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1. INTRODUCTION 

There is strong evidence that long - memory time series occur quite 

frequently in practice. A characteristic indication of long range dependence 

is the appearance of unbounded spectral densities in a neighborhood of the 

origin i\. = o. The class of fractional ARIMA(p,d,q) models allow for this 

situation. This paper treats some aspects of estimation of the parameter d. 

Some background is given in section 2, where notation is also established. 

Log - periodogram regression, a fundamental technique of estimation, is 

introduced in section 3. Advantages and disadvantages of log - periodogram 

regression are discussed next and alternative techniques are discussed. Some 

new simulation results are presented in section 4 and section 5 contains 

final comments. 

2· BACKGROUND 

Let {X: te71} be a second order stationary process with finite 
t 

variance. An important summary of the stochastic features of {X: te71} is 
t 

given by the autocorrelation function 

P = cov[X ,X ]lvar[X 1 - 0 10 
k t+k t t - k 0' 

(2.0 

evaluated at integer lags k = 0, ±l, ±2, Given a finite sample X, 
1 

'0', X, 
n 

interest lies in finding a parsimonious parametric description of 

{X: te71}, particularly for reliable prediction of future values of the 
t 

process. Since, properly speaking, the coordinates of the sequence {p: ke71} 
k 

are unknown parameters, practical modelling of {X: te71} should be based on 
t 

the sample autocorrelation function 

/\ 
where ok 

r
k 

= ~/~o' k = 0, ±l, ±2, ... , ±m, (2.2) 

n 

n-
1 E X2, and m « n is an upper bound for the 

t 
t=l 
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lag in order to produce efficient estimates of ~ . 
k 

It is often the case that the information provided by the r suggests 
k 

that decays very fast. Broadly speaking, the process has "short 

memory", a term that describes that, according to the autocorrelation 

function, X and X show little dependence for k large enough. In this 
t+k t 

situation, the causal and invertible ARMA(p,q) model for the process {X: 
t 

tel}, 

I/>(B)X = 9(B)£ , (2.3) 
t t 

where I/>(B) and 9{E) are polynomial of degrees, respect i vel y, p and q with 

roots outside the unit circle, B is the backward shift operator BX = X 
t t-I' 

{e } white noise with finite 
2 

provides well and is a zero mean variance C1" , a 
t 

established methodology for both inference and prediction. (see, e.g. 

Brockwell and Davis (1991)). Under (2.3), it can be seen that p is bounded 
k 

exponentially 

1Pk l ::: A exp(-Bk), k = 0, 1, 2, ... , (2.4) 

for some positive constants A and B, a property that makes explicit the fast 

decay of the autocorrelation when the lag increases. Observe that (2.4) 

implies that 

so that the spectral density of the process 

is bounded in 

00 
-I = (2IT) L 1'k exp(-ikA), 

k=-oo 

-IT :$ A ::: IT, 

a neighborhood of A = o. In fact, 

(2.5) 

(2.6) 

for an 

the spectral density is continuous and bounded in [-IT,IT] by construction. 

The flexibility of the ARMA(p,q) model (2.3) is not enough, however, to 

cover all practical cases. As observed by Granger (966), the typical 

"shape" of the spectral density of an economic variable offers an unbounded 
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behaviour near the zero frequency. As described in Beran 0994, chaps. 1 and 

2) there are many data situations in which the process, although stationary, 

has a sample autocorrelation that suggests a slow hyperbolic decay of the p 
k 

in the form 

(2.7) 

as k ----7 IX) for some a e (0,1). Equivalently, near the origin the spectral 

density is 

f(A) - mIAI-f3 , (2.8) 

for some f3 e (0,1). The convergence condition (2.5) is violated and 

the process is said to possess "long range" dependence or a "long - memory" 

pattern. 

In the light of the comments of the previous paragraph, the need for 

new parametric models for time series with long - memory is apparent. The 

most common alternative to the classic ARMA(p,q) formulation is given by the 

family of fractionally differenced ARIMA (p,d,q) models. An stationary 

process {X: tell} follows an ARIMA (p,d,q) model when it can be written in 
t 

the form 

</>(8)(1 - B)dX = 8(8)c , (2.9) 
t t 

where -.5 < d < .5 and the rest of the elements are as in (2.3). (2.9) is a 

more flexible class of models that the traditional ARIMA (p,h,q) family for 

integer h. This avoids overdifferencing the series that leads to a zero 

spectral density zero at the null frequency, therefore missing perhaps some 

relevant qualitative features of the data. Near the origin, the spectral 

density of (2.9) is 

f(A) - m I A 1-2d
, (2.10) 

where m = (,,2/21£)[</>0)]2/ [8(1)]2, so there is long - range dependence for 0 

< d < .5. In this case, the asymptotic behaviour of p is 
k 

4 

(2.11) 



An equivalent form of writting (2.9), is 

d 
(1 - B) X = U 

t t' 
(2.12) 

where U = [e(B)I</>(B)]e is a linear process with bounded and continuous 
t t 

spectral density depending on the short memory part of (2.9). The problem of 

estimating the fractional difference parameter d is considered next. 

