
Universidad Carlos III de MadridDepartamento de Ingeniería TelemátiaIngeniería Informátia. Espeialidad sistemasdistribuídos

PROYECTO FIN DE CARRERA� DESIGN AND IMPLEMENTATION OFAN EXTENSIBLE BINARY ENCODING(XBE32) C LIBRARY �
Author: LIA BAILAN ZAMORADiplomada en InformátiaDiretor: MANUEL URUEÑA PASCUALLieniado en Informátia

Marh, 2009

For those regarded as warriors, when engaged in ombat, thevanquishing of thine enemy an be the warrior's only onern. Sup-press all human emotion and ompassion. Kill whoever stands inthy way, even if that be Lord God or Buddha himself. This truthlies at the heart of the art of ombat. Kill bill vol.1

Dediated to Telmo, Liö-Liö and ...da boy.

Contents
1 Introdution 11.1 Motivations . 21.2 Objetives . 31.3 Doument ontents . 42 STATE 0F THE ART: ENCODING STANDARDS 52.1 The ompetitors . 52.2 Justifying the existene of XBE32 93 XBE32 SPECIFICATION 113.1 TLV format . 12Unspei�ed Length . 143.2 XBE32 TLVs . 15Complex TLVs with inner TLVs 15Simple TLV with one variable-length Value 16Simple TLVs with 1-Otet Values 17Simple TLV with 2-Otets Values 17Simple TLVs with 4-Otets Values 18Simple TLVs with 8-Otets Values 18Simple TLVs with 12-Otets Values 19Simple TLVs with 16-Otets Values 20Opaque TLV Values . 20String TLV Value . 21Boolean TLV Values . 21Integer TLV Values . 22Floating point TLV Values . 223.3 XBE32 Elements . 23Compat Elements . 23Extensible Elements: Extensible Names and Identi�ers 24Extensible Complex Elements . 251

Extensible Attribute Elements . 264 XBE32 DESIGN AND IMPLEMENTATION 294.1 TLV layer . 30The writer: Building a TLV . 31The reader: Proessing a TLV . 334.2 XBE32 Element layer . 40The writer: Building an XBE32 element 40The reader: Proessing a XBE32 element 42The ditionary: Giving sense to the elements 474.3 Usage examples . 48Enoding example . 495 CONCLUSIONS AND WORKS FOR THE FUTURE 575.1 Trabajos futuros . 60

2

List of Figures3.1 Format of a XBE32 TLV . 123.2 Disseted TLV type . 133.3 Primitive TLV types . 143.4 TLV signaling an End-of-data . 153.5 Complex TLVs with inner TLVs 163.6 Example of simple TLV with one variable-length value 163.7 Example of simple TLVs with 1-Otet Values 173.8 Example of simple TLV with 2-Otets Values 173.9 Example of simple TLV with 4-Otets Values 183.10 Example of simple TLV with 8-Otets Values 193.11 Simple TLVs with 12-Otets Values 193.12 Example of simple TLV with 16-Otets Values 203.13 Opaque TLV types . 213.14 String TLV types . 213.15 Boolean TLV types . 223.16 Integer TLV types . 223.17 Floating TLV types . 223.18 TLV Meta and Subtype table . 233.19 Extensible omplex and attributes TLV 243.20 Extensible TLV names and identi�ers 253.21 Extensible Complex Elements example 263.22 Extensible Attribute Elements example 273.23 Disseted TLV type . 284.1 Library struture . 304.2 Opening of a omplex TLV . 374.3 Closing of a omplex TLV . 374.4 Next TLV proess . 394.5 Next Element proess . 453

4

Chapter 1
Introdution
Nowadays omputer networks in the modern business industry are essential.There are a lot of servies that in these days are provided through the network,and without them, it would be impossible to save resoures by sharing them.In addition to that, tehnology has advaned a lot, making possible for theusers to possess mahines (laptops, PC's, PDA's, et) that are not stati but ango with them wherever they go, foring the IT researh to disover new waysto provide the network servies to those mobile devies. For all those reasons,servie disovery protools have been developed.The aess to network servies sattered among di�erent loations is possiblethanks to Servie Disovery tehnology. It is the tehnology responsible to �ndall the di�erent resoures attahed to the user network and o�er them to them inase are authorised to use them. Servie Disovery Protools are the protoolsthat arry out the mission. Some of these tehnologies are: Jini, Salutation,SLP, UPnP. This protools have been oneived to allow the ooperation amongdevies/servies with minimal human intervention.To perform all the three tasks (plus the spei� of eah protool) it is ne-essary the interhange of messages in the net between the di�erent mahines.To �nd the proper enoding mehanism for a Servie Disovery Protool is themain goal of this work.

1

2 CHAPTER 1. INTRODUCTION1.1 MotivationsXSDF (Extensible Servie Disovery Framework), published in 2005, de�nes anarhiteture with several entities and protools for the management and loationof Servie information. XSDF intents to be the tool to give transpareny to thedi�erent network operations that a user needs for its daily working. XSDF triesto address all these problems, o�ering a framework to �nd the best servie forthe user. That is, looking for the one whih optimizes the needs of the userand of the network. In this way, this tool an be useful not just to �nd hiddenresoures, but to keep a load balane between all of them as well.There is no need to say that, sine XSDF is another SDP, the needs to implementit meets the needs of the others SDP. Therefore XSDF is fored to send enodedmessages as mean of ommuniation between the mahines that take part in itsproess.Nowadays, the most popular format to represent hierarhial strutured in-formation is the eXtensible Markup Language (XML), and it has been employedby multiple network protools and appliations. Although its textual represen-tation allows protools to be extensible, and eases development and debugging,it requires more bandwidth and proessing than a binary ounterpart.On the other hand, we an mention ASN.1, at some extent less popularformat, that gives us a representation that requires muh less bandwidth, evensaving spae at the bit level, but has quite omplex proessing rules.As a result, we have two very di�erent enoding mehanisms that overdi�erent user's neessities. XML provides a mean to represent hierarhial data;ASN.1 allows to enode the data in a minimum spae so less bandwidth isneeded. Our goal is the implementation of XBE32, whih is meaning to overthe de�ienies of both of them, its purpose it is to give to the user the haneto represent hierarhial data in an smaller spae.The requirements asked to XBE32 will be:
• to be apable of expressing hierarhial strutures in its messages.
• to save bandwidth through the reation of really ompat messages.This doument spei�es an eXtensible Binary Enoding (XBE32), a simplebinary enoding for network protools that arry hierarhial data. It pretends

1.2. OBJECTIVES 3to be an intermediate way between XML and ASN.1. In spite this enoding hasalready a Java implementation, we have seen neessary to make its orrespon-dent implementation in C, due to the fat that this language is more extendedin the Unix/Linux platform and above all, among the open soure ommunity,whih in our humble opinion is a very important soure for the development ofthis tehnology.1.2 ObjetivesThe main objetive of this work is to develop a library to enode/deode XBE32messages in C language. This implementation will beome a library that hasto be simple, transparent and e�ient. The library had to work as the base forany other network appliation that required to enode messages in XBE32.Those were the o�ial objetives that must over the XBE32 implementationdesribed in this work. For the student responsible to arry out this task,there are additional objetives. Among them the most important one was theimprovement of the ability to program in C language, but there were othersas the omprehension of a omplex protool and its posterior materialization,the appliation of the engineering methods learned during the degree ourses,the use of distributed programming tehniques, and the use and improvement ofLinux O.S and several utilities as ontrol version appliations, sienti� languageproessors, et.Finally, sine the goals for this work have been explained, it is time todesribe the means used to perform the implementation, just as the implemen-tation itself has been desribed. In spite it has not been an easy task to oneiveand to apture this library, the tehnology needed is not very sophistiated:
• A simple PC mahine apable to host:� a g ompiler.� a revision ontrol system (subversion).� a simple text editor (gedit).� a latex ompiler.� a graphi appliation apable of reate UML diagrams (DIA).� an Internet onnetion (Just to do researh).

4 CHAPTER 1. INTRODUCTION1.3 Doument ontentsThe struture of this doument is the following:In the present hapter, we present the problem we are trying to solve with thiswork, and the objetives that we want to ahieve with the implementation. Inaddition to that, some bakground about the means we have at our disposal toperform the implementation is given.After that, in the seond hapter, we present some of the other enodingstandards available in the market and we establish a omparison between themin order to show whih are the points that are not overed by those alternativesthat make our solution neessary.The third hapter is the spei�ation of the protool implemented in thiswork. This hapter is inluded to give the users an overview of XBE32 andmake them apable of evaluate the way the implementation has been done.The fourth hapter o�ers an explanation about the implementation. De-sribes the system arhiteture and the funtions with some graphial meansand some examples to improve the reader understanding.In the �fth hapter we summarize the initial goals and hek if these havebeen ahieved, look for the main di�ulties during the job, and reount the fu-ture works opened by the realization of this implementation and the skills andtehniques aquired with this work.Finally, this writing ounts with a ouple of appendixes: Installation, whihexplains whih �les must be installed and how install and/or reate them; andthe man pages whih onstitute the users' manual.

Chapter 2
STATE 0F THE ART:ENCODING STANDARDS
2.1 The ompetitorsIn the present time, XML is the most widely format to represent hierarhialinformation, and sine this kind of information is the most popular in the ur-rent omputer appliations, XML has beome the most extended format in themoment.Development of XML started in 1996 and it has been a W3C Reommen-dation sine February 1998, whih may make us suspet that this is rather im-mature tehnology. In fat, the tehnology is not very new. Before XML therewas SGML, developed in the early '80s, an ISO standard sine 1986, and widelyused for large doumentation projets. The development of HTML started in1990. The designers of XML simply took the best parts of SGML, guided bythe experiene with HTML, and produed something that is no less powerfulthan SGML, and vastly more regular and simple to use. In addition to this,XML allows protools to be extensible, and eases development and debugging,but XML presents a great problem for distributed appliations: it requires morebandwidth and proessing than the expression of its information in/on binarydata.Over the past deade, XML has beome the preferred enoding system of themajor IT and business ompanies. It has reeived an enormous support fromthese, and this is the reason why it has beome the most important enoding5

6 CHAPTER 2. STATE 0F THE ART: ENCODING STANDARDSlanguage nowadays. It has been adopted by the great majority of Universities,and thus there is no single IT or Information siene student who does notuse it for at least a ouple of projets. Its simpliity and its ease to deployany hierarhial sheme have been its most valuable attributes to make fromXML the standard enoding for any organization. On the other hand, we mustremember that though XML is full of advantages, it is very di�ult for just onetehnology to ful�l the goals of every user at every moment. XML onsumes alot of bandwidth and it is not suitable for small protools whih main goal isspeed.Sine many users do not bother to hek if one tehnology is the best fortheir appliations (they take for granted that the most trendy always must beapplied), some researhers have seen as something important to produe anstudy about XML and its suitability respet another old enoding standard,ASN.1. A fragment of this study [9℄, by Jose Angel Mart' inez Usero and ElsaPalaios Ramos, below in order to summarise the advantages and disadvantagesof both standards:ASN.1 is designed to desribe the struture and syntax of trans-mitted information ontent. ASN.1 provides the de�nition of theabstrat syntax of a data element (or data type). The abstrat syn-tax desribes the syntatial struture and typed ontents of datathat are subsequently to be transmitted aross some medium. Thelanguage is based �rmly on the priniples of type and value, witha type being a (non-empty) set of values. The type de�nes whatvalues an subsequently be sent at runtime, and the value is what isatually onveyed aross the medium at runtime.ASN.1 values are enoded before transmission using one of anumber of di�erent enoding mehanisms suh as the Basi EnodingRules (BER), the Distinguished Enoding Rules (DER), the PakedEnoding Rules (PER) [10℄ (ASN.1 enoding rules: Spei�ation ofBasi Enoding Rules (BER), Canonial Enoding Rules (CER) andDistinguished Enoding Rules (DER)) or the reently introduedXML Enoding Rules (XER) [11℄(Information tehnology ASN.1enoding rules:XML Enoding Rules). The enoding rules speifyhow the values of the abstrat data types are onverted into bytestrings ready for transfer. The reipient must usually be aware of thetype de�nition before reeipt, as this is not transferred but must beinferred from the ontext in whih the message exhange takes plae.

