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A B S T R A C T   

As a respiratory virus, COVID-19 propagates based on human-to-human interactions with positive 
COVID-19 cases. The temporal evolution of new COVID-19 infections depends on the existing 
number of COVID-19 infections and the people’s mobility. This article proposes a new model to 
predict upcoming COVID-19 incidence values that combines both current and near-past incidence 
values together with mobility data. The model is applied to the city of Madrid (Spain). The city is 
divided into districts. The weekly COVID-19 incidence data per district is used jointly with a 
mobility estimation based on the number of rides reported by the bike-sharing service in the city 
of Madrid (BiciMAD). The model employs a Long Short-Term Memory (LSTM) Recurrent Neural 
Network (RNN) to detect temporal patterns for COVID-19 infections and mobility data, and 
combines the output of the LSTM layers into a dense layer that can learn the spatial patterns (the 
spread of the virus between districts). A baseline model that employs a similar RNN but only 
based on the COVID-19 confirmed cases with no mobility data is presented and used to estimate 
the model gain when adding mobility data. The results show that using the bike-sharing mobility 
estimation the proposed model increases the accuracy by 11.7% compared with the baseline 
model.   

1. Introduction 

The COVID-19 virus has affected millions of people worldwide [1] since the first cases found in China by the end of 2019. Far from 
disappearing, the COVID-19 virus is unceasingly causing new cases every day and the emergence of highly transmissible viral variants 
that partially escape antibodies is still a major challenge [1]. Understanding the mechanisms governing COVID-19 infections and 
trying to estimate the evolution of the pandemic has been the subject of many previous studies [2,3]. Anticipating the scalation of 
infections may help in providing in time response and optimal resource utilization [4]. Being able to anticipate the propagation of the 
virus is an important element together with early detection and diagnoses [5,6] in anticipating the demand of heath care services 
which allows states to use their resources effectively [7]. 

Different approaches can be used to generate accurate predictions for the propagation of the COVID-19 virus. Masum et al. [8] 
performed a comparative analysis of mathematical epidemic models, statistical models and machine learning models, showing with 
experimental results that deep machine learning models were able to outperform the other methods in predicting accuracy as 

* Corresponding author. 
E-mail address: munozm@it.uc3m.es (M. Muñoz-Organero).  
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compared with the other studies approaches. The mathematical models, however, showed more interpretable hints about the virus 
spread [8]. A systematic review of mathematical epidemic prediction models and public health intervention strategies dealing with 
COVID-19 new infections was carried out by Yue Xiang et al. [9]. The results showed that COVID-19 epidemic models focus on the 
infectivity of the virus (providing estimations for the basic reproduction number), and incorporate the key time periods of the 
infection. Epidemic models provide estimations for the short and long-term evolution of the virus evaluating the different impacts of 
alternative public health interventions [9]. Statistical models use probabilistic representations for the variables modelling the prop
agation of the virus. The time for incubation and hospitalization are examples of stochastic variables [10] commonly used. Trainable 
functions are used by machine learning methods in order to learn how to estimate unknown variables (such as the upcoming values for 
new infections) based on input data that can be observed (such as the current incidence and mobility values). Machine learning (ML) 
models need to learn from previous data in order to optimize their internal parameters. The trained models are able to provide es
timations for new data. Machine learning (ML) models are also popular models mainly designed to generate short term forecasts for the 
evolution of new COVID-19 infections [11,12], in order to support the diagnoses [13] or provide estimates for other COVID-19 
influenced variables [14]. A positive aspect for machine learning (ML) methods is that they do not use a simplified representation 
of the underlying processes (as epidemic models do). ML models observe data samples and are trained to learn from them as a 
mechanism to estimate the propagation of the virus. The combination of both epidemic and machine learning models has also been 
previously studied as hybrid methods which use ML models to estimate some parameters which are then used by the epidemic models 
[15]. Since hybrid models are based on epidemic models, they maintain similar simplifications from the virus spreading processes but 
their parameters are fitted to the underlying data. Apart from the previous models, other approaches based on simulation tools have 
also been used to forecast the spread of the COVID-19 virus. Simulation based models use behavioral rules to mimic the human to 
human interactions and use propagation rules based on the characteristics of the virus in order to imitate the behavior in the real 
world. Agent-Based environments are examples of simulation-based models [16] based on the utilization of autonomous software 
agents to replicate the behavior of the members of a population. The agents are based on rules including mobility and social aspects 
which try to capture the behavior of the people in the area of study in which the spread of the virus is simulated. 

COVID-19 is a virus propagated based on human interactions which have both spatial and temporal components [14,15]. The virus 
is spread when people are exposed to it for a certain time. Human mobility carries the virus from one region to another [14,15]. This 
paper uses the data from a bike-sharing service in order to estimate the people’s mobility in space (from one district to another) and 
uses a novel ML model to estimate the short-term spreading of the COVID-19 infections. The model uses a Recurrent Neural Networks 
(RNN) to analyze the combined influence of human mobility and COVID-19 infections. The design of the ML model includes both the 
analysis of space and time to find combined patterns. The results are validated using data for a complete year for the City of Madrid 
(Spain). The main contributions of this manuscript are:  

● Defining a new method to get a proxy variable to capture the mobility of the population among different areas of the city (districts) 
based on the mobility data from a bike-sharing service. The heterogeneous distribution and the density of the bike stations per zone 
has been considered in order to estimate the probability of using the bike sharing service for human mobility. 

● Enhancing the accuracy of time-based Recurrent Neural Network (RNN) methods for estimating the short-term COVID-19 inci
dence by combining the temporal patterns of different zones (districts) with a spatial analysis that considers the people’s mobility 
among different zones, using a combined spatio-temporal model based on the results presented in Ref. [18]. 

