Universidad Carlos IIT de Madrid

Departamento de Ingenieria Telematica

Ingenieria Informéatica. Especialidad sistemas
distribuidos

PROYECTO FIN DE CARRERA

— DESIGN AND IMPLEMENTATION OF
AN EXTENSIBLE BINARY ENCODING
(XBE32) C LIBRARY —

Author: LIA BAILAN ZAMORA
Diplomada en Informatica
Director: MANUEL URUENA PASCUAL

Licenciado en Informatica

March, 2009

For those regarded as warriors, when engaged in combat, the
vanquishing of thine enemy can be the warrior’s only concern. Sup-
press all human emotion and compassion. Kill whoever stands in
thy way, even if that be Lord God or Buddha himself. This truth
lies at the heart of the art of combat.

Kill bill vol.1

Dedicated to Telmo, Li6-Li6 and ...da boy.

Contents

Introduction
1.1 Motivations e e e e e
1.2 Objectives oL

1.3 Document contents e

STATE OF THE ART: ENCODING STANDARDS
2.1 The competitors
2.2 Justifying the existence of XBE32

XBE32 SPECIFICATION

3.1 TLV format e
Unspecified Length

3.2 XBE32TLVs e
Complex TLVs with inner TLVs
Simple TLV with one variable-length Value
Simple TLVs with 1-Octet Values
Simple TLV with 2-Octets Values
Simple TLVs with 4-Octets Values
Simple TLVs with 8-Octets Values
Simple TLVs with 12-Octets Values
Simple TLVs with 16-Octets Values
Opaque TLV Values
String TLV Value
Boolean TLV Values
Integer TLV Values
Floating point TLV Values

3.3 XBE32Elements
Compact Elements
Extensible Elements: Extensible Names and Identifiers

Extensible Complex Elements

Extensible Attribute Elements 26

4 XBE32 DESIGN AND IMPLEMENTATION 29
4.1 TLV layer e 30
The writer: Building a TLV 31

The reader: Processinga TLV 33

4.2 XBE32 Element layer 0. 40
The writer: Building an XBE32 element 40

The reader: Processing a XBE32 element 42

The dictionary: Giving sense to the elements 47

43 Usageexamples o 48
Encoding example oL oo 49

5 CONCLUSIONS AND WORKS FOR THE FUTURE 57
5.1 Trabajos futuros 60

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

4.1
4.2
4.3
4.4
4.5

Format of a XBE32 TLV 12
Dissected TLV type. o 13
Primitive TLV types 14
TLV signaling an End-of-data 15
Complex TLVs with inner TLVs 16
Example of simple TLV with one variable-length value 16
Example of simple TLVs with 1-Octet Values 17
Example of simple TLV with 2-Octets Values 17
Example of simple TLV with 4-Octets Values 18
Example of simple TLV with 8-Octets Values 19
Simple TLVs with 12-Octets Values 19
Example of simple TLV with 16-Octets Values 20
Opaque TLV types 21
String TLV types 21
Boolean TLV typeso 22
Integer TLV types o 22
Floating TLV types 22
TLV Meta and Subtype table 23
Extensible complex and attributes TLV 24
Extensible TLV names and identifiers 25
Extensible Complex Elements example 26
Extensible Attribute Elements example 27
Dissected TLV type. o 28
Library structureo o 30
Opening of a complex TLV, 37
Closing of a complex TLV 37
Next TLV process 39
Next Element process 45

Chapter 1

Introduction

Nowadays computer networks in the modern business industry are essential.
There are a lot of services that in these days are provided through the network,

and without them, it would be impossible to save resources by sharing them.

In addition to that, technology has advanced a lot, making possible for the
users to possess machines (laptops, PC’s, PDA’s, etc) that are not static but can
go with them wherever they go, forcing the IT research to discover new ways
to provide the network services to those mobile devices. For all those reasons,

service discovery protocols have been developed.

The access to network services scattered among different locations is possible
thanks to Service Discovery technology. It is the technology responsible to find
all the different resources attached to the user network and offer them to them in
case are authorised to use them. Service Discovery Protocols are the protocols
that carry out the mission. Some of these technologies are: Jini, Salutation,
SLP, UPnP. This protocols have been conceived to allow the cooperation among

devices/services with minimal human intervention.

To perform all the three tasks (plus the specific of each protocol) it is nec-
essary the interchange of messages in the net between the different machines.
To find the proper encoding mechanism for a Service Discovery Protocol is the

main goal of this work.

2 CHAPTER 1. INTRODUCTION

1.1 Motivations

XSDF (Extensible Service Discovery Framework), published in 2005, defines an
architecture with several entities and protocols for the management and location
of Service information. XSDF intents to be the tool to give transparency to the
different network operations that a user needs for its daily working. XSDF tries
to address all these problems, offering a framework to find the best service for
the user. That is, looking for the one which optimizes the needs of the user
and of the network. In this way, this tool can be useful not just to find hidden
resources, but to keep a load balance between all of them as well.

There is no need to say that, since XSDF is another SDP, the needs to implement
it meets the needs of the others SDP. Therefore XSDF is forced to send encoded
messages as mean of communication between the machines that take part in its

process.

Nowadays, the most popular format to represent hierarchical structured in-
formation is the eXtensible Markup Language (XML), and it has been employed
by multiple network protocols and applications. Although its textual represen-
tation allows protocols to be extensible, and eases development and debugging,

it requires more bandwidth and processing than a binary counterpart.

On the other hand, we can mention ASN.1, at some extent less popular
format, that gives us a representation that requires much less bandwidth, even

saving space at the bit level, but has quite complex processing rules.

As a result, we have two very different encoding mechanisms that cover
different user’s necessities. XML provides a mean to represent hierarchical data;
ASN.1 allows to encode the data in a minimum space so less bandwidth is
needed. Our goal is the implementation of XBE32, which is meaning to cover
the deficiencies of both of them, its purpose it is to give to the user the chance

to represent hierarchical data in an smaller space.

The requirements asked to XBE32 will be:

e to be capable of expressing hierarchical structures in its messages.

e to save bandwidth through the creation of really compact messages.

This document specifies an eXtensible Binary Encoding (XBE32), a simple

binary encoding for network protocols that carry hierarchical data. It pretends

1.2. OBJECTIVES 3

to be an intermediate way between XML and ASN.1. In spite this encoding has
already a Java implementation, we have seen necessary to make its correspon-
dent implementation in C, due to the fact that this language is more extended
in the Unix/Linux platform and above all, among the open source community,
which in our humble opinion is a very important source for the development of

this technology.

1.2 Objectives

The main objective of this work is to develop a library to encode/decode XBE32
messages in C language. This implementation will become a library that has
to be simple, transparent and efficient. The library had to work as the base for

any other network application that required to encode messages in XBE32.

Those were the official objectives that must cover the XBE32 implementation
described in this work. For the student responsible to carry out this task,
there are additional objectives. Among them the most important one was the
improvement of the ability to program in C language, but there were others
as the comprehension of a complex protocol and its posterior materialization,
the application of the engineering methods learned during the degree courses,
the use of distributed programming techniques, and the use and improvement of
Linux O.S and several utilities as control version applications, scientific language

processors, etc.

Finally, since the goals for this work have been explained, it is time to
describe the means used to perform the implementation, just as the implemen-
tation itself has been described. In spite it has not been an easy task to conceive

and to capture this library, the technology needed is not very sophisticated:

e A simple PC machine capable to host:

a gce compiler.

— a revision control system (subversion).

— a simple text editor (gedit).

— a latex compiler.

— a graphic application capable of create UML diagrams (DIA).

— an Internet connection (Just to do research).

4 CHAPTER 1. INTRODUCTION

1.3 Document contents

The structure of this document is the following:

In the present chapter, we present the problem we are trying to solve with this
work, and the objectives that we want to achieve with the implementation. In
addition to that, some background about the means we have at our disposal to

perform the implementation is given.

After that, in the second chapter, we present some of the other encoding
standards available in the market and we establish a comparison between them
in order to show which are the points that are not covered by those alternatives

that make our solution necessary.

The third chapter is the specification of the protocol implemented in this
work. This chapter is included to give the users an overview of XBE32 and

make them capable of evaluate the way the implementation has been done.

The fourth chapter offers an explanation about the implementation. De-
scribes the system architecture and the functions with some graphical means

and some examples to improve the reader understanding.

In the fifth chapter we summarize the initial goals and check if these have
been achieved, look for the main difficulties during the job, and recount the fu-
ture works opened by the realization of this implementation and the skills and

techniques acquired with this work.

Finally, this writing counts with a couple of appendixes: Installation, which
explains which files must be installed and how install and/or create them; and

the man pages which constitute the users’ manual.

Chapter 2

STATE OF THE ART:
ENCODING STANDARDS

2.1 The competitors

In the present time, XML is the most widely format to represent hierarchical
information, and since this kind of information is the most popular in the cur-
rent computer applications, XML has become the most extended format in the

moment.

Development of XML started in 1996 and it has been a W3C Recommen-
dation since February 1998, which may make us suspect that this is rather im-
mature technology. In fact, the technology is not very new. Before XML there
was SGML, developed in the early '80s, an ISO standard since 1986, and widely
used for large documentation projects. The development of HTML started in
1990. The designers of XML simply took the best parts of SGML, guided by
the experience with HTML, and produced something that is no less powerful
than SGML, and vastly more regular and simple to use. In addition to this,
XML allows protocols to be extensible, and eases development and debugging,
but XML presents a great problem for distributed applications: it requires more
bandwidth and processing than the expression of its information in/on binary
data.

Over the past decade, XML has become the preferred encoding system of the
major IT and business companies. It has received an enormous support from

these, and this is the reason why it has become the most important encoding

5

6 CHAPTER 2. STATE OF THE ART: ENCODING STANDARDS

language nowadays. It has been adopted by the great majority of Universities,
and thus there is no single I'T or Information science student who does not
use it for at least a couple of projects. Its simplicity and its ease to deploy
any hierarchical scheme have been its most valuable attributes to make from
XML the standard encoding for any organization. On the other hand, we must
remember that though XML is full of advantages, it is very difficult for just one
technology to fulfil the goals of every user at every moment. XML consumes a
lot of bandwidth and it is not suitable for small protocols which main goal is

speed.

Since many users do not bother to check if one technology is the best for
their applications (they take for granted that the most trendy always must be
applied), some researchers have seen as something important to produce an
study about XML and its suitability respect another old encoding standard,
ASN.1. A fragment of this study [9], by Jose Angel Mart’ inez Usero and Elsa
Palacios Ramos, below in order to summarise the advantages and disadvantages
of both standards:

ASN.1 is designed to describe the structure and syntax of trans-
mitted information content. ASN.1 provides the definition of the
abstract syntax of a data element (or data type). The abstract syn-
tax describes the syntactical structure and typed contents of data
that are subsequently to be transmitted across some medium. The
language is based firmly on the principles of type and value, with
a type being a (non-empty) set of values. The type defines what
values can subsequently be sent at runtime, and the value is what is
actually conveyed across the medium at runtime.

ASN.1 values are encoded before transmission using one of a
number of different encoding mechanisms such as the Basic Encoding
Rules (BER), the Distinguished Encoding Rules (DER), the Packed
Encoding Rules (PER) [10] (ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)) or the recently introduced
XML Encoding Rules (XER) [11](Information technology ASN.1
encoding rules:XML Encoding Rules). The encoding rules specify
how the values of the abstract data types are converted into byte
strings ready for transfer. The recipient must usually be aware of the
type definition before receipt, as this is not transferred but must be

inferred from the context in which the message exchange takes place.

2.1.

THE COMPETITORS

The Basic Encoding Rules are very efficient and create Type, Length,
Value (TLV) byte streams, so that the recipient, upon reading the
length field, knows how many data bytes the value comprises. PER
is even more efficient than BER, and is not based on TLV streams,
so even greater optimisation can result. For example, PER never
encodes the length of the value, unless it has to. If something has a
fixed length, then the length field is not encoded.

During the transmission the ASN.1 data stream is never in a
form readable by human operators (except when XER is used). Only
when it has been transformed into some local data display format,
prior to encoding or after decoding, can it be easily read by humans.
In its behalf, it must be said that a lot of encoding rules can be used,
as it has been said before. Among them, the XML encoding rules.
But as a great inconvenience, we found that its binary encoding is
rather complex and it must take several stages: ASN.1 encoding
itself, and after that, the application of the selected encoding rules
(PER, XER, BER or XML).

XML is a set of rules that allows data values to be encoded in
text format. XML is a subset of the Standard Generalized Markup
Language (SGML), but is also infinitely extensible. XML documents
contain the information for transmission and consist of markup (which
corresponds roughly to the “tag” and “length” parts in BER TLV
encoding) and character data (which corresponds roughly to the
“value” part in BER TLV encoding). Constraints can be imposed on
the XML document structure with the provision of Document Type
Definitions (DTD’s) or XML Schemas. These describe the allowed

markups that a conformant XML document can contain.

One can see immediately that XML is very verbose, and conse-
quently creates large data streams. XML is transferred in textual
format with no binary encodings or compression. Furthermore, the
recipient has to examine every byte received in order to determine
the end of a data value. However, XML goes through no transforma-
tions and remains in a constant human readable format throughout

the process.

In some sense it can be said that DTD’0s/schemas map to the ab-
stract syntax type definitions within ASN.1 and the XML documents
map to the ASN.1 encoded byte streams. There are a few major dif-
ferences between ASN.1 and XML/DTDs, with XML/DTDs lacking

CHAPTER 2. STATE OF THE ART: ENCODING STANDARDS

any concept of data type and ASN.1 being rich in built-in data types
and supporting user-defined data types. Also, XML is very verbose,
unlike ASN.1 encoding rules (except XER) that have been designed
for optimal performance rather than human readability. However,
from an application programmer’os perspective, XML is easier to de-
bug since the data stream can be read without any special software
tools. Trying to read an ASN.1 BER or PER byte stream is very
complex, but a number of free tools do exist to display ASN.1 data
in its original source form e.g. dumpasnl. In addition, the XML 1.0
specification is a lot newer, simpler and easier to understand than
the ASN.1 documentation, which has gone through several iterations

and therefore contains many more sophisticated features.

In many environments XML is a preferred way of encoding busi-
ness transactions, since the messages are readily viewable by web
browsers. If these environments involve simple XML messages, with-
out digital signatures, then XML performs adequately and the bene-
fits of XML can be realised. In fact we have found that simple XML
message creation is more efficient than creating an equivalent ASN.1
byte stream. For critical real time systems where digital signing of
complex data structures is required, and where performance is a key
success factor, such as an electronic prescribing system for example,
it has been shown that signed complex XML messages can be up to

a 1000% slower to decode than an equivalent ASN.1 message.