2.1. THE COMPETITORS 7The Basi Enoding Rules are very e�ient and reate Type, Length,Value (TLV) byte streams, so that the reipient, upon reading thelength �eld, knows how many data bytes the value omprises. PERis even more e�ient than BER, and is not based on TLV streams,so even greater optimisation an result. For example, PER neverenodes the length of the value, unless it has to. If something has a�xed length, then the length �eld is not enoded.During the transmission the ASN.1 data stream is never in aform readable by human operators (exept when XER is used). Onlywhen it has been transformed into some loal data display format,prior to enoding or after deoding, an it be easily read by humans.In its behalf, it must be said that a lot of enoding rules an be used,as it has been said before. Among them, the XML enoding rules.But as a great inonveniene, we found that its binary enoding israther omplex and it must take several stages: ASN.1 enodingitself, and after that, the appliation of the seleted enoding rules(PER, XER, BER or XML).XML is a set of rules that allows data values to be enoded intext format. XML is a subset of the Standard Generalized MarkupLanguage (SGML), but is also in�nitely extensible. XML doumentsontain the information for transmission and onsist of markup (whihorresponds roughly to the �tag� and �length� parts in BER TLVenoding) and harater data (whih orresponds roughly to the�value� part in BER TLV enoding). Constraints an be imposed onthe XML doument struture with the provision of Doument TypeDe�nitions (DTD's) or XML Shemas. These desribe the allowedmarkups that a onformant XML doument an ontain.One an see immediately that XML is very verbose, and onse-quently reates large data streams. XML is transferred in textualformat with no binary enodings or ompression. Furthermore, thereipient has to examine every byte reeived in order to determinethe end of a data value. However, XML goes through no transforma-tions and remains in a onstant human readable format throughoutthe proess.In some sense it an be said that DTD'os/shemas map to the ab-strat syntax type de�nitions within ASN.1 and the XML doumentsmap to the ASN.1 enoded byte streams. There are a few major dif-ferenes between ASN.1 and XML/DTDs, with XML/DTDs laking

8 CHAPTER 2. STATE 0F THE ART: ENCODING STANDARDSany onept of data type and ASN.1 being rih in built-in data typesand supporting user-de�ned data types. Also, XML is very verbose,unlike ASN.1 enoding rules (exept XER) that have been designedfor optimal performane rather than human readability. However,from an appliation programmer'os perspetive, XML is easier to de-bug sine the data stream an be read without any speial softwaretools. Trying to read an ASN.1 BER or PER byte stream is veryomplex, but a number of free tools do exist to display ASN.1 datain its original soure form e.g. dumpasn1. In addition, the XML 1.0spei�ation is a lot newer, simpler and easier to understand thanthe ASN.1 doumentation, whih has gone through several iterationsand therefore ontains many more sophistiated features.In many environments XML is a preferred way of enoding busi-ness transations, sine the messages are readily viewable by webbrowsers. If these environments involve simple XML messages, with-out digital signatures, then XML performs adequately and the bene-�ts of XML an be realised. In fat we have found that simple XMLmessage reation is more e�ient than reating an equivalent ASN.1byte stream. For ritial real time systems where digital signing ofomplex data strutures is required, and where performane is a keysuess fator, suh as an eletroni presribing system for example,it has been shown that signed omplex XML messages an be up toa 1000% slower to deode than an equivalent ASN.1 message.XML is easy to manipulate and easy to understand, all fatorswhih make it attrative to both senior management and develop-ers. However, the key to many IT projet failures has been theinability to pereive the needs of the end users, and performaneis one of them. Some believe that in a real time system dealing inmultiple transations a seond and requiring strong authentiationthrough digital signatures, XML formatting is not a good protool tohoose. This might ultimately result in user dissatisfation and per-haps even total system failure. Sine end users are aware of systemperformane and not of the underlying data enoding mehanisms,we believe that performane �gures are an important fator in sys-tem design. In several soures, it has been shown that with digitallysigned messages ASN.1 an signi�antly outperform XML by overan order of magnitude.

2.2. JUSTIFYING THE EXISTENCE OF XBE32 92.2 Justifying the existene of XBE32Despite XML is the most widely protool used to enode data in Internet ap-pliations, as we have seen in the previous setion, the performane of the men-tioned protool is not as good as it should be, at least in ertain senarios.This is the main reason of the existene of XBE32. This protool has beenreated in order to solve the problems raised by XML (bandwidth and proess-ing).Some of the harateristis that make XBE32 a better enoding system thanXML are the following:
• XBE32 Elements are serialized inside TLV strutures whih are 32-bitaligned to ease the parsing proess. As data is learly delimited, XBE32does not require to esape haraters as XML does, thus it also failitatesmessage reation.
• XBE32 TLVs have a 2-otets long Type and Length �elds. Therefore,XBE32 is well suited for simple protools with short messages and a smallset of identi�ers. However, in order to be extensible, XBE32 Elements mayalso have variable-length names or longer binary identi�ers. Moreover,XBE32 may support TLVs with an �unspei�ed� length in order to enodebig messages, and to start sending a message before its total length isknown. There are two kinds of XBE32 Elements: �Attribute Elements�whih arry primitive data values, and �Complex Elements� whih are notable to arry data by themselves but ontain other Attributes and/or otherComplex Elements.
• In order to be employed by modern programming languages, XBE32 makeuse of ommon primitive data types for its Attribute Elements, suh asStrings, Booleans, Integers, Floats, as well as Arrays. Other data typesan be enoded using the di�erent binary Opaque value types de�ned byXBE32.One this point has been reahed, an inspired reader ould get to the onlu-sion that, if some reent studies have shown that ASN.1 ould be the solutionto the problems that XML raises, XBE32 has no reason to exist. Well, that isnot that simple sine there are several reasons that advises the use of XBE32

10 CHAPTER 2. STATE 0F THE ART: ENCODING STANDARDSover ASN.1, the main one is simpliity, but we are going to enumerate others inthe following list:
• ASN.1 data proessing is further muh omplex than XBE32. Data is �rstenoded in the ASN.1 language, and after that, it is neessary to applythe mehanisms that onverts the data following the PER, BER or XERenoding rules. XBE32 is an atomi enoding system that does not needof another mehanism or tools to enode the data, making the proessquiker and easier to follow to the user.
• ASN.1 BER enoding is quite similar to XBE32 sine it also employsTLVs. However ASN.1 BER is a lot more omplex than XBE32 sineits �nal objetive is reduing bandwidth osts, not proessing ones. Forinstane BER TLVs have variable length �elds, and are byte-aligned. Onthe other hand XBE32 employs 32-bit aligned TLVs with �xed-length�elds that greatly eases the parsing proess. Moreover ASN.1 is a generalenoding syntax not foused in a single domain of appliation but many.For instane it has 30 data-types and deals with globally unique OIDidenti�ers, whereas XBE32 has been designed for simple protools with asmall set of identi�ers and data-types.

Chapter 3
XBE32 SPECIFICATION
This hapter ontains the full spei�ation of the XBE32 enoding, the lastversion of the draft [1℄ written by Manuel Ureña Pasual and David Larrabeiti.Nowadays, the most popular format to represent hierarhialstrutured information is the eXtensible Markup Language (XML),and it has been employed by multiple network protools and appli-ations. Although its textual representation allows protools to beextensible and eases development and debugging, it ould requiremore bandwidth and proessing than a binary ounterpart.The eXtensible Binary Enoding (XBE32), a simple binary en-oding for network protools that arry hierarhial data. XBE32 El-ements are serialized inside TLV strutures whih are 32-bit alignedto ease the parsing proess. As data is learly delimited, XBE32does not require to esape haraters as XML does, thus it also easesmessage reation. The �nal goal of this enoding is to be used byappliations whih need to redue the bandwidth of the informationsent and without great ompliations in the enoding proess.XBE32 TLVs have a 2-otets long Type and Length �elds. There-fore, XBE32 is well suited for simple protools with short messagesand a small set of identi�ers. However, in order to be extensible,XBE32 Elements may also have variable-length names or longerbinary identi�ers. Moreover, XBE32 may support TLVs with an�unspei�ed� length in order to enode big messages, and to startsending a message before its total length is known.There are two kinds of XBE32 Elements: �Attribute Elements�11

12 CHAPTER 3. XBE32 SPECIFICATION

Figure 3.1: Format of a XBE32 TLVwhih arry primitive data values, and �Complex Elements� whihare not able to arry data by themselves but ontain other Attributesand/or other Complex Elements.In order to be used by modern programming languages, XBE32employs ommon primitive data types for its Attribute Elements,suh as Strings, Booleans, Integers, Floats, as well as Arrays. Otherdata types an be enoded using the di�erent binary Opaque valuetypes de�ned by XBE32.The design of XBE32 has been oneived to intertwine two dif-ferent layers. The �rst one will be responsible to handle the atomiparts of the language; the TLVs. The seond layer will handle theelements; this elements are always omposed by one or more of thelatter.Now, in the next setions we are going to introdue the di�erentomponents of the protool just in order to make more omprehen-sible the explanation about the way we have implemented it.3.1 TLV formatA TLV (abbreviation of Type Length Value) is, as its name pointsout, a set omposed by the type, length and value of the item weare trying to represent. Is the smallest item in the protool, andthe one from the others are made of. XBE32 Elements are enodedinside Type-Length-Value (TLV) strutures, that MUST be alignedto 4-otet words. XBE32 TLVs ould be: �Simple� TLVs if theyarry primitive data values, or �Complex� ones if they ontain otherTLVs. The struture of a TLV is as �gure 3.1 illustrates.Type (16 bits):

3.1. TLV FORMAT 13This �eld desribes the proessing rules, TLV struture and whatkind of data is arried inside the Values �eld. The Type �eld hasthe internal struture shown in �gure 3.2:
Figure 3.2: Disseted TLV typeC and E bits (1 bit eah):These two bits speify the measures that must be taken if theXBE32 proessing entity does not reognize this Type value:C - Continue Proessing:0 - Disard this mandatory TLV and stop proessing TLVs left1 - Skip this optional TLV and ontinue proessing next TLVE - Notify Error:0 - Do not report to the sender that this Type is unknown.1 - Report to the sender that this Type is unknown.Meta (6 bits):This sub�eld desribes the internal struture of the TLV's Values�eld, as well as the type of the primitive data it ontains 3.3:Subtype (8 bits):This sub�eld identi�es the semanti meaning of this TLV and/orthe data arried inside its Values �eld. Therefore, Subtype valuesshould be de�ned by the upper appliation/protool that is employ-ing a XBE32 enoding. However, Subtype values 0x00 and 0xFF arereserved for XBE32 use and SHOULD NOT be employed for otherpurposes.Length (16 bits):This �eld MUST be enoded as an unsigned binary number innetwork byte order (a.k.a. Big Endian, i.e, the most signi�ant byte�rst). It spei�es the size in otets of the whole TLV struture,exluding padding. Length SHOULD be always equal or greaterthan 4 otets, that is, the length of the Type and Length �elds. The

14 CHAPTER 3. XBE32 SPECIFICATION

Figure 3.3: Primitive TLV typesonly exeption to this rule is a Complex TLV with a zero (0x0000)length value, whose meaning is explained in the next subsetion.Values and Padding (variable length):The Values �eld may ontain a single variable-length value, mul-tiple �xed-length values, or other TLVs, as de�ned by the Type andLength �elds. The Values �eld may be empty, that is, have zerootets. In that ase, the Length �eld SHOULD be set to 4. In orderto properly align a non-empty Values �eld to 4-otet words, up to 3otets of padding spae MUST be added and �lled with zeros (0x00)in transmission, and they MUST be ignored in reeption.Unspei�ed LengthIn some irumstanes a message an not be delayed/stored and itmust start being sent before all the data to be enoded is available.However, as a TLV header de�nes the total length of the struture, aTLV-enoded message should not be sent until all its data beomesavailable, or the total length an be inferred somehow.For that reason, XBE32 parsers MAY allow a Complex TLV (i.e.ontaining other TLVs) to have an �unspei�ed� length. In that ase,the last of the inner TLVs MUST be an End-of-data TLV to mark itsending. This �unspei�ed� length is indiated by setting the Length�eld of a Complex TLV to zero (0x0000).

3.2. XBE32 TLVS 15
Figure 3.4: TLV signaling an End-of-dataEnd-of-data TLVs (�gure above) have the Type �eld set to zero(0x0000) and a �xed Length of 4 otets, thus they MUST NOTinlude a Values �eld.This optional mehanism allows XBE32 to enode Complex TLVsof arbitrary length. However, only Complex TLVs may have an�unspei�ed� length. The Values �eld of a Simple TLV ontainingprimitive data Values MUST NOT be longer than 65532 otets.3.2 XBE32 TLVsOne we have de�ned a simple TLV, it is possible to desribe therole that plays in the whole XBE32 enoding system. This setionspei�es all the possible TLV strutures and data types allowed inXBE32. All TLVs share the ommon format for the Type and Length�elds de�ned in the previous setion, but the TLV showed beforemust be enrihed to ful�ll the needs of the enoding protool. Themain di�erene between XBE32 TLVs is the inner struture of theirValues �elds and the type of the primitive data they ontain, asde�ned by the Meta part of the TLV's Type �eld.Complex TLVs with inner TLVsFigure 3.5 represents a Complex TLV ontaining multiple innerTLVs. If the Length is �unspei�ed� (i.e. zero), the Complex TLVMUST end with a 4-otet End-of-data TLV. Otherwise, if the Lengthof a Complex TLV is non-zero, it MUST NOT ontain any End-of-data TLVs.As XBE32 TLVs must be aligned to 4-otet words, all ComplexTLV will be also aligned to 4-otet words. Therefore, padding MUSTNOT be added, and the Length �eld SHOULD speify the size ofthe whole Complex TLV, inluding the length of all the inner TLVsit ontains.

16 CHAPTER 3. XBE32 SPECIFICATION

Figure 3.5: Complex TLVs with inner TLVsHowever, as some of the inner TLVs Values may be padded, theLength of a Complex TLV SHOULD NOT be alulated as 4 plusthe sum of the Length �elds of all its inner TLVs, as these �elds maynot inlude their padding otets.Simple TLV with one variable-length ValueFigure 3.6 represents a Simple TLV ontaining a single variable-length Value:

Figure 3.6: Example of simple TLV with one variable-length valueThe Length �eld MUST speify the size of the Type and Length

3.2. XBE32 TLVS 17�elds, plus the length of the enoded Value measured in otets. Ifthe Value is not aligned to 4-otet words, padding MUST be added.In that ase, the Length �eld does not de�ne the size of the wholeTLV struture, but its total length without the padding otetsSimple TLVs with 1-Otet ValuesFigure 3.7 represents a Simple TLV ontaining N, 1-otet Values:

Figure 3.7: Example of simple TLVs with 1-Otet ValuesThe Length �eld MUST speify the size of the Type and Length�elds, plus the number of 1-otet Values, if any. If the number ofValues is not a multiple of 4, up to 3 padding otets MUST be added.In that ase, the Length �eld does not de�ne the size of the wholeTLV struture, but its total length without the padding otets.Simple TLV with 2-Otets ValuesFigure 3.8 represents a Simple TLV ontaining N, 2-otets Values:

Figure 3.8: Example of simple TLV with 2-Otets Values

18 CHAPTER 3. XBE32 SPECIFICATIONThe Length �eld MUST speify the size of the Type and Length�elds, plus the number of 2-otet values, if any, multiplied by two.If the number of Values is not a multiple of 2, two padding otetsMUST be added. In that ase, the Length �eld does not de�ne thesize of the whole TLV struture, but its total length without thepadding otets.Simple TLVs with 4-Otets ValuesFigure 3.9 represents a Simple TLV ontaining N, 4-otets Values.As these TLVs are always aligned to 4-otet words, the Length �eld

Figure 3.9: Example of simple TLV with 4-Otets ValuesMUST speify the size of the whole TLV, and padding otets MUSTNOT be added.Simple TLVs with 8-Otets ValuesAs these TLVs are always aligned to 4-otet words, the Length �eldMUST speify the size of the whole TLV, and padding otets MUSTNOT be added.