● Using different validation approaches to measure the impact of mobility data when estimating one-week ahead COVID-19 inci
dence for different zones (districts) and different waves of infections of the same district. Injecting the spatial mobility data into the 
short term COVID-19 incidence estimation machine learning model, is able to generalize better over space (estimating the inci
dence for a new zone) than over time (estimating a new wave of infections for a particular zone). 

The article is organized into 5 sections. The first section, this section, provides motivation for the study carried out in this 
manuscript and presents the objectives. The related previous research studies are presented in section 2. We focus on machine learning 
methods for predicting the short-term evolution for new COVID-19 infections. Section 2 shows a gap in the availability of previous 
studies that try to enhance predictions using mobility data. Section 3 describes the proposed mobility aware model together with the 
datasets that are used to assess the results. Section 3 also captures baseline model from previous research that will be used to assess the 
improvement in accuracy introduced by using mobility data. Section 3 also presents the method used to estimate human mobility 
based on the information obtained from a bike-sharing service. The results and discussion are captured in section 4. Finally, section 5 
presents the principal conclusions of the work in this manuscript. 

2. Related research 

Since the outbreak of the COVID-19 pandemic, machine learning methods have been used to model the evolution of the COVID-19 
virus. Some of the first studies used shallow machine learning techniques such as [16,17]. The research in Ref. [19] showed that even 
shallow machine learning models are able to generate promising results. The study concluded that machine learning models can show 
effective COVID-19 forecasting behavior paving the way to compare future studies [19]. Majhi et al. [20] used models such as decision 
trees and random forests in order to estimate the number of infections. Data from the initial weeks of the COVID-19 virus propagation 
in China was used to train the models which were then applied to the data in India. The authors assessed that their ML models were able 
to estimate the upcoming number of COVID-19 infections accurately. 

Upcoming values for COVID-19 new infections, hospitalizations and deaths have also been estimated by using deep learning models 
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to try to achieve better predictions. Alassafi et al. [21] modeled the propagation of the virus in Malaysia, Morocco and Saudi Arabia. 
The study analyzed several Deep Learning (DL) architectures and estimated the number of confirmed infections and deaths using a 
prediction horizon of seven days. Shahid et al. [22] used the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the 
r2_score indices to analyze the results achieved by several deep leaning models including the Bidirectional Long Short-Term Memory 
(Bi-LSTM) anticipating values in temporal COVID-19 series. The study showed that some Deep learning architectures outperformed 
previous shallow models. Shastri et al. [23] compared similar deep learning models such as stacked LSTM, Bi-directional LSTM and 
convolutional LSTM in order to forecast COVID-19 infections in India and the USA, showing that convolutional LSTM was able to 
outperform the other two models. 

Meta-studies using ML models designed to compare the accuracy in estimating COVID-19 data have also been published. Dairi et al. 
[24] captured a study that compared several machine learning (ML) models for anticipating the propagation of the virus. Such methods 
included the single Convolutional Neural Network CNN model, the single Long Short-Term Memory LSTM model, the combined ML 
model based on the use of Convolutional Neural Networks-Long Short-Term Memory (LSTM-CNN), the combined Gated Recurrent 
Unit-Convolutional Neural Networks (GRU-CNN) ML model, and the Restricted Boltzmann Machine (RBM) ML model. Logistic 
regression (LR) and support vector regression (SVR) were included as baseline references for assessing the results. Data from seven 
countries: Brazil, France, India, Mexico, Russia, Saudi Arabia, and the US was used to validate the accuracy of the models. Deep 
learning approaches combining LSTM-CNN and GRU-CNN were able to improve the results in COVID-19 forecasting. Nabi et al. [25] 
present a different comparative study comparing four deep learning models: LSTM, GRU, CNN, and Multivariate Convolutional Neural 
Network (MCNN). The convolutional neural networks outperformed the recurrent neural networks in the case of a limited availability 
of training data. 

The COVID-19 virus spreads following spatio-temporal patterns based on human to human interactions. The spatial information 
capturing the propagation of the virus has been considered in several research studies that have tried to improve the predictions over 
time for the upcoming COVID-19 incidence values in a particular area by adding the temporal values in connected areas into a machine 
learning model. Huang et al. [17] made use of incidence data for COVID-19 in three European countries. The selected countries 
presented high infection rates at the beginning of the pandemic (Germany, Italy, and Spain) to feed a new COVID-19 space-aware 
machine learning model and were able to extract spatiotemporal features and to predict the number of confirmed cases. The results 
improved previous models that did not take the spatial information into account. Munoz-Organero et al. [26] added spatial infor
mation into a Deep Learning (DL) model that used sequences of COVID-19 incidence images as input. Spatial patterns were extracted 
using a Convolutional Neural Network (CNN) which was staked with a Long-Short Term Memory (LSTM) Recurrent Neural Network 
(RNN) to extract temporal patterns. The study validated the model using data from the 286 health zones in the Madrid region in Spain. 
The results showed improved prediction accuracy than previous models focusing on extracting only temporal patterns. Apart from 
Convolutional Neural Networks to extract spatial patterns in the spreading of the COVID-19 virus, models based on Graph Neural 
Networks (GNN) have also been used. GNN are able to define how different regions are interconnected, defining paths for the spatial 
propagation of the virus. Meznar et al. [27] validated that Graph Neural Networks (GNN) can be applied to estimate the evolution of an 
epidemic and showed the high utility of GNNs in order to provide a better intuition of the results. Deng et al. [28] designed a 
cross-location attention-based GNN (Cola-GNN) to extract patterns from time series embeddings for long term predictions showing 
strong predictive performance. 

