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Extremality in Multivariate Statistics

Ph.D. Dissertation

Abstract

Henry Laniado Rodas

Department of Statistics

Universidad Carlos III de Madrid

Multivariate order is a valuable tool for analyzing data properties and for

extending univariate concepts based on order such as median, range, extremes, quan-

tiles or order statistics to multivariate data.

Generalizing such concepts to the multivariate case is not straightforward. While

different ways of generalizing quantiles have been studied by Chaudhuri [10], a de-

scription of extensions of concepts such a median, range and quantiles to the multi-

variate framework has been provided by Barnett [3]. The key problem, however, in

generalizing these concepts to several dimensions is the lack of a unique criterion for

ordering multivariate observations.

Over the last few decades, multivariate stochastic orders have also become a

powerful means of comparing random vectors, especially in situations where the

distributions are partially known. In particular, multivariate stochastic orders have

a wide range of applications in portfolio theory.

The thesis is motivated by the aspects mentioned above and its purpose is three-

fold. Firstly it introduces the multivariate extremality as a methodology that mea-

sures the farness of a point x with respect to a data cloud or a distribution function.

We study the main properties of this new concept, as well as asymptotic results,

and define a new multivariate data order based on rotations. This data order allows

us to introduce a new version of the multivariate quantile which can be seen as a

generalization of definitions previously studied in the literature. As a consequence

of this ordering, we are able to develop an application in finance by defining a new

version of the multivariate Value at Risk. Secondly, we develop a new multivariate

stochastic order based on directions for generalizing the well- known orthant orders.

Some examples are presented of applications in portfolio comparisons. Particular

attention is paid to applications in which the use of directions is well justified in

determining optimal allocations of wealth among risks in single period portfolio

problems. Thirdly, the thesis aims to investigate an alternative methodology for

selecting the portfolio weights in a data set that represents returns of n assets for

xv



investing. We also define new concepts of efficient frontiers based on the initial idea

of Markowitz. We apply the extremality multivariate data order to order feasible

portfolios in a direction that depends on specific indexes; these may be chosen by

the investor and may be different from the classical variance-return in Markowitz’s

model.

The thesis is organized as follows: in Chapter 1 we provide a brief review of some

multivariate data orders introduced in the literature in order to extend univariate sta-

tistical concepts to the multivariate setting. Following some multivariate stochastic

orderings, we examine different means of comparing random vectors based on their

survival and distribution functions. Finally, the chapter presents a brief introduction

to the portfolio selection problem.

In Chapter 2, we propose a new approach for analyzing multivariate extremes. It

provides a multivariate data order based on a concept that we will call “extremality”.

We establish the most relevant properties of this extremality measure and we give the

theoretical basis for its nonparametric estimation. Finally, we include an application

in Finance, we define an oriented multivariate Value at Risk (VaR) with level sets

built through extremality which is computationally feasible in high dimensions.

The results of Chapter 3 concern a new multivariate stochastic order that

compares random vectors in a direction which is determined by a unit vector,

generalizing the well-known upper and lower orthant orders. The main properties

of this new order, together with its relationships with other multivariate stochas-

tic orders are investigated. We also present some examples of application in the

determination of optimal allocations of wealth among risks in single period portfolio

problems.

In Chapter 4, we introduce new concepts of efficient frontier that depend on

some indexes that may be chosen by the investor and that are different from the

classical variance- return in Markowitz’s model. Feasible portfolios are built with

MonteCarlo simulations and the new efficient frontiers are estimated by using an

extremality order to sort portfolios. The performance of the selection method is

illustrated with real data.

Finally, in Chapter 5, we present some general conclusions and summarize the

main contributions of the thesis.

xvi



Extremalidad en Estad́ıstica Multivariante

Tesis Doctoral

Resumen

Henry Laniado Rodas

Departamento de Estad́ıstica

Universidad Carlos III de Madrid

Un orden multivariante es una valiosa herramienta para analizar propiedades de un

conjunto de datos y extender algunos conceptos estad́ısticos como mediana, rango,

at́ıpicos, quantiles y estad́ısticos de orden al escenario multivariante.

Generalizar dichos conceptos al caso multivariante no ha sido sencillo. Mientras

diferentes formas de generalizar quantiles han sido estudiadas por Chaudhuri [10],

una descripción de los conceptos tales como mediana, rango y quantiles para el

escenario multivariante ha sido proporcionado por Barnett [3]. El principal problema

en la generalización de estos conceptos a mayores dimensiones es la dificultad de

definir un orden total para observaciones multivariantes.

En las últimas décadas los órdenes estocásticos multivariantes también se han

convertido en una sofisticada metodoloǵıa para comparar vectores aleatorios, espe-

cialmente en situaciones donde sus distribuciones son parcialmente conocidas. En

particular, los órdenes estocásticos multivariantes han tenido un amplio campo de

aplicaciones en la teoŕıa de portfolios.

La tesis es motivada por los aspectos mencionados anteriormente y propone tres

objetivos principales. Primero se introduce el concepto de extremalidad como una

metodoloǵıa que permite medir la lejańıa de un punto x con respecto a una nube de

puntos o a una función de distribución. Se estudian tanto las propiedades principales

de este nuevo concepto como resultados asintóticos y se define un nuevo orden para

datos multivariantes basado en rotaciones. El orden de datos permite introducir una

nueva versión de quantil multivariante que puede ser visto como una generalización

de definiciones anteriormente estudiadas en la literatura. Como una consecuencia

de este orden para datos, se desarrolla una interesante aplicación en finanzas al

definir una nueva versión del Valor en Riesgo multivariante. Como segundo objetivo

se desarrolla un nuevo orden estocástico multivariante basado en direcciones que

generaliza los bien conocidos orthant orders. Algunos ejemplos de aplicación son

presentados sobretodo en comparasión de portfolios y en la determinación de las

proporciones de cierto capital disponible el cual es destinado a ser invertido entre

xvii



activos con riesgo. El tercer objetivo de la tesis es el desarrollo de una metodoloǵıa

alternativa para seleccionar los pesos en un portfolio. Se defienen también nuevos

conceptos de fronteras eficientes basadas en la idea inicial de Markowitz. Se aplica

el orden de extremalidad multivariante a fin de ordenar portfolios factibles en una

dirección la cual depende de algunos criterios elegidos por el inversor y que pueden

ser diferentes de los criterios clásicos de varianza-media del modelo de Markowitz.

La tesis es organizada de la siguiente manera: en el Caṕıtulo 1 se proporciona una

breve revisión de algunos órdenes multivariantes introducidos en la literatura para

extender conceptos estad́ısticos univariantes al escenario multivariante. También

se hace una revisión de algunos órdenes estocásticos univariantes y multivariantes.

Finalmente, el caṕıtulo presenta una introducción al problema de selección de port-

folios.

En el Caṕıtulo 2, se propone un nuevo enfoque para analizar extremos multi-

variantes. Se introduce un orden para datos multivariantes basado en un concepto

que es llamado “extremalidad”. Se establecen las propiedades más importantes de

la medida de extremalidad y se proporciona la base teórica para su estimación no

paramétrica. Finalmente, se incluye una aplicación en finanzas definiendo un Valor

en Riesgo Multivariante Orientado el cual es computacionalmente factible en altas

dimensiones.

Los resultados del Caṕıtulo 3 se refieren a un nuevo orden estocástico multiva-

riante que permite comparar vectores aleatorios en una dirección determinada por un

vector unitario. Este orden estocástico puede ser visto como una generalización de

los bien conocidos Upper and Lower orthant orders. La principales propiedades de

este nuevo orden y su relación con otros órdenes multivariantes son investigadas. Se

presentan algunos ejemplos de aplicación en comparación y selección de portfolios.

En el Caṕıtulo 4 se introduce nuevos conceptos de fronteras efficientes que de-

penden de algunos ı́ndices elegidos por el inversor y que pueden ser diferentes a

los clásicos de varianza-media del modelo de Markowitz. Se construyen portfolios

factibles a través de simulación MonteCarlo y las nuevas fronteras efficientes son es-

timadas mediante un orden de extremalidad que permite ordenar portfolios factibles.

El método es evaluado con datos reales y se comparan los resultados con otras es-

trategiás ya introducidas en la literatura.

Finalmente, en el Caṕıtulo 5, se presentan las conclusiones y se resumen las

principales contribuciones de la tesis.
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1
Introduction and background

In this dissertation, we study a multivariate data order and a multivariate stochastic

order that provide useful new alternatives for comparing multivariate observations

and multivariate random vectors, respectively. The comparison proposals studied

are designed for the multivariate framework and the applications are focused on the

financial setting.

We have investigated new ways of comparing data and random vectors through

directions. In the univariate case just two directions are allowed for comparison (left

and right), whereas in higher dimensions there is an infinite number of directions

that can be determined by a unit vector. This work takes advantage of the different

directions that can be defined on the Euclidean space in R
n, thus enabling us to

introduce a novel way of ordering multivariate data and to compare multivariate

distributions from a directional approach. We provide some applications in finance

where the use of a directional order is clearly justified.

This Chapter gives an overview of the basic concepts, terminology and related

work regarding the topics of this dissertation. The thesis has developed a threefold

approach:� Firstly, to introduce the concept of extremality in order to sort multivariate

data from different directions, to study multivariate extremes from a directional

perspective and, as a consequence, to generalize some concepts of multivariate

quantiles, and finally, to provide a new version of the multivariate Value at

Risk.� Secondly, to define a new multivariate stochastic order for generalizing the

upper and lower orthant order through the inclusion of directions, and to study

1



Chapter 1

its main properties, its relationship with other orders from the literature and

to present some of its applications in a portfolio selection.� Thirdly, to propose a strategy based on the extremality order for selecting port-

folios instead of using strategies based on the usual optimization techniques,

and to compare portfolios through the ordering induced by the extremality

when a direction is chosen by the economic agent.

Next, we briefly introduce some multivariate data orders which have previously

been studied in the literature as a basic concept that expresses intrinsic natural

features of a multivariate data set.

1.1 Multivariate data orders

The univariate order has several good properties that facilitate the study of statistical

features for univariate data sets. It is well known, for example, that the usual order

relation on the real line is a total order relation and this property simplifies the task

of performing statistical analysis in one-dimensional data. In the multivariate case,

however, the total order property does not hold and the lack of an objective basis for

ordering multivariate observation has been a significant problem in attempts made

to extend some one-dimensional statistical concepts to the multidimensional case.

Despite the absence of total order relations for multivariate data, there are many

works in the traditional literature which attempt to extend univariate order and

statistical concepts such as medians, extremes and ranges to the higher dimensional

situations.

1.1.1 Barnett ordering

Barnett [3] describes extensions of concepts such as median, range and quantiles

to the multivariate framework. He states that although there is no natural order

for multivariate data, most univariate statistics that are naturally defined as trans-

formations of order statistics, can be extended to higher dimensions. He has also

investigated the possible types of multidimensional orderings and has retained four

variants: the marginal ordering, which is equivalent to the separated ordering of each

component, the reduced ordering, which orders vectors according to some scalars

computed from the components of each vector, the partial ordering which uses the

2



Introduction and background

convex hull and the conditional ordering, which is the scalar ordering of a single

component. Here we briefly comment upon three of these variants.� Marginal ordering

This type of ordering depends on the ranking with respect to one or more of

the marginal samples. The multivariate sample mean is based on this type of

ordering since it only depends on the marginal sample means. The same does

not occur with the variance where the correlations among the marginals have

to be considered.

The marginal median vector can be taken as a first approximation to the mul-

tivariate median and even multivariate quantiles may be constructed through

marginal quantiles. However, there are more sophisticated techniques for defin-

ing multivariate quantiles. See for instance, Einmahl and Mason [15], Tibiletti

[58], Chaudhuri [10], Serfling [54], Fernández-Ponce and Suárez-Llorens [19],

Belzunce et al. [4] and Hallin et al. [25] for a thorough treatment of multi-

variate quantiles.

As its name suggest, Marginal ordering permits statistical concepts in a mul-

tivariate sample to be extended via the univariate concepts of the marginal

samples.� Reduced ordering

This type of ordering consists of reducing each multivariate observation to a

single value by means of some combination of the components of the sam-

ple values. A simple example is ordering the multivariate sample through its

distance to origin. Frequently the metric employed to sort data is the general-

ized distance represented by a quadratic function (x− α)Γ−1(x− α) for some

convenient choice of α and Γ. The value α can be the origin, the mean, the

marginal median vector, or some interesting observation and Γ can be the iden-

tical matrix whose orders will be established by the Euclidean distance to α. Γ

also may be the variance and covariance matrix; in this case, if α is the mean

vector, we recover the Mahalanobis distance. Both situations are displayed in

Figure 1.1 where two types of reduced ordering are illustrated. Order on the

the left side is established by Euclidean distance while order on the right side is

induced by Mahalanobis distance. The concentric circles or ellipses, would be

the corresponding bases on which the order in each data would be evaluated,

i.e, the points on the wider circles or ellipses should have a higher order and

therefore should be more extremes.

