
and Nagel performed an experiment on a one dimensional lattice which suggests that
naive imitation may be negligible in such experiments (Kirchkamp and Nagel 2007).
Suri and Watts performed an online experiment and found that the network topology
has no significant effect on the level of cooperation (Suri and Watts 2011). The experi-
ment presented in Chapter 2 did not report the promotion of cooperation either. There
the experimental and control treatment do show different behavior, however the con-
trol treatment was not fully independent, since the same players were used for both
treatments subsequently.

However, our results do not imply that the theoretical analysis of spatial games is
not meaningful. In other biological or technological systems these considerations may
be applicable directly. Moreover, the effect of spatial structure could be much more
subtle than implied by many theoretical works. In particular, theories should consider
the role of mutations (which may arise from mixed strategies, strategies that try to
anticipate the future behavior of the neighbors, or from strategies which consider more
than one past interaction) in structured populations, which is only rarely done (Allen
et al. 2012).

Most importantly, theoretical considerations of fixed networks are a necessary first
step to analyze dynamical networks, in which networks changes as part of the individ-
ual strategies. This may be a more realistic way to address human behavior. Recent
experiments of such dynamical networks indicate that there is indeed a scope for the
evolution of cooperation mediated by network structure (Fehl et al. 2011; Rand et al.
2011). In addition, a paper by Apicella et al. (2012) suggest that early humans may
have formed ties based in part on their tendency to cooperate. There are also evidences
that in the cooperativeness of the individuals is highly correlated with individual’s so-
cial network position, e.g., the more central node are also the more cooperative one
(Brañas-Garza et al. 2010; Kovářı́k et al. 2012). Therefore, the capability to form a
population structure may have played a crucial role in our evolutionary past and poten-
tially also in our present and future.

Finally, all the update strategies discussed in this chapter are compatible with the
way our subjects made decisions. However, based only on this experiment it is difficult
to conclude which decision process humans use. In order to answer that question, new
experiments specially designed to answer this question are needed.



5
Promotion of cooperation, moody conditional
cooperation, and group size: further experiments

In previous chapters we have seen that experiments provide a strong evidence for the
existence of moody conditional cooperation, where players behavior (unlike for plain
conditional cooperators) also depends on the players’ own action, not just the actions of
their neighbors. While conditional cooperation, be it plain or moody, provides a way to
understand the experimental observations in small groups, it also poses new questions.
To begin with, explaining the decay of cooperation in spatially structured populations
by this means requires well-mixing of conditional cooperators and free-riders in the sys-
tem: Indeed, if a set of reciprocal players happen by chance to be together, they could
form a cluster capable to sustaining cooperation (Nowak and May 1992). This problem
can be overcome by resorting to the fact that if the population contains enough free-
riders, finding a cluster consisting only of conditional cooperators may be extremely
rare. However, from the viewpoint of the ultimate origins of this behavior, conditional
cooperation is a puzzle, as it has been shown (Boyd and Richerson 1988) that in an
Iterative Multiplayer Prisoner’s Dilemma (IMPD), the only conditionally cooperative,
evolutionarily stable strategy prescribes cooperation only if all other group members
cooperated in the previous period, which is not what is observed. Furthermore, for
the case of moody conditional cooperation, the theoretical results based on a replicator
dynamics approach showed that in groups with five or more people, the coexistence
of moody conditional cooperators with free-riders (and possibly a few unconditional
cooperators) is not possible (Chapter 3).
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In view of these issues, we decided to investigate further this moody conditionally
cooperative behavior by designing a series of experiments with human subjects playing
an IMPD in groups of different sizes. Our starting research question is whether individ-
uals actually behave in a moody conditionally cooperative manner or not, and whether
the behavior of real subjects changes with the group size as suggested by the coexis-
tence analysis presented in Chapter 3. Specifically, we looked at very long IMPDs on
groups of 2, 3, 4 and 5 subjects.

5.1 Experimental setup

The experiment we study in this chapter was designed to match the game played in
the network experiments, both ours and by other groups. Therefore, subjects played a
multiplayer prisoner’s dilemma in which they had to choose one action to interact with
their opponents. For each opponent, they collected a payoff given by R (T ) if their
partner cooperated and they cooperated (defected). A total of 228 subjects participated
in our experiments. Subjects were volunteers from the pool of the Economics Labora-
tory at the Department of Economics of Universidad Carlos III de Madrid. Participants
interacted anonymously via computers at the Laboratory using software written with z-
Tree (Fischbacher 2007). In all, 12 sessions were conducted in three consecutive days
in April 2011. Each session lasted approximately 45 min on average. In each session,
the subjects were paid a 10 euros show-up fee. Each subject’s final score summed over
all rounds was converted into dollars at an exchange rate that depended on the group
size. The payoffs were set to R = 7 ECUs and T = 10 ECUs in all group sizes.
The adjustment of the expected payoffs was then implemented through the conversion
rate: The exchange rate was for 100 ECUs (Experimental Currency Units): 2 euros in
the group of 2 players; 1.66 euros for 3-player groups; 1.33 euros for 4-player groups;
and 1 euros for 5-player groups. Earnings in a typical session ranged from 5 to 15
euros. The instructions of the experiment, translated into English, are included in the
Supporting Information. The Spanish original is also available upon request.

5.1.1 Computer intervention.

In half of the sessions, for all group sizes, there was a computer intervention in the
decisions, in order to improve the statistics on the most cooperative contexts. The
players were informed that:

“Occasionally, and in completely random way, the computer can change
your decision or that of the other player. The program does not report this
change when it occurs. In such cases the payment is calculated as if the
player concerned had actually taken the decision that the computer chose.
The frequency with which this happens is low: your actions will remain
unchanged for at least an 85% of the time.”

Computer intervention was carried out in the following manner and only after the first
5 rounds took place unmodified: From round 5 to round 25, there is a 20% chance of
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having a computer intervention. In case there is such an intervention, the idea is to
increase the number of highly cooperative contexts, and therefore every defection was
turned to cooperation with probability (N − Ncoop)/(N − Ncoop + 1), N being the
number of players in the group and Ncoop being the number of players that cooperated
in that round. After round 25, intervention was intended to increase the number of
contexts that have appeared the smallest number of times up to that round. Let us
call the number of cooperators in such context Nwanted. If this number is higher than
Ncoop, we change defection to cooperation with probability (Nwanted −Ncoop)/(N −
Ncoop + 1); otherwise, we change cooperation to defection with probability (Ncoop −
Nwanted)/(Ncoop + 1). This procedure allowed us to obtain better statistics for the
highly cooperative contexts, and it was mild enough as not to influence the results,
as the comparison of the results of the two treatments, with and without computer
intervention, presented in Apendix D show.

5.2 Existence of moody conditional cooperation.

Let us begin reporting on the results of our experiment by looking at our first question,
namely the existence of moody conditional cooperators and whether it depends on the
group size or not. Figure 5.1 shows our results on this issue. We clearly observe that
moody conditional cooperators are indeed present in all sizes, including groups of four
and five players, at variance with the analysis in Chapter 3. However, this disagreement
is not entirely surprising, since theoretical results for repeated games are notoriously
sensitive to modeling assumptions: Thus, computational results on IMPD based on
genetic algorithms (Yao and Darwen 1995) show that the evolution of cooperation in
theoretical models depends very much on the implementation details. Therefore, the
fact that our experimental observations do not agree with the predictions of a very
specific model based on the replicator equation is something that can be expected. On
the other hand, we observe only a few players using AllD (always defect) and even less
players playing AllC (always cooperate), so what we are observing may be close to a
homogeneous state consisting only of moody conditional cooperators, something that
is possible even in large groups for certain parameters in Chapter 3. In any event, our
results confirm beyond any doubt that in IMPD of sizes two through five the strategy
of choice of players is moody conditional cooperation: Figure 5.1 shows very clearly
the difference between the probability of cooperating after having cooperated or having
defected, highlighting the importance of relating the current action with the one in the
previous round. The plot also indicates that the probability of cooperation increases
with the number of cooperators in the group in the previous round, for all group sizes.
Cooperation when no one cooperated before is relatively large in groups of size 2 and
lower for other group sizes (but similar among them). Interestingly, the increment in
probability with increasing number of cooperators is similar for all groups.
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Figure 5.1: Moody conditional cooperators. Probability that an individual cooperates after hav-
ing cooperated (squares) and after having defected (circles) in the previous round, for groups of
2 (top left), 3 (top right), 4 (bottom left) and 5 (bottom right) people. The error bars are the stan-
dard deviations of a binomial distribution,

√
p(1− p)/n), where n is the number of samples,

and p is probability of cooperation. Lines are only a guide to the eye.

5.3 Group size dependence of cooperation.

Let us now look at further insights provided by our experiments, beginning with the to-
tal cooperation level achieved in the different groups. The corresponding plot, showing
the fraction of cooperative actions as a function of the iteration of the game, is presented
in Figure 5.2. From these plots, it is immediately apparent that the results for groups of
size two (i.e., pairwise interactions or usual 2×2 IPD) are very different for the obser-
vations on the rest of groups (sizes three and higher). Pairwise interactions show very
high cooperation levels with an increasing trend, whereas for the rest of groups we find
that cooperation decays from initially large values (around 60% or larger) much in the
same way as in most Public Goods or networked IPD experiments. The fact that for
groups with three subjects or more the cooperation level behaves in a similar manner
is in agreement with earlier findings that the level of contributions to voluntary public
goods does not depend significantly on the group size (Zelmer 2003). However, it is
interesting to note in this regard that earlier results were obtained in public good games
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Figure 5.2: Cooperation level in time. Percentage of cooperation as a function of the round for
groups of 2, 3, 4 and 5 people. Error bars correspond to the standard deviation of the observa-
tions.

with four or more subjects, and thus we are providing evidence that there is an abrupt
change in behavior in going from a two-player IPD to IMPD or public goods games
with three or more participants, i.e., we could say that three is a crowd.

5.4 The case of the two-player IPD.

The results for the pairwise IPD deserve a separate discussion as they offer several in-
teresting insights. In our experiment, participants were not informed about the number
of rounds of the game, although they were given an estimate of the time duration of the
procedure, so they could realize that there would be a sizable number of rounds in any
event. Therefore, the ‘shadow of the future’ effect is very present. As a consequence,
pairwise IPD experiments show a large level of cooperation in agreement with the ob-
servations of (Dal Bó 2005), obtained for much shorter IMPDs (an expected length
smaller than 6 rounds). Interestingly, the large length of our repeated game allows
us to go beyond this observation: Indeed, if we compare our observations to those re-
ported in (Kümmerli et al. 2007), who carried out experiments of length 12, we find
an agreement for this initial part of the repeated game, as in both cases the cooperation
level decreases with increasing round number. However, as the game continues in our
experiment, we observe a clear trend towards increasing cooperation, punctuated by
episodes of lower cooperation levels which are rapidly overcome.
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To our knowledge, this increment in cooperation has never been reported before,
and it is apparent from our results that it is specific of the pairwise PD, as for groups of
size three and larger the level of cooperation is at least non-increasing. Note also that
the cooperation at the first round is mostly independent of the group size (cf. Figure
5.2), so this difference among groups does not arise from the initial propensity to co-
operate but is due to the behavior of the players as the repeated game progresses. This
is in agreement with the type of moody conditionally cooperative strategy we found:
the strategy parameters for pairwise PD, being clearly different from those of the larger
groups, indicate that choosing cooperation is very likely if one cooperated in the pre-
vious step, while the probability to cooperate following a defection is relatively large,
below but close to 0.5. It is important to realize at this point that this strategy is not the
well known Tit-for-tat (TFT) (Axelrod and Hamilton 1981), as TFT does not depend on
the player’s own previous action, while Figure 5.1 strongly suggests that the previous
action of the player affects her next choice. Our result is also in agreement with those
reported by Fudenberg et al. (Fudenberg et al. 2012), who in their treatments without
noise found that when a player has cooperated in all rounds, a defection by her partner
is not immediately answered with defection in a 42% of the cases, a number that is
roughly similar to the ones we obtain for our moody conditional cooperators (albeit the
comparison must be taken with caution as the way to characterize the behavior in both
experiments is not exactly the same).

5.5 Discussion

Because of their very long duration and the (small) group sizes considered, our exper-
iments on IMPD, shed light on a number of important questions regarding the onset
cooperation and to contribute towards a consistent picture of human behavior in so-
cial dilemmas. First, we report an experimental confirmation that cooperation actually
increases for pairwise interactions, while decaying as usual for groups of 3 or more in-
dividuals. This is a striking result in so far as this increasing of cooperation in pairwise
iterated Prisoner’s Dilemmas (IPD) has not been reported previously, in spite of the
fact that many experiments looked into this game (Ledyard 1995; Dal Bó 2005; Dal
Bó and Frechette 2011). The reason it has never been observed before is that we are
running experiments several times longer than the longest experiments ever carried out.
We also observe an initial decay of the level of cooperation is consistent with previous
experiments, but at some point (after the first 20 rounds) this level rises steadily. It
remains an open question whether full cooperation would be reached in much longer
experiments.

Furthermore, we have shown that most subjects behave in a moody conditionally
cooperative manner, reciprocating the observed cooperation after a cooperative choice
while changing into a non-reactive, mostly defector strategy following their own defec-
tion. As described in previous chapters, this had been observed earlier in lattice and
network PD experiments. Our results now show that this type behavior is characteristic
of the social dilemma and not of the number of partners or their (spatial) arrangement.
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In addition, using a Generalized Linear Mixed Model (GLMM), described in Appendix
E, we have confirmed an independent analysis that in order to understand the behav-
ior of subjects in the experiments, it is enough to consider the actions of the previous
round, as the information on the precedent round turned out to be not significant. The
agreement of these additional results with the analysis presented above, supports our
conclusion that we are correctly analyzing and understanding the experimental result.
An additional insight provided by the GLMM concerns the universality and heterogene-
ity of the moody conditionally cooperative strategy: Remarkably, heterogeneity arises
through the initial predisposition to cooperate, which turns out to be quite idiosyn-
cratic; in contrast, the probability to reciprocate cooperation after having cooperated
has an approximately linear dependence whose slope shows a much smaller degree of
variability.





6
Discussion, conclusions and open problems

The goal of this thesis has been to explore and assess one of the mechanisms that are
thought to be important for promoting cooperation, namely population structure. Many
models have explored analytically and by simulation the effects of a network struc-
ture on the promotion of cooperation, particularly in the framework of the Prisoner’s
Dilemma, but the results of these models largely depend on details such as the type
of spatial structure or the evolutionary dynamics. Alas, experimental work suitably
designed to address this question was lacking.

In view of this, we designed an experiment to test the emergence of cooperation
when humans play an Iterated Prisoner’s Dilemma on a lattice whose size is reason-
ably comparable to that of simulations. The experiment was set up so as to favor
cooperation as much as possible if subjects played as guessed by the theoretical mod-
els. Surprisingly or not, we found that the cooperation level declines to an asymptotic
state with low but nonzero cooperation (around 20%). We also observed that the popu-
lation was heterogeneous, consisting of a high percentage of defectors, a small fraction
of cooperators, and a large group that we termed moody conditional cooperators, as
their probabilities of cooperating depend on the player’s previous action as well as the
previous actions of their neighbors. Our findings indicate that both heterogeneity and a
moody conditional cooperation strategy are required to understand the outcome of the
experiment.

Inspired by the results of the experiment, we turned to theoretical analysis. We
studied the coexistence of the three strategies observed in the experiment: coopera-
tors, defectors and moody conditional cooperators in the multiplayer iterated Prisoner’s
Dilemma by means of the replicator dynamics. We considered groups with n = 2, 3,
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4 and 5 players and computed the payoffs for every type of player as the limit of a
Markov chain where the transition probabilities between actions were found from the
corresponding strategies. We showed that for group sizes up to n = 4 there exists an
interior equilibrium in which the three strategies coexist, the corresponding basin of
attraction decreasing upon increasing the number of players, whereas we were not able
to locate such a point for n = 5, and proved that it cannot exist in the infinite n limit.

Thus, our experimental findings on the networked games suggest that conditional
cooperation may also depend on the previous action of the player, but at the same time
we theoretically predict that such a behavior cannot coexist with players that always
free ride or cooperate in groups with more than 5 people. Therefore, we designed ex-
periments meant to test our theoretical analysis. We confirmed the existence of moody
conditional cooperation and low cooperation level in the groups of size larger than two.
Remarkably, we showed that the behavior of subjects in pairwise dilemmas is qual-
itatively different from the cases with more players, although this outcome can also
be explained by a moody conditional cooperative strategy. Our experiments lasted 100
rounds, which allowed us to probe the long run regime in all cases, showing that for the
pairwise dilemma, after an initial decay, cooperation increases significantly reaching
values above 80%.

