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We assume that some consistent estimator bb of an equilibrium relation between non-stationary

series integrated of order d 2 ð0:5; 1:5Þ is used to compute residuals ût ¼ yt
bbxt (or differences

thereof). We propose to apply the semiparametric log-periodogram regression to the (differenced)

residuals in order to estimate or test the degree of persistence d of the equilibrium deviation ut:
Provided bb converges fast enough, we describe simple semiparametric conditions around zero

frequency that guarantee consistent estimation of d: At the same time limiting normality is derived,

which allows to construct approximate confidence intervals to test hypotheses on d: This requires
that d d40:5 for superconsistent bb; so the residuals can be good proxies of true cointegrating

errors. Our assumptions allow for stationary deviations with long memory, 0pdo0:5; as well as
for non-stationary but transitory equilibrium errors, 0:5odo1: In particular, if xt contains several

series we consider the joint estimation of d and d:Wald statistics to test for parameter restrictions

of the system have a limiting w2 distribution. We also analyse the benefits of a pooled version of

the estimate. The empirical applicability of our general cointegration test is investigated by means

of Monte Carlo experiments and illustrated with a study of exchange rate dynamics.
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1. Introduction

A substantial part of economic theory deals with long run equilibrium relation
ships generated by market forces and behavioral rules. Granger (1981) and Engle
and Granger (1987) were the first to formalize the idea of integrated variables
sharing an equilibrium relation which turned out to be either stationary or have a
lower degree of integration than the original series. They denoted this property by
cointegration, signifying co movements among trending variables which could be
exploited to test for the existence of equilibrium relationships within a fully dynamic
specification framework.

The presence of, at least, a unit root in economic time series is implied in
many economic models as those based on the rational use of available information
or on the existence of very high adjustment costs in some markets. Interesting
examples include future contracts, stock prices, yield curves, exchange rates,
money velocity, hysteresis theories of unemployment and, perhaps the most
popular, the implications of the permanent income hypothesis for real consumption
under rational expectations. Thus, most of the cointegration literature has
focused on the case where variables contain a single unit root. Moreover,
in most of the occasions, the equilibrium relation turned out to be modeled
as a weakly stationary or short memory Ið0Þ process. Within this Ið1Þ=Ið0Þ
set up, Engle and Granger (1987) suggested a two step estimation procedure
for single equation dynamic modeling which has become very popular in
applied research. First, an OLS regression is run among the levels of the
series of interest. Then, Dickey Fuller type unit root tests are performed
on the residual sequence to determine whether it has a unit root. Under
the null hypothesis the residuals are Ið1Þ; and under the alternative the residuals
are Ið0Þ:

Some economic applications, however, suggest that even if the data are Ið1Þ; the
residual term representing the potential equilibrium error might be fractionally
integrated. See, e.g., Robinson (1994a), Baillie (1996) and Gil Alaña and Robinson
(1997). Loosely speaking, a series ut is said to be fractionally integrated of order d; in
short IðdÞ; if Ddut is Ið0Þ; where d is not an integer but a real number. The degree of
integration determines the key dynamic or memory properties of the economic series.
A fractionally integrated process is stationary if do0:5 and nonstationary otherwise
(cf. Granger and Joyeux, 1980; Hosking, 1981). In spite of being nonstationary, if
0:5pdo1 the process is mean reverting with transitory memory, i.e. any random
shock has only a temporary influence on the series, in contrast with the case when
dX1; where the process is both nonstationary and not mean reverting with
permanent memory, i.e., any random shock having now a permanent effect on the
future path of the series. Consequently, a wide range of dynamic behavior is ruled
out a priori if d is restricted to integer values and a much broader range of
cointegration possibilities is permitted when fractional cases are considered. More
importantly, now the degree of memory of the residual series, d; is a parameter
suitable, in principle, of estimation and testing by means of any of the existing
methods.
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In this sense, the most widespread estimation method of the memory parameter d
with observed series is the so called log periodogram estimator (Geweke and Porter
Hudak, 1983; Robinson, 1995a) due to its semiparametric nature and simplicity. In
this paper we provide theoretical grounds on the behavior of the log periodogram
estimator when applied to the residual equilibrium series. Indeed, the residual based
log periodogram regression for (fractional) cointegration testing has been applied in
a series of papers recently. Cheung and Lai (1993), Masih and Masih (1995) and
Soofi (1998) test the purchasing power parity hypothesis, while Booth and Tse (1995)
and Masih and Masih (1998) investigate interest rate future markets and exchange
rate dynamics, respectively. Their approach also relies on a two step procedure,
where the log periodogram regression is applied in a second step to regression
residuals obtained in a first step from a cointegrating regression.1 Experimentally,
they collected evidence that the t statistics associated with the estimator bdmay not be
approximately normally distributed, cf. also the recent Monte Carlo results by Tse et
al. (1999). Their experimental evidence, however, is limited with two respects. First,
they only consider bivariate regressions, second, they assume that the observed series
are integrated of order one. Our analysis overcomes these drawbacks in that we
allow the observed series to be integrated of order d, 0:5odo1:5; and moreover
multiple regressions are also considered. But most important, our asymptotic
treatment reveals that the residual based log periodogram regression does result in a
limiting normal distribution provided the very first harmonic frequencies are
neglected. This modification, which has been called trimming in the statistical
literature, had not been considered in the experimental studies previously quoted.

In this paper we assume that the series of interest are a (linearly) cointegrated set
of IðdÞ processes, with the corresponding innovation being an IðdÞ process such that
d4d with 0:5odo1:5: In case of single equation regression, given an estimator bb of
the corresponding cointegrating coefficient, we consider the residuals ût yt

bbxt

and estimate d from a log periodogram regression of the residuals, or of the
differenced residuals. With the gap between d and d being large enough, dod 0:5;
we obtain sufficient conditions for the consistency of the estimators of the memory
parameter d of the cointegration error. In particular, we require trimming of the very
first frequencies of the residual periodogram. Furthermore, assumptions are
strengthened in order to establish limiting normality. Given a consistent and
asymptotically normal estimator it is straightforward to compute at what level of
significance the estimators of d are (i) positive, (ii) less than 0.5, (iii) larger than 0.5,
or (iv) less than 1. Such inference is of immediate economic interest, because the
degree of integration d measures the persistence of the deviations from long run
equilibrium. Depending on our null hypothesis of interest, e.g. d 0 or 1, we
propose alternative procedures based on either original or differenced residuals that

1A multivariate approach in contrast to single equation regressions was employed by Baillie and

Bollerslev (1994) and Dueker and Startz (1998). Two recent papers provide asymptotic theory for
determining the cointegration rank in a fractional context: Robinson and Yajima (2002) suggest a

frequency domain approach designed for stationary processes, while Breitung and Hassler (2002) consider

a time domain approach valid in the nonstationary case.
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lead to a consistent characterization of the long run relationship among some
economic series.

The rest of the paper is organized as follows. The next section sets the scene by
introducing the basic bivariate cointegrated regression model and the relevant theory
for the residual log periodogram regression. The third section is reserved for the
extension to multiple regressions, investigating the situation where the degree of
integration of the regressors and the error are jointly estimated. Residual Wald
statistics testing parameter restrictions remain asymptotically w2 distributed just as
found by Robinson (1995a) for observed series. Section 4 considers non Gaussian
series and situations ruled out in previous sections when d can be arbitrarily close to
d. In Section 5 Monte Carlo experiments are reported with respect to the empirical
relevance of some of the assumptions used. We propose an empirical research
strategy that is illustrated in Section 6 with a study of exchange rate dynamics. The
final section contains a more detailed summary of our main findings. Technical
assumptions and auxiliary results are collected in Appendix A, while proofs are
relegated to Appendix B.
2. Residual log-periodogram regression

In this section, we restrict ourselves to the leading case of a simple regression
between two non stationary series. Let the observable yt�IðdÞ and xt�IðdÞ;
0:5odo1:5; satisfy

yt bxt þ ut; ba0; t 1; . . . ;T ,

with ut�IðdÞ; 0pdod; and let bb be a consistent estimate of b based on T

observations of yt and xt: The interval 0:5odo1:5 covers most empirically relevant
cases. Extensions to higher order integration might be possible but are not
considered here. The properties of estimates of b depend on d and d; bridging the gap
between root T consistency for stationary regressions and T superconsistency for
Ið1Þ regressions with Ið0Þ residuals. We will assume the following condition on bb
distinguishing the case where the overall memory of regressors and errors, dþ d ; is
strictly less than 1; and the case where it is equal or larger than 1:

Assumption 1. Let d 2 ð0:5; 1:5Þ; d 2 ½0; dÞ;
Case I : If dþ dX1 then bb b OpðT

d�dÞ:
Case II : If dþ do1 then bb b OpðT

1�2dÞ:

This assumption holds when the bb are the OLS estimates for d 2 ½0; 1:5Þ f0:5g
(see De Jong and Davidson, 2000; Robinson and Marinucci, 2001). There are several
alternative estimates that try to improve the asymptotic and finite sample properties
of OLS estimates. Robinson and Marinucci (2001) proposed a narrow band
frequency domain LS estimate which satisfies Assumption 1 when a bandwidth is
chosen appropriately but under a somewhat different definition of non stationary
long memory processes than the one we use in this paper. This alternative definition
implies different initial conditions for integrated processes than ours, and is also less

4



tractable for our purposes because it implies that the series are nonstationary for any
value of da0 (though asymptotically stationary for do0:5). Moreover, though
convergence rates for slope estimates are the same, the asymptotic theory is different
for each definition (see Marinucci and Robinson, 1999). Alternatively, Kim and
Phillips (2001) developed fully modified version of LS under Gaussian assumptions
for Case I.

We say that a covariance stationary time series ut is IðdÞ if it has a spectral density
f uuðlÞ; defined by Covðut; utþjÞ

R p
�p f uuðlÞ cosðjlÞdl; satisfying for some positive

constant Gu

f uuðlÞ�Gujlj�2d as l! 0; do0:5. (1)

This reflects a persistent behaviour or long memory at low frequencies when d40;
weak dependence when d 0 and negative memory when do0; but leaving
unparameterized the rest of the spectrum. This definition covers standard fractional
parametric models such as stationary ARFIMA (Granger and Joyeux, 1980;
Hosking, 1981),

fðLÞð1 LÞdut yðLÞ�t, (2)

where �t is white noise, f and y are polynomials in the lag operator L with all their
roots outside the unit circle and ð1 LÞd is the fractional difference operator.

For non stationary data we adopt a parallel definition of the memory parameter d
in terms of stationary increments. Thus ut is IðdÞ; 0:5pdo1:5; if Dut ð1 LÞut is
zero mean Iðd 1Þ; encompassing the Ið0Þ and Ið1Þ terminology of the standard
cointegration literature. For non stationary ut�IðdÞ we consider a generalized or
pseudo spectral density using the difference operator transfer function j1 eilj2

ð2 sinðl=2ÞÞ2 as

f uuðlÞ ð2 sinðl=2ÞÞ�2f DuDuðlÞ�Gujlj�2d as l! 0; 0:5pdo1:5,

which has a similar behaviour around the origin in terms of the memory parameter d
as the spectral density (1) of stationary long memory processes. These definitions
allow us to directly extend standard frequency domain assumptions and analysis to
non stationary data.

A variety of estimates of the long memory parameter of stationary series has been
proposed. Many of them are parametric in the sense that a full parametric model is
also specified for the short memory behaviour of the series as in (2). These include
estimates based on different approximations to Gaussian likelihoods in frequency
and time domains (e.g. Fox and Taqqu, 1986; Dahlhaus, 1989; Sowell, 1992). On the
other hand, semiparametric estimates have the advantage of avoiding short run
specification and have become of wide use in practice, although they are
asymptotically inefficient compared to parametric competitors.