3
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Figure 1.1: Reduced ordering

Most examples of ordering after the data has been transformed also are conside-

red to be in the reduced order class. This is because such examples are not

intended to represent marginal behavior but to express overall characteristics

of the multivariate data. For instance, via either the maximum or the mean of

each observation.� Partial ordering

Here the multivariate sample is divided into distinct groups of different order.

These type of orders neither consider the marginal samples nor the individ-

ual multivariate observations by considering the joint properties in the total

sample set in which all individual observations are ranked in relation to other

observations. One way in which the multivariate observations may be ranked

is by defining different regions of the sample space where such partitioning may

be based on the convex hull (one of the most important and intuitive methods

used for distinct groups of observations).
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Figure 1.2: Partial ordering

Figure 1.2 shows a multivariate sample in which the convex hull is constructed

by drawing a minimum convex set which covers all sample points. While those

4



Introduction and background

points on the perimeter are discarded, the convex hull is formed out of the

remaining points, and the second perimeter is deleted again. The process is

repeated, thus providing a method of dividing the data into ordered groups.

Population version of the convex hull may not be too tractable, therefore some

analogous methodologies as depth functions with distributional results have

been proposed. Some depth functions are mentioned in the following section.

1.1.2 Order through depth functions

A depth notion can be used to measure the centrality or outlyingness of a point from

sample with respect to the multivariate sample or to its underlying distribution. As

a consequence, this leads a natural center-outward ordering of the sample points.

Based on this ordering, a wide range of statistical univariate techniques such as mul-

tivariate goodness-of-fit, location measure, scatter estimates and risk measurement

can be extended to the multivariate setting. A review on depth functions and its

applications can be found in Cascos [7].

A depth function can be defined by a mapping D : Rn 7−→ [0, 1] that satisfies

the properties of affine invariance, vanishing at infinity, monotonicity with respect

to the deepest point and maximality at center. Here, we describe briefly two classical

depth functions named halfspace depth and simplicial depth. The first of these was

proposed by Tukey [60] in a data analysis context. Given a multivariate sample,

the halfspace depth of a point x is the smallest fraction of data points in a closed

halfspace containing x, or also the smallest fraction of data points that should be

deleted so that x lies outside the convex hull of the remaining data points.

The second of these functions was introduced by Liu [40] and it is based on

random simplices. The simplicial depth of a point x is given by the probability that

the point x is contained inside a random simplex whose vertices are p+1 independent

observations.

Figure 1.3 shows some level sets of the halfspace depth and a grey scale for the

simplicial depth. The data represent the results of athletes that competed in Olympic

Games, in Barcelona in 1992 in long jump (in meters, axis Y ) and in the 200m race

(in seconds, axis Y ). Figure 1.3 is taken from Figure 1 in Cascos et al. [8].

An empirical version of those depth functions provides a natural ordering of

the data points from the center outward. The ordering thus obtained leads to the

introduction of multivariate generalizations of the univariate sample median and also

L-statistics. However, they have the drawback of not being computationally feasible
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Chapter 1

Figure 1.3: Decathlon data, halfspace and simplicial depth. Cascos et al. [8]

in high dimensions, hence the multivariate order induced through depth functions is

quite limited for more than three dimensions.

Nevertheless, we want to emphasize that one of the proposals introduced in Chap-

ter 2 of this work is a multivariate data order that works well in terms of compu-

tational times in high dimensions and for large samples. This enables new versions

of multivariate quantiles to be built in high dimensions and means that new alter-

natives which are computationally feasible can be introduced which will be useful in

order to define new version of a multivariate Value at Risk.

1.2 Multivariate stochastic orders

Stochastic orders are partial order relations on a set of distribution functions. They

have become valuable tools in finance, economic, queueing theory, reliability, statis-

tics and insurance, among many other areas. The first attempt to define a stochastic

order was made by using means and variances to compare random variables. This,

however, did not prove to be exhaustive since comparison between two single num-

bers is often not very informative. What is more, many distributions need more

information to be characterized and compared. Notwithstanding, several effective

ways of comparing random variables and even random vectors have appeared over

the last thirty years.

Indeed, a second area of concern of this thesis is a discussion of a new alternative

to compare random vectors. For ease of reference, we briefly recall some traditional

concepts in this area. Concerning the stochastic comparisons, we first provide the

6



Introduction and background

definitions of the orders which are usually considered in a univariate setting.

Definition 1.2.1 Given two random variables X and Y we say that X is smaller
than Y in:� usual stochastic order (denoted by X ≤st Y ) if, and only if, F̄X(t) ≤ F̄Y (t) for

all t, where F̄ denotes the survival function.� convex order (denoted by X ≤cx Y ) if, and only if, E[φ(X)] ≤ E[φ(Y )] for all
convex function φ for which the expectations exist.� increasing convex order (denoted by X ≤icx Y ) if, and only if, E[φ(X)] ≤
E[φ(Y )] for all increasing convex function φ for which the expectations exist.� concave (denoted by X ≤cv Y ) if, and only if, E[φ(X)] ≤ E[φ(Y )] for all
concave function φ for which the expectations exist.� concave (denoted by X ≤icv Y ) if, and only if, E[φ(X)] ≤ E[φ(Y )] for all
increasing concave function φ for which the expectations exist.� Laplace transform order (denoted by X ≤Lt Y ) if, and only if, E[e−aX ] ≤
E[e−aY ], where a is any positive number.

These stochastic orders have had a major impact on the areas of economy and

insurance, where comparisons among expected utilities and risk measures are com-

monly considered. For example, Bäuerle and Müller [5] have produced leading stud-

ies regarding the problem of the preservation of risk measures with respect to usual

stochastic order and convex order. These results are used to derive bounds for the

risk measures of portfolios, i.e., of the joint financial position X1, . . . , Xn. This is

of practical importance, since in many situations only the marginal distributions of

X1, . . . , Xn are known and not the dependence relation between them.

The usual stochastic order and the increasing concave order are also referred to

as First order Stochastic Dominance (FSD) and Second order Stochastic Dominance

(SSD), respectively.

In the multivariate setting, there also are many forms of comparing random

vectors. We address the following stochastic orders that have been defined as a

multivariate generalization of the usual stochastic order.

Definition 1.2.2 Given two random vectors X and Y, X is said to be smaller than
Y in:� usual stochastic order (denoted by X ≤st Y) if E[φ(X)] ≤ E[φ(Y)] for any

increasing function φ with finite expectations.

7



Chapter 1� upper orthant order (denoted by X ≤uo Y) if F̄X(t) ≤ F̄Y(t) for all t.� lower orthant order (denoted by X ≤lo Y) if FX(t) ≥ FY(t) for all t.

In the upper orthant order and the lower orthant order F̄ and F denote the

survival and distribution function, respectively. Hence, an equivalent version of

those multivariate orders can be defined by using the indicator function as follows

X ≤uo Y

X ≤lo Y

≡
E
[
1(t,∞)(x)

]
≤ E

[
1(t,∞)(y)

]

E
[
1(−∞,t)(x)

]
≥ E

[
1(−∞,t)(y)

] for all t ∈ R
n

Observe that both orders are defined by ordering the probability of a set deter-

mined by any translation of the nonnegative and nonpositive orthant, respectively.

In the univariate case they are equivalent since F̄ = 1 − F but in the multivariate

case this relationship does not hold.

Further details, properties and applications of all the stochastic orders defined

above may be found, for example, in Shaked and Shanthikumar [55], Müller and

Stoyan [46], or Denuit et al. [14].

Chapter 3 of this dissertation provides a generalization of those orthant orders.

This is done by including translations and also rotations of the nonnegative orthant.

The rotations of this orthant are determined by a unit vector and for two particular

directions we recover the upper and lower orthant orders.

We also study stochastic comparison among the univariate random variables de-

fined by the projection of a random vector on that unit vector that defines the

rotations of the nonnegative orthant. In particular, we present some examples of

application, in portfolio comparisons, in the determination of optimal allocations of

wealth among risks in single period portfolio problems. We show that there are other

directions which may be more interesting than those used to define the upper and

lower orthant orders.

A brief review of the portfolio selection problem is introduced in the following

Section.

1.3 The portfolio selection problem

In portfolio theory, the portfolio selection problem basically consists of finding the

optimum way of investing in a given set of assets. The problem can be described as

8



Introduction and background

follows: consider an investor who has the possibility of investing in n different stocks.

Investing one unit of money into stock i yields a random return Xi. Thus there is

a vector of returns X = (X1, . . . , Xn)
′. The investor has to allocate his/her budget,

which without loss of generality can be 1 euro, to the different stocks in order to

maximize an expected utility. Denote by w = (w1, . . . , wn)
′ the weights vector of the

portfolio whose components represents the proportion of budget that the investor

assigns to each stock Xi. If the investor has the utility function U then he/she faces

the optimization problem

max
w

EU

(
n∑

i=1

wiXi

)
subject to

n∑

i=1

wi = 1. (1.3.1)

In most cases the utility function is a subjective function that measures the

“happiness” of the investor according to increments in wealth. However, sometimes

already partial knowledge of the utility function is sufficient to find the optimal

allocation. For example, Hadar and Russel [24] proved that for independent and

identically distributed random variables X1, . . . , Xn and a risk averse investor with a

concave utility function, the solution to the problem (1.3.1) is given by the maximal

diversification, i.e, 1
n
- rule that assigns the same proportion of budget to each stock.

This result was generalized in Ma [42] in which the assumption of independence

was replaced with the assumption of exchangeability. Related results also have been

provided in Pellerey and Semeraro [48].

However, exchangeability still can lead to problems in the practical application

of the results. Therefore, Chapter 3 contains a discussion regarding the treatment

of the portfolio selection problem when assuming that the assets vector follows a

multivariate elliptical distribution, a common assumption in the theory of portfolio

selection. We show that the hypothesis of exchangeability can be verified through

rotations of the distribution for the 2-dimensional case. The same result holds for

higher dimensions under some constraints.

Consider now the case in which an investor only cares about the mean and

variance of static portfolio returns. This case is the well-known Markowitz’s model

of mean-variance and the problem (1.3.1) becomes:

min
w

[
w′Σw − 1

γ
µ′w

]
subject to

n∑

i=1

wi = 1, (1.3.2)

where Σ is the variance and covariance matrix of the stock vector X, µ is its means

vector and γ is a risk aversion parameter. The problem (1.3.2) is known as the mean-

variance portfolio and when the risk aversion parameter tends to infinity we recover
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Figure 1.4: Efficient frontier

the minimum-variance portfolio. To implement these portfolios in practice, one has

to estimate the mean and the covariance matrix of asset returns. Traditionally, the

sample means and covariances have been used for this purpose.

The model proposed in Markowitz [43] has been relevant in modern portfolio

theory where the main goal is to maximize return and minimize risk. Its philosophy

is that the investors decide a portfolio weights w based on the trade-off between

expected return and variance. Markowitz showed that an investor should hold a

portfolio on the intersection of the set of portfolios with minimum risk and the set

of portfolios with maximum return. That set is commonly called efficient frontier,

an example of which is displayed in Figure 1.41.

Observe that the portfolio D is an inefficient portfolio since another portfolio can

be found on the blue line which has the same risk and a better return. Following

Markowitz’s criteria, C is an efficient portfolio since it can not be improved in terms

of the risk and returns at the same time. The set of all portfolios with the features of

the portfolio C define the efficient frontier. The selection of the portfolio on this set

depends on the risk aversion parameter since for different values of the risk aversion

parameter γ we obtain the different mean-variance portfolios on the efficient frontier.

In this aspect, Chapter 4 of this thesis defines new versions of efficient frontiers by

considering other criteria which are different from those of mean and variance used

1Figure taken from Hatton consulting, INC web page
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in the Markowitz model. In fact, our approach also allows a definition of surface

efficient when more than two criteria are considered by the investor. We have also

designed a methodology in Chapter 4 based on order induced by extremality for

selecting the best portfolio, when a direction chosen by the investor depends on the

criteria that most interest him or her.