Human-to-human interactions are an important factor in the transmission of the COVID-19 virus and human mobility is a key 
element that controls the amount of interactions among people. The initial months in the spread of the COVID-19 virus came together 
with mobility restrictions to minimize the human-to-human transmission of the virus and highway traffic volumes were used as a proxy 
of activity and human interaction in Ref. [29] analyzing the drastic changes in human mobility due to the COVID-19. Micro-mobility 
patterns also showed significant changes in the first moths of the COVID-19 pandemic [30]. COVID-19 has had a major impact on 
traffic [25,26] and traffic volumes have significantly influenced the spread of the virus [27–29]. Lee et al. [31] found a correlation 
between traffic volumes and the propagation of COVID-19. The study used the data in South Korea. Similar correlations in impact on 
COVID-19 data due to the mobility of people in the two largest counties in Wisconsin are shown in Ref. [32]. The movement of people 
differentiated business foot traffic and considered other variables such as race, ethnicity and age [32]. The authors found characteristic 
patterns followed by different groups having an impact on the COVID-19 virus propagation speed. Other proxy variables to estimate 
the mobility of the people have also been proposed in previous research studies. Ayan et al. [33] proposed the use of the mobility of 
portable devices as a mechanism to estimate human mobility to add spatial information to a ML model that estimated the spread of the 
COVID-19 pandemic. Ayan et al. [33] used the data from 973 antennas in Rio de Janeiro and its suburbs from the cellular network to 
estimate human mobility. A Markovian model was used to capture mobility. Adding mobility estimated data to the machine learning 
model provided better accuracy values [33]. Human mobility was also estimated based on the use of the cellular network in Ref. [34] 
in order to enhance COVID-19 predictions. Rashed el al [34]. combined COVID-19 infection data with meteorological and human 
mobility data based on user connections to a major mobile phone carrier and an LSTM deep machine learning model in order to 
improve COVID-19 forecasts. The average relative error of the proposed model ranged from 16.1% to 22.6% in major regions of Japan. 
Rashed el al [35]. added COVID-19 variants information into the COVID-19 mobility aware predictive model in order to model the 
vaccination effectiveness. 

In this research study, we propose a new machine learning model that extracts human mobility patterns from the bike-sharing 
service in a smart city. The mobility patterns are combined with a spatial representation of COVID-19 incidence data to forecast 
upcoming incidence values. Unlike previous mobility aware models such as [34] or [35], the implications of human mobility among 
different regions for the spatio-temporal spread of the virus are considered. The proposed model modulates the injection of new cases 
into a particular region based on confirmed cases in other regions and the estimated mobility of users among such regions. Validation is 
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based on data for the city of Madrid (Spain). 

3. Materials and methods 

This article analyses the performance of a new model combining COVID-19 incidence and human mobility data, estimates human 
mobility based on the information of citizens commuting by bike, validates the model using two open datasets for the city of Madrid 
(Spain) and estimates the model gain when comparing the results with a similar baseline model which does not take mobility data into 
account. The datasets used are presented in this section together with the mobility estimation method and the proposed ML model. 
Both geographical infection numbers and mobility data are combined to estimate predictions with a one-week prediction horizon. The 
baseline model is also captured. 

3.1. Datasets 

We use two large open datasets to validate the results in this article: the use of the electric bicycle service provided by the Municipal 
Transport Company (EMT) of Madrid city [36,37] and the Coronavirus Disease infection numbers for the different zones (districts) of 
the same city [38,39]. These datasets are provided by the regional government. 

The use of the electric bike-sharing service in Madrid can be downloaded from Ref. [36]. The data files comprise the historical data 
from April 2017 until June 2021 for 264 stations mainly located in the city’s central districts. The dataset offers information about all 
the rides organized in monthly files using a json format. For each ride, the dataset provides information about the user ID; the type of 
the user; ID of the origin station; ID of the destination station; IDs of the bases (socket numbers) in both the origin; and destination 
stations and time and duration of the ride. 

The locations for the bike stations can be found in Ref. [37]. The latitude and longitude coordinates are provided for each bike 
station together with descriptive information about the name and postal address of the station and the number of bikes that can be 
plugged in (number of bases). The id linking to the district where the station is placed is also provided. 

For each time period, the bike-sharing service’s mobility is estimated by combining the location of each bike station and the 
number of rides among each pair of stations. The bike-sharing service captures only a small part of the mobility of the people in the 
city. A method is proposed in the next subsection to estimate the total mobility based on the number of bike rides between districts. 

Fig. 1 shows the location of the bike stations in the different districts of the city of Madrid. The districts located in the center of the 
city have a higher density of stations while the service is not yet offered in the city’s suburbs. The district with the highest number of 
stations is Madrid-Centro. Fig. 1 captures the stations in Madrid-Centro in blue to visually show the difference in density as compared 
with other districts. 

The dataset containing epidemiologic information (infections, hospitalizations and deaths) for the COVID-19 virus in the Com
munity of Madrid can be downloaded from Ref. [38]. The dataset includes data about the new cases reported for each health zone 
every week (together with information about the number of hospital admissions and deaths). There are 286 health zones in the area of 
the Community of Madrid (Spain). Each health zone is the area where a primary care center provides health services. Primary care 
centers used PCR tests to track new infections in the health zone. The dataset contains information about where the different heath 
zones are located. Health zones are grouped into districts. There are 21 districts covering Madrid city. Fig. 2 captures the locations of 
the centers for each of the 143 health areas in Madrid and the perimeter of each district in the city. The areas in the suburbs of the city 
are less populated and the health zones are larger in space. The reported numbers for infections are summed up for each district in 
Ref. [39] providing the same geographical division as the one reported for electric bicycles [36]. 

