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Abstract. Sequence classification is an important problem in computer vision, speech
analysis or computational biology. This paper presents a new training strategy for the
Hidden Conditional Random Field sequence classifier incorporating model and feature
selection. The standard Lasso regularization employed in the estimation of model
parameters is re-placed by overlapping group-L1 regularization. Depending on the
config-uration of the overlapping groups, model selection, feature selection,or both are
performed. The sequence classifiers trained in this way have better predictive
performance. The application of the proposed method in a human action recognition
task confirms that fact.

1 Introduction

Sequence modelling methods are applied in multiple areas. They are employed by
computational biologists to model proteins [1]. The natural language processing
community uses them to solve chunking or part-of-speech tagging tasks [2]. They
are also applied in action recognition from video [3].

Probabilistic graphical models [4] are employed in sequence modelling. The
generative Hidden Markov Model has been employed in many works. Multiple
variations have been proposed to capture the peculiarities of different sequence
modelling scenarios. Efficient exact and approximate algorithms exist to perform
the associated inference tasks. Recently, discriminative sequence models such the
Hidden Conditional Random Field (HCRF)[5] have emerged as a new alterna-
tive. They provide compact parametrizations and have higher predictive power.
However, they still have reduced applicability and have not displaced generative
models.

This work wants to foster the spread of discriminative sequence classifiers in-
corporating model and feature selection to the training algorithm of the HCRF.
The Occams Razor principle of machine learning stands that a model should
not be more complex than strictly required. Model and feature selection are two
ways of implementing it, obtaining a more compact result. Model selection in the
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context of the HCRF refers to the determination of the optimal number of hid-
den state variables, while feature selection refers to the selection of informative
features in the input sequences while discarding uninformative ones.

1.1 Contributions

The contributions of this paper might be summarized as follows:

– A new training procedure for the HCRF incorporating model and feature
selection.

– Experimental evidence showing than the proposed training algorithm per-
forms better than the standard HCRF in a standard action sequence classi-
fication task.

1.2 Paper Organization

Paper is organized as follows: section 2 introduces the standard HCRF model; the
proposed training procedure is presented on section 3; experimental evidence of
the higher performance of the proposed method in a human action classification
task is reported on section 4; finally, 5 resumes the contributions of this work
and presents new research directions.

2 Hidden Conditional Random Fields

The HCRF [5] is an undirected graphical from the exponential family. It might
be understood as an extension of the Conditional Random Field with hidden
variables to model correlations among different observations. Multiple structured
prediction tasks might be represented with HCRFs. This work assumes, without
loss of generality, a sequence classification task.

Formally, the HCRF defines the conditional probability distribution of a dis-
crete random variable y ∈ {y1, . . . , yN} (a.k.a. sequence label) given a sequence
of random variables x = x1, . . . , xT (a.k.a. observations) employing a set of aux-
iliary discrete hidden variables h = h1, . . . , hT , hi ∈ H not observed during
training. These variables are introduced to model correlations among the obser-
vations in x. In the case of sequence classification, these correlations correspond
to the sequence dynamics. The conditional probability of the sequence label y
and the hidden variable assignments h given the sequence of observations x is
defined using the Hammersley-Clifford theorem of Markov Random Fields:

P (y,h | x, θ) = eΨ(y,h,x;θ)

∑
y′
∑

h e
Ψ(y′,h,x;θ) (1)

The conditional probability of the class label y given the observation sequence
x is obtained marginalizing over all the possible value assignments to hidden
parts h:

P (y | x, θ) =
∑

h e
Ψ(y,h,x;θ)

∑
y′
∑

h e
Ψ(y′,h,x;θ) (2)
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The potential function Ψ (y,h,x; θ) measures the compatibility of the input
x with the assignments to the hidden variables h and the class label y. There
are multiple possibilities about the form of this function. Here it is defined as:

Ψ (y,h,x; θ) =

T∑

t=1

φ (xt)α(ht) +

T∑

t=1

β(ht, y) +

T∑

t=1

γ (ht, ht+1, y) (3)

where φ (xt) ∈ Rd is the feature vector associated with the observation xt

and θ = [α β γ] is the vector of model parameters, indexed according to the
values given to the hidden variables h and label y. The first term, parametrized
by α (ht) ∈ Rd measures the compatibility of the observation at instant xt

with the assignment to the hidden variable ht. The second term measures the
compatibility of the values given to the hidden parts ht with the class label y
and is parametrized by β (y, hi) ∈ R. Finally, the third term, parametrized by
γ (y, ht, ht+1) ∈ R models sequence dynamics, measuring the compatibility of
adjacent hidden variable assignments ht and ht+1 with the class y.