The most popular of semiparametric estimates is probably the log periodogram
regression estimate proposed by Geweke and Porter Hudak (1983) because of its
intuitive and computational appeal, though some competitors have been studied
under more general conditions (e.g. Robinson, 1995b). As many semiparametric
estimates of long memory parameters, it is based on the properties of the spectral
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density for low frequencies, cf. expression (1). Define the (cross) periodogram of two
sequences pt and qt; t 1; . . . ;T ; as

IpqðlÞ wpðlÞw�qðlÞ; wpðlÞ ð2pTÞ�1=2
XT

t 1

pt expðiltÞ,

where the star � superscript denotes simultaneous transposition and complex
conjugation. The periodogram IuuðlÞ is the sample equivalent of the spectral density
for an observed sequence ut and constitutes the basic statistic for frequency domain
inference. Robinson (1995a) showed that, as for short memory series, the
periodogram of long memory series is asymptotically unbiased and uncorrelated
when evaluated at the harmonic frequencies lj 2pj=T for j growing with sample
size T (see e.g. Lemmas A.1 and A.2 in Appendix A). This is the basis to write the
logarithm of (1) as

log IuuðljÞ � logGu 2d log lj þ log
IuuðljÞ

f uuðljÞ
; j 1; . . . ;m,

where m is small compared to T : This is a linear regression model with the log
periodogram as dependent variable, non stochastic regressor rj 2 log lj ; slope d
and approximately homoscedastic and independent errors. The log periodogram
regression estimate of d is the least squares estimate bdðuÞ:

The asymptotic properties of bdðuÞ were analysed rigorously for multiple stationary
Gaussian series ð 0:5odo0:5Þ by Robinson (1995a) for m growing with T under
some smoothness conditions on f uuðlÞ (cf. Theorem A.1 in Appendix A). He also
considered a pooling of contributions from adjacent frequencies to achieve efficiency
gains (see Section 4) and excluded the very low frequencies, following the findings of
Künsch (1987).

When the equilibrium errors ut are non stationary but not observable it is sensible
to estimate d from the increments of the observed residuals Dût Dut ðbb bÞDxt

which we may expect to have memory close to d 1; so the periodogram of the
residual differences is

IDûDûðljÞ IDuDuðljÞ ð
bb bÞfIDuDxðljÞ þ IDxDuðljÞg þ ð

bb bÞ2IDxDxðljÞ. (3)

However, when ut are stationary, d could be estimated directly from the levels of the
observed residuals ût ut ðbb bÞxt through

I ûûðljÞ IuuðljÞ ð
bb bÞfIuxðljÞ þ IxuðljÞg þ ð

bb bÞ2IxxðljÞ,

avoiding problems of non invertibility that may arise with differenced stationary
data. For inference on d using the residuals ût or increments Dût the key point is thatbb b has to be small enough in probability to make the contribution of the slope
estimation negligible in the residual periodograms. We show that this is the case
using only Assumption 1, where the estimates bb can be obtained by any method and
we do not need their asymptotic distribution or moments. On the other hand, as our
proofs rely on Robinson’s (1995a) analysis, Gaussianity of xt and ut is required. We
also note that Robinson (1997) considered semiparametric memory estimation from
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nonparametric regression residuals using a local Gaussian likelihood (see Robinson,
1995b), but avoiding such assumption.

Denote by bdðDûÞ the log periodogram regression estimate of d based on the
differences of the observed residuals, Dût;

bdðDûÞ 1þ
Xm

j ‘þ1

W 2
j

 !�1 Xm

j ‘þ1

W j log IDûDûðljÞ (4)

where

W j rj r̄‘; rj 2 log lj and r̄‘ ðm ‘Þ�1
Xm

j ‘þ1

rj. (5)

When ‘40 in the above definition of bdðDûÞ we allow for the trimming of the very low
frequencies as in Robinson (1995a). However Hurvich et al. (1998) have shown that
the log periodogram regression maintains desirable properties if all frequencies from
1 up to m are used. Nevertheless we later provide an alternative justification for the
policy of removing the first ‘ frequencies when residuals are used instead of
observational data, for ‘ growing with T as in the next assumption.

Assumption 2. We choose

m�ATa; ‘�BTb; 0oboao1; 0oA;Bo1,

where p�q means that limT!1 p=q 1:

This technical assumption restricts the bandwidth numbers ‘ and m to a particular
choice in terms of powers of T to simplify the presentation of the results, but more
general choices are possible, though depending on unknown parameters such as d

and d: In practice only small values of ‘ are usually chosen.
In the following theorem we summarize the properties of differenced residual log

periodogram regression. We concentrate on asymptotic normality and logT

consistency, for studentization purposes of statistics such as bb whose convergence
rate depends on d as was pointed out by Robinson (1994b, 1997). Note that only
Case I of Assumption 1 is relevant for bdðDûÞ when d40:5: Additional technical
assumptions on the smoothness of the spectral densities and bandwidth choice are
detailed in Appendix A.

Theorem 1. Under Assumptions 1, 2 and A.1, for Gaussian ut and xt; 0:5odod

0:5o1; as T !1;

logTðbdðDûÞ dÞ!p0.

If additionally Assumption A.5 holds then

m1=2ðbdðDûÞ dÞ!dN 0;
p2

24

� �
.

For both consistency and asymptotic normality of bdðDûÞ our proofs require the
trimming of an increasing number of frequencies and that d d40:5; to obtain
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uniform convergence of the normalized residual periodogram for lj ; ‘pjpm: This
problem prevents us from using Hurvich et al. (1998) results to completely avoid the
trimming of low frequencies, though any b40 is enough for our results. The
condition d d40:5; which implies that bb is superconsistent (cf. Case I in
Assumption 1), can be relaxed to something close to d4d for consistency of bdðDûÞ

(cf. Section 4), but it seems necessary for root m consistency. This confirms
Robinson’s (1995a) Remark 7 that a sufficiently fast convergence rate of the
estimates of the appropriate filter should be necessary for log periodogram inference
based on residuals.

When dp0:5 the previous procedure is likely to fail because Dut are non invertible,
so we are led to work with the original residuals. The study of the asymptotic
properties of the log periodogram regression estimate of d based on the original
residuals,

bdðûÞ Xm

j ‘þ1

W 2
j

 !�1 Xm

j ‘þ1

W j log I ûûðljÞ,

is additionally complicated because we have to distinguish the cases d þ dX1 and
d þ do1; for which the estimates of b have different convergence rates. We did not
have this problem before because 0:5odod 0:5; so we now add Assumption A.4
introduced in Appendix A.

Theorem 2. Under Assumptions 1, 2, A.1 and A.4 for Gaussian ut and xt; 0pdo0:5;
dod 0:5o1; then as T !1;

logTðbdðûÞ dÞ!p0.

If additionally Assumption A.10 holds then

m1=2ðbdðûÞ dÞ!dN 0;
p2

24

� �
.

The range of values of d in our asymptotic theory for bdðûÞ is more limited than
when the ut are observable, where any 0:5odo1 can be consistently estimated, see
Velasco (1999a). In case of residual inference, bdðûÞ is consistent only if 0pdo0:5;
with d d40:5; as for differenced residuals, and with m and ‘ chosen appropriately.
We do not consider do0 because this is not likely to occur for observed
undifferenced data. Tapering, as suggested in Hurvich and Ray (1995), may allow
consistent estimation of situations excluded in Theorems 1 and 2, e.g. do0:5 usingbdðDûÞ and dX0:5 using bdðûÞ; as was showed for observed data in Velasco (1999a). We
explore the latter possibility in Section 4.

Only when d þ do1; strong enough trimming is essential for our analysis of bdðûÞ;
cf. Assumption A.4. Only in this case the choices of m and ‘ are limited by the values
of d and d; due to the slower convergence rate of bb in Case II of Assumption 1,
leaving situations where it is not possible to find sequences m and ‘ to show the root
m asymptotic normality of bdðûÞ; for example when 0:5odo6:5=9: However the most
relevant situation of d 1 and 0pdo0:5 is covered by Theorem 2 with any b40:
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The Gaussianity assumption can be removed for a pooled version of the log
periodogram regression for some linear processes (see Section 4 below and Velasco,
2000), but in this and the following section Gaussianity plays a decisive simplifying
role for residual based inference on d:

Remark (linear detrending). The deterministic regressor tt t has similar properties
to Ið1:5Þ stochastic data, so the least squares estimate of its coefficient is T1:5�d

consistent (see e.g. Robinson and Marinucci, 2000). Therefore, it can be shown that
Theorems 1 and 2 hold if residuals are obtained after linear detrending, do1:

For memory estimation some a priori knowledge on d is necessary in order to use
either bdðDûÞ or bdðûÞ appropriately, though use of tapered original residuals may help
in providing consistent estimates for any do1: For hypothesis testing this
information can be obtained from the maintained null hypothesis. Thus consistent
procedures can be obtained from asymptotic Nð0; 1Þ t statistics based on bdðûÞ for
testing of H0: d 0 against H1: d40; or on bdðDûÞ for testing of H0: d 1 against H1:
do1:
3. Multiple regression and estimation

We now consider the case of multivariate regressors and joint estimation of the
memory parameters of the regressors and cointegrating errors. Let the observable yt

satisfy

yt

Xk

i 1

bixit þ ut,

for xit�IðdiÞ; 0:5odio1:5; ut�IðdÞ; 0pdodmin; and yt�IðdmaxÞ; where dmin

minidi and dmax maxi di: Let bb be a consistent estimate of the vector b
ðb1; . . . ;bkÞ

0 based on T observations of yt and xt ðx1t; . . . ;xktÞ
0: We make the

following assumption on bb distinguishing the two cases of Assumption 1 and
allowing for regressors with different memory parameters.

Assumption 3. Let xit�IðdiÞ; di 2 ð0:5; 1:5Þ; i 1; . . . ; k; ut�IðdÞ; 0pdodi:
Case I : If dþ diX1 then bbi bi OpðT

d�di Þ; i 1; . . . ; k:
Case II : If dþ dio1 then bbi bi OpðT

1�dmin�di Þ; i 1; . . . ; k:

It would be possible to consider more general set ups with Cases I and II mixed.
However Robinson and Marinucci (2001) only consider Cases I and II separately,
and showed that the convergence rates of Assumption 3 hold for OLS estimates,
da0:5: In any case residual based log periodogram regression asymptotics would
depend on the slowest rate of convergence, given by OpðT

1�dmin�di Þ: Then it is quite
straightforward to show that Theorems 1 and 2 continue to hold when we use
residuals from multivariate regressions, where the assumptions on the regressors xit

are now to be understood componentwise. Therefore the proof of the following
result is omitted.
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Corollary 1. Theorems 1 and 2 hold for multiple regression residuals ût
bb0xt where

the bb satisfy Assumption 3.

The previous remark on linear detrending applies to multivariate regressions when
one of the regressors is t and also the results are unaffected if the regressions include
an intercept or seasonal dummies, since these variables have zero variance at the
relevant frequencies, so hence on we concentrate only on stochastic regressors.

Furthermore, the memory parameters of the stationary vector
ðut;Dx0tÞ

0
�Iðd;D1; . . . ;DkÞ; Di di 1; 0:5odo0:5; can be simultaneously in

vestigated as if the ut were observable using Robinson’s (1995a) multivariate log
periodogram estimate as long as sufficient smoothness conditions are assumed for
the spectral density matrix. For example, the case where a set of the regressors xt is
cointegrated is excluded (cf. Assumption A.2 in Appendix A), and some trimming is
incorporated in the log periodogram regression. This permits hypothesis testing on
the differences di d and efficiency gains for inference on d or d ðd; d1; . . . ; dkÞ

0

using generalized LS estimation under linear restrictions on the memory parameters,
like di d; i 1; . . . ; k:

To this end we set the system of k þ 1 equations, j ‘ þ 1; . . . ;m; where we allow
for the trimming of the first ‘ 0; 1; . . . frequencies,

log I ûûðljÞ cu 2d log lj þ vu;j,

log IDiDiðljÞ ci 2Di log lj þ vij ; i 1; . . . ; k,

and IDiDiðljÞ is the periodogram of Dxit; ci logGi and Di di 1: The vector of
OLS estimates bDðûÞ ðbd; bD1; . . . ; bDkÞ

0 and bcðûÞ ðbcu;bc1; . . . ;bckÞ
0;bcðûÞbDðûÞ

 !
vecðV ðûÞ0SðS0SÞ�1Þ,

is the generalization of the log periodogram estimate of the previous section, where
S ðS‘þ1; . . . ;SmÞ

0; Sj ð1; rjÞ
0; and V ðûÞ ðV oðûÞ;V1; . . . ;V kÞ; VoðûÞ

ðlog I ûûðl‘þ1Þ; . . . ; log I ûûðlmÞÞ
0 and Vi ðlog IDiDiðl‘þ1Þ; . . . ; log IDiDiðlmÞÞ

0; i

1; . . . ; k: We set the estimate bdðûÞ ðbd; bd1; . . . ; bdkÞ
0 of d; with bdi

bDi þ 1:
To obtain asymptotically normal estimates of d when the ut are non stationary we

use differenced residuals Dût; substituting the first equation in the log periodogram
regression by

log IDûDûðljÞ cu 2ðd 1Þ log lj þ vu;j ,

and obtain the least squares estimates bDðDûÞ ðdd 1; bD1; . . . ; bDkÞ
0;bcðDûÞbDðDûÞ

 !
vecðV ðDûÞ0SðS0SÞ�1Þ,

setting bdðDûÞ ðbd; bd1; . . . ; bdkÞ
0; bd dd 1þ 1; bdi

bDi þ 1; and V oðDûÞ

ðlog IDûDûðl‘þ1Þ; . . . ; log IDûDûðlmÞÞ
0: The next result gives sufficient conditions

described in Appendix A for the asymptotic normality of these estimates,
generalizing the univariate set up of Theorem 1, cf. Assumptions 2 and A.1, and
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excluding the possibility of the components of xt from being cointegrated
themselves.