In order to gain further insight on our main question, we analyzed the data of the ex-
periment by Traulsen et al. (2010) where human subjects played an iterated Prisoner’s
dilemma with each of their 4 nearest neighbors in a 4 × 4 lattice. The experiment ex-
plored two treatments: spatial, where players had fixed positions on the virtual lattice,
and non spatial, in which players were reassigned to a random position of the lattice af-
ter each round. We analyzed the statistics of individual decisions and inferred in which
way they can be matched with the typical models of evolutionary game theory. We find
no difference in updating strategies between the two treatments. However, none of the
updating strategies coincide with the most popular models of evolutionary game theory
and they do not lead to the promotion of cooperation on lattices, as our simulations
showed. The update rules fitted to the experiment do not promote cooperation in the
spatial structure analyzed, even if the system were substantially larger.

6.1 Comparison of experiments

Having presented in the previous chapters our work on the emergence of cooperation
in the presence of a network structure we believe that the best way to inform our con-
clusions is to compare the results of different iterated PD experiments with human
subjects, performed in the laboratory on virtual networks. As it has been already men-
tioned in previous chapters, to our knowledge there are only a few experiments of this
kind: Cassar (2007) on small random, small world and local networks, Kirchkamp and
Nagel (2007) on local networks and group settings; Traulsen et al. (2010) on small reg-
ular lattices; ours described in Chapter 2, on medium size regular lattice; Suri and Watts
(2011) on small networks of different kinds; and, finally, a very recent experiment by
Gracia-Lázaro et al. (2012) on a large lattice and a large heterogeneous (fat-tailed)
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Plön Madrid Zaragoza

Size of the network 4×4 13×13 25×25

Neighborhood von Neumann’s Moore’s von Neumann’s

Number of rounds 25 47 52

Number of sessions 15 1 1

Payoff matrix

C D

C 3 0

D 4 1

C D

C 7 0

D 10 0

C D

C 7 0

D 10 0

# of different players 240 169 625

# of actions 6000 7943 32500

Table 6.1: Comparison of the experimental settings for the three experiments on lattices. A von
Neumann’s neighborhood consists of the four nearest neighbors in a square lattice, whereas a
Moore’s neighborhood comprises all eight surrounding neighbors in the same lattice.

network. Although the setup of all experiments is fairly similar, their details are rather
different and the effect of those details on the results is not totally clear, and might
be important. Here we present a meta-analysis of the experiments in order to extract
the properties underlying all of them and that can be considered independent of the
details of the setups in order to give as much generality and support as possible to our
conclusions..

In what follows, we focus on the three experiments on regular lattices: the Plön
experiment performed by Traulsen et al. (2010) and described in Chapter 4, the Madrid
experiment described in Chapter 2, and the Zaragoza experiment performed by Gracia-
Lázaro et al. (2012). The Zaragoza experiment was performed on two different types
of networks: a 25 regular lattice with degree k = 4 and periodic boundary conditions
(625 subjects), and a heterogeneous network with a fat-tailed degree distribution (604
subjects, the number of neighbors varied between k = 2 and k = 16). For each
type of network they performed two treatments, an experiment treatment where the
network was fixed during the experiment and a control treatment where the network
was shuffled after every round. The treatments are analogous to those of the Madrid
experiment and, as in Madrid, the treatments were performed in sequence: first the
experimental treatment and then the control treatment with the same players. There are
some differences in the way this treatments were performed. To begin with, the control
treatments were performed either with players who already had experience from the
experiment treatment (Madrid and Zaragoza), or with inexperienced players (Plön).
Whether this has a measurable effect still needs to be clarified.

Aside from the differences in the control treatments, the experiments themselves
had also differences of their own, which are more relevant to their comparison. In Ta-
ble 6.1 we summarize these differences in the experimental setups. The first difference
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between the experiments is in the size of the virtual networks, ranging from the smallest
one (4× 4) in Plön’s experiment to the largest one (25× 25) of Zaragoza’s experiment.
The size of the network could have a significant influence on the promotion of coopera-
tion, because the formation of clusters of cooperators (which is the known mechanism
by which cooperation can be promoted) only has a chance if the networks are large
enough. Furthermore, the local structure of the networks is different. In the Plön and
Zaragoza experiments players had four nearest neighbors; in the Madrid experiment
players played with the eight surrounding neighbors. Notice that this introduces a cru-
cial difference in the local structure of the network, because the clustering coefficient
of the lattice with four neighbors is zero, whereas in the network with 8 neighbors it
is 3/7. Since the clustering can significantly influence the promotion of cooperation
(Roca et al. 2009b), this difference might be important. Another significant difference
is the payoff matrix. In the Plön experiment, players played a strict Prisoner’s dilemma
(PD) where P > S, but in Madrid and Zaragoza the game played was a weak PD,
where P = S which is more favorable to cooperation: namely, in the weak PD, coop-
erating in a situation where everybody is defecting is not costly, because players will
earn the same no matter what they do. On the contrary, in the strict PD, players earn
more by defecting against defectors, therefore it is to be expected that they cooperate
less. Finally, in the Plön experiment, 15 different sessions were performed, whereas in
the Madrid and Zaragoza experiment, because of the size of the networks, this was not
possible. However this should not influence the results significantly, since the statis-
tics in each round is of the same order of magnitude for all experiments: 240 actions
per round (the Plön experiment), 169 actions per round (Madrid experiment) and 625
actions per round (Zaragoza experiment).

6.1.1 General observables

Let us start the analysis with, the global cooperation level. Figure 6.1 shows the frac-
tion of cooperative players in each round of the experiments. We see that in all three
experiments the cooperation starts at rather large levels (between 55% and 70%), and
subsequently declines rapidly and settles on a small but non zero level (between 15%
and 35%). It is interesting that in the Plön experiment the initial cooperation level
was the largest one, but the decline was the fastest and the final level was the smallest.
Although there are small differences in the levels of cooperation, each of them is signif-
icantly lower than predicted by the theoretical models (Nowak and May 1992; Szabó
and Fáth 2007; Roca et al. 2009b).

In Figure 6.2 (top) we show the distribution of players by their fractions of coop-
erative actions during the game. Two differences are noticeable. First, in the Madrid
experiment we have a high number of pure defectors, which is missing in the other two
experiments. The detail in common of the Plön and Zaragoza experiment and different
for the Madrid experiment, which could be responsible for large number of defectors,
is the number of neighbors in the lattice. However, the exact mechanism of how this
could lead a sizeable number of players to become defectors is unclear. Furthermore,
in the experiment on the groups (Chapter 5), we observed that beyond the pairwise Pris-
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Figure 6.1: Level of cooperation. The fraction of players who cooperated in each round.

oner Dilemma the number of neighbors does not influence the behavior of the players,
although the largest groups we tested there was of 5 players (4 neighbors). However,
unlike the groups setting, on the lattice increasing the number of neighbors implies not
merely increment of the number of individual you play with, it also implies an impor-
tant change of the spatial structure, more specifically the clustering coefficient. Then
again, all our results suggests that in the experiments spatial structure does not influence
the global behavior of the players. Subsequently, the large number of pure defectors
noticed in the Madrid experiment is still puzzling to us and further experiments need
to address this issue. The other difference we can notice is that in the Plön experiment
there are no players who cooperated more than 65% of the rounds, while the number of
the players which cooperated more that 65% of the rounds is significant, albeit small,
in the other two experiments. The reason for this could be that in Plön’s experiment,
the game was a strict PD, where cooperating is costly, and therefore players were less
prone to cooperate.

Next, we present the distribution of players according to their earnings (Figure 6.2
(middle)). We notice that the distribution of earnings in Plön’s experiment is slightly
narrower. This could be the consequence of the size of the network or (more likely) the
payoff matrix. Since there are not many players in the system, the earnings might be
more correlated between themselves and therefore the distribution is narrower. How-
ever, the payoff matrix is also different in this experiment and as we have seen this
could make players less prone to cooperate, which also narrows the earnings distribu-
tion. Finally, in Figure 6.2 (bottom) we present the correlation between the earnings
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Figure 6.2: Total earnings and cooperativeness. (Top) The distribution of the players by the
fraction of cooperation. (Middle) Distribution of player by their earnings normalized by the
total earning of all players. (Bottom) Correlation of earnings and cooperativeness of the players.
Each point represents one player. On the x-axis we plot the fraction of rounds the player make
cooperates and on the y-axis we plot the earning normalized by the average earning of all the
players. Slopes of the fits are following: Plön experiment s = −0.61, Madrid experiment
s = −0.64 and Zaragoza experiment s = −0.50. In all three experiments the p-value is smaller
than 0.001
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and the cooperativeness of the players. In all three case there is a significant correla-
tion (p-value < 0.001) and all three show the same trend: earnings and cooperation are
anticorrelated.

6.1.2 Update strategies

Let us leave the level of global observables and analyze the data at the level of indi-
vidual decisions. We will study the same three possible update strategies, beginning
with unconditional imitation (Nowak and May 1992). First we calculate the probability
that the player’s action is the same as the action of the best player from the previous
round. This number is rather high in all experiments (between 63% and 76%) and
is presented on Figure 6.3 with vertical lines. However, as discussed in sections 2.3,
4.3 and A.2.2, since we have just two possible actions, more often than not the action
of the focal player will coincide with the action of the best neighbor in the previous
round just by chance. Therefore, we resorted again to a randomization test obtaining
the distributions of inferred imitations presented on Figure 6.3. We notice that in the
Madrid experiment the value of the inferred imitation from the experiment falls well
within the distribution of the randomized samples (see also Figure A.6). Therefore, the
observed level of imitation could simply be due to pure chance. In the Plön experiment,
as we already saw, the experimental value is a bit off of the distribution. The p-value
is 0.001, suggesting that there is significantly more imitation in the experiment than
expected from the random neighborhood. In the Zaragoza experiment the experimen-
tal value is further off the distribution (p-value < 10−4), showing even more clearly
that the observed imitation is significantly different from the apparent imitation gener-
ated by chance. However, although statistically significant, the difference between the
observed probability of imitation and random imitation is only 1% and the maximum
value it reaches is around 75%. Now, this is an important result because it indicates
that cooperation should not be sustained in any of the three cases. Indeed, for uncondi-
tional imitation to promote cooperation, as we found in the previous chapter, it has to be
100% imitation. If imitation is not unconditional then noise will prevent the formation
of clusters and therefore the promotion of cooperation.

Let us now check if the players follow the Fermi rule (Szabó and Töke 1998). In
Figure 6.4 we show the probability that the action changes depending of the payoff
difference between the focal player and the best player who played the opposite action
in the previous round. We see that in the Plön experiment the dependence is well fitted
by the Fermi function. However in the other two experiments, although there is an
increasing trend, the dependence is far from clear.

Finally, we studied the possibility that people behaved as moody conditional coop-
erators. In all the experiments there is a clear difference between the behavior after
they cooperated and defected (Figure 6.5). After the player defected the probability
of cooperating is slightly decreasing with the number of cooperators in the neighbor-
hood, as after the player cooperated it increases. In the Plön experiment the behavior
after the player cooperated is noticeably different than in the other two experiments,
with the slope being considerably larger. The probability of cooperating if the player
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Figure 6.3: Randomization test for unconditional imitation. The distribution shows the results
of randomizations and horizontal lines the value from the experiment. Top, the Plön experiment,
middle Madrid experiment, bottom Zaragoza experiment payoff difference between the focal
player and the best player of the opposite strategy. Notice the short range on the x-axes.
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Figure 6.4: Fermi rule. On he x-axis is the difference of the payoffs between the focal player
and the best of the players with the opposite action and on the y-axes is the probability to change
the action in the next round. All error bars are the SDs of a binomial distribution,

√
p(1− p)/n,

where n is the number of samples and p is the probability of changing the action. The results are
presented separately for the players who changed from cooperation to defection and those who
changed from defection to cooperation.
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is surrounded by defectors is much lower in the Plön experiment than in the other two.
This is probably a consequence of the different payoff matrices used in experiments.
Since in Plön experiment players played a strict PD, cooperating while surrounded by
defectors is costly. Therefore players in this experiment tend to cooperate less when
they are surrounded with defectors than in the other two experiments.

6.2 Conclusions

Although there are some differences in the results between the three experiments, there
are a few features that appear to be universal. The first one is the low but nonzero
asymptotic level of cooperation. In spite of the fact that many theoretical models pre-
dict the promotion of cooperation by a mechanism of network reciprocity, it is clear that
such a promotion was not observed in any of the experiments analyzed here. Addition-
ally, in other known experiments (Cassar 2007; Kirchkamp and Nagel 2007) the level
of cooperation is also low. The distributions of cooperation and earnings look similar,
but details like the payoffs and the number of neighbors in the lattice do influence these
distributions, most notably the percentage of cooperation. In all experiments there is a

'l 

--
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significant negative correlation between the number of cooperations and the earnings,
the slopes being similar to each other.

The low level of cooperation is in line with the fact that we do not observe full
unconditional imitation. Although imitation looks significant in some experiments, it
is still low and far from being deterministic. However, it appears that the players are
somehow influenced by the payoff difference, because there is a growing trend in the
dependence of the probability to change the action with the payoff difference. This
notwithstanding, the precise nature of the dependence and its correlation with the ac-
tions of the neighbors needs to be investigated more thoroughly. Moody conditional
cooperators appear in all three experiments. It is clear that the behavior of the players
depends on their own previous action in all of them, although the specific slopes vary
from experiment to experiment and could be dependent on the payoff matrix. Interest-
ingly, in the experiment by Cassar (2007) it was also shown that the behavior of the
players is significantly correlated with their previous action.

Based on all the experiments performed by now we can safely state that a popula-
tion structure given by a lattice does not promote cooperation. The results by Gracia-
Lázaro et al. (2012) point to the fact that heterogeneous networks do not promote
cooperation either, but being only one experiment (the evidence of Cassar (2007) is on
system too small to be considered really complex) it may be too early to insist on this
claim. Another result that arises from the the three experiments is that human player do
not use the update mechanisms postulated by the theoretical models which lead to high
cooperation (albeit there is some evidence in favor of unconditional imitation, only not
purely deterministic). Consequently the cooperation level in the laboratory experiment
with human subject on the networks is dramatically lower than predicted by theoretical
models. Additionally we distinctly show that the behavior of the players depends on
both their own previous action and the previous actions of their neighbors.

6.3 Open questions

The first question that our results and the ensuing discussion leaves open regards the
update strategies. We have considered above a few update strategies that fit well with
the experimental data we analyzed. However, which one people actually use is not
absolutely clear. It is well established that people are influenced by the actions of
other players as well as their own action in the previous round. On the other hand the
influence of the payoff difference, although quite clear in the Plön experiment is not
so pronounced in the other two. Additionally, the payoff differences and the actions
of the players are not independent, and therefore the trend we see in the dependence
with the payoff difference could be the consequence of the dependence on the actions.
In addition, in this chapter we sketched some explanations for the differences noticed
in different experiments. However, from only three experiments it is difficult to draw
certain conclusions regarding all their aspects, more so in view of the differences we
summarized above. Therefore, more experiments specially designed to clarify the in-
fluence of the payoff matrix, of the neighborhood, etc., are needed.
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Another effect whose existence and importance is not clear in the experimental
data is learning. In our lattice experiment the behavior of players is practically the
same in the first and last 10 rounds, which led us to the conclusion that there was no
learning during the single experimental treatment. Nonetheless, there is a small differ-
ence between the behavior or the players after they themselves defected, which was
also noticed in the Zaragoza experiment (Gracia-Lázaro et al. 2012). This difference
is attributed to learning in this reference, but future work should address properly this
question in order to clarify the existence of learning in the experiments.

In none of the experiments on structured population a promotion of cooperation
is observed. Notwithstanding, adding some other mechanism to the network structure
might increase the cooperation. There are several mechanisms which could be added
to the experimental setup in order to enhance it. Punishment has proved to be effective
in enhancing the cooperation in pairwise Prisoners Dilemmas (Fehr and Gächter 2000).
However, the influence of the punishment on a Multiplayer Prisoner’s Dilemma in a
network is still unknown. Also, players could be allowed to chose who they play with,
breaking the connections with the players they do not wish to continue interacting with
and forming new connections with other players. Numerous models (Aktipis 2004;
Santos et al. 2006a; Helbing and Yu 2008; Meloni et al. 2009; Van Segbroeck et al.
2009; Van Segbroeck et al. 2010) show that this could be an mechanism to promote
cooperation and some recent experiments suggest that there is indeed an effect on the
global level of cooperation (Fehl et al. 2011; Rand et al. 2011). Furthermore, repu-
tation could be added as a parameter of the decision making process. For example, it
has been shown that in public goods experiments cooperation increases substantially if
players can invest publicly or if the most or least cooperative individuals revealed , thus
gaining or loosing social reputation (Milinski et al. 2006; Jacquet et al. 2011). The
same mechanism should be tested in the spatial settings. Each player could be identi-
fied within the game (but still be anonymous outside of it) and this information could
be provided to everybody. The question is, whether the fact that all player’s actions
are public knowledge will influence the behavior of the player and whether the other
players will consider this reputation in their behavior toward them.