XML is easy to manipulate and easy to understand, all factors
which make it attractive to both senior management and develop-
ers. However, the key to many IT project failures has been the
inability to perceive the needs of the end users, and performance
is one of them. Some believe that in a real time system dealing in
multiple transactions a second and requiring strong authentication
through digital signatures, XML formatting is not a good protocol to
choose. This might ultimately result in user dissatisfaction and per-
haps even total system failure. Since end users are aware of system
performance and not of the underlying data encoding mechanisms,
we believe that performance figures are an important factor in sys-
tem design. In several sources, it has been shown that with digitally
signed messages ASN.1 can significantly outperform XML by over

an order of magnitude.

2.2. JUSTIFYING THE EXISTENCE OF XBE32 9

2.2 Justifying the existence of XBE32

Despite XML is the most widely protocol used to encode data in Internet ap-
plications, as we have seen in the previous section, the performance of the men-

tioned protocol is not as good as it should be, at least in certain scenarios.

This is the main reason of the existence of XBE32. This protocol has been

created in order to solve the problems raised by XML (bandwidth and process-
ing).

Some of the characteristics that make XBE32 a better encoding system than
XML are the following:

e XBE32 Elements are serialized inside TLV structures which are 32-bit
aligned to ease the parsing process. As data is clearly delimited, XBE32
does not require to escape characters as XML does, thus it also facilitates

message creation.

e XBE32 TLVs have a 2-octets long Type and Length fields. Therefore,
XBE32 is well suited for simple protocols with short messages and a small
set of identifiers. However, in order to be extensible, XBE32 Elements may
also have variable-length names or longer binary identifiers. Moreover,
XBE32 may support TLVs with an “unspecified” length in order to encode
big messages, and to start sending a message before its total length is
known. There are two kinds of XBE32 Elements: “Attribute Elements”
which carry primitive data values, and “Complex Elements” which are not
able to carry data by themselves but contain other Attributes and/or other

Complex Elements.

e In order to be employed by modern programming languages, XBE32 make
use of common primitive data types for its Attribute Elements, such as
Strings, Booleans, Integers, Floats, as well as Arrays. Other data types
can be encoded using the different binary Opaque value types defined by
XBE32.

Once this point has been reached, an inspired reader could get to the conclu-
sion that, if some recent studies have shown that ASN.1 could be the solution
to the problems that XML raises, XBE32 has no reason to exist. Well, that is

not that simple since there are several reasons that advises the use of XBE32

10 CHAPTER 2. STATE OF THE ART: ENCODING STANDARDS

over ASN.1, the main one is simplicity, but we are going to enumerate others in

the following list:

e ASN.1 data processing is further much complex than XBE32. Data is first
encoded in the ASN.1 language, and after that, it is necessary to apply
the mechanisms that converts the data following the PER, BER or XER
encoding rules. XBE32 is an atomic encoding system that does not need
of another mechanism or tools to encode the data, making the process

quicker and easier to follow to the user.

e ASN.1 BER encoding is quite similar to XBE32 since it also employs
TLVs. However ASN.1 BER is a lot more complex than XBE32 since
its final objective is reducing bandwidth costs, not processing ones. For
instance BER TLVs have variable length fields, and are byte-aligned. On
the other hand XBE32 employs 32-bit aligned TLVs with fixed-length
fields that greatly eases the parsing process. Moreover ASN.1 is a general
encoding syntax not focused in a single domain of application but many.
For instance it has 30 data-types and deals with globally unique OID
identifiers, whereas XBE32 has been designed for simple protocols with a

small set of identifiers and data-types.

Chapter 3

XBE32 SPECIFICATION

This chapter contains the full specification of the XBE32 encoding, the last

version of the draft [1] written by Manuel Urena Pascual and David Larrabeiti.

Nowadays, the most popular format to represent hierarchical
structured information is the eXtensible Markup Language (XML),
and it has been employed by multiple network protocols and appli-
cations. Although its textual representation allows protocols to be
extensible and eases development and debugging, it could require
more bandwidth and processing than a binary counterpart.

The eXtensible Binary Encoding (XBE32), a simple binary en-
coding for network protocols that carry hierarchical data. XBE32 El-
ements are serialized inside TLV structures which are 32-bit aligned
to ease the parsing process. As data is clearly delimited, XBE32
does not require to escape characters as XML does, thus it also eases
message creation. The final goal of this encoding is to be used by
applications which need to reduce the bandwidth of the information
sent and without great complications in the encoding process.

XBE32 TLVs have a 2-octets long Type and Length fields. There-
fore, XBE32 is well suited for simple protocols with short messages
and a small set of identifiers. However, in order to be extensible,
XBE32 Elements may also have variable-length names or longer
binary identifiers. Moreover, XBE32 may support TLVs with an
“unspecified” length in order to encode big messages, and to start
sending a message before its total length is known.

There are two kinds of XBE32 Elements: “Attribute Elements”

11

12 CHAPTER 3. XBE32 SPECIFICATION

0 1 2 3
0123456789012 34567689012345678901
+-+=+-+-+-+-+-+-+-+-+-+-+-+-t-t+-+-+-+-4+-+-4+-4-+-t+-+-t+-+-+-+-+-4+-+
| Type | Length |
R e e s e e o e e e D e e e e e o e e B e e et el et At

Values

B e T s s m T S S B S e s S e e
H | [Padding] |
LT T S B B B T Tt Tt T T T B ol

Figure 3.1: Format of a XBE32 TLV

which carry primitive data values, and “Complex Elements” which
are not able to carry data by themselves but contain other Attributes
and/or other Complex Elements.

In order to be used by modern programming languages, XBE32
employs common primitive data types for its Attribute Elements,
such as Strings, Booleans, Integers, Floats, as well as Arrays. Other
data types can be encoded using the different binary Opaque value
types defined by XBE32.

The design of XBE32 has been conceived to intertwine two dif-
ferent layers. The first one will be responsible to handle the atomic
parts of the language; the TLVs. The second layer will handle the
elements; this elements are always composed by one or more of the
latter.

Now, in the next sections we are going to introduce the different
components of the protocol just in order to make more comprehen-

sible the explanation about the way we have implemented it.

3.1 TLV format

A TLV (abbreviation of Type Length Value) is, as its name points
out, a set composed by the type, length and value of the item we
are trying to represent. Is the smallest item in the protocol, and
the one from the others are made of. XBE32 Elements are encoded
inside Type-Length-Value (TLV) structures, that MUST be aligned
to 4-octet words. XBE32 TLVs could be: “Simple” TLVs if they
carry primitive data values, or “Complex” ones if they contain other
TLVs. The structure of a TLV is as figure 3.1 illustrates.
Type (16 bits):

3.1. TLV FORMAT 13

This field describes the processing rules, TLV structure and what
kind of data is carried inside the Values field. The Type field has

the internal structure shown in figure 3.2:

0 1

0123 4567890123475
e s S e S S S s Kl
|CIE] Meta | Subtype |
s e e S e s s e

Figure 3.2: Dissected TLV type

C and E bits (1 bit each):
These two bits specify the measures that must be taken if the

XBE32 processing entity does not recognize this Type value:

C - Continue Processing:
0 - Discard this mandatory TLV and stop processing TLVs left
1 - Skip this optional TLV and continue processing next TLV

E - Notify Error:
O - Do not report to the sender that this Type is unknown.

1 - Report to the sender that this Type is unknown.

Meta (6 bits):

This subfield describes the internal structure of the TLV’s Values
field, as well as the type of the primitive data it contains 3.3:

Subtype (8 bits):

This subfield identifies the semantic meaning of this TLV and/or
the data carried inside its Values field. Therefore, Subtype values
should be defined by the upper application/protocol that is employ-
ing a XBE32 encoding. However, Subtype values 0x00 and 0xFF are
reserved for XBE32 use and SHOULD NOT be employed for other
purposes.

Length (16 bits):

This field MUST be encoded as an unsigned binary number in
network byte order (a.k.a. Big Endian, i.e, the most significant byte
first). It specifies the size in octets of the whole TLV structure,
excluding padding. Length SHOULD be always equal or greater
than 4 octets, that is, the length of the Type and Length fields. The

14

CHAPTER 3. XBE32 SPECIFICATION

Type.Meta TLV Values structure

Ox00-0x1F Multiple wvariable-length TLVs

OxzZ0 Single variable-length opacue Value
Ox21 Single wvariable-length string Value
0x24 Multiple opacuel Values
0x25 Multiple int8 Values
Ox26 Hultiple boolean Values
Ox28 Hultiple opacgueZ Values
ox29 Hultiple intl6 Values
OxzC Hultiple opagqued Values
Oxz2D MHultiple int3z Values
Ox2E Hultiple float32 Values
Ox30 MHultiple opagqued Values
0ox31 Hultiple int64 Values
0x32 Multiple floaté4 Values
Ox34 Hultiple opagquel2 Values
0x38 Hultiple opagquel6 Values

The unlisted values are reserved by XBE32 and SHOULD NOT he
enmp loyed.

Figure 3.3: Primitive TLV types

only exception to this rule is a Complex TLV with a zero (0x0000)
length value, whose meaning is explained in the next subsection.

Values and Padding (variable length):

The Values field may contain a single variable-length value, mul-
tiple fixed-length values, or other TLVs, as defined by the Type and
Length fields. The Values field may be empty, that is, have zero
octets. In that case, the Length field SHOULD be set to 4. In order
to properly align a non-empty Values field to 4-octet words, up to 3
octets of padding space MUST be added and filled with zeros (0x00)

in transmission, and they MUST be ignored in reception.

Unspecified Length

In some circumstances a message can not be delayed/stored and it
must start being sent before all the data to be encoded is available.
However, as a TLV header defines the total length of the structure, a
TLV-encoded message should not be sent until all its data becomes
available, or the total length can be inferred somehow.

For that reason, XBE32 parsers MAY allow a Complex TLV (i.e.
containing other TLVs) to have an “unspecified” length. In that case,
the last of the inner TLVs MUST be an End-of-data TLV to mark its
ending. This “unspecified” length is indicated by setting the Length
field of a Complex TLV to zero (0x0000).

3.2. XBE32 TLVS

0

0123456789012 34567890123456768901

1 2 3

15

e T e T Tt S s s Tt S roa Hoas R ms st R s Ears e E L e e S S T e B

Type = 0x0000 | Length = 4

|

R A S e B S B S e

Figure 3.4: TLV signaling an End-of-data

End-of-data TLVs (figure above) have the Type field set to zero
(0x0000) and a fixed Length of 4 octets, thus they MUST NOT
include a Values field.

This optional mechanism allows XBE32 to encode Complex TLVs
of arbitrary length. However, only Complex TLVs may have an
“unspecified” length. The Values field of a Simple TLV containing
primitive data Values MUST NOT be longer than 65532 octets.

3.2 XBE32 TLVs

Once we have defined a simple TLV, it is possible to describe the
role that plays in the whole XBE32 encoding system. This section
specifies all the possible TLV structures and data types allowed in
XBE32. All TLVs share the common format for the Type and Length
fields defined in the previous section, but the TLV showed before
must be enriched to fulfill the needs of the encoding protocol. The
main difference between XBE32 TLVs is the inner structure of their
Values fields and the type of the primitive data they contain, as
defined by the Meta part of the TLV’s Type field.

Complex TLVs with inner TLVs

Figure 3.5 represents a Complex TLV containing multiple inner
TLVs. If the Length is “unspecified” (i.e. zero), the Complex TLV
MUST end with a 4-octet End-of-data TLV. Otherwise, if the Length
of a Complex TLV is non-zero, it MUST NOT contain any End-of-
data TLVs.

As XBE32 TLVs must be aligned to 4-octet words, all Complex
TLV will be also aligned to 4-octet words. Therefore, padding MUST
NOT be added, and the Length field SHOULD specify the size of
the whole Complex TLV, including the length of all the inner TLVs

it contains.

16 CHAPTER 3. XBE32 SPECIFICATION

0 1 z 3
0123456789012 3456789012345678901
s s S m e K S . T ma Sk s SEE TR S S

| Type.Meta = 0x00-0x1F | Length = 0 or 4 + length TLVs |
===ttt =ttt t—t=—t—t—t—t=4—1—=
| Type #1 | Length #1 |

e T B e S B T T At e e T B B e S SRS
: Values #1 :
e T T S S e S e et S R SRS
+—t—t—t—t—t—F—t—t—F—t—F—F—t—t—F—F—F—F—F—t—t—F—F—F—F—F—F—F—F—F—+—+
| Type #N | Length #N |
T e St S e S e st S Bl S S Tt S E ot Ht st et ¥
: Values #N :
=ttt —F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—t—t—F—F—F—F—F—F—F—F—F—F+—+

i [End-of-data TLV] |
B s ms s s s S e S e S s st st Sl S e e Sl e

Figure 3.5: Complex TLVs with inner TLVs

However, as some of the inner TLVs Values may be padded, the
Length of a Complex TLV SHOULD NOT be calculated as 4 plus
the sum of the Length fields of all its inner TLVs, as these fields may

not include their padding octets.

Simple TLV with one variable-length Value

Figure 3.6 represents a Simple TLV containing a single variable-

length Value:

0 1 2 3
0123456789012 345678689012345678901
Rk o Sk S i St et e it et et et D s s sty b et L o B S St S e et B it o

| Type.Meta = 0x20-0x21 | Length = 4 + Value.length
8 e s Sy ol st et Lt et St S et S it Sl Ll Bl i et s piy i sk S e St i et et s

Value
e et et D L e el e e e e S e S S S L P St St S T

- | [Ox00] | [Ox00] | [Ox00] |
B s s ah e s T S s S S e T S At T st St ek et 4

Figure 3.6: Example of simple TLV with one variable-length value

The Length field MUST specify the size of the Type and Length

3.2. XBE32 TLVS

fields, plus the length of the encoded Value measured in octets. If
the Value is not aligned to 4-octet words, padding MUST be added.
In that case, the Length field does not define the size of the whole
TLV structure, but its total length without the padding octets

Simple TLVs with 1-Octet Values
Figure 3.7 represents a Simple TLV containing N, 1-octet Values:
0 1 2 3

0123456789012 3456789012345678901
e s E e S s L e et

| Type.Meta = 0x24-0x26 | Length = 4 + N

e e s e S e e S el e e e Sk b b St el St Sl S S e e e
| Value #1 | Value #2 | Value #3 | Value #4 |
+—t—F—F—Ft—F—F+—F—t—+—F—F—+—F—+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—+—+—+

+ e

e s e e B
| Value #N | [0x00] I [Ox00] | [0x00] I
T B T e s S e e

Figure 3.7: Example of simple TLVs with 1-Octet Values

The Length field MUST specify the size of the Type and Length
fields, plus the number of 1-octet Values, if any. If the number of
Values is not a multiple of 4, up to 3 padding octets MUST be added.
In that case, the Length field does not define the size of the whole
TLV structure, but its total length without the padding octets.