3.2. XBE32 TLVS 19Figure 3.10 represents a Simple TLV ontaining N, 8-otets Val-ues:

Figure 3.10: Example of simple TLV with 8-Otets ValuesSimple TLVs with 12-Otets ValuesFigure 3.11 represents a Simple TLV ontaining N, 12-otet Values:

Figure 3.11: Simple TLVs with 12-Otets ValuesAs these TLVs are always aligned to 4-otet words, the Length�eld MUST speify the size of the whole TLV, and padding otetsMUST NOT be added.

20 CHAPTER 3. XBE32 SPECIFICATIONSimple TLVs with 16-Otets ValuesFigure 3.12 represents a Simple TLV ontaining N, 16-otet Values:

Figure 3.12: Example of simple TLV with 16-Otets ValuesAs these TLVs are always aligned to 4-otet words, the Length�eld MUST speify the size of the whole TLV, and padding otetsMUST NOT be added.Opaque TLV ValuesAn Opaque Value is a sequene of otets that SHOULD NOT beproessed by a XBE32 parsing entity, but just be delivered to theupper layer.

3.2. XBE32 TLVS 21The Meta values reserved for Simple XBE32 TLVs arrying OpaqueValues are represented in the table showed in �gure below.

Figure 3.13: Opaque TLV typesString TLV ValueString Values MUST be enoded using UTF-8.The Meta value reserved for Simple XBE32 TLVs arrying a sin-gle String Value is shown in the next �gure:
Figure 3.14: String TLV typesBoolean TLV ValuesEah Boolean Value is enoded with a single otet. A "False" Valueis serialized as 0x00, while "True" is enoded as 0xFF. Other valuesthan 0x00 or 0xFF MUST NOT appear as boolean-enoded values.

22 CHAPTER 3. XBE32 SPECIFICATIONThe Meta value reserved for Simple XBE32 TLVs arrying mul-tiple Boolean Values is shown in the next table:
Figure 3.15: Boolean TLV typesInteger TLV ValuesInteger Values are signed and MUST be enoded as a two's omple-ment binary number in network byte order (a.k.a. Big Endian, i.e.,the most signi�ant byte �rst).The Meta values reserved for Simple XBE32 TLVs arrying mul-tiple Integer Values are shown in the table:
Figure 3.16: Integer TLV typesFloating point TLV ValuesFloating point Values MUST be enoded as spei�ed in [3℄.The Meta values reserved for Simple XBE32 TLVs arrying mul-tiple Floating Point Values are shown in this �gure:
Figure 3.17: Floating TLV types

3.3. XBE32 ELEMENTS 233.3 XBE32 ElementsHierarhial data an be represented as a tree, where eah node hasan identi�er. The �leaf� nodes of the tree are the only ones whih areable to arry primitive data values. In XBE32 the nodes of the treeare known as �Elements�. Eah XBE32 Element has an identi�er,that ould be a binary one or a human-readable name.There are two kinds of Elements in XBE32, depending on whetherthey arry primitive data or not: �Attribute Elements� are the leafsof the tree and arry zero or more Values of a given data type.�ComplexElements� on the other hand, annot arry primitive data, but theyare the parents of other XBE32 Elements, that ould be AttributeElements or other Complex Elements themselves.Furthermore, the so-alled �Compat Elements� are enoded in-side a single XBE32 TLV, while the optional �Extensible Elements�require two or more TLVs in order to arry their Extensible Namesor Identi�ers. Moreover, Complex Elements are enoded using Com-plex XBE32 TLVs, whereas Attribute Elements employ Simple XBE32TLVs.Compat ElementsAs most network protools only employ a small set of elements tobuild their messages, they ould be easily enoded with XBE32 byjust using Compat Elements, that are enoded with a single TLVand are identi�ed by its binary 16-bit Type �eld.Eah appliation/protool using XBE32 may de�ne its own set ofType values, unless they have been reserved in the base spei�ationof XBE32. Therefore Compat Elements SHOULD employ only thefollowing TLV Meta and Subtype values (with any ombination ofC and E bits). See �gure 3.18.
Figure 3.18: TLV Meta and Subtype tableCompat Attribute Elements MUST employ an appropriate Metavalue aording to the type of the primitive data arried in their TLV

24 CHAPTER 3. XBE32 SPECIFICATIONValues �eld, as de�ned in the previous setion of this doument. Forexample, an Attribute Element arrying zero or more 32-bit IntegerValues may be enoded with one Simple TLV whose Type value isin the 0x2D01-0x2DFE range, with the C and E bits set aordinglyto the desired proessing rules.Extensible Elements: Extensible Names and Identi�ersThe above mehanism allows a ompat representation of binarydata and is suitable for the initial de�nition of the mandatory oper-ations and optional parameters of a simple network protool. How-ever, a 2-otet Type �eld may not be enough for truly extensibleprotools, as it ould be a namespae too small for vendor exten-sions, experimental operations, or future versions of the protool.In order to ope with this limitation, XBE32 implementationsMAY also support Extensible Elements. These optional XBE32 El-ements are enoded employing multiple TLVs, that are stored insidea XBE32 Complex TLV with a reserved Type value depending onwhether the Extensible Element is an Attribute or a Complex one(see �gure 3.19).
Figure 3.19: Extensible omplex and attributes TLVNote that C and E bits may have any value, thus, four di�er-ent Extensible Complex Element TLVs, and other four ExtensibleAttribute Element TLVs are de�ned. For instane, an optional Ex-tensible Attribute Element, that should be noti�ed if unknown, mustbe enoded inside an Extensible TLV with a 0xDF00 Type value.Eah XBE32 Extensible Element MUST have an identi�er, thatan be a single 4-otet opaque value alled Extensible Identi�er, ora non-empty UTF-8 string alled Extensible Name. The identi�erof an Extensible Element MUST be inluded inside the �rst innerTLV of the Complex TLV whih enodes the Extensible Element.XBE32 has reserved two Simple TLVs to arry Extensible Namesand Identi�ers. See next �gure:

3.3. XBE32 ELEMENTS 25
Figure 3.20: Extensible TLV names and identi�ersAlthough the Type �eld of the upper Extensible TLV does notidentify the Extensible Element by itself, its C and E bits are fullymeaningful, and MUST speify what measures must be taken if aXBE32 proessing entity does not reognize the Extensible Nameor Identi�er of this Extensible Element, or it just does not supportExtensible Elements at all.Extensible Complex ElementsAn Extensible Complex Element is enoded inside an ExtensibleComplex TLV (Meta=0x1F Subtype=0xFF), that MUST ontain asingle Extensible Name TLV (Type=0x21FF) or Extensible Iden-ti�er TLV (Type=0x2CFF) �rst, followed by zero or more TLV-enoded XBE32 Elements, that ould be Compat or Extensibleones, Attributes or Complex ones, or any ombination of them. (See�gure 3.21)The optional "unspei�ed" length mehanism, when applied toan Extensible Complex TLV, may allow XBE32 proessing entitiesto start enoding and sending partial Extensible Complex Elementsbefore all their sub-elements are known or their data is fully avail-able.

26 CHAPTER 3. XBE32 SPECIFICATION

Figure 3.21: Extensible Complex Elements exampleExtensible Attribute ElementsThe struture of an Extensible Attribute Element is quite similar toan Extensible Complex Element, as it is enoded inside a ExtensibleAttribute TLV (Meta=0x1F Subtype=0x00), that MUST inludeat least two TLVs: a single Extensible Name TLV (Type=0x21FF)or Extensible Identi�er TLV (Type=0x2CFF) �rst, followed by oneor more TLVs whih arry the Values of that Extensible Attribute.(See �gure 3.22)

3.3. XBE32 ELEMENTS 27

Figure 3.22: Extensible Attribute Elements exampleXBE32 has reserved the Type values shown in �gure 3.23 for theExtensible Values TLVs.

28 CHAPTER 3. XBE32 SPECIFICATION

Figure 3.23: Disseted TLV typeIf several Extensible Values TLVs are present, all of them MUSThave the same Type value, depending on the data type of the Ex-tensible Attribute Element. It is RECOMMENDED to enode allthe Values of an Extensible Attribute in a single Extensible Val-ues TLV, whenever it is possible. Nevertheless, a XBE32 proessingentity SHOULD onatenate, keeping the reeived order, all the Val-ues �elds of all the Extensible Values TLVs forming an ExtensibleAttribute Element. For instane, multiple Extensible string ValueTLVs should be appended to form a single variable-length StringValue, whereas several Extensible int32 Values TLVs would generatea single array of Integer Values.The enoding of Extensible Attributes with multiple ExtensibleValues TLVs, paired with the optional "unspei�ed" length meh-anism, may allow XBE32 Extensible Attributes to arry a singleValue or a list of Values longer than the 65532 otets limit of Com-pat Attributes.

Chapter 4
XBE32 DESIGN ANDIMPLEMENTATION
This hapter explains how the implementation and design of XBE32 has beendone. It shows the mehanisms and strutures used to develop it, and why somedesign deisions have been taken.As it an be seen in the previous hapter, XBE32 handles two di�erentonepts: Elements produed by the appliation and TLVs that enode suhinformations. Therefore it seems immediate, that the implementation of theenoding system follows a two tier software arhiteture, in whih the �rst layeris the one orresponding to the proessing of the TLVs, and the seond one is inharge of managing elements in the XBE32 enoding language. This two layerappliation has its lower layer in the TLV proessing layer, while, the upperlayer, the element proessor, takes advantage of the �rst.In addition to these di�erent global funtionalities, we have deided that isimportant to implement a way to de�ne all the di�erent element types employedby the user, so another funtionality has been added in order to manage aditionary. Obviously the use of this omponent is optional, sine the goal ofthis whole projet was to build a library for enoding XBE32, and the lastomponent is just an item to make the user life easier.Despite the two layers have their funtionalities very delimited, the mainoperations in both of them remain the same: write and read (whatever TLVsor elements). In the �rst ase, it is neessary to put and �nd the limits of anyTLV, hek the types of eah one, and to know where we must stop proessing29

30 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION
APPLICATION

ELEMENT LAYER

TLV LAYER

DICTIONARY

Figure 4.1: Library struturethem. For the elements the proeedings are done in di�erent way, but the goalsare the same: write whole items and retrieve them without error. Thereforeeah one of the layers of the appliation an be split in two: The writer and thereader.As any C Library this XBE32 library is just a set of funtions that imple-ment some part of the enoding/deoding proess. Sine both proesses requireseveral steps, it is neessary to mantain some state. Therefore, instead of relay-ing on global variables that would allow just a single enoding/deoding �owper proess, the state has been stored inside opaque strutures that are passedto all XBE32 library funtions. From the user's point of view, these struturesmodel the XBE32 enoding/deoding proess.
4.1 TLV layerThis layer handles the serialization of data on TLVs, and the parsing of simpleand omplex TLVs, inluding the ones with unspei�ed length that are losedwith an End-of-TLV.

4.1. TLV LAYER 31The writer: Building a TLVTo build the TLV a struture in whih all the neessary items to write the TLVare present has been thought up. It is oriented to handle the writing in di�erentbu�ers if needed, an have an aount of the open TLVs. In addition to that, ithandles the delivery of error messages. This struture is the writer itself, and itis de�ned as follows:strut xbe32_tlv_writer {unsigned har* buffer_start;unsigned har* buffer_end;unsigned har* buffer_ptr;writer_stak_t * open_tlvs;unsigned long bytes_ounter;int num_end_of_tlv;har * error_msg;int error_ode;}; Three di�erent members to handle the bu�er;bu�er_start: points the start of the urrent bu�er. bu�er_end: points the endof the urrent bu�er. bu�er_ptr: points to the next byte to be written in thebu�er.Two members to trak the open TLVs sine the total length of a omplexTLV is unknown until all its inner TLVs have been written. Only then thelength of the omplex TLV an be �lled. If the bu�er is �ushed before the TLVlength an be determined, the TLV has a zero length whih means that theappropriate number of End-of-TLV must be inserted;open_tlvs: a pointer to a stak whih saves the open TLVs. num_end_of_tlv:saves the number of open TLVs in ase a hange of the bu�er takes plae.Three members of general purpose;bytes_ounter: ounts the number of bytes that have been written during theproess until the urrent moment. error_ode: arries the last error ode. Inase there is none, is set to 0. error_msg: in ase the error_ode member hasa valid ode, this member arries the written noti�ation to that error.The appliation has been strutured in layers in order to ahieve trans-pareny, so the writer. To take fully advantage of the writer, it is neessary to