The data files in Refs. [38,39] are divided into three significant periods of time in which different protocols were used to count the 
number of new infections. The first period extends from the first cases reported (February 25th, 2020) until July 1st, 2020 in which 

Fig. 1. Placement of the electric bike stations in Madrid.  
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COVID-19 data about new cases and hospitalizations was reported daily. As new information about the virus was known week after 
week, the procedures for detecting new cases had to be adjusted several times. PCR tests ware not always available in enough 
quantities to fulfil the requirements in the first months of the pandemic, having an impact in the accuracy of available data for this first 
period of the pandemic. Incidence data was reported weekly in the second period. This second period goes from July 2nd, 2020 to 
March 29th, 2022. The procedures for detecting and counting the new COVID-19 infections were more stable in the second period and 
available data provides a more homogeneous and reliable picture of the evolution of the spread of the virus. Finally, there was a major 
change in COVID-19 regulations in April 2022, and many restrictions were lifted. The requirements to use PCR tests for identifying new 
infections were targeted to some specific cases (in particular, for people over 60). The datasets in Refs. [38,39] only capture data for the 
population over 60 since April 2022. 

The period from July 2nd, 2020 until March 29th, 2022 will be used. The information-collecting methods in this period have been 
stable. From July 2nd, 2020, to June 2021, both COVID-19 incidence and bike-sharing information are available [36]. The size of the 
bike-sharing service dataset [36,37] used is around 600 Mbytes. The size of the COVID-19 dataset [38,39] for the same period of time is 
10.2 Mbytes. 

3.2. Human mobility estimation based on the number of bike rides 

The spreading of the infections is driven by the mobility of the people in a region. This section proposes a mechanism to estimate the 
human movements in Madrid by using the electric bicycle rides information. 

The city is divided into districts {a,b,c…}. Each district has a number of bike stations {na,nb,nc…}. Let’s assume that people move 
randomly inside the city. For each person i, the probability of moving from one part of the city a to another b using the bike-sharing 
service can be captured using a random variable piab. Suppose that piab depends on the distance from the user to the nearest bike station 
and the distance from the destination bike station to the destination of the movement. And assume that the origin and destination 
locations of each movement for user i are also random variables oi and di. We define dsoi to the distance between the bike station s and 
the origin oi for user I, and dudi to the distance between the bike station u and the destination di for user i. Assuming that the probability 
of using the service is inversely proportional to the distances dsoi dudi and considering that oi and di are independent variables, the 
probability of using the service from oi and di from stations s to u can be approximated as captured in equation (1). 

piod ≅
k

dsoidudi
(1)  

where k is a constant (in our case, to simplify computations, we assume that k does not depend on the user i). 
There are na stations in district a and nb in district b. The probability of using the bike-sharing service to go from the district a to 

district b (any station at a and any station at b) can be approximated as: 

piab = 1 − piab = 1 −
∏

su

(

1 −
k

dsoidudi

)

(2) 

Being piab the probability of not using any of the stations to go from a to b. 
Assuming that piod is small, equation (2) can be approximated as shown in equation (3). 

piab ≅
∑

su

k
dsoidudi

(3) 

The number of rides between a and b using the bike-sharing service can be approximated using the probability in equation (3) as the 

Fig. 2. PCR testing sites in Madrid.  
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summation of the probabilities for all the users i that travel from district a to b to use the service (being miab = 1 for users that travel 
from a to b and 0 otherwise): 

rab ≅
∑

i
miabpiab ≅

∑

i
miab

∑

su

k
dsoidudi

(4) 

Since oi and di are random variables, dsoi dudi are also random variables. dsoi dudi will be inversely proportional to the number of bike 
stations in a and b. We can approximate equation (4) as proposed in equation (5). 

rab ≅ k′
∑

i
miabnanb (5)  

where k′ is a constant, na is the number of stations in district and nb is the number of stations in district b. 
The number of people travelling from district a to district b can therefore be estimated as proposed in equation (6). 

mab =
∑

i
miab ≅ rab

1
k′nanb

(6) 

The number of movements between districts a and b (mab) will therefore be estimated based on the number of rides reported in the 
dataset in Ref. [36] divided by nanb in order to normalize the effect of having different number of base stations to measure the mobility 
of people. The values mab will also be scaled using a constant k″ different from k′ to facilitate the learning of the model described in the 
following subsection. 

Fig. 3 captures an example image generated using Equation (6) for a given day in Madrid. The image has been scaled so that the 
maximum value is 2. The image contains 21 by 21 pixels. The value for each pixel represents the relative estimation of people travelling 
from an origin district (row) to a destination district (column). The diagonal of the image captures movements inside each district. 
Movements from a to b are not necessarily the same as movements from b to a. Since the bike sharing service does not provide stations 
for all the 21 districts, some values in the image are 0 (those districts have not been included in the model since there is no data to 
estimate human mobility for them). The number of bike stations in some other districts is so small that the approximation in Equation 
(6) is not good enough (those districts have also been left apart and not used in the model). We have selected the best eight districts to 
train the model with significant data to provide mobility estimates: Centro, Arganzuela, Retiro, Salamanca, Chamartín, Tetuán, 
Chamberí and Moncloa-Aravaca. 

One limitation of using the information provided by the bike sharing service as a proxy variable to estimate human mobility is that 
the service tends not to be used by children and elderly people. The statistical data of utilization of the service for each age group is 
captured in Table 1. The majority of the users are between 17 and 65 years old. Other proxy variables such as public transportation and 
private vehicle use will be used in future studies. 