y

h2h1h0 h3

x0 x1 x2 x3

Fig. 1. Graphical model representing the structure of the HCRF induced by the func-
tion Ψ

The function Ψ induces the structure of the undirected graphical model de-
fined by the HCRF. The structure of this graph can be observed on figure 1.
Exact inference of the conditional probability distribution defined in equation 2
is possible, as the dependencies among the values given to the hidden variables
h form a chain. Efficient inference is achieved employing belief propagation [4].

2.1 Parameter Estimation

Optimal model parameters θ∗ are estimated from a set of K training samples(
xi, yi

)
, 1 ≤ i ≤ K, minimizing the L2 regularized negative conditional log-

likelihood function:

θ∗ = argmin
θ

L (θ) = argmin
θ

−
K∑

i=1

L (
xi, yi; θ

)
+ λR (θ) . (4)
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The first term measures how model parameters are adjusted to predict each
one of the K training samples, while the second term acts as a regularization
prior over model parameters. The standard regularization employed in the HCRF
is the Ridge regularizer, defined as R (θ) = ||θ||22, imposing a zero-mean gaussian
prior on the values of θ to prevent overfitting. The parameter λ defines a trade-
off between regularization and adjustment. A value of λ = 1

2σ2 is equivalent to a
gaussian with variance σ2. The conditional log-likelihood function L (x, y; θ) is
defined as:

L (x, y; θ) = logP (y | x, θ) = log

( ∑
h e

Ψ(y,h,x;θ)

∑
y′
∑

h e
Ψ(y′,h,x;θ)

)

(5)

Due to the presence of the hidden variables h, the objective function in equation
4 is non-convex [6]. However, a local optimum θ∗ for the model parameter values
might be obtained employing standard convex optimization techniques, as the
function in 4 has an smooth gradient.

Different search strategies might be employed to find the optimal parameter
values. Among them, the LBFGS quasi-newton method is the most popular
[7], updating the descent direction with an approximation of the Hessian based
on previous gradient estimations. Others have proposed to employ an online
stochastic gradient descent algorithm [7], achieving a fast convergence rate but
at the cost of obtaining a worst quality solution. In any case, the non-convexity
of the objective function to optimize makes necessary to run the search multiple
times from different starting points.

2.2 Limitations

The standard method to estimate HCRF optimal parameters leaves some open
issues that are going to be discussed in order to motivate the proposal in subse-
quent section. These are:

– How many hidden state variables employ? |H| i.e., the number of
different values that the hidden state variables in h can take, should be
specified a priori. If it is too small, the model is not enough expressive to
capture the required correlations. However, if it is too big, noisy correlations
are modelled and the result has a low predictive performance. Thus, it is
necessary to adjust it to the right number. In practice, this is done employing
cross-validation, evaluating the predictive performance for different choices
and selecting the best. The non-concavity of the loss function in equation 4
complicates this process, as many trials should be made per choice to obtain
a fair estimation of the optimality of each value. Thus, an efficient procedure
is needed.

– What happens if there are irrelevant features in the input se-
quences? The L2 norm in equation 4 gives a non-zero weight to the param-
eters α (ht) corresponding to irrelevant features. Thus, the result model does
not have an optimal performance, as noise is incorporated to the inference
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process. Thus, it is necessary to incorporate a method to select appropriate
features from the input while discarding the irrelevant.

Other problem in the estimation of optimal HCRF parameters is how to adjust
the trade-off between parameter fitting and regularization, i.e., what value give
to λ in equation 4. This problem is shared by every regularized log-linear model.
In practice, λ is adjusted employing cross-validation, needing to try different
values until the one with the best performance is obtained. This adds another
cross-validation dimension, as it should be already employed in the selection of
the right number of hidden state values. The problem of estimating the right
value for λ is out of the scope of this paper.