Simple TLV with 2-Octets Values
Figure 3.8 represents a Simple TLV containing N, 2-octets Values:

0 1 2 3
0123 4567890123456 789012345¢6789¢01
S e e BiEe K et crute ol (oot pole st Lol pche oty paet paghy et o s e et it e gt ek o e o 2 Sk s i el
| Type.Meta = 0x28-0x29 | Length = 4 + N*2 |
+=+—+=t=t=t=t+=t=t=t=t=t=t=t=t=t=t—t=t—t ==t =t ===ttt =t —t—t=+-+
| Value #1 | Value #2 |
E e e s T T S S e e T e s sl T e e e o Rl ek Sk Sl e el e e e e

—d—d ==t —d—F—F—F—F—F—F—F—F—F === —F—F—F—F—F === F—F—F—F—F—F—F—+
| Value #N | [Ox0000] |
+—t—t—t—t—t-F—t—t—F—t—F—F—t—t-t—F—F—F—t—F—F—F—t—F—+—F—F—F—F—+—+-+

+ -
+

Figure 3.8: Example of simple TLV with 2-Octets Values

17

18 CHAPTER 3. XBE32 SPECIFICATION

The Length field MUST specify the size of the Type and Length
fields, plus the number of 2-octet values, if any, multiplied by two.
If the number of Values is not a multiple of 2, two padding octets
MUST be added. In that case, the Length field does not define the
size of the whole TLV structure, but its total length without the
padding octets.

Simple TLVs with 4-Octets Values

Figure 3.9 represents a Simple TLV containing N, 4-octets Values.
As these TLVs are always aligned to 4-octet words, the Length field

0 1 2 3
012345678689 0123456789012345678901

+=t ==t =t=t=t=+-+
| Type.Meta = 0x2C-0xZE | Length = 4 + N*4 |
===t pmpmpm = pm e pm b p b pm p b b p b p b p e
| Value #1 |

T S B S S S e S S S

e o e T e e e e o e o e e e etk ok Bt Bt S
| Value #N |
e o e e s e S S e e e e T e

Figure 3.9: Example of simple TLV with 4-Octets Values

MUST specify the size of the whole TLV, and padding octets MUST
NOT be added.

Simple TLVs with 8-Octets Values

As these TLVs are always aligned to 4-octet words, the Length field
MUST specify the size of the whole TLV, and padding octets MUST
NOT be added.

3.2. XBE32 TLVS

Figure 3.10 represents a Simple TLV containing N, 8-octets Val-

ues:

o 1

2

3

0123 4567890123456 789012345678901
e T s S S S s T S M s S st St S T SRS

| Type.Heta = 0x30-0x32

s Ik s s s T S e o

I
+

s e s S S S e S e s st St

e o T S S A o ot s T o =

I
+

e e e r ok ot T T T S S S S

Value #1

Value #N

Length = 4 + N*3

s e T e

B s et e e e e

g o m o e

o o e o o o e o o o

Figure 3.10: Example of simple TLV with 8-Octets Values

Simple TLVs with 12-Octets Values

Figure 3.11 represents a Simple TLV containing N, 12-octet Values:

0 1

2

3

+-

-

-

& e

0123456789012 34567689012345678901
s T S B e e st s et ST SR S

| Type.Meta = 0Ox34

et e T B e s s s ot S S SR B B

+—t—t—t—t—t—t—t—t—F—t—t—+— -

e T e e e e

e e e et B T ot o

Value

+—+—+—

e

Value

+=+—+-

#1

+—t—t—

+—t—t—

#N

e

Length = 4 + N#12
B e e e s S

+—t—t—t—t—t—t—t—F—

=ttt t—t—t— -

ottt

Figure 3.11: Simple TLVs with 12-Octets Values

+—t-

.

+—+-

As these TLVs are always aligned to 4-octet words, the Length
field MUST specify the size of the whole TLV, and padding octets

MUST NOT be added.

+-

-+ -

-+

+-

19

+

|
+

b= = 4=

+—+—+—

20

+
I
+
|
+
I
+
|
+
I
+

+
|
+
|
+
|
+
I
+

CHAPTER 3. XBE32 SPECIFICATION

Simple TLVs with 16-Octets Values

Figure 3.12 represents a Simple TLV containing N, 16-octet Values:

0

1

2

3

0123 4567890123 456789012345678901
e e cfon o oo o o e o e o o o e s o s s o e i e e i o o e o

Type.leta
——t—t—t—F ===+

bbb

e s ks e TR SR

B s h et S E SRR

Figure 3.12:

-+

+

+

+

0Ox38

— -

R e

——

I
e

Value

o s

o

Value

e

-

#1

e

B

#N

e

+

Length = 4 + N*16
s s S e e e

ok kT SR S

R e s et S S

e e

+

Example of simple TLV with 16-Octets Values

e

As these TLVs are always aligned to 4-octet words, the Length
field MUST specify the size of the whole TLV, and padding octets
MUST NOT be added.

Opaque TLV Values

An Opaque Value is a sequence of octets that SHOULD NOT be
processed by a XBE32 parsing entity, but just be delivered to the

upper layer.

I
g

e

=+ =+ =+ —

et

—+—+— +—

=

3.2. XBE32 TLVS

The Meta values reserved for Simple XBE32 TLVs carrying Opaque

Values are represented in the table showed in figure below.

Heta TLV Walue Description

Ox20 S3ingle wariable-length opadgue Value
Ox2d Multiple opagquel Values
Oxz8 Multiple opagque: WValues
Ox2C Multiple opacgqued Values
O0x30 Multiple opagqued Values
O0x34 Multiple opagquelZ Values
Ox38 Multiple opadquels Values

Figure 3.13: Opaque TLV types

String TLV Value

String Values MUST be encoded using UTF-8.
The Meta value reserved for Simple XBE32 TLVs carrying a sin-

gle String Value is shown in the next figure:

Meta TLV Value Description

Ox21 Single wariasble-length string Value

Figure 3.14: String TLV types

Boolean TLV Values

Each Boolean Value is encoded with a single octet. A "False" Value
is serialized as 0x00, while "True" is encoded as 0xFF. Other values
than 0x00 or OxFF MUST NOT appear as boolean-encoded values.

21

22

CHAPTER 3. XBE32 SPECIFICATION

The Meta value reserved for Simple XBE32 TLVs carrying mul-

tiple Boolean Values is shown in the next table:

Meta

Oxz26

Integer TLV Values

TLY Value Description

Multiple khoolean Values

Figure 3.15: Boolean TLV types

Integer Values are signed and MUST be encoded as a two’s comple-

ment binary number in network byte order (a.k.a. Big Endian, i.e.,

the most significant byte first).

The Meta values reserved for Simple XBE32 TLVs carrying mul-

tiple Integer Values are shown in the table:

HMeta
Oxz5
Oxzo
OxzD
Ox31

TLYV Value Description

Multiple
Multiple
Multiple
Multiple

intd WValues
intlé Values
intiz2 Values
inted Values

Figure 3.16: Integer TLV types

Floating point TLV Values

Floating point Values MUST be encoded as specified in [3].

The Meta values reserved for Simple XBE32 TLVs carrying mul-

tiple Floating Point Values are shown in this figure:

Meta

TLY Walue Description

0x2E Multiple floatiZ Values

Ox32

Multiple floatcd Values

Figure 3.17: Floating TLV types

3.3. XBE32 ELEMENTS 23

3.3 XBE32 Elements

Hierarchical data can be represented as a tree, where each node has
an identifier. The “leaf” nodes of the tree are the only ones which are
able to carry primitive data values. In XBE32 the nodes of the tree
are known as “Elements”. Each XBE32 Element has an identifier,
that could be a binary one or a human-readable name.

There are two kinds of Elements in XBE32, depending on whether
they carry primitive data or not: “Attribute Elements” are the leafs
of the tree and carry zero or more Values of a given data type.”Complex
Elements” on the other hand, cannot carry primitive data, but they
are the parents of other XBE32 Elements, that could be Attribute
Elements or other Complex Elements themselves.

Furthermore, the so-called “Compact Elements” are encoded in-
side a single XBE32 TLV, while the optional “Extensible Elements”
require two or more TLVs in order to carry their Extensible Names
or Identifiers. Moreover, Complex Elements are encoded using Com-
plex XBE32 TLVs, whereas Attribute Elements employ Simple XBE32
TLVs.

Compact Elements

As most network protocols only employ a small set of elements to
build their messages, they could be easily encoded with XBE32 by
just using Compact Elements, that are encoded with a single TLV
and are identified by its binary 16-bit Type field.

Each application /protocol using XBE32 may define its own set of
Type values, unless they have been reserved in the base specification
of XBE32. Therefore Compact Elements SHOULD employ only the
following TLV Meta and Subtype values (with any combination of
C and E bits). See figure 3.18.

0x00-0x1F O0x01-0xFE Compact Complex Element
O0x20-0x358 O0x01-0xFE Compact Attribute Element

Figure 3.18: TLV Meta and Subtype table

Compact Attribute Elements MUST employ an appropriate Meta
value according to the type of the primitive data carried in their TLV

24

CHAPTER 3. XBE32 SPECIFICATION

Values field, as defined in the previous section of this document. For
example, an Attribute Element carrying zero or more 32-bit Integer
Values may be encoded with one Simple TLV whose Type value is
in the 0x2D01-0x2DFE range, with the C and E bits set accordingly

to the desired processing rules.

Extensible Elements: Extensible Names and Identifiers

The above mechanism allows a compact representation of binary
data and is suitable for the initial definition of the mandatory oper-
ations and optional parameters of a simple network protocol. How-
ever, a 2-octet Type field may not be enough for truly extensible
protocols, as it could be a namespace too small for vendor exten-
sions, experimental operations, or future versions of the protocol.

In order to cope with this limitation, XBE32 implementations
MAY also support Extensible Elements. These optional XBE32 El-
ements are encoded employing multiple TLVs, that are stored inside
a XBE32 Complex TLV with a reserved Type value depending on
whether the Extensible Element is an Attribute or a Complex one
(see figure 3.19).

Meta Subtype TLYV Description

Ox1iF OxFF Extensible Complex TLV
Ox1F Ox00 Exten=sible Attribute TLV

Figure 3.19: Extensible complex and attributes TLV

Note that C and E bits may have any value, thus, four differ-
ent Extensible Complex Element TLVs, and other four Extensible
Attribute Element TLVs are defined. For instance, an optional Ex-
tensible Attribute Element, that should be notified if unknown, must
be encoded inside an Extensible TLV with a 0xDF00 Type value.

Each XBE32 Extensible Element MUST have an identifier, that
can be a single 4-octet opaque value called Extensible Identifier, or
a non-empty UTF-8 string called Extensible Name. The identifier
of an Extensible Element MUST be included inside the first inner
TLV of the Complex TLV which encodes the Extensible Element.
XBE32 has reserved two Simple TLVs to carry Extensible Names

and Identifiers. See next figure:

3.3. XBE32 ELEMENTS

0xZ1FF Extensible Name TLV
O0xZCFF Extensible Identifier TLV

Figure 3.20: Extensible TLV names and identifiers

Although the Type field of the upper Extensible TLV does not
identify the Extensible Element by itself, its C and E bits are fully
meaningful, and MUST specify what measures must be taken if a
XBE32 processing entity does not recognize the Extensible Name
or Identifier of this Extensible Element, or it just does not support

Extensible Elements at all.

Extensible Complex Elements

An Extensible Complex Element is encoded inside an Extensible
Complex TLV (Meta=0x1F Subtype=0xFF), that MUST contain a
single Extensible Name TLV (Type=0x21FF) or Extensible Iden-
tifier TLV (Type=0x2CFF) first, followed by zero or more TLV-
encoded XBE32 Elements, that could be Compact or Extensible
ones, Attributes or Complex ones, or any combination of them. (See
figure 3.21)

The optional "unspecified" length mechanism, when applied to
an Extensible Complex TLV, may allow XBE32 processing entities
to start encoding and sending partial Extensible Complex Elements
before all their sub-elements are known or their data is fully avail-
able.

25

26 CHAPTER 3. XBE32 SPECIFICATION

(u] 1 2 3
0123 4567890123 45678901234S56789©01
N

|CIE] Type = Ox1FFF | ExtElem Length |
St el L el e el L et D e e et L S St et Sl et e St DL e e el el S et el e e
| Type = Ox21FF/0x2CFF | ExtNawe/Id Length |

B e T e s e o e s e s s S L e e
ExtName/ExtId
o e o o o e o o o o e e e e o o o e e o e e e
| Type #1 | Length #1 |
s s s o B B s s S e e D e e Sl Sl
Values #1
e e s e S e e e e el S
e s S T e e e e e R s
| Type #N | Length #N |
S e S e s st S S B K s

Values #N

s e e e s m a s e s e S L B e S e

Figure 3.21: Extensible Complex Elements example

Extensible Attribute Elements

The structure of an Extensible Attribute Element is quite similar to
an Extensible Complex Element, as it is encoded inside a Extensible
Attribute TLV (Meta=0x1F Subtype=0x00), that MUST include
at least two TLVs: a single Extensible Name TLV (Type=0x21FF)
or Extensible Identifier TLV (Type=0x2CFF) first, followed by one
or more TLVs which carry the Values of that Extensible Attribute.
(See figure 3.22)

3.3. XBE32 ELEMENTS

0

1 2

3

0123456789012345678901234567859%01
e et e e s T e et

-ttt
ICIE|

et ot
| Type
st ah £

+

—+—+—+—+

4+ -

—t—t—t—+

o

o s

=ttt

+

—+—+—+-+

+

R et S

Type = 0x1FO0O0 | ExtAttr Length

e A e e E s st St e e e

= Ox21FF/0Ox2CFF | ExtName/Id Length

B e O T T ek s S B O ot o
ExtName/ExtId

o T R s aa T s e e e e e e S T Tl

ExtVals Type | ExtVals Length #1

R A T e e e e s S At Aot sl sk dt
ExtValues #1

B e S S T et e T s ek s St ST S A S

s s s T T S S T s T B St St S S

ExtVals Type | ExtVals Length #N

s T R s a Es e S e e e e e S e

ExtValues #N

T B e S St S e o

Figure 3.22: Extensible Attribute Elements example

+

+

+ =

-

-+ -

-+ -

-

+—

+-

L

XBE32 has reserved the Type values shown in figure 3.23 for the
Extensible Values TLVs.

-+

4

27

I
+

I
+

s s we 4 o= L s es we

-+

+

-

+

28

CHAPTER 3. XBE32 SPECIFICATION

Type TLV Description

0x2Z000 Extensikble wvariable-length opacue Values TLV
Ox2100 Extensible wvariable-length string Value TLV
O0x2400 Extensikble opadquel VWalues TLV

0xZ500 Extensikle intg Values TLV

O0xzZ600 Extensikle hoolean Valuess TLV

O0x2500 Extensible opagque:s Values TLV

O0x2900 Extensikble intla Walues TLVW
0x2C00 Extensikle opacgqued Values TLV
0x2D0O0 Extensikle int3i2 Values TLV

O0xZEOO Extensikble float3iZ Values TLV
0x3000 Extensible opadques Values TLV
0x3100 Extensikle inted Value=s TLV
0x3200 Extensikle floated Values TLV
0x3400 Extensible opagueli Values TLV
0x3500 Extensible opadquels Values TLV

Figure 3.23: Dissected TLV type

If several Extensible Values TLVs are present, all of them MUST
have the same Type value, depending on the data type of the Ex-
tensible Attribute Element. It is RECOMMENDED to encode all
the Values of an Extensible Attribute in a single Extensible Val-
ues TLV, whenever it is possible. Nevertheless, a XBE32 processing
entity SHOULD concatenate, keeping the received order, all the Val-
ues fields of all the Extensible Values TLVs forming an Extensible
Attribute Element. For instance, multiple Extensible string Value
TLVs should be appended to form a single variable-length String
Value, whereas several Extensible int32 Values TLVs would generate
a single array of Integer Values.