It would be interesting to see if different countries, age groups, genders, etc., have
different behaviors in the experiments. The Ultimatum game experiment performed
in different ethnic groups (Henrich et al. 2001), shows that there is a wide variety of
behaviors depending on the group’s culture. Another experiment showed that males
and groups of mixed males and females act similarly, whereas groups consisting only
of females show significantly higher cooperativeness (Kümmerli et al. 2007). Aguiar
et al. (2009) show that women are expected to be more generous by women, which sug-
gests that the behavior resulting from these expectations will also be different. In the
Zaragoza experiment, females were observed to cooperate slightly more than males al-
though this still requires proper statistical analysis. It would be good to check whether
population structure has any influence on this effect. In the Madrid experiment there
were many players that were relatively old, between 20 and 25 years and well advanced
in their careers. This might be a reason that we observe so many pure defectors there.
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Therefore, it would be interesting to do experiments by age and see what kind of influ-
ence it has on the results.

An important consequence of the experimental results presented here is that they
should be used for developing new theoretical models. There is still no evolutionary
explanation for the moody conditional cooperators we observe in our experiments. On
the other hand, in Chapter 3 we showed that the coexistence between moody condi-
tional cooperators, cooperators and defectors is only possible for the groups of very
small size. One of the possible explanations is that players do not act rationally, but
certainly this is still an open question that needs new ideas and further research before
it can be given a satisfactory answer.





A
Additional material on the lattice experiment
(Chapter 2)

A.1 Experimental setup.

A.1.1 Volunteer recruitment and treatment

The experiment was carried out with volunteers chosen among students of the engi-
neering campus of Universidad Carlos III in Leganés (Madrid, Spain). Following a
call for participation, we received about 500 applications, among which we selected
225, with preference for the youngest ones and keeping a fifty-fifty ratio of male to
female. On the day of the experiment, 178 volunteers showed up, and we kept 169 so
that we could arrange them in a square lattice with periodic boundary conditions by dis-
carding the 9 latest arrivals —who were paid their 10 euros show-up fee and dismissed.
The 169 volunteers were directed to 11 computer rooms in two adjacent buildings, pre-
viously prepared by setting up cardboard panels between posts so that no participant
could look at her physical neighbors (which needed not be their actual neighbors in
the game). They received directions in paper and also went through a tutorial on the
screen, including questions to check their understanding of the game. When every-
body had gone through the tutorial, the experiment began, lasting for approximately
an hour and a half. At the end of the experiments volunteers were presented a small
questionnaire to fill in, which will be discussed in Section A.4. Immediately after, all
participants received their earnings and their 10 euros show-up fee. Total earnings in
the experiment ranged from 18 to 45 euros.



86 Additional material on the lattice experiment (Chapter 2)

Figure A.1: Information given in the experimental setup. After every round players saw the
information in the screen as depicted here. Given are the strategies of the player’s neighbors
(color coded) and their earnings in the previous round (in cents of a euro). To the right the player
had two clickable buttons with the two actions to choose from for the next round. The label
“Elija un color:” is Spanish for “Choose a color:”.

A.1.2 On-line tutorial for players

The following is a translation of the Spanish original (available upon request).

Page 1: This is an experiment designed to study how individuals make decisions.
You are not expected to behave in any particular way.
Whatever you do will determine the amount of money you can earn.
You have a written version of this directions which you can check at any stage
of the experiment.
Please keep in silence during the experiment. If you need help, raise your
hand and wait to be attended.

Page 2: DIRECTIONS TO PARTICIPATE IN THE EXPERIMENT
This experiment consists of THREE (3) parts.
Each part consists of an undetermined number of ROUNDS (approximately
between 40 and 60, by there might be more or less).
The experiment will last about 2 hours. In each part you will be able to earn
different amounts of money, depending on the decisions that you and the rest
of participants make every round.
Your total earning in this experiment is the accumulated earnings in all the
three parts, plus a 10 euros showup fee.

• • • 
• -
.. e e 
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Page 3: A ROUND
Each ROUND you will be placed in a nod of a virtual NETWORK.
In this network you will be linked to EIGHT (8) people, whom we shall refer
to as “neighbors”.
All participants will be in the same situations, i.e., each of your 8 neighbors
will have, in her turn, 8 neighbors, one of whom will be you.
You will never know who your neighbors are, and nobody will know if you
are her neighbor either.
The network is virtual. People around you in the room are not necessarily
your neighbors.

Page 4: DECISION TO MAKE EVERY ROUND
Every round, each of the participants must choose a color: BLUE or YEL-
LOW.
To choose a color you just have to click a button appearing in the screen.
Each time you choose a color (either blue or yellow) you will earn an amount
of money which will depend on yours and your 8 neighbors’ choices.
If you choose BLUE and your neighbor also chooses BLUE, you receive 7
cents each.
If you choose BLUE and your neighbor chooses YELLOW, you receive 0
cents and your neighbor 10 cents.
If you choose YELLOW and your neighbor also chooses YELLOW, you re-
ceive 0 cents each.
If you choose YELLOW and your neighbor chooses BLUE, you receive 10
cents and your neighbor 0 cents.
These rules are the same for all participants.

Page 5: POSSIBLE PAYOFFS PER NEIGHBOR
In the following table each row corresponds to the decision you can make and
each column correspond to one of your neighbors’ decision.

0 c

10 c

your payoffs

0 c

7 c

yo
u 

ch
oo

se

your neighbor chooses

Consider that:
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• you and each of your neighbors will globally earn more if you both
choose BLUE (7 cents you / 7 cents your neighbor);

• you will earn more if you choose YELLOW and your neighbor chooses
BLUE (10 cents you / 0 cents your neighbor);

• but if both you and your neighbor choose YELLOW you both will earn
less (0 cents you / 0 cents your neighbor) than if you both chose BLUE.

Page 6: This is the screen you will be seeing during the experiment

The central square represents you, and the surrounding squares represent your
virtual neighbors in that round.
On the right of the screen you will see two buttons: BLUE and YELLOW.
Each round you must choose one of them clicking the corresponding button.

Page 7: These are some examples of what you could earn in a round:

Example 1: Imagine you choose BLUE, 3 of your neighbors choose BLUE
and 5 choose YELLOW. In that round you will earn 3×7+5×0 = 21 cents.
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Example 2: In another round you choose YELLOW, 2 of your neighbors
choose BLUE and 6 choose YELLOW. In that round you will earn 2 × 10 +
6× 0 = 20 cents.

Page 8: (Some multiple-choice tests are included in order to check whether the player
has understood the rules of the game).

Page 9: (The correct answers to the tests are provided).

Page 10: ROUND ITERATION
Remember that each part will consists of an undetermined number of rounds.
Each round you will have up to 30 seconds to choose a color. After these
30 seconds, if you didn’t choose, the system will choose for you. Whatever
happens will not affect the behavior of the system in the next rounds: you will
be able to make your subsequent choices normally. (Don’t worry: 30 seconds
are more than enough to make a choice).
The round will not end until all participants have made their choice.
At the end of each round you will see a screen like this one:

The central square represents your choice and your earning in this round. The
surrounding squares represent your 8 neighbors’ choices and their respective
earnings in that round.
Immediately after finishing a round there will be a new one, and then another
one, and so on until you see a screen warning you about the end of that part
of the experiment.

-
D -

. . ---

. -
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Page 11: PART I OF THE EXPERIMENT
In this part the system will randomly assign each participant to a given node
of the virtual network.
This place will be kept fixed until this part ends.
This means that you will be interacting with the same 8 neighbors during all
that part.
Remember that each round you must choose a color.
When this part finishes, you will be notified of it and will see the directions
for the next part.
(Part I begins.)

Page 12: Part I of the experiment has finished.
Please, keep in silence.
Part II will start in a few seconds.

Page 13: PART II OF THE EXPERIMENT
In this part, before each round begins, every participant will be moved to a
new random node of the virtual network. Therefore, in general you will have
8 new neighbors every round.
This means that the node you are in will be changing along the experiment.
Thus you will NOT be linked all rounds to the same 8 neighbors.

Page 14: The rules to make decisions every round are the same as in Part I.
The only thing that is different is that your neighbors will most likely not be
the same every round.
Remember:

• Every round you have 30 seconds to make a choice.
• The round finishes only when all participants have made their decisions.
• At the end of each round you will be seeing a screen like this one:

The central square represents your choice and your earning in this round.
The surrounding squares represent your 8 neighbors’ choices and their
respective earnings in that round.

(Part II begins.)
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Page 15: Part II of the experiment has finished.
Please, keep in silence.
Part III will start in a few seconds.

Page 16: PART III OF THE EXPERIMENT
This part is the same as Part I.
Again, before it starts, the system will randomly place every participant in a
given node of the virtual network.
That place will not change during the whole part.
This means that you will be interacting with the same 8 neighbors during all
rounds.
Notice that your 8 neighbors in this part need NOT be the same as those of
Part I.
(Part III begins.)

Page 17: Part III of the experiment has finished.
Please, keep in silence.
The experiment has not finished yet.
You have to answer the following questionnaire.
Please, answer ALL questions in the questionnaire that you will be shown
immediately.
(The questionnaire was shown and afterward they were notified how much
they had earned and were to go to get paid.)

A.1.3 Synchronous play and automatic actions

The experiment assumes synchronous play, thus we had to make sure that every round
ended in a certain amount of time. This playing time was set to 30 seconds, which
was checked during the testing phase of the programs to be enough to make a decision,
while at the same time not too long to make the experiment boring to fast players. If
a player did not choose an action within these 30 seconds, the computer made the
decision instead. This automatic decision was randomly chosen to be the player’s
previous action 80% of the times and the opposite action 20% of the times. We chose
this protocol after testing several ones in simulations. We run simulations in lattices of
several sizes, including 13× 13, using two different update rules: imitate-the-best and
proportional updating. At the same time, we included a fraction of players (up to 15%)
who played with a different update rule. We tested the one we finally chose, along with
similar ones with different probabilities of copying the previous action. We also tested
several other rules. Our finding was that a fraction below 10% of these “singular”
players can hardly affect the results whichever their update rule. So we decided to
choose the 80–20 rule as the one which could pass more unnoticed to other players
when confronted to it. Anyway, for the reliability of the experiment it is important
that a huge majority of actions were actually played by players, not by the computer.
Figure A.2 shows the fraction of players who actually played in each round. We can
see that in more than 90% of rounds no more than 4 of the choices were made by the
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Figure A.2: Number of automatic actions. Number of players whose action was taken by the
computer, not by themselves, in each round.

computer. The largest number of automatic actions occurred at the end of the control
part, but even then their number never goes beyond 8.

A.2 Additional material about the experimental results

A.2.1 Earnings vs. cooperation

Although the average total earnings of players in all parts of the experiment are the
same (around 8 euros), the distribution is clearly much narrower in the control part than
in the first and third parts. In Figure A.3 each point represents one player’s earnings
(on the Y-axis) vs. the fraction of times she cooperated (on the X-axis). In general, we
observe a slight decrease of earnings as cooperation increases, although the slope is
so small that we can conclude that there is very little (if any) correlation between the
fraction of times a player cooperated and how much she earned.

A.2.2 Imitate-the-best

Nowak and May’s simulations on a lattice (Nowak and May 1992) employed a strategy
updating known as imitate-the-best (or unconditional imitation) in the literature. This
update rule makes each player copy the action of the most successful of her neighbors
(including herself) in the previous round. Specifically, all players start with random
actions; then each of them finds who among her 8 neighbors and herself had the highest
payoff in the previous round and plays the action of this most successful player. This
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Figure A.3: Players total earnings vs. fraction of cooperation. Each point represents one player.
On the X-axis we plot the fraction of times that the player cooperated and on the Y-axis the
player’s total earnings in that part.

update rule has been shown to be very efficient in enhancing cooperation in lattices
(Roca et al. 2009b).

First we analyzed how Nowak and May’s results changed when simulations were
carried out on a lattice of the same size as our experiments. We reproduced their simu-
lations on a 13×13 lattice, and the results are collected in Fig. A.4. We have computed
the cooperation level as an unrestricted average (with values above 0.5) and also as an
average that excludes the realizations that end up in full defection —which, as can be
seen from the right panel of Fig. A.4, grow with the temptation parameter. For values
similar to the ones we are using, around 80% of the simulations evolve to full defection,
whereas the others yield an average cooperation level well above 60 %. None of these
asymptotic behaviors has been observed in the experiment.

In order to check whether players use imitate-the-best for updating their choices
we determined how many times players copied what the most successful player in their
neighborhood did in the previous round. Figure A.5 shows that the number of times
a player imitated the best action per round is almost the same as the number of Ds
played in that round. In other words, since D is almost always the most successful
action, a player playing D can be interpreted as if she is imitating the best action in
the neighborhood, even though this may just be due to coincidence (there are only two
actions). Compare this figure with Figure 1 of Traulsen et al. (2010).

In view of these results, we have devised the following null model. We generate
1000 shuffling of the players in each experiment. Players maintain always the same se-
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Figure A.4: Simulations of a 13×13 lattice with imitate-the-best as update rule for the strategies.
Left: fraction of cooperators for a weak PD on a 13×13 square lattice with Moore neighborhood
vs the value of the temptation parameter (the payoff to a defector facing a cooperator). Empty
circles represent averages over 1000 realizations; full squares are averages restricted to those
realizations that did not end up in a fully defective state. Right: frequency of realizations that
finish in full defection.
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Figure A.5: Test of imitate-the-best per round. Results for experiment 1 are in the left panel,
whereas those for experiment 2 appear in the right panel. In both cases we represent, for every
round, the number of players playing D when D was the best action in the neighborhood in the
past round (black line); the number of times D was the best action in the neighborhood in the past
round (red line); and the number of Ds played in that round (green line). Since almost always D
is the best past action in the neighborhood, the black and green lines nearly coincide, suggesting
that “imitation” can be due just to coincidence. (Note the short range of the vertical axis.)

quence of actions, but every shuffling they play against different neighbors. Imitations
now are purely due to coincidence because players are playing against people who
were not their neighbors in the actual experiment. This way we generate a probability
distribution of fractions of imitation purely due to chance, which we compare to the
actual values of the fractions of imitation obtained in the true experiments. The results
are shown in Figure A.6 and strongly support our conclusion that true imitation cannot
be distinguished from accidental imitation in our experiment.
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Figure A.6: Null model for imitate-the-best. Empirical histograms for the occurrence of a given
fraction of imitation by pure chance. Distributions are obtained from 1000 random shuffling of
the players, while keeping their sequences of actions. The blue vertical line represents the mean
of the distribution and the red one is the result of the actual experiment. The experimental result
is thus compatible with the null hypothesis —namely that imitation merely occurs by coincidence
of actions. (Note the very short range of the horizontal axis.)

A.2.3 Analysis of strategies

The aim of this analysis is not literally to uncover which precise strategies players used
during the game, but rather to elicit a plausible pattern of behavior that roughly explains
the results we observe in the experiment. To achieve this we need to make a couple of
simplifying assumptions. First of all, we assume that players’ decisions were more in-
fluenced by the fraction of cooperators they observed than by their neighbors’ payoffs.
We did not ask explicitly for this in the questionnaires, but in their explanations of what
strategies they had used they almost always speak about the actions of their neighbors
and hardly ever mention their payoffs. Secondly, we assume that these decisions were
based only on what occurred in the previous round. This is quite a drastic simplifi-
cation because people have longer term memory and nothing precluded players from
considering some kind of time-average of the full past history. However, it is plausible
to assume that the last round has a much higher weight into players’ decisions, and
besides we cannot make more elaborated assumptions given the data we have. Already
assuming that players’ decisions depend only on what players did in the previous round
and on how many cooperators they observed in their neighborhoods, leads us to devise
a model with 18 parameters (the probabilities of playing C, if C or D was played in
the previous round and there were k = 0, 1, . . . , 8 cooperators in the neighborhood).
There is not enough statistics to determine 18 parameters (some contexts, like k = 8
cooperators, never happened, and some others only happened once or twice in the ex-
periments); certainly not to study the individual response of every player, but also to
figure out the aggregated response.