Theorem 3. Under Assumptions 2, 3, A.2, A.6, ðut;x0tÞ
0 jointly Gaussian, dodi

0:5o1; i 1; . . . ; k; then if 0:5odo1; as T !1;

2m1=2ðbdðDûÞ dÞ!dNð0;OÞ.

If 0pdo0:5; and additionally Assumption A.7 holds then

2m1=2ðbdðûÞ dÞ!dNð0;OÞ.

The covariance matrix O has diagonal elements p2=6 and can be estimated
consistently by the sample regression residuals covariance matrix, bO ðm

‘Þ�1
Pm

j ‘þ1 v̂j v̂
0
j : We do not consider Robinson’s (1995a) pooled version of bd in this

section, nor the estimation of the constants Gr; but the same results as for observed
data can be shown to hold when using residuals.

We can now follow Robinson (1995a) to test the homogeneous restriction

H0 : Pd 0, (6)

where P is an n� ðk þ 1Þ matrix of rank nok þ 1; as in the case of equal memory
among some of the non stationary series xit: The test statistics is

bd0P0½ð0;PÞfðS0SÞ � bO�1gð0;PÞ0��1Pbd,
where bd is either bdðûÞ or bdðDûÞ and which has asymptotic w2n distribution under (6)
and the appropriate conditions of Theorem 3. A typical example is the estimation
under the restriction of regressors of equal memory, imposed by

P

ðk 1Þ � ðk þ 1Þ

0 1 1 0 � � �

..

. . .
. . .

. . .
. . .

.

0 � � � 0 1 1

0B@
1CA.

We can also achieve efficiency gains if we assume that some of the k series xit share
a common d parameter or any other homogeneous linear restriction

D Qh,

where Q is a given ðk þ 1Þ � q matrix of rank qok þ 1 and y is a q dimensional
column vector of unrelated parameters. The GLS type vector estimate incorporating
such restrictions is

ecðûÞeyðûÞ
 !

fQ01ððS
0SÞ � bO�1ÞQ1g

�1vecðbO�1V ðûÞ0SÞ,

where eDðûÞ QeyðûÞ; edðûÞ eDðûÞ þ ð0; 1; . . . ; 1Þ0; and
Q1

Ikþ1 0

0 Q

 !
.
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If ut is known to be non stationary we may substitute V ðûÞ by V ðDûÞ; and setedðDûÞ eDðDûÞ þ ð1; 1; . . . ; 1Þ0; eDðDûÞ QeyðDûÞ: Then under the appropriate as
sumptions of Theorem 3 it can be shown that

2m1=2ðed dÞ!dNð0;QðQ
0O�1QÞ�1Q0Þ,

where ed is either edðûÞ or edðDûÞ; and the covariance matrix of the asymptotic
distribution can be estimated consistently by QðQ0eO�1QÞ�1Q0 using the GLS
residuals in eO:
4. Residual log-periodogram for non-Gaussian data

The previous results have three main limitations. First, they rely on Gaussianity,
employed for reference to Robinson (1995a) and to show the negligible effect of
residual based estimates compared to original data. Second, we always have required
d d40:5 for root m consistency and asymptotic normality, but such condition is
likely to be too stringent for consistency of semiparametric estimates of d: And third,
we have to avoid non stationary residuals ðdX0:5Þ when analysing bdðûÞ:

Recently Velasco (2000) has moved in the direction of relaxing Gaussianity for the
consistency of the log periodogram regression estimate. The two main devices used
for this are a fixed pooling of periodogram ordinates in the regression, as originally
proposed by Robinson (1995a), and tapering. We analyse in this section the
consistency of a version of the residual log periodogram regression for linear
processes with well behaved independent and identically distributed (i.i.d.)
innovations. Pooling also permits to relax the condition d d40:5; allowing a
trade off between the cointegration degree d d and the pooling employed, while
non stationary residuals (dX0:5) can be treated consistently by tapering. Assuming
enough moments for the innovations of the observed data, we could also analyse the
asymptotic distribution of the estimates, see Velasco (2000) and Fay and Soulier
(2001) for details.

Tapering downweights the observations at both extremes of the observed stretch
of data, using a smooth function that leaves mainly unchanged the central part of the
sample. We use the full cosine window

ht

1

2
1 cos

2pt

T

� �� �
,

so the tapered periodogram is

Ih
uuðlÞ jwh

uðlÞj
2; wh

uðlÞ 2p
XT

t 1

h2
t

 !�1=2XT

t 1

htut expðiltÞ,

and define for J 1; 2; . . . ; fixed with T ; the pooled tapered periodogram

I ðJÞuu ðljÞ
XJ

r 1

Ih
uuðljþr�J Þ; j ‘ þ J þ 1; ‘ þ 2J þ 1; . . . ;m,
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suppressing reference to tapering and assuming that ðm ‘ 1Þ=J is integer. Note
that even for ‘ 0 we suppress the first tapered periodogram ordinate Ih

uuðl1Þ to
avoid zero frequency leakage (see Velasco, 1999a). The pooled log periodogram
estimate of the memory parameter d considered in Robinson (1995a) using the
mentioned frequencies is

bdðJÞðuÞ Xm

j ‘ðJÞ

W 2
j

 !�1 Xm

j ‘ðJÞ

W j log I ðJÞuu ðljÞ,

where it is shown that letting J41; fixed with T, improves the efficiency of bdðJÞðuÞ:
Note that at the same time, since the tapered periodograms at Fourier frequencies lj

are not asymptotically uncorrelated, there is now serial correlation among the
log I ðJÞuu ðljÞ; increasing the asymptotic variance of the tapered bdðJÞðuÞ:

We adapt the set up of Velasco (2000) to investigate the consistency of bdðJÞðûÞ for
non Gaussian data as follows. Instead of Gaussianity we introduce a fourth order
stationary linear process condition, with filter coefficients compatible with (1). Let
bxc denote the largest integer equal or less than x.

Assumption 4. Any zt 2 fDd̄ut;Dx1t; . . . ;Dxktg; d̄ bdþ 0:5c; satisfies

zt

X1
j 0

aðzÞj �
ðzÞ
t�j ;

X1
j 0

ðaðzÞj Þ
2o1,

where the �ðzÞt are i.i.d. with E½�ðzÞt � 0; E½ð�ðzÞt Þ
2
� 1 and E½ð�ðzÞt Þ

4
�o1; and in a

neighbourhood ð0; eÞ of the origin, azðlÞ
P1

j 0 a
ðzÞ
j expðijlÞ is differentiable with

jd=dlazðlÞj Oðjlj�1jazðlÞjÞ as l! 0:

Assumption 4 was used in Robinson (1995b) with martingale difference
innovations; four bounded moments are enough for all our consistency results.
We next introduce a further assumption following Chen and Hannan (1980):

Assumption 5. �ðzÞt has characteristic function cðyÞ E½expðiy�ðzÞt Þ� satisfying

sup
jyjXy0

jcðyÞj dðy0Þo1; 8y040; and

Z 1
�1

jcðyÞjp dyo1 for some integer p41.

The first part of Assumption 5 is a Cramér condition, satisfied by distributions
with a non zero absolute continuous component, while the second part implies that
�t has a probability density function. We need this condition to use an asymptotic
approximation for the probability density of a finite length vector of discrete Fourier
transforms of the innovations �t (see Velasco, 2000). It holds for Gaussian series, as
the first part of Assumption 4, but also for all usual continuous distributions.

In the next theorem we consider residual based estimates of d using choices of
bandwidths ‘; m which are powers of T as in previous sections. Furthermore the
pooling parameter has to satisfy certain conditions in order to control bias, see

13



Assumptions A.8 and A.9 in Appendix A. We only analyse consistency in multiple
regressions.

Theorem 4. Under Assumptions 1, 2, 4, 5 for ut and xjt; A.3 and A.8 then as T !1;
0:5ododo1:5;

logTðbdðJÞðDûÞ dÞ!p0.

If additionally Assumption A.9 holds when d þ do1; 0pdodo1:5; then

logTðbdðJÞðûÞ dÞ!p0.

When using original residuals we are now able to deal with values 0:5pdodo1:5
because the tapered periodogram of the non stationary data xt remains asympto
tically unbiased for f xxðlÞ when dX1; unlike for untapered data. The consistency ofbdðJÞðDûÞ when 0pdp0:5 could be analysed following the methods of Theorems 8 and
9 of Velasco (1999a).

We find, as with Gaussian data, that the conditions on the bandwidths m and ‘
imposed by Theorem 4 are more restrictive in Case II, d þ do1: These imply no
further restrictions on the values of d and d because sufficiently large values of J

guarantee that feasible choices of m and ‘ exist to construct consistent estimates of d;
even for arbitrarily small values of d d40; as can be deduced from Assumptions
A.8 and A.9.
5. Monte Carlo evidence
In this section we investigate the residual based log periodogram regression
according to Theorems 1 and 2 and Corollary 1 experimentally. Let x0t
ðx1t; . . . ;xktÞ consist of ARFIMAð0; di; 0Þ series,

ð1 LÞdi xit �it; i 1; 2; . . . ; k.

The true regression model is

yt

Xk

i 1

xit þ ut; t 1; 2; . . . ;T ,

with ð1 LÞdut �0t; where �it are i.i.d.ð0;s2Þ processes independent of each other,
i 0; 1; . . . ; k: Stationary fractionally integrated series are simulated without
approximation using the algorithm by Hosking (1984), and non stationary series
are obtained by integration. The �it areNð0; 1Þ; or drawn from a t distribution with 3
degrees of freedom or from a w2 distribution with 5 degrees of freedom. In the latter
two cases the variates have been standardized. This t distribution has only finite
second but not higher moments, while the w2 is skewed to the right.

The regression model is estimated by OLS,

yt baþ bb0xt þ ût; t 1; 2; . . . ;T .
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Next, the periodogram is computed from the differenced or original residuals. The
corresponding log periodogram regressions are

logðI ûûðljÞÞ bcþ bdðûÞRj þ v̂j ; j ‘ þ 1; ‘ þ 2; . . . ;m; lj 2pj=T ,

logðIDûDûðljÞÞ bcþ dd 1ðDûÞRj þ v̂j ; j ‘ þ 1; ‘ þ 2; . . . ;m,

lj 2pj=ðT 1Þ,

with Rj logð4 sin2ðlj=2ÞÞ � 2 logðljÞ rj : Three different standard errors can
be considered. The usual empirical standard error is given by

1

m ‘

Xm

j ‘þ1

v̂2j

Xm

j ‘þ1

ðRj R̄‘Þ
2

 !�1vuut ; R̄‘
1

m ‘

Xm

j ‘þ1

Rj .

A theoretical modification of the empirical standard errors has been motivated
already by Geweke and Porter Hudak (1983):

s:e:
p2

6

Xm

j ‘þ1

ðRj R̄‘Þ
2

 !�1vuut ; R̄‘
1

m ‘

Xm

j ‘þ1

Rj. (7)

Finally, the asymptotic standard error due to Robinson (1995a) is p= 24m
p

:
Throughout all experiments we found that the theoretical modification given in (7)
outperforms the empirical and the asymptotic standard errors in terms of coverage
probabilities. Therefore, only the outcome of t statistics relying on (7) is reported.
The test statistics considered hence are

td
bdðûÞ d

s:e:
; td

dd 1ðDûÞ þ 1 d
s:e:

.

In our experiments the t statistics are compared with standard normal percentiles.
Two sided tests at the 1%, 5% and 10% level are applied. We only report results for
m T0:5; although a more elaborate choice of optimal m has recently been suggested
by Hurvich and Deo (1999) and other deterministic choices such as m T0:4;T0:7

have been tried. These produced similar results, as expected, since given fractionally
integrated noise models the choice of m should not matter to our main interest, the
size of the test (as long as m is big enough) though power increases with m (and does
not vary with T). The trimming parameter ‘ is varied very slowly.

Simulations not reported here, in agreement with previous analysis, indicate that
the normal approximation is valid for true errors irrespective of any trimming ð‘X0Þ;
use of nonstationary levels ðd40:5Þ; or leptokurtic t or skewed w2 distributions. Our
Monte Carlo design tries to address the validity of these points for residuals and we
start investigating how the experimental level of residual based cointegration tests
depends on some of the assumptions that we found sufficient to establish limiting
normality.