The encoding of Extensible Attributes with multiple Extensible
Values TLVs, paired with the optional "unspecified" length mech-
anism, may allow XBE32 Extensible Attributes to carry a single
Value or a list of Values longer than the 65532 octets limit of Com-
pact Attributes.

Chapter 4

XBE32 DESIGN AND
IMPLEMENTATION

This chapter explains how the implementation and design of XBE32 has been
done. It shows the mechanisms and structures used to develop it, and why some

design decisions have been taken.

As it can be seen in the previous chapter, XBE32 handles two different
concepts: Elements produced by the application and TLVs that encode such
informations. Therefore it seems immediate, that the implementation of the
encoding system follows a two tier software architecture, in which the first layer
is the one corresponding to the processing of the TLVs, and the second one is in
charge of managing elements in the XBE32 encoding language. This two layer
application has its lower layer in the TLV processing layer, while, the upper

layer, the element processor, takes advantage of the first.

In addition to these different global functionalities, we have decided that is
important to implement a way to define all the different element types employed
by the user, so another functionality has been added in order to manage a
dictionary. Obviously the use of this component is optional, since the goal of
this whole project was to build a library for encoding XBE32, and the last

component is just an item to make the user life easier.

Despite the two layers have their functionalities very delimited, the main
operations in both of them remain the same: write and read (whatever TLVs
or elements). In the first case, it is necessary to put and find the limits of any

TLV, check the types of each one, and to know where we must stop processing

29

30 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

APPLICATION

ELEMENT LAYER DICTIONARY

TLV LAYER

Figure 4.1: Library structure

them. For the elements the proceedings are done in different way, but the goals
are the same: write whole items and retrieve them without error. Therefore
each one of the layers of the application can be split in two: The writer and the

reader.

As any C Library this XBE32 library is just a set of functions that imple-
ment some part of the encoding/decoding process. Since both processes require
several steps, it is necessary to mantain some state. Therefore, instead of relay-
ing on global variables that would allow just a single encoding/decoding flow
per process, the state has been stored inside opaque structures that are passed
to all XBE32 library functions. From the user’s point of view, these structures

model the XBE32 encoding/decoding process.

4.1 TLV layer

This layer handles the serialization of data on TLVs, and the parsing of simple
and complex TLVs, including the ones with unspecified length that are closed
with an End-of-TLV.

4.1. TLV LAYER 31

The writer: Building a TLV

To build the TLV a structure in which all the necessary items to write the TLV
are present has been thought up. It is oriented to handle the writing in different
buffers if needed, an have an account of the open TLVs. In addition to that, it
handles the delivery of error messages. This structure is the writer itself, and it

is defined as follows:

struct xbe32_tlv_writer {
unsigned char* buffer_start;
unsigned char* buffer_end;
unsigned char* buffer_ptr;
writer_stack_t * open_tlvs;
unsigned long bytes_counter;
int num_end_of_tlv;
char * error_msg;

int error_code;

Three different members to handle the buffer;
buffer start: points the start of the current buffer. buffer end: points the end

of the current buffer. buffer ptr: points to the next byte to be written in the
buffer.

Two members to track the open TLVs since the total length of a complex
TLV is unknown until all its inner TLVs have been written. Only then the
length of the complex TLV can be filled. If the buffer is flushed before the TLV
length can be determined, the TLV has a zero length which means that the
appropriate number of End-of-TLV must be inserted;
open_tlvs: a pointer to a stack which saves the open TLVs. num end of tlv:

saves the number of open TLVs in case a change of the buffer takes place.

Three members of general purpose;
bytes counter: counts the number of bytes that have been written during the
process until the current moment. error code: carries the last error code. In
case there is none, is set to 0. error msg: in case the error code member has

a valid code, this member carries the written notification to that error.

The application has been structured in layers in order to achieve trans-

parency, so the writer. To take fully advantage of the writer, it is necessary to

32 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

access it through primitives. These primitives are explained below.

e xbe32 tlv_writer t * xbe32 tlv_createWriter (unsigned char * buf, int
len): creates and initiates the writer. It allocates memory for the writer
structure which will perform the task of writing the encoded message
through its buffers. It associates a buffer to the writer; sets the different
pointers to its correspondent locations, buffer start and buffer ptr point
to the start of the newly assign buffer; makes buffer end points to the
last byte of the buffer (by adding to the buffer start the length of the
buffer) allowing the upper application to know how far it can write. Sets

the null values to the other variables. It returns the initialized buffer.

e void xbe32 tlv_setWriterBuffer (xbe32 tlv_writer t * writer, unsigned
char * buf, int len): changes the buffer in case the previous one is discarded
(because it is full or any other reason). To do that, it is necessary to set
the pointers in the corresponding places. buffer start and buffer ptr
must point to the begin of the buffer; buffer end again is calculated as
the adding of the length of the new buffer to buffer start. The rest of the

members of the writer not need to be initialized.

e int xbe32 tlv_flush (xbe32 tlv_writer t * writer): saves the number
of open TLV in the member num end of tlv. Since in this function not

a single byte is written the returned value is 0.

e void xbe32 tlv_destroyWriter (xbe32 tlv_writer t * writer): frees the

memory allocated for the writer.

e int xbe32 tlv_openTLV (xbe32 tlv_writer t * writer, uintl6_t type
): writes the header of a complex TLV. The writer and the type of the
TLV to write are passed as arguments. Once the function has checked if
there is space available to do the writing, the type is written in Internet
byte order, as the length is unknown for the moment, it is set to 0 (coded
in Internet order as well). Writer member buffer ptr advances the size of

the bytes written. This number of bytes are returned by the function.

e int xbe32 tlv_writeTLV (xbe32 tlv_writer t * writer, uint16_t type,
void * vals, int vals_size): writes the payload of the TLV. First checks
if there is enough space available, if not propagates an error. If there is
space available, checks the type of the TLV and writes it in the proper way
depending on the type. Once this has been made, buffer ptr advances the

4.1. TLV LAYER 33

total length of the payload (including the padding), and the total number

of bytes written during the function is returned.

e int xbe32 tlv_closeTLV (xbe32 tlv_writer t * writer): closes the last
open TLV (This is just applied to complex ones). To do that, takes the
first TLV saved on the stack, and, if the stack is not empty, or if the
num_end of tlv member is not 0, it writes the length of the TLV in the
corresponding field or an end-of-data TLV, indicating that is the end of a
TLV of unspecified length.

The first three functions, are in charge of handling the writer structure. To
initiate the writer structure members, allocate and free the memory. The last
four handle the writing of the TLVs. The first of them, xbe32 tlv_openTLV,
creates the header for complex TLV. The complement to that function is xbe32_tlv_ closeTLV
that is in charge of closing open complex TLVs. To write simple TLVs, xbe32 tlv_writeTLV
is used, and xbe32 tlv_flush is used to manage the open TLVs in case there is

a change of buffer (in case the buffer is changed, the pointers are of no use).

The reader: Processing a TLV

This layer is not supposed to return nothing valuable for the final user since it
returns not whole elements that the user can understand but TLVs. In spite
of this, perhaps can be of some interest to explain how this TLV must to be
interpreted. This layer just return TLV to the next one. The TLV returned
can be whole TLVs, so to speak, a TLV with a header and some contents, or it
can return the header of a complex TLV. In the last case, this TLV signals the
start of a complex TLV which in the layer above can be translated as a complex

element or even an extensible element.

As the application must be able to write a TLV, it must be able to decipher
it too once this is written. Just to do this, the reader structure (parser) has
been created, it is the mean to read the TLVs once these have been coded. The

reader structure is defined as follows:

struct xbe32_tlv_parser{
unsigned char* buffer_start;
unsigned char* buffer_end;

unsigned char * parser_ptr;

34 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

unsigned long bytes_counter;
parser_stack_t * open_tlvs;
char * error_msg;

int error_code;

};

As in the structure of the writer, three different members handle the buffer;
buffer start: points to the start of the current buffer.
buffer end: points to the end of the current buffer.

parser ptr: points to the next byte to be read in the buffer.

Three members of general purpose;
bytes counter: keeps track of the bytes read from the buffer until the moment.
error__code: carries the last reading error code. In case there is none, is set to
0. error _msg: in case the error code member has a valid code, this member

carries the written notification to that error.

One member to process the open TLVs;
open_tlvs: a pointer to a stack which saves the open TLVs. With this pointer
the application knows when the complex TLV is closed and thus when to finish
the reading. It is also required to remember the TLV that a n End-of-TLV is

closing.

Again, as with the writer, the parser is accessed only through primitives
to achieve the goal of transparency. The functions created to do this are the

following:

e xbe32 tlv_parser t * xbe32 tlv_createParser (unsigned char * buf, int
len): Initializes and creates the parser structure. With this structure the
library will be able to decode the XML messages.

It associates a buffer to the parser; sets the different pointers to its corre-
spondent locations, buffer start and parser ptr point to the start of the
newly assign buffer, makes buffer end points to the last byte of the buffer
(by adding to the buffer _start the length of the buffer) allowing the upper
application to know the point to finish the reading. Sets the null values

to the other variables. It returns the initialized buffer.

e void xbe32_tlv_setParserBuffer (xbe32 tlv_parser t * parser, unsigned

char * buf, int len): With this function, the application changes the buffer

4.1.

TLV LAYER 35

which is currently being read. In the case there is a change of buffer, this
function allows the application to change the buffer to read in case the

last one is ended and it is necessary to continue reading another one.

void xbe32 tlv_destroyParser (xbe32 tlv_parser t * parser): This
function erases the parser structure. To do it, it frees the memory allocated

for the parser.

uint16_t xbe32 tlv_getType (xbe32 tlv_t * tlv): It takes the currently
processed TLV and returns its type. This type is useful to process the TLV
(it allows to know if it is a complex TLV or a simple one, end if it is simple,
the type of the data inside the TLV).

uint16_t xbe32 tlv_getLength (xbe32 tlv_t * tlv): Returns the length
of the current TLV. This length is the one correspondent to the length of
the TLV including the header, payload of the TLV, but not the padding.

bool xbe32 tlv_ getContinueFlag (uintl6 t type): Indicates to the ap-
plication if the processing must continue or not in case an error occurs. It
returns a boolean flag indicating if the upper application must continue

the processing in case there is a failure.

bool xbe32 tlv_getErrorFlag (uint16 t type): Indicates to the applica-
tion if there must be a notification of an error on the message. It returns a
boolean flag indicating to the upper application whether an error message

should be sent back to the source.

uintl6_t xbe32 tlv_getMeta (uintl6 t type): It takes the proper type
of the TLV. This is, the type without the error and the continue flag.

bool xbe32 tlv_isComplex (uintl6 t type): Gives the user information
about the nature of the TLV. Returns a boolean value which indicates

that current TLV is a complex one.

int xbe32 tlv_getNumValues (xbe32 tlv_t * tlv): This function returns
an integer that returns the number of basic values (e.g Floats, Integers,

Strings...) presents in the TLV.

int xbe32 tlv_getValuesLength(int length): This function returns an in-
teger indicating the length of the payload of the TLV.

unsigned char * xbe32 tlv_getValues (xbe32 tlv_t * tlv): This func-

tion returns a pointer to the values stored inside the TLV.

36 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

e bool xbe32 tlv_endOfBuffer(xbe32 tlv_parser t * parser): Checks if
the buffer which is being currently read has reached the end. Returns a

boolean value.

e int xbe32 tlv_paddedLength(int 1): This function returns the length of
the padding attached to the payload.

e xbe32 tlv_t*xbe32 tlv_nextTLV (xbe32 tlv_parser t * parser, bool
* closed): The most important function in the reader side. It orchestrates
the reading of the bytes on the buffer and decides how many of them form
a TLV. Once this has been done, the bytes correspondent to the TLV are

stored in a TLV structure and passed to the upper layer.

The first three functions, are in charge of handling the parser itself. To initi-
ate the members and allocate and free the memory. The next handle the reading
of the TLVs. The first functions are in charge of handle aspects of the TLVs as
the length, type, payload, etc. All these fuctions are applied to the last TLV
read by means of the nextTLV function. The last one, xbe32 tlv_nextTLV is
in charge to direct the other functions in order to structure the TLV in certain

variables to pass the information to the upper level.

One of the most relevant functions in this library, in spite it is quite simple
in its implementation, is xbe32 tlv_openTLV, which opens a complex TLV.

Next we are going to show a flowchart 4.2 that describes the function:

e First, checks if there is enough space in the buffer to write the TLV’s
header (just type and length).

e If there is enough space it writes the type and sets the length to 0 (the
length up to this point is unknown). After that, it puts the writer pointer
four bytes forward (just the number of bytes that have been written).

e If there is not enough space, it sets an error message in the error _message
member and its corresponding error code in the error code member. Both

will be propagated depending on the values in ’e’ and ’c’ flags respectively.

e Finally, the application will return the number of written bytes.

Once a complex TLV has been open, the protocol requieres it to be closed.
To do this, the application implements xbe32 tlv_closeTLV. The chart corre-

sponding to this function is showed in the figure 4.3:

4.1. TLV LAYER

in the buffer?

Enough space

NO

Write tlv_type

Error

Figure 4.2: Opening of a complex TLV

tlv := pop()

write tlv_length

num_end_of_tlv = 0?

write end_of_tlv

Error

1

AN

Figure 4.3: Closing of a complex TLV

37

38

CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

The function removes the last TLV from the stack.

Checks if the obtained TLV is NULL. If it is checks if the member of the
writer structure num_end of TLV is equal to 0. If num end of TLV
is equal to 0, it sets an error message in the error message member and its
corresponding error code in the error _code member. As in the previous
flowchart, both will be propagated depending on the values in ’e’ and 'c’

flags respectively.

— if num end of TLV is not equal to 0, then the function writes an
End of TLV header indicating that the end of the last open complex
TLV must be assumed.

If the obtained TLV is not NULL, the function writes the corresponding
length in the complex TLV’s header.

As it has been said, xbe32 tlv_nextTLV is the most important function in

this layer. Figure 4.4 shows the flowchart for the function.

Since it is the most important for the TLV layer, we are going to proceed to

explain the steps that it follows through the Figure 4.4:

e First, it checks if the application has reached the end of the buffer. In this

case, it is not possible to continue the parsing and the user has to take
care of changing the buffer, meanwhile, the function exits returning a null

value.