1- 1 1- 1 
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Figure A.7: Position of players in the lattice according to the strategy they used. Left panel:
experiment 1; right panel: experiment 2. Color code: Red, pure or mostly defectors; blue, pure
or mostly cooperators; yellow, conditional cooperators. Notice the two clusters of cooperators
that were formed in experiment 2.

A.2.4 Spatial distribution of strategies

Figure A.7 shows the spatial location of players in the lattice according to the strategy
they used (codified in color). In experiment 2 we can observe the formation of two
clusters of three cooperators each. In order to check their statistical significance we
computed the mean number of neighbors of the same kind for the different strategies.
The results appear in Table 2.2. This table shows that indeed the clusters of cooperators
in experiment 2 are very unlikely to have formed by chance in a random arrangement
of players. It also reveals that defectors tend to anti-cluster in both experiments. The
existence of this incipient clustering of cooperators is consistent with the fact that we
do observe more cooperators in experiment 2 than in experiment 1, suggesting that
clustering might be fostering cooperation in this experiment. The anti-clustering of
defectors is also an indication of some spatial arrangement of strategies. Nevertheless
experiments on much larger lattices would be needed in order to ascertain whether the
spatial structure is yielding some ordering of the strategies.

A.3 Models

The classification of players’ strategies led us to devise two models to describe the re-
sults obtained in the experiments. In the so-called homogeneous model all players play
according to the conditional probabilities defined in Figure 2.7. In the heterogeneous
model a mixture of five categories of players is made (pure and mostly cooperators,
pure and mostly defectors, and conditional cooperators), taken in the same numbers
as they appear in the experiment (see Table 2.1 in main text). In both cases the initial
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Figure A.8: Cooperation levels. Level of cooperation (fraction of players who are cooperating)
in each round for experiment 1 (left) and experiment 2 (right). The experimental results are
plotted together with the results of simulations with the homogeneous and the heterogeneous
models, averaged over 1000 realizations.

probability of cooperating is taken so as to reproduce the initial cooperation level of
the experiment.

A.3.1 Cooperation levels

Figure A.8 shows the cooperation levels reached by the simulations of the two models.
Except for having a shorter transient —which indicates that players may take some time
before they adjust their strategies, especially in experiment 1— the level of cooperation
reached by both models is compatible with the experimental results.

A.4 Questionnaires

At the end of the experiments volunteers were presented a small questionnaire to fill in.
The list of questions (translated into English) was the following:

1. Describe briefly how you made your decisions in part I (Experiment 1).

2. Describe briefly how you made your decisions in part II (Control).

3. Describe briefly how you made your decisions in part III (Experiment 2).

4. Did you take into account your neighbors’ actions?

5. Is something in the experiment familiar to you? (yes/no).

6. If so, please point out what it reminds you of.

7. If you want to make any comment, please do so below.

The first three questions have a clear motivation, namely to see whether (possibly some)
players did have a strategy to decide on their actions. Question 4 was intended to
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check whether players decided on their own or did look at their environment, because
only in this last case imitative or conditionally cooperative strategies make any sense.
Questions 5 and 6 focused on the possibility that some of the players recognized the
game as a Prisoner’s Dilemma because they had a prior knowledge of the basics of
game theory. The final question just allowed them to enter any additional comment
they would like to make. We did not carry out a more detailed questionnaire to avoid
the risk of many players’ leaving it blank (the whole experiment was already very long).

Regarding the first three questions, about the manner in which players made their
decisions, we want to stress that the answers should not be taken too literally because
sometimes people have a biased impression of what they really did. For instance, some
people claim to have played randomly, however humans are known to be very poor
random generators (Bains 2007). With this caveat in mind, it is nevertheless sensible,
once we have a behavioral model for the players, to test its predictions against the
players’ responses in order to see if they are correlated. We considered their answers
and compared with the results we obtained independently from analyzing their actions
during the experiment. We found that, except in 7 cases, the perception the players
had of their strategies agreed with our results. Not surprisingly, almost all the players
which we identified as cooperators or defectors declared themselves to be so in their
answers. Therefore, the really informative part arises from the answers of the players
that did not fit clearly in these categories. In this respect, we found that most players
defined themselves as either exploiters (cooperated to induce neighbors to cooperate
only to defect on them and reap the benefit) or disappointed (wanted to achieve global
cooperation but ended up doing as their defecting neighbors). Smaller groups included
players who answered that they played at random, as we already mentioned, or that
do not clarify what their strategy was, either because they did not answer or because
their explanation was unclear. Keeping in mind that this is a very qualitative analysis
of the results, and that not much more can be said quantitatively, the answers to the
questionnaire support our general picture in terms of defectors, cooperators, and condi-
tional cooperators. This is further confirmed by the answer to the fourth question, i.e.
whether they took into account the actions of their neighbors: Only 25 out of 169 an-
swered that they did not consider their neighbors’ actions to make their own decisions.
Interestingly, only 17 specify that they did not look at their neighbors’ actions in the
control part, where due to the shuffling after every round information about previous
behavior became irrelevant. This opens the possibility that during the control part the
players played according to something like a mean field approach, taking the informa-
tion about their previous neighbors as a predictor for what they were going to find in
their new location. Our data are certainly not enough to pursue further this question. Fi-
nally, as for the question about familiarity with the experiment, only 7 people answered
affirmatively, mentioning the Prisoner’s Dilemma or game theory in general.
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User’s manual for the PDexp software

PDexp is a software for conducting Prisoner’s Dilemma (PD) experiments with human
subjects on a large square lattice, as described in Chapter 2. The software has been
developed by J. Grujić at Grupo Interdisciplinar de Sistemas Complejos at Universidad
Carlos III de Madrid.

B.1 About

In the experiment, volunteers played a 2 × 2 PD game with each of their eight neigh-
bors (Moore neighborhood) taking only one action, either to cooperate (C) or to defect
(D), the action being the same against all the opponents. The resulting payoff was cal-
culated by adding all eight interaction payoffs. Payoffs of the PD game were set to be
7 cents of a euro for mutual cooperation, 10 cents for a defector facing a cooperator,
and 0 cents for any player facing a defector (weak PD). With this choice (a cooperator
and a defector receive the same payoff against a defector) defection is not a risk domi-
nant strategy, which enhances the possibility that cooperation emerges. The payoffs are
given as parameters of the program when started and therefore the experiment can be
performed with other payoffs. To avoid framing effects, the two actions were always
referred to in terms of colors (blue for C and yellow for D), and the game was never re-
ferred to as PD in the material handed to the volunteers. This notwithstanding, players
were properly informed of the consequences of choosing each action, and some exam-
ples were given to them in the introduction. After every round players were given the
information of the actions taken by their neighbors and their corresponding payoffs.
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The full experiment consisted of three parts: experiment 1, control, and experiment
2. In experiment 1 players remained at the same positions in the lattice with the same
neighbors throughout the experiment. In the control part we removed the effect of the
lattice by shuffling players every round. Finally, in experiment 2 players were again
fixed on a lattice, albeit in different positions from those of experiment 1. On the screen
players saw the actions and payoffs of their neighbors from the previous round, who
in the control part were different from their current neighbors with high probability.
All three parts of the experiment were carried out in sequence with the same players.
Players were also fully informed of the different setups they were going to go through.
The number of rounds in each part was randomly chosen in order to avoid players
knowing in advance when that part was going to finish.

B.1.1 Experiment timeline

At the beginning of the experiment each player receives an envelope with a username
and a password and is directed to a computer. On the computers the software is already
running and there is a welcome message on the screen. By clicking on the button
players are redirected to a login screen, where they can log in using the username and
password they received. When everybody is logged in, an introductory tutorial starts.
The rules are thoroughly explained with examples and a small test, to make sure that
players understood the rules. Once all players have read the tutorial, the first part of
the experiment starts. They see a screen showing them and their neighbors, as well
as two buttons: blue and yellow, to choose from. After pressing the chosen button,
they are presented with a new screen where they see their action and are asked to wait
for everybody to play. When everybody has played, they see the actions and payoffs
of their neighbors and themselves and they are asked to play again (choose one of
the buttons on the right); see the technical instruction for the figure of a screen. This
completes one round. After certain number of rounds, which is randomly chosen when
the experiment is started, they are redirected to the tutorial for the second part, which
is very brief and just explains the difference between part II and part I, and then they
play again. After the second part is finished they get a brief tutorial for part III and then
they play the third part. At the end of part III, they are asked some questions about the
game, and after they answer they see how much money they earned and the good bye
message. See the technical instruction for the sketch of the whole process. Therefore,
the phases of the experiment are the following:

• Logging in

• Introductory tutorial

• Part I (experiment 1)

• Tutorial for part II

• Part II (control)
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• Tutorial for part III

• Part III (experiment 2)

• Questionnaire about the game

• Final screen with information about their earnings

B.1.2 Software description

The software for the experiment was written in PHP 5, Javascript, and Python. In the
original experiment there were 169 client computers running Opera in kiosk mode (to
preclude players from doing anything else than playing according to the instructions)
on Debian Linux. Clients communicated with the server through Javascript and PHP
and on the server Python programs were running controlling the experiment, making
calculations, and storing results. Another client was monitoring the whole experiment,
displaying every player and their current status.

The basic purpose of the program was to present the information from the server to
the clients, then receive the input from the clients, analyze it on the server and return
new information, waiting for new input.

PHP is a general-purpose scripting language that is especially suited for Web de-
velopment and can be embedded into HTML. As such it was suitable for server side
programming. However, client side programs cannot be done in PHP, and therefore all
the programs on the client side (like pressing the buttons and the like) were done in
Javascript. To avoid concurrency issues, we did the necessary analysis on the server
through a background process which waited until all the clients finished certain seg-
ment. Then the process did the calculations and subsequently allowed PHP scripts to
continue. We chose to write the background process in Python. Therefore, PHP is
used to present information to the client, Javascript to receive input from the client and
Python for the server analysis. The generation of auxiliary and data files is also done
in Python. To automatically run all the Python code bash scripts were used.

A normal HTML website will not pass data from one page to another. In other
words, all information is forgotten when a new page is loaded. To allow storing players’
information on the server for later use (i.e. username, action, payoff, etc.) we used a
PHP session. On the other hand, to pass variables between PHP and Python we stored
them as text files on the server.

The software has two modes: normal mode and robot mode. Normal mode is used
for the experiment itself and robot mode is used for testing the server. The difference is
that in normal mode players are required to push the buttons, while in robot mode but-
tons are pressed automatically, therefore the robot mode is like having robots pressing
the buttons instead of players. In this way, if we need to test the system, we do not need
a large group of people pressing buttons, we just run the robot mode. The software is
organized in the following directory structure:
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PD
|- index.php Empty file, included for
| security reasons
|- manual.txt Users manual
|- technical_instruction.pdf Technical instructions
|----- PDexp Directory for normal mode of
| | experiment
| |- backup.sh Makes backup of the output
| | files
| |- clean.sh Resets data files to initial
| | value
| |- check_daemon.sh Checks for background processes
| |- makepass.py Makes files with usernames and
| | passwords
| |- passwords.php List of passwords
| |- start_daemon.sh Starts background processes
| |- stop_daemon.sh Stops background processes
| |----- exp1 Directory for Part I of the
| | | experiment
| | |- index.php Redirects to current stage of
| | | experiment
| | |- first.php Displays welcome screen
| | |- login.php Displays login page
| | |- login2.php Displays login page, if login
| | | fails the first time
| | |- waitlogin.php Synchronizes all players
| | | for login
| | |- checkuser.php Checks player’s username
| | | and password
| | |- tutorial1.php Display introductory
| | | tutorial pages
| | |- tutorial2.php
| | |- tutorial3.php
| | |- tutorial4.php
| | |- tutorial5.php
| | |- tutorial6.php
| | |- tutorial7.php
| | |- tutorial8.php
| | |- checktutorial8.php Checks the tests on page 8 of
| | | the tutorial
| | |- tutorial9.php
| | |- part1.php Announces that Part I is
| | | starting
| | |- ready.php Informs that players are ready
| | | to play
| | |- wait.php Synchronizes all players to
| | | start playing
| | |- main.php Main program for playing
| | | the game
| | |- main_first.php Displays the first playing
| | | screen
| | |- main_play.php Screen prompting players to play
| | |- main_played.php Screen after the players played
| | |- neighbor1.php
| | |- neighbor2.php
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| | |- neighbor3.php
| | |- neighbor4.php Presents actions and payoffs
| | |- neighbor5.php in the last round for neighbors
| | |- neighbor6.php
| | |- neighbor7.php
| | |- neighbor8.php
| | |- you.php Presents actions and payoffs
| | | for the player
| | |- buttonC.php Makes button for
| | | cooperation (blue)
| | |- buttonD.php Makes button for
| | | defection (yellow)
| | |- play.php Writes actions to data files
| | |- play_first.php Generates automatic action in
| | | the first round
| | |- play_auto.php Generates automatic action after
| | | the first round
| | |- part1end.php Announces that Part I has
| | | finished
| | |- sumain.php Main program for monitoring user
| | |- logout.php Logs the player out
| | |- styleproba.css Style file for tutorial pages
| | |- stylemain1.css Style file for playing screens
| | |- back_verlauf.jpg Images for tutorial pages
| | |- banner.jpg
| | |- bgimage.gif
| | |- logo.gif
| | |- osmbanner1.png
| | |- payoff.gif
| | |- played.jpg
| | |------ data Stores data and
| | | background process
| | |- makefiles.py Makes data files
| | |- makenet.py Makes files with
| | | neighbors
| | |- calculate_exp1.py Background process for
| | | part I
| | |- cleanfiles.py Resets values of data
| | | files
| | |- erase.py Removes old data files
| | |- erase_exp1.sh Removes old data files
| |
| |------ control Directory for Part II of
| | | the experiment
| | |- unset_control.php Redirects to index file
| | | in this folder
| | |- part2tutorial1.php Tutorial files
| | |- part2tutorial2.php
| | |- main_control.php Main program for playing
| | | in this part
| | |- part2end.php Announces the end of
| | | Part II
| | |...(the same files as in exp1)
| | |------ data
| | | - makenet_control.php Makes neighbor
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| | | files for Part II
| | | - calculate_control.php Background process
| | | for Part II
| | | - erase_control.php Removes old data
| | | files
| | | - (the same files as in exp1)
| |------ exp2 Directory for Part II
| | of the experiment
| |- unset_exp2.php Redirects to index
| | file in this folder
| |- part3.php Announces the
| | beginning of Part III
| |- part3_end.php Announces the end of
| | Part III
| |- questions1.php Displays questionnaire
| |- write.php Writes answers to data
| | files
| |- last.php Displays goodbye screen
| |... (the same files as in exp1)
| |---- data
| | - erase_exp2.php Removes old data files
| | - calculate_exp2.php Background process for
| | Part III
| |... (the same files as in exp1)
|
|------- PDrobot Programs for robot mode
| | - exp1
| | - makescripts.py Makes scripts for
| | automatic login
| |...the same structure as PDexp,
| but some files are changed
|
|------- client_scripts Scripts which should be
| | on client
| |- experiment.sh Starts Opera with
| | appropriate parameters
| |- robot_make.sh Makes scripts for
| | starting the robots
| |- robot.py Used by robot_make.sh
| | to make scripts
| |- robot1.example Example of the scripts
| |- IPaddresses.txt IP addresses of client
| | computers
| |- setopera.sh Copies configuration
| | file for Opera
| |- setopera.py Makes setopera.sh
|
|--------configuration_files Configuration files
| | for the server

|- apache2.conf.experiment For Apache
|- php.ini.experiment For PHP
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B.2 System requirements and server settings

The system consisted of the server and the clients. On the server Apache2+, PHP5+
and Python were installed and on the clients we needed Opera with Javascript enabled.
Server and clients communicated through Internet.

During the experiment many clients are making many requests to the server. There-
fore, the following directives on the server should be adjusted to allow for a large
number of requests during the whole session.

B.2.1 Apache settings

In the file /etc/apache2/apache2.conf, the following settings should be chan-
ged from the default option:

• MaxKeepAliveRequests 0 (default 100)

The MaxKeepAliveRequests directive limits the number of requests allowed per con-
nection when KeepAlive is on. If it is set to 0, unlimited requests will be allowed. We
recommend that this setting is set to a high value allowing all the clients to connect
to the server and play the game. In our experiment we set it to 0, allowing unlimited
requests.

• KeepAliveTimeout 120 (default 15)

The number of seconds Apache will wait for a subsequent request before closing the
connection. Once a request has been received, the timeout value specified by the Time-
out directive applies. Since we do not want our connections to be closed at any moment,
we recommend that this setting is set to a high value.