1.4 Structure of the thesis

This thesis contains five chapters. The current Chapter 1 presents a brief review of

the classic concepts, emphasizing in the topics where the thesis develops its main

contributions.

First, there is a discussion of various examples in the literature in which multi-

variate data orders have been introduced to extend some univariate statistical con-

cepts to the multivariate setting. This is then followed by a brief review of some

multivariate stochastic orderings so as to examine different ways of comparing ran-

dom vectors based on their survival and distribution functions. Finally, there is a

brief introduction to the portfolio selection problem.

The contributions of this thesis are developed in Chapters 2, 3 and 4. The first

part of Chapter 2 introduces multivariate extremality as a methodology based on

directions which measures the farness of a point x with respect to the data cloud

or the distribution function. The main properties, as well as asymptotic results, are

discussed. A new multivariate data order is also introduced which, taking its inspira-

tion from extremality, is based on rotations of the nonnegative orthant. We discuss

the fact that the multivariate quantiles introduced in Tibiletti [58] and Fernández-

Ponce and Suárez-Llorens [19] can be generalized by extremality through its level

set. In the second part of this Chapter, we develop an application of extremality

in finance and, we introduce a new version of the multivariate Value at Risk. It

will be observed that this last generalizes versions introduced in Tibiletti [59] and

Embrechts and Puccetti [17] by considering other directions which might be of more

interest to the risk manager.

Chapter 3, firstly defines a new multivariate stochastic order, called extremality

order. This stochastic order is introduced as a generalization of the upper and lower

orthant order discussed in Shaked and Shanthikumar [55] and Marshall and Olkin

[44]. We provide a new way to compare random vectors in different directions. The

closure and characterization properties also are discussed as well as the sufficient and

necessary conditions for two random vectors to be ordered according to the extrema-

11
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lity stochastic order. In second place, we present some examples of applications, in

portfolio comparisons, in the determining optimal allocations of wealth among risks

in single period portfolio problems. We also show that other directions can be more

interesting than those used to define the upper and lower orthant orders. The results

of Chapter 3 are mainly based on the published paper of Laniado et al. [36].

In Chapter 4, we develop an alternative methodology for selecting the portfolio

weights in a data set that represents returns of n assets for investing. Markowitz

[43] defined the efficient frontier as the set of the feasible portfolios which cannot be

improved in terms of risk and return, simultaneously. Following Markowitz’s idea,

the first part of this Chapter introduces new concepts of efficient frontier that depend

on indexes which may be chosen by the investor and which may be different to the

classics of variance and return in Markowitz’s model. Feasible portfolios are built

with Montecarlo simulations and the new efficient frontiers are estimated by using an

extremality order previously introduced in Chapter 2. In the second part of Chapter

4, we use real data to test the method introduced for selecting the best portfolio.

We also compare the strategies developed in this thesis with some more traditional

approaches studied in the literature.

Finally, in Chapter 5, we present some general conclusions and summarize the

main contributions of the thesis.

12



2
Multivariate extremes: a directional approach

2.1 Introduction

The analysis of multivariate extreme outcomes is becoming very relevant in different

fields. Moreover, a multivariate order is a valuable tool to analyze data properties

and to obtain direct analogues for multivariate data of univariate concepts based on

order such as median, range, extremes, quantiles or order statistics. Generalization

of these concepts to the multivariate case is not straightforward. Chaudhuri [10]

and references therein have studied different ways to generalize quantiles, but the

lack of a unique criterion for ordering multivariate observations is the key problem

in extending these concepts to several dimensions.

Barnett [3] was among the first to give an extension of univariate order concepts

such as median, extremes and ranges to the higher dimensional case. A flexible

way to summarize properties of multivariate data are processes based on generalized

quantile functions which are studied in Einmahl and Mason [15].

Several extensions of usual orders from R to R
n, such as the Pareto-dominance

types and the componentwise order, have the drawback of not being total orders. For

facilitating total comparisons in the multivariate case the antisymmetry property is

waived and therefore, preorders are obtained instead of orders. A preorder can be

defined through a function of interest f : Rn −→ R that compares data according to

its f - value, i.e., x ≤ y ≡ f(x) ≤ f(y). Examples of this type of ordering are those

based on comparing data by their norms or projections onto some vector u such as

the order by average or weighted average (see Barnett [3]).

Another alternative for multivariate orders are those based on depth functions,

which assign to each point in R
n a measure of centrality with respect to the data

13
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cloud or probability distribution. This depth function decreases from the center

outward (see, e.g., Zuo and Serfling [64] and Liu et al. [41]) and thus it provides

a multivariate order that allows to define multivariate versions of median, order

statistics, multivariate spacing and tolerance regions (Li and Liu [39]). However,

they have the drawback of not being computationally feasible in high dimensions,

hence the multivariate order induced through depth functions is quite limited for

more than three dimensions.

Another option is the majorization order (Marshall and Olkin [44]) that is based

on the idea of homogeneity between the components of a vector in R
n and is used in

economics to compare the distribution of wealth in different populations.

Some orders can be characterized by a Euclidean convex cone C; for instance,

for x, y ∈ R
n x ≤ y ≡ y − x ∈ C. This is the case of the componentwise order,

where C = R
n
+ ∪ {0} or C = R

n
+. These are two of the most important convex

cones: the non-negative orthant and the positive orthant which are a basic concepts

in the theory of inequalities. It is customary to write x ≤ y, if y− x belongs to the

non-negative orthant (see, e.g., Rockafellar [51], page 13).

We propose in this Chapter a new multivariate data order based on the idea of

extremality. Given a probability distribution in R
n, the extremality of x ∈ R

n in

the direction u is one minus the probability of an oriented convex cone with vertex

in x. An important step in considering directions for multivariate data analysis is

due to Kong and Mizera [32], who adopted a definition of quantiles through projec-

tions on unit vector. More recently Hallin et al. [25] proposed a new multivariate

quantile based on a directional version of traditional regression quantiles, which also

are associated with a vector u. In the same paper they showed that the contours

generated by the directional quantiles coincide with the classical halfspace depth

contours. Our proposal of extremality is also based on directions, unlike Hallin et al.

[25], where u is the direction of the “vertical” axis in the regression, in this Chapter

u is “bisectrix” of the oriented cone. For example, if u = 1√
n
1n then Cu

x = x+R
n
+.

As a consequence of this extremality definition, we propose an order for multi-

variate data that allows to establish the “farness” of x with respect to a data cloud or

to a distribution. We want to emphasize that our proposal introduced in this Chap-

ter is a multivariate data order that works well in terms of computational times in

high dimensions and for large samples. Besides the extremality measure provides a

statistical methodology for segmenting a multivariate data sample, because the set

of x∗ ∈ R
n such that P (Cu

x∗) = q can be interpreted as a multidimensional quan-

tile in the same way as in Tibiletti [58] and Fernández-Ponce and Suárez-Llorens
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[19], where only the direction u = 1√
n
[±1, . . . ,±1]′ was considered. Therefore, our

proposal of extremality is a starting point to study segmentation by considering al-

ternative directions that can be more interesting from a financial point of view such

as, e.g., principal components or the direction of the weights vector in a portfolio.

An interesting application that we also discuss is the definition of a new version of

multivariate Value at Risk.

We also establish the most relevant properties of this extremality measure and

give the theoretical basis for its nonparametric estimation. We include in this work

an application in finance using the new definition of an Oriented Multivariate Value

at Risk whose level sets are built through the order extremality. From Oriented Mul-

tivariate Value at Risk introduced in this Chapter, we present a procedure to bound

the univariate Value at Risk in reasonable computational times. One advantage of

the Value at Risk introduced is that it is fast to compute and applicable to high-

dimensional data.

This Chapter is is organized as follows. Section 2.2 introduces the definition

and properties of the oriented orthant and how it is constructed. This definitions

and construction are necessary to present the extremality in Section 2.3. The main

properties and consistency results are discussed in Section 2.4. An Oriented mul-

tivariate VaR is proposed in Section 2.5. Finally, in Section 2.6 we summarize the

main conclusions.

2.2 Preliminaries

In this Section we introduce the main tools that we will use throughout the Chapter.

As the unit vectors play a special role in this Chapter, we start by defining some

mathematical formulation related to that will be relevant in the results given in the

next Sections.

Definition 2.2.1 (Factorization QR) Let A be an m × n matrix with m ≥ n.
Then A can be factorized as

A = QR,

where Q is an orthogonal matrix and

R =

(
R1

0

)
,

with R1 an upper triangular matrix.
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Matrix Q can be obtained by using, for instance, Householder Reflections, Givens

Rotations or Gram-Schmidt Transformations (see Gentle [23], pages 95-103). Since

Q is an orthogonal matrix, Q′ = Q−1. If the diagonal entries of R are required to be

nonnegative, Q and R are unique (from now on, we will assume nonnegative elements

in R). The next result establishes that, in the QR factorization of any unit vector,

R will be the first element of the canonical basis in R
n

Proposition 2.2.2 Let u = [u1, . . . , un]
′ be a vector with Euclidean norm ‖u‖ = 1.

If u = QR, then R = [1, 0, . . . , 0]′.

Proof. We have that

1 = u′u = R′Q′QR = R′IR = R′R.

Therefore, R has to be [1, 0, . . . , 0]′ according to Definition 2.2.1. �

Consider the unit vectors e = 1√
n
[1, . . . , 1]′ and u ∈ R

n. Writing

e = Q1R1 and u = Q2R2,

R2 = R1 = [1, 0, . . . , 0]′, from Proposition 2.2.2.

Hence, Q′
2u = Q′

1e and Q1Q
′
2u = e. Thus,

Ru = Q1Q
′
2 (2.2.1)

is an orthogonal matrix transforming u into a unit vector with identical components.

This transformation will send each vector x to a new orthogonal coordinates system,

where u has all its angles equal with respect to the new nonnegative axis coordinates,

that is, Ruu = e. The transformation (2.2.1) is used to define an oriented orthant

as follows.

Definition 2.2.3 Given a unit vector u ∈ R
n and x ∈ R

n, the oriented orthant
with vertex x and direction u is a cone convex given by

Cu
x = {z ∈ R

n | Ru(z− x) ≥ 0} , (2.2.2)

where the inequality is componentwise and Ru is the orthogonal matrix transforming
u into a unit vector with identical components.
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Cu
x is the convex cone obtained by rotating the nonnegative orthant according to

u and moving the origin to x. Moreover, it has a single extreme point in x, the

semi-line

l = {z ∈ R
n | z = x+ λu, λ ≥ 0} (2.2.3)

is totally contained in Cu
x and its angles with respect to the new nonnegative semi-

axis coordinates are cos−1
(

1√
n

)
. Note that for u = 1√

n
[±1 · · · ± 1]′ and x = 0, Cu

x

coincides with the 2n orthants in R
n. Specifically in R

2, Cu
x is characterized by

Cu
x =

{(
z1

z2

)
∈ R

2 :

√
2

2

(
u1 + u2 u2 − u1

u1 − u2 u1 + u2

)(
z1 − x1

z2 − x2

)
≥
(

0

0

)}
,

where u = [u1, u2]
′ and x =

(
x1

x2

)
. Also,

Cu
x =

{(
z1

z2

)
∈ R

2 :

(
cos(θ − π

4
) sin(θ − π

4
)

− sin(θ − π
4
) cos(θ − π

4
)

)(
z1 − x1

z2 − x2

)
≥
(

0

0

)}
,

for u = [cos θ, sin θ]′. Thus, Cu
x is a convex cone obtained by rotating the non-negative

quadrant by an angle (θ − π
4
) and translating the origin to (x1, x2)

′. Besides, the

semi-line (2.2.3) will be bisectrix of Cu
x with angles cos−1

(
1√
2

)
with respect to the

rotated nonnegative semi-axis.

O

u4

D

u1

A

u2

B

u3

C

Figure 2.1: Examples of oriented orthant

Figure 2.1 shows some examples of oriented orthants. Cu1

A , Cu2

B , Cu3

C and Cu4

D with ver-

tices in A,B,C,D and ui = [cos θi, sin θi], for θi =
π
3
, π
4
, 5π

4
, π
2
, respectively. Hence,
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C
π
4

0+ , C
3π
4

0+ , C
5π
4

0+ and C
7π
4

0+ can be seen as the (+,+); (−,+); (−,−); (+,−) quadrants,

respectively.

From now on, let e = 1√
n
[1, . . . , 1]′. If u1 = e, u2 = −e, then Cu1

0 and Cu2

0

are, respectively, the nonnegative and nonpositive orthants, since Ru1
= In and

Ru2
= −In (see equation (2.2.1))

Proposition 2.2.4 For any u, if x ∈ Cu
y , then Cu

x ⊂ Cu
y .