32 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATIONaess it through primitives. These primitives are explained below.
• xbe32_tlv_writer_t * xbe32_tlv_reateWriter (unsigned har * buf, intlen): reates and initiates the writer. It alloates memory for the writerstruture whih will perform the task of writing the enoded messagethrough its bu�ers. It assoiates a bu�er to the writer; sets the di�erentpointers to its orrespondent loations, bu�er_start and bu�er_ptr pointto the start of the newly assign bu�er; makes bu�er_end points to thelast byte of the bu�er (by adding to the bu�er_start the _length of thebu�er) allowing the upper appliation to know how far it an write. Setsthe null values to the other variables. It returns the initialized bu�er.
• void xbe32_tlv_setWriterBu�er (xbe32_tlv_writer_t * writer, unsignedhar * buf, int len): hanges the bu�er in ase the previous one is disarded(beause it is full or any other reason). To do that, it is neessary to setthe pointers in the orresponding plaes. bu�er_start and bu�er_ptrmust point to the begin of the bu�er; bu�er_end again is alulated asthe adding of the length of the new bu�er to bu�er_start. The rest of themembers of the writer not need to be initialized.
• int xbe32_tlv_�ush (xbe32_tlv_writer_t * writer): saves the numberof open TLV in the member num_end_of_tlv. Sine in this funtion nota single byte is written the returned value is 0.
• void xbe32_tlv_destroyWriter (xbe32_tlv_writer_t * writer): frees thememory alloated for the writer.
• int xbe32_tlv_openTLV (xbe32_tlv_writer_t * writer, uint16_t type): writes the header of a omplex TLV. The writer and the type of theTLV to write are passed as arguments. One the funtion has heked ifthere is spae available to do the writing, the type is written in Internetbyte order, as the length is unknown for the moment, it is set to 0 (odedin Internet order as well). Writer member bu�er_ptr advanes the size ofthe bytes written. This number of bytes are returned by the funtion.
• int xbe32_tlv_writeTLV (xbe32_tlv_writer_t * writer, uint16_t type,void * vals, int vals_size): writes the payload of the TLV. First heksif there is enough spae available, if not propagates an error. If there isspae available, heks the type of the TLV and writes it in the proper waydepending on the type. One this has been made, bu�er_ptr advanes the

4.1. TLV LAYER 33total length of the payload (inluding the padding), and the total numberof bytes written during the funtion is returned.
• int xbe32_tlv_loseTLV (xbe32_tlv_writer_t * writer): loses the lastopen TLV (This is just applied to omplex ones). To do that, takes the�rst TLV saved on the stak, and, if the stak is not empty, or if thenum_end_of_tlv member is not 0, it writes the length of the TLV in theorresponding �eld or an end-of-data TLV, indiating that is the end of aTLV of unspei�ed length.The �rst three funtions, are in harge of handling the writer struture. Toinitiate the writer struture members, alloate and free the memory. The lastfour handle the writing of the TLVs. The �rst of them, xbe32_tlv_openTLV,reates the header for omplex TLV. The omplement to that funtion is xbe32_tlv_loseTLVthat is in harge of losing open omplex TLVs. To write simple TLVs, xbe32_tlv_writeTLVis used, and xbe32_tlv_�ush is used to manage the open TLVs in ase there isa hange of bu�er (in ase the bu�er is hanged, the pointers are of no use).The reader: Proessing a TLVThis layer is not supposed to return nothing valuable for the �nal user sine itreturns not whole elements that the user an understand but TLVs. In spiteof this, perhaps an be of some interest to explain how this TLV must to beinterpreted. This layer just return TLV to the next one. The TLV returnedan be whole TLVs, so to speak, a TLV with a header and some ontents, or itan return the header of a omplex TLV. In the last ase, this TLV signals thestart of a omplex TLV whih in the layer above an be translated as a omplexelement or even an extensible element.As the appliation must be able to write a TLV, it must be able to deipherit too one this is written. Just to do this, the reader struture (parser) hasbeen reated, it is the mean to read the TLVs one these have been oded. Thereader struture is de�ned as follows:strut xbe32_tlv_parser{unsigned har* buffer_start;unsigned har* buffer_end;unsigned har * parser_ptr;

34 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATIONunsigned long bytes_ounter;parser_stak_t * open_tlvs;har * error_msg;int error_ode;}; As in the struture of the writer, three di�erent members handle the bu�er;bu�er_start: points to the start of the urrent bu�er.bu�er_end: points to the end of the urrent bu�er.parser_ptr: points to the next byte to be read in the bu�er.Three members of general purpose;bytes_ounter: keeps trak of the bytes read from the bu�er until the moment.error_ode: arries the last reading error ode. In ase there is none, is set to0. error_msg: in ase the error_ode member has a valid ode, this memberarries the written noti�ation to that error.One member to proess the open TLVs;open_tlvs: a pointer to a stak whih saves the open TLVs. With this pointerthe appliation knows when the omplex TLV is losed and thus when to �nishthe reading. It is also required to remember the TLV that a n End-of-TLV islosing.Again, as with the writer, the parser is aessed only through primitivesto ahieve the goal of transpareny. The funtions reated to do this are thefollowing:
• xbe32_tlv_parser_t * xbe32_tlv_reateParser (unsigned har * buf, intlen): Initializes and reates the parser struture. With this struture thelibrary will be able to deode the XML messages.It assoiates a bu�er to the parser; sets the di�erent pointers to its orre-spondent loations, bu�er_start and parser_ptr point to the start of thenewly assign bu�er, makes bu�er_end points to the last byte of the bu�er(by adding to the bu�er_start the length of the bu�er) allowing the upperappliation to know the point to �nish the reading. Sets the null valuesto the other variables. It returns the initialized bu�er.
• void xbe32_tlv_setParserBu�er (xbe32_tlv_parser_t * parser, unsignedhar * buf, int len): With this funtion, the appliation hanges the bu�er

4.1. TLV LAYER 35whih is urrently being read. In the ase there is a hange of bu�er, thisfuntion allows the appliation to hange the bu�er to read in ase thelast one is ended and it is neessary to ontinue reading another one.
• void xbe32_tlv_destroyParser (xbe32_tlv_parser_t * parser): Thisfuntion erases the parser struture. To do it, it frees the memory alloatedfor the parser.
• uint16_t xbe32_tlv_getType (xbe32_tlv_t * tlv): It takes the urrentlyproessed TLV and returns its type. This type is useful to proess the TLV(it allows to know if it is a omplex TLV or a simple one, end if it is simple,the type of the data inside the TLV).
• uint16_t xbe32_tlv_getLength (xbe32_tlv_t * tlv): Returns the lengthof the urrent TLV. This length is the one orrespondent to the length ofthe TLV inluding the header, payload of the TLV, but not the padding.
• bool xbe32_tlv_getContinueFlag (uint16_t type): Indiates to the ap-pliation if the proessing must ontinue or not in ase an error ours. Itreturns a boolean �ag indiating if the upper appliation must ontinuethe proessing in ase there is a failure.
• bool xbe32_tlv_getErrorFlag (uint16_t type): Indiates to the applia-tion if there must be a noti�ation of an error on the message. It returns aboolean �ag indiating to the upper appliation whether an error messageshould be sent bak to the soure.
• uint16_t xbe32_tlv_getMeta (uint16_t type): It takes the proper typeof the TLV. This is, the type without the error and the ontinue �ag.
• bool xbe32_tlv_isComplex (uint16_t type): Gives the user informationabout the nature of the TLV. Returns a boolean value whih indiatesthat urrent TLV is a omplex one.
• int xbe32_tlv_getNumValues (xbe32_tlv_t * tlv): This funtion returnsan integer that returns the number of basi values (e.g Floats, Integers,Strings...) presents in the TLV.
• int xbe32_tlv_getValuesLength(int length): This funtion returns an in-teger indiating the length of the payload of the TLV.
• unsigned har * xbe32_tlv_getValues (xbe32_tlv_t * tlv): This fun-tion returns a pointer to the values stored inside the TLV.

36 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION
• bool xbe32_tlv_endOfBu�er(xbe32_tlv_parser_t * parser): Cheks ifthe bu�er whih is being urrently read has reahed the end. Returns aboolean value.
• int xbe32_tlv_paddedLength(int l): This funtion returns the length ofthe padding attahed to the payload.
• xbe32_tlv_t * xbe32_tlv_nextTLV (xbe32_tlv_parser_t * parser, bool* losed): The most important funtion in the reader side. It orhestratesthe reading of the bytes on the bu�er and deides how many of them forma TLV. One this has been done, the bytes orrespondent to the TLV arestored in a TLV struture and passed to the upper layer.The �rst three funtions, are in harge of handling the parser itself. To initi-ate the members and alloate and free the memory. The next handle the readingof the TLVs. The �rst funtions are in harge of handle aspets of the TLVs asthe length, type, payload, et. All these futions are applied to the last TLVread by means of the nextTLV funtion. The last one, xbe32_tlv_nextTLV isin harge to diret the other funtions in order to struture the TLV in ertainvariables to pass the information to the upper level.One of the most relevant funtions in this library, in spite it is quite simplein its implementation, is xbe32_tlv_openTLV, whih opens a omplex TLV.Next we are going to show a �owhart 4.2 that desribes the funtion:
• First, heks if there is enough spae in the bu�er to write the TLV'sheader (just type and length).
• If there is enough spae it writes the type and sets the length to 0 (thelength up to this point is unknown). After that, it puts the writer pointerfour bytes forward (just the number of bytes that have been written).
• If there is not enough spae, it sets an error message in the error_messagemember and its orresponding error ode in the error_ode member. Bothwill be propagated depending on the values in 'e' and '' �ags respetively.
• Finally, the appliation will return the number of written bytes.One a omplex TLV has been open, the protool requieres it to be losed.To do this, the appliation implements xbe32_tlv_loseTLV. The hart orre-sponding to this funtion is showed in the �gure 4.3:

4.1. TLV LAYER 37
Enough space
in the buffer?

Write t lv_type

Error
NO

YES

Figure 4.2: Opening of a omplex TLV
t lv := pop()

tlv = NULL?

write t lv_length

num_end_of_tlv = 0?

write end_of_tlv

YES YES

Error

NO NO

Figure 4.3: Closing of a omplex TLV

38 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION
• The funtion removes the last TLV from the stak.
• Cheks if the obtained TLV is NULL. If it is heks if the member of thewriter struture num_end_of_TLV is equal to 0. If num_end_of_TLVis equal to 0, it sets an error message in the error_message member and itsorresponding error ode in the error_ode member. As in the previous�owhart, both will be propagated depending on the values in 'e' and ''�ags respetively.� if num_end_of_TLV is not equal to 0, then the funtion writes anEnd_of_TLV header indiating that the end of the last open omplexTLV must be assumed.
• If the obtained TLV is not NULL, the funtion writes the orrespondinglength in the omplex TLV's header.As it has been said, xbe32_tlv_nextTLV is the most important funtion inthis layer. Figure 4.4 shows the �owhart for the funtion.Sine it is the most important for the TLV layer, we are going to proeed toexplain the steps that it follows through the Figure 4.4:
• First, it heks if the appliation has reahed the end of the bu�er. In thisase, it is not possible to ontinue the parsing and the user has to takeare of hanging the bu�er, meanwhile, the funtion exits returning a nullvalue.
• In ase the bu�er end has not been reahed, next, the funtion heksif the urrent point of the bu�er mathes up with the end of a omplexTLV stored in the parser stak. In this ase, this means that a omplexTLV has reahed its end in the previous xbe32_tlv_nextTLV iteration,and thus, it must be losed. If this is the ase, the TLV variable takes thevalue of the last item stored in the stak, through a pop funtion, and itis returned. The funtion must use the isClosed funtion to know whetherthe returned TLV is an old TLV being losed or a new one.
• The funtion will take the next TLV data to be proessed (this data whihatually is written in the bu�er, will be stored in a TLV variable througha asting operation). If the previous ase is negative, then, the funtionheks if there is enough spae in the parser bu�er to proess the TLV.

4.1. TLV LAYER 39

End of Buffer?

Complex
TLV closing?

space enough in
the buffer?

Is and
END_OF_TLV?

Complex
TLV?

TLV in stack? Error

Push TLV

ClosedGet Values
(TLV)

Take buffer
pointer forward

Pop TLV

Closed

NO

NO

NO

YES

YES

YES

YES

YESYES

NO

NO

NO

Figure 4.4: Next TLV proess

40 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION
• Next, the funtion will hek if the taken TLV (asting) is a omplex one(sine it has been heked that the urrent TLV is not being losed, thisomplex TLV must be about to be open). If it is, it will be stored in thestak (to know that it must be losed in the future), and the �ag sayingthat it is not to be losed will be set to true.
• In ase the TLV is not a omplex one, the funtion will sort the valuesin the TLV (in ase it is neessary beause the omputer byte order) andwill take the parser pointer just forward enough for the proessing of thenext data.
• The funtion will return the TLV.4.2 XBE32 Element layerThe writer: Building an XBE32 elementOne all the proesses related to TLV has been explained, it is time to go to alayer above and talk about the elements. As with the TLV, the implementationof the elements has been split in two di�erent parts: one orresponding to thewriting of the elements, and other orresponding to the reading.The writing proess for xbe32 elements is quite simple one the TLV prim-itives for the writing have been de�ned. As in the previous layer, the elementsare proessed through a writer struture. This struture is the same as with theTLV, but for this layer its type is renamed as xbe32_writer.The primitives handling the writer struture are the following:
• xbe32_writer_t * xbe32_reateWriter (unsigned har * buf, int len):This funtion reates a TLV writer (xbe32_tlv_writer_t) to the elementwriter type (xbe32_writer_t), and returns an initialized writer variablealling to xbe32_tlv_reateWriter.
• void xbe32_destroyWriter (xbe32_writer_t * writer): Dealloates thememory belonging to the writer variable. It does it by alling to xbe32_tlv_destroyWriterfuntion.
• void xbe32_setWriterBu�er (xbe32_writer_t * writer, unsigned har *buf, int len): Changes the bu�er whih is being urrently written for

4.2. XBE32 ELEMENT LAYER 41another one one the �rst has reahed its end. To do that, the funtionalls to xbe32_tlv_setWriterBu�er.
• void xbe32_�ush (xbe32_writer_t * writer): Calls to xbe32_tlv_�ushin order dump the ontents to the upper appliation environment (emptiesthe bu�er dumping its ontents to be immediately proessed).
• int xbe32_openElement (xbe32_writer_t * writer, uint16_t type): Opensa ompat XBE32 omplex element with the spei�ed type (using xbe32_openTLV).
• int xbe32_writeAttr (xbe32_writer_t * writer, uint16_t type, void *vals, uint32_t length): Writes a simple XBE32 attribute. To do that justwrites a single TLV (through xbe32_tlv_writeTLV funtion). In ase thesize of the TLV to write exeeds 65532 bytes, it returns an error message.
• int xbe32_loseElement (xbe32_writer_t * writer): Closes a ompatXBE32 omplex element.
• int xbe32_openExtElement (xbe32_writer_t * writer, uint32_t id, har* name): Opens an extensible element. To do this, �rst it is neessaryto open a omplex TLV whih will ontain the inner elements (throughxbe32_tlv_openTLV), and after that, to write an identi�er (a TLV on-taining the ID for the item) for the extensible element, this identi�er an bea name or a numeri identi�er (to write the identi�er xbe32_tlv_writeTLVwill be alled).
• int xbe32_writeExtAttr (xbe32_writer_t * writer, uint32_t id, har* name, int vals_type, void * vals, int length): writes an extensibleattribute. To do that, �rst opens the extensible attribute (alling toxbe32_tlv_openTLV), seond identi�es the extensible element (it insertsa TLV with the name or identi�er of the extensible attribute allingto xbe32_tlv_writeTLV), third writes the attribute ontents (throughxbe32_tlv_writeTLV funtion) and �nally, loses the extensible attribute(by losing the TLV that ontains both the name and ontents of theextensible attribute through xbe32_tlv_loseTLV).
• int xbe32_loseExtElement (xbe32_writer_t * writer): Close an om-plex element that has been previously opened (by alling to xbe32_tlv_loseTLV).It must be said that the implementation of xbe32_loseElement and xbe32_loseExtElementis the same, but the latter has been inluded in the implementation forsymmetry reasons.