• ServerLimit 5000 (add this line before MaxClients)

• MaxClients 5000

The MaxClients directive sets the limit on the number of simultaneous requests that
will be served. Any connection attempts over the MaxClients limit will normally be
queued. The default value is 256; to increase it, you must also raise ServerLimit.
Since our server needs to serve 200 clients each with many requests, we raised the limit
to 5000 and set the same for Server Limit.

B.2.2 PHP settings

To allow storing players’ information on the server for later use (i.e. username, ac-
tion, payoff, etc.) we used a PHP session. However, this session information is tem-
porary. To prolong its lifetime, the following settings should be changed in the file
/etc/php5/apache2/php.ini.

• session.gc maxlifetime = 36000 (default 1440)
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After this number of seconds, stored data will be seen as ‘garbage’ and cleaned up by
the garbage collection process.

• session.cache expire = 660 (default 180)

Document expires after n minutes.

• session.cookie lifetime = 0 (default 0)

Lifetime of cookies in seconds or, if 0, until browser is restarted. This should be 0 by
default; nevertheless, it should be checked.

• session.gc probability = 0 (default 1)

• session.gc divisor = 100 (default 100)

Define the probability that the ‘garbage collection’ process is started on every session
initialization. The probability is calculated using gc probability/gc divisor,
e.g. 1/100 means there is a 1% chance that the GC process starts on each request. This
is disabled in the Debian packages, due to the strict permissions on /var/lib/php5.
If your server is running on Debian Linux, instead of setting this here, see the cronjob
at /etc/cron.d/php5.

B.3 Tests with robots

Before running the experiment it is necessary to test the whole system. Instead of
having many volunteers who are playing the game, it is easier to run the program in
robot mode, where the buttons are pressed automatically.

B.3.1 Requirements for the test

A typical test consisted of 196 (the maximum number of players we would have)
computer terminals which had 196 different accounts, where all accounts were on an-
other server which was within the same network. Therefore on every terminal one
can login with any of the accounts. The account names should be experiment1,
experiment2,. . . , experiment196. There was one super user account which
had permission to log into any other account without password. We call this “robot ac-
count”. The folder called client scripts should be copied in the home directory
of the robot account. All the necessary scripts for running the robots are in this folder.

To start the test with robots, the same procedure as for starting the experiment
should be applied (look below) except that instead of starting everything from the folder
PDexp, it has to be done folder PDrobot.

Once the experiment is started, the following scripts robot1.sh, robot2.sh,
. . . ,
robot8.sh (which are in the folder clients scripts on the robot account)
should be started from the robot account. These scripts will start Opera through the
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X-window System on 196 accounts on the different computers. As the Opera windows
will all be on the computer where the script is started, it is recommended to start each
of the scripts from a different computer. To generate these scripts for your system,
you should use the script robot make.sh which uses file IPadresses.txt with the IP
address of all computers and as a parameter the web address on the server where the
robot scripts are. This means that the script is started in the following way:

./robot_make.sh http://path_on_the_server/PD/PDexp/exp1/

For running this script the file robot.py is also necessary. Once run, the robots
should start to login and play automatically. If they have problems logging in or the
server seems overloaded, adjust the parameters on the server again. For our system the
above parameters were sufficient. Notice that if the test is working on one system, that
does not mean it will work on other system (for example, when players are logging in
from different locations outside of internal network).

B.4 Running an experiment

B.4.1 A day before the experiment

At the beginning of the experiment players need to login to the experiment with their
unique login name and password. Login names are generically set to be usuario1,
usuario2,. . . ,usuario196 but a list of password should be specifically generated
for each experiment. Therefore, for each experiment file password.php should be
generated. The file consists of the list of access words and the following three lines at
the end of the file:

<script type="text/javascript">
top.location="index.php";
</script>

These lines are there for security reasons. Since this file, as well as the whole software,
is in the public folder, it is possible that somebody guesses the web address and opens
it by chance. However, if that happens it will be automatically redirected to the index
file and they will not be able to see the passwords. All the passwords in the list should
be one word with only ASCII characters. The number of passwords in the list should
be equal to the maximal number of players. If number of players N is smaller than the
number of passwords, the first N passwords from the list will be used. In the folder
/PD/PDexp/ there is an example file passwords example.php. Afterwords,
start makepass.sh with the following line:

1) ./makepass.sh N,
where N is maximal number of players you want to participate in the experiment (in
our case 196). This will make file userlist.php in /PD/PDexp/exp1/data/
where users names are randomly associated to one of the passwords. There will be two
columns in this file: the first one with the usernames and the second one with associated
passwords. Like this:
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username1 password1
username2 password2
username3 password3
...

Username and the corresponding password will be in the same line, password1 will
be the password for the player with username1, etc. At the end of the file there
will be the same three lines as in file password.php, again, for the security reasons.
After this file is created the pairs of usernames and passwords should be printed on the
individual papers and placed into the envelopes, which will be distributed to the players
just before the experiment.

At the end, file experiment.sh, which could be found in the folder
/PD/PDexp/clients scripts, should be copied to all the accounts that will be
used by the players during experiment.

B.4.2 The day of the experiment

At the beginning we need to make sure that there are no previously started programs
still running, and that all the files contain initial values. On the server, go to the direc-
tory /PD/PDexp/ and start check daemon.sh to check the presence of possible
active background programs from the previous runs:

2) ./check daemon.sh.
If it shows some active background processes called calculate (with the exception
of grep calculate), start stop daemon.sh to stop them:

3) ./stop daemon.sh.
Then run clean.sh to reset all the files to their initial values:

4) ./clean.sh
Now, one can proceed by starting the clients. Turn on the client computers and login
each of them to a different account (the same accounts used for robots could be used).
There should already be file experiment.sh, which was previously copied to the
account. Start this script:

I) ./experiment.sh
The script should start Opera in kiosk mode and present welcome screen of the exper-
iment. Warning: The clients’ computers are now ready for the experiment, but do not
let the volunteers to enter the computer rooms yet! If some of them is logging in while
the experiment is being started the program may get stuck.

B.4.3 Just before the experiment

According to the number of volunteers make the largest possible division N × M,
where N and M are approximately the same. Using these numbers start the background
process:

6) ./start daemon.sh N M Rmin Rmax mt python backup
where N and M are the dimensions of the network, Rmin is the minimal number of
rounds in each part of the experiment, Rmax is the maximal number of rounds in each



B.5 Outputs 109

part of the experiment, mtpython is the time before the background process (daemon)
plays instead of the player (recommended mtpython=40) and backup is the name of
the back up file.

The whole experiment could be monitored from a separate computer. On the
monitoring computer go to the site: ’servername’/PD/PDexp/exp1/ and lo-
gin as SuperUser with password: suclave (password can be changed either in file
makepass.py, as written in the comments of the file, before generating the password
or in userlist.php after that, by changing the word next to SuperUser)

Now, the volunteers can enter the computer rooms. Give the players envelopes with
usernames and passwords and let them enter the classrooms, login and start playing.

Follow what is going on on the monitor screen. You will see the table with all of
the players. The color of the field tells what stage of experiment the player is in:

• grey: not logged in

• green: logged in, but did not read the tutorial

• white: read the tutorial, did not play

• yellow: played yellow

• blue: played blue

The meanings of the colors are explained in the legend on the top of the screen.
Below is the table with the usernames of the players, their payoffs in the previous round
and total earnings in all previous rounds in that part of experiment. In experiment 1 and
experiment 2 the distribution of the players is exactly the same as in the experiment.
This means that if two players are neighbors in the monitoring table, they are also
neighbors in the experiment. However in the control part the distribution of the players
in the monitoring table is arbitrary.

As mentioned before the length of the game is determined randomly at the begin-
ning of the experiment. In case one wanted to change the number of rounds later during
the game, it could be done from the monitoring screen. Above the table there are two
buttons: ”Stop now!” and ”Plus 5 rounds” which are there if you want to stop the
game or prolong it by 5 rounds, respectively. (Warning! ”Plus 5 round” is not working
properly)

B.5 Outputs

After the experiment is finished the earning of all the players (without the show up fee)
will be in the file /PD/PDexp/exp2/earnings. In this file, the total earnings
(without the show up fee) of all players are listed in the following way:

Earnings in_euros
usuario1 34.81
usuario5 23.86



110 User’s manual for the PDexp software

usuario13 31.15
usuario12 25.51
usuario67 32.2
...

This information can be extracted from the usuarioNhistory files, but it is pro-
vided here so that the players could be paid immediately after the experiment.

Information about their actions and payoffs are in files:

exp1/usuario*history
control/usuario*history
exp2/usuario*history

In these files there will be 5 columns like this:

Round Move Score Time[ms] PlayedBy
1 C 21 11019.9999809 user
2 C 14 10210.0000381 user
3 D 40 5289.99996185 user
4 D 30 10319.9999332 user
5 C 14 9480.00001907 user
....

The first column is the round number, the second one the action of the player, the third
one his/her payoff in the round, the fourth one how much time it took him/her to play,
and the last one tells us who made the action. User means player took the action,
auto means that the main.php module took the action, and daemon means that the
background process was the one who played.

The answers to the small tests from the introductory tutorial and the questionnaire
at the end of the experiment are in the folder /PD/PDexp/exp2. The names of
these files are usuarioNanswers (where N is the ordinal number of the player)
and they look like this:

Answers:
question1: #Here comes Correct or Incorrect and the answer they gave
question2: #Here comes Correct or Incorrect and the answer they gave
question3: #Here comes Correct or Incorrect and the answer they gave
question4: #Here comes Correct or Incorrect and the answer they gave

Describe briefly how you made your decisions in part I [Experiment 1]:
# Here comes the answer
Describe briefly how you made your decisions in part II [Control].
# Here comes the answer
Describe briefly how you made your decisions in part III [Experiment 2].
# Here comes the answer
Did you take into account your neighbors actions?
# Here comes the answer
Is something in the experiment familiar to you? (yes/no).
# Here comes the answer
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If so, please point out what it reminds you of.
# Here comes the answer
If you want to make any comment, please do so below.
# Here comes the comment

The first 4 lines give us information about the tests from the tutorial. After ques-
tion1, question2, etc., it says “Correct” if the player answered correctly or “Incorrect”
otherwise, and the number they gave as their answer if they answered incorrectly. Af-
ter that, we find the questions from the final questionnaire with the answers the player
gave.

Wait for a while after the experiment and check if all the players finished answering
the questionnaire at the end. Then run the backup script to backup all the results:

./backup.sh name of backup file





C
Technical Instruction for the PDexp software

PDexp is a software for conducting Prisoner’s Dilemma (PD) experiments with human
subjects on a large square lattice, as described in Chapter 2. The software has been
developed by J. Grujić at Grupo Interdisciplinar de Sistemas Complejos at Universidad
Carlos III de Madrid.

In the experiment, volunteers played a 2 × 2 PD game with each of their eight
neighbors (Moore neighborhood) taking only one action, either to cooperate (C) or to
defect (D), the action being the same against all the opponents. The resulting payoff
was calculated by adding all eight interaction payoffs. Payoffs of the PD game were
set to be 7 cents of a euro for mutual cooperation, 10 cents for a defector facing a
cooperator, and 0 cents for any player facing a defector (weak PD). With this choice (a
cooperator and a defector receive the same payoff against a defector) defection is not a
risk dominant strategy, which enhances the possibility that cooperation emerges. The
payoffs are given as parameters of the program when started, therefore the experiment
can be performed with other payoffs. To avoid framing effects, the two actions were
always referred to in terms of colors (blue for C and yellow for D), and the game was
never referred to as PD in the material handed to the volunteers. This notwithstanding,
players were properly informed of the consequences of choosing each action, and some
examples were given to them in the introduction. After every round players were given
the information of the actions taken by their neighbors and their corresponding payoffs.

The full experiment consisted of three parts: experiment 1, control, and experiment
2. In experiment 1 players remained at the same positions in the lattice with the same
neighbors throughout the experiment. In the control part we removed the effect of the
lattice by shuffling players every round. Finally, in experiment 2 players were again
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fixed on a lattice, albeit in different positions from those of experiment 1. On the screen
players saw the actions and payoffs of their neighbors from the previous round, who
in the control part were different from their current neighbors with high probability.
All three parts of the experiment were carried out in sequence with the same players.
Players were also fully informed of the different setups they were going to go through.
The number of rounds in each part was randomly chosen in order to avoid players
knowing in advance when that part was going to finish.

C.1 Experiment timeline

At the beginning of the experiment each player receives a closed envelope with a user-
name and a password and is assigned to a computer. On the computers the software is
already running and there is a welcome message on the screen. By clicking on the but-
ton players are redirected to a login screen, where they can log in using the username
and password they received. When everybody is logged in, an introductory tutorial
starts. The rules are thoroughly explained with examples and a small test, to make sure
that players understood the rules. Once all players have read the tutorial, the first part
of the experiment starts. They see a screen showing themselves and their neighbors, as
well as two buttons: blue and yellow, to choose from. After pressing the chosen button,
they are presented with a new screen where they see their action and are asked to wait
for everybody to play. When everybody has played, they see the actions and payoffs
of their neighbors and themselves and they are asked to play again (choose one of the
buttons on the right) as seen on Fig. C.1. This completes one round. After certain
number of rounds, which is randomly chosen when the experiment is started, they are
redirected to the tutorial for the second part, which is very brief and just explains the
difference between part II and part I, and then they play again. After the second part
is finished they get a brief tutorial for part III and then they play the third part. At the
end of part III, they are asked some questions about the game, and after they answer
they see how much money they earned and the goodbye message. The whole process
is sketched in Fig. C.2. Therefore, the phases of the experiment are the following:

• Logging in

• Introductory tutorial

• Part I (experiment 1)

• Tutorial for part II

• Part II (control)

• Tutorial for part III

• Part III (experiment 2)

• Questionnaire about the game

• Final screen with information about their earnings
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Figure C.1: Screen displayed after every round of the game. Numbers are the payoffs obtained
in the most recent round. Colors represent actions (yellow: defect, blue: cooperate). The central
square represents the player; the surrounding squares represent her eight neighbors. (“Elija un
color” means “Choose a color” in Spanish.)

C.2 Software description

The software for the experiment was written in PHP 5, Javascript, and Python. In the
original experiment there were 169 client computers running Opera in kiosk mode (to
preclude players from doing anything else than playing according to the instructions)
on Debian Linux. Clients communicated with the server through Javascript and PHP
and on the server Python programs were running controlling the experiment, making
calculations, and storing results. Another client was monitoring the whole experiment,
displaying all players and their current status.

The basic purpose of the program was to present the information from the server to
the clients, then receive the input from the clients, analyze it on the server and return
new information, waiting for new input.

PHP is a general-purpose scripting language that is especially suited for Web de-
velopment and can be embedded into HTML. As such it was suitable for server side
programming. However, client side programs cannot be done in PHP, and therefore all
the programs on the client side (like pressing the buttons and the like) were done in
Javascript. To avoid concurrency issues, we did the necessary analysis on the server
through a background process which waited until all the clients finished certain seg-
ment. Then the process did the calculations and subsequently allowed PHP scripts to
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Figure C.2: Experiment timeline. After the server sends the starting signal to the clients, the
clients log in, each at their own time. When everybody is logged in, the server sends the tutorial
to all of them at the same time. Clients finish reading the tutorial each at their own time and
afterward the server sends the first playing screen. Clients play and after everybody finishes they
see the updated screen. The cycle of playing and updating the screen is repeated R times where
R is the number of rounds. The part from sending the tutorial until the last playing cycle is
repeated 3 times, for experiment 1, control and experiment 2. At the end players are asked to fill
the questionnaire in.
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continue. We chose to write the background process in Python. Therefore, PHP is
used to present information to the client, Javascript to receive input from the client and
Python for the server analysis. The generation of auxiliary and data files is also done
in Python. To automatically run all the Python code bash scripts were used.

A normal HTML website will not pass data from one page to another. In other
words, all information is forgotten when a new page is loaded. To allow storing players’
information on the server for later use (i.e. username, action, payoff, etc.) we used a
PHP session. On the other hand, to pass variables between PHP and Python we stored
them as text files on the server.

The software has two modes: normal mode and robot mode. Normal mode is used
for the experiment itself and robot mode is used for testing the server. The difference
is that in normal mode, players are required to push the buttons, while in robot mode,
buttons are pressed automatically, therefore the robot mode is like having robots press-
ing the buttons instead of players. In this way, if we need to test the system, we do not
need a large group of people pressing buttons, we just run the robot mode.

C.3 Input and output files

The whole software consists of the programs run on the server and the program run
on the clients. However, most of the software runs on the server. In normal mode, on
the client we run only one module, experiment.sh, which is used to start Opera in
kiosk mode. This module neither uses any input file nor produces any output file. On
the other hand, in robot mode we use more modules to start. The only input file they
use is a file with the IP addresses (see the example in PD/client scripts) of the
computers in the network, and again they do not produce any output file.