15



Tables 1 and 2 report percentages of rejection from 2000 replications when testing
for the true value of d using (differences of) residuals from bivariate regressions with

Gaussian variables. We observe:
(a) Without trimming, ‘ 0; the normal approximation is not valid, at least with the

original residuals without differencing.

(b) Trimming only the first frequency, ‘ 1; provides a satisfactory normal

approximation for T 250 and T 1000 (and also T 500 not reported here).

(c) Even if the gap between d and d is not as big as it should be according to the
theory, i.e. dod 0:5 does not hold, the normal distribution in Tables 1 and 2
still yields a useful approximation in case of trimming the first frequency.
Table 1

Experimental level in case of differenced residuals (td), k ¼ 1

d a (%) d ¼ 1:0 d ¼ 0:9 d ¼ 0:8 d ¼ 0:7 d ¼ 0:6 ‘

T ¼ 250; m ¼ 16

1 1.10 1.15 1.45 1.65 2.10

1.4 5 4.70 5.55 5.10 6.00 6.20 0

10 9.75 11.20 10.20 9.85 11.20

1 1.45 1.30 1.15 1.10 1.45

1.4 5 5.65 4.90 5.25 4.95 5.05 1

10 10.50 10.50 10.05 9.85 9.10

1 1.90 1.75 1.60 1.55 1.85

1.0 5 6.50 6.25 5.40 5.60 5.20 0

10 12.15 12.00 10.70 11.15 10.85

1 1.60 2.05 1.30 1.40 1.35

1.0 5 5.15 5.60 5.00 5.10 5.65 1

10 10.00 9.35 8.60 9.25 10.15

T ¼ 1000; m ¼ 32

1 1.80 1.55 1.25 0.85 1.45

1.4 5 6.20 5.75 6.10 5.45 5.30 0

10 10.60 10.80 10.90 10.75 10.35

1 1.10 1.30 1.20 1.30 0.90

1.4 5 4.80 4.90 4.90 4.30 4.70 1

10 10.30 9.30 9.85 8.15 10.45

1 1.50 1.25 1.60 1.85 1.35

1.0 5 5.95 5.50 5.70 6.60 6.55 0

10 10.75 10.55 10.45 11.45 11.75

1 1.20 1.25 1.60 1.10 1.35

1.0 5 5.00 4.80 5.05 4.00 5.60 1

10 9.75 9.50 9.85 9.40 10.00

The variables are integrated of order d while the errors are IðdÞ: All series are constructed from innovations

that follow a Nð0; 1Þ distribution. Tests for the true value of d built upon differenced residuals from

bivariate regressions. Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based on a

standard normal approximation of td: The trimming number is ‘:
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(d) Even without cointegration, e.g. d d 1 in Tables 1 and 2, the normal
approximation seems to provide a reasonable guideline as long as trimming is

Table 2

Experimental level in case of original residuals (td), k ¼ 1

d a (%) d ¼ 1:0 d ¼ 0:8 d ¼ 0:6 d ¼ 0:4 d ¼ 0:2 ‘

T ¼ 250; m ¼ 16

1 2.85 2.25 2.40 2.25 2.45

1.4 5 8.30 8.10 8.00 7.00 7.25 0

10 15.15 13.70 14.10 11.95 12.10

1 1.80 1.45 1.55 1.40 1.50

1.4 5 5.85 5.55 5.25 5.40 4.90 1

10 9.80 10.05 9.15 9.25 9.25

1 3.15 3.00 2.65 2.20 2.50

1.0 5 8.65 8.35 8.15 7.20 6.85 0

10 14.40 14.15 13.75 12.15 12.25

1 1.55 1.25 1.35 1.20 1.35

1.0 5 4.85 5.90 5.70 5.05 5.60 1

10 9.15 9.30 10.15 9.25 9.30

T ¼ 1000; m ¼ 32

1 2.55 2.60 2.60 2.70 2.65

1.4 5 7.80 7.80 7.05 8.30 7.30 0

10 12.70 13.90 11.60 14.20 12.60

1 1.20 1.40 1.05 1.35 1.45

1.4 5 4.65 5.55 4.80 5.35 5.50 1

10 9.45 10.75 9.40 9.90 10.40

1 2.60 2.00 2.25 2.20 2.00

1.0 5 7.00 7.45 7.40 6.95 6.20 0

10 12.25 12.30 12.25 11.80 10.70

1 1.35 1.55 1.25 1.45 1.40

1.0 5 4.35 6.05 5.65 5.55 5.35 1

10 9.05 11.60 10.65 9.65 10.20

The variables are integrated of order d while the errors are IðdÞ: All series are constructed from innovations

that follow a Nð0; 1Þ distribution. Tests for the true value of d built upon original residuals from bivariate

regressions. Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based on a standard

normal approximation of td: The trimming number is ‘:
applied.

Table 3 considers the power of residual based tests from bivariate regressions and
can be summarized as follows:
(e) As the trimming parameter grows, power decreases.
(f) The difference in power between the log periodogram regression of differences or
levels of residuals when testing for d 1 is negligible.
0

(g) From the levels of residuals one may test for d0 0; while tests for this

hypothesis from differences (not reported here) suffer from gross size distortion.
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Tables 4 and 5 are constructed from residuals from bivariate regressions where
2

Table 3

5% power in case of residuals, k ¼ 1

T d0 ¼ 1:0 d1 ¼ 0:9 d1 ¼ 0:8 d1 ¼ 0:7 d1 ¼ 0:6 ‘

Differenced residuals (td¼d0 )
250 5.65 6.40 9.50 18.05 26.95 1

ðm ¼ 16Þ 5.35 6.30 8.35 12.80 19.50 2

1000 5.15 8.25 19.70 44.35 67.40 1

ðm ¼ 32Þ 5.55 7.60 15.95 32.25 56.05 2

Original residuals (td¼d0 )

250 5.85 6.35 10.35 17.90 29.35 1

ðm ¼ 16Þ 5.85 5.90 8.30 13.55 20.20 2

1000 4.85 8.30 19.05 43.85 71.05 1

ðm ¼ 32Þ 4.30 7.45 15.40 32.10 57.45 2

Original residuals (td¼d0 )

T d0 ¼ 0:0 d1 ¼ 0:1 d1 ¼ 0:2 d1 ¼ 0:3 d1 ¼ 0:4 ‘
250 5.75 6.25 8.85 18.25 28.45 1

ðm ¼ 16Þ 5.00 6.00 9.00 14.45 21.15 2

1000 5.75 8.25 23.90 48.05 71.60 1

ðm ¼ 32Þ 4.35 8.15 17.95 35.05 57.85 2

The regressor is integrated of order 1.4 while the errors are Iðd0Þ under the respective null hypotheses and
Iðd1Þ under the alternatives. All series are constructed from innovations that follow a Nð0; 1Þ distribution.
Tests for d0 built upon differenced or original residuals from bivariate regressions. Percentage of rejections

of two-sided tests at the 5% level based on a standard normal approximation of td or td; respectively. The
trimming number is ‘:
regressors and errors rely on either t or w distributions (similar results not reported
here arise for t distributed regressors and w2 distributed residuals and the other way
round). We observe:

(h) The statements (a) (d) continue to hold in case of the considered leptokurtic and
skewed distributions.
Next, we investigated the log periodogram regression (of differences) of residuals
from trivariate regressions, k 2; where all variables are constructed from Gaussian

variates. Again, without trimming the normal approximation is clearly not useful.

Furthermore, the following findings arise from Tables 6 and 7.

(i) If d1 d2 1:4; trimming of only the first harmonic frequency, ‘ 1; results in a
fairly reliable normal approximation. This is also true for the log periodogram
regression of residuals without differencing even if d40:5: Moreover, it seems to

hold in case of a cointegration gap smaller than 0.5, e.g. for d 1:
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(j) If d1 1:4 and d2 0:6; cases I and II are mixed when d 0:2; which violates
Assumption 3. Nevertheless, the normal approximation provides a valid guideline

Table 4

Experimental level in case of differenced residuals (td), k ¼ 1; T ¼ 250

d a (%) d ¼ 1:0 d ¼ 0:9 d ¼ 0:8 d ¼ 0:7 d ¼ 0:6 ‘

t3
1 2.40 2.00 1.35 2.10 1.70

1.4 5 6.60 6.25 5.35 7.35 7.30 0

10 11.30 11.15 10.20 12.35 12.65

1 0.85 1.15 1.40 0.95 0.85

1.4 5 5.55 5.10 5.30 5.00 4.10 1

10 10.65 9.75 10.45 9.55 9.00

1 2.75 2.30 1.85 2.10 1.65

1.0 5 6.75 7.05 6.15 5.80 5.55 0

10 11.85 11.35 11.35 10.30 10.70

1 1.30 1.25 1.15 1.44 1.40

1.0 5 5.05 5.30 5.05 4.55 4.35 1

10 10.10 9.25 9.45 9.10 9.95

w2ð5Þ
1 1.85 1.55 2.40 1.95 1.75

1.4 5 7.25 5.95 6.05 6.25 5.95 0

10 12.20 11.50 11.10 10.60 11.55

1 1.00 0.90 1.40 1.30 1.65

1.4 5 4.25 5.20 5.70 5.25 5.65 1

10 10.05 10.20 10.80 9.80 11.05

1 2.50 2.50 1.95 2.80 1.90

1.0 5 8.00 6.50 6.55 7.40 6.65 0

10 14.05 12.35 11.55 12.85 11.45

1 1.95 1.25 1.35 1.55 1.15

1.0 5 5.00 5.90 5.10 5.30 4.65 1

10 10.40 10.55 10.00 9.85 10.20

The variables are integrated of order d while the errors are IðdÞ: All series are constructed from innovations

that follow either t3 or w2ð5Þ distributions. Tests for the true value of d built upon differenced residuals

from bivariate regressions. Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based

on a standard normal approximation of td: The trimming number is ‘ and m ¼ 16:
in case of trimming the first frequency (original residuals). Surprisingly, this also
seems to hold for T 250 even if d4d2 0:6; where Assumption 3 is again
violated. For T 1000 observations slightly different results emerge: in case that
d4d2 0:6 trimming only one harmonic frequency is not sufficient for a normal
approximation, so trimming may need to grow with sample size.

We have also investigated in Tables 8 and 9 the effects of pooling a small number J

of periodogram ordinates. In this case the asymptotic variance of the log
periodogram estimate is reduced and we replace in the expression for the standard
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errors p2=6 by the general expression c0ðJÞ=J for J 1; 2; . . . ; where c is the
digamma function (cf. Robinson, 1995a). Further to the previous findings, we can

Table 5

Experimental level in case of original residuals (td), k ¼ 1; T ¼ 250

d a (%) d ¼ 1:0 d ¼ 0:8 d ¼ 0:6 d ¼ 0:4 d ¼ 0:2 ‘

t3
1 3.35 3.65 3.30 3.25 2.75

1.4 5 9.50 9.05 9.55 8.50 8.30 0

10 15.30 14.80 16.20 14.15 14.50

1 1.45 1.20 1.20 1.70 1.65

1.4 5 5.25 5.10 4.85 4.80 6.25 1

10 10.20 9.75 9.50 9.00 10.30

1 3.00 2.60 2.25 2.35 2.20

1.0 5 8.35 7.25 7.90 7.10 7.20 0

10 14.10 12.35 14.00 12.80 12.55

1 1.55 0.90 1.60 1.35 1.60

1.0 5 5.80 4.70 4.75 5.35 5.90 1

10 10.05 10.25 10.15 9.90 10.85

w2ð5Þ
1 3.45 3.40 2.75 3.30 2.95

1.4 5 10.20 8.25 9.35 10.70 7.45 0

10 15.30 13.95 15.25 17.15 13.10

1 1.25 1.50 1.10 1.15 1.65

1.4 5 4.80 5.05 5.05 5.05 5.80 1

10 9.15 9.25 10.85 10.45 9.60

1 3.55 3.40 2.95 2.65 1.75

1.0 5 9.10 8.65 7.85 7.40 6.50 0

10 14.40 13.70 12.85 12.90 11.15

1 1.30 1.20 1.40 1.10 1.35

1.0 5 4.90 4.75 4.70 4.90 4.90 1

10 9.05 9.95 9.10 9.20 8.85

The variables are integrated of order d while the errors are IðdÞ: All series are constructed from innovations

that follow either t3 or w2ð5Þ distributions. Tests for the true value of d built upon the levels of residuals

from bivariate regressions. Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based

on a standard normal approximation of td: The trimming number is ‘ and m ¼ 16:
state that for Gaussian and other distributions (not reported here),

(k) The larger J, the larger the power with ‘ 1 when testing d0 1 with differenced
residuals or d0 0 with original ones, keeping good size properties.
(l) Use of original residuals with J41 when testing d0 1 requires ‘ 2 to
maintain size, resulting in a noticeable power loss compared to testing based on
errors (Table 8).
This Monte Carlo evidence can be summarized as follows as a rule of thumb for
empirical work with bivariate and multiple regressions: If the log periodogram