42 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATIONThe proess of writing elements with this library is simple 3. It only onsistson writing the primitives to write the di�erent elements in a sequential waywhih desribes the order inside the elements that the user wishes to write.The reader: Proessing a XBE32 elementThe reading of XBE32 elements is a little bit more ompliated than the writing.First of all, the struture needed to do all the proess is basially the same as inthe layer below, but replaing the TLV stak with a XBE32 Element stak. Inaddition to that, it is neessary to delare a new struture where the items willbe stored. Both strutures are going to be explained in the next paragraph.As it has been said before, a new struture has been reated in this layer toreturn all the information that form the read elements. This struture is de�nedas follows:strut xbe32_elem {har * name;uint32_t id;uint16_t flags;int valuesType;int valuesNum;void * values;}; The meaning of the �elds are explained bellow;name: represents the name of an extensible element (or attribute). If there isno name, it is set to NULL.id: represents the id of an element (no matter it is a ompat/extensible sim-ple/omplex one).�ags: Contains the whole type of the element, in order to get later the meta�ags (ontinue and error).valuesType: Contains the basi type of the element, without the meta ompo-nent (�ags ontinue and error).valuesNum: Contains the number of values in the element.values: A pointer to the ontent of the element.3See appendix B

4.2. XBE32 ELEMENT LAYER 43The basis of the parser struture is the one present in the layer below butwith an additional �eld. This �eld will be the stak, neessary to save all thepossible elements inside omplex elements. The struture of the stak is thefollowing:strut xbe32_stak{xbe32_elem_t * item;xbe32_stak_t * next;}; The meaning of these �elds are;item: represents the element whih needs to be saved in order to be part of abigger and more omplex element.next: link to the next element present in the stak.The whole reading proessing is arried out mainly by the xbe32_nextElement()funtion. As in the lower layer, it is the funtion in harge of orhestrating theother primitives to ompose the element orretly. Roughly, what this funtiondoes is to take TLVs, and in ase the TLV is a omplex one (what means thatthe element urrently proessed is omplex, or extensible) ask for more TLV toget the attributes or elements that ompose the proessed element, if is not aomplex TLV, that means that it is a simple element or a part of a omplex one,so returns the values ontained in that TLV. The rest of the funtions delaredin the parser setion are funtions that performs tasks for xbe32_nextElement()or funtions that handle the parser struture and its bu�er operations.What the user will obtain of this layer are di�erent elements. This elementswill ontain data (a whole element with its id/name and values), or just aid for omplex elements. In the latter ase, the id/name are sent to indiatethe user that an item has been open and other elements are nested inside orthat an element is losing. Both ases an be di�erentiated beause one of theparameters in the funtion is a referene and, in ase this parameter is set to trueit means that the urrent element is losing. As an be seen, this manoeuvreis quite similar to the one performed by xbe32_tlv_nextTLV() in the previouslayer.The primitives to handle the parser and the whole proess of reading XBE32elements are the next:

44 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION
• xbe32_parser_t * xbe32_reateParser (unsigned har * buf, int len):Alloates memory for the parser struture and initializes it.
• void xbe32_setParserBu�er (xbe32_parser_t * parser, unsigned har *buf, int len): Performs a hange of bu�er under user request.
• void xbe32_destroyParser (xbe32_parser_t * parser): Dealloates thememory of the parser under user request.
• xbe32_elem_t * xbe32_nextElement (xbe32_parser_t * parser, bool *losedElem): Returns the next XBE32 element on the bu�er.
• bool xbe32_isExtensible (uint16_t type): Returns a boolean that in-diates if the spei�ed element is extensible or not. Takes the type asparameter.
• int xbe32_getFlags (xbe32_elem_t * elem): Returns the meta �ags ofthe XBE32 element type. Takes as argument the element.
• int xbe32_getNumValues (xbe32_elem_t * elem): Returns the numberof values inside an XBE32 element. Takes as argument the element.
• int xbe32_getId (xbe32_elem_t * elem): Returns the Id of the anXBE32 element whether this is extensible or not. Takes as argument theelement.
• har * xbe32_getName (xbe32_elem_t * elem): Returns the name ofan XBE32 element in ase it has one. Takes as argument the element.
• bool xbe32_isComplex (xbe32_elem_t * elem): Returns a boolean thattells if the element is omplex or not. Takes as argument the element.
• int xbe32_getValuesType (xbe32_elem_t * elem): Returns the basitype of the element. Takes as argument the element.
• xbe32_getValues: Returns a void pointer to the ontents of the XBE32element. Takes as argument the element.
• void * xbe32_getNumValues (xbe32_elem_t * elem): Returns the num-ber of values of a ertain type inside an XBE32 element. Takes as argu-ment the element.As with the lower layer, one funtion is in harge of orhestrate the rest (notin the writer sine all the funtions must be diretly seleted by the user). Withthis �owhart, xbe32_nextElement will be explained:

4.2. XBE32 ELEMENT LAYER 45

TLV = NULL

Get TLV

Closed Item

Extensible i tem

Id data

Complex TLV

push

Retrun Item

Get I tem
value

Get TLV

Extensible Id

Name

Id

Get TLV

Get Ext
attr value

Closed

pop

Item = NULL

YES

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

Figure 4.5: Next Element proess

46 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION
• First of all, the funtion takes the TLV provided by the lower layer (xbe32_nextTLV).
• After that, the funtion heks if the TLV with the possible ontents forthe element has a null value. In that ase, the item to be returned will beset to NULL, and with its return the funtion �nishes its exeution.
• If the TLV provided by the lower layer is not null, the funtion will heknext if the TLV is signaling the losing of the element. In ase the latteris true, a pop of the previous stored data for the element will be done, andthat data will be stored in an element variable that next will be returned�nishing the exeution of the funtion.
• If the TLV does not tell that the end of the element has ome, the nextheking the funtion will perform is about extensibility. If the TLV on-tains a type saying that the element is extensible, the following steps areto follow:� In ase the TLV shows that the element is extensible, immediately,the funtion takes another TLV from the lower layer.� Cheks if the ontent of the TLV is an identi�er or a name, and inboth ases though through di�erent proeedings, obtains them.� After that, another TLV is taken from the lower level. This TLV issupposed to have the values of the element, whih are taken.� The previous steps are repeated many times as needed until all thevalues in the extensible element are obtanied.� One the extensible element is omplete, the element value is returnedand the funtion exited.
• In ase the element is not extensible, some of the data whih the TLV(the one addressed in the third point) arries are related to identi�ationharateristis suh as; type, id/name and �ags. The next ation by thefuntion will be to store this harateristis in the element variable.
• Next, the funtion will �nd out if the TLV is omplex or not. If it isnot the ase, the data from the TLV will be extrated and plaed intothe element variable, and with this data, the element will be returned,�nishing the funtion.
• If the TLV is a omplex one (its ontents are empty, but the �eld tellsthat a whole TLV whih represent physially the element is omposed bymore TLV), the element variable will be initialized, and through a push

4.2. XBE32 ELEMENT LAYER 47funtion the element will be stored awaiting for the rest of the omponentsin the stak. In addition to that, the element will be delivered to the lientappliation in order the latter knows that an extensible element has beenopened. With this last ation, the funtion exists.The ditionary: Giving sense to the elementsFinally to make the implementation of the protool, a third omplement mustbe added by the upper funtion (the one suseptible to use XBE32 in its om-muniation), that is the implementation of the ditionary. The ditionary isneeded to translate some of the omplex TLV to elements with a meaning tothe so alled upper appliation.This omponent is omposed by several items that represent eah omplexidenti�er in the upper appliation namespae. To implement the ditionaryutility, a main struture has been reated to store the di�erent words, thisstruture will be the base of a dynami list (a node) and it is de�ned as follows:strut xbe32_ditionary {uint16_t type;har * name;xbe32_ditionary_t * next;}; The meaning of the di�erent �les of the struture is the next;type: it will ontain the type of the represented element.name: it will ontain the name of the represented element.next: it will ontain a pointer to the next XBE32 represented in the ditionary.
• xbe32_reate_item: Creates the node about to be inserted in the ditio-nary. As parameters takes the name of the item and the type.
• xbe32_ditionary_loadDitionary: It is a funtion that reates a list(whih will beome the ditionary) from a �le. On that list it will beall the words belonging to the namespae of the appliation that is goingto use the XBE32 library.

48 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION
• xbe32_ditionary_lookup: With this funtion it is possible to look upany ID in the ditionary and return the orrespondent word.
• xbe32_ditionary_over: This funtion is implemented to failitate aomplete list of words in the ditionary. It overs the list and showsthe items one by one.
• xbe32_ditionary_free: With this funtion, the memory alloated to re-ate the ditionary is dealloated.Despite a ditionary is not stritly part of the XBE32 library, it has beendeided to implement it in order to failitate the user the use of the library. Itis helpful beause the most part of the items has a reognizable name (morehuman readable) and through the ditionary utility it is possible to retrieve it.4.3 Usage examplesIn this setion a ouple of examples of how the library works are going to beinluded. In the �rst one, the enoding in XBE32 of an XML ode exampleproedent from the doument "Overview of the eXtensible Servie DisoveryFramework" [2℄:<servie><id>8e9d7823-d5a-497-91d0-fb07ea03fb2</id><servieState><metaInfo><stateTimestamp>f85444f4eb</stateTimestamp></metaInfo><seletState><workload>0</workload></seletState></servieState><servieMainInfo><servieType><type>printer</type></servieType><alias>Alie's printer</alias><seletInfo>

4.3. USAGE EXAMPLES 49<poliies>Least Used (0x0002)</poliies><weight>14</weight></seletInfo><printer:olor>false</printer:olor><printer:duplex>true</printer:duplex></servieMainInfo><servieLoation><inet><ipv4Addrs>169.254.85.139</ipv4Addrs><ipv6Addrs>fe80::202:b3ff:fe3:da7a</ipv6Addrs></inet><protool><name>ipp</name><transPorts>tp/631, stp/631</transPorts></protool><protool><name>lpr</name><transPorts>tp/515, stp/515</transPorts></protool></servieLoation><servieAddInfo><model>Ame Laser Printer 2000</model><modelURL>http://www.ame.om/printers/lp200.html</modelURL></servieAddInfo></servie>Enoding exampleFollowing, the C ode orresponding to the appliation written to enode theXML ode presented in the previous setion:int main()xbe32_ditionary_t * ditionary;xbe32_ditionary_loadDitionary("ditionary.txt", &ditionary);//Delaring and loading the ditionary utilityxbe32_writer_t * writer = xbe32_reateWriter(buffer, 3500);//Creating the writer

50 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATIONxbe32_openElement(writer, servie);//Opens the main ompat XBE32 omplex elementxbe32_writeAttr(writer, 0x3811, (void *) id, 16);//writes a simple XBE32 attributexbe32_openElement(writer, serviestate);xbe32_openElement(writer, metainfo);//Opens two ompat XBE32 omplex elements (serviestate and metainfo)xbe32_writeAttr(writer, 0x3101, (void *) &statetimestamp, 8);//writes a simple XBE32 attribute (statetimestamp)xbe32_flush(writer);//dumps the ontents of the buffer in whih it is being written tothe upper appliation (this)xbe32_loseElement(writer); //loses metainfo//loses the last element whih has been openxbe32_openElement(writer, seletstate);xbe32_writeAttr(writer, 0x2E12, (void *) workload, 4);xbe32_loseElement(writer);//seletstate//opens one ompat XBE32 omplex element, seletstate. Writes a simpleXBE32 attribute, workload.//And loses the last open ompat XBE32 omplex element, seletstate.xbe32_loseElement(writer);//serviestate//Closes the first ompat XBE32 omplex element pending in the stak(the last one opened), serviestate.xbe32_openExtElement(writer, serviemaininfo, NULL);xbe32_openExtElement(writer, servietype, NULL);xbe32_writeAttr(writer, 0x2112, (void *) type, 7);//Opens two extensible XBE32 omplex elements: serviemaininfo and servietype.Writes a simple XBE32 attribute, type.