Proof. Suppose that z ∈ Cu
x . Definition 2.2.3 implies that Ru(z − x) ≥ 0, and

Ru(x − y) ≥ 0 by hypothesis. Then as Ru(z − y) = Ru(z− x) +Ru(x − y) ≥ 0,

z ∈ Cu
y . �

The following Proposition shows that there exists at least a transformation allo-

wing to compare componentwise two points in R
n.

Proposition 2.2.5 If x 6= y ∈ R
n and u =

(x−y)
‖x−y‖ , where ‖·‖ is the Euclidean norm,

then

i) Ruy ≤ Rux

ii) Cu
x ⊂ Cu

y .

Proof. i) According to transformation (2.2.1), for any unit vector u, Ruu = e. In

particular, for u =
(x−y)
‖x−y‖ , clearly we see that Ru(x−y) ≥ 0, therefore Ruy ≤ Rux.

ii) Since for any unit vector u, Ruu = e, then Ru(x−y) ≥ 0, which means x ∈ Cu
y

and so, from Proposition 2.2.4, Cu
x ⊂ Cu

y . �

2.3 A directional extremality

Let X be a random vector with associated probability distribution P , cumulative

distribution function F and joint density function f . Given a unit vector u, let

Px,u = PF (Cu
x ) be the probability that X belongs to Cu

x . Note that PF (C−e
x ) = F (x).

With respect to calculation of Px,u, we can show now that Px,u can be explicitly

calculated in dimension two as follows.
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P (Cu
x ) =



∫ ∞

x1

∫ x1 cos(θ−π
4 )+x2 sin(θ−π

4 )−t cos(θ−π
4 )

sin(θ−π
4 )

−x1 sin(θ−π
4 )+x2 cos(θ−π

4 )+t sin(θ−π
4 )

cos(θ−π
4 )

f(t, s)dsdt


1{θ∈[0,π4 )∪( 7π

4
,2π)}

+



∫ ∞

x2

∫ x1 sin(θ−π
4 )−x2 cos(θ−π

4 )+s cos(θ−π
4 )

sin(θ−π
4 )

x1 cos(θ−π
4 )+x2 sin(θ−π

4 )−s sin(θ−π
4 )

cos(θ−π
4 )

f(t, s)dtds


1{θ∈(π

4
, 3π
4 )}

+



∫ ∞

x1

∫ −x1 sin(θ−π
4 )+x2 cos(θ−π

4 )+t sin(θ−π
4 )

cos(θ−π
4 )

x1 cos(θ−π
4 )+x2 sin(θ−π

4 )−t cos(θ−π
4 )

sin(θ−π
4 )

f(t, s)dsdt


1{θ∈( 3π

4
, 5π
4 )}

+



∫ x2

−∞

∫ x1 cos(θ−π
4 )+x2 sin(θ−π

4 )−s sin(θ−π
4 )

cos(θ−π
4 )

x1 sin(θ−π
4 )−x2 cos(θ−π

4 )+s cos(θ−π
4 )

sin(θ−π
4 )

(t, s)dtds


1{θ∈( 5π

4
, 7π
4 )}

+

(∫ ∞

x1

∫ ∞

x2

f(t, s)dsdt

)
1{θ=π

4} +

(∫ x1

−∞

∫ ∞

x2

f(t, s)dsdt

)
1{θ= 3π

4 }

+

(∫ x1

−∞

∫ x2

−∞
f(t, s)dsdt

)
1{θ= 5π

4 } +

(∫ ∞

x1

∫ x2

−∞
f(t, s)dsdt

)
1{θ= 7π

4 }.

However, in higher dimensions is more difficult to give a general expression for

P (Cu
x ) unless the unit vector u is given numerically. It can be show that Px,u is

related to the transformation Ru, that is, if Dx = {t ∈ R
n | t ≥ x} and t = Rux,

then clearly x = R′
ut and

Px,u =

∫

Dx

f(R−1
u t)dt. (2.3.1)

If x1, . . . ,xm is a sample of the random vector X, the empirical version of Px,u is

given as

P̂x,u =
1

m

m∑

j=1

1{xj ∈ Cu
x } =

1

m

m∑

j=1

1{Ru(xj−x)≥0}, (2.3.2)

P̂x,u denotes the proportion of points belonging to Cu
x .

We now formulate the extremality notion, which is the starting point to define a

new multivariate data order.

Definition 2.3.1 (Directional Extremality) The extremality of x in the direc-
tion u with respect to a distribution function F is given by

Eu(x, F ) = PF

(
Cu
x

)
= 1− Px,u. (2.3.3)
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The extremality Eu(x,X) of x ∈ R
n in direction u with respect to the data

X = {x1, . . . ,xm}

is defined by replacing Px,u by P̂x,u, that is the proportion of points belonging to Cu
x .
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Figure 2.2: Points with high extremality

In Figure 2.2 it is displayed points with a sample extremality greater than 0.99 for

different directions in a sample coming from a normal distribution with high positive

correlation. From Figure 2.2 can be observed that high extremality of a point x

means that the convex cone Cu
x contains a small proportion of the points of the

sample or of the total mass of probability and possibly x belongs to some tail of the

distribution. Hence, high extremality can be interpreted as “farness” with respect

to the data cloud.
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Multivariate extremes: a directional approach

Figure 2.3: E 1√
2
[1, 1]′(x, F ) = α and E[0, 1]′(x, F ) = α

Observe that those points labeled with high extremality can also be considered

as extremes since an oriented orthant with vertex on any of them contains less of

1% of data. Therefore, the frontier-curve of those points may be seen as a new

versions of multidimensional quantiles. We illustrate this idea in Figure 2.3 where

extremality level curves corresponding to extremality values of 0.99; 0.95; 0.9 and

0.85 are displayed when F is a bivariate distribution with independent marginal

distributions U(0, 1). The left side for the direction u = 1√
2
[1, 1]′ and the right one

for the direction [0, 1]′, so that each election of a unit vector provide different way

of segmenting the distribution or the multivariate sample.

Figure 2.4 provides extremality level surface corresponding to extremality values

of 0.99; 0.95; 0.90; 0.85 in the direction u = 1√
3
[1, 1, 1]′ of a multivariate distribu-

tion F with three independent marginal distributions U(0, 1). Both Figure 2.3 and

Figure 2.4 show a segmentation of the distribution and the curves or surfaces can be

seen as quantile-curves or quantiles-surfaces. In contrast with the one-dimensional

case where we only have two directions −1 or 1 originating the traditional α-quantile

through F−1(α) or F̄−1(α), but infinity directions can be used in higher dimensions.

For particular cases of these directions we get the multidimensional quantiles studied

in Tibiletti [58] and Belzunce et al. [4] where provide the classical orthants. Hence,

our proposal is more flexible and allows to define new version of quantiles for a mul-

tivariate distribution in different directions. We will introduce in Section 2.5 other

directions that can be useful in applications.
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Figure 2.4: E 1√
3
[1, 1, 1]′(x, F ) = α

The data order induced by u is based on comparing the extremality of the co-

rresponding points as follows.

Definition 2.3.2 y is said to be more extreme than x with respect to F in direction
u, denoted x ≤Eu y, if Eu(x, F ) ≤ Eu(y, F ).

For any x,y ∈ R
n, any distribution function F and any direction u, it holds that

either x ≤Eu y or y ≤Eu x. However, ≤Eu is not a partial order in R
n, but a pre-

order; although it satisfies reflexivity and transitivity properties, it does not satisfy

antisymmetry. The extremality order in the direction u allows to sort elements in

R
n according to its extremality value. Elements with larger extremality value are

extreme points and candidates to be outliers. Observe also that the set of x ∈ R
2

such that Eu(x, F ) = q, for each q ∈ [0, 1], generalizes those quantiles curves intro-

duced in Belzunce et al. [4] by inclusion of more directions. For greater dimensions,

Eu(x, F ) = q, generalizes the multidimensional quantiles discussed in Tibiletti [58].

Given a direction, the extremality data order allows to segment a multivariate

sample by using the ranks provided by the extremality measure.

Figure 2.5 shows a segmentation of a sample of a bivariate normal with means

zero and covariance matrix

Σ =

(
1 0.7

0.7 2

)
.
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Figure 2.5: Segmentation

The partitions are given by the points x such that Eu(x, F ) ≥ 0.9, 0.8, . . . , 0.1,

where u is the a unit vector in the direction of the first principal component.

2.4 Properties of the directional extremality

In this Section, we show some properties of the directional extremality defined in the

previous Section which indicate us that our definition support intuitive and desirable

properties associated to the extremality measure.

Property 2.4.1 For any x and any absolutely continuous distribution function F ,
Eu(x0, F ) is continuous in u.

Proof. Let f be the density corresponding to F . Let Dx = {t ∈ R
n | t ≥ x}. Then

from the inverse transformed Theorem and Definition 2.3.1, Eu(x0, F ) can be written

as

Eu(x0, F ) = 1−
∫

Dx

f(R−1
u t)dt,

which clearly is continuous in u since R−1
u is a linear transformation. �

The following property shows that the vertex x has minimal extremality on the

set Cu
x .

Property 2.4.2 Eu(x, F ) ≤ Eu(y, F ), for all y ∈ Cu
x .
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Proof. If y ∈ Cu
x then Cu

y ⊂ Cu
x . Therefore,

PF

(
Cu
y

)
≤ PF (Cu

x ) and Eu(x, F ) ≤ Eu(y, F ).

�

Extremality also is invariant by orthogonal transformations as it is proven in the

following result.

Property 2.4.3 Let X be an n−dimensional random vector with distribution
function F . Let A be an orthogonal matrix and let b ∈ R

n. Then

EAu(Ax + b, FAX+b) = Eu(x, FX).

Proof. Since A is an orthogonal matrix and u, e are unit vectors, Au is also a unit

vector. Using Proposition 2.2.2, the QR factorization is given by

e = Q1R1, u = Q2R1, Au = Q3R1, where R1 = [1, 0, . . . , 0]′ ∈ R
n. (2.4.1)

Therefore, applying transformation (2.2.1), we have

Ru = Q1Q
′
2 and RAu = Q1Q

′
3. (2.4.2)

Since R1 is diagonal with non-negative entries, the QR factorization of u is unique.

Therefore, from (2.4.1),

u = Q2R1 = A′Q3R1, which implies that Q2 = A′Q3,

and, from (2.4.2),

Ru = Q1Q
′
2 = Q1Q

′
3A = RAuA. (2.4.3)

Then, using (2.4.3) in the last equality, we obtain

EAu(Ax+ b, FAX+b) = 1− PFAX+b

(
CAu
Ax+b

)

= 1− PF (RAu(AX+ b−Ax− b) ≥ 0)

= 1− PF (RAuA(X− x) ≥ 0) , (from (2.4.3) )

= 1− PF (Ru(X− x) ≥ 0) = 1− PF (Cu
x ) = Eu(x, FX).

�

Property 2.4.4 Let x ∈ R
n − {0} and u = x

‖x‖ , where ‖ · ‖ is the Euclidean norm.

If ‖x‖ −→ ∞, then Eu(x, F ) −→ 1.
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Proof. Let B = {b ∈ R
n : ‖b‖ ≥ ‖x‖}. Suppose that z ∈ Cu

x . Then Ru(z− x) ≥ 0

(see equation (2.2.2)) and Ruz ≥ Rux. Using the transformation defined in (2.2.1),

Ruu = Ru

x

‖x‖ = e,

and then,

Ruz ≥ ‖x‖e > 0.

Therefore, Cu
x ⊂ B since

‖z‖2 = z′z = z′R′
uRuz = (Ruz)

′ Ruz = ‖Ruz‖2 ≥ ‖x‖2‖e‖2 = ‖x‖2.

It follows that

0 ≤ PF (Cu
x ) = PF (Ru(X− x) ≥ 0) ≤ PF (‖X‖ ≥ ‖x‖) .

And the proof is complete letting ‖x‖ −→ ∞. �

Let Eu(x, Fm) as in (2.3.2) be the empirical version of Eu(x, F ). In Theorem 2.4.5

below, we show that Eu(x, Fm) is a strongly consistent estimator of Eu(x, F ) and we

obtain its asymptotic distribution.