20



regression is applied to the level of OLS residuals with trimming of the first harmonic
frequency only, then the normal approximation of the t statistic td with theoretical

Table 6

Experimental level in case of differenced residuals (td), k ¼ 2

d1 d2 a (%) d ¼ 1:0 d ¼ 0:9 d ¼ 0:8 d ¼ 0:7 d ¼ 0:6 ‘

T ¼ 250; m ¼ 16

1 3.30 3.20 3.45 2.65 1.70

1.4 1.4 5 8.90 8.00 8.65 8.70 6.40 0

10 14.70 13.75 14.10 14.65 11.95

1 1.15 1.45 1.50 1.55 0.95

1.4 1.4 5 5.65 5.25 4.50 6.35 4.60 1

10 10.60 9.85 9.75 10.75 9.45

1 2.25 1.85 1.70 1.90 1.80

1.4 0.6 5 7.40 5.95 6.00 6.90 5.45 0

10 12.65 12.00 11.20 11.15 11.55

1 1.40 1.40 1.65 1.55 1.55

1.4 0.6 5 5.10 5.20 6.15 5.55 5.10 1

10 9.25 9.80 11.35 10.75 10.20

T ¼ 1000; m ¼ 32

1 2.60 2.40 2.35 2.40 2.60

1.4 1.4 5 7.40 7.60 7.20 6.85 7.35 0

10 12.40 13.65 12.10 12.00 12.70

1 0.90 1.00 1.15 0.95 1.35

1.4 1.4 5 4.45 5.40 4.60 4.65 6.20 1

10 10.35 10.45 10.20 10.15 11.00

1 3.00 2.35 1.90 1.50 2.10

1.4 0.6 5 9.50 7.30 7.25 6.00 6.45 0

10 14.60 12.20 12.30 11.00 11.80

1 3.00 1.85 1.35 1.30 1.35

1.4 0.6 5 8.65 7.20 5.70 5.20 5.20 1

10 15.25 12.85 10.65 9.80 9.05

The regressors are integrated of order d1 and d2 while the errors are IðdÞ: All series are constructed from

innovations that follow aNð0; 1Þ distribution. Tests for the true value of d built upon differenced residuals

from trivariate regressions. Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based

on a standard normal approximation of td: The trimming number is ‘:
standard errors s:e: should yield reliable inference when we test for any d between 0
and 1. This is valid even for not Gaussian data and even if dodi 0:5 does not hold
for all i, except of the extreme case where diod for some i. The same seems to hold
true for the t statistic td from differences for any d between 0.5 and 1. If sample size is
large enough, pooling increases power with ‘ 1:
Finally, we want to propose an empirical research strategy as an overall summary

of our results. In most economic applications there are two null hypotheses (with
corresponding alternatives) of major interest:

H
ð1Þ
0 : d 1 vs: do1; H

ð0Þ
0 : d 0 vs: d40.
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We suggest to test H
ð1Þ
0 from the differences of residuals, while clearly H

ð0Þ
0 should be

tested from levels. If, first, both hypotheses are rejected, there is fractional

Table 7

Experimental level in case of original residuals (td), k ¼ 2

d1 d2 a (%) d ¼ 1:0 d ¼ 0:8 d ¼ 0:6 d ¼ 0:4 d ¼ 0:2 ‘

T ¼ 250; m ¼ 16

1 9.35 7.65 5.85 6.50 5.75

1.4 1.4 5 18.80 17.40 16.00 14.90 14.15 0

10 26.80 25.50 23.25 21.60 20.30

1 1.10 1.70 1.60 1.60 1.50

1.4 1.4 5 5.75 5.30 5.05 5.80 5.65 1

10 9.85 10.15 9.70 10.15 9.90

1 4.90 4.35 3.75 5.10 2.65

1.4 0.6 5 12.70 10.70 10.40 11.85 8.40 0

10 19.10 17.35 17.45 16.85 13.85

1 1.60 1.55 2.05 1.90 1.20

1.4 0.6 5 5.90 6.10 6.25 6.40 4.80 1

10 10.50 11.10 10.80 10.80 9.60

T ¼ 1000; m ¼ 32

1 7.45 5.50 5.80 5.30 5.65

1.4 1.4 5 14.05 13.50 13.55 13.45 13.10 0

10 21.95 20.75 20.55 20.85 18.90

1 1.35 1.65 1.95 1.95 0.90

1.4 1.4 5 4.85 5.70 6.80 6.45 4.15 1

10 9.70 11.75 11.55 11.45 9.35

1 5.05 3.65 3.80 3.50 3.05

1.4 0.6 5 13.60 10.10 10.25 8.55 7.55 0

10 20.50 16.15 15.05 14.20 13.35

1 2.85 1.35 1.05 1.60 1.60

1.4 0.6 5 8.70 5.20 4.25 6.30 5.50 1

10 15.10 8.90 8.80 10.65 11.20

The regressors are integrated of order d1 and d2 while the errors are IðdÞ: All series are constructed from

innovations that follow a Nð0; 1Þ distribution. Tests for the true value of d built upon original residuals

from trivariate regressions. Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based

on a standard normal approximation of td: The trimming number is ‘:
cointegration, i.e. we have long memory but transitory equilibrium deviations. The
degree of persistence d should then be estimated from the levels of the residuals;
approximate confidence intervals allow to test whether the estimate is significantly
different from 0.5, the borderline of non stationarity. If, second, H

ð0Þ
0 is not rejected

while H
ð1Þ
0 is, we have the strong cointegration result that the errors may be

considered as Ið0Þ: If, third, Hð0Þ0 is rejected while H
ð1Þ
0 must be accepted, the error

should be considered as Ið1Þ; i.e. persistent, and there is no long run equilibrium. If,
finally, none of these hypotheses can be rejected, more data should be used to
increase power.
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6. Exchange rate dynamics

Table 8

5% power in case of errors with pooling, k ¼ 1

Pooling d0 ¼ 1:0 d1 ¼ 0:9 d1 ¼ 0:8 d1 ¼ 0:7 d1 ¼ 0:6 ‘

Differenced errors (td d0 )

5.10 8.50 17.35 32.15 50.00 0

J ¼ 2 5.05 6.45 11.10 18.55 29.35 1

5.25 6.25 9.10 14.90 23.20 2

5.20 7.60 16.50 29.25 45.40 0

J ¼ 3 5.45 7.25 12.55 21.70 35.55 1

4.70 6.05 8.55 12.10 17.75 2

Original errors (td d0 )

Pooling d0 ¼ 1:0 d1 ¼ 0:9 d1 ¼ 0:8 d1 ¼ 0:7 d1 ¼ 0:6 ‘
10.85 7.05 6.85 12.40 24.00 0

J ¼ 2 6.35 5.60 6.95 11.35 20.35 1

4.30 5.15 6.95 10.35 16.55 2

31.45 19.25 9.85 7.75 12.00 0

J ¼ 3 11.80 8.30 7.10 8.95 15.35 1

6.00 5.70 5.50 8.05 10.85 2

Original errors (td d0 )

Pooling d0 ¼ 0:0 d1 ¼ 0:1 d1 ¼ 0:2 d1 ¼ 0:3 d1 ¼ 0:4 ‘
5.10 7.30 18.20 37.50 59.65 0

J ¼ 2 5.05 7.20 12.00 22.00 35.25 1

5.25 6.00 9.45 16.00 26.50 2

5.20 6.95 17.75 35.95 59.45 0

J ¼ 3 5.45 6.75 13.30 25.15 39.75 1

4.70 6.00 8.75 13.50 21.70 2

Errors are Iðd0Þ under the respective null hypothesis and Iðd1Þ under the alternatives. All series are

constructed from innovations that follow aNð0; 1Þ distribution. Percentage of rejections of two-sided tests

at the 5% level based on a standard normal approximation of td or td; respectively. Sample size is T ¼ 250:
The bandwidth is m ¼ 16: The trimming number is ‘: The pooling number is J.
In a cointegration study with integer orders of integration, Baillie and Bollerslev
(1989) argued that seven different nominal spot exchange rates, namely, Germany,
the United Kingdom, Japan, Canada, France, Italy and Switzerland, all relative to
the US Dollar and observed daily from 1980 to 1985, do contain unit roots in their
univariate time series representations, giving also evidence in support of the existence
of a single cointegrating vector between this set of nominal exchange rates. Such a
cointegration relation has been questioned and found to be fragile by Sephton and
Larsen (1991) and Diebold et al. (1994) even though both used the same data set.
Diebold et al. note that the lack of cointegration is reinforced when using data
covering the post 1973 floating exchange rate regime. Subsequently, Baillie and
Bollerslev (1994) collected more reliable evidence in a fractional set up, generalizing
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the error correction formulation to allow for possible fractional cointegration. They
find evidence that a linear combination of the same spot exchange rates contains

Table 9

5% power in case of residuals with pooling, k ¼ 1

Pooling d0 ¼ 1:0 d1 ¼ 0:9 d1 ¼ 0:8 d1 ¼ 0:7 d1 ¼ 0:6 ‘

Differenced residuals (td d0 )

5.20 8.50 16.90 32.05 50.35 0

J ¼ 2 5.55 6.20 10.15 17.75 29.15 1

5.20 6.15 9.10 13.85 23.10 2

5.20 7.25 15.80 29.10 45.20 0

J ¼ 3 5.55 7.05 12.00 21.40 35.10 1

5.50 6.05 8.20 12.30 18.05 2

Original residuals (td d0 )

Pooling d0 ¼ 1:0 d1 ¼ 0:9 d1 ¼ 0:8 d1 ¼ 0:7 d1 ¼ 0:6 ‘
9.65 8.55 13.95 25.80 42.05 0

J ¼ 2 6.70 5.80 7.75 12.50 21.55 1

5.60 5.50 6.45 10.80 17.35 2

21.30 11.80 8.25 13.15 23.10 0

J ¼ 3 13.15 7.55 6.65 9.80 16.65 1

7.05 5.65 5.60 7.45 10.50 2

Original residuals (td d0 )

Pooling d0 ¼ 0:0 d1 ¼ 0:1 d1 ¼ 0:2 d1 ¼ 0:3 d1 ¼ 0:4 ‘
6.90 6.25 12.20 25.10 45.35 0

J ¼ 2 5.10 6.55 11.40 19.80 31.10 1

5.15 5.40 9.20 15.10 25.00 2

6.80 6.50 12.25 24.90 44.40 0

J ¼ 3 5.65 6.20 11.85 22.25 37.30 1

4.75 5.70 8.05 13.00 21.60 2

The regressors are integrated of order 1.4 while the errors are Iðd0Þ under the respective null hypothesis

and Iðd1Þ under the alternatives. All series are constructed from innovations that follow a Nð0; 1Þ
distribution. Tests for d0 built upon original residuals from bivariate regressions. Percentage of rejections

of two-sided tests at the 5% level based on a standard normal approximation of td or td; respectively.
Sample size is T ¼ 250: The bandwidth is m ¼ 16: The trimming number is ‘: The pooling number is J.
long range dependence. In particular, they estimate an error correction term with
memory 0.89 in a fractional white noise model, with an (asymptotic) standard error
of 0.02.

In this section we confirm their results for the same seven currencies. We use
monthly data taken from Citibase and run from 1974.1 until 1997.12, which leaves us
with T 288 observations. Following Baillie and Bollerslev (1994), the logarithms
of the data are analysed. The use of monthly observations may help to control
changing conditional variances and should not affect the analysis of long run
properties compared to higher frequency data.
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Table 10

Correlogram of CAN

First First

Levels differences Levels differences

Lag ACF PACF

1 0.988 0.204 0.988 0.204

2 0.975 0.019 0.041 0.063

3 0.963 0.015 0.024 0.034

4 0.951 0.056 0.023 0.046

5 0.937 0.047 0.074 0.071

6 0.923 0.024 0.019 0.056

7 0.910 0.010 0.027 0.015

8 0.895 0.193 0.017 0.207

9 0.879 0.107 0.081 0.028

10 0.863 0.229 0.025 0.233

Correlogram and partial correlogram for the Canada exchange rate. The asymptotic standard error is

0.117 under the null of no correlation.
On application of the well known ADF test to our data set, we obtain p values
greater than 0.05. Moreover, in some cases we cannot reject the presence of a unit
root at any conventional significance level. For example, in the Canadian case, the
value obtained of the ADF test is 0.63, whereas the 10% critical value is 2.87. To
further confirm this claim, in Table 10 we present the ACF and PACF of the levels
and first differences of the Canada exchange rate series. It can be observed that the
autocorrelations exhibit the typical very slow decline associated with a nonstationary
process, and that the autocorrelations of the change, i.e. the autocorrelations of the
approximate rate of return, are all them small.