3 Model and Feature Selection in Hidden Conditional
Random Fields

This section presents an overlapping group-L1 regularization strategy to estimate
optimal parameters for the HCRF sequence classifier. As described in previous
section, the components of the HCRF parameter vector θ are divided into three
groups α (ht), β (ht, y) and γ (ht, ht+1, y), respectively indexed by the values of
ht, ht and y and ht, ht+1 and y. To obtain a model selection effect it is necessary
to obtain zero values for all the parameters related to each unnecessary h. In a
similar way, to perform feature selection it is necessary to obtain a zero value
for all the parameters related to irrelevant input features.

Model and feature selection in log-linear models has been reported replacing
L2 regularization of the objective function by L1 regularization[8]. However, L1
regularization is not enough to obtain model and feature selection in the HCRF
as it only gives zero values to single variables and not to groups of them.

One way of obtaining zeros in groups of variables is employing overlapping
group L1 regularization [9,10]. Be G the power set of the parameter vector θ,
and G ⊆ G an arbitrary subset of the power set. The overlapping group-L1
regularized training of the HCRF is given by the solution to the optimization
problem:

θ∗ = argmin
θ

L(θ) +
∑

g∈G

λg ‖θg‖2 (6)

The overlapping group-L1 norm sums the L2 norm of the different groups defined
in G. At the optimal, some of the groups will have a zero norm, as all the
components from those groups will have become zero. Depending on the way the
set G is defined, model selection, feature selection, both or even other advanced
effects might be achieved:

– If G ≡ Gfs = ∪D
d=1 {α(·)d} feature selection is performed, as the L2 norm

of the input features is penalized. A zero weight is expected for all the pa-
rameters corresponding to an input feature. Note that beta and gamma
parameters are also regularized in order to prevent a big value on them,
causing overfitting.
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– If G ≡ Gms = ∪|H|
h=1 {α (h) ∪ β (h, ·) ∪ γ (h, ·, ·) ∪ γ (·, h, ·)} model selection is

performed, as the L2 norm of the parameters corresponding to a hidden vari-
able is minimized. A zero weight is expected to the parameters corresponding
to non necessary hidden parts.

– If G ≡ Gfs ∪ Gms model and feature selection are performed at the same
time.

3.1 Optimization Algorithms

The convex optimization methods employed to estimate the optimal parameters
of the standard HCRF are no longer valid. The new regularization term makes
the objective function to optimize non-smooth. In particular, the gradient has
a singularity at the points where a group gets a zero L2 norm. It is necessary
to transform the problem into a smooth one before applying a gradient based
method.

The unconstrained optimization problem in equation 6 might be reformulated
into an equivalent constrained optimization problem as suggested by [11]:

θ∗ = min
θ

L(θ) +
∑

g∈G

λghg

s.t.

∀g ‖θg‖2 ≤ hg

(7)

The overlapping group-L1 regularization term is replaced by a set of con-
straints, one for each group of variables in G. Each one of the constraints in
the new optimization problem defines a norm cone of radius hg, ensuring that
the L2 norm of each group is smaller than hg. A norm cone is a convex set,
and the intersection of a set of convex sets is also a convex set [6]. Thus, the
feasible region defined by the restrictions is convex. The norms of the different
groups are added to the objective function. At the optimum the constraints are
fulfilled with equality (it is trivial to probe that if they are not then it is not the
optimal).

The objective function of the optimization problem in equation 7 is smooth,
as the cause for the singularities has been removed. The estimation of the op-
timal parameters is made employing a gradient descent method, projecting the
obtained values into the feasible set defined by the restrictions.

Dykstra’s algorithm [12] solves the problem of projecting a point w0 ∈ Rk

into the intersection of a set of convex sets C1, C2, . . . , Cq, alternately projecting
the point into each set and removing the residual from the previous step.

To obtain the optimal parameter values different search methods have been
proposed in [11]. Here the Projected Quasi-Newton (PQN) optimization method
is employed. It builds a second-order approximation of the objective function
around the current point to find the minimizing direction. The method avoids
evaluating the objective function int the neighbourhood, assuming that comput-
ing the projections is cheaper than evaluating the objective function. Readers
are referred to the original publication for further details on the method.
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4 Experimental Evaluation

This section provides experimental evidence about the improvements that over-
lapping group-regularized training of HCRF models produces in their predictive
power.

4.1 Experimental Setup

The system presented in figure 2 has been built to test the proposed method
in a human action sequence classification task. The distance transform [13] is
computed for each one of the human silhouettes extracted from the frames in the
input sequence. A 3072 dimensional descriptor is obtained for each frame. The
resulting sequence is introduced to the trained HCRF model to predict action
class.