Theorem 2.4.5 Let X be a random vector with distribution function F . Then,

i) Eu(x, Fm) −→ Eu(x, F ) a.s., as m −→ ∞

ii) supx,u∈Rn | Eu(x, Fm)− Eu(x, F ) |−→ 0 a.s, as m −→ ∞

iii) m
1
2

Eu(x,Fm)−Eu(x,F )√
Eu(x,F )(1−Eu(x,F ))

−→ Z weakly, as m−→ ∞, where Z is a standard

normal random variable.

Proof. Let X1, . . . ,Xm be independent random vectors with a common distribution

F . Let 1A(X) be the indicator function of A. Since X1, . . . ,Xm are i.i.d random

vectors, 1(Cu
x )(Xi), i = 1, . . . , m, also are i.i.d random variables such that, for all

i = 1, . . . , m,

E
[
1(Cu

x )(Xi)
]
= PF (Cu

x ) and V
[
1(Cu

x )(Xi)
]
= PF (Cu

x )(1− PF (Cu
x )).

Let C be the class of all oriented orthants Cu
x with x,u ∈ R

n and define PFm
(Cu

x )

as

PFm
(Cu

x ) =
1

m

m∑

i=1

1(Cu
x )(Xi).
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i) From Strong Law of Large Numbers, (see, e.g., Gaenssler [22], page 2), we have

that

PFm
(Cu

x ) −→ PF (Cu
x ) a.s., as m −→ ∞.

And thus,

Eu(x, Fm) −→ Eu(x, F ) a.s., as m −→ ∞.

ii) Using the Glivenko - Cantelli Theorem (see, e. g., Gaenssler[22] page 16), we

have that

sup
Cu
x∈C

|PFm
(Cu

x )− PF (Cu
x )| −→ 0 a.s.,

which implies that

sup
x,u∈Rn

|Eu(x, Fm)− Eu(x, FX)| −→ 0 a.s.

iii) Applying the Central Limit Theorem, it is easy to see

m
1
2

PFm
(Cu

x )− PF (Cu
x )√

PF (Cu
x ) (1− PF (Cu

x ))
−→ Z, as m −→ ∞,

for each Cu
x ∈ C, where Z is a random variable with standard normal distri-

bution. According to Definition 2.3.1 the previous expression can be rewritten

as

m
1
2

Eu(x, Fm)− Eu(x, F )√
Eu(x, F ) (1− Eu(x, F ))

−→ Z, weakly, as m −→ ∞,

and the result follows.

�

2.5 Financial application: a multivariate VaR

An important goal for a risk manager is to find the maximum aggregate loss that

can occur with a probability α. Value at Risk (VaR) is the mostly used risk measure

in the univariate case. VaR is the α-quantile of the loss distribution function. If X

is a loss random variable with distribution F and α ∈ [0, 1] then the one-dimensional

VaR is given by

V aRα(X) ≡ inf{x ∈ R | F (x) ≥ α}. (2.5.1)
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In the multivariate context, it is usual to have a portfolio vector X = (X1, . . . , Xn)
′

for which it is necessary associate a risk measure. A natural idea is to consider a

function g : Rn −→ R and an one-dimensional risk measure on g(X). Thus, the VaR

of the joint portfolio is that associated to g(X). Examples of this idea can be found

in Burgert and Rüschendorf [6], where

g(X) =

n∑

i=1

Xi or g(X) = max
i≤n

Xi.

The multivariate VaR analogue of univariate VaR is discussed in Embrechts and

Puccetti [17] who define the VaR through the α-level sets of the joint loss distribution

function and the joint loss tail function. Cascos and Molchanov [9] also define a

multivariate VaR as level sets of halfspace trimming regions. Making use of the

definition of the directional extremality, we introduce a multivariate VaR as level set

of the extremality. If F is a multivariate distribution function, consider the sets

Au
α(F ) = {x ∈ R

n : Eu(x, F ) ≥ 1− α} , for all 0 ≤ α ≤ 1.

Its boundary ∂Au
α(F ) can be interpreted as an oriented multivariate value at risk at

the level α and we will denoted it by V aRu
α(X). In particular, for u = e and u = −e,

V aRu
α(X) are respectively the upper-orthant and the lower-orthant value at risk, dis-

cussed in Embrechts and Puccetti [17]. However, directions as u = 1√
n]
[±1, . . . ,±1]′,

u = w
‖w‖ where w can be a vector of portfolio weights to invest in n assets, or even the

direction of principal components can also be interesting in financial applications.

The V aRu
α(X) can be nonparametrically estimated by using a multivariate sam-

ple {x1, . . . ,xm} and fitting a surface on the set Su
α(Fm) = {xi : Eu (xi, Fm) = 1− α}.

It may occur that Su
α(Fm) = ∅ or that there were few elements satisfying

the equality. To overcome this problem, we consider the set Su
α,h(Fm) =

{xi : |Eu (xi, Fm)− 1 + α| ≤ h} , with slack h. Since Su
α(Fm) ⊂ Su

α,h(Fm), a more

accurate estimation of the boundary can be made. The direction given by u may

have influence in the estimation of Su
α,h(Fm). Indeed, the classical methods used to

smooth functions may fail because the surface of interest is not a function in all cases,

since the set Su
α,h(Fm) can have couples (x, yi), (x, yj) such that x ∈ R

n−1, yi 6= yj.

Thus, we need to change the original coordinates to estimate the V aRu
α(X) as follows.

Suppose that Su
α,h(Fm) = {x1,x2 . . . ,xk}. Transforming the set according to (2.2.1),

we get

RuS
u
α,h(Fm) = {Rux1,Rux2 . . . ,Ruxk} . (2.5.2)
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Now, the smoothing of the points in (2.5.2) is done by usual methods, and the

resulting surface is transformed back to the original system to obtain finally an

estimation for V aRu
α(X). The above is summarized in the following algorithm.

Input:

u, α, h, and the multivariate sample X = x1, . . . ,xm

for i = 1 to m

Ei = Eu(xi, Fm)

if |Ei − 1 + α| ≤ h

xi ∈ Su
α,h(Fm)

end

end

Fitting a function f on RuS
u
α,h(Fm)

V aRu
α(X) = R−1

u f

For smoothing, we have used gridfit, a surface modelling tool available in

(http : //www.mathworks.com/matlabcentral/fileexchange/8998).

We illustrate graphically this approach. Figure 2.6 shows the Theoretical VaR of

level 0.05 in the direction u = e for three bivariate distributions with independent

marginals identically distributed as U(0, 1), N(0, 1) and Exp(1), respectively.
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Figure 2.6: � Theoretical curve V aRe
0.05(X)
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Figure 2.7: � Ee (xi, Fm) > 0.95 � Su
α,h(Fm) � Estimated V aRe

0.05 � V aRe
0.05

The estimation of the respective theoretical curves V aRe
0.05 is shown in Figure

2.7. We have considered h = 0.01. Here the VaR is calculated in the direction u = e

and Ru is the identity matrix. Observe that an oriented orthant in direction u = e

and vertex at any yellow point contains a mass less than or equal to 0.05. Therefore

the extremality of any of those points is greater than 0.95.

Figures 2.8 and 2.9 show daily negative returns of two leading companies, Mi-

crosoft and Google, from 19/08/2004 to 04/11/2010.
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Figure 2.8: � Ee (xi, Fm) > 0.95 � Estimated V aRe
0.05
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Figure 2.9: � Epc (xi, Fm) > 0.95 � Estimated V aRpc
0.05

In Figure, 2.8 the VaR is estimated in the usual direction u = e; while in Figure

2.9 it is estimated using u = pc where pc is the direction of maximum variability,

that is, the direction given by the first principal component of the data. This V aRpc
α

can be interpreted as a more conservative risk measure.
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Figure 2.10: � Ee (xi, Fm) > 0.95. � Estimated V aRe
0.05.
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Figure 2.11: � Epc (xi, Fm) > 0.95. � Estimated V aRpc
0.05.

Figures 2.10 and 2.11 show estimations of V aRe
0.05 and V aRpc

0.05, respectively,

for daily negative returns of three leading companies, Microsoft, Google and Yahoo

from 19/08/2004 to 04/11/2010. Note that the risk measure depends heavily on

the selected direction. Observe that in all case the estimator obtained following our

procedure seems to fit well the theoretical VaR.

An important aspect in financial risk is to obtain the risk measure in a reasonable

time. An advantage of our approach is that can be easily computed for large values of

n and sample sizem. In order to show the computational times, we consider a sample

of size m of X = (X1, . . . , Xn)
′ which follows a multivariate Normal distribution with

parameters µi = 0, σ2
ii = 1 and σ2

ij = 0.8. The following Table displays the elapsed

time for calculating the points of the sample belonging to V aRu
α(X) for different

values of the dimension n and of the sample size m. The times of Table 2.1 are

independent of the direction u.
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Tables 2.1: Elapsed time for different dimensions and different sample size.

n 2 5 10 20 50

m Elapsed time in seconds

1000 5 6 6 6 8

3000 46 48 50 60 75

5000 128 135 138 143 205

8000 329 344 355 380 529

10000 509 533 551 643 830

To our knowledge, the versions of the multivariate Value at Risk introduced in

the literature have been from theoretical point of view. The computational aspect

has not been treated in detail. Therefore, observing Table 2.1, we highlight that the

main advantage of our proposal relative to other multivariate VaRs is that it is fast

to compute and applicable to high dimensional data. We also want to emphasize

that the computational cost to calculate the points que belongs to V aRu
α(X) for a

sample n-dimensional of size m has a complexity O(m.n), where n << m.

In the next result, we give an interesting relationship between the Oriented Mul-

tivariate Value at Risk and the usual Univariate Value at Risk given in (2.5.1). Let

X = (X1, . . . , Xn)
′ be the rate of returns of n different assets in a portfolio and

suppose that w = (ω1, . . . , ωn)
′ denote the portfolio weights. The total portfolio rate

of return is given by Z = w′X, which is a sum of non-independent random variables.

The problem of obtaining the distribution function of Z has received considerable

attention in the literature, since it has relevant applications in quantitative risk

management. Embrechts and Puccetti [18] discuss bounds for the Value at Risk

of Z, since one should be interested in bounding from above the probability that

the aggregate loss amount will exceed some given threshold. Through the following

proposition, we provide an interesting link between V aRu
α(X) and V aRα(Z).

Proposition 2.5.1 Let u = w
‖w‖ be a unit vector in the direction of the port-

folio weights vector. Consider X and Z as before. If x ∈ V aR−u
α (X), then

w′x ≥ V aRα(Z).

Proof. Note that x ∈ V aR−u
α (X) implies that E−u(x, F ) = 1 − α. By definition of

extremality and from (3.3.3), we have that P [R−u(X− x) ≥ 0] = α. Therefore,

P [1′R−u(X− x) ≥ 0] ≥ α, where 1 = [1, . . . , 1]′. (2.5.3)
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From (2.2.1) we can conclude that R−u(−u) = 1√
n
1. Now, note that

P [1′R−u(X− x) ≥ 0] = P
[√

n (R−u(−u))
′ R−u(X− x) ≥ 0

]

= P
[√

n(−u)′R′
−uR−u(X− x) ≥ 0

]

= P
[√

n(−u)′In(X− x) ≥ 0
]

= P

[√
n

(
− w

‖w‖

)′
(X− x) ≥ 0

]

= P [−w′X ≥ −w′x)] = P [Z ≤ w′x)] .

Thus, (2.5.3) can be also written as

P [Z ≤ w′x)] ≥ α, (2.5.4)

and by (2.5.1), w′x ≥ V aRα(Z). �

As consequence of Proposition 2.5.1, a bound easily computable in high dimension

for the univariate V aRα(Z) can be obtained by solving the following problem

minw′x s.t. x ∈ V aR
− w

‖w‖
α (X).

This result indicates how to consider a directional approach of the multivariate VaR

can be useful and interesting in financial applications.

As an example of Proposition 2.5.1, we have simulated a sample of size 10000

of X = (X1, . . . , X10)
′ from a Normal distribution with parameters µi = 0, σ2

ii = 1

and σ2
ij = 0.8 and we have obtained 2.31 as a bound for V aR0.95(Z), by using the

direction w = 1
10
1. If we increase the dependence with σ2

ij = 0.9, the bound for

V aR0.95(Z) was 2.11. We have also simulated comonotonic risks X = (X1, . . . , X20)
′

where Xi = U
i
20 being U ∼ Uniform(0,1) and the bound for V aR0.95(Z) was 0.9750.

To establish a comparison with the real V aRα(Z), we have estimated V aRα(Z)

through an empirical 0.95-quantile from the sample in the previous cases and the

results have been: 1.5, 1.6, and 0.9750 respectively.