Nonetheless, an alternative potential explanation for the high persistence of the
exchange rate is the possibility that the memory parameters of these series may be
fractional, since it is well known that standard integer order unit root tests have low
power against fractional alternatives (cf., e.g., Hassler and Walter, 1994; Dolado and
Marmol, 1997).

In order to confirm this possibility, we start with determining the memory of the
individual series by applying the log periodogram regression without trimming, ‘
0; to the differences of the original data. The regression range was chosen as m

18; 20; 22: This choice provided fairly stable estimates and avoids the first seasonal
frequency, which given our monthly data is lT=12 l24: However these bandwidths
are far from mean square optimal choices, T4=5 � 93; which would lead to serious
bias in semiparametric estimates and distortions in our statistical inference.

With the standard errors s:e: from (7), the estimates presented in Table 11 for
Germany, UK, Switzerland and Japan are not significantly different from 1, while
France, Italy and Canada have significantly larger values. Consequently, if we test
according to Robinson (1995a) that all seven estimates are equal, the p value of the
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Wald statistics are always less than 0.001. Note that this multivariate inference is
only valid under no cointegration (cf. Assumption A.2). The null hypothesis that

Table 11

Individual memory, 1974.1 1997.12

GER UK SWI JAP FRA ITA CAN

m ¼ 18 bdðDuÞ 1.17 1.02 0.86 1.24 1.41 1.34 1.40

td¼1 0.88 0.10 0.72 1.23 2.11 1.75 2.06

m ¼ 20 bdðDuÞ 1.15 1.10 0.84 1.23 1.33 1.34 1.44

td¼1 0.81 0.53 0.88 1.29 1.84 1.86 2.42

m ¼ 22 bdðDuÞ 1.18 1.15 0.84 1.16 1.31 1.32 1.35

td¼1 1.07 0.88 0.93 0.94 1.80 1.90 2.05

Log-periodogram regression of differences of logarithms with ‘ ¼ 0: The t statistics built on the standard

errors s:e: ¼ 0:194; 0:181; 0:170 for m ¼ 18; 20; 22; respectively.

Table 12

Residual analysis for separate regressions

m 17 18 19 20 21 22

s:e: 0.262 0.250 0.240 0.230 0.221 0.213

FRA on ITA, CANbdðDûÞ 1.37 1.23 1.18 1.14 1.05 0.99

td¼1 1.41 0.92 0.75 0.61 0.23 0.05

GER on UK, SWI, JAPbdðDûÞ 0.79 0.74 0.88 0.89 0.84 0.92

td¼1 0.80 1.04 0.50 0.48 0.72 0.38

Log-periodogram regression of differenced residuals with ‘ ¼ 1: The t statistics built on the standard error

s:e: from (7).
France, Italy and Canada have the same memory parameter, however, is clearly not
rejected (p value 40:964), while the hypothesis of a common d of Germany, UK,
Switzerland and Japan is not rejected at the 5% level for small m. We conclude that
there are two groups of data: Germany, UK, Switzerland and Japan may be
considered as Ið1Þ; while the order of integration of France, Italy and Canada is
roughly 1.4.

We hence start with separate cointegrating regressions and apply the log
periodogram regression to differenced residuals. First, France is regressed on Italy
and Canada, see the upper panel in Table 12. With trimming the first frequency,
‘ 1; and varying m we clearly cannot reject that the residuals are integrated of
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Table 13

Final residual analysis

GER on UK, SWI, JAP and RES(FRA on ITA, CAN)

m 17 18 19 20 21 22

From differences, H0 : d ¼ 1bdðDûÞ 0.46 0.49 0.62 0.67 0.65 0.66

td 1 2.06 2.04 1.58 1.44 1.58 1.60

p-val. 0.020 0.021 0.057 0.075 0.057 0.055

From levels, H0 : d ¼ 0bdðûÞ 0.63 0.61 0.67 0.69 0.66 0.68

td 0 2.41 2.44 2.79 3.00 2.99 3.19

p-val. 0.008 0.007 0.003 0.001 0.001 0.001

Log-periodogram regression of differenced and original residuals with ‘ ¼ 1: The t statistics built on the

standard error s:e: from Table 12.
order one. Hence, we have three Ið1:4Þ series that cointegrate to Ið1Þ residuals. In the
lower panel of Table 12 it is reported that the null hypothesis that the Ið1Þ series from
Germany, UK, Switzerland and Japan do not cointegrate ðd 1Þ; cannot be
rejected.

Finally, we regress the German data on UK, Switzerland, Japan and the Ið1Þ
residual RES from the regression of France on Italy and Canada. The results with
trimming one frequency are presented in Table 13. From differences we first test the
null of no cointegration, d 1: For all m from 17 to 22 it is rejected at least at the
10% level, and most of the times the p values are close or below the 5% level. At the
same time, the log periodogram regression of the original residuals clearly rejects the
null hypothesis d 0: We conclude that it is fractional cointegration that links the
considered exchange rates. The memory parameter d of the equilibrium deviations is
estimated as approximately 0.65 from levels as well as from differences. It is never
significantly different from 0.5, i.e. we cannot not reject that the error term is non
stationary, although we have found that it is not persistent ðdo1Þ:

We also did the analysis from Table 13 without trimming, ‘ 0: The resulting t

statistics not reported here are very similar to those from Table 13, because the
standard errors are smaller without trimming and the estimates are closer to the null.
From levels one roughly estimates bdðûÞ 0:5; while the log periodogram regression
from differences yields approximately bdðDûÞ 0:7: The findings with trimming from
Table 13 where bdðûÞ � bdðDûÞ seem to be more reliable.

7. Concluding remarks
In this paper we followed the route opened by Robinson (1995a, Remark 7) for

sound statistical inference on memory properties of fractional models. He suggested
that given a sufficiently fast rate of convergence of the regression estimator the
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residual based log periodogram regression should result in asymptotic normality just
as with observed series (confer the application in Robinson and Marinucci, 2001).
Indeed, we found that given the gap between the orders of integration of regressors
and error is big enough, the log periodogram regression of residuals gives rise to
limiting normality. This result essentially relies on trimming the very first few
frequencies of the periodogram, a policy that was not employed by the empirical and
experimental papers reviewed in the introduction. We hence obtained simple
conditions for consistent estimation of the degree of persistence in the deviations
from the long run equilibrium which are more general than most parametric models
used in common practice. Given asymptotically normal estimators this allows for
statistical inference of immediate economic interest. We are now able to discriminate
on sound asymptotic grounds between short memory errors, stationary long
memory innovations, non stationary but transitory equilibrium deviations, and
finally non stationary and persistent errors.

Our results also cover the integer cointegration case of Ið1Þ regressors with Ið0Þ
errors. But contrasting the residual based work by Phillips and Ouliaris (1990), Shin
(1994) or more recently Xiao (1999) the asymptotic theory we suggest is standard
and moreover does not depend on the number of regressors. What is more, a system
approach of joint estimation of the orders of integration of regressors and
disturbance term is possible, and a pooled version was shown to be robust to
departures from Gaussianity and from strongly cointegrated systems with d

d40:5: We evaluated the asymptotic results by means of Monte Carlo experiments
where it turned out that trimming only one frequency should be enough for practical
purposes with usual sample sizes.

To illustrate these points we applied the log periodogram regression to a set of
seven nominal exchange rates, collecting evidence that exchange rates are linked by a
fractional cointegration relation. In this respect, with our semiparametric set up we
conclude that there could be two clusters of currencies. On the one hand, Germany,
UK, Switzerland and Japan, that may be considered as Ið1Þ processes. On the other
hand, France, Italy and Canada, with an order of integration about 1.4. We fail to
find evidence of cointegration among the first group of exchange rates, whereas we
cannot reject that the residuals from a regression of France on Italy and Canada are
Ið1Þ: However, we find polynomial cointegration when regressing the German data
on UK, Switzerland, Japan and the residuals from the regression of France on Italy
and Canada, so that they do not drift apart in the long run. The memory parameter
of the equilibrium deviations of this extended regression is about 0.65, i.e. the error
correction term is non stationary but not persistent.
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Appendix A. Assumptions and auxiliary results

For our asymptotic theory we will need to impose the following regularity
assumption (cf. Assumptions 1 and 2 of Robinson, 1995a) which applies either to the
spectral density (of stationary processes) or to the pseudospectral density (of non
stationary processes), imposing the rate in (1).

Assumption A.1. The (pseudo) spectral density f zzðlÞ of zt; z 2 fx; ug
(dx d; du d) satisfies, 0ogp2; 0oGzo1;

f zzðlÞ Gzl
�2dz ð1þOðjljgÞÞ as l! 0,

and is differentiable in a neighbourhood ð0; �Þ of the origin with

d

dl
f zzðlÞ

���� ���� Oðjlj�1�2dz Þ as l! 0.

This assumption holds for standard ARFIMA series with g 2 and for any
fractional model with f ðlÞ ð2 sinðl=2ÞÞ�2dz f �ðlÞ; if in an interval of the origin either
the Ið0Þ short memory spectral density f �ðlÞ is LipschitzðgÞ; 0ogp1; or its derivative
is Lipschitz ðg 1Þ; 1ogp2: The following assumption is a multivariate general
ization of this set up for zt containing possibly both stationary and non stationary
elements (cf. Robinson, 1995a).

Assumption A.2. The (pseudo) spectral density matrix fðlÞ ðf ijðlÞÞ of zt

ðDd̄ut;Dx0tÞ
0 satisfies, 0ogp2; 0oGio1; i; j 0; 1; . . . ; k;

f iiðlÞ Gil
�2Di ð1þOðjljgÞÞ as l! 0,

where d̄ bdþ 0:5c and Do d d̄; and is differentiable in a neighbourhood ð0; �Þ
of the origin with

d

dl
f ijðlÞ

���� ���� Oðjlj�1�Di�Dj Þ as l! 0.

Set the coherence matrix RðlÞ of ðDd̄ut;Dx0tÞ
0; with typical element RijðlÞ

f ijðlÞ=ðf iiðlÞf jjðlÞÞ
1=2; the coherence between zit and zjt: Then Rð0Þ is not singular

and for some a 2 ð0; 2�;

jRijðlÞ Rijð0Þj OðjljaÞ as l! 0.

For tapered periodograms we impose the following assumption strengthening
Assumption A.1, and which holds, for e.g. ARFIMA models with g 2; and relaxes
conditions such as f zzðlÞjlj

2d2 Gz þ Egjljg þ oðjljgÞ; as l! 0; 0oEgo1 used in
Velasco (2000).
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Assumption A.3. Let ut possess a (pseudo) spectral density f uuðlÞ satisfying
Assumption A.1 such that for jojpl=2 and some 1ogp2

f uuðl oÞ f uuðlÞ of 0uuðlÞ þOðjlj�2d�gjojgÞ as l! 0.

The following are restrictions on the bandwidths defined in Assumption 2.

Assumption A.4. maxf0; ð1 d dÞ=ðd d 0:5Þgoboao1; d d40:5:

Assumption A.5. 0oboao2g=ð1þ 2gÞ:

Note that depending on the values of d; d and g; these two assumptions may not
hold simultaneously. Thus, for example, if g 2; like for ARFIMA processes, we
need 9d þ d47; because of ð1 d dÞ=ðd d 0:5Þo4=5; which holds for any dX0
if d4 7

9
:However, we always require d40:75 for Assumption A.4 to hold, because of

ð1 d dÞ=ðd d 0:5Þo1:

Assumption A.6. 0oboao2minfa; gg=ð1þ 2minfa; ggÞ:

Assumption A.7. maxf0; ð1 di dÞ=ðdi d 0:5Þgoboao1; min di d40:5:

Assumption A.8. 0oboao2Jbðd dÞ; gJ=ðJ þ 2Þ41; JX3:

Assumption A.9. When d þ do1; 0oboao2Jfbðd dÞ ð1 d dÞg:

The following theorem is the main result on log periodogram regressions with
observed data.

Theorem A.1. Under Assumption A.1, for Gaussian ut�IðdÞ; 0:5odo0:5; ‘ 0 and

m�1ðlogTÞ2 þ T�2gm1þ2g! 0 as T !1, (8)

then

m1=2ðbdðuÞ dÞ!dN 0;
p2

24

� �
.