3.3. Mobility enhanced model 

The propagation of the COVID-19 virus depends on the current incidence (the higher the number of infected cases, the more likely 
to be close to them and get infected) and the mobility of the people (higher mobility numbers increase the number of human-to-human 

Fig. 3. Scaled image capturing the relative movements between districts.  
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interactions increasing the probability of getting infected). To capture both factors (incidence and mobility) into a model that can 
extract temporal COVID-19 incidence patterns affected by spatial mobility patterns and predict upcoming incidence values for each 
spatial location (district), the model in Fig. 4 is proposed. The temporal data for infections (xa) for each district a, is used as the input 
for an LSTM-based RNN to learn temporal patterns. For the districts sharing bike journeys that inject traffic into district a, a similar 
RNN-based layer is applied to the combined information of past values for COVID-19 incidence (xi) and the mobility estimation to 
district a (zi) based-on Equation (6). An independent RNN is applied to each district i to learn the influence of each district i on the 
upcoming incidence values for district a. All the LSTM-based RNN layers are configured to have the same number of memory units 
(assuming that the temporal patterns will share a similar complexity from all input signals). The output for each Recurrent Neural 
Network (RNN) layer is summarized using a dense layer, and the spatial contribution (the influence of districts injecting people and 
therefore propagating the virus into district a) is captured by combining the information from all the districts using an extra fully 
connected layer. The output of the model will be trained to forecast infections with a prediction horizon of 7 days. 

The model in Fig. 4 introduces novel components for optimizing the estimation of COVID-19 upcoming incidence values as 
compared with previous models: 

● Use of open mobility data provided by a bike-sharing service in order to estimate human mobility flows (not just mobility ag
gregates) among spatial zones  

● Combined temporal and spatial pattern extraction from time series data based on a zonal spatial division that uses estimated 
mobility flows to modulate the aggregation of inter-zonal COVID-19 incidence data to model the spread if the virus. 

3.4. Baseline modelA baseline model is also proposed to evaluate the model’s gain obtained when using mobility data. The baseline 
model is captured in Fig. 5. The model uses a similar structure but only applied to the temporal component of COVID-19 incidence 

Table 1 
Percentage of people using the bike-sharing service per age ranges.  

Age range % of people using the service 

0–16 years old 2.228459736 
17 and 18 years old 4.960723613 
19–26 years old 11.60148281 
27–40 years old 29.94036115 
41–65 years old 15.86883815 
More than 65 years old 0.723255057  

Fig. 4. Proposed model for mobility-enhanced COVID-19 forecasting.  
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data. No mobility data is considered and the upcoming values for COVID-19 incidence are estimated using only current and past 
incidence values. The architecture used to learn the time patterns is the same as in Fig. 4. An LSTM-based RNN is used to learn the 
temporal patterns and the output is also summarized using a similar dense layer as in Fig. 4. 

4. Results and discussion 

4.1. Validation schemes 

The models in Figs. 4 and 5 will be trained and validated using the data in Refs. [36–39] (data for the use of the bike-sharing service 
[36,37] and data for COVID-19 per district incidence values [38,39]). Only the months from July 2020 and June 2021 will be used. In 
July 2020, the protocol to measure COVID-19 infections was changed (not compatible with previous data), so only data from July 2020 
is useful for training the proposed machine learning models. The bike-sharing service only provides data until June 2021, so the period 
from July 2020 to June 2021 will be used (being the maximum possible which contains simultaneously data from both datasets). 

Three different validation schemes will be used to measure the accuracy of the models:  

● A 5-fold cross-validation approach. using 80% of the data for training and 20% for validation. The process will be repeated 5 times 
using different samples in the validation set so that each sample is used once for validation. The average accuracy values are 
computed to assess the models.  

● COVID-19 has generated waves of infections. During the period used to train and validate the models, 3 different waves have been 
generated by the propagation of the virus. The information learnt by the model for previous infection waves should be able to 
generalize for new waves. The second validation scheme consists of a leave-one-wave-out cross-validation. This validation 
approach is more demanding for the machine learning models compared to the 5-fold cross-validation since the information in the 
training and validation sets are likely to be less similar.  

● Finally, a cross-validation approach based the idea of using the information for all the districts except one to train the model and use 
the trained model to assess the results for the district left apart (leave-one-district out) is proposed. In the case of the proposed ML 
model being able to extract the spatial influence of combined incidence and mobility patterns from other districts, this model 
should behave better than the leave-one-wave-out approach (which tries to perform a generalization over time). 

4.2. Optimizing the model internal parameters 

Both models, in Figs. 4 and 5, are designed with two major parameters (the number of memory units in the LSTM layer and hidden 
neurons in the fully connected layer) that can be modified to adapt the complexity of the model to the complexity of the input data. The 
nature of the input signals in the different districts is similar and we assume that their complexity will also be similar so the same 
number of memory units is used for all the LSTM layers. A 20% summarization has been used to relate the amount of memory cells and 
hidden neurons of the fully connected layer in both models (Figs. 4 and 5). 

Both the baseline and the proposed model have been validated using different values for the amount of memory cells. The data from 
the last 4 weeks is used to feed the models in order to estimate one-week ahead incidence values. The three validation schemes 
presented in section 4.1 are implemented, and the average results are captured in Figs. 6 and 7. The Root Mean Square Error (RMSE) is 