On the server side the input and output is the same in both normal and robot
modes (although in the robot mode output is irrelevant). Apart from the input which
the program gets from the players, the only input it uses is the file with passwords
(PD/‘mode’/passwords.php, where ‘mode’ can be either PDexp or PDrobot,
depending on the mode the software is run in) and the parameters of the program. The
passwords.php file consists of the list of access words and the following three lines
at the end of the file:

<script type="text/javascript">
top.location="index.php";
</script>

These lines are there for security reasons. Since this file, like the whole software, is in
the public folder, it is possible that somebody guesses the web address and opens it by
chance. However, if that happens it will be automatically redirected to the index file
and they will not be able to see the passwords. All the passwords in the list should be
one word with only ASCII characters.

The most important parameters of the experiment are the size of the network, given
as N × M , and the minimum and maximum number of rounds (Rmin and Rmax) of
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each part. In the original experiment the size of the network was 13 × 13 and the
number of rounds was randomly chosen between 40 and 60 (therefore Rmin = 40 and
Rmax = 60). Afterward, we define the values of the parameters for the Prisoner’s
dilemma, originally set to sucker’s payoff S = 0, punishment for mutual defection
P = 0, reward for mutual cooperation R = 7 cents of euro, and temptation to defect
T = 10 cents of euro. One should additionally give the time after which the back-
ground program will play instead of the player, mtpython. More precisely, if the player
does not play, after 30 seconds the module main.php (specifically play auto.php
or play first in the first round) will play. However, in case that a client is tem-
porarily disconnected, the module main.php will not be able to play and the back-
ground process will then take action after mkpython seconds. In the original experiment
mkpython was 40 seconds. The last parameter of the program is the name of the backup
file for the data from the previous run. This is introduced to avoid losing important data
when starting a new experiment. These parameters are introduced when running the
start daemon script in the following way:

./start_daemon.sh N M Rmin Rmax R S T P mt_python backup

There are three types of output files generated by the code. The most important
ones are the files containing the actions of the players. The names of these files are:
usuario1history, usuario2history, . . . , usuarioNhistory. We have
three different sets of these files, one for each part of experiment. Therefore each set
is in its own folder: PD/‘mode’/‘experiment’/data, where ‘experiment’ can
be exp1, control, exp2, depending on the part that is being executed. Mode can be
‘PDexp’ or ‘PDrobot’, although in robot mode these files are irrelevant. These files
have 5 columns, like this:

Round Move Score Time[ms] PlayedBy
1 C 21 11019.9999809 user
2 C 14 10210.0000381 user
3 D 40 5289.99996185 user
4 D 30 10319.9999332 user
5 C 14 9480.00001907 user
....

The first column is the round number, the second one the action of the player, the third
one his/her payoff in the round, the fourth one how much time it took him/her to play,
and the last one tells us who made the action. User means the player performed the
action, auto means that the main.php module made the action, and daemon means
that the background process was the one that played.

The second type of output are the answers to the small tests from the introductory
tutorial and the questionnaire at the end of the experiment. The names of these files are
usuarioNanswers (where N is the ordinal number of the player) and they looked
like this:
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Answers:
question1: # Here comes Correct or Incorrect and the answer they gave
question2: # Here comes Correct or Incorrect and the answer they gave
question3: # Here comes Correct or Incorrect and the answer they gave
question4: # Here comes Correct or Incorrect and the answer they gave

Describe briefly how you made your decisions in part I [Experiment 1]:
# Here comes the answer
Describe briefly how you made your decisions in part II [Control].
# Here comes the answer
Describe briefly how you made your decisions in part III [Experiment 2].
# Here comes the answer
Did you take into account your neighbors actions?
# Here comes the answer
Is something in the experiment familiar to you? (yes/no).
# Here comes the answer
If so, please point out what it reminds you of.
# Here comes the answer
If you want to make any comment, please do so below.
# Here comes the comment

The first 4 lines give us information about the tests from the tutorial. After ques-
tion1, question2, etc., it says “Correct” if the player answered correctly or “Incorrect”
otherwise, and the number they gave as their answer if they answered incorrectly. Af-
ter that, we find the questions from the final questionnaire with the answers the player
gave.

The last type of output is the file earnings, which is in folder PD/PDexp/exp2.
In this file, the total earnings (without the show up fee) of all players are listed in the
following way:

Earnings in_euros
usuario1 34.81
usuario5 23.86
usuario13 31.15
usuario12 25.51
usuario67 32.2
...

This information can be extracted from usuarioNhistory files, but it is pro-
vided here so that the players could be paid immediately after the experiment.

In summary, the input and output files are the following:
Server side (same for normal and robot mode):

• Input:

– players’ actions

– file with passwords

– parameters of experiment (entered in command line)

• Output:
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– history files for all players in three parts separately

– answer files for all players

– earnings file

Client side:

• Normal mode:

– no input, no output

• Robot mode:

– input: IPadresses.txt file

– output: no output files

C.4 Structure of the program

In the main folder for the normal mode there are bash scripts for starting the experiment
and three different folders exp1, control and exp2, which have a similar structure.
In each of these three folders there is an index.php file. At the beginning, using the
bash scripts we execute the Python scripts and start the background process. Afterward
the clients can log into the experiment. The program starts the execution from exp1.
The file index.php in the folder exp1 redirects clients to the current phase of ex-
periment. At the end of part I the clients are redirected to the folder control, where
unset control.php sets the current phase to the first tutorial in part II and then
goes to the file index.php in the folder control, which redirects clients to the
current stage of the experiment. At the end of Part II, clients are once again redirected
to exp2, where the current phase is set in file unset exp2.php and they are then
redirected to the file index.php in folder exp2.

The folder structure is as follows:

Directory structure:

PD
|- index.php Empty file, included for
| security reasons
|- manual.txt Users manual
|- technical_instruction.pdf Technical instructions
|----- PDexp Directory for normal mode of
| | experiment
| |- backup.sh Makes backup of the output
| | files
| |- clean.sh Resets data files to initial
| | value
| |- check_daemon.sh Checks for background processes
| |- makepass.py Makes files with usernames and
| | passwords
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| |- passwords.php List of passwords
| |- start_daemon.sh Starts background processes
| |- stop_daemon.sh Stops background processes
| |----- exp1 Directory for Part I of the
| | | experiment
| | |- index.php Redirects to current stage of
| | | experiment
| | |- first.php Displays welcome screen
| | |- login.php Displays login page
| | |- login2.php Displays login page, if login
| | | fails the first time
| | |- waitlogin.php Synchronizes all players
| | | for login
| | |- checkuser.php Checks player’s username
| | | and password
| | |- tutorial1.php Display introductory
| | | tutorial pages
| | |- tutorial2.php
| | |- tutorial3.php
| | |- tutorial4.php
| | |- tutorial5.php
| | |- tutorial6.php
| | |- tutorial7.php
| | |- tutorial8.php
| | |- checktutorial8.php Checks the tests on page 8 of
| | | the tutorial
| | |- tutorial9.php
| | |- part1.php Announces that Part I is
| | | starting
| | |- ready.php Informs that players are ready
| | | to play
| | |- wait.php Synchronizes all players to
| | | start playing
| | |- main.php Main program for playing
| | | the game
| | |- main_first.php Displays the first playing
| | | screen
| | |- main_play.php Screen prompting players to play
| | |- main_played.php Screen after the players played
| | |- neighbor1.php
| | |- neighbor2.php
| | |- neighbor3.php
| | |- neighbor4.php Presents actions and payoffs
| | |- neighbor5.php in the last round for neighbors
| | |- neighbor6.php
| | |- neighbor7.php
| | |- neighbor8.php
| | |- you.php Presents actions and payoffs
| | | for the player
| | |- buttonC.php Makes button for
| | | cooperation (blue)
| | |- buttonD.php Makes button for
| | | defection (yellow)
| | |- play.php Writes actions to data files
| | |- play_first.php Generates automatic action in
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| | | the first round
| | |- play_auto.php Generates automatic action after
| | | the first round
| | |- part1end.php Announces that Part I has
| | | finished
| | |- sumain.php Main program for monitoring user
| | |- logout.php Logs the player out
| | |- styleproba.css Style file for tutorial pages
| | |- stylemain1.css Style file for playing screens
| | |- back_verlauf.jpg Images for tutorial pages
| | |- banner.jpg
| | |- bgimage.gif
| | |- logo.gif
| | |- osmbanner1.png
| | |- payoff.gif
| | |- played.jpg
| | |------ data Stores data and
| | | background process
| | |- makefiles.py Makes data files
| | |- makenet.py Makes files with
| | | neighbors
| | |- calculate_exp1.py Background process for
| | | part I
| | |- cleanfiles.py Resets values of data
| | | files
| | |- erase.py Removes old data files
| | |- erase_exp1.sh Removes old data files
| |
| |------ control Directory for Part II of
| | | the experiment
| | |- unset_control.php Redirects to index file
| | | in this folder
| | |- part2tutorial1.php Tutorial files
| | |- part2tutorial2.php
| | |- main_control.php Main program for playing
| | | in this part
| | |- part2end.php Announces the end of
| | | Part II
| | |...(the same files as in exp1)
| | |------ data
| | | - makenet_control.php Makes neighbor
| | | files for Part II
| | | - calculate_control.php Background process
| | | for Part II
| | | - erase_control.php Removes old data
| | | files
| | | - (the same files as in exp1)
| |------ exp2 Directory for Part II
| | of the experiment
| |- unset_exp2.php Redirects to index
| | file in this folder
| |- part3.php Announces the
| | beginning of Part III
| |- part3_end.php Announces the end of
| | Part III
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| |- questions1.php Displays questionnaire
| |- write.php Writes answers to data
| | files
| |- last.php Displays goodbye screen
| |... (the same files as in exp1)
| |---- data
| | - erase_exp2.php Removes old data files
| | - calculate_exp2.php Background process for
| | Part III
| |... (the same files as in exp1)
|
|------- PDrobot Programs for robot mode
| | - exp1
| | - makescripts.py Makes scripts for
| | automatic login
| |...the same structure as PDexp,
| but some files are changed
|
|------- client_scripts Scripts which should be
| | on client
| |- experiment.sh Starts Opera with
| | appropriate parameters
| |- robot_make.sh Makes scripts for
| | starting the robots
| |- robot.py Used by robot_make.sh
| | to make scripts
| |- robot1.example Example of the scripts
| |- IPaddresses.txt IP addresses of client
| | computers
| |- setopera.sh Copies configuration
| | file for Opera
| |- setopera.py Makes setopera.sh
|
|--------configuration_files Configuration files
| | for the server

|- apache2.conf.experiment For Apache
|- php.ini.experiment For PHP

C.5 Modules

The experimental setup consists of four parts. The first part are the programs for start-
ing the experiment. The corresponding files are in folder PD/PDexp and are mostly
bash scripts, the only exception is a Python file for generating the file with passwords.
The second part is the interaction part, which presents the playing screens and stores
the data about the players actions. These files are in folders /PD/PDexp/exp1,
PD/PDexp/control and PD/PDexp/exp2, and are written in PHP and Javascript,
which are embedded in HTML. The third part are the files for the background processes.
There are three of them, one for each part of the experiment:

/PD/PDexp/exp1/data/calculate exp1.py
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/PD/PDexp/control/calculate control.py

/PD/PDexp/exp2/calculate exp2.py

These files are written in Python. The last part of the setup are the files that generate
the necessary data files for running it, once given the parameters for the experiment.
These files are also written in Python.

C.5.1 Start up part

The scripts for running and stopping the experiment are in the folder /PDexp:

• makepass.py — uses passwords.php and produces userlist.php,
which is necessary for logging in. The file userlist.php has two columns:
the first one with the usernames of the players and the second one with the asso-
ciated passwords. All the usernames have the same first part usuario and then
a number from 1 to N, where N is the total number of players. Passwords are
the words from the file passwords.php, which are randomly associated. The
username for the monitoring client is SuperUser and the password suclave.
At the end, this file has the lines which redirect a random visitor away from this
site without seeing its content (the same as in passwords.php)

• check daemon.sh — looks for remaining background processes. It lists all
the processes which are called calculate. If the only process listed is “grep
calculate*”, then there are no active background processes

• stop daemon.sh — stops remaining background processes by killing any
process which has ‘calculate’ in its name.

• start daemon.sh — starts background processes. This is the most impor-
tant file in this module. It runs the scripts for generating data files and the back-
ground process. The parameters of this file are the parameters of experiment (as
explained in section C.3). For its use, see manual.txt.

C.5.2 Interaction part

This part consists of all the programs necessary for the communication between the
system and the players. It has the program that presents the working screens and stores
raw data about the actions of the players. These raw data files will be later used by the
background process. Most of the files in this module are the same in the three parts of
the experiment. The difference is mainly in the tutorial files, although there are some
differences also in the other files. The first program is index.phpwhich redirects the
player to the current stage of the experiment. The main part is the file main.php. This
file comes in three flavors, depending of the current stage of the game. It first stores
the time of the beginning of the action in the file usuarioNtimestart, where N is
the ordinal number of the player. If it is the very beginning of the game it includes the
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...
usuarioN8score

usuarioN1score

main.php

round usuarioNlock

if usuarioNlock="notplayed" and round=1

main_first.php

usuarioNtimestart usuarioNtimestop usuarioNlock usuarioNplayedby

play_auto.phpplay.phpplay_first.php

buttonC.php buttonD.php

main_played.php

if usuarioNlock="notplayed" and round>1

if usuarioNlock="played"

usuarioN8move

...
usuarioN1move
usuarioNmove usuarioNscore

usuarioN

main_play.php
You.php

Neighbour1.php

NeighbourN8.php

...

if click "D"if click "C"

30 sec delay 30 sec delay

Figure C.3: Main module of the interaction part. Relationships with input and output data and
other modules.

file main first.php. After the player took the action and is waiting for others to
take their action, it includes main played.php. Finally, when the player is going
to take a new action it includes main play.php. The files main first.php and
main play.php will further include the files buttonC.php and buttonD.php,
which will trigger the file play.php that stores the information about the action in
files usuarioNlock, usuarioNtimestop, usuarioNplayedBy. If the player
does not play in 30 seconds the files play first.php (for main first.php) or
play auto.php (for main play.php) are triggered and they store the data in the
same files. Figure C.3 shows a scheme of this module.

Internal input files for this part of the program:

• round — contains the current round,

• usuarioNlock — the player’s action in this round or “notplayed” if he/she
has not played yet,

• usuarioNmove — the action in the previous round,

• usuarioN1move,. . . , usuarioN8move — neighbors’ actions in the previ-
ous round,
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• usuarioNscore — player’s payoff in the previous round,

• usuarioN1score,. . . , usuarioN8score — neighbors’ payoffs in the pre-
vious round,

• usuarioN — the list of player’s neighbors.

In the first round players enter file main first, and afterward are forwarded to file
buttonC.php or buttonD.php, depending on their action, and to play.php
which stores the data about the player’s action. If a player does not play in 30 sec
it is forwarded to play first.php, where an automatic action is taken and the
data are stored in the same files. If it is not the first round, main play.php will
be included. The difference between the two is that after the first round we also
need to present the actions and payoffs of the player and his/her neighbors in the
previous round. This is done through files you.php and neighbor1.php,. . . ,
neighbor8.php. The automatic action taken is also different. Therefore we use
other file, play auto.php, for the automatic action. Once the player plays, the con-
tent of his/her usuarioNlock file is changed and the part main played.php is
included. Notice that usuarioNlock is both input and output file for this part of the
system. Therefore, while in main played, the content of these files is checked once
per second and the next round starts as soon as the contents of all of them are changed
back to ”notplayed” (by the background process) . All the input files are also updated
by the background process at this moment and the part main play.php is included.
This way the new round starts.

Before the players can start the game they have to login and read the tutorial. There
are a few synchronization points. First we wait for everybody to login, then we wait
for everybody to read the tutorial before every part of experiment.

All parts

The files present in every part of the experiment are:

• index.php — the main file which redirects clients to the current stage of the
experiment. If the player is not logged in and the background process is started,
it redirects the client to the login module. If the client already tried to login it
checks the password and afterward redirects it to the first page of the experiment.
If the username is SuperUser it is redirected to the monitoring screen. If
the player is already logged in, he/she is redirected to the current stage of the
experiment, which is kept in the PHP session variable “step”.

• main.php — is the main file throughout the stage of experiment when the
game is played. It shows the playing screen, redirects to the main first.php
in the first round, to main play.php if the player needs to make an action,
and to main played.php when the player has already played and is waiting
for everybody to play. See Fig. C.3.
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• neighbor1.php,. . . , neighbor8.php and you.php — are files used by
main play.php to show the action and payoff of the neighbors and you.php
shows the payoff and action of the player herself.