Proof of Theorem A.1. It follows from Robinson (1995a), using Hurvich et al. (1998)
techniques to show that trimming of very low frequencies is not necessary for the
asymptotic normality of bd: Though Hurvich et al. (1998) only consider fractional
processes with Ið0Þ innovations which possess a spectral density f �ðlÞ with three
bounded derivatives around l 0; their results are easily generalized to our set up
with 0ogp2 in Assumption A.1. Note that they also used the asymptotically
equivalent regressor logð4 sin2ðlj=2ÞÞ proposed by Geweke and Porter Hudak
(1983) which arises naturally for fractional processes. &

The condition T�2gm1þ2g! 0 as T !1 in (8) reflects the fact that when the
semiparametric model Gul

�2d is not very appropriate for high frequencies, i.e. g is
small in Assumption A.1, m must not grow very fast to avoid higher frequency biases
in the local regression. The logT consistency holds under weaker conditions on
bandwidth numbers, as is shown by estimating the mean square error of bdðuÞ as in
Hurvich et al. (1998).
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Theorem A.2. Under Assumption A.1, for Gaussian ut; 0:5odo0:5; ‘ 0 and

ðm�1 þ ðT�1mÞ2gÞðlogTÞ2 þ T�1m logm! 0 as T !1, (9)

then logTðbdðuÞ dÞ!p0:

In many cases we may wish to exclude the first ‘40 frequencies in the regression
and both asymptotic normality and logT consistency hold as shown originally by
Robinson (1995a):

Corollary A.1. Theorems A.1 and A.2 hold if m�1‘ðlogTÞ2 ! 0 as T !1:

Now follows the general result for multivariate log periodogram regressions.

Theorem A.3. Under Assumption A.2 for Gaussian ðut;Dx0tÞ
0; 0:5od; d 1o0:5; and

m�1ðlogTÞ2 þ T�2minfa;ggm1þ2minfa;gg ! 0 as T !1, (10)

we obtain that

2m1=2ðbdðuÞ dÞ!dNð0;OÞ.

This holds if trimming is introduced as long as ‘m�1ðlogTÞ2! 0 as T !1: The

covariance matrix O can be estimated consistently by the sample regression residuals

covariance matrix, bO ðm ‘Þ�1
Pm

j ‘þ1 êj ê
0
j :

Proof of Theorem 7. This follows from Robinson (1995a), extending
to a multivariate set up the results by Hurvich et al. (1998) to avoid trimming,
‘ 0: &

The following theorem is the basic result for non Gaussian log periodogram
regressions.

Theorem A.4. Under Assumptions 4, 5, A.1, A.3, 0:5pdo1:5; gJ=ðJ þ 2Þ41; JX3;
and

‘�1 þm�1‘ðlogTÞ2 þ T�1m! 0 as T !1, (11)

then bdðJÞðuÞ!pd:

Proof of Theorem A.4. This follows directly using the methods of Velasco (2000) for
0odo0:5: The extension to 0:5odo0 and 0:5pdo1:5 being immediate (cf.
Velasco, 2000, Lemma 3, 1999a, Theorems 4 and A.1). &

We collect in two lemmas several results repeatedly used in our proofs further
down.

Lemma A.1. Under Assumption A.1, 0:5ododo1:5; ‘�1 þmT�1 ! 0 as T !1;
z 2 fx; ug ðdx d; du dÞ; j ‘ þ 1; . . . ;m;

E½IDzDzðljÞ� f DzDzðljÞð1þOðj�1 logðj þ 1ÞÞÞ Oðl2�2dz
j Þ, (12)
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and if zt is Gaussian,

max
‘þ1pjpm

E½ðIDzDzðljÞ=f DzDzðljÞÞ
a
�o1; a4 1, (13)

max
‘þ1pjpm

IDzDzðljÞ=f DzDzðljÞ OpðlogTÞ. (14)

Proof of Lemma A.1. Eq. (12) follows from Robinson (1995a), Theorem 2. For a40;
(13) follows from Gaussianity and (12). For 1oao0; (13) follows from
Gaussianity and the proof of Lemma 5 of Hurvich et al. (1998). They used a

1=4: Finally (14) can be proved using Gaussianity, (13) and adapting the proofs of
Theorems 4.5.1. and 5.3.2. of Brillinger (1975). &

Lemma A.2. Under Assumption A.1, 0pdodo1:5; ‘�1 þm�1T ! 0 as T !1;
z 2 fx; ug (dx d; du d) j ‘ þ 1; . . . ;m; some Ko1;

E½IzzðljÞ=f zzðljÞ�
1þOðj�1 log j þ j2ðdz�1Þ logðj þ 1ÞÞ; dzo1;

pKj2ðdz�1Þ; 1pdzo1:5;

(
and if zt is Gaussian,

max
‘þ1pjpm

E½ðIzzðljÞ=f zzðljÞÞ
a
�o1; a4 1; dzo1;

max
‘þ1pjpm

IzzðljÞ=f zzðljÞ OpðlogTÞ; dzo1;

max
‘þ1pjpm

IzzðljÞj
2ð1�dzÞ=f zzðljÞ OpðlogTÞ; 1pdzo1:5. (15)

Proof of Lemma A.2. It can be proved along the same lines as Lemma A.1,
using now Velasco (1999a) and Hurvich and Ray (1995, Theorem 1) for
non stationary series to bound E½IzzðljÞ=f zzðljÞ�: The remaining results follow from
Gaussianity. &

Appendix B. Proofs
Proof of Theorem 1. All sums run for j ‘ þ 1; . . . ;m if not indicated otherwise.
First we obtain from (4) that
 !�1
bdðDûÞ bdðDuÞ

X
j

W 2
j

Xm

j ‘þ1

W j log
IDuDuðljÞ

IDûDûðljÞ
, (16)

where W j is defined in (5). Note that (8), (9) and the condition on the trimming
hold under the conditions of the theorem with the definition of m and ‘;
so it only remains to show that the effects of the residual approximation are
negligible to deduce the asymptotic properties of bdðDûÞ from those of bdðDuÞ:
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We can write from Eq. (3) that

log
IDûDûðljÞ

IDuDuðljÞ
log 1 ðbb bÞ

wDxðljÞ

wDuðljÞ

� �
þ log 1 ðbb bÞ

wDxð ljÞ

wDuð ljÞ

� �
, (17)

so

max
‘þ1pjpm

ðbb bÞ
wDxðljÞ

wDuðljÞ

���� ����pjbb bj max
‘þ1pjpm

wDxðljÞ

f DxDxðljÞ
p�����

����� max
‘þ1pjpm

f DxDxðljÞ
p

wDuðljÞ

�����
�����.

Since d þ dX1 (Case I), from Lemma A.1 above,

jbb bj max
‘þ1pjpm

wDxðljÞ

f DxDxðljÞ
p�����

����� OpðT
d�d logT
p

Þ, (18)

and for any c40 fixed and 0o�o1; using Bonferroni’s and Markov’s
inequalities and (13) in Lemma A.1 with a ð�=2Þ 14 1 and z x; and
Assumption A.1,

P Td�d log2 T max
‘þ1pjpm

f DxDxðljÞ
p

wDuðljÞ

�����
�����4c

( )

p
Xm

j ‘þ1

P Td�d log2 T
f DxDxðljÞ

p
wDuðljÞ

�����
�����4c

( )

O
Xm

j ‘þ1

E Td�d log2 T
f DxDxðljÞ

IDuDuðljÞ

s" #2��0@ 1A
O log4 T

Xm

j ‘þ1

j�ðd�dÞð2��Þ

 !
Oð‘1�ðd�dÞð2��Þ log4 TÞ oð1Þ,

using Assumption 2, since d d4a4 1
2

for some a and choosing
� 2 ð1=aÞ40 so

max
‘þ1pjpm

f DxDxðljÞ
p

wDuðljÞ

�����
����� opðT

d�d log�2 TÞ. (19)

Therefore from (18) and (19)

max
‘þ1pjpm

ðbb bÞ
wDxðljÞ

wDuðljÞ

���� ���� opðlog
�1 TÞ. (20)
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Then, using (17) and j logð1þ xÞjp2jxj for jxjp 1
2
; and the indicator function I;

Xm

j ‘þ1

W j log
IDûDûðljÞ

IDuDuðljÞ

�����
�����

p
Xm

j ‘þ1

jW jj log
IDûDûðljÞ

IDuDuðljÞ

���� ����I ðbb bÞ
wDxðljÞ

wDuðljÞ

���� ����p 1

2

� �

þ
Xm

j ‘þ1

jW jj log
IDûDûðljÞ

IDuDuðljÞ

���� ����I ðbb bÞ
wDxðljÞ

wDuðljÞ

���� ����4 1

2

� �

p4jbb bj max
‘þ1pjpm

jW jj
Xm

j ‘þ1

wDxðljÞ

wDuðljÞ

���� ����
þ max

‘þ1pjpm
log

IDûDûðljÞ

IDuDuðljÞ

���� ���� max
‘þ1pjpm

jW jj
Xm

j ‘þ1

I ðbb bÞ
wDxðljÞ

wDuðljÞ

���� ����4 1

2

� �

Now, d d40:5;

jbb bj max
‘þ1pjpm

jW jj
Xm

j ‘þ1

wDxðljÞ

wDuðljÞ

���� ���� Op logT
Xm

j ‘þ1

jd�d

 !
opðm

1=2Þ,

because jbb bj OpðT
d�dÞ; (Case I), max‘þ1pjpmjW jj OðlogTÞ (noting definition

(5) of W t), Assumption 2, so using (12) of Lemma A.1 and applying Hölder’s
inequality with 1opo2; 1=qþ 1=p 1Þ;

E
wDxðljÞ

wDuðljÞ

���� ����pCld�d
j E

wDxðljÞ

f DxDxðljÞ
p�����

�����
q !1=q

E
f DuDuðljÞ

p
wDuðljÞ

�����
�����
p !1=p

O ld�d
j

	 

.

(21)

On the other hand, we obtain that

max
‘þ1pjpm

log
IDûDûðljÞ

IDuDuðljÞ

���� ���� opðlog
�1 TÞ,

using (17) and because (20) implies that for any c40;

P logT max
j

log 1 ðbb bÞ
wDxðljÞ

wDuðljÞ

� ����� ����4c

� �
pP logT max

j
ðbb bÞ

wDxðljÞ

wDuðljÞ

���� ����4c=2

� �
oð1Þ,

since j logð1þ xÞj4c= logT implies jxj4c=ð2 logTÞ for all c40 and T large enough.
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Finally,Xm

j ‘þ1

I ðbb bÞ
wDxðljÞ

wDuðljÞ

���� ����4 1

2

� �
p2jbb bj

Xm

j ‘þ1

wDxðljÞ

wDuðljÞ

���� ����
Op

Xm

j ‘þ1

jd�d

 !
opðm

1=2 log�1 TÞ,

using (21), Assumption 2 and d d40:5: The theorem follows from (16),
4
Pm

j ‘þ1 W 2
j�m and because under Assumption A.5, (8) holds and therefore

Theorem A.1 gives the result since the residual contribution is opðm
�1=2Þ: &

Proof of Theorem 2. First we write

bdðûÞ bdðuÞ X
j

W 2
j

 !�1X
j

W j log
I ûûðljÞ

IuuðljÞ
. (22)

Next, from Robinson (1995a), and adapting the argument of Hurvich et al. (1998),
since (9) holds, ðbdðuÞ dÞ logT!p0: Also (8) holds when ao2g=ð1þ 2gÞ; m1=2ðbdðuÞ
dÞ!dNð0;p2=24Þ: Then it only remains to be shown that the right hand side of (22) is
negligible.

Case I : When d þ dX1 and do1; we can proceed exactly as in Theorem 1, using
Lemma A.2 instead of Lemma A.1, so

X
j

W 2
j

 !�1 Xm

j ‘þ1

W j log
I ûûðljÞ

IuuðljÞ
Op m�1 logT

Xm

j ‘þ1

jd�d

 !
opðm

�1=2Þ,

because d d40:5:
When dX1; E½IxxðljÞ=f xxðljÞ� is no longer bounded as T !1 and we have to

proceed differently. Let us show that

max
‘þ1pjpm

ðbb bÞ
wxðljÞ

wuðljÞ

���� ����pjbb bj max
‘þ1pjpm

wxðljÞ

f xxðljÞ
p j1�d

�����
����� max
‘þ1pjpm

f xxðljÞ
p

wuðljÞ
jd�1

�����
�����

opðlog
�1 TÞ.