Calculation times in a simple laptop with a dual-core processor was approximately

535 seconds for each case. It is interesting to observe that our procedure is feasible

in high dimension and if X presents strong dependence, the bound is more reliable.

We highlight that after of having those points belong to V aR−u
α (X) , the time to

obtain the bound on the different values for the dimension n y for the sample size m

is negligible. Hence, we emphasize that our procedure, as for obtaining V aR−u
α (X)

as for finding the bound is quite feasible in high dimensions since the elapsed time

depends weakly of the dimension ( see Table 2.1)
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2.6 Conclusions

In this Chapter we have introduced a new extremality notion in the multivariate

context that induces a natural data order in R
n when a direction is chosen. As

consequence of the extremality measure, it is possible to extend the idea of the

multivariate quantiles studied in Tibiletti [58] and Fernández-Ponce and Suárez-

Llorens [19] by considering other directions those that define the classical orthant.

We give a new version of the multivariate Value at Risk by including direction that

generalizes those given in Embrechts and Puccetti [17] and Tibiletti [59]. This di-

rectional approach adds versatility to compare multivariate data, providing different

versions of the multivariate Value at Risk.

We have studied an interesting link between the Oriented Multivariate Value

at Risk introduced in this Chapter and the Classical univariate Value at Risk. In

particular, in portfolio selection, we observe that the direction of the portfolio weights

vector can be interesting in order to find a bound for the risk of the total value of the

portfolio. From a computational point of view the bound is obtained in reasonable

times even for portfolios with a large number of assets.

Various concepts introduced in this paper can be useful for future research line.

As an example, the good of fitness data in R
2. We note that if two random vectors

have the same distribution function, they will have the same extremality for all x

and any direction u. Thus, we could determinate if two samples came from the same

population testing a Extremality-Extremality-plot, in several direction.
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Clearly the plots begins at (0, 0) and ends at (1, 1), and if the plot follows a

straight line, then the random vectors should come from the same distribution. We

illustrate the situation in Figure 2.12.
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Figure 2.12: Extremality-Extremality-Plot

New Tolerance regions, detection of outliers and depth measure can be also

examined with the concepts introduced in this paper. Work is currently underway

on this extensions.
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3
An extremality stochastic order

3.1 Introduction

One of the most relevant tools in risk evaluations of portfolios of hedge funds was

introduced by Markowitz [43]. In his approach, risky investments comparisons are

carried out through means and variances of the prospects: given a random vector

of risky assets X = (X1, . . . , Xn)
′ and a real vector w = (ω1, . . . , ωn)

′ describing the

allocation of wealth, the risk averse decision maker assigns to the portfolio ZX = w′X

the utility U(ZX) = E(ZX)− αV ar(ZX), where α > 0 is the degree of risk aversion,

and choose among portfolios maximizing the utility U(ZX). Markowitz model has

some drawbacks; for instance, it is not consistent with respect to the usual stochastic

order (see Müller and Stoyan [46]), where the consistency is the monotonicity of a

utility function or of a risk measure with respect to some stochastic order (see Bauerle

and Müller [5] and references therein). In fact, starting from the assumption that

utility functions are increasing and concave, which is common in economic theory,

consistency means that stochastic comparisons between two different vectors X and

Y of risky assets implies comparisons between the utilities EU(ZX) and EU(ZY)

for the same vector of allocations. The aim of this Chapter is to introduce a new

multivariate stochastic order that may be useful in finding out new guidelines for

allocation of risks in static portfolios.

Comparisons among random variables and vectors in different stochastic ways

have been extensively considered during the last thirty years. Applications of these

stochastic orderings have been provided in several disciplines, from economic theory

to reliability and queueing theory (see, e.g., Barlow and Proschan [2], Stoyan [57],

Shaked and Shanthikumar [55], Denuit et al. [14]). Among the stochastic orders

defined and studied in the literature, most of them deal with comparisons between
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random vectors, like the multivariate usual stochastic order or the multivariate dis-

persion orders, with applications in decision making in multiple output scenarios.

In this Chapter we introduce a new multivariate stochastic order, called extrema-

lity order, that is a generalization of the upper and lower orthant order discussed in

Shaked and Shanthikumar [55] and Marshall and Olkin [44], and that, unlike these

two orders, allows comparisons of random vectors in different directions, determined

by a unit vector. Essentially, it is based on rotation of the non-negative orthant in

a direction given, obtaining a cone, which is isomorph to the non-negative orthant.

The extremality stochastic order introduced in this Chapter is based on the mul-

tivariate data ordering introduced in Chapter 2, where an extremality measure was

defined to find multivariate extremes from a directional approach. Inspired on the

extremality directional data ordering, we propose in this Chapter a probabilistic

comparison between multivariate random vectors based on the probability assigned

on some extremes sets on a given direction.

We present in portfolio comparisons some examples of application, in the determi-

nation of optimal allocations of wealth among risks in single period portfolio problems

and we show that other directions can be more interesting than those used to define

the upper and lower orthant orders.

The Chapter is organized as follows. Some preliminaries are described in Sec-

tion 3.2 , while the properties of the extremality order, and its relationships with

other multivariate stochastic orders (in particular, with the upper orthant and lower

orthant orders), are described in Section 3.3. A list of its applications in portfolio

theory are provided in Sections 3.4 and 3.5. Finally, in Section 3.6 we summarize

the main conclusions.

3.2 Preliminaries

For ease of reference, first we briefly recall some notation that will be used throughout

the Chapter. Random vectors taking values in R
n will be considered, unless otherwise

stated. The space Rn is endowed with the usual componentwise partial order, which

is defined as follows: given two vectors x = (x1, · · · , xn) and y = (y1, · · · , yn) in

R
n, then x ≤ y if xi ≤ yi for i = 1, · · · , n. A function φ : Rn −→ R

n is said to

be an increasing function when φ(x) ≤ φ(y) for x ≤ y. Throughout the paper the

terms ‘increasing’ and ‘decreasing’ stand for ‘non-decreasing’ and ‘non-increasing’,

respectively. Moreover, we shall adopt the following notations: for any random
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variable Z we shall denote its distribution function by FZ(x) = P (Z ≤ x) and its

survival function by F̄Z(x) = P (Z > x); the notation =st stands for the equality in

law; the notation u ∧ v and u ∨ v stand for min{u, v} and max{u, v}, respectively.
Concerning the stochastic comparisons, we first provide the definition of the

orders usually considered in the univariate setting.

Definition 3.2.1 Given two random variables X and Y we say that X is smaller
than Y in the usual stochastic order [convex order, increasing convex order, increasing

concave order] (denoted by X ≤st [≤cx,≤icx,≤icv] Y ) if and only if E[φ(X)] ≤
E[φ(Y )] for all increasing [convex, increasing convex, increasing concave] functions
φ for which the expectations exist. Moreover, we say that X is smaller than Y in
the Laplace transform order (denoted by X ≤Lt Y ) whenever φ(t) = −e−at where a
is any positive number.

It should be recalled that in economics, where comparisons among expected utilities

are commonly considered, the usual stochastic order and the increasing concave order

are referred as First order Stochastic Dominance (FSD) and Second order Stochastic

Dominance (SSD), respectively.

In the multivariate setting, the following stochastic orders have been defined as

multivariate generalization of the usual stochastic order.

Definition 3.2.2 Given two random vectors X and Y, X is said to be smaller than
Y in:

(i) usual stochastic order (denoted by X ≤st Y) if E[φ(X)] ≤ E[φ(Y)] for any
increasing function φ with finite expectations;

(ii) upper orthant order (denoted by X ≤uo Y) if F̄X(x1, . . . , xn) ≤ F̄Y(x1, . . . , xn)

for all x, where F̄X, F̄Y denote the survival function of X and Y, respectively. (iii)
lower orthant order (denoted by X ≤lo Y) if FX(x1, . . . , xn) ≥ FY(x1, . . . , xn) for all
x, where FX, FY denote the distribution function of X and Y, respectively.

It is easy to verify that both the upper orthant order and the lower orthant

order are implied by the usual stochastic order. The following two multivariate

stochastic orders have been defined to compare the strength of dependence between

the components of vectors in the same Fréchet class (see Lehmann [38]). Recall that

a function φ : Rn → R is said to be supermodular if φ(x∨y)+φ(x∧y) ≥ φ(x)+φ(y)

for all x, y ∈ R
n.

Definition 3.2.3 Given two random vectors X and Y having the same marginal
distributions, i.e., such that Xi =st Yi for all i = 1, . . . , n, X is said to be smaller
than Y in:
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(i) positive quadrant dependence order (denoted by X ≤PQD Y) if X ≤uo Y, or,
equivalently, if X ≥lo Y;

(ii) supermodular order (denoted by X ≤sm Y) if E[φ(X)] ≤ E[φ(Y)] for any
supermodular function φ such that the expectations exist.

It should be pointed out that the positive quadrant dependence order and the

supermodular order are equivalent for dimension two, while this is not true in higher

dimensions. Further details, properties and applications of all the stochastic orders

defined above may be found, for example, in Müller and Stoyan [46], Shaked and

Shanthikumar [55], or Denuit et al. [14].

3.3 Extremality order

The extremality order, defined here, is a generalization of the upper orthant and

lower orthant orders, and allows for comparison of random vectors based on directions

specified by a unit vector. Given u ∈ R
n satisfying ‖u‖ = 1, let Ru be a rotation

matrix such that

Ruu =
1√
n

1, (3.3.1)

where 1 = [1, . . . , 1]′ ∈ R
n. We can now formulate the following definition to char-

acterize the extremality order. From now on we assume that ‖u‖ = 1.

Definition 3.3.1 Given two random vectors X and Y in R
n, X is said smaller than

Y in extremality order in the direction u (denoted by X ≤Eu
Y) if

P [Ru (X− t) ≥ 0] ≤ P [Ru (Y − t) ≥ 0] , for all t in R
n. (3.3.2)

In words, X ≤Eu
Y means that the probability that all components jointly

assume “large values in the direction of u” is lower for X than for Y, where for

“large values in the direction of a unit vector u” we mean that y is larger than x if

Ru (y − x) ≥ 0. ≤Eu
is based on the multivariate data ordering introduced in the

previous Chapter, where an extremality measure was defined to find multivariate

extremes from a directional approach.

It is easy to observe that, for u = 1√
n
1, we have the natural componentwise

order in R
n. Therefore, if u = 1√

n
1, then

X ≤Eu
Y ⇐⇒ X ≤uo Y and X ≤E−u

Y ⇐⇒ X ≥lo Y.

An equivalent definition of the order can be given by using the notion of oriented

sub-orthants introduced in Chapter 2.
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Definition 3.3.2 Given a unit director vector u ∈ R
n and a vertex t ∈ R

n, the
Oriented Sub-Orthant Cu

t is the convex cone

Cu
t = {x ∈ R

n | Ru(x− t) ≥ 0} . (3.3.3)

Note that if u = 1√
n
1 then, Cu

t = t+R
n
+, and therefore in this case the extremality

order is equivalent to upper orthant order (and similarly for the lower orthant order).

According to Definition 2.2.3 another way of writing (3.3.2) is thus the following:

X ≤Eu
Y ⇐⇒ PX (Cu

t ) ≤ PY (Cu
t ) , for all t ∈ R

n, (3.3.4)

where PX and PY are the probabilities induced by the joint distribution function of

X and Y, respectively. Note that (3.3.2) also is equivalent to

X ≤Eu
Y ⇐⇒ E

[
ICu

t
(X)

]
≤ E

[
ICu

t
(Y)

]
, for all t ∈ R

n, (3.3.5)

where ICu
t
denotes the indicator function of Cu

t . However, as shown in following

Example 3.3.3, two random vectors can be ordered in extremality even if they are

not comparable in the upper or in the lower orthant orders.

Example 3.3.3 Consider two random vectors X = (X1, X2) and Y = (Y1, Y2) such
that they are uniformly distributed and independent margins X1 ∼ U(0, c), X2 ∼
U(a, b), Y1 ∼ U(0, d), Y2 ∼ U(0, b), with b > a ≥ 0 d > c ≥ 0. Let FX and FY

be the joint distribution functions of X and Y, respectively. We can see easily that,
F̄X(0, a) = 1, F̄Y(0, a) =

b−a
b

< 1, F̄X(c, a) = 0 and F̄Y(c, a) =
(d−c)(b−a)

bd
> 0. Now

FX(c, b) = 1, FY(c, b) < 1, FX(c, a) = 0 and FY(c, a) =
ac
bd

> 0. Therefore, X and
Y are not ordered regarding the upper orthant order and are not ordered regarding
the lower orthant order. However, taking u = 1√

2
[1,−1]′ as unit vector, we have that

PX

(
Cu
(x,y)

)





1 if, x < 0, y > b,
y−b
b−a

if, x < 0, a ≤ y ≤ b,
c−x
c

if, 0 ≤ x ≤ c, y > b,(
c−x
c

) (
y−b
b−a

)
if, 0 ≤ x ≤ c, a ≤ y ≤ b,

0 otherwise.