• buttonC.php and buttonD.php — are used by main first.php and
main play.php. They represent the buttons to choose from. Pressing one of
them triggers the module play.php

• play.php — writes the information about the players action in the appropri-
ate files. Its output are files: usuarioNlock (with the action of the player),
usuarioNtimestop (with the time when the action is taken) and the file
usuarioNplayedby (where it stores whether the player played herself)

• play first,php, play auto.php — are activated if the player does not
play in 30 seconds. The modules automatically choose the action and then give
the same output as the module play.php. The automatic action of play first
is randomly chosen between C and D with the same probability. The module
play auto.php plays the previous action of the player with 80% chance and
the opposite one otherwise.

• ready.php — This file is used for synchronization. It is triggered when the
player reads the tutorial. It puts in the file usuarioNready an indication that
the player has read the tutorial and is now ready to play. This information is then
processed by the background process.

• wait.php — The second function used for the synchronization. It waits for all
the players to read the tutorial. When this happens the background process will
change the contexts of the file /data/started, the file wait.php will read
that and let the player proceed.

• sumain.php — The program for monitoring the experiment. It shows a table
with the current status of all players. The color of the field tells in what stage of
the experiment the player is:

– grey: not logged in
– green: logged in, but did not read the tutorial
– white: read the tutorial, did not play
– yellow: played yellow
– blue: played blue

The meanings of the colors are explained in the legend on the top of the screen.
Below is the table with the usernames of the players, their payoffs in the previ-
ous round and total earnings in all previous rounds in that part of experiment. In
experiment 1 and experiment 2 the distribution of the players is exactly the same
as in the experiment. This means that if two players are neighbors in the moni-
toring table, they are also neighbors in the experiment. However in the control
part the distribution of the players in the monitoring table is arbitrary.
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• stop.php, plus5rounds.php — They are used by sumain.php to stop
or extend the experiment.

Part I

The files exclusive of Part I are:

• waitlogin.php — It is used for synchronization at the very beginning when
users are logging in. It checks the context of the file allloggedin. When all
players are logged in, the background process will change the content of this file
and waitlogin.php will let the players proceed.

• tutorial1.php, . . . , tutorial9.php, first.php, part1.php and
checktutorial8.php— are the tutorial programs which present the screens
with the rules of the game. File tutorial8.php contains a small test to check
the understanding of the rules by the players. File checktutorial8.php
checks if the answers are correct and writes the obtained information in files
/exp2/data/usuarioNanswers.

• login.php, login2.php, logout.php, checkuser.php — are files
for logging in. The file login.php presents the log in screen, where the
player should type his username and password. These are then forwarded to
checkuser.php: if the username and password are correct the player can
proceed to the tutorial. If not, the player is forwarded to login2.php, where
he/she can try again.

• part1end.php — presents the screen after part I has finished. After pressing
the button the player is redirected to the control part.

Part II

The files exclusive of the control part are:

• unset control.php — is the first function in the control part. It sets the
current step of the experiment to be part2tutorial1.php, then forwards
this information to index.php in the control folder. This is the cause why the
control of experiment is no longer in exp1/index.php.

• part2tutorial1.php, part2tutorial2.php — are tutorial programs
for the second part. They give information about the differences between Part I
and Part II.

• main control.php — which is different from main.php from the exp1
only in lines 29 and 30. Unlike Part I and Part II, here it reads neighbors from
different files every round.

• part1end.php — presents the screen after Part II has finished. After pressing
the button the player is redirected to Part III.
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Part III

The files exclusive of Part III are:

• unset exp2 — like unset control.php, this is the first function in Part
III. It sets the current step of the experiment to be part3.php, then forwards
this information to index.php, which is located in the exp2 folder. This is
why the control of experiment is no longer in file control/index.php.

• part3.php, part3.end.php — display the screen with instructions.

• questions1.php, write.php — are the programs for the questionnaire.
The programs questions1.php presents the screen with questions and for-
wards the answers to write.php, which writes the obtained answers to the
files
/exp2/usuarioNanswers.

• waitdaemon.php — waits for the background process to finish and then lets
the program proceed to the last screen. When the background process finishes it
changes the content of file finished. Waitdaemon.php reads this file and
if its content is “finished” it lets the player proceed, otherwise it asks him/her to
wait.

• last.phpN and sulast.php present the last screens of the experiment. The
program last.php presents the player’s earnings to the players and a good
bye message, and sulast.php presents the last screen to the monitoring client
with the information about the total earnings of all players.

C.5.3 Background process

Calculate is the background program which controls the experiment, makes cal-
culations and stores the data in permanently. There are three different background
processes, one for each part of the experiment. In the first part, the background pro-
cess is calculate exp1.py and it is in the folder PD/PDexp/exp1/data/. At
the beginning it changes the context of the file daemonstarted to allow users to
log into the experiment. Afterward it waits for all players to login by checking the
content of files usuario1loggedin,. . . , usuarioNloggedin. When the exper-
iment is started the content of these files is “notloggedin”. Once the player logs in
the content of his file is changed to “loggedin”. When the content of all these files
is “loggedin” the background process changes the content of file allloggedin,
allowing players to proceed to the introductory tutorial. Afterwards it waits for all
players to read the tutorial, by checking the content of files usuario1ready,. . . ,
usuarioNready. When the content of all these files is “ready”, it changes the con-
tent of file started, allowing players to start playing. It reads the current round
from file round, then the total number of rounds from the file roundsnumber and
the number of players from file numberofusers. Then it starts the main loop of
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the process. It waits for all players to play. Once they all have played, the content
of all usuario1lock,. . . , usuarioNlock files is going to be “C” or “D”. Then
calculate copies all files to usuario1move,. . . , usuarioNmove, reads the
neighbors from the files usuario1,. . . ,usuarioN, and calculates the payoffs which
are written into the files usuario1score,. . . , usuarioNscore. Furthermore, it
calculates the times it took the players to play (reads files usuario1timestart,
. . . , usuarioNtimestart for the starting time and usuario1timestop, . . . ,
usuarioNtimestop for the end time), then reads files usuario1playedby,
usuario2playedby, . . . , usuarioNplayedby and writes the full information
into files usuario1history, . . . , usuarioNhistory (round, action, payoff,
time of play and who played). At the end, it increases the number of rounds by one
and resets the files usuario1lock,. . . , usuarioNlock to notplayed, therefore
allowing the player to play again and looping back to the beginning of the cycle. In
case that after some time (mspython > 30s) there remain players who have not played,
the program plays for them (choosing the previous move with 80% chance and the
opposite one with 20%) and then does the same calculation. See the scheme of this
module in Fig. C.4.

In Part III of the experiment (experiment 2), this file is the same except that it does
not wait for everybody to login at the beginning, just to read the tutorial. The file in Part
II (control) is also different when reading the neighbors files, since it reads neighbors
from a different file every round. The names of these files are usuarioN rX, where
N is the ordinal number of the player and X is the ordinal number of the round.

C.5.4 Data file generation

These programs are located in PD/PDexp/’experiment’/data. There are three
programs in each part of the experiment:

• makefiles.py — generates the data files for storing the information needed
throughout the experiment. The data files it generates (with the value it puts in
the file in brackets) are: firstround (first), log (), log php(), round (1),
daemonstarted (not), allloggedin (not), totaltotal (0), started
(notstarted) and for each player: usuarioNhistory (Round Move Score
Time[ms] PlayedBy), usuarioNlock (notplayed), usuarioNscore (0),
usuarioNtotalscore (0), usuarioNmove (), usuarioNplayedby (),
usuarioNtimestarted (1.5), usuarioNtimeend (2.3),
usuarioNready(), usuarioNloggedin (no).

• cleanfiles.py — resets the content of the files to its value at the beginning
of the experiment, so the experiment cannot be started again without deleting the
data files produced. The files it resets (with the values it puts in brackets) are:
daemonstarted (not), started (notstarted), alllogedin (not) and for
all the players, usuarionNready (notready), usuarioNloggedin(no).

• makenet.py — generates files with the lists of the neighbors of each player,
the name of the file being the name of that player. This means that the file



C.5 Modules 131

calculate_exp1.py

usuario1loggenin
...

...
usuario1ready

numberofusers

usuario2lock
...
usuarioNlock

usuarioNmove

...
usuario1move

usuarioNscore

usuario1score
...

totaltotal

usuarioNtotalscore

...
usuario1totalscore

usuarioNhistory
...
usuario1hystory

usuarioNplayedby

...
usuario1playedby

...
usuario1timestop

usuarioNtimestop

usuarioNtimestart
...
usuario1timestart

usuarioN

usuario1
...

usuarioNloggedin

usuarioNready

round

allloggedin

started

deamonstarted

roundsnumber

Figure C.4: Scheme of the background process. Input and output files. Notice that round
and usuario1lock,. . . , usuarioNlock are both input and output files. At the beginning
of the loop they are input files and at the end they are output. Although files allloggedin
and started also appear as input and output files, they are essentially only output files. Their
values are read only in case we need to rerun the background process in the middle of experiment.

usuario34 contains the list of 8 players who are his/her neighbors. The file
uses four parameters: two for the size of the network: N and M , and two for
generating the number of rounds: minimal number of rounds Rmin and maximal
number of rounds Rmax. At the beginning it generates the number of rounds as
a uniform random number between Rmin and Rmax, then it reads the players
usernames from the file userlist.php, shuffles and arranges them in the
network of size N × M . Furthermore it determines who are the neighbors of
every player in this network and writes the list of neighbors for each player in
the file with the name of that player. In the control part this function is called
makenet control.py and it generates a different set of neighbors for each
round, which are stored in files usuarioN rY, where N is the ordinal number
of player and X is the ordinal number of round.
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C.5.5 Client side scripts

There are a few scripts which should be run on the client side. These scripts are in folder
PD/client scripts. The whole folder should be copied to the clients’ computers.
In the normal mode of the experiment it is just the script experiment.sh. This
file starts Opera in kiosk mode and excludes options to exit the kiosk mode and to use
special keys.

The other files in this folder are used for the robot mode of experiment:

• robot make.sh — creates the scripts for running the robots. As input it uses
the web address of the starting page of the program. Usage:

./robot_make.sh http:/path_on_the_server/PD/PDrobot/exp1/

As output, it produces the programs robot1.sh,..., robot8.sh, which are
used to start the robots. For running this file, the file robot.py is also neces-
sary.

• setopera.sh — creates the files necessary for setting the properties of Opera
(this might not be necessary, since the only property it sets is a default web
page, should be checked!) uses the file setopera.py and produces the file
setopera running.sh, which should be run to set Opera on the clients.

C.6 Robot mode

C.6.1 Tests with robots

A typical test consisted of 196 computer terminals which had 196 different accounts on
the main computer and another server which was within the same network. The account
names should be experiment1, experiment2,. . . ,experiment196. There was
one super user account which had permission to log into any other account without
password. We call this “robot account”. The folder called client scripts should
be copied in the home directory of the robot account. All the necessary scripts for
running the robots are in this folder.

To start the test with the robots, the same procedure as for starting the experiment
should be applied (look at the manual) except that instead of starting everything from
folder PDexp, it has to be done from folder PDrobot.

Once the experiment is started, the following scripts: robot1.sh, robot2.sh,
. . . , robot8.sh (which are in folder clients scripts on the robot account)
should be started from the robot account. These scripts start Opera through the X-
window System on 196 accounts on the different computer. As the Opera windows
will all be on the computer where the script is started, it is recommended to start each
of the scripts from a different computer. To generate these scripts for your system, you
should use the script robot make.shwhich uses the file IPaddresses.txtwith



C.6 Robot mode 133

the IP address of all computers and as a parameter the web address on the server where
the robot scripts are. This means that this script is started in the following way:

./robot_make.sh http://path_on_the_server/PD/PDexp/exp1/

For running this script the file robot.py is also necessary. Once run, the robots
should start to login and play automatically. If they have problems logging in or the
server seems overloaded, adjust the parameters on the server again. For our system the
above parameters worked. Notice that if the test is working on one system, that does
not mean it will work on other system (for example, when players are logging in from
different locations outside the internal network).

C.6.2 Creating robots

The difference between robot-mode and normal-mode files is just in the interaction
part. Wherever the program is waiting for the action of the player, in robot mode an
automatic action should be taken. Therefore, every button needs to be replaced with
the redirection. This means that the following lines (for making the button) should be
deleted:

Pinche <input type="submit" value="Aqu&iacute;" class="btn"
name="submit"> para continuar.

And these lines (for automatic redirection) should be added at the end of the same files:

<script type="text/javascript">
setTimeout(’document.form1.submit();’,1000);
</script>

This change should be made in the following files:

• in PD/PDrobot/exp1

– login.php, tutorial1.php, tutorial2.php,
tutorial3.php, tutorial4.php, tutorial5.php,
tutorial6.php, tutorial7.php, tutorial8.php,
checktutorial8.php, tutorial9.php,
part1.php, part1end.php

• in PD/PDrobot/control

– part2tutorial1.php, part2tutorial2.php,
part2end.php

• in PD/PDrobot/exp2

– part3.php, part3end.php, questions1.php
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makescripts.py

u1.php u2.php

userlist.php

uN.php

Figure C.5: Graphic scheme of the file makescripts.py. As input it uses the file with all
usernames and passwords and generates the files for automatic logging in. Although the input
and output files are PHP scripts, in this context they are not used as PHP scripts. The input file
userlist.php is a PHP script for security reasons and the output files are going to be used
as PHP scripts later.

Besides, the files for automatic logging in should be added in folder PD/PDrobot/exp1.
The names of the files are: u1.php, u2.php,..., u196.php and they are generated
by the script makescripts.py, which uses the file userlist.php where the
usernames and passwords are (see Fig. 5).

The programs main first.php and main play.php require some more sub-
stantial changes. In these files there are two buttons from which one should be chosen
at random and “pushed”. For choosing randomly between the two buttons we add
following line:

$rand_button=rand(0, 1);

in row 6, in the first PHP block, and instead of line:

<?php include_once("buttonC.php")?>

we include the following lines, that will mark cooperation button if the random choice
was 0:

<?php if($rand_button==0) include_once("buttonC.php")?>

Similarly, for the defection button:

<?php include_once("buttonD.php")?>
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we include these lines, that will mark defection button if the random choice was 1:

<?php if($rand_button==1) include_once("buttonD.php")?>

Once determined in main first.php and main play.php which button will
be included, in files buttonC.php and buttonD.php the following button should
be “clicked” at a random time within 30 seconds. This is achieved in buttonC.php
by deleting:

<input type="submit" value="" style="background-color:#0099CC;
width:100; height:50">

And in buttonD.php, the following line should be deleted:

<input type="submit" value="" style="background-color:#FFFF33;
width:100; height:50">

On the other hand, the lines for automatic redirections:

<script type="text/javascript">
var ran_number=Math.floor(Math.random()*30);
setTimeout(’document.login.submit();’,ran_number*1000);
</script>

should be added at the end of the files buttonC.php and buttonD.php.

C.7 Some warnings

• In the files where it is needed, session start() has to be the first line in a
file, not even a comment can be written before that.

• When writing the robot, the control should be automatically redirected to other
function, but the button has to be removed, otherwise the automatic redirection
will not work.





D
Additional material on the group size experiment
(Chapter 5)

D.1 English translation of the instructions

We include below an English translation of the instructions as they were read and dis-
tributed to the participants in the experiment. We present the version for the case in
which there was computer intervention to increase highly cooperative contexts. The in-
structions for the sessions without random computer intervention are identical, except
that the paragraph after Random intervention does not exist. The version provided
is for the case of groups of five players. The instructions for the sessions with smaller
number of players are identical except that the complete payoff tables are different and
the exchange rate also varies as indicated in the main text.

Instructions

Thanks for participating in this experiment, which is part of a research project in
economics in which we try to understand how decisions are made, but where a partic-
ular behavior is expected of you. From this moment the experiment begins. Please be
quiet for its whole duration. turn of your cell phone, and remember that no material
alien to the experiment is allowed (including pens, pencils and paper). Your earnings
depend on your decisions and the decisions of other participants. In addition you re-
ceive as a payment 10 euros just for participating. From now and until the end of the
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experiment you are not allowed to communicate with other participants. If you have
any questions, please raise your hand and an instructor will answer your questions in
private.

Please do not ask questions out loud!

The experiment

The experiment consists of an undetermined number turns or rounds, and it will last
around an hour and never more than two. The rules are the same for all participants
and on every round. Throughout the experiment you will be part of the same group
of 5 participants (5 including yourself). None of you will know who are the other 4
participants with whom you play, and in particular, they need not be the people close
to you.