3. LOG - PERIODOGRAM REGRESSION 

Geweke and Porter - Huda:k 0983) develop a method of estimation of d 

based on a least squares regression technique in the framework (2.12). Let 

f(i\) and g(i\) be, respectively, the spectral densities of the processes {X: 
t 

tel} and {Ut: tel}. Observe that g(i\) = (0-
2
/2rr ) j </>(z) 1211 e(z) 12, z = 

exp(-ii\). Since 

I 1
-2d 

f(i\) = 1 - exp(-ii\) g(i\), (3.1) 

taking logarithms in (3.1) gives 

log[f(i\)] = log[g(O)] - d log[ 11 - exp(-ii\) I d] + log[g(i\)lg(O)l. (3.2) 

Introduce now the periodogram of the series 

n 
-11 12 I (w) = (2rrn) LX exp(-itw) , 

n J t J 
t=1 

(3.3) 

where w = 2rrjln is the jth Fourier frequency, 1 ~ j < (n/2). Adding 
j 

log[I (w)] to both sides of (3.2) leads to 
n J 

log[I (w)] = log[g(O)] - d log[ 11 - exp(-iw) 12] 
n J J 

+ log[I (w )If(w )] + log[g(w)lg(O)]. 
n j j j 

(3.4) 

If w is small enough, by the continuity assumptions on the density g(i\), 
j 

the last summand in (3.4) is negligible in comparison to the others. 

Changing the notation, (3.4) suggests estimating d by least squares in the 

simple linear regression model 

y =a-dx +e, 
j j j 

(3.5) 
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where a = log[g( 0)], x = log[ 11 - exp( -iw ) 12] = log[ 4 sin 2(w 12)], and e 
j j j j 

= 10g[I (w )If(w )], for j = 1, ... , m, where m is a threshold to be 
n j j 

determined. Geweke and Porter - Hudak (1983) argue heuristically that there 

exists a sequence m = m such that the least squares estimator 
n 

is, asymptotically, 

m m 

fl = - L (x. - xHy - y)l L (x. - x)2, 
n j=1 J j j=1 J 

m 

N(d,n2/[6 L (x - x)2]). 
j = 1 j 

(3.6) 

(3.7) 

The method above has several attractive features. For example, it is 

computationally very simple and allows estimation of d without knowledge of 

the orders p and q. However, as some authors point out, the proposal of 

Geweke and Porter - Hudak (1983) presents several problems that can be 

summarized as follows: 

i) For a long - memory process as (2.12), the usual asymptotic 

properties of the periodogram do not hold and, therefore, the LLd. 

assumption for the errors {e} is 
j 

untenable. This has been obtained in 

Klinsch (1986), Hurvich and Beltrao (1993), and Robinson (1995). Although the 

effect of this deviation can be ignored asymptotically, it can affect the 

performance of the estimator fl in small samples. A possible solution is to 
n 

carry out the least squares regression on small Fourier frequencies only; 

U) Beran (1994, chap. 4) and Robinson (1995) mention that the 

derivation of the asymptotic distribution (3.7) by Geweke and Porter - Hudak 

(1983), is not totally correct. Robinson (1995) suggests trimming 

frequencies not only from above but also from below. Change the notation 

slightly and introduce the parameter H, where 

d = H - .5. (3.8) 

As stated in Beran (1994, p. 98), a key result is: 
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Theorem 3.1 Let the process {X: teZ} of (2.12) be Gaussian with long -
t 

memory. Let A: (~ + .5) be the least squares estimate of H based on Fourier 
n n 

frequencies w, where ~ j ~ m , and {l >, {m } are integer sequences that 
j 1'\ 1'\ -n-n 

tend to infinity and satisfy some growth restrictions, among others, I /m 
n n 

----7 O. Under some regularity conditions on the spectral density of {X: 
t 

teZ}, 

(3.9) 

An important practical problem that remains to be solved is how to 

choose and m in finite samples. According to Beran (1994, p. 99) 
n n 

increasing m 
n 

reduces the variance of A: but increases the bias. On the 
n 

other hand, reducing m increases the variance but reduces the bias. A 
n 

simulation is performed by Agiakloglou, Newbold and Wohar (1993) to study 

the bias phenomenon in small samples. Hurvich and Beltrao (1994) discuss a 

data driven choice of I. Recently, Hassler (1995) studies the problem of 
n 

choice of I and m in finite samples. Further comments on the choice of 
n n n 

and m are given in the next section. 
n 

4. SIMULATION RESULTS 

It seems as if all this previous work would not be at all conclusive in 

providing helpful guidelines for determining suitable values of the trimming 

constants and m given a series of length n. This section reports some 
n n 

preliminary simulation results that illustrate the nature of the problem. 