Fig. 5. Baseline model.  
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used to assess the models’ accuracy. Fig. 6 shows the RMSE average values for the mobility-aware model in Fig. 4. Fig. 7 presents 
similar results for the baseline model in Fig. 5. The difference in the accuracy for both models for the different values in the number of 
memory units in the LSTM cells (gain of the proposed model in Fig. 4) is captured in Fig. 8. Both COVID-19 incidence and bike mobility 
values have been scaled using a linear scaler (scaling signals to lie between 0 and 1) to facilitate the learning of the models in Figs. 4 
and 5. The model in Fig. 4 performs better than the baseline model for all the cases, except when the number of memory cells is 10 in 
which results are similar. The optimal results for both models are achieved when the number of memory units is 40. Using a small 
number of memory units generates configurations for the machine learning model, which are not able to optimally learn the 
complexity of the patterns in the data. Using a high number of memory units is likely to cause overfitting of the models. In the case of 
using 40 memory units in the LSTM cells, the RMSE for the proposed model in Fig. 4 is 0.0205, and the RMSE for the baseline model in 
Fig. 5 is 0.0229. The proposed model in Fig. 4 outperforms the base-line model in Fig. 5 by a 11.7% (model gain). The concomitant use 
of human mobility data and COVID-19 incidence, together with the method proposed in Section 3 to estimate human mobility, enable 
our model (Fig. 4) to outperform a mobility-agnostic (baseline) model in one-week ahead predictions of COVID-19 incidence values. 

The total number of trainable weights for the model in Fig. 4 configured with the optimal parameters (40 memory units in the LSTM 
cells) is 82849. The time complexity for the evaluation of a test sample can be approximated following [40] by 
O(nd ∗ (n ∗ ((4d+4n+3)+hd ∗ (n+1)) where n (40) is the number of LSTM memory units, hd is the number of hidden units in the dense 
layers, nd the number of districts, and d the number of the input signals (2 in our case, for the COVID-19 incidence data and mobility 
data) For an uncluttered expression, we have excluded the biases. The configuration of the model in Fig. 4 for the optimal results in 
Fig. 6 are captured in Table 2. 

4.3. Results for each validation scheme 

Figs. 6–8 show the average results for all the validation schemes described in sub-section 4.1. Each validation scheme has its 
particularities. Fig. 9 captures the RMSE values for each validation method for the optimal configuration of the proposed model in 
Fig. 4. The best RMSE values are achieved for the 5-fold cross-validation method, in which validation data is more similar to the 
training data. 20% of the dataset is selected in the 5-fold cross-validation approach for validation and 80% for training the model (the 
process is repeated five times so that each data sample is used once for validation). The training set contains information from all the 
districts and all the waves in the entire period (the same as the validation set). The patterns learnt from the training set are more likely 
to be present in the validation samples. 

Fig. 9 also shows that the RMSE values achieved when using a leave-one-district-out approach are better than those reached by the 
leave-one-wave out approach. The proposed model in uses mobility information from other districts to capture the spatial patterns in 
the disease’s dissemination. These mobility patterns have a similar influence on all the districts. The proposed mobility-enhanced 
model (Fig. 4) generalizes across districts since it performs equally well in 5-fold-cross and leave-one-district-out validation set
tings. However, in the case of leaving-one-wave-out, the mobility information (spatial component of the model) has a more limited 
capacity for generalizing over time. Thus, the RMSE values are worse. 

Fig. 10 shows the one-week ahead predictions for the Madrid-Centro district and the 5-fold cross-validation approach. The dataset 
contains information from July 2020 to June 2021. The model in Fig. 4 uses the last four weeks of data to generate one-week ahead 
predictions. The first predictions are therefore generated for the second week of August, as shown in Fig. 10. 

4.4. Results for each district 

The model in Fig. 4 uses the mobility data to improve the estimations for the upcoming values of COVID-19 incidence. The mobility 
is estimated based on the number of rides between districts [36], as presented in section 3. The density of bike stations [37] is different 
for each district. This section uses the leave-one-district-out validation approach to measure the model’s accuracy for each district. The 
intuition is that districts with a higher number of bike stations will be able to provide better estimations for the mobility of people 
according to the method presented in section 3. Better estimations for the mobility data should positively impact the accuracy of the 

Fig. 6. RMSE values for the model in Fig. 4 for different numbers of memory units.  

M. Muñoz-Organero et al.                                                                                                                                                                                           



Heliyon 9 (2023) e17625

10

predictions for those districts. 
Fig. 11 presents de RMSE accuracy results for each district when leaving one district out for validation. The model provides optimal 

results for the Centro and Salamanca districts which are the ones with a higher number of bike stations. The worse results are achieved 
for Tetuán and Moncloa-Aravaca districts which are those with a lower number of bike stations. Fig. 12 captures the relation between 
the number of stations and the accuracy of the proposed model in Fig. 4 when leaving one district out when training the model. 

A second parameter that could impact the accuracy of the estimation of human mobility based on the use of bike-sharing service is 
the average number of rides starting from each district. Districts with low use of the bike-sharing service may get worse estimations for 
total human mobility for the people of those districts. Fig. 13 captures the model’s accuracy depending on the average number of daily 
rides for all the districts. As in the previous case in Fig. 12, the two districts with higher use of the service obtain optimal results (from 
the model in Fig. 4). The two districts with the lowest use of the service achieve the worst RMSE values when using the proposed model 
in Fig. 4 to estimate the upcoming values for COVID-19 incidence one week ahead. 

4.5. Results from models in previous studies 

In order to compare the results for the proposed human mobility aware model in this paper with previous models presented in 
previous related studies, the MAPE (Mean Absolute Percentage Error) as defined by equation (7) is used. COVID-19 incidence values 
depend on data such as population density (the spread of the virus is dependent on the area of study) and observation times (COVID-19 
generates temporal waves of different magnitudes depending on the virus variant and vaccination campaigns). The MAPE error 
provides a figure that compensates the population size in different areas as provided by previous studies and has been selected for this 
section in order to provide a comparison with previous studies. However, the MAPE error has some limitations since it is influenced by 
the temporal shape of the COVID-19 incidence waves, assigning a greater importance to the time windows when the incidence values 
are smaller. 