Using Lemma A.2, dX1;

jbb bj max
‘þ1pjpm

wxðljÞ

f xxðljÞ
p j1�d

�����
����� OpðT

d�d logT
p

Þ,

and for any c40 fixed and 0o�o1; using Bonferroni’s and Markov’s inequalities
and Lemma A.2, as in the proof of Theorem 1,

P Td�d log2 T max
‘þ1pjpm

f xxðljÞ
p

wuðljÞ
jd�1

�����
�����4c

( )

p
Xm

j ‘þ1

P Td�d jd�1log2 T
f xxðljÞ

p
wuðljÞ

�����
�����4c

( )
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O
Xm

j ‘þ1

E Td�d jd�1 log2 T
f xxðljÞ

IuuðljÞ

s" #2��0@ 1A
O log4 T

Xm

j ‘þ1

j�ð1�dÞð2��Þ

 !
Oð‘1�ð1�dÞð2��Þ log4 TÞ oð1Þ,

using Assumption 2 since do0:5 implies that for some a, 1 d4a40:5 and choosing
� 2 ð1=aÞ40; so, dX1;

max
‘þ1pjpm

f xxðljÞ
p

wuðljÞ
jd�1

�����
����� opðT

d�d log�2 TÞ.

Now, do0:5;

jbb bj max
‘þ1pjpm

jW jj
Xm

j ‘þ1

wxðljÞ

wuðljÞ

���� ���� Op logT
Xm

j ‘þ1

jd�1

 !
opðm

1=2Þ,

because jbb bj OpðT
d�dÞ; max‘þ1pjpmjW jj OðlogTÞ; and because using Lem

ma A.2, (1opo2; q�1 þ p�1 1), we obtain now for dX1

E
wxðljÞ

wuðljÞ

���� ����pCld�d
j jd�1 E

wxðljÞ

f xxðljÞ
p j1�d

�����
�����
q !1=q

E
f uuðljÞ

p
wuðljÞ

�����
�����
p !1=p

Oðld�d
j jd�1Þ.

On the other hand, max‘þ1pjpmj log I ûûðljÞ=IuuðljÞj opðlog
�1 TÞ as in Theorem 1,

so it only remains to bound

Xm

j ‘þ1

I ðbb bÞ
wxðljÞ

wuðljÞ

���� ����4 1

2

� �
p2jbb bj

Xm

j ‘þ1

wxðljÞ

wuðljÞ

���� ���� ¼ Op

Xm

j ‘þ1

jd 1

 !
¼ opðm

1=2 log 1 TÞ,

using the definition of m and do0:5:
Case II : If d þ do1 then do1; and we obtain first that,

max
‘þ1pjpm

ðbb bÞ
wxðljÞ

wuðljÞ

���� ���� opðlog
�1 TÞ,

because jbb bj OpðT
1�2dÞ and for any c40; using Lemma A.2,

P T1�2d log2 T max
‘þ1pjpm

f xxðljÞ
p

wuðljÞ

�����
�����4c

( )

O
Xm

j ‘þ1

E T1�2d log2 T
f xxðljÞ

IuuðljÞ

s" #2��0@ 1A
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O log4 T
Xm

j ‘þ1

½T1�d�dj�ðd�dÞ�2��

 !
OðT ð1�d�dÞð2��Þ‘1�ðd�dÞð2��Þ log4 TÞ oð1Þ,

if d d4 1
2
and b42ð1 d dÞ=ð2ðd dÞ 1Þ for �40 small enough.

Thus, as in the proof of Theorem 1,

X
j

W 2
j

 !�1 Xm

j ‘þ1

W j log
I ûûðljÞ

IuuðljÞ

�����
����� OpðT

1�d�d½m�1 logmþmd�d � logTÞ,

(23)

because

X
j

W 2
j

 !�1
jbb bj max

‘þ1pjpm
jW jj

Xm

j ‘þ1

wxðljÞ

wuðljÞ

���� ����
Op m�1T1�d�d logT

Xm

j ‘þ1

jd�d

 !
OpðT

1�d�d½m�1 logmþmd�d � logTÞ,

using jbb bj OpðT
1�2dÞ and EjwxðljÞ=wuðljÞj Oðld�d

j Þ; and because
max‘þ1pjpmj log I ûûðljÞ log IuuðljÞj opðlog

�1 TÞ; max‘þ1pjpmjW jj OðlogTÞ andX
j

I ðbb bÞ
wxðljÞ

wuðljÞ

���� ����4 1

2

� �
p2

X
j

ðbb bÞ
wxðljÞ

wuðljÞ

���� ���� OpðT
1�d�d½logmþmd�dþ1�Þ.

Then (23) is opðlog
�1 TÞ; and also opðm

�1=2Þ on choosing maxfð1 d dÞ=ðd d
0:5Þ; 2ð1 d dÞgoa; but this condition is not additionally restrictive because d þ do1
(so d d 0:5o0:5) implies that 2ð1 d dÞoð1 d dÞ=ðd d 0:5Þoboao1:
Then the theorem follows. &

Proof of Theorem 3. We only need to consider the effect of residual estimation in a
univariate regression, since the multivariate case implies no additional difficulty because
only one equation in the log periodogram system is affected by the residual
approximation. Working with e.g. the increments of the residuals we have to show that

m�1
X

j

W j log
IDûDûðljÞ

IDuDuðljÞ
opðm

�1=2Þ, (24)

as in the univariate case, and additionally that

m�1
X

j

log
IDûDûðljÞ

IDuDuðljÞ
opðm

�1=2 logTÞ, (25)

m�1
X

j

log
IDûDûðljÞ

IDuDuðljÞ

� �2

opðlog
�2 TÞ, (26)

37



from (5.6), (5.8) and (5.13) in Robinson (1995a) for consistent covariance matrix
estimation. Now to show (24) we can write now that

log
IDûDûðljÞ

IDuDuðljÞ
log 1

Xk

i 1

ðbbi biÞwDxi
ðljÞ

wDuðljÞ

( )

þ log 1
Xk

i 1

ðbbi biÞwDxi
ð ljÞ

wDuð ljÞ

( )
.

Next,

max
‘þ1pjpm

Xk

i 1

ðbbi biÞwDxi
ðljÞ

wDuðljÞ

�����
�����

p
Xk

i 1

jbbi bijmax
j

wDxi
ðljÞ

f DxiDxi
ðljÞ

p�����
�����max

j

f DxiDxi
ðljÞ

p
wDuðljÞ

�����
�����

opðlog
�1 TÞ, ð27Þ

since k is finite, bounding the above expression for each i 1; . . . ; k as in the univariate
case. Then (25) follows in a similar but simpler way, while (26) is implied directly by
(27). &

Proof of Theorem 4. For simplicity, we suppress in the notation for IuuðljÞ; etc.
reference to J or tapering and only consider the case of a univariate regressor xt:We
consider successively the cases of differenced and original residuals.

Proof for differenced residuals. We obtain that dd 1
ðJÞ
ðDûÞ dd 1

ðJÞ
ðDuÞ

opðlog
�1 TÞ if we show that

max
‘þ1pjpm

jW jj log
IDûDûðljÞ

IDuDuðljÞ
opðlog

�1 TÞ,

which in turn follows if

max
‘þ1pjpm

ðbb bÞ
wDxðljÞ

wDuðljÞ

���� ����pjbb bj max
‘þ1pjpm

wDxðljÞ

f DxDxðljÞ
p�����

����� max
‘þ1pjpm

f DxDxðljÞ
p

wDuðljÞ

�����
�����

opðlog
�2 TÞ. ð28Þ

We first show that

jbb bj max
‘þ1pjpm

wDxðljÞ

f DxDxðljÞ
p�����

����� OpðT
d�d logT
p

Þ. (29)

We have jbb bj OpðT
d�dÞ while, writing I �DxDxðljÞ for the periodogram

of the i.i.d. innovations �ðDxÞ
t of zt Dxt in Assumption 4, and HDxDxðljÞ
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IDxDxðljÞf
�1
DxDxðljÞ 2pI �DxDxðljÞ;

max
‘þ1pjpm

wDxðljÞ

f DxDxðljÞ
p�����

�����
 !2

p max
‘þ1pjpm

2pI �DxDxðljÞ þ max
‘þ1pjpm

jHDxDxðljÞj

p max
‘þ1pjpm

2pI �DxDxðljÞ þ
Xm

j ‘þ1

jHDxDxðljÞj
2

 !1=2

.

Now, max‘þ1pjpm 2pI �DxDxðljÞ OpðlogTÞ; see An et al. (1983), while from Velasco
(2000), 1ogp2;

E
Xm

j ‘þ1

IDxDxðljÞ

f DxDxðljÞ
2pI �DxDxðljÞ

���� ����2 O
Xm

j ‘þ1

j�g

 !
Oð‘1�gÞ,

so (29) follows. Then (28) follows if we show that

max
‘þ1pjpm

f DxDxðljÞ
p

wDuðljÞ

�����
����� OpðT

d�d log�3 TÞ.

For any sequence MT ! 0 as T !1; and with C40; 0oto1 fixed,
0:5ododo1:5; HDuDuðljÞ IDuDuðljÞf

�1
DuDuðljÞ 2pI �DuDuðljÞ; now using the innova

tions of Dut; we have that

P MT

f DuDuðljÞ

IDuDuðljÞ
4C

� �
P 2pI �DuDuðljÞ 1þ

HDuDuðljÞ

2pI �DuDuðljÞ

� �
oC�1MT

� �
pP 2pI �DuDuðljÞoðC�1MT Þ

t� �
þ P 1þ

HDuDuðljÞ

2pI �DuDuðljÞ

� �
oðC�1MT Þ

1�t
� �

pP 2pI �DuDuðljÞoðC�1MT Þ
t� �
þ P

HDuDuðljÞ

2pI �DuDuðljÞ

���� ����4 1

2

� �
OðMJ�v

T þ j�a�1Þ, ð30Þ

for any v40; on choosing to1 large enough, and some a such that 0oaoðgJ=ðJ þ
2Þ 1Þ=2; following Eqs. (A.8) and (A.13) in Velasco (2000).

Set MT ‘2ðd�dÞ log3 T oð1Þ as T !1 by Assumption A.8.Then we can write
for any C40 and some v;C040; using (30),

P Td�d log2 T max
j

f DxDxðljÞ
p

wDuðljÞ

�����
�����4C

( )
pP MT max

j

f DuDuðljÞ

IDuDuðljÞ
4C0

� �
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p
X

j

P MT

f DuDuðljÞ

IDuDuðljÞ
4C0

� �

O
X

j

½MJ�v
T þ j�a�1�

 !
Oðm‘2ðd�dÞðJ�vÞ log3J

þ ‘�aÞ oð1Þ

choosing v40 small enough and using Assumption A.8.

Proof for original residuals. We want to show that bdðJÞðûÞ bdðJÞðuÞ opðlog
�1 TÞ:

Case I : When d þ dX1 and do1:5; we can proceed exactly as for Dû; but now we
obtain that

jbb bj max
‘þ1pjpm

wxðljÞ

f xxðljÞ
p�����

����� OpðT
d�d logT
p

Þ,

because from Velasco (1999b) (see also Lemmas 1 and 3 of Lobato and Velasco,
2000) and for tapered data, 0:5odo1:5; 1ogp2;

E
Xm

j ‘þ1

IxxðljÞ

f xxðljÞ
2pI �DxDxðljÞ

���� ����2 O
Xm

j ‘þ1

j�g

 !
Oð‘1�gÞ.

Then we can write as before, for any C; v40; MT ‘2ðd�dÞ log3 T oð1Þ as T !

1; and using now the innovations of ut if do0:5; or those of Dut if dX0:5;

P Td�d log3 T max
j

f xxðljÞ
p

wuðljÞ

�����
�����4C

( )
O
X

j

max
j
½MJ�v

T þ j�a�1�

 !
þ oð1Þ

Oðm‘2ðd�dÞðJ�vÞ log3J T þ ‘�aÞ þ oð1Þ

oð1Þ,

with Assumption A.8, so finally

max
j

f xxðljÞ
p

wuðljÞ

�����
����� opðT

d�dÞ.

Case II : If d þ do1 then do1; do0:5; and we proceed as before to
show that

max
‘þ1pjpm

ðbb bÞ
wxðljÞ

wuðljÞ

���� ���� opðlog
�2 TÞ.

Using Assumption 1 we first obtain that

jbb bj max
‘þ1pjpm

wxðljÞ

f xxðljÞ
p�����

����� OpðT
1�2d log1=2 TÞ.
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Then we show that

max
‘þ1pjpm

f xxðljÞ
p

wuðljÞ

�����
����� opðT

2d�1 log�3 TÞ,

because with the same notation, MT T2ð1�d�dÞ‘2ðd�dÞ log3 T oð1Þ by Assumption
A.9,

P T1�2d log2 T max
j

f xxðljÞ
p

wuðljÞ

�����
�����4C

( )
pP MT max

j

f uuðljÞ

IuuðljÞ
4C0

� �
OðmMJ�v

T þ ‘�aÞ þ oð1Þ,

which is OðmfT2ð1�d�dÞ‘2ðd�dÞ log6 TgJ�vÞ þ oð1Þ oð1Þ; using Assumptions A.8 and
A.9. &
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