Rounds

In every round you will see two buttons on the screen, corresponding to the actions
A and B, of which you must choose one by clicking the mouse on it. You have 10
seconds to do so, and you necessarily have choose one of two options (the experiment
will be stopped if a participant does not press one of them). When all the players have
chosen, you will see the information on the number of players who have chosen A, the
number of those who have chosen B and your earnings on that round.

The earnings on each round are computed as follows:

• If you choose A: you receive 7 ECU for each player that chooses A A (excluding
yourself) and nothing for each player choosing B.

• If you choose B: you receive 10 ECU for each player choosing B and nothing for
each player choosing B.

The following table shows all the possibilities for your personal earnings:

The others choose:
AAAA AAAB AABB ABBB BBBB

You choose A 28 21 14 7 0
You choose B 40 30 20 10 0

while the earnings for the group as a whole are:

Decisions AAAAA AAAAB AAABB AABBB ABBBB BBBBB

Group earn. 140 124 102 74 40 0
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The screen with the information on what you and the other players have done and
yours and theirs earnings will show itself for 20 seconds. You must press “OK” to go
to the following round; the screen for the next round will be shown when all players
press “OK”.

Random intervention

Occasionally, and in completely random way, the computer can change your deci-
sion or that of the other player. The program does not report this change when it occurs.
In such cases the payment is calculated as if the player concerned had actually taken
the decision that the computer chose. The frequency with which this happens is low:
your actions will remain unchanged for at least an 85% of the time.

Payments

After the last round, the ECUs you obtained in each round will be added to obtain
your total earnings, so you need to pay full attention until the end. The ECUs will be
converted to euros so that 100 ECUs will be converted to one Euro. Additionally you
will receive 10 Euros just for participating.

End of instructions

D.2 Comparison of the treatments with and without computer in-
terventions

In order to see how computer interventions influenced the decision making process of
the players, we compared the probabilities of cooperating in different context for the
treatments with and without computer interventions (moody conditional cooperation
strategy). In Figure D.1 we present this comparison. We see that the difference between
the two treatments in decision making are minor and that the global trends are the same
in both kind of treatments.
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Figure D.1: Comparison of moody conditional cooperators in experiments with and without com-
puter interventions. Probability that an individual cooperates after having cooperated (squares)
and after having defected (circles) in the previous round, for groups of 2 (top left), 3 (top
right), 4 (bottom left) and 5 (bottom right) people. We present the results separately for the
experimental treatment with computer interventions (red) and the control treatment without com-
puter interventions. The error bars show the 95% confidence intervals and are calculated as
1.96 ∗

√
p(1− p)/n, where n is the number of samples, and p is probability of cooperation.

• • 

1 



E
Additional model on the group size experiment
(Chapter 5)

E.1 Model

The model presented here was developed by B. Eke.
In order to shed further light on our results, we resorted to the development a

GLMM that helps understand our observations and identify the significant factors that
influence them. To this end, it has to be taken into account that our data contains re-
peated measures on each subject of a binary variable. Let yijt be the response of the
subject i in group j at time t. Let yijt = 1 if this subject cooperates at time t and 0 oth-
erwise for all i, j and t. Then yijt ∼ Bernoulli(pijt). By the nature of the experiment,
the subjects are nested in groups. Thus, a model needs to take into account the nested
structure of the data, and the repeated measures on the subjects.

Our concern with respect to dependency is the repeated measures on the same sub-
ject. First, the observations on the same subject are correlated just because they are
decisions of the same person. This is also known as within subject variability. Second,
the observations close in time, on the same actor, are more likely to be highly corre-
lated as oppose to the observations further apart. We interpret this as latent generosity
with a time component. Third, another source of variation is the latent component of
the individual reaction to the number of cooperative actions observed in the group in
the previous round. We can interpret this as latent reciprocity. These latent effects then
measure “between-subject” variability.
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Before introducing the model we finally chose as the best for our data, let us point
out that, in alternative specifications, we checked for effects of major and gender, with-
out finding any significant effect. Most importantly, we tested the dependence on
whether the group was manipulated by the computer or not, again finding no differ-
ences (see Materials and methods below). With these inputs, we finally proposed the
following model:

logit(pit) =
5∑

l=2

βlχ(sizeil)

+
5∑

l=2

βC
l LagCoopitχ(sizeil)

+ βALagActionit

+ αi +
5∑

l=2

γilLagCoopitχ(sizeil) + ξit, (E.1)

where pit is the probability of cooperation of subject i at time t, and the factors that
affect it are as follows: χ(sizeil) is the characteristic function corresponding to the
group size of subject i, that is, χ(sizeil) = 1 if subject i played in a group of size l and
0 otherwise; LagCoopit is the number of cooperative actions received by subject i at
time t−1; LagActionit is equal to 1 if the subject cooperated in the previous round and
0 otherwise, and βl and βC

l , l = 2 . . . 5, and βA
l are the parameters of the fixed effects.

On the other hand αi is the latent cooperativeness of each subject, and γi is her latent
reciprocity (the individual random variation in the response to perceived cooperation).
Individual latent effects follow normal distributions: α ∼ N(0,Σ), where, Σ = σ2

αI,
where I is the identity matrix, and analogously γ ∼ N(0,Σγ), where, Σγ = σ2

γI. In
addition, we have the repeated measure structure modeled as AR(1) structure through
the ξit term, where ξit = ρRξi,t−1 + uit, where u is a vector of random variables with
variance σu. That is, there is a random component on the left hand side of the model
which measures the “within subject” variability. The structure of the covariance matrix
for this effect is given by a symmetric matrix, R, whose (ij)-entry is σuρ

|i−j|
R .

E.2 Model results.

The model captures well the observations from the experiment, as can be seen from the
comparison between the experimental data and the model predictions in Figs. 5.1 and
5.2. The agreement is particularly good for the cooperation level, as this magnitude
can be obtained directly from the model, whereas there are small discrepancies in the
slope of the conditional cooperation lines, mostly for the highest cooperative contexts.
These discrepancies can be understood as the estimation of these lines is an indirect
product of the model. Another feature that is confirmed is the clear dependence on the
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players’ own previous action, their ‘moodiness’, an aspect to which we come back to
below.

We first discuss the latent factors in the model. The corresponding variance com-
ponents estimated within our model are represented in Table E.1. The corresponding
p−values are obtained by applying the log-likelihood ratio significance test (LRT) on
the boundary of variance parameter space as in

Turning now to the fixed effects, the predicted values for the corresponding param-
eters are presented in Table E.2. The estimates and their p-values give us the individual
significance levels. The type 3 tests collect the information on overall significance of
the effects. Based on the Table E.2, we have size, LagCoop and LagAction as highly
significant covariates at 1% significance level). Other relevant results include, for in-
stance, the fact that the size of the groups is important for cooperative attitudes. As
Table E.2 shows, the parameter for the baseline cooperative attitude in a group of size
2 is larger and statistically different from all the others. In turn, the baseline cooperative
attitude is not statistically different between sizes 3 and 5. The conditional cooperation
declines monotonically with group size, although the differences become smaller as
size increases, and the coefficient is still statistically different from zero even at the
largest size. This is an interesting point that might be useful to understand why coop-
eration is more fragile in large groups, which could in turn explain why social groups
often evolve punishment strategies directed solely at deviators, as in (Boyd and Rich-
erson 1992). Finally, the result that LagAction is relevant points to the dependence of
actions on what occurred at the previous round. In this respect, it is important to men-
tion that we also tried other models in which dependence on two previous time steps
was included, and we found that this was not significant. Therefore, the dependence on
the player’s own previous choice is enough to capture the results of the experiment, a
finding that is in agreement with earlier work (Dal Bó and Frechette 2011; Fudenberg
et al. 2012).

Table E.1: Results for the variance of the random effects. Shown are the estimates, their standard
error and the log-likelihood ratio (LRT) p-value assessing their significance. From top to bottom,
the table shows the results for the generosity, the reciprocity, and the two parameters of the AR(1)
formalism.

Estimate SE LRT p−value
σα 0.8590 0.1075 <0.0001
σγ 0.3311 0.0394 <0.0001
ρR -0.01971 0.0173 <0.0001
σu 0.9021 0.0089 <0.0001
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Table E.2: Results for the fixed effects. Shown are the estimates, their standard error and the
p-value assessing their significance. The upper part of the table shows the estimates for βi

coefficients, i = 2, . . . , 10. The second, third and forth parts of the table show significance test
results for the different factors in the model. The tests are summarized in Methods.

Effect Estimate p−value
β2 −1.4599 <0.0001
β3 −1.6329 <0.0001
β4 −1.7689 <0.0001
β5 −1.5499 <0.0001
βC
2 1.6310 <0.0001

βC
3 0.4940 <0.0001

βC
4 0.3762 <0.0001

βC
5 0.2059 0.0143

βA 0.5910 <0.0001

Type 3 Tests
F−value p−value

Size 136.50 <0.0001
LagCoop × size 71.93 <0.0001
LagAction 195.68 <0.0001

Contrast Analysis Bonferroni adj.
(Size) t-value p-value
2 vs. 3 0.61 0.4359
2 vs. 4 2.49 0.1162
2 vs. 5 0.19 0.6639
3 vs. 4 0.47 0.4918
3 vs. 5 0.16 0.6908
4 vs. 5 1.47 0.2272

Contrast Analysis Bonferroni adj.
(Size*LagCoop) t-value p-value
2 vs. 3 61.50 <0.0001
2 vs. 4 98.35 <0.0001
2 vs. 5 117.69 <0.0001
3 vs. 4 0.85 0.3589
3 vs. 5 4.72 0.0311
4 vs. 5 2.32 0.1292
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E.3 Statistical tests of significance.

The statistical tests used in the paper are the log-likelihood ratio (LRT) significance test
of variance parameters, standard significance tests and type III test on fixed effects, and
the contrast analysis for the levels of fixed effects. The log-likelihood ratio significance
test is used for the variance parameters since the tested value, 0, in on the boundary of
the parameter space of the variances. The theory and development behind this test
is explained in (Self and Liang 1987). Basically, a low p-value indicates significant
variance parameter, i.e., heterogeneity among the participants of the random effect.
These results are presented in Table 1. The standard significance test and the type III
tests test for the significance on the parameters, the former individually, and the latter
jointly, for all levels of that variable. For example, consider the variable size. The first
part of Table 1 presents the results of standard significance test results for β2 , β3, β4

and β5, which corresponds to sizes 2, 3, 4, and 5, respectively. The second part of
the same table represents the joint significance of the size effect. i.e., H0 = β2 =
β3 = β4 = β5 = 0 versus at least one is nonzero. The last test performed here is the
contrast analysis. This procedure investigates the differences between the levels of the
same variable. For example, again using size, in the previous tests we have considered
differences from 0; now we are studying whether the effect of being in a group of size 2
is different than that of sizes 3, 4, and 5, respectively. Due to the multiple testing in this
procedure the p-values are adjusted using Bonferroni adjustment, which adjusts the p-
values by the number of tests performed. This adjustment is more on the conservative
side, that is, we do not reject more often.
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submitted





Resumen

Entender las interacciones entre las personas y sus contactos sociales es un problema
clave para dilucidar la forma en la que funciona la sociedad y cómo ésta contribuye a la
mejora del bienestar individual. El origen evolutivo de la cooperación entre individuos
no emparentados es una cuestión sin resolver que afecta a varias disciplinas. Entre los
distintos mecanismos propuestos para explicar cómo puede aparecer la cooperación
destaca la existencia de una estructura en la población que determine las interacciones
entre individuos. Muchos modelos han explorado analı́tica y computacionalmente los
efectos de dicha estructura, sobre todo en el marco del Dilema del Prisionero, pero los
resultados obtenidos dependen enormemente de muchos detalles, tales como el tipo
de estructura considerada o la dinámica evolutiva. Por tanto, era preciso llevar a cabo
trabajo experimental diseñado apropiadamente para identificar qué caracterı́sticas de
las que integran los modelos son las relevantes.

En esta tesis hemos investigado cómo la estructura espacial influye en la promoción
de la cooperación. Para ello, diseñamos un experimento para estudiar la aparición de
cooperación cuando las personas juegan al Dilema del Prisionero iterado. Los voluntar-
ios que participaron en este experimento jugaron al Dilema del Prisionero en una red
de tamaño considerable. Los paretros del experimento se escogieron para promover la
cooperación en la mayor medida posible, partiendo de las predicciones de los modelos
teóricos. Nuestros resultados indican que el nivel de cooperación no mejora por la exis-
tencia de una red, manteniéndose la fracción de cooperadores en un 20% aproximada-
mente. Estos resultados se pueden explicar a través de la existencia de heterogeineidad
y de una estrategia de cooperación condicional generalizada, en la que la probabilidad
de cooperar depende de la cooperación de los otros participantes en el juego y también
de la acción previa del jugador. Nuestras conclusiones han tenido un gran impacto en
la manera en la que la Teorı́a de Juegos en grafos se usa para modelar las interacciones
humanas en grupos estructurados.

De hecho, nosotros mismos hemos propuesto un modelo basado en agentes en el
que coexisten tres diferentes estrategias compatibles con las observaciones experimen-
tales: cooperación, defección y cooperación condicionada generalizada. Consideramos
grupos de n = 2, 3, 4 y 5 jugadores y calculamos los pagos para cada tipo de jugador
en el equilibrio utilizanda cadenas de Markov. De esta manera, demostramos que para
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los grupos de tamaño menor que n = 4 existe un punto interior en el cual las tres
estrategias coexisten. La correspondente cuenca de atracción disminuye al aumentar
el número de jugadores, mientras que para n = 5 no pudimos encontrar ningún punto
de atracción interior. Finalmente, hemos visto que para el lı́mite cuando n tiende a
infinito, dicho atractor no existe.

Ası́ pues, nuestros experimentos en red sugieren que la cooperación puede depen-
der de la acción previa del jugador, pero al mismo tiempo hemos probado teóricamente
que ese tipo de comportamiento no puede coexistir con jugadores que nunca cooperan
y con cooperadores en grupos formados por más de 5 personas. Por ello, decidimos
diseñar un experimento que reprodujese nuestro esquema teórico. As confirmamos la
existencia de cooperadores condicionales y un nivel de cooperación bajo en grupos
formados por más de dos miembros. Soprendentemente, hemos visto que el compor-
tamiento de los jugadores en grupos de dos individuos es cualitativamente diferente a
las situaciones donde este número es mayor. Nuestro experimento se prolongó durante
100 rondas, lo cual nos permitió estudiar el régimen a largo plazo. Cuando se juega al
Dilema del Prisionero por parejas en esta situación, el nivel de cooperación, tras una
caı́da inicial, se incrementa significativimente y llega a un nivel de más del 80 %.

Además, hemos reanalizado los datos del experimento de Traulsen et al. (2010), en
el que los voluntarios jugaban al Dilema del Prisionero con sus cuatro vecinos más cer-
canos en una red de tamaño 4×4. El experimento tenı́a dos tratamientos: uno espacial,
donde los jugadores tenı́an una posición fija en la red durante todo el experimento, y
uno no espacial, en el cual los jugadores cambiaban sus posiciones en la red después de
cada ronda. Analizamos estadı́sticamente las decisiones individuales y dedujimos con
qué modelo o modelos de Teorı́a de Juegos evolutiva las podemos conectar. No encon-
tramos ninguna diferencia entre ambos tratamientos. Sin embargo, las estrategias que
usan los jugadores no corresponden con las que se suelen estudiar en Teorı́a de Juegos
evolutiva. Finalmente, utilizando simulaciones numéricas, vimos cómo los mecanis-
mos de actualización obtenidos en los experimentos no favorecen la cooperación en la
estructura espacial.

Como apoyo a nuestras conclusiones, hemos comparado los resultado de exper-
imentos diferentes. Aunque hay diferencias, ciertas caracterı́sticas parecen ser uni-
versales. Ası́, el nivel de cooperacion se muestra bajo en todos los experimentos, a
pesar de que muchos modelos teóricos predicen una promoción de la cooperacion, y la
estructura de la población (la red) parece no tener ningun efecto sobre el nivel de co-
operación. En todos los experimentos se observa cooperaci condicional generalizada,
aunque tambi es posible describir el comportamiento observado con otras reglas, si
bien de manera menos universal que con la anterior.
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women expected to be more generous? Experimental Economics 12, 93–98.

Aktipis C. (2004). Know when to walk away: contingent movement and the evolu-
tion of cooperation. JTB 231, 249–260.
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Poncela J., Gómez-Gardeñes J., Florı́a L. M., Moreno Y., and Sánchez A. (2009).
Cooperative scale-free networks despite the presence of defector hubs. EPL 88,
38003.
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