E=
1
N
∑

i

|yi − ŷi |

yi
(7) 

Three major studies have been selected from previous literature. The model in Ref. [18] presents a machine learning model that is 
applied to the same region of study (although to a different time window) and has been compared with previous models in literature 

Fig. 7. RMSE values for the model in Fig. 5 for different numbers of memory units.  

Fig. 8. Accuracy gain when adding mobility data.  
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showing better performance values. The study in Ref. [24] presents a review of different models applied to different parts of the World 
for which MAPE figures are provided. We have selected the best performing model based on an LSTM-CNN architecture in Ref. [24] in 
order to provide an optimal performing model for comparison. The model in Ref. [34] has also been included since it added the in
formation related to user mobility to the input of the model. The MAPE error of the model in Ref. [34] ranged from 16.1% to 22.6% in 
major regions of Japan. The proposed model in this paper also includes human mobility estimation data in order to optimize the 

Table 2 
Optimal model configuration parameters.  

Layer (type) Output Shape Param # Connected to 

input_1 (InputLayer) [(None, 4, 1)] 0 [] 
input_2 (InputLayer) [(None, 4, 2)] 0 [] 
input_3 (InputLayer) [(None, 4, 2)] 0 [] 
input_4 (InputLayer) [(None, 4, 2)] 0 [] 
input_5 (InputLayer) [(None, 4, 2)] 0 [] 
input_6 (InputLayer) [(None, 4, 2)] 0 [] 
input_7 (InputLayer) [(None, 4, 2)] 0 [] 
input_8 (InputLayer) [(None, 4, 2)] 0 [] 
input_9 (InputLayer) [(None, 4, 2)] 0 [] 
lstm_1 (LSTM) (None, 40) 6720 [’input_1[0][0]’] 
lstm_2 (LSTM) (None, 40) 6880 [’input_2[0][0]’] 
lstm_3 (LSTM) (None, 40) 6880 [’input_3[0][0]’] 
lstm_4 (LSTM) (None, 40) 6880 [’input_4[0][0]’] 
lstm_5 (LSTM) (None, 40) 6880 [’input_5[0][0]’] 
lstm_6 (LSTM) (None, 40) 6880 [’input_6[0][0]’] 
lstm_7 (LSTM) (None, 40) 6880 [’input_7[0][0]’] 
lstm_8 (LSTM) (None, 40) 6880 [’input_8[0][0]’] 
lstm_9 (LSTM) (None, 40) 6880 [’input_9[0][0]’] 
dense_1 (Dense) (None, 32) 1312 [’lstm_1[0][0]’] 
dense_2 (Dense) (None, 32) 1312 [’lstm_2[0][0]’] 
dense_3 (Dense) (None, 32) 1312 [’lstm_3[0][0]’] 
dense_4 (Dense) (None, 32) 1312 [’lstm_4[0][0]’] 
dense_5 (Dense) (None, 32) 1312 [’lstm_5[0][0]’] 
dense_6 (Dense) (None, 32) 1312 [’lstm_6[0][0]’] 
dense_7 (Dense) (None, 32) 1312 [’lstm_7[0][0]’] 
dense_8 (Dense) (None, 32) 1312 [’lstm_8[0][0]’] 
dense_9 (Dense) (None, 32) 1312 [’lstm_9[0][0]’] 
concatenate_1 (Concatenate) (None, 288) 0 [’dense_1[0][0]’,    

‘dense_2[0][0]’,    
‘dense_3[0][0]’,    
‘dense_4[0][0]’,    
‘dense_5[0][0]’,    
‘dense_6[0][0]’,    
‘dense_7[0][0]’,    
‘dense_8[0][0]’,    
‘dense_9[0][0]’] 

dense_10 (Dense) (None, 32) 9248 [’concatenate_1[0][0]’] 
dense_11 (Dense) (None, 1) 33 [’dense_10[0][0]’] 

Total params: 82,849. 
Trainable params: 82,849. 
Non-trainable params: 0. 

Fig. 9. RMSE values for the model in Fig. 3 for all the validation schemes.  
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performance of a space-distributed LSTM model. In our case, the proposed model is able to estimate human mobility flows (not only 
aggregated mobility values) and trains the model in order to capture the virus spreading patterns among different areas. The 
comparative results are captured in Table 3. 

The model proposed in this paper is able to outperform the study in Ref. [34]. The results for the previous model in Ref. [18] for the 
same geographical area are also optimized. The comparison of results with the review in Ref. [24] shows that the proposed model is 

Fig. 10. One-week ahead predictions for the Madrid-Centro district.  

Fig. 11. Accuracy of the proposed model for each district when using the leave one district validation.  

Fig. 12. RMSE vs number of stations in each district.  
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able to outperform the best model in Ref. [24] for some areas but not for all of them. The results in Ref. [24] show that the same model 
provides different results when applied to different regions and different temporal observational windows. The MAPE values for Brazil, 
India and the US are 6.48, 6.02 and 1.63 respectively. The models in Ref. [24] are trained to estimate the total number of infections 
instead of the upcoming new infections. Since the MAPE values are higher when estimating small values (used as the denominator in 
the calculation formula), the results in Ref. [24] would be higher when used in a similar scenario as the one used in this paper. 

5. Conclusions 

A new model that uses together human mobility and COVID-19 infection information as inputs to provide short-term (prediction 
horizon of one-week) forecasts for COVID-19 new infections has been proposed and validated in this manuscript. The model combines 
both spatial and temporal information to optimize predictions. The spatial component combines the reported COVID-19 incidence 
values in each city’s district and the dissemination of the virus among the districts based on the estimation of human mobility. A new 
method to estimate human mobility based on the use of the bike-sharing service in a city has been proposed. The temporal component 
uses the time series for both COVID-19 incidence and mobility data. An RNN model based on LSTM cells is used to extract the time 
patterns, and a dense layer provides the spatial analysis in the proposed model. This model is compared against a baseline version that 
lacks the spatial component to assess the benefit of factoring in information about mobility through the bike-sharing service. The 
results of the model have also been compared with similar previous studies. 