4.3. USAGE EXAMPLES 51xbe32_loseElement(writer); //servietypexbe32_writeAttr(writer, 0x2148, (void *) alias, 15);//Closes the last XBE32 omplex element, servietype (whih is also extensible),and write another simple XBE32 attribute, alias.xbe32_openExtElement(writer, seletinfo, NULL);xbe32_writeAttr(writer, 0x2845, (void *) poliies, 2);xbe32_writeAttr(writer, 0x2D45, (void *) weight, 4);//Opens another extensible XBE32 omplex element, selet info and writetwo simple XBE32 attributes: poloies and weight.xbe32_loseElement(writer); //seletinfoxbe32_writeExtAttr(writer, 0, "olor", STRING_TYPE, (void *) "false", 5);xbe32_writeExtAttr(writer, 0, "duplex", STRING_TYPE, (void *) "true", 4);xbe32_loseElement(writer); //serviemaininfo//Closes seletinfo, and write two simple XBE32 attributes: olor andduplex. Closes serviemaininfoxbe32_openExtElement(writer, servieloation, NULL);xbe32_openExtElement(writer, inet, NULL);xbe32_writeAttr(writer, 0x2C15, (void *) ipv4addrs, 4);xbe32_writeAttr(writer, 0x3816, (void *) ipv6addrs, 24);xbe32_loseElement(writer); //inet//Opens two extensible XBE32 omplex elements: servieloation and inet.Writes two simple XBE32 attributes: ipv4addrs and ipv6addrs.//Closes inetxbe32_openExtElement(writer, protool, NULL);xbe32_writeAttr(writer, 0x2178, (void *) name1, 3);xbe32_writeAttr(writer, 0x2C77, (void *) transports1, 17);xbe32_loseElement(writer); //protool//Opens one extensible XBE32 omplex element, protool. Writes twosimple XBE32 attributes: name1 and transports1.//Closes protoolxbe32_openExtElement(writer, protool, NULL);xbe32_writeAttr(writer, 0x2178, (void *) name2, 3);xbe32_writeAttr(writer, 0x2C77, (void *) transports2, 17);

52 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATIONxbe32_loseElement(writer); //protoolxbe32_loseElement(writer); //servieloation//Opens one extensible XBE32 omplex element, protool. Writes twosimple XBE32 attributes: name2 and transports2.//Closes protool and servieloation whih was open two bloks ago.xbe32_openExtElement(writer, servieaddinfo, NULL);xbe32_writeAttr(writer, 0x2189, (void *) model, 23);xbe32_writeAttr(writer, 0x2177, (void *) modelurl, 39);xbe32_loseElement(writer); //servieaddinfo//Opens one extensible XBE32 omplex element, servieaddinfo. Writestwo simple XBE32 attributes: model and modelurl.//Closes servieaddinfo.xbe32_loseElement(writer); //servie//Closes servie, the first ompat XBE32 extensible element openedfor the appliation.//This setion below is just to have the output: the enoded textbuffer_len = 436;printf("buffer[%d℄:", buffer_len);for (i=0; i<buffer_len; i++) {if (i%4 == 0) {printf("\n");}printf("%.2x ", buffer[i℄);}} bool losed = false;xbe32_elem_t * item = NULL;int item_length = 0;unsigned har * vals;xbe32_parser_t * parser = xbe32_reateParser(buffer, buffer_len);//The parser struture is reateddo {item = xbe32_nextElement(parser, &losed);

4.3. USAGE EXAMPLES 53//The appliation ask for the next element, provided by xbe32_nextElementhar name_buffer[1024℄;har * elem_name = xbe32_getName(item);if (elem_name == NULL) {int elem_id = xbe32_getId(item);elem_name = xbe32_ditionary_lookup(ditionary, elem_id);//The element name is look up in the ditionaryif (elem_name == NULL) {sprintf(name_buffer, "0x%.8x", elem_id);elem_name = name_buffer;}//In ase the element name is not present in the ditionary,the id is introdued in the XML label instead}if (!xbe32_isComplex(item)) {int length,j;printf("<%s>", elem_name);uint16_t * ontent1 = NULL;uint32_t * ontent2 = NULL;har hain[255℄;length = xbe32_getNumValues(item);itemType = xbe32_getValuesType(item);swith (itemType){ase STRING_TYPE:printf("%s",xbe32_getValues(item));break;ase FLOAT32_TYPE:printf(" %f ",*(float *) xbe32_getValues(item));break;ase FLOAT64_TYPE:printf(" %lf ",*(double *) xbe32_getValues(item));break;ase INT16_TYPE:

54 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATIONontent1 = (uint16_t *) xbe32_getValues(item);for (j = 0; j<length/2;j++){printf(" %d", ontent1[j℄);}break;ase INT32_TYPE:ontent2 = (uint32_t *) xbe32_getValues(item);for (j = 0; j<(length/4);j++) {printf(" %d", ontent2[j℄);}break;ase INT64_TYPE:printf(" %d ",(uint64_t *) xbe32_getValues(item));break;ase OPAQUE16_TYPE:vals = xbe32_getValues(item);for (i=0; i<16; i++) {printf("%.2x", vals[i℄);}break;ase OPAQUE4_TYPE:vals = xbe32_getValues(item);for (i=0; i<length/4; i++) {printf(" 0x%.8x", ntohl(vals[i*4℄));}break;ase OPAQUE2_TYPE:vals = xbe32_getValues(item);for (i=0; i<length/2; i++) {printf(" 0x%.4x", ntohs(vals[i*2℄));}}//This ase transform the hexadeimal into an element valueprintf("</%s>",elem_name);//The element name is printed inside the XML label}else{ // isExtensible()

4.3. USAGE EXAMPLES 55if (losed == true) {printf("</%s>\n", elem_name);//The name orresponding the XBE32 element is put insidethe losing label} else{printf("<%s>", elem_name);//The name orresponding the XBE32 element is put insidethe opening label}}losed = false;} while(item != NULL);return 0;} Following the XML got by the appliation1:<servie><id>8e9d7823d5a49791d0fb07ea03fb2</id><serviestate><metainfo><statetimestamp>f85444f4eb</statetimestamp></metainfo><seletstate><0x00002e12> 1.100000 </0x00002e12></seletstate></serviestate><serviemaininfo><servietype><0x00002112>printer</0x00002112></servietype><0x00002148>Alie's printer</0x00002148><seletinfo><0x00002845> 0x0000</0x00002845><0x00002d45>14</0x00002d45>1The resultant XML is not exatly the same as the �rst one presented in the previoussetion sine not all the items were present in the ditionary

56 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION</seletinfo><olor>false</olor><duplex>true</duplex></serviemaininfo><servieloation><inet><ipv4addrs> 0x8b000000</ipv4addrs><ipv6addrs>fe800000000000000202b3fffe3da7a</ipv6addrs></inet><protool><0x00002178>ipp</0x00002178><0x0000277> 0x2f000000 0x2000000 0x74000000 0x33000000</0x0000277></protool><protool><0x00002178>lpr</0x00002178><0x0000277> 0x2f000000 0x2000000 0x74000000 0x31000000</0x0000277></protool></servieloation><servieaddinfo><0x00002189>Ame Laser Printer 2000</0x00002189><0x00002177>http://www.ame.om/printers/lp200.html</0x00002177></servieaddinfo></servie>

Chapter 5
CONCLUSIONS AND WORKSFOR THE FUTURE
Este trabajo ha representado dos puntos muy positivos para sus autores. Enprimer lugar, el heho de haber implementado la librería en lenguaje C (no hayque olvidar que ya ha sido implementada en Java) hae que el protoolo querepresenta sea más universal, ya que este lenguaje está araterizado por supopularidad, diversidad de plataformas, y lo que es más importante, su ampliautilizaión en la omunidad de software libre. Además de esto, está lo que podríaentenderse omo la inmediata apliaión de la librería, que es el protoolo XSDF.Este trabajo permite que diho protoolo de desubrimiento de serviios tengaya a su disposiión una librería XBE32 de implementaión C, lo ual hae quesu futura implementaión en este lenguaje sea más senilla, ya que todo lorelaionado on la odi�aión de mensajes queda reduido a la llamada de unaserie de funiones.Además de esto, omo se ha menionado anteriormente, XBE32 no tieneomo únia �nalidad su utilizaión por parte de XSDF, sino que ha sido diseñadopara ser utilizado por ualquier apliaión que neesite de una odi�aión ligerapara utilizar de ara a la red.Del objetivo prinipal impuesto, la implementaión del ontenido del Draft[1℄XBE32, podemos deir que se ha onseguido realizar de forma exitosa ontandoon las siguientes araterístias:

• Flexibilidad: La implementaión soporta todas las araterístias de XBE32inluyendo los elementos extensibles y a las TLV de longitud indetermi-57

58 CHAPTER 5. CONCLUSIONS AND WORKS FOR THE FUTUREnada.
• Transparenia para el usuario: Este no tiene que tener en uenta elementostan básios omo la TLV, sino que sólo ha de preouparse por generarelementos de determinado tipo. Esto además se hae de forma senillamediante invoaiones de funiones.
• Ligereza: Debido a las araterístias del lenguaje, esta implementaiónademás supone un avane en uestión de e�ienia, ya que en este aso,la apliaión será más ligera en lo que a su ejeuión se re�ere onsum-iendo menos reursos. Esto en determinados entornos puede resultar muypositivo y ventajoso.
• Capaidad para adaptarse a futuros ambios: Dado que la apliaión estálaramente dividida en dos apas y las tareas laramente delimitadas porfuniones, ualquier ampliaión o ambio se vivirá omo algo relativamenteómodo y senillo, y una antidad de ódigo mínima se verá afetado porlos ambios en una determinada tarea.El proeso de reaión ha estado araterizado por un estudio exhaustivodel Draft[1℄ que desribe XBE32. Este estudio ha sido un punto lave en laimplementaión, ya que XBE32 es una espei�aión algo ompleja y, aunque enprinipio la autora subestimó la di�ultad que el doumento entraña, �nalmentedespués de varios problemas surgidos durante la fase de implementaión, sedeidió dejar esta algo de lado hasta que el Draft[1℄ estuviera ompletamenteinteriorizado por su parte.Al margen de los problemas derivados del análisis de la espei�aión, otraparte ompleja, aunque bastante más interesante, ha sido el diseño de la librería.El diseño además de la autora ha ontado on la ativa olaboraión del autordel Draft[1℄, Manuel Ureña Pasual. Desde el punto de vista de la primera, estaolaboraión ha resultado muy estimulante y positiva, ya que, a pesar de que unavez familiarizada on el problema las ideas respeto a su posible materializaión�uían de forma bastante onreta, el autor del Draft[1℄, ha heho posible quetodos esos algoritmos se distribuyeran de una forma lógia, senilla y eleganteentre las dos apas que forman la librería.A pesar de que las dos fases anteriormente menionadas han sido sin ningu-na duda las más signi�ativas del proyeto, en este apartado del esrito no seríajusto no menionar lo que también ha sido fundamental en este trabajo, ladoumentaión. La doumentaión ha supuesto para la autora otra fuente de

59enseñanza, ya que al margen de umplir on su funión obvia, que es la posi-bilidad de failitar al usuario la utilizaión de la librería, y failitar posiblesambios y ampliaiones, ha inluido otro reto: aprender las ténias y dominarlas herramientas neesarias para umplir on los estándares de la omunidadde software libre para la doumentaión de proyetos. La forma esogida paraumplir este requisito ha sido la de páginas de manual (las onoidas man). Apesar de que han sido relativamente fáiles de editar y generar, han sido untrabajo engorroso debido al partiular formato de estas páginas y a la propiaestruturaión del ontenido. Puesto que XBE32 no es un lenguaje de odi�-aión onoido, para failitar la tarea al usuario �nal, se ha deidido agruparlas funiones según sus funionalidades para evitar que diho usuario tenga quereordar en todo momento los nombres de todas las funiones presentes en lalibrería y le sea relativamente fáil enontrar la funión que umple on deter-minada tarea.Una de las di�ultades del proyeto en este aso no ha sido el tiempo omoviene siendo habitual on los proyetantes noveles, sino la materia. En prin-ipio este proyeto estaba enaminado a ser la implementaión de la primeraapa del framework XSDF. Dado que en lenguaje C no existía ningún tipo deimplementaión de XBE32, la parte más básia del proyeto sería realizar unaimplementaión parial de diho sistema de odi�aión para que pudiera serutilizado por XSDF. A medida que se fue avanzándo en la implementaión,quedó patente que si el proyeto debía abarar hasta la primera apa de XSDFomo estaba previsto, el resultado de ambas partes se vería perjudiado en uan-to a alidad se re�ere. En el aso de que la implementaión de XBE32 estuvieseenfoada uniamente a esa primera apa, otras apliaiones no podrían valersede sus serviios sin tener que modi�ar esta o la propia apliaión. Así mismo,esa primera apa de XSDF se verá modi�ada (u obsoleta) una vez que salierala implementaión total de XBE32, lo ual dadas las irunstanias, sería muyposible. Así que en un momento determinado, uando la implementaión de laprimera apa de XBE32 se hubo terminado, fue neesario deidir si se proedíaon lo que habría resultado un trabajo inompleto on la implementaión deXSDF, o bien se haía una librería ompleta de la espei�aión XBE32.Todo lo anterior demuestra que a pesar de que este proyeto ha heho que laautora haya mejorado notablemente en el plano de la programaión en el lengua-je de la implementaión, también ha vuelto a demostrar que lo que realmentehae que un ingeniero pueda evoluionar omo tal, es el trabajo en proyetosde ierta embergadura, ya sea en uestión de tamaño o omplejidad, y que por

60 CHAPTER 5. CONCLUSIONS AND WORKS FOR THE FUTUREtanto hay que seguir trabajando.Finalmente, para terminar on la lista de objetivos planteados en el primerapítulo, hay que onfesar, que algunas de las herramientas que se han utilizadopara realizar este trabajo, omo el ontrol de versiones, tan sólo se han utilizadoen los momentos más tempranos y debido al tiempo que impliaba su utilizaión,se ha optado por métodos más primitivos (p.e: almaenaje por fehas en orreoeletrónio y disos duros externos).Una vez que se han omentado los puntos prinipales del proyeto, sus di�-ultades y bonanzas, sólo queda exponer los trabajos futuros.5.1 Trabajos futurosAlgunos de los trabajos que quedan para el futuro respeto a XBE32, son as-petos de implementaión omo el omportamiento de la librería uando parauna TLV simple se exede ierto límite de bytes (en la atualidad ese tope estáen 65.532 bytes), o el tratamiento de errores de la librería (atualmente, todotipo de deisiones de omportamiento frente a errores se dejan a la apa superi-or). Pero sin duda, el trabajo más relevante para el futuro es la implementaiónompleta de XSDF.XSDF es una evoluión del protoolo de loalizaión de serviios (SLP). Entodo momento se intenta que esta extensión umpla on los requisitos de�nidospor el grupo de trabajo Rserpool (Reliable Server Pooling). Sus prinipalesaraterístias son:
• Modelo de serviio mejorado.
• Loalizaión a través de Internet.
• Balaneo de arga.XSDF, es, omo se ha menionado anteriormente en este trabajo, un frame-work ompuesto por varias apas. Dado que una de ellas, la primera, era elobjetivo iniial de este trabajo, reemos que es fundamental presentar tantoesta omo las demás, ya que, omo se ha menionado en este mismo apítulo,forman parte de los diferentes trabajos que pueden derivar del que atualmentese está presentando. Estas apas son:

5.1. TRABAJOS FUTUROS 61
• XSLP (eXtensible Servie Loation Protool): Tiene omo funión pro-porionar al usuario informaión sobre la disponibilidad de determinadosserviios presentes en la red del mismo.
• XSRP (eXtensible Servie Register Protool): Se enarga de que los servi-dores registren la informaión de los serviios que proporionan en undiretorio entralizado.
• XSSP (eXtensible Servie Subsription Protool): Mediante este protoololos agentes XSDF pueden susribirse a informaión de serviio, de formaque siempre están informados de los serviios disponibles y sus posiblesambios.
• XSTP (eXtensible Servie Transfer Protool): Este protoolo permite dis-tribuir el diretorio de serviios entre varias máquinas sinronizadas entresí.