In case the buffer end has not been reached, next, the function checks
if the current point of the buffer matches up with the end of a complex
TLV stored in the parser stack. In this case, this means that a complex
TLV has reached its end in the previous xbe32 tlv_nextTLV iteration,
and thus, it must be closed. If this is the case, the TLV variable takes the
value of the last item stored in the stack, through a pop function, and it
is returned. The function must use the isClosed function to know whether

the returned TLV is an old TLV being closed or a new one.

The function will take the next TLV data to be processed (this data which
actually is written in the buffer, will be stored in a TLV variable through
a casting operation). If the previous case is negative, then, the function

checks if there is enough space in the parser buffer to process the TLV.

4.1.

TLV LAYER

End of Buffer?

Complex
TLV closing?

space enough in NO

the buffer?

Is and
END_OF_TLV?

YES

YES
Push TLV
Closed

TV Get Values Clo
(TLV)

v

Take buffer
pointer forward

Pop

Error

O

Figure 4.4: Next TLV process

39

40 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

e Next, the function will check if the taken TLV (casting) is a complex one
(since it has been checked that the current TLV is not being closed, this
complex TLV must be about to be open). If it is, it will be stored in the
stack (to know that it must be closed in the future), and the flag saying

that it is not to be closed will be set to true.

e In case the TLV is not a complex one, the function will sort the values
in the TLV (in case it is necessary because the computer byte order) and
will take the parser pointer just forward enough for the processing of the

next data.

e The function will return the TLV.

4.2 XBE32 Element layer

The writer: Building an XBE32 element

Once all the processes related to TLV has been explained, it is time to go to a
layer above and talk about the elements. As with the TLV, the implementation
of the elements has been split in two different parts: one corresponding to the

writing of the elements, and other corresponding to the reading.

The writing process for xbe32 elements is quite simple once the TLV prim-
itives for the writing have been defined. As in the previous layer, the elements
are processed through a writer structure. This structure is the same as with the

TLV, but for this layer its type is renamed as xbe32 writer.

The primitives handling the writer structure are the following:

e xbe32 writer t * xbe32 createWriter (unsigned char * buf, int len):
This function creates a TLV writer (xbe32 tlv_writer t) to the element
writer type (xbe32 writer t), and returns an initialized writer variable

calling to xbe32 tlv_createWriter.

e void xbe32 destroyWriter (xbe32 writer t * writer): Deallocates the
memory belonging to the writer variable. It does it by calling to xbe32 tlv_destroyWriter

function.

e void xbe32 setWriterBuffer (xbe32 writer t * writer, unsigned char *

buf, int len): Changes the buffer which is being currently written for

4.2. XBE32 ELEMENT LAYER 41

another one once the first has reached its end. To do that, the function
calls to xbe32 tlv_setWriterBuffer.

e void xbe32 flush (xbe32 writer t * writer): Calls to xbe32 tlv_flush
in order dump the contents to the upper application environment (empties

the buffer dumping its contents to be immediately processed).

e int xbe32 openElement (xbe32 writer t * writer, uint16_t type): Opens
a compact XBE32 complex element with the specified type (using xbe32 openTLV).

e int xbe32 writeAttr (xbe32 writer t * writer, uintl6_t type, void *
vals, uint32 _t length): Writes a simple XBE32 attribute. To do that just
writes a single TLV (through xbe32 tlv_writeTLV function). In case the

size of the TLV to write exceeds 65532 bytes, it returns an error message.

e int xbe32 closeElement (xbe32 writer t * writer): Closes a compact

XBE32 complex element.

e int xbe32 openExtElement (xbe32 writer t * writer, uint32_t id, char

* name): Opens an extensible element. To do this, first it is necessary
to open a complex TLV which will contain the inner elements (through
xbe32_tlv_openTLV), and after that, to write an identifier (a TLV con-
taining the ID for the item) for the extensible element, this identifier can be
a name or a numeric identifier (to write the identifier xbe32 tlv_ writeTLV

will be called).

e int xbe32 writeExtAttr (xbe32 writer t * writer, uint32 t id, char
* name, int vals type, void * vals, int length): writes an extensible
attribute. To do that, first opens the extensible attribute (calling to
xbe32 tlv_openTLV), second identifies the extensible element (it inserts
a TLV with the name or identifier of the extensible attribute calling
to xbe32 tlv_writeTLV), third writes the attribute contents (through
xbe32_tlv_writeTLV function) and finally, closes the extensible attribute
(by closing the TLV that contains both the name and contents of the
extensible attribute through xbe32 tlv_closeTLV).

e int xbe32 closeExtElement (xbe32 writer t * writer): Close an com-
plex element that has been previously opened (by calling to xbe32 tlv_ closeTLV).
It must be said that the implementation of xbe32 closeElement and xbe32 closeExtElement
is the same, but the latter has been included in the implementation for

symmetry reasons.

42 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

The process of writing elements with this library is simple ®. It only consists
on writing the primitives to write the different elements in a sequential way

which describes the order inside the elements that the user wishes to write.

The reader: Processing a XBE32 element

The reading of XBE32 elements is a little bit more complicated than the writing.
First of all, the structure needed to do all the process is basically the same as in
the layer below, but replacing the TLV stack with a XBE32 Element stack. In
addition to that, it is necessary to declare a new structure where the items will

be stored. Both structures are going to be explained in the next paragraph.

As it has been said before, a new structure has been created in this layer to
return all the information that form the read elements. This structure is defined

as follows:

struct xbe32_elem {
char * name;
uint32_t id;
uintl6_t flags;
int valuesType;
int valuesNum;

void * values;

The meaning of the fields are explained bellow;
name: represents the name of an extensible element (or attribute). If there is
no name, it is set to NULL.
id: represents the id of an element (no matter it is a compact/extensible sim-
ple/complex one).
flags: Contains the whole type of the element, in order to get later the meta
flags (continue and error).
valuesType: Contains the basic type of the element, without the meta compo-
nent (flags continue and error).
valuesNum: Contains the number of values in the element.

values: A pointer to the content of the element.

3See appendix B

4.2. XBE32 ELEMENT LAYER 43

The basis of the parser structure is the one present in the layer below but
with an additional field. This field will be the stack, necessary to save all the
possible elements inside complex elements. The structure of the stack is the

following:

struct xbe32_stack{
xbe32_elem_t * item;
xbe32_stack_t * next;

}s;

The meaning of these fields are;
item: represents the element which needs to be saved in order to be part of a
bigger and more complex element.

next: link to the next element present in the stack.

The whole reading processing is carried out mainly by the xbe32 nextElement|()
function. As in the lower layer, it is the function in charge of orchestrating the
other primitives to compose the element correctly. Roughly, what this function
does is to take TLVs, and in case the TLV is a complex one (what means that
the element currently processed is complex, or extensible) ask for more TLV to
get the attributes or elements that compose the processed element, if is not a
complex TLV, that means that it is a simple element or a part of a complex one,
so returns the values contained in that TLV. The rest of the functions declared
in the parser section are functions that performs tasks for xbe32 nextElement/()

or functions that handle the parser structure and its buffer operations.

What the user will obtain of this layer are different elements. This elements
will contain data (a whole element with its id/name and values), or just a
id for complex elements. In the latter case, the id/name are sent to indicate
the user that an item has been open and other elements are nested inside or
that an element is closing. Both cases can be differentiated because one of the
parameters in the function is a reference and, in case this parameter is set to true
it means that the current element is closing. As can be seen, this manoeuvre
is quite similar to the one performed by xbe32 tlv_nextTLV() in the previous

layer.

The primitives to handle the parser and the whole process of reading XBE32

elements are the next:

44

CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

xbe32 parser t * xbe32 createParser (unsigned char * buf, int len):

Allocates memory for the parser structure and initializes it.

void xbe32 setParserBuffer (xbe32 parser t * parser, unsigned char *

buf, int len): Performs a change of buffer under user request.

void xbe32 destroyParser (xbe32 parser t * parser): Deallocates the

memory of the parser under user request.

xbe32 elem t * xbe32 nextElement (xbe32 parser t * parser, bool *
closedElem): Returns the next XBE32 element on the buffer.

bool xbe32 isExtensible (uintl6 t type): Returns a boolean that in-
dicates if the specified element is extensible or not. Takes the type as

parameter.

int xbe32 getFlags (xbe32 elem t * elem): Returns the meta flags of
the XBE32 element type. Takes as argument the element.

int xbe32 getNumValues (xbe32 elem t * elem): Returns the number

of values inside an XBE32 element. Takes as argument the element.

int xbe32 getld (xbe32 elem t * elem): Returns the Id of the an
XBE32 element whether this is extensible or not. Takes as argument the

element.

char * xbe32 getName (xbe32 elem t * elem): Returns the name of

an XBE32 element in case it has one. Takes as argument the element.

bool xbe32 isComplex (xbe32 elem t * elem): Returns a boolean that

tells if the element is complex or not. Takes as argument the element.

int xbe32 getValuesType (xbe32 elem t * elem): Returns the basic

type of the element. Takes as argument the element.

xbe32 getValues: Returns a void pointer to the contents of the XBE32

element. Takes as argument the element.

void * xbe32 getNumValues (xbe32 elem_t * elem): Returns the num-
ber of values of a certain type inside an XBE32 element. Takes as argu-

ment the element.

As with the lower layer, one function is in charge of orchestrate the rest (not

in the writer since all the functions must be directly selected by the user). With

this flowchart, xbe32 nextElement will be explained:

4.2. XBE32 ELEMENT LAYER

Get TLV

Extensible item

Get TLV

Get Item
value

Get TLV

Get Ext
attr value

- @
YES

Retrun Item

Figure 4.5: Next Element process

46

CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

First of all, the function takes the TLV provided by the lower layer (xbe32 nextTLV).

After that, the function checks if the TLV with the possible contents for
the element has a null value. In that case, the item to be returned will be

set to NULL, and with its return the function finishes its execution.

If the TLV provided by the lower layer is not null, the function will check
next if the TLV is signaling the closing of the element. In case the latter
is true, a pop of the previous stored data for the element will be done, and
that data will be stored in an element variable that next will be returned

finishing the execution of the function.

If the TLV does not tell that the end of the element has come, the next
checking the function will perform is about extensibility. If the TLV con-
tains a type saying that the element is extensible, the following steps are

to follow:

— In case the TLV shows that the element is extensible, immediately,

the function takes another TLV from the lower layer.

— Checks if the content of the TLV is an identifier or a name, and in

both cases though through different proceedings, obtains them.
— After that, another TLV is taken from the lower level. This TLV is

supposed to have the values of the element, which are taken.

— The previous steps are repeated many times as needed until all the

values in the extensible element are obtanied.

— Once the extensible element is complete, the element value is returned

and the function exited.

In case the element is not extensible, some of the data which the TLV
(the one addressed in the third point) carries are related to identification
characteristics such as; type, id/name and flags. The next action by the

function will be to store this characteristics in the element variable.

Next, the function will find out if the TLV is complex or not. If it is
not the case, the data from the TLV will be extracted and placed into
the element variable, and with this data, the element will be returned,

finishing the function.

If the TLV is a complex one (its contents are empty, but the field tells
that a whole TLV which represent physically the element is composed by

more TLV), the element variable will be initialized, and through a push

4.2. XBE32 ELEMENT LAYER 47

function the element will be stored awaiting for the rest of the components
in the stack. In addition to that, the element will be delivered to the client
application in order the latter knows that an extensible element has been

opened. With this last action, the function exists.

The dictionary: Giving sense to the elements

Finally to make the implementation of the protocol, a third complement must
be added by the upper function (the one susceptible to use XBE32 in its com-
munication), that is the implementation of the dictionary. The dictionary is
needed to translate some of the complex TLV to elements with a meaning to

the so called upper application.

This component is composed by several items that represent each complex
identifier in the upper application namespace. To implement the dictionary
utility, a main structure has been created to store the different words, this

structure will be the base of a dynamic list (a node) and it is defined as follows:

struct xbe32_dictionary {
uintl6_t type;
char * name;
xbe32_dictionary_t * next;

};

The meaning of the different files of the structure is the next;
type: it will contain the type of the represented element.
name: it will contain the name of the represented element.

next: it will contain a pointer to the next XBE32 represented in the dictionary.

e xbe32 create_ item: Creates the node about to be inserted in the dictio-

nary. As parameters takes the name of the item and the type.

e xbe3d2 dictionary loadDictionary: It is a function that creates a list
(which will become the dictionary) from a file. On that list it will be
all the words belonging to the namespace of the application that is going
to use the XBE32 library.

48 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

e xbe32 dictionary lookup: With this function it is possible to look up

any ID in the dictionary and return the correspondent word.

e xbe32 dictionary cover: This function is implemented to facilitate a
complete list of words in the dictionary. It covers the list and shows

the items one by one.

e xbe3d2 dictionary free: With this function, the memory allocated to cre-

ate the dictionary is deallocated.

Despite a dictionary is not strictly part of the XBE32 library, it has been
decided to implement it in order to facilitate the user the use of the library. It
is helpful because the most part of the items has a recognizable name (more

human readable) and through the dictionary utility it is possible to retrieve it.

4.3 Usage examples

In this section a couple of examples of how the library works are going to be
included. In the first one, the encoding in XBE32 of an XML code example
procedent from the document "Overview of the eXtensible Service Discovery
Framework" [2]:

<service>
<id>8e9d7823-d5ac-497¢c-91d0-fb07ealc3fb2</id>
<serviceState>
<metaInfo>
<stateTimestamp>f85444fdeb</stateTimestamp>
</metalnfo>
<selectState>
<workload>0</workload>
</selectState>
</serviceState>
<serviceMainInfo>
<serviceType>
<type>printer</type>
</serviceType>
<alias>Alice’s printer</alias>
<selectInfo>

4.3. USAGE EXAMPLES 49

<policies>Least Used (0x0002)</policies>
<weight>14</weight>
</selectInfo>
<printer:color>false</printer:color>
<printer:duplex>true</printer:duplex>
</serviceMainInfo>
<servicelocation>
<inet>
<ipv4Addrs>169.254.85.139</ipv4Addrs>
<ipv6Addrs>fe80::202:b3ff:fe3c:da7a</ipv6Addrs>
</inet>
<protocol>
<name>ipp</name>
<transPorts>tcp/631, sctp/631</transPorts>
</protocol>
<protocol>
<name>lpr</name>
<transPorts>tcp/515, sctp/515</transPorts>
</protocol>
</servicelLocation>
<serviceAddInfo>
<model>Acme Laser Printer 2000</model>
<modelURL>http://www.acme.com/printers/1p200.html</modelURL>
</serviceAddInfo>

</service>

Encoding example

Following, the C code corresponding to the application written to encode the

XML code presented in the previous section:

int main()
xbe32_dictionary_t * dictionary;
xbe32_dictionary_loadDictionary("dictionary.txt", &dictionary);

//Declaring and loading the dictionary utility

xbe32_writer_t * writer = xbe32_createWriter(buffer, 3500);

//Creating the writer

50 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

xbe32_openElement (writer, service);

//Opens the main compact XBE32 complex element

xbe32_writeAttr(writer, 0x3811, (void *) id, 16);
//writes a simple XBE32 attribute

xbe32_openElement (writer, servicestate);
xbe32_openElement (writer, metainfo);

//0Opens two compact XBE32 complex elements (servicestate and metainfo)

xbe32_writeAttr(writer, 0x3101, (void *) &statetimestamp, 8);
//writes a simple XBE32 attribute (statetimestamp)

xbe32_flush(writer);
//dumps the contents of the buffer in which it is being written to

the upper application (this)

xbe32_closeElement (writer); //closes metainfo

//closes the last element which has been open

xbe32_openElement (writer, selectstate);

xbe32_writeAttr(writer, 0x2E12, (void *) workload, 4);

xbe32_closeElement (writer);//selectstate

//opens one compact XBE32 complex element, selectstate. Writes a simple
XBE32 attribute, workload.