The datasets in Refs. [36–39] have been used to train both the proposed mobility-aware and baseline models. Three different 
validation approaches (5-fold cross-validation, leave-one-wave-out validation, and leave-one-district-out validation) have been used. 
The proposed mobility-enhanced model shows an 11.7% gain compared with the baseline model which uses a similar structure to 
detect time patterns but no spatial dependencies are used in the baseline model. Adding the mobility information has a similar positive 
influence on all the districts and provides better results for the leave-one-district-out validation than in the case of 
leaving-one-wave-out, showing that the mobility information (spatial component of the model) has a more limited capacity for 
generalizing over time than over space. The results have been validated for one year-data for the city of Madrid. The generalization to 
other areas and time frames will be done as a future work. 

The number of bike stations in each district is key to a better estimate of total mobility values. With the proposed model, districts 
with higher number of stations achieved better results than districts with lower number of stations. Corresponding the best result to the 
district with the largest number of stations. Having a low number of stations may discourage people in the district from using the 
service and use other means of transportation instead. The number of rides per district also shows a negative correlation with the 
accuracy of the predictions when using the proposed model for estimating upcoming COVID-19 incidence values for a particular 
district. Districts showing the lowest use of the bike-sharing service achieve the worst predictions and vice versa. A limitation of the 
proposed method to estimate human mobility based on the use of the bike sharing service is the different use by different age ranges. 
The majority of the users are between 17 and 65 years old. Other proxy variables such as public transportation and private vehicle use 
will be used in future studies. 

Fig. 13. RMSE vs the average number of rides per day for each district.  

Table 3 
Comparison with previous studies.  

Ref Model Region MAPE 

[18] LSTM-CNN Madrid (Spain) 5.5 
[24] LSTM-CNN Brazil, India, US 4.71 
[34] LSTM Japan 16.1 
Our model Space-distributed_LSTM Madrid (Spain) 4.9  
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[27] S. Mežnar, N. Lavrač, B. Škrlj, Prediction of the effects of epidemic spreading with graph neural networks, in: R.M. Benito, C. Cherifi, H. Cherifi, E. Moro, L. 

M. Rocha, M. Sales-Pardo (Eds.), Complex Networks & Their Applications IX, Springer International Publishing, Cham, Switzerland, 2021, pp. 420–431. 
[28] S. Deng, S. Wang, H. Rangwala, L. Wang, Y. Ning, Cola-GNN: Cross-Location Attention Based Graph Neural Networks for Long-Term ILI Prediction, Association 

for Computing Machinery, New York, NY, USA, 2020, pp. 245–254. 
[29] S. Parr, B. Wolshon, J. Renne, P. Murray-Tuite, K. Kim, Traffic impacts of the COVID-19 pandemic: statewide analysis of social separation and activity 

restriction, Nat. Hazards Rev. 21 (3) (2020). 
[30] A. Li, P. Zhao, H. Haitao, A. Mansourian, K.W. Axhausen, How did micro-mobility change in response to COVID-19 pandemic? A case study based on spatial- 

temporal-semantic analytics, Comput. Environ. Urban Syst. 90 (2021), 101703. 
[31] H. Lee, S.J. Park, G.R. Lee, J.E. Kim, J.H. Lee, Y. Jung, E.W. Nam, The relationship between trends in COVID-19 prevalence and traffic levels in South Korea, Int. 

J. Infect. Dis. 96 (2020) 399–407. 
[32] X. Hou, S. Gao, Q. Li, Y. Kang, N. Chen, K. Chen, J.A. Patz, Intracounty modeling of COVID-19 infection with human mobility: assessing spatial heterogeneity 

with business traffic, age, and race, Proc. Natl. Acad. Sci. U.S.A. 118 (24) (2021). 
[33] N. Ayan, S. Chaskar, A. Seetharam, A. Ramesh, A.D.A. Antonio, Poster: COVID-19 case prediction using cellular network traffic, in: 2021 IFIP Networking 

Conference (IFIP Networking), IEEE, 2021, June, pp. 1–3. 
[34] E.A. Rashed, A. Hirata, One-year lesson: machine learning prediction of COVID-19 positive cases with meteorological data and mobility estimate in Japan, Int. J. 

Environ. Res. Publ. Health 18 (11) (2021) 5736. 
[35] E.A. Rashed, S. Kodera, A. Hirata, COVID-19 forecasting using new viral variants and vaccination effectiveness models, Comput. Biol. Med. 149 (2022), 105986. 
[36] BiciMAD open data for the city of Madrid. Service use, Available on-line at: https://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1. (Accessed 31 

March 2023). 
[37] BiciMAD open data for the city of Madrid. Location of the bike stations, Available on-line at: https://opendata.emtmadrid.es/Datos-estaticos/Datos-generales- 

(1. (Accessed 31 March 2023). 
[38] COVID-19 incidence weekly data for each primary care center for the Comunidad de Madrid region, Available on-line at: https://datos.comunidad.madrid/ 

catalogo/dataset/covid19_tia_zonas_basicas_salud. (Accessed 31 March 2023). 
[39] COVID-19 incidence weekly data for each district for the Comunidad de Madrid region, Available on-line at: https://datos.comunidad.madrid/catalogo/ 

dataset/covid19_tia_muni_y_distritos. (Accessed 31 March 2023). 
[40] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735–1780. 
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