HCRF
Classifier

Feature 
Extraction

0

...
T

Fig. 2. Action Recognition Pipeline employed for evaluation

The models to be tested in order to evaluate the proposal are.

1. HCRF: The standard HCRF model as shown on section 2, employing L2
regularization. Optimal model parameters are obtained with LBFGS opti-
mization.

2. MFS-HCRF: The Hidden Conditional Random Field trained with L1 group
regularization to perform feature and model selection, as shown in section 3.

The predictive performance of these algorithms is going to be measured em-
ployingWeizmann dataset1. It contains 10 different actions performed by 9 actors
once, to give a total of 90 clips. Note that perfect classifications has been already
reported for the dataset in [14]. However, the purpose of the experiments to be
presented is to compare the performance of the presented algorithms in the task
and not to try to provide a better way of performing Human Action Recognition.

The models are trained employing |H| = 20 hidden parts, twice the number
of action classes in Weizmann dataset. Iterative algorithms are applied until
convergence. The non-convexity of the objective functions to be optimized forces
to employ of a monte-carlo approach to evaluate each configuration to obtain
fair results. Thus, each configuration in tested 30 times averaging the obtained
results.
1 http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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4.2 Experiment I: Finding a Good Regularization Trade-Off

The first experiment to be conducted is to find for the different models a good
value for the regularization parameter λ, providing a good equilibria between
adaptation to the training data and regularization. The optimum is defined as the
value minimizing the median negative log-likelihood obtained in the prediction
of a test set. To this end sequences from Weizmann dataset are split in different
subsets according to the actor. Sequences from actor 1 are employed as test set,
while sequence from actors 2-9 are employed to train models.

Boxplots on figures 3(a) and 3(b) respectively show negative conditional log-
likelihood values obtained for different values of λ for HCRF and MFS-HCRF.
The negative log-likelihood values obtained for MFS-HCRF are smaller than the
obtained for HCRF. Thus, the MFS-HCRF has a better predictive performance
than the HCRF. Boxplots also show that the variance in negative log-likelihood
values for the MFS-HCRF are slower than for the HCRF. This fact might be
motivated by a softer objective function landscape, where local minima from the
loss term of the objective function gets more penalized by the group regulariza-
tion term.

000 001 002 003 004 005 006 007 008 009010

011

012

013

014

015

017

01
6

(a) HCRF

000 001 002 003 004 005 006 007 008 009010

011

012

013

014

015

017

01
6

(b) MFS-HCRF

Fig. 3. Negative log-likelihood values achieved for different values of λ

4.3 Experiment II: Action Recognition Results

Previous experiment has shown that MFS-HCRF has higher predictive perfor-
mance than HCRF for action sequences from a single actor. Now model per-
formance is going to be measured in the prediction of the complete Weizmann
dataset, measuring just predictive accuracy. This is done employing Leave One
Actor Out Cross-Validation. Dataset is split again in different subsets according
to the actor performing the sequence. The sequences from one actor are em-
ployed to measure the performance of models trained with the remaining actors.
The process is repeated until every actor has been employed in the evaluation,
joining the obtained results. The parameter λ is adjusted for the minimum value
found in previous experiment.

Figures 4(a) and 4(b) present the confusion matrices respectively obtained for
HCRF and MFS-HCRF. MFS-HCRF has a performance about a 2% higher than
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Fig. 4. Confusion matrices obtained for the different models in the prediction of Weiz-
mann dataset

HCRF. Thus, the overlapping group-L1 regularized training of HCRF produces
models with a higher predictive performance for the prediction of the action
classes in Weizmann Dataset than those trained with standard L2 regularization.

5 Conclusions

This paper has presented a new training algorithm for the HCRF based on over-
lapping group-L1 regularization. Models trained with the proposed algorithm
are more compact than the obtained by the standard algorithm, as model and
feature selection is performed during training. Experiments have shown that the
proposed algorithm recovers models with a higher predictive performance than
the standard in an action recognition task.

Future works will validate the proposed method in other sequence classifica-
tion tasks beyond human action recognition. The proposed algorithm might be
adapted to provide model and feature selection in the estimation of optimal pa-
rameter values of other discriminative graphical models with hidden variables.
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