PY

(
Cu
(x,y)

)





1 if, x < 0, y > b,
y
b

if, x < 0, 0 ≤ y ≤ b,
d−x
d

if, 0 ≤ x ≤ d, y > b,(
d−x
d

) (
y
b

)
if, 0 ≤ x ≤ d, 0 ≤ y ≤ b,

0 otherwise.
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Assuming (x, y) /∈ (0, c)×(a, b), is straightforward to see that PX(Cu
(x,y)) ≤ PY(Cu

(x,y)),

while for (x, y) ∈ (0, c)× (a, b)

PY

(
Cu
(x,y)

)
− PX

(
Cu
(x,y)

)
=

(
d− x

d

)(y
b

)
−
(
c− x

c

)(
y − b

b− a

)
≥ 0,

since that
(
d−x
d

)
≥
(
c−x
c

)
and

(
y
b

)
≥
(
y−b
b−a

)
. Hence, PX(Cu

(x,y)) ≤ PY(Cu
(x,y)) for all

(x, y) ∈ R
2, and therefore, from (3.3.4), X ≤Eu

Y.

Some properties of the extremality order are described next. The first one ex-

presses a relation between the extremality order and the univariate stochastic order.

Property 3.3.4 Let R(r.i)
u denotes the i-th row of the matrix Ru. If X ≤Eu

Y, then

R(r.i)
u X ≤st R(r.i)

u Y for every i = 1, . . . , n.

Proof. Since X ≤Eu
Y ⇐⇒ RuX ≤uo RuY, the assertion immediately follows from

Theorem 6.G.3-(c) in Shaked and Shanthikumar [55], that states that the margins of

random vectors ordered in upper sense are ordered in the univariate usual stochastic

order. �

An immediate consequence of Property 3.3.4 is that, whenever X and Y have

finite means,

X ≤Eu
Y =⇒ RuE[X] ≤ RuE[Y]. (3.3.6)

Moreover, since for every vector u it is R′
uRu = In, and, from (3.3.1), [

√
nRuu]

′
=

1′, it follows

1′RuX =
[√

nRuu
]′ RuX =

√
nu′R′

uRuX =
√
nu′X. (3.3.7)

Thus, again from Property 3.3.4,

X ≤Eu
Y =⇒ u′E[X] ≤ u′E[Y]. (3.3.8)

One reason of interest in Property 3.3.4 is the fact that it provides a tool to

compare linear combinations of random variables, a typical problem considered in

portfolio theory. It is well known that, given two sets {X1, . . . , Xn} and {Y1, . . . , Yn}
of independent random variables, ifXi ≤st Yi then

∑n
i=1 aiXi ≤st

∑n
i=1 aiYi whenever

ai ≥ 0, i = 1, . . . , n.

A generalization of this assertion was proved by Scarsini [53], who removed the

assumption of independence, proving that if (X1, . . . , Xn)
′ and (Y1, . . . , Yn)

′ have a
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common copula, then the stochastic order among the marginals implies the stochastic

orders among the vectors and, as a corollary, the stochastic order among positive

combinations of the marginals.

Since R(r.i)
u X and R(r.i)

u Y are linear combinations, not necessarily positive, of

marginals of X and Y, then Property 3.3.4 describes conditions to compare non-

positive linear combinations of dependent random variables, as it is shown in the

following example.

Example 3.3.5 Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be two normally distributed
vectors having the same covariance. Assume that Var(X1) + Var(X2) = Var(Y1) +

Var(Y2). Clearly, X and Y can have different copulas. Let u = [1, 0]′ be the unit
vector, so that the rotation matrix is given by

Ru =
1√
2

(
1 −1

1 1

)
.

Assume that Ru (E[Y]− E[X]) ≥ 0, i.e., that E[Y] belongs to oriented sub-orthant
with vertex in E[X] and oriented by the vector u. Under the assumptions above it is

clear that Var
(
R(r.i)

u X
)
= Var

(
R(r.i)

u Y
)
, i = 1, 2. Besides,

Cov
(
R(r.1)

u X,R(r.2)
u X

)
=

1

2
(V ar(X1)− V ar(X2))

and

Cov
(
R(r.1)

u Y,R(r.2)
u Y

)
=

1

2
(V ar(Y1)− V ar(Y2)) .

Therefore, from Theorem 3.3.21 in Müller and Stoyan [46] it follows that if

(V ar(X1)− V ar(X2)) ≤ (V ar(Y1)− V ar(Y2)) ,

then X ≤Eu
Y. By using Property 3.3.4, we get both X1 − X2 ≤st Y1 − Y2 and

X1 +X2 ≤st Y1 + Y2.

The following property describes sufficient conditions to compare normal random

vectors in the extremality order sense. Other sufficient conditions for the extremality

comparison will be stated next.

Property 3.3.6 Let X ∼ N (µX, ΣY) and Y ∼ N (µY, ΣY) be two normally dis-
tributed random vectors, and let u be a unit vector such that Ru (µY − µX) ≥ 0.

a) If ΣX = ΣY =⇒ X ≤Eu
Y

b) If ΣY = ΣX + A, where A is a matrix such that ΣY is nonnegative definite
and RuAR′

u has nonnegative components with zero diagonal elements, then
X ≤Eu

Y.
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Proof. Part a) follows from fact that µRuX ≤ µRuY and ΣRuX = ΣRuY. Therefore

RuX ≤st RuY by Theorem 3.3.13. in Müller and Stoyan [46], thus X ≤Eu
Y. Part

b) follows easily from Theorem 3.3.21.(a) in Müller and Stoyan [46] since µRuX ≤
µRuY and ΣRuY = ΣRuX +RuAR′

u. �

For the next statement, let the oriented upper set in the direction u (denoted by

Uu) be a set such that x ∈ Uu implies Cu
x ⊂ Uu.

Property 3.3.7 Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two random vec-
tors. If E [IUu

(X)] ≤ E [IUu
(Y)] for all oriented upper set Uu in the direction u,

then X ≤Eu
Y.

Proof. Since the assumption is equivalent to RuX ≤st RuY, then RuX ≤uo RuY.

Thus, X ≤Eu
Y. �

Another sufficient condition for the extremality order, easily checked in practice,

is stated in the next property. Recall that two random vectorsX andY with densities

fX and fY, respectively, are such that X is smaller than Y in the likelihood ratio

order (denoted X ≤lr Y) if

fX(x)fY(y) ≤ fX(x ∨ y)fY(x ∧ y)

for all x,y ∈ R
n. Since the likelihood ratio order implies the usual stochastic order,

the following property immediately follows from the chain of implications

RuX ≤lr RuY ⇒ RuX ≤st RuY ⇒ RuX ≤uo RuY ⇒ X ≤Eu
Y.

Property 3.3.8 Let X and Y be two random vectors with densities fX and fY,
respectively. If

fX(R′
ux)fY(R′

uy) ≤ fX(R′
u(x ∨ y))fY(R′

u(x ∧ y)) (3.3.9)

for all x,y ∈ R
n, then X ≤Eu

Y.

Proof. Since Ru is an orthogonal matrix, it follows that the Jacobian of the trans-

formations RuX and RuY is equal to 1. Moreover, we also have that R−1
u = R′

u.

Therefore, fRuX(x) = fX(R′
ux) and fRuY(x) = fY(R′

ux) for all x ∈ R
n. Hence,

(3.3.9) iff fRuX(x)fRuY(y) ≤ fRuX(x∨y)fRuY(x∧y) for all x,y ∈ R
n. We thus get

RuX ≤lr RuY and consequently X ≤Eu
Y. �

A random vector X has the MTP2 property if X ≤lr X (see for instance Karlin

and Rinott [30]). For X normally distributed it has a MTP2 iff the off-diagonal
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elements of Σ−1
X are nonpositive. Particulary a bivariate normal density is MTP2

if the correlation coefficient is nonnegative (Karlin and Rinott [31]). We show in

Example 3.3.9 that for any normally distributed bivariate random vector X, always

there exists a rotation Ru such that RuX has the MTP2 property. In fact, the same

example also provides a sufficient condition for extremality order in terms of the

likelihood order.

Example 3.3.9 Consider X = (X1, X2)
′ a normally distributed random vector with

covariance matrix ΣX. It is easily seen that ΣX = QDQ′ where Q = (qij) is an
orthogonal matrix and D = (dii) is a diagonal matrix with nonnegative elements and
d11 ≥ d22. Let u = (q11, q21)

′ be the first column of the matrix Q. Then, according to
(3.3.1),

Ru =

√
2

2

(
q11 + q21 q21 − q11
q11 − q21 q11 + q21

)
.

The vector RuX also is normaly distributed and ΣRuX = RuΣXR′
u (see, e.g., Valdez

and Dhaene [62], Theorem 2).

It is clear that

ΣRuX = RuQDQ′R′
u =

1

2

(
d11 + d22 d11 − d22
d11 − d22 d11 + d22

)
.

As d11 ≥ d22 we have that RuX has the MTP2 property. If we take Y = X+R′
us

where s = (s1, s2)
′ is such that

d11 − d22
d11 + d22

≤ s2
s1

≤ d11 + d22
d11 − d22

,

then from Theorem 3.2-b in Rinott and Scarsini [50] we conclude that RuX ≤lr

Ru (X+R′
us)

and so, X ≤Eu
Y.

The extremality order satisfies the following closure properties (closure with re-

spect to convergence in distribution and closure with respect to mixture). Here, the

notation [Z|A] stands for the random object whose distribution is the conditional

distribution of Z given the event A.

Property 3.3.10 a) Let {Xj, j = 1, 2, . . .} and {Xj, j = 1, 2, . . .} be two se-
quences of random vectors such that Xj −→d X and Yj −→d Y as j −→
∞, where −→d denotes convergence in distribution. If Xj ≤Eu

Yj for all
j = 1, 2, . . . , then X ≤Eu

Y.

b) Let X, Y and Θ be random vectors such that [X | Θ = θ] ≤Eu
[Y |Θ = θ] for all

θ in the support of Θ. Then X ≤Eu
Y.
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Proof. a) Clearly, if Xj −→d X and Yj −→d Y as j −→ ∞, then RuXj −→d

RuX and RuYj −→d RuY as j −→ ∞. But RuXj ≤uo RuYj since Xj ≤Eu

Yj , for j = 1, 2, . . . . Applying Theorem 6.G.3-d in [55], it follows that RuX ≤uo

RuY; thus also X ≤Eu
Y. b) From [X | Θ = θ] ≤Eu

[Y |Θ = θ], it follows that

[RuX | Θ = θ] ≤uo [RuY |Θ = θ]. The assertion follows from Theorem 6.G.3-e in

Shaked and Shanthikumar [55]. �

The following statement describes a property that will be used in Section 3.4.

Recall that the copula C of a random vector X is a cumulative distribution function

with uniform marginals on [0,1] such that, for all x ∈ R
n,

FX(x1, . . . , xn) = C(FX1(x1), . . . , FXn
(xn)).

The copula of the vector X describes dependence properties of its components, and it

is unique if FX1 , . . . , FXn
are continuous. For more details about copulas, see Nelsen

[47].

Theorem 3.3.11 Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two random
vectors and u = (u1, . . . , un) a unit vector. If RuX and RuY have the same copula,
then

X ≤Eu
Y =⇒ φ(R(1)

u X, . . . ,R(n)
u X) ≤st φ(R(1)

u Y, . . . ,R(n)
u Y)

for every increasing function φ. In particular, denoted with R(c.i)
u the i-th column of

the matrix Ru, and the assumptions it holds

X ≤Eu
Y =⇒

n∑

i=1

a′R(c.i)
u Xi ≤st

n∑

i=1

a′R(c.i)
u Yi

for every vector a = (a1, . . . , an)
′ with nonnegative components.