//And closes the last open compact XBE32 complex element, selectstate.

xbe32_closeElement (writer);//servicestate
//Closes the first compact XBE32 complex element pending in the stack

(the last one opened), servicestate.

xbe32_openExtElement (writer, servicemaininfo, NULL);

xbe32_openExtElement (writer, servicetype, NULL);

xbe32_writeAttr(writer, 0x2112, (void *) type, 7);

//0pens two extensible XBE32 complex elements: servicemaininfo and servicetype.

Writes a simple XBE32 attribute, type.

4.3. USAGE EXAMPLES 51

xbe32_closeElement (writer); //servicetype
xbe32_writeAttr(writer, 0x2148, (void *) alias, 15);
//Closes the last XBE32 complex element, servicetype (which is also extensible),

and write another simple XBE32 attribute, alias.

xbe32_openExtElement (writer, selectinfo, NULL);

xbe32_writeAttr(writer, 0x2845, (void *) policies, 2);
xbe32_writeAttr(writer, 0x2D45, (void *) weight, 4);

//0pens another extensible XBE32 complex element, select info and write

two simple XBE32 attributes: polocies and weight.

xbe32_closeElement (writer); //selectinfo

xbe32_writeExtAttr(writer, 0, "color", STRING_TYPE, (void *) '"false", 5);
xbe32_writeExtAttr(writer, 0, "duplex", STRING_TYPE, (void *) "true", 4);
xbe32_closeElement (writer); //servicemaininfo

//Closes selectinfo, and write two simple XBE32 attributes: color and

duplex. Closes servicemaininfo

xbe32_openExtElement (writer, servicelocation, NULL);

xbe32_openExtElement (writer, inet, NULL);

xbe32_writeAttr(writer, 0x2C15, (void *) ipv4addrs, 4);

xbe32_writeAttr(writer, 0x3816, (void *) ipv6addrs, 24);

xbe32_closeElement (writer); //inet

//0pens two extensible XBE32 complex elements: servicelocation and inet.
Writes two simple XBE32 attributes: ipv4addrs and ipv6addrs.

//Closes inet

xbe32_openExtElement (writer, protocol, NULL);

xbe32_writeAttr(writer, 0x2178, (void *) namel, 3);

xbe32_writeAttr(writer, 0x2C77, (void *) transportsl, 17);

xbe32_closeElement (writer); //protocol

//0Opens one extensible XBE32 complex element, protocol. Writes two
simple XBE32 attributes: namel and transportsl.

//Closes protocol

xbe32_openExtElement (writer, protocol, NULL);
xbe32_writeAttr(writer, 0x2178, (void *) name2, 3);
xbe32_writeAttr(writer, 0x2C77, (void *) transports2, 17);

52 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

xbe32_closeElement (writer); //protocol

xbe32_closeElement (writer); //servicelocation

//0Opens one extensible XBE32 complex element, protocol. Writes two
simple XBE32 attributes: name2 and transports2.

//Closes protocol and servicelocation which was open two blocks ago.

xbe32_openExtElement (writer, serviceaddinfo, NULL);

xbe32_writeAttr(writer, 0x2189, (void *) model, 23);

xbe32_writeAttr(writer, 0x2177, (void *) modelurl, 39);

xbe32_closeElement (writer); //serviceaddinfo

//0pens one extensible XBE32 complex element, serviceaddinfo. Writes
two simple XBE32 attributes: model and modelurl.

//Closes serviceaddinfo.

xbe32_closeElement (writer); //service
//Closes service, the first compact XBE32 extensible element opened

for the application.

//This section below is just to have the output: the encoded text
buffer_len = 436;
printf ("buffer[/d]:", buffer_len);
for (i=0; i<buffer_len; i++) {

if (i%4 == 0) {

printf ("\n");
}
printf("%.2x ", buffer[i]);

bool closed = false;
xbe32_elem_t * item = NULL;
int item_length = O;

unsigned char * vals;

xbe32_parser_t * parser = xbe32_createParser(buffer, buffer_len);

//The parser structure is created

do {

item = xbe32_nextElement(parser, &closed);

4.3. USAGE EXAMPLES 93

//The application ask for the next element, provided by xbe32_nextElement

char name_buffer[1024];
char * elem_name = xbe32_getName(item) ;
if (elem_name == NULL) {
int elem_id = xbe32_getId(item);
elem_name = xbe32_dictionary_lookup(dictionary, elem_id);

//The element name is look up in the dictionary

if (elem_name == NULL) {
sprintf (name_buffer, "0x}.8x", elem_id);
elem_name = name_buffer;
}
//In case the element name is not present in the dictionary,
the id is introduced in the XML label instead
}

if (!'xbe32_isComplex(item)) {
int length,j;
printf ("<¥%s>", elem_name);
NULL;
NULL;

uintl6_t * contentl

uint32_t * content2
char chain[255];
length = xbe32_getNumValues(item);

itemType = xbe32_getValuesType(item);

switch (itemType){
case STRING_TYPE:
printf ("%s",xbe32_getValues(item));
break;
case FLOAT32_TYPE:
printf (" %f ",*(float *) xbe32_getValues(item));
break;
case FLOAT64_TYPE:
printf (" %1f ",*(double *) xbe32_getValues(item));
break;
case INT16_TYPE:

54 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

contentl = (uintl6_t *) xbe32_getValues(item);
for (j = 0; j<length/2;j++){
printf (" %d", contentl[jl);
}
break;
case INT32_TYPE:
content2 = (uint32_t *) xbe32_getValues(item);
for (j = 0; j<(length/4);j++) {
printf (" %d", content2[jl);
}
break;
case INT64_TYPE:
printf(" %d ",(uint64_t *) xbe32_getValues(item));
break;
case OPAQUE16_TYPE:
vals = xbe32_getValues(item);
for (i=0; i<16; i++) {
printf ("%.2x", vals[i]);
}
break;
case OPAQUE4_TYPE:
vals = xbe32_getValues(item);
for (i=0; i<length/4; i++) {
printf (" 0x%.8x", ntohl(vals[ix4]));
}
break;
case OPAQUE2_TYPE:
vals = xbe32_getValues(item);
for (i=0; i<length/2; i++) {
printf (" 0x%.4x", ntohs(vals[ix2]));

}

//This case transform the hexadecimal into an element value

printf ("</%s>",elem_name) ;

//The element name is printed inside the XML label
}
else{ // isExtensible()

4.3. USAGE EXAMPLES 95

if (closed == true) {
printf ("</%s>\n", elem_name);
//The name corresponding the XBE32 element is put inside
the closing label
} elsef{
printf ("<%s>", elem_name);
//The name corresponding the XBE32 element is put inside
the opening label
}
¥

closed = false;
} while(item != NULL);

return 0;

Following the XML got by the application':

<service>
<1d>8e9d7823d5ac497¢c91d0fb07eal0c3fb2</id>
<servicestate>
<metainfo>
<statetimestamp>f85444fdeb</statetimestamp>
</metainfo>
<selectstate>
<0x00002e¢12> 1.100000 </0x00002e12>
</selectstate>
</servicestate>
<servicemaininfo>
<servicetype>
<0x00002112>printer</0x00002112>
</servicetype>
<0x00002148>Alice’s printer</0x00002148>
<selectinfo>
<0x00002845> 0x0000</0x00002845>
<0x00002d45>14</0x00002d45>

!The resultant XML is not exactly the same as the first one presented in the previous
section since not all the items were present in the dictionary

56 CHAPTER 4. XBE32 DESIGN AND IMPLEMENTATION

</selectinfo>
<color>false</color>
<duplex>true</duplex>
</servicemaininfo>
<servicelocation>
<inet>
<ipv4addrs> 0x8b000000</ipv4addrs>
<ipv6addrs>fe800000000000000202b3fffe3cda7a</ipvbaddrs>
</inet>
<protocol>
<0x00002178>ipp</0x00002178>
<0x00002c77> 0x2f000000 0x2c000000 0x74000000 0x33000000</0x00002c77>
</protocol>
<protocol>
<0x00002178>1pr</0x00002178>
<0x00002c77> 0x2£f000000 0x2c000000 0x74000000 0x31000000</0x00002c77>
</protocol>
</servicelocation>
<serviceaddinfo>
<0x00002189>Acme Laser Printer 2000</0x00002189>
<0x00002177>http://www.acme.com/printers/1p200.html</0x00002177>
</serviceaddinfo>

</service>

Chapter 5

CONCLUSIONS AND WORKS
FOR THE FUTURE

Este trabajo ha representado dos puntos muy positivos para sus autores. En
primer lugar, el hecho de haber implementado la libreria en lenguaje C (no hay
que olvidar que ya ha sido implementada en Java) hace que el protocolo que
representa sea méas universal, ya que este lenguaje estd caracterizado por su
popularidad, diversidad de plataformas, y lo que es mas importante, su amplia
utilizacion en la comunidad de software libre. Ademas de esto, esté lo que podria
entenderse como la inmediata aplicaciéon de la libreria, que es el protocolo XSDF.
Este trabajo permite que dicho protocolo de descubrimiento de servicios tenga
ya a su disposiciéon una libreria XBE32 de implementacién C, lo cual hace que
su futura implementacién en este lenguaje sea més sencilla, ya que todo lo
relacionado con la codificacién de mensajes queda reducido a la llamada de una

serie de funciones.

Ademas de esto, como se ha mencionado anteriormente, XBE32 no tiene
como tnica finalidad su utilizacién por parte de XSDF, sino que ha sido disefiado
para ser utilizado por cualquier aplicacién que necesite de una codificacién ligera

para utilizar de cara a la red.

Del objetivo principal impuesto, la implementacion del contenido del Draft|[1]
XBE32, podemos decir que se ha conseguido realizar de forma exitosa contando

con las siguientes caracteristicas:

e Flexibilidad: La implementacion soporta todas las caracteristicas de XBE32

incluyendo los elementos extensibles y a las TLV de longitud indetermi-

o7

58 CHAPTER 5. CONCLUSIONS AND WORKS FOR THE FUTURE

nada.

e Transparencia para el usuario: Este no tiene que tener en cuenta elementos
tan bésicos como la TLV, sino que sélo ha de preocuparse por generar
elementos de determinado tipo. Esto ademéas se hace de forma sencilla

mediante invocaciones de funciones.

e Ligereza: Debido a las caracteristicas del lenguaje, esta implementacion
ademas supone un avance en cuestion de eficiencia, ya que en este caso,
la aplicacion serd més ligera en lo que a su ejecucién se refiere consum-
iendo menos recursos. Esto en determinados entornos puede resultar muy

positivo y ventajoso.

e Capacidad para adaptarse a futuros cambios: Dado que la aplicaciéon esté
claramente dividida en dos capas y las tareas claramente delimitadas por
funciones, cualquier ampliacién o cambio se vivird como algo relativamente
cémodo y sencillo, y una cantidad de c6digo minima se veré afectado por

los cambios en una determinada tarea.

El proceso de creaciéon ha estado caracterizado por un estudio exhaustivo
del Draft[1] que describe XBE32. Este estudio ha sido un punto clave en la
implementacién, ya que XBE32 es una especificaciéon algo compleja y, aunque en
principio la autora subestimé la dificultad que el documento entrana, finalmente
después de varios problemas surgidos durante la fase de implementacion, se
decidi6 dejar esta algo de lado hasta que el Draft[1] estuviera completamente

interiorizado por su parte.

Al margen de los problemas derivados del analisis de la especificacion, otra
parte compleja, aunque bastante mas interesante, ha sido el diseno de la libreria.
El diseno ademés de la autora ha contado con la activa colaboraciéon del autor
del Draft[1], Manuel Urena Pascual. Desde el punto de vista de la primera, esta
colaboracién ha resultado muy estimulante y positiva, ya que, a pesar de que una
vez familiarizada con el problema las ideas respecto a su posible materializacion
fluian de forma bastante concreta, el autor del Draft[1], ha hecho posible que
todos esos algoritmos se distribuyeran de una forma légica, sencilla y elegante

entre las dos capas que forman la libreria.

A pesar de que las dos fases anteriormente mencionadas han sido sin ningu-
na duda las més significativas del proyecto, en este apartado del escrito no seria
justo no mencionar lo que también ha sido fundamental en este trabajo, la

documentaciéon. La documentacién ha supuesto para la autora otra fuente de

99

ensenanza, ya que al margen de cumplir con su funcién obvia, que es la posi-
bilidad de facilitar al usuario la utilizaciéon de la libreria, y facilitar posibles
cambios y ampliaciones, ha incluido otro reto: aprender las técnicas y dominar
las herramientas necesarias para cumplir con los estandares de la comunidad
de software libre para la documentacion de proyectos. La forma escogida para
cumplir este requisito ha sido la de péginas de manual (las conocidas man). A
pesar de que han sido relativamente faciles de editar y generar, han sido un
trabajo engorroso debido al particular formato de estas paginas y a la propia
estructuracion del contenido. Puesto que XBE32 no es un lenguaje de codifi-
cacion conocido, para facilitar la tarea al usuario final, se ha decidido agrupar
las funciones segun sus funcionalidades para evitar que dicho usuario tenga que
recordar en todo momento los nombres de todas las funciones presentes en la
libreria y le sea relativamente facil encontrar la funcién que cumple con deter-

minada tarea.

Una de las dificultades del proyecto en este caso no ha sido el tiempo como
viene siendo habitual con los proyectantes noveles, sino la materia. En prin-
cipio este proyecto estaba encaminado a ser la implementacién de la primera
capa del framework XSDF. Dado que en lenguaje C no existia ningin tipo de
implementaciéon de XBE32, la parte més bésica del proyecto seria realizar una
implementacion parcial de dicho sistema de codificaciéon para que pudiera ser
utilizado por XSDF. A medida que se fue avanzando en la implementacion,
quedo patente que si el proyecto debia abarcar hasta la primera capa de XSDF
como estaba previsto, el resultado de ambas partes se veria perjudicado en cuan-
to a calidad se refiere. En el caso de que la implementacion de XBE32 estuviese
enfocada unicamente a esa primera capa, otras aplicaciones no podrian valerse
de sus servicios sin tener que modificar esta o la propia aplicacion. Asi mismo,
esa primera capa de XSDF se vera modificada (u obsoleta) una vez que saliera
la implementacion total de XBE32, lo cual dadas las circunstancias, seria muy
posible. Asi que en un momento determinado, cuando la implementacién de la
primera capa de XBE32 se hubo terminado, fue necesario decidir si se procedia
con lo que habria resultado un trabajo incompleto con la implementaciéon de

XSDF, o bien se hacia una libreria completa de la especificacion XBE32.