62 CHAPTER 5. CONCLUSIONS AND WORKS FOR THE FUTURE

Appendix A
Installation
This hapter explain how the user should proeed to ompile and install thelibrary, the �les needed to use the ditionary utility and the man pages.Following, the steps needed to ompile, opy and use the library:1. To ompile the multiple �les the library is omposed of. To do that, weuse the g sentene with the - option:$ g - xbe32_tlv. xbe32. xbe32_ditionary.2. After that, we reate the library with the ar ommand:$ ar rs xbe32.a xbe32_tlv.o xbe32.o xbe32_ditionary.o3. To reate an index inside the library, we exeute the next ommand:$ ranlib xbe32.a4. If we desire to opy the library to any part of our system (linux/Unix) weuse the option -p with the ommand p.$ p -p xbe32.a diretory/5. To use the library it is neessary to use g with the -L. option. Next, weare going to illustrate how to ompile a programm "foo" with our library:63

64 APPENDIX A. INSTALLATION$ g -o foo -L. -xbe32 foo.oAs in any other projet, the doumentation is neessary for the user to learnthe employ of the produt. In this ase, a very omplete example has been givenin setion 4.2 and , so it is easier for the user to grasp the funtioning of thelibrary intuitively. Anyway this library provides a set of manpages to orient theuser in the employ of the library.As it happens with the ditionary utility, there are some requisites neededto have the pages available. This requisites are the only installation needs for aLinux/Unix omputer.To have properly installed the manpages, these need to be stored in the nextdiretories:
• /usr/share/man
• /usr/loal/manNext in this hapter we are going to explain the steps to follow in order toinstall the ditionary omponent.To use the ditionary, it is neessary to reate and install it. The instrutionto do it are attahed bellow:1. Create a ".txt" �le, and open it.2. Arrange type name and value type in two olumns. The �rst of them mustbe type name, and the seond the value of this type.3. Repeat step 2) for the eah element type.4. Save the �le.5. To load the ditionary through the library, use the "xbe32_ditionary_loadDitionary"5.Following, an example of how must be distributed the ditionary:5See the example in the previous hapter

650x0100 servie0x0110 serviestate0x0111 metainfo0x0121 servietype

66 APPENDIX A. INSTALLATION

Appendix B
man pages
This appendix shows the man pages orresponding to the library.xbe32(3) LIBRARY FUNCTIONS xbe32(3)
NAME The funtions relative to the elements available for this library are:xbe32_reateParserxbe32_reateWriterxbe32_destroyParserxbe32_destroyWriterxbe32_flushxbe32_getFlagsxbe32_getIdxbe32_getName 67

68 APPENDIX B. MAN PAGESxbe32_getNumValuesxbe32_getValuesxbe32_nextElementxbe32_setParserBufferxbe32_setWriterBufferAUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

69xbe32_reateParser(3) LIBRARY FUNCTIONS xbe32_reateParser(3)NAME xbe32_reateParser, xbe32_reateWriter, xbe32_destroyParser,xbe32_destroyWriter - Create/Delete xbe32_parser_t/xbe32_writer_tstrutures alloating/dealloating the neessary memory.SYNOPSYS#inlude xbe32.hxbe32_parser_t * xbe32_reateParser(unsigned har * buf, int len)xbe32_writer_t * xbe32_reateWriter(unsigned har * buf, int len)void xbe32_destroyParser(xbe32_parser_t * parser)void xbe32_destroyWriter(xbe32_writer_t * writer)DESCRIPTIONxbe32_reateParser Creates a an opaque xbe32_parser_t struture alloating the neessary memory.The parameters for this funtion are the buf variable of har* typewhih represents the buffer whih is going to be read, and an int variable type whih represents the length of that bufferxbe32_reateWriter Creates an opaque xbe32_writer_t struture alloating the neessary memory.The parameters for this funtion are the buf variable, a har* variablewhih represents the buffer whih is going to be read, and an int variable type, len, whih represents the length of that bufferxbe32_destroyParser Free the memory orresponding to the parser struture in the upper layer.The parameter needed for alling this funtion is the xbe32_parser_ttype variable representing the parser (the parser for the upper layer.

70 APPENDIX B. MAN PAGESProessing of elements, not TLV).xbe32_destroyWriter Free the memory orresponding to the parserstru ture in the upper layer.the upper layer).The parameter needed for alling this funtion is the xbe32_writer_ttype variable representing the writer (the writer for the upperlayer. Proessing of elements, not TLV).AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>SEE ALSOxbe32_setParserBuffer, xbe32_setWriterBuffer

71xbe32_getFlags(3) LIBRARY FUNCTIONS xbe32_getFlags(3)
NAME xbe32_getFlags - returns an integer with the value of the meta fields"" ontinue, and "e" notify error.xbe32_getId - Returns the the identifier of a given element.xbe32_getName - Returns the name of an elementxbe32_getNumValues - returns an integer with the number ofvalues inside an attribute element (leaf)xbe32_getValues - Returns a void pointer to the values of the element.xbe32_getValuesType - Returns an integer with the type of the values inone attribute element.SYNOPSYS#inlude xbe32.hint xbe32_getFlags (xbe32_elem_t * elem)int xbe32_getId (xbe32_elem_t * elem)har * xbe32_getName (xbe32_elem_t * elem)int xbe32_getNumValues (xbe32_elem_t * elem)void * xbe32_getValues (xbe32_elem_t * elem)int xbe32_getFlags (xbe32_elem_t * elem)DESCRIPTION

72 APPENDIX B. MAN PAGESxbe32_getFlags returns an integer with the value of the meta fields ""ontinue, and "e" notify error. With this information, the user knowsthat an error has happened and what to do (if to ontinue or not withthe proessing).If "" value is 0, disard this mandatory TLV and stop proessing TLVsleftIf "" value is 1, skip this optional TLV and ontinue proessing nextTLVif "e" value is 0, do not report to the sender that this type isunknownif "e" value is 1, report to the sender that this type is unknownxbe32_getFlags gets as parameter an xbe32_elem_t type variable.xbe32_getId returns the identifier of a given element. An element,always have an identifier, and an also have a name.xbe32_getId gets as parameter an xbe32_elem_t type variable.xbe32_getName returns the name of an element. To do this, it heks theid of the element against a ditionary utility and finds out if thatelement has a name. If it has, xbe32_getName returns it.xbe32_getName gets as parameter an xbe32_elem_t type variable.xbe32_getNumValues returns an integer with the number of valuesinside an attribute element (leaf). This funtion is appliable only to thiskind of element (leaf), sine they are the only ones apable ofarry ing data values.xbe32_getNumValues gets as parameter an xbe32_elem_t type variable.

73xbe32_getValues returns a pointer (void type) to the values of the element. This funtion, as xbe32_getNumValues and xbe32_getValuesType, isjust appliable to attribute elements sine are the only ones whiharry real values.xbe32_getValues gets as parameter an xbe32_elem_t type variable.xbe32_getValuesType returns an integer with the type of the values inone element. This funtion is appliable only to this kind of element(leaf), sine they are the only ones apable of arrying data values.xbe32_getValuesType gets as parameter an xbe32_elem_t type variable.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

74 APPENDIX B. MAN PAGESxbe32_nextElement(3) LIBRARY FUNCTIONS xbe32_nextElement(3)NAME xbe32_nextElement - Returns an xbe32_elem_t struture with the ontentsof the urrently proessed elementSYNOPSYS#inlude xbe32.hxbe32_elem_t * xbe32_nextElement(xbe32_parser_t * parser,bool *losedElem)DESCRIPTIONxbe32_nextElement returns an xbe32_elem_t struture with the ontentsof the urrently proessed element. As with its lower layer equivalent,xbe32_tlv_nextTLV, this funtion returns an element with its ontents(data values) in ase the proessed element is an attribute element (aleaf on the hierarhial tree), and a header with its type, id, andname (if it has one), in ase it is a omplex element. It must be said,that if it is an attribute extensible element, the name/id of the element will be extrated from a different TLV that the one ontaining thevalues. The parameters needed to all this funtion are anxbe32_parser_t variable whih will be representing to the parser of theupper layer appliation, and a bool type variable to signal that a omplex element has been losed.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

75xbe32_setParserBuffer(3) LIBRARY FUNCTIONS xbe32_setParserBuffer(3)NAME xbe32_setParserBuffer, xbe32_setWriterBuffer, xbe32_flush - Changes anxbe32_writer_t/xbe32_parser_t buffer for another.SYNOPSYS#inlude xbe32.hvoid xbe32_setParserBuffer (xbe32_parser_t * parser, unsigned har *buf, int len)void xbe32_setWriterBuffer (xbe32_writer_t * writer, unsigned har *buf, int len)void xbe32_flush(xbe32_writer_t * writer)DESCRIPTIONxbe32_setParserBuffer hanges an xbe32_parser_t buffer for another.This happen when the buffer that the appliation is reading for proessing the elements has reahed its end, and the appliation needs toontinue reading from another one.The parameters for this funtion are the xbe32_parser_t type variablewhih represent the upper layer parser struture, the buf variable ofhar* type whih represents the buffer whih is going to be read, andan int variable type whih represents the length of thatbuffer xbe32_setWriterBuffer hanges an xbe32_writer_t buffer for another.This happen when the buffer that the appliation is reading for proessing the elements has reahed its end, and the appliation needs toontinue reading from another one.The parameters for this funtion are the xbe32_writer_t type variablewhih represented the upper layer struture writer, the buf variable, ahar* variable whih represents the buffer whih is going to be read,and an int variable type, len, whih represents the length of that

76 APPENDIX B. MAN PAGESbufferxbe32_flush dumps the ontents of the buffer whih is being written.This is done in order to start the writing in another buffer, or justto dump all the data of the appliation that is urrently in thebuffer.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>SEE ALSOxbe32_reateParser, xbe32_reateWriter, xbe32_destroyParser,xbe32_destroyWriter

77xbe32_tlv_loseTLV(3) LIBRARY FUNCTIONS xbe32_tlv_loseTLV(3)NAME xbe32_tlv_loseTLV - Closes a omplex TLV.xbe32_tlv_flush - Dump the ontents of the buffer whih is being written.xbe32_tlv_openTLV - Creates the header of a TLVSYNOPSYS#inlude xbe32_tlv.hint xbe32_tlv_loseTLV(xbe32_tlv_writer_t * writer)int xbe32_tlv_flush (xbe32_tlv_writer_t * writer)int xbe32_tlv_openTLV (xbe32_tlv_writer_t * writer, uint16_t type)DESCRIPTIONxbe32_tlv_loseTLV loses a omplex TLV. To do this, heks the TLVpending of being losed (on the stak or through the struturemember num_end_of_tlv) to be sure there is still one in the open state, andafter that, writes the orresponding length into the length field(Until this moment, sine the TLV whih was being proessed was omplexand the amount of TLV whih where going to be nested in it was indefinite, the length remained unknown).The parameter needed to all this funtion is an xbe32_tlv_writer_tvariable whih will be representing to the writer.xbe32_tlv_flush Dump the ontents of the buffer whih is being written.This is done in order to start the writing in another buffer, or justto dump all the data of the appliation whih is urrently in thebuffer.