In table I, N = 1000 samples of length n = 400 are generated through an 

ARIMA(O,d,O) model for values of d in the range -.4 to .4 separated by .1. 

The Geweke - Porter - Hudak estimator (GPH) is computed for each sample, and 

the average values and mean squared errors are reported along with the bias. 
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d mean bias mse 

.4 .722 .322 .008 

.3 .543 .243 .009 

.2 .361 . 161 .009 

. 1 184 .084 .009 

-. 1 - 175 -.074 .008 

-.2 -.351 -. 151 .009 

-.3 -.528 -.228 .010 

-.4 -.699 -.299 .010 

Table 1 

As observed from table 1, the bias in the GPH increases with the 

absolute value of d in quite a symmetric fashion. The mean squared errors 

are all uniformly small suggesting a quite accurate estimation. Tables 2, 3, 

4, and 5 are formed using the both-sides trimming proposal of Robison 

(995). The theoretical asymptotic variances offered by theorem 3.1, namely 

lll(24m ) are given in parenthesis next to the table number. The values of 
n 

the trimming thresholds appear below the table number. 
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d mean bias mse 

.4 .737 .337 .0378 

.3 .555 .255 .0387 

.2 .370 .170 .0394 

. 1 . 186 .086 .0382 

-. 1 - . 174 -.074 .0366 

-.2 -.370 -.170 .0413 

-.3 -.556 -.256 .0425 

-.4 -.734 -.334 .0409 

Table 2 (.0032) 

= 12; m = 128 
n n 

d mean bias mse 

.4 .675 .275 .0267 

.3 .512 .212 .0262 

.2 .342 .142 .0276 

. 1 . 170 .070 .0280 

-. 1 - . 166 -.066 .0265 

-.2 -.342 -.142 .0280 

-.3 -.505 -.205 .0299 

-.4 -.678 -.278 .0268 

Table 3 (.0023) 

= 16 ; m = 180 
n n 
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d mean bias mse 

.4 .716 .316 .0143 

.3 .537 .237 .0143 

.2 .356 . 156 .0153 

. 1 180 .080 .0149 

-. 1 180 -.080 .0142 

-.2 -.356 -. 156 .0143 

-.3 -.534 -.234 .0149 

-.4 -.709 -.309 .0144 

Table 4 ( .0023 ) 

= 4· m = 180 , 
n n 

d mean bias mse 

.4 .702 .302 .0177 

.3 .528 .228 .0174 

.2 .351 . 151 .0192 

. 1 176 .076 .0191 

-. 1 176 -.076 .0190 

-.2 - . 351 -. 151 .0183 

-.3 -.525 -.225 .0197 

-.4 -.697 -.297 .0184 

Table 5 (.0023) 

= 8· m = 180 , 
n n 

Some general common features of the tables can be now extracted. 

Increasing m reduces the variance while, for fixed m, decreasing 1 reduces 

the variance as well. The effect on the bias of the estimate is more 

difficult to describe. Notice, however, the remarkable distance between the 
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theoretical limit variance and the relatively stable values of the column of 

mean squared errors. Since the conditions of theorem 3.1 are asymptotic in 

nature, the discrepancy might be attributed, in first instance, to the 

relatively small sample size n = 400. To check this point further, N = 500 

samples of size n = 1000 are again generated from the same class of 

ARIMA(O,d,O) models as before. Results are displayed in tables 6 and 7. 

d mean bias mse 

.4 .728 .328 .0078 

.3 .550 .250 .0071 

.2 .368 .168 .0070 

. 1 182 .082 .0069 

-. 1 183 -.083 .0068 

-.2 -.366 -.166 .0070 

-.3 -.546 -.246 .0067 

-.4 -.728 -.328 .0075 

Table 6 (.0010) 

= 12; m = 400 
n n 
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d mean bias mse 

.4 .696 .296 .0056 

.3 .526 .226 .0052 

.2 .351 . 151 .0053 

. 1 170 .070 .0053 

-. 1 172 -.072 .0054 

-.2 -.348 -.148 .0053 

-.3 -.520 -.220 .0048 

-.4 -.697 -.297 .0058 

Table 7 ( .0008) 

= 12; m = 490 
n n 

Although in table 7 nothing apparently seems to have changed, at least 

in table 6 the theoretical asymptotic variance and the column of mean 

squared errors are of the same order. 

5. FINAL COMMENTS 

The simulation results presented in section 4 are, as previous work on 

trimming, non conclusive. In the light of tables 2, 3, 4, 5, 6, and 7, it 

could be conjectured that the sample size n needed for finding the trimming 

constants that fit with the statement of theorem 3.1 might be too large for 

flexible computing work. Further research along these lines is in progress. 
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