Todo lo anterior demuestra que a pesar de que este proyecto ha hecho que la
autora haya mejorado notablemente en el plano de la programacién en el lengua-
je de la implementacion, también ha vuelto a demostrar que lo que realmente
hace que un ingeniero pueda evolucionar como tal, es el trabajo en proyectos

de cierta embergadura, ya sea en cuestion de tamano o complejidad, y que por

60 CHAPTER 5. CONCLUSIONS AND WORKS FOR THE FUTURE

tanto hay que seguir trabajando.

Finalmente, para terminar con la lista de objetivos planteados en el primer
capitulo, hay que confesar, que algunas de las herramientas que se han utilizado
para realizar este trabajo, como el control de versiones, tan sélo se han utilizado
en los momentos més tempranos y debido al tiempo que implicaba su utilizacion,
se ha optado por métodos mas primitivos (p.e: almacenaje por fechas en correo

electronico y discos duros externos).

Una vez que se han comentado los puntos principales del proyecto, sus difi-

cultades y bonanzas, s6lo queda exponer los trabajos futuros.

5.1 Trabajos futuros

Algunos de los trabajos que quedan para el futuro respecto a XBE32, son as-
pectos de implementacién como el comportamiento de la libreria cuando para
una TLV simple se excede cierto limite de bytes (en la actualidad ese tope esta
en 65.532 bytes), o el tratamiento de errores de la librerfa (actualmente, todo
tipo de decisiones de comportamiento frente a errores se dejan a la capa superi-
or). Pero sin duda, el trabajo mas relevante para el futuro es la implementacién
completa de XSDF.

XSDF es una evolucion del protocolo de localizacion de servicios (SLP). En
todo momento se intenta que esta extensiéon cumpla con los requisitos definidos
por el grupo de trabajo Rserpool (Reliable Server Pooling). Sus principales

caracteristicas son:

e Modelo de servicio mejorado.
e Localizacién a través de Internet.

e Balanceo de carga.

XSDF, es, como se ha mencionado anteriormente en este trabajo, un frame-
work compuesto por varias capas. Dado que una de ellas, la primera, era el
objetivo inicial de este trabajo, creemos que es fundamental presentar tanto
esta como las demés, ya que, como se ha mencionado en este mismo capitulo,
forman parte de los diferentes trabajos que pueden derivar del que actualmente

se estd presentando. Estas capas son:

5.1.

TRABAJOS FUTUROS 61

XSLP (eXtensible Service Location Protocol): Tiene como funciéon pro-
porcionar al usuario informacién sobre la disponibilidad de determinados

servicios presentes en la red del mismo.

XSRP (eXtensible Service Register Protocol): Se encarga de que los servi-
dores registren la informaciéon de los servicios que proporcionan en un

directorio centralizado.

XSSP (eXtensible Service Subscription Protocol): Mediante este protocolo
los agentes XSDF pueden suscribirse a informaciéon de servicio, de forma
que siempre estan informados de los servicios disponibles y sus posibles

cambios.

XSTP (eXtensible Service Transfer Protocol): Este protocolo permite dis-
tribuir el directorio de servicios entre varias maquinas sincronizadas entre

si.

62 CHAPTER 5. CONCLUSIONS AND WORKS FOR THE FUTURE

Appendix A

Installation

This chapter explain how the user should proceed to compile and install the

library, the files needed to use the dictionary utility and the man pages.

Following, the steps needed to compile, copy and use the library:

1. To compile the multiple files the library is composed of. To do that, we

use the gce sentence with the -c option:

$ gcc -c xbe32_tlv.c xbe32.c xbe32_dictionary.c

2. After that, we create the library with the ar command:

$ ar rs xbe32.a xbe32_tlv.o xbe32.0 xbe32_dictionary.o

3. To create an index inside the library, we execute the next command:

$ ranlib xbe32.a

4. If we desire to copy the library to any part of our system (linux/Unix) we

use the option -p with the command cp.
$ cp -p xbe32.a directory/

5. To use the library it is necessary to use gcc with the -L. option. Next, we

are going to illustrate how to compile a programm "foo" with our library:

63

64 APPENDIX A. INSTALLATION

$ gcc -o foo -L. -xbe32 foo.o

As in any other project, the documentation is necessary for the user to learn
the employ of the product. In this case, a very complete example has been given
in section 4.2 and , so it is easier for the user to grasp the functioning of the
library intuitively. Anyway this library provides a set of manpages to orient the

user in the employ of the library.

As it happens with the dictionary utility, there are some requisites needed
to have the pages available. This requisites are the only installation needs for a

Linux/Unix computer.

To have properly installed the manpages, these need to be stored in the next

directories:

e /usr/share/man

e /usr/local/man

Next in this chapter we are going to explain the steps to follow in order to

install the dictionary component.

To use the dictionary, it is necessary to create and install it. The instruction
to do it are attached bellow:
1. Create a ".txt" file, and open it.

2. Arrange type name and value type in two columns. The first of them must

be type name, and the second the value of this type.
3. Repeat step 2) for the each element type.
4. Save the file.
5. Toload the dictionary through the library, use the "xbe32 dictionary loadDictionary"

5

Following, an example of how must be distributed the dictionary:

®See the example in the previous chapter

0x0100
0x0110
0x0111
0x0121

service
servicestate
metainfo

servicetype

65

66

APPENDIX A. INSTALLATION

Appendix B

man pages

This appendix shows the man pages corresponding to the library.

xbe32(3) LIBRARY FUNCTIONS xbe32(3)

NAME

The functions relative to the elements available for this library are:
xbe32_createParser

xbe32_createWriter

xbe32_destroyParser

xbe32_destroyWriter

xbe32_flush

xbe32_getFlags

xbe32_getId

xbe32_getName

67

68 APPENDIX B. MAN PAGES

xbe32_getNumValues

xbe32_getValues

xbe32_nextElement

xbe32_setParserBuffer

xbe32_setWriterBuffer

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

69

xbe32_createParser(3) LIBRARY FUNCTIONS xbe32_createParser(3)

NAME
xbe32_createParser, xbe32_createWriter, =xbe32_destroyParser,
xbe32_destroyWriter - Create/Delete xbe32_parser_t/xbe32_writer_t

structures allocating/deallocating the necessary memory.

SYNOPSYS
#include xbe32.h

xbe32_parser_t * xbe32_createParser(unsigned char * buf, int len)
xbe32_writer_t * xbe32_createWriter(unsigned char * buf, int len)
void xbe32_destroyParser(xbe32_parser_t * parser)
void xbe32_destroyWriter(xbe32_writer_t * writer)

DESCRIPTION
xbe32_createParser Creates a an opaque xbe32_parser_t structure allo
cating the necessary memory.
The parameters for this function are the buf variable of char* type
which represents the buffer which is going to be read, and an int vari

able type which represents the length of that buffer

xbe32_createWriter Creates an opaque xbe32_writer_t structure allocat

ing the necessary memory.

The parameters for this function are the buf variable, a char* variable
which represents the buffer which is going to be read, and an int vari

able type, len, which represents the length of that buffer

xbe32_destroyParser Free the memory corresponding to the parser struc

ture in the upper layer.

The parameter needed for calling this function 1is the xbe32_parser_t

type variable representing the parser (the parser for the upper layer.

70 APPENDIX B. MAN PAGES

Processing of elements, not TLV).

xbe32_destroyWriter Free the memory corresponding to the parser

struc
ture in the upper layer.the upper layer).
The parameter mneeded for calling this function is the xbe32_writer_t
type variable representing the writer (the writer for the upper
layer.
Processing of elements, not TLV).
AUTHOR

Lia Bailan <100011513 at alumnos dot uc3m dot es>
SEE ALSO

xbe32_setParserBuffer, xbe32_setWriterBuffer

71

xbe32_getFlags(3) LIBRARY FUNCTIONS xbe32_getFlags(3)

NAME
xbe32_getFlags - returns an integer with the value of the meta fields
"c" continue, and "e" notify error.
xbe32_getId - Returns the the identifier of a given element.
xbe32_getName - Returns the name of an element
xbe32_getNumValues - returns an integer with the number of

values
inside an attribute element (leaf)

xbe32_getValues - Returns a void pointer to the values of the element.

xbe32_getValuesType - Returns an integer with the type of the values in

one attribute element.

SYNOPSYS
#include xbe32.h

int xbe32_getFlags (xbe32_elem_t * elem)

int xbe32_getId (xbe32_elem_t * elem)

char * xbe32_getName (xbe32_elem_t * elem)

int xbe32_getNumValues (xbe32_elem_t * elem)

void * xbe32_getValues (xbe32_elem_t * elem)

int xbe32_getFlags (xbe32_elem_t * elem)

DESCRIPTION

72

inside

carry

APPENDIX B. MAN PAGES

xbe32_getFlags returns an integer with the value of the meta fields "c"
continue, and "e" notify error. With this information, the user knows
that an error has happened and what to do (if to continue or not with

the processing).

If "c¢" value is O, discard this mandatory TLV and stop processing TLVs
left

If "c" value is 1, skip this optional TLV and continue processing next
TLV

if "e" value is 0, do not report to the sender that this type is
unknown

if "e" value is 1, report to the sender that this type is unknown

xbe32_getFlags gets as parameter an xbe32_elem_t type variable.

xbe32_getld returns the identifier of a given element. An element,

always have an identifier, and can also have a name.

xbe32_getld gets as parameter an xbe32_elem_t type variable.
xbe32_getName returns the name of an element. To do this, it checks the
id of the element against a dictionary utility and finds out if that
element has a name. If it has, xbe32_getName returns it.

xbe32_getName gets as parameter an xbe32_elem_t type variable.

xbe32_getNumValues returns an integer with the number of values

an attribute element (leaf). This function is applicable only to this

kind of element (leaf), since they are the only ones capable of

ing data values.

xbe32_getNumValues gets as parameter an xbe32_elem_t type variable.

AUTHOR

73

xbe32_getValues returns a pointer (void type) to the values of the ele
ment. This function, as xbe32_getNumValues and xbe32_getValuesType, 1is
just applicable to attribute elements since are the only ones which

carry real values.

xbe32_getValues gets as parameter an xbe32_elem_t type variable.
xbe32_getValuesType returns an integer with the type of the values 1in
one element. This function is applicable only to this kind of element

(leaf), since they are the only ones capable of carrying data values.

xbe32_getValuesType gets as parameter an xbe32_elem_t type variable.

Lia Bailan <100011513 at alumnos dot uc3m dot es>

74 APPENDIX B. MAN PAGES

xbe32_nextElement (3) LIBRARY FUNCTIONS xbe32_nextElement (3)

NAME
xbe32_nextElement - Returns an xbe32_elem_t structure with the contents

of the currently processed element

SYNOPSYS
#include xbe32.h

xbe32_elem_t #* xbe32_nextElement(xbe32_parser_t * parser,bool *

closedElem)

DESCRIPTION
xbe32_nextElement returns an xbe32_elem_t structure with the contents
of the currently processed element. As with its lower layer equivalent,
xbe32_tlv_nextTLV, this function returns an element with its contents
(data values) in case the processed element is an attribute element (a
leaf on the hierarchical tree), and a header with its type, id, and
name (if it has one), in case it is a complex element. It must be said,
that if it is an attribute extensible element, the name/id of the ele
ment will be extracted from a different TLV that the one containing the
values. The parameters mneeded to call this function are an
xbe32_parser_t variable which will be representing to the parser of the
upper layer application, and a bool type variable to signal that a com

plex element has been closed.

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

75

xbe32_setParserBuffer(3) LIBRARY FUNCTIONS xbe32_setParserBuffer(3)

NAME

xbe32_setParserBuffer, xbe32_setWriterBuffer, xbe32_flush - Changes an

xbe32_writer_t/xbe32_parser_t buffer for another.

SYNOPSYS

#include xbe32.h

void xbe32_setParserBuffer (xbe32_parser_t #* parser, unsigned char x*
buf, int len)

void xbe32_setWriterBuffer (xbe32_writer_t * writer, unsigned char *
buf, int len)

void xbe32_flush(xbe32_writer_t * writer)

DESCRIPTION

buffer

xbe32_setParserBuffer changes an xbe32_parser_t buffer for another.
This happen when the buffer that the application is reading for pro
cessing the elements has reached its end, and the application needs to

continue reading from another one.

The parameters for this function are the xbe32_parser_t type variable
which represent the upper layer parser structure, the buf variable of
char* type which represents the buffer which is going to be read, and

an int variable type which represents the length of that

xbe32_setWriterBuffer changes an xbe32_writer_t buffer for another.
This happen when the buffer that the application is reading for pro
cessing the elements has reached its end, and the application needs to

continue reading from another one.

The parameters for this function are the xbe32_writer_t type variable
which represented the upper layer structure writer, the buf variable, a
charx variable which represents the buffer which is going to Dbe read,

and an int variable type, 1len, which represents the length of that

76 APPENDIX B. MAN PAGES
buffer
xbe32_flush dumps the contents of the buffer which is being written.
This 1is done in order to start the writing in another buffer, or just
to dump all the data of the application that is currently in the
buffer.

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

SEE ALSO

xbe32_createParser, xbe32_createWriter, =xbe32_destroyParser,

xbe32_destroyWriter

7

xbe32_tlv_closeTLV(3) LIBRARY FUNCTIONS =xbe32_tlv_closeTLV(3)

NAME

xbe32_tlv_closeTLV - Closes a complex TLV.

xbe32_tlv_flush - Dump the contents of the buffer which is being writ

ten.

xbe32_tlv_openTLV - Creates the header of a TLV

SYNOPSYS

#include xbe32_tlv.h

int xbe32_tlv_closeTLV(xbe32_tlv_writer_t * writer)

int xbe32_tlv_flush (xbe32_tlv_writer_t * writer)

int xbe32_tlv_openTLV (xbe32_tlv_writer_t * writer, uintl6_t type)

DESCRIPTION

member

xbe32_tlv_closeTLV <closes a complex TLV. To do this, checks the TLV

pending of being closed (on the stack or through the structure

num_end_of_tlv) to be sure there is still one in the open state, and
after that, writes the corresponding length into the 1length field
(Until this moment, since the TLV which was being processed was complex
and the amount of TLV which where going to be nested in it was indefi

nite, the length remained unknown).

The parameter needed to call this function is an xbe32_tlv_writer_t

variable which will be representing to the writer.

xbe32_tlv_flush Dump the contents of the buffer which is being written.
This 1is done in order to start the writing in another buffer, or just
to dump all the data of the application which is currently in the
buffer.