78 APPENDIX B. MAN PAGESPhisially, the only task this funtion performs is the saving of thenumber of TLVs open in the member num_end_of_tlv, until themoment xbe32_tlv_flush is invoked.The parameter needed to all this funtion is an xbe32_tlv_writer_tvariable whih will be representing to the writer.xbe32_tlv_openTLV Creates the header of a TLV. Introdues the type andthe length (if this is known), and takeS the pointer forward to writethe next field of the TLV.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

79xbe32_tlv_ontents(3) LIBRARY FUNCTIONS xbe32_tlv_ontents(3)NAME xbe32_tlv_ontents - prints the ontents of the urrently proessedTLV, in ase it is simple.SYNOPSYS#inlude xbe32_tlv.hvoid xbe32_tlv_ontents(xbe32_tlv_t * tlv)DESCRIPTIONxbe32_tlv_ontents prints the ontents of the urrently proessed TLV,in ase it is simple. This funtion is not neessary to the library,just helps debbuging possible errors.The parameter needed to all this funtion is an xbe32_tlv_t type variable whih will represent the TLV whih is being proessed.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

80 APPENDIX B. MAN PAGESxbe32_tlv_reateParser(3) LIBRARY FUNCTIONS xbe32_tlv_reateParser(3)NAME xbe32_tlv_reateParser - Creates an xbe32 parser struture to proessthe TLV whih are about to be readxbe32_tlv_paddedLength - Alloates memory for the writer struturexbe32_tlv_destroyParser - Free the memory used to store anxbe32_tlv_parser_t struturexbe32_tlv_destroyWriter - Dealloates the memory orresponding to thewriter strutureSYNOPSYS#inlude xbe32_tlv.hxbe32_tlv_reateParser(unsigned har * buf, int len)xbe32_tlv_writer_t * xbe32_tlv_reateWriter (unsigned har * buf, intlen)xbe32_tlv_destroyParser(xbe32_tlv_parser_t * parser)void xbe32_tlv_destroyWriter (xbe32_tlv_writer_t * writer)DESCRIPTIONxbe32_tlv_reateParser Creates an xbe32 parser struture to handle theTLV reading proess. Alloates memory for the struture and initializesit. This funtion is responsible of initializing the parser struture.This struture ontains several fields:buffer_start: points to the first byte where the urrent proessingstarts.buffer_end: points to the last byte that an be read in the urrentstage of proessing, that is the start byte plus the total length of

81the available bytes of the file.parser_ptr: points to the urrent byte whih is been proessing, so itis initialized pointing to the first byte of the file.open_tlvs: it ounts and stores the total number of tlvs whih areurrently opened, so it is initialized to NULL, sine at first there isno open TLV pending.error_msg: ontains the error string that must be displayed at themoment. Initialize to NULL.error_ode: ontains the number of the error that must be spread up tothe main appliation. Initialize to NO_ERROR_ERRCODE.As inome, xbe32_tlv_reateParser has the buf variable, whih maps thefile the library is writting over, and the len variable, whihrepre sents the available length for the appliation.At the end of the funtion, the returned value is the parser strutureinitialized.xbe32_tlv_reateWriter This funtion initializes the writer struture.It has as inome buf, variable whih points to the first byte avaiablefor the writer, and len, whih is the amount of bytes available for thewriter.buffer_start: points to the first byte where the enoding should bewritted.buffer_end: points to the last byte that an be written in the urrentstage of proessing, that is the start byte plus the total length ofthe available bytes of the file.buffer_ptr: points to the urrent byte whih is about to be written, soit is initialized pointing to the first byte of the file.

82 APPENDIX B. MAN PAGESnum_end_of_tlv: it is initialized to 0, sine at the beggining there isnothing written.open_tlvs: it ounts and stores the total number of TLVs whih areurrently opened, so it is initialized to NULL, sine at first there isno open TLV pending.error_msg: ontains the error string that must be displayed at themoment. Initialize to NULL.error_ode: ontains the number of the error that must be spread up tothe main appliation. Initialize to NO_ERROR_ERRCODE.As inome, it has the buf variable, whih maps the file the library iswritting over,and the len variable, whih represents the availablelength for the appliation.At the end of the funtion, the returned value is the writer strutureinitialized.xbe32_tlv_destroyParser free the memory used to store anxbe32_tlv_parser_t struture (a parser varaible).The parameter for this funtion is the xbe32_tlv_parser_t type variablerepresenting the parser.xbe32_tlv_reateWriter dealloates the memory orrespondingto the writer struture.The parameter for this funtion is the xbe32_tlv_writer_t type variablerepresenting the writer.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

83xbe32_tlv_getContinueFlag(3) LIBRARY FUNCTIONS xbe32_tlv_getContinueFlag(3)
NAME xbe32_tlv_getContinueFlag - returns a boolean value signalling the possibility of ontinuing the urrent parsing operation after find outthat an error in the struture of the TLV has ourredxbe32_tlv_getErrorFlag - returns a boolean value that indiates if anerror that has been found in the struture of the urrently proessedTLV should be reported to the upper appliationxbe32_tlv_getLength - Returns the length of the TLV whih is being urrently handledxbe32_tlv_getMeta - Returns the basi type of a defined one.xbe32_tlv_getNumValues- Returns the number of values inside a TLVxbe32_tlv_getType - Returns the type of the TLV whih is being urrently handledxbe32_tlv_getValues - returns a har pointer that points to the firstof the bytes orresponding to the values in the single TLV whih isbeing proessedxbe32_tlv_getValuesLength - Returns the length of the payload withoutthe paddingSYNOPSYS#inlude xbe32_tlv.hbool xbe32_tlv_getContinueFlag (uint16_t type)bool xbe32_tlv_getErrorFlag (uint16_t type)uint16_t xbe32_tlv_getLength (xbe32_tlv_t * tlv)

84 APPENDIX B. MAN PAGESuint16_t xbe32_tlv_getMeta (int type)int xbe32_tlv_getNumValues (xbe32_tlv_t * tlv)uint16_t xbe32_tlv_getType (xbe32_tlv_t * tlv)unsigned har * xbe32_tlv_getValues (xbe32_tlv_t * tlv)xbe32_tlv_getValuesLength (int length)DESCRIPTIONxbe32_tlv_getContinueFlag returns a boolean value signalling the possibility of ontinuing the urrent parsing operation after find out thatan error in the struture of the TLV has ourred. The bit signallingthis event is present in the meta setion of the type field.The parameter needed to all this funtion is an uint16_t type variablewhih will represent the type of the TLV.xbe32_tlv_getErrorFlag returns a boolean value that indiatesif an error that has been found in the struture of the urrently proessedTLV should be reported to the upper appliationThe parameter needed to all this funtion is an uint16_t type variablewhih will represent the type of the TLV.xbe32_tlv_getLength returns the length of the TLV whih is being urrently handled. This length is returned in hexadeimal notation andrepresent the total length of the TLV inluding the header but not thepadding. During the proess the funtion takes are of the possibleproblems with the LITTLE ENDIAN notation.The parameter needed to all this funtion is an int type variablewhih will represent the length of the TLV.xbe32_tlv_getMeta Returns the basi type of a defined one. This type is

85the result of substrat the meta haraters of the omplete type. Thosemeta haraters indiate what the ations should be taken in ase oferror during the proessing of the TLV.xbe32_tlv_getNumValues returns the number of values inside a TLV. Thisvalues must be simple values, this funtion is not appliable to omplex TLV.The parameter needed to all this funtion is an xbe32_tlv_t type variable whih will represent the TLV whih is being proessed.xbe32_tlv_getType Returns the type of the TLV whih is being urrentlyhandled. This type is returned in hexadeimal notation. During the proess the funtion takes are of the possible problems with theLITTLE ENDIAN notation.The parameter needed to all this funtion is an xbe32_tlv_t type variable whih will represent the TLV whih is being proessed.xbe32_tlv_getValues returns a har pointer that points to the first ofthe bytes orresponding to the values in the single TLV whih is beingproessed. The values are stored in binary form.xbe32_tlv_getValuesLength Returns the length of the payload without thepadding.The parameter needed to all this funtion is an int type variablewhih will represent the total length of the TLV (header + payload -padding).AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>SEE ALSOxbe32_tlv_getErrorFlag, xbe32_getFlags

86 APPENDIX B. MAN PAGESxbe32_tlv_isComplex(3) LIBRARY FUNCTIONS xbe32_tlv_isComplex(3)NAME xbe32_tlv_isComplex - Returns a boolean value that tells if the TLVproessed is omplex or notSYNOPSYS#inlude xbe32_tlv.hbool xbe32_tlv_isComplex (uint16_t type)DESCRIPTIONxbe32_tlv_isComplex returns a boolean value that tells if the TLV proessed is omplex or not.The parameter needed to all this funtion is an int type variablewhih will represent the type of the TLV.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

87xbe32_tlv_nextTLV(3) LIBRARY FUNCTIONS xbe32_tlv_nextTLV(3)NAME xbe32_tlv_nextTLV - Returns a TLV struture with the ontents of theurrently proessed TLVSYNOPSYS#inlude xbe32_tlv.hxbe32_tlv_t * xbe32_tlv_nextTLV(xbe32_tlv_parser_t * parser, bool *losed)DESCRIPTIONxbe32_tlv_nextTLV is in harge of proess every TLV on the buffer. Foreah one, it returns a TLV struture with the values orresponding tothe TLV in ase this is a simple one, or just the header in ase it isa omplex one. In addition to that, it returns a boolean value thattells if the last omplex TLV (in ase there is one) was losing withthe last TLV proessed. While xbe32_tlv_nextTLV proesses the TLVs, thefuntion advanes the main pointer of the parser struture, themember parser_ptr , to point the next TLV to proess (that is, the length ofthe TLV whih is being proessed).The parameters needed to all this funtion are an xbe32_tlv_writer_tvariable whih will be representing to the writer, and a bool typevariable to signal that a omplex TLV has been losed.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

88 APPENDIX B. MAN PAGESxbe32_tlv_setParserBuffer(3) LIBRARY FUNCTIONS xbe32_tlv_setParserBuffer(3)NAME xbe32_tlv_setParserBuffer - Changes the buffer for anxbe32_tlv_parser_t parser struturexbe32_tlv_setWriterBuffer - Changes the buffer for anxbe32_tlv_writer_t writer strutureSYNOPSYS#inlude xbe32_tlv.hxbe32_tlv_setParserBuffer (xbe32_tlv_parser_t * parser, unsigned har* buf, int len)void xbe32_tlv_setWriterBuffer (xbe32_tlv_writer_t * writer, unsignedhar * buf, int len)DESCRIPTIONxbe32_tlv_setParserBuffer hanges the buffer for an xbe32_tlv_parser_tparser struture. It is used in the ase the read buffer has reahedits end and the proessing has not been finished, so another buffer iswaiting to be read. To do this, it is neessary to apply some hangesover the parser struture: member buffer_start must point to the startof the new buffer; buffer_end must point to the end of the mentionednew buffer; and the member parser_ptr must point to the start of thenew buffer as buffer_start (the differene between the latter andparser_ptr, is that parser_ptr will hange its position along the proessing).The parameters introdued in this funtion are: a variable ofxbe32_tlv_parser_t type whih is representing the parser struture; ahar* pointer to the buffer whih must be read; and an int variablewith the length of the new buffer to be read.hanges the buffer for an xbe32_tlv_writer_t writer struture.It is

89used in the ase the read buffer has reahed its end and the proessinghas not been finished, so another buffer must be read (the data has notfinished, but the buffer did) in order to enode all the message. To dothis, it is neessary to apply some hanges over the writer struture:member buffer_start must point to the start of the new buffer;buffer_end must point to the end of the mentioned new buffer; and themember buffer_ptr must point to the start of the new buffer asbuffer_start (the differene between the latter and buffer_ptr, is thatbufferr_ptr will hange its position along the proessing).The parameters introdued in this funtion are: a variable ofxbe32_tlv_writer_t type whih is representing the writer struture; ahar* pointer to the buffer whih must be read; and an int variablewith the length of the new buffer to be read.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>

90 APPENDIX B. MAN PAGESxbe32_tlv_writeTLV(3) LIBRARY FUNCTIONS xbe32_tlv_writeTLV(3)
NAME xbe32_tlv_writeTLV - Writes the ontent of a simple TLV.SYNOPSYS#inlude xbe32_tlv.hint xbe32_tlv_openTLV (xbe32_tlv_writer_t * writer, uint16_t type)DESCRIPTIONxbe32_tlv_writeTLV writes the ontent of a simple TLV. Writes the payload of a simple TLV inluding the padding. In addition to that, takesthe pointer forward as far as neessary to write the next TLV (that is,the length of the urrent TLV).The parameters needed to all this funtion are an xbe32_tlv_t typevariable whih will represent the TLV whih is being proessed and anint type variable whih will represent the type the TLV.AUTHOR Lia Bailan <100011513 at alumnos dot u3m dot es>
version 0.1 Marh 2009 xbe32_tlv_writeTLV(3)

Bibliography
[1℄ Uruena, M. y Larrabeiti, D., "eXtensible Binary Enoding", <draft-uruena-xbe32-00>, Marzo 2004.[2℄ Uruena, M. y Larrabeiti, D., "Overview of the eXtensible Servie DisoveryFramework", <draft-uruena-xsdf-overview-00>, Marzo 2000.[3℄ Uruena, M. y Larrabeiti, D., "Overview of the eXtensible Servie Disov-ery Framework: Common Elements and Proedures", <draft-uruena-xsdf-ommon-00.txt>, Marzo 2004.[4℄ Uruena, M. y Larrabeiti, D., "eXtensible Servie Loation Protool(XSLP)", <draft-uruena-xslp-00.txt>, Marzo 2004.[5℄ Uruena, M. y Larrabeiti, D., "eXtensible Servie Registration Protool(XSRP)" <draft-uruena-xsrp-00.txt>, Marzo 2000.[6℄ Uruena, M. y Larrabeiti, D., "eXtensible Servie Subsription Protool(XSSP)" <draft-uruena-xssp-00.txt>, Marzo 2004.[7℄ ITU-T, "ASN.1 enoding rules: Spei�ation of Basi Enoding Rules(BER), Canonial Enoding Rules (CER) and Distinguished Enodign Rules(DER)", X.690, Diiembre 1997.[8℄ Fernández, M., Diseño e Implementaión del API del eXtensible BinaryEnoding (XBE32), Marzo 2005.[9℄ José Ángel Martínez Usero y Elsa Palaios Ramos "XML: un medio parafomentar la interoperabilidad, explotaión y difusión de ontenidos en laadministraión eletrónia"[10℄ ITU-T Reommendation X.690: SERIES X: DATA NETWORKS ANDOPEN SYSTEM COMMUNICATIONS OSI networking and system aspets� Abstrat Syntax Notation One (ASN.1) Information tehnology � ASN.191

92 BIBLIOGRAPHYenoding rules: Spei�ation of Basi Enoding Rules (BER), CanonialEnoding Rules (CER) and Distinguished Enoding Rules (DER)July 2002[11℄ SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICA-TIONS OSI networking and system aspets � Abstrat Syntax NotationOne (ASN.1) Information tehnology � ASN.1 enoding rules: XML Enod-ing Rules (XER)Deember 2001