78

moment

AUTHOR

APPENDIX B. MAN PAGES

Phisically, the only task this function performs is the saving of the

number of TLVs open in the member num_end_of_tlv, until the

xbe32_tlv_flush is invoked.

The parameter mneeded to call this function is an xbe32_tlv_writer_t

variable which will be representing to the writer.
xbe32_tlv_openTLV Creates the header of a TLV. Introduces the type and

the length (if this is known), and takeS the pointer forward to write
the next field of the TLV.

Lia Bailan <100011513 at alumnos dot uc3m dot es>

79

xbe32_tlv_contents(3) LIBRARY FUNCTIONS =xbe32_tlv_contents(3)

NAME
xbe32_tlv_contents - prints the contents of the currently processed

TLV, in case it is simple.

SYNOPSYS
#include xbe32_tlv.h

void xbe32_tlv_contents(xbe32_tlv_t * tlv)

DESCRIPTION
xbe32_tlv_contents prints the contents of the currently processed TLV,
in case it is simple. This function is not necessary to the 1library,

just helps debbuging possible errors.

The parameter needed to call this function is an xbe32_tlv_t type vari

able which will represent the TLV which is being processed.

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

80 APPENDIX B. MAN PAGES
xbe32_tlv_createParser(3) LIBRARY FUNCTIONS xbe32_tlv_createParser(3)
NAME
xbe32_tlv_createParser - Creates an xbe32 parser structure to process
the TLV which are about to be read
xbe32_tlv_paddedLength - Allocates memory for the writer structure
xbe32_tlv_destroyParser - Free the memory used to store an
xbe32_tlv_parser_t structure
xbe32_tlv_destroyWriter - Deallocates the memory corresponding to the
writer structure
SYNOPSYS
#include xbe32_tlv.h
xbe32_tlv_createParser(unsigned char * buf, int len)
xbe32_tlv_writer_t * xbe32_tlv_createWriter (unsigned char * buf, int
len)
xbe32_tlv_destroyParser(xbe32_tlv_parser_t * parser)
void xbe32_tlv_destroyWriter (xbe32_tlv_writer_t * writer)
DESCRIPTION

xbe32_tlv_createParser Creates an xbe32 parser structure to handle the
TLV reading process. Allocates memory for the structure and initializes
it. This function is responsible of initializing the parser structure.

This structure contains several fields:

buffer_start: points to the first byte where the current processing

starts.

buffer_end: points to the last byte that can be read in the current

stage of processing, that is the start byte plus the total length of

repre

81

the available bytes of the file.

parser_ptr: points to the current byte which is been processing, so it

is initialized pointing to the first byte of the file.

open_tlvs: it counts and stores the total number of tlvs which are
currently opened, so it is initialized to NULL, since at first there is

no open TLV pending.

error_msg: contains the error string that must be displayed at the

moment. Initialize to NULL.

error_code: contains the number of the error that must be spread up to
the main application. Initialize to NO_ERROR_ERRCODE.

As 1income, xbe32_tlv_createParser has the buf variable, which maps the

file the library is writting over, and the len variable, which

sents the available length for the application.

At the end of the function, the returned value is the parser structure

initialized.

xbe32_tlv_createWriter This function initializes the writer structure.
It has as income buf, variable which points to the first byte avaiable
for the writer, and len, which is the amount of bytes available for the

writer.

buffer_start: points to the first byte where the encoding should be

writted.

buffer_end: points to the last byte that can be written in the current
stage of processing, that is the start byte plus the total length of
the available bytes of the file.

buffer_ptr: points to the current byte which is about to be written, so

it is initialized pointing to the first byte of the file.

82

to the

AUTHOR

APPENDIX B. MAN PAGES

num_end_of_tlv: it is initialized to O, since at the beggining there is

nothing written.
open_tlvs: it counts and stores the total number of TLVs which are
currently opened, so it is initialized to NULL, since at first there is

no open TLV pending.

error_msg: contains the error string that must be displayed at the

moment. Initialize to NULL.

error_code: contains the number of the error that must be spread up to
the main application. Initialize to NO_ERROR_ERRCODE.

As income, it has the buf variable, which maps the file the library is
writting over,and the 1len variable, which represents the available

length for the application.

At the end of the function, the returned value is the writer structure

initialized.

xbe32_tlv_destroyParser free the memory used to store an

xbe32_tlv_parser_t structure (a parser varaible).

The parameter for this function is the xbe32_tlv_parser_t type variable

representing the parser.

xbe32_tlv_createWriter deallocates the memory corresponding

writer structure.

The parameter for this function is the xbe32_tlv_writer_t type variable

representing the writer.

Lia Bailan <100011513 at alumnos dot uc3m dot es>

83

xbe32_tlv_getContinueFlag(3) LIBRARY FUNCTIONS xbe32_tlv_getContinueFlag(3)

NAME
xbe32_tlv_getContinueFlag - returns a boolean value signalling the pos
sibility of continuing the current parsing operation after find out
that an error in the structure of the TLV has ocurred
xbe32_tlv_getErrorFlag - returns a boolean value that indicates if an
error that has been found in the structure of the currently processed
TLV should be reported to the upper application
xbe32_tlv_getLength - Returns the length of the TLV which is being cur
rently handled
xbe32_tlv_getMeta - Returns the basic type of a defined one.
xbe32_tlv_getNumValues- Returns the number of values inside a TLV
xbe32_tlv_getType - Returns the type of the TLV which is being cur
rently handled
xbe32_tlv_getValues - returns a char pointer that points to the first
of the bytes corresponding to the values in the single TLV which 1is
being processed
xbe32_tlv_getValuesLength - Returns the length of the payload without
the padding

SYNOPSYS

#include xbe32_tlv.h

bool xbe32_tlv_getContinueFlag (uintl6_t type)

bool xbe32_tlv_getErrorFlag (uintl6_t type)

uintl6_t xbe32_tlv_getLength (xbe32_tlv_t * tlv)

84 APPENDIX B. MAN PAGES
uint16_t xbe32_tlv_getMeta (int type)
int xbe32_tlv_getNumValues (xbe32_tlv_t * tlv)
uint16_t xbe32_tlv_getType (xbe32_tlv_t * tlv)
unsigned char * xbe32_tlv_getValues (xbe32_tlv_t * tlv)
xbe32_tlv_getValuesLength (int length)

DESCRIPTION
xbe32_tlv_getContinueFlag returns a boolean value signalling the possi
bility of continuing the current parsing operation after find out that
an error in the structure of the TLV has ocurred. The bit signalling
this event is present in the meta section of the type field.
The parameter needed to call this function is an uintl6_t type variable
which will represent the type of the TLV.
xbe32_tlv_getErrorFlag returns a boolean value that indicates

if an

error that has been found in the structure of the currently processed

TLV should be reported to the upper application

The parameter needed to call this function is an uintl6_t type variable

which will represent the type of the TLV.

xbe32_tlv_getLength returns the length of the TLV which is being cur
rently handled. This length is returned in hexadecimal notation and
represent the total length of the TLV including the header but not the
padding. During the process the function takes care of the possible
problems with the LITTLE ENDIAN notation.

The parameter mneeded to call this function is an int type variable
which will represent the length of the TLV.

xbe32_tlv_getMeta Returns the basic type of a defined one. This type is

85

the result of substract the meta characters of the complete type. Those
meta characters indicate what the actions should be taken in case of

error during the processing of the TLV.

xbe32_tlv_getNumValues returns the number of values inside a TLV. This
values must be simple values, this function is not applicable to com
plex TLV.

The parameter needed to call this function is an xbe32_tlv_t type vari

able which will represent the TLV which is being processed.

xbe32_tlv_getType Returns the type of the TLV which is being currently
handled. This type is returned in hexadecimal notation. During the pro

cess the function takes care of the possible problems with the

LITTLE
ENDIAN notation.
The parameter needed to call this function is an xbe32_tlv_t type vari
able which will represent the TLV which is being processed.
xbe32_tlv_getValues returns a char pointer that points to the first of
the bytes corresponding to the values in the single TLV which is being
processed. The values are stored in binary form.
xbe32_tlv_getValuesLength Returns the length of the payload without the
padding.
The parameter needed to call this function is an int type variable
which will represent the total length of the TLV (header + payload -
padding) .

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

SEE ALSO

xbe32_tlv_getErrorFlag, xbe32_getFlags

86 APPENDIX B. MAN PAGES

xbe32_tlv_isComplex(3) LIBRARY FUNCTIONS xbe32_tlv_isComplex(3)

NAME
xbe32_tlv_isComplex - Returns a boolean value that tells if the TLV

processed is complex or not

SYNOPSYS
#include xbe32_tlv.h

bool xbe32_tlv_isComplex (uintl6_t type)

DESCRIPTION
xbe32_tlv_isComplex returns a boolean value that tells if the TLV pro

cessed is complex or not.

The parameter mneeded to call this function is an int type variable

which will represent the type of the TLV.

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

87

xbe32_tlv_nextTLV(3) LIBRARY FUNCTIONS xbe32_tlv_nextTLV(3)

NAME
xbe32_tlv_nextTLV - Returns a TLV structure with the contents of the

currently processed TLV

SYNOPSYS
#include xbe32_tlv.h

xbe32_tlv_t * xbe32_tlv_nextTLV(xbe32_tlv_parser_t #* parser, bool *
closed)

DESCRIPTION
xbe32_tlv_nextTLV is in charge of process every TLV on the buffer. For
each omne, it returns a TLV structure with the values corresponding to
the TLV in case this is a simple one, or just the header in case it 1is
a complex one. In addition to that, it returns a boolean value that
tells if the last complex TLV (in case there is one) was closing with
the last TLV processed. While xbe32_tlv_nextTLV processes the TLVs, the
function advances the main pointer of the parser structure, the

member
parser_ptr , to point the next TLV to process (that is, the length of
the TLV which is being processed).

The parameters needed to call this function are an xbe32_tlv_writer_t
variable which will be representing to the writer, and a bool type

variable to signal that a complex TLV has been closed.

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

88

APPENDIX B. MAN PAGES

xbe32_tlv_setParserBuffer(3) LIBRARY FUNCTIONS =xbe32_tlv_setParserBuffer(3)

NAME

xbe32_tlv_setParserBuffer - Changes the buffer for an

xbe32_tlv_parser_t parser structure

xbe32_tlv_setWriterBuffer - Changes the buffer for an

xbe32_tlv_writer_t writer structure

SYNOPSYS

#include xbe32_tlv.h

xbe32_tlv_setParserBuffer (xbe32_tlv_parser_t * parser, unsigned char
* buf, int len)

void xbe32_tlv_setWriterBuffer (xbe32_tlv_writer_t * writer, unsigned

char * buf, int len)

DESCRIPTION

It

is

xbe32_tlv_setParserBuffer changes the buffer for an xbe32_tlv_parser_t
parser structure. It 1is used in the case the read buffer has reached
its end and the processing has not been finished, so another buffer is
waiting to be read. To do this, it is necessary to apply some changes
over the parser structure: member buffer_start must point to the start
of the new buffer; buffer_end must point to the end of the mentioned
new buffer; and the member parser_ptr must point to the start of the
new buffer as buffer_start (the difference between the latter and
parser_ptr, is that parser_ptr will change its position along the pro

cessing) .

The parameters introduced in +this function are: a variable of
xbe32_tlv_parser_t type which is representing the parser structure; a
char* pointer to the buffer which must be read; and an int variable
with the length of the new buffer to be read.

changes the buffer for an xbe32_tlv_writer_t writer structure.

AUTHOR

89

used in the case the read buffer has reached its end and the processing
has not been finished, so another buffer must be read (the data has not
finished, but the buffer did) in order to encode all the message. To do
this, it is necessary to apply some changes over the writer structure:
member buffer_start must point to the start of the new buffer;
buffer_end must point to the end of the mentioned new buffer; and the
member buffer_ptr must point to the start of the new buffer as

buffer_start (the difference between the latter and buffer_ptr, is that

bufferr_ptr will change its position along the processing).

The parameters introduced in this function are: a variable of
xbe32_tlv_writer_t type which is representing the writer structure; a
char* pointer to the buffer which must be read; and an int variable

with the length of the new buffer to be read.

Lia Bailan <100011513 at alumnos dot uc3m dot es>

90 APPENDIX B. MAN PAGES

xbe32_tlv_writeTLV(3) LIBRARY FUNCTIONS =xbe32_tlv_writeTLV(3)

NAME
xbe32_tlv_writeTLV - Writes the content of a simple TLV.

SYNOPSYS
#include xbe32_tlv.h

int xbe32_tlv_openTLV (xbe32_tlv_writer_t * writer, uintl6é_t type)

DESCRIPTION
xbe32_tlv_writeTLV writes the content of a simple TLV. Writes the pay
load of a simple TLV including the padding. In addition to that, takes
the pointer forward as far as necessary to write the next TLV (that is,
the length of the current TLV).

The parameters needed to call this function are an xbe32_tlv_t type
variable which will represent the TLV which is being processed and an

int type variable which will represent the type the TLV.

AUTHOR
Lia Bailan <100011513 at alumnos dot uc3m dot es>

version 0.1 March 2009 xbe32_tlv_writeTLV(3)

Bibliography

[1]

[9]

Uruena, M. y Larrabeiti, D., "eXtensible Binary Encoding", <draft-uruena-
xbe32-00>, Marzo 2004.

Uruena, M. y Larrabeiti, D., "Overview of the eXtensible Service Discovery

Framework", <draft-uruena-xsdf-overview-00>, Marzo 2000.

Uruena, M. y Larrabeiti, D., "Overview of the eXtensible Service Discov-
ery Framework: Common Elements and Procedures", <draft-uruena-xsdf-
common-00.txt>, Marzo 2004.

Uruena, M. y Larrabeiti, D., "eXtensible Service Location Protocol
(XSLP)", <draft-uruena-xslp-00.txt>, Marzo 2004.
Uruena, M. y Larrabeiti, D., "eXtensible Service Registration Protocol

(XSRP)" <draft-uruena-xsrp-00.txt>, Marzo 2000.

Uruena, M. y Larrabeiti, D., "eXtensible Service Subscription Protocol
(XSSP)" <draft-uruena-xssp-00.txt>, Marzo 2004.

ITU-T, "ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encodign Rules
(DER)", X.690, Diciembre 1997.

Fernandez, M., Disefio e Implementacion del API del eXtensible Binary
Encoding (XBE32), Marzo 2005.

José Angel Martinez Usero y Elsa Palacios Ramos "XML: un medio para
fomentar la interoperabilidad, explotacién y difusiéon de contenidos en la

administraciéon electronica'

[10] ITU-T Recommendation X.690: SERIES X: DATA NETWORKS AND

OPEN SYSTEM COMMUNICATIONS OSI networking and system aspects
— Abstract Syntax Notation One (ASN.1) Information technology — ASN.1

91

92 BIBLIOGRAPHY

encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER)
July 2002

[11] SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICA-
TIONS OSI networking and system aspects — Abstract Syntax Notation
One (ASN.1) Information technology — ASN.1 encoding rules: XML Encod-
ing Rules (XER)

December 2001