Proof. As X ≤Eu
Y, then from Property 3.3.4, R(r.i)

u X ≤st R(r.i)
u Y for all

i = 1, . . . , n. Since RuX and RuY have the same copula, by Theorem 6.B.14. in

Shaked and Shanthikumar [55] it follows that RuX ≤st RuY. Now, by Theorem

3.3.11 in Müller and Stoyan [46], the first assertion follows. In particular, letting

φ(x1, . . . , xn) = (a1, . . . , an)(x1, . . . , xn)
′, where a = (a1, . . . , an)

′ is a vector with

non-negative components, we get

a′RuX ≤st a
′RuY,

i.e., the second assertion. �

Note that, in particular, Theorem 3.3.11 applies when the unit vector u is such

that RuX and RuY have the copula C(u, v) = uv, i.e., when they have independent
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components. To find a unit vector u such that RuX and RuY have the same cop-

ula in some situations it is easy. For example, assume that X and Y are normally

distributed with covariance matrix ΣX and ΣY, respectively. Assume that the eigen-

vectors ~v1, ~v2 of ΣX and ΣY are the same. If we define ~p = ~v1
‖ ~v1‖ +

~v2
‖ ~v2‖ and u = ~p

‖~p‖ ,

then RuX and RuY will have the same copula. A graphical representation of this

situation is shown in Figure 3.1

~v1
‖ ~v1‖ ~v2

‖ ~v2‖

~p = ~v1
‖ ~v1‖ +

~v2
‖ ~v2‖

u = ~p
‖~p‖

X Y

(a) different copula

RuX

RuY

(b) same copula

Figure 3.1: Rotations of a Normal distribution

Figure 3.1 shows that in the original system, before the rotation, X has a negative

dependency and Y has a positive dependence. Therefore, their copulas are different.

After of the rotation in the directions u, indicated above, RuX and RuY have the

same copula, i.e., C(u, v) = uv. It is interesting to observe that, if X and Y have

a common copula, RuX and RuY may not have common copula. In fact, consider

X to have N(µ, I2) distribution and Y have N(µ,D2) distribution, where I2 is the

identical matrix and D2 is a diagonal matrix with d11 > d22. Clearly, X has a

spherical distribution, and X and Y have a common copula. Let now u = [1, 0]′ be

the rotation vector. In the Figure 3.2 is shown that RuX has the same copula as

before the rotation, but RuY has a different copula copula since positive dependency

can be observed.
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u = [1, 0]′

X

Y

(a) same copula

RuX RuY

(b) different copula

Figure 3.2: Rotations of a Normal distribution

Corollary 3.3.12 Under the same assuptions of Theorem 3.3.11 it holds that

X ≤Eu
Y =⇒ u′X ≤st u

′Y

Proof. We need only consider a = [1, . . . , 1]′ and the assertion follows immediately

from Theorem 3.3.11 and formula (3.3.7) �

The Corollary 3.3.12 follows also from the fact that if two random vectors are

ordered in the multivariate stochastic order, then the sum of their components are

ordered in the univariate stochastic order (see, e.g. Theorem 6.B.16-a in Shaked and

Shanthikumar [55]). In Theorem 3.3.11 and Corollary 3.3.12 it is worth noting that

the coefficients a′R(c.i)
u and components of u′ may also be negative; thus Theorem

3.3.11 gives conditions to compare, in usual stochastic order, non-positive linear

combinations of dependent random variables.

If the vectors X and Y have the same means, then the following property holds.

Theorem 3.3.13 Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two random
vectors such that E[X] = E[Y]. If there exists a vector u such that X ≤Eu

Y, then

R(r.i)
u X =st R(r.i)

u Y, for all i = 1, . . . , n.

Proof. Since X ≤Eu
Y, from Property 3.3.4, we have R(r.i)

u X ≤st R(r.i)
u Y, i =

1, . . . , n. Observe that

E[X] = E[Y] =⇒ RuE[X] = RuE[Y] =⇒ E[RuX] = E[RuY]. (3.3.10)

Now the proof follows from the fact that variables ordered in usual stochastic order

having the same mean should also have the same distribution (see Theorem 1.A.8.

in Shaked and Shanthikumar [55]). �
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Relationships between extremality order and two positive dependence orders are

obtained in the next result.

Theorem 3.3.14 Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two random
vectors such that E[X] = E[Y]. If X ≤Eu

Y then RuX ≤PQD RuY. Moreover, if
n = 2, it follows also that RuX ≤sm RuY.

Proof. From Theorem 3.3.13 it is easily seen that RuX and RuY have the same

marginals. Since X ≤Eu
Y ⇐⇒ RuX ≤uo RuY, the first assertion follows from defi-

nition of positive quadrant dependence order, while the second from the equivalency

between ≤PDQ and ≤sm when n = 2. �

Corollary 3.3.15 Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be two random vectors such
that E[X] = E[Y]. If X ≤Eu

Y then a′RuY ≤cv a′RuX for all a ∈ R2 such that
a1a2 ≥ 0.

Proof. According to Theorem 3.3.14, it holdsRuX ≤sm RuY. Hence, from Theorem

9.A.9 in Shaked and Shanthikumar [55],

(
a1 0

0 a2

)
RuX ≤sm

(
a1 0

0 a2

)
RuY, (3.3.11)

for all a1, a2 such that a1a2 ≥ 0. Combining (3.3.11) and (9.A.19) in Shaked and

Shanthikumar [55], we can assert that

a′RuX ≤cx a′RuY and a′RuY ≤cv a
′RuX.

� As a particular case of Corollary 3.3.15, with a = 1√
2
[1, 1]′, we can also conclude

that, under the same assumptions,

X ≤Eu
Y =⇒ u′Y ≤cv u

′X.

We finish this Section with a necessary condition for the extremality order. To this

end, recall that given two non-negative random variables X and Y , X is said to be

smaller than Y in Laplace transform order (briefly X ≤Lt Y ) if only if E[exp−sX ] ≥
E[exp−sY ], for all s ∈ R

+.

Theorem 3.3.16 Let X, Y be two random vectors and u a unit vector such that
RuX and RuY are positive. If X ≤E(−u)

Y then u′X ≥Lt u
′Y and, in particular,

E[u′X] ≥ E[u′Y].
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Proof. SinceX ≤E(−u)
Y ⇐⇒ RuX ≥lo RuY, and sinceRuX andRuY are positive,

then from Theorem 6.G.14 in Shaked and Shanthikumar [55] it follows

n∑

i=1

aiR(r.i)
u X ≥Lt

n∑

i=1

aiR(r.i)
u Y, whenever ai ≥ 0, i = 1, 2, . . . , n.

Assuming ai =
1√
n
, for all i = 1, 2, . . . , n, the assertion follows from

1′RuX =
√
nu′X.

The second inequality follows as a consequence of the comparison in Laplace trans-

form order. �

3.4 Portfolio comparisons with the extremality

order

In this Section we describe some examples of application of previous results to the the

single period portfolio problem. We first describe the problem. Consider an economic

agent with unitary initial capital. Suppose that the random variables X1, · · · , Xn

represent the outcome of n financial positions which can be chosen for investment.

Thus we have risks −X1, · · · ,−Xn. In this context, a portfolio is a random variable

Za =
∑n

i=1 aiXi, where the weights vector a = (a1, . . . , an) range in the subset

An = {a = (a1, . . . , an) :
∑n

i=1 ai = 1, ai ≥ 0, i = 1, . . . , n}. When short selling

are permitted, then the condition ai ≥ 0 can be removed. The goal of the single

period portfolio problem consists in determining the allocation a = {a1, . . . , an} of

the unitary wealth to the n risks that minimize the total risk, or that maximize the

expected utility of the resulting final wealth Za.

A first problem that the economic agent can consider is the minimization of the

risk, which is commonly expressed as the minimization of the value at risk at a fixed

quantile α (V aRα) of the random loss −Za (see, e.g., Jorion [29]). It represents the

α-quantile of the loss distribution of portfolio. This means that V aRα is the better

loss among the (1− α)100% worst losses, and it is formally defined as follows: if F

is the distribution of −Za and α ∈ (0, 1), then

V aRα(Za) = inf{z ∈ R; | F (z) ≥ α}. (3.4.1)

Let us first consider the case that the risk manager wants to allocate the wealth to

n risks, and he/she has to chose between two sets of dependent financial positions,
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say X = (X1, . . . , Xn)
′ or Y = (Y1, . . . , Yn)

′. Assume that there exists a vector

u = (u1, . . . , un)
′ such that the assumptions of Theorem 3.3.11 are satisfied (i.e.,

X ≤Eu
Y and the rotated vectors have the same copula). Let a = (a1, . . . , an)

′ be

any vector such that a
a′Ru1

≥ 0.

Since the usual stochastic order implies the corresponding order between values

at risk for every α (see, e.g., Bäuerle and Müller [5]), then, for every allocation

ω =

(
a′R(c.1)

u

a′Ru1
, . . . ,

a′R(c.n)
u

a′Ru1

)′

,

the economic agent will choose the portfolio ZY =
∑n

i=1 ωiYi rather than ZX =∑n
i=1 ωiXi. It is interesting to observe that some of the weights ωi can be negative,

so that even portfolios with short selling can be compared.

Similarly, if the economic agent is non-satiable, which means that he/she has an

increasing utility function U , under the same conditions as above her/his expected

utility will be maximized choosing the portfolio ZY instead of ZX, since

ZX ≤st ZY =⇒ E [U (ZX)] ≤ E [U (ZY)] ,

for any increasing function U .

For illustrating this result, we introduce an example in the bivariate case.

Example 3.4.1 Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be bivariate normally dis-
tributed random vectors with mean µX and µY, respectively and the same covariance
matrix Σ. Choose any unit vector u = (u1, u2)

′ such that µY ∈ Cu
µX

, (for example

the vector u = µY−µX

‖µY−µX‖). According to (3.3.1), the rotation matrix is given by

Ru =

√
2

2

(
u1 + u2 u2 − u1

u1 − u2 u1 + u2

)
.

It is easy to check that RuX and RuY have the same copula. Let now ZX and ZY

be two portfolios defined as

ZX =
1

2

(
1 +

a1u1 − a2u2

a1u2 + a2u1

)
X1 +

1

2

(
1− a1u1 − a2u2

a1u2 + a2u1

)
X2

ZY =
1

2

(
1 +

a1u1 − a2u2

a1u2 + a2u1

)
Y1 +

1

2

(
1− a1u1 − a2u2

a1u2 + a2u1

)
Y2,

where X and Y are financial positions which can be chosen for investment. By
Theorem 3.3.11, we have that

ZX ≤st ZY, (3.4.2)
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for every a = (a1, a2)
′ such that a

a′Ru1
≥ 0. Therefore, if an investor measures the

risk through value at risk, then he/she prefers the portfolio ZY instead ZY since from
(3.4.2) it follows that,

V aRα (−ZY) ≤ V aRα (−ZX) ,

for all α ∈ (0, 1). Indeed, if the investor is non-satiable the same conclusion can
be drawn. It is also remarkable that the weights of the two portfolios can assume
negative values.

Now, let us consider the case where the economic agent has to chose between two

sets of risks, say X = (X1, X2) or Y = (Y1, Y2), but assume here that E[X] = E[Y].

Thus the expectation is the same for any linear combination of the risks. In fact, in

such a case, given any two portfolios

ZX =

2∑

i=1

biXi and ZY =

2∑

i=1

biYi,

they cannot be ordered in usual stochastic order, since they have the same expecta-

tions. However, the economic agent can prefer one of the two portfolios if she/he,

beside of being non-satiable, is risk averse. In fact, in this situation, the utility

function U is increasing and concave (see, e.g., Yaari [63]), and a comparison in the

concave order can be used as a criteria to choose between portfolios.

By a direct application of Corollary 3.3.15, it can be asserted that, if X ≤Eu
Y,

the the expected utility of the agent will be greater choosing the portfolio ZX =∑2
i=1 a

′R(c.i)
u Xi rather than ZY =

∑2
i=1 a

′R(c.i)
u Yi, for all a = [a1, a2]

′ such that

a1a2 ≥ 0. As above, this fact becomes particularly interesting whenever some of the

allocations to the risks are negative, thus allowing comparisons also in the case of

short selling.

Example 3.4.2 Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be two random vectors ellip-
tically distributed such that E[X] = E[Y]. Assume that the covariance matrices ΣX

and ΣY have the same eigenvalues d1 and d2. Let

Q =

(
q1 q2
q2 −q1

)
and T =

(
t1 t2
t2 −t1

)

be the eigenvectors matrices of ΣX and ΣY, respectively. It is clear that ΣX = QDQ′

and ΣY = TDT ′ where D = diag(d1, d2). Let u =
(Q+T )1

‖(Q+T )1‖ be the unit vector, this
gives

u =
1

‖ (Q+ T )1 ‖ [q1 + t1 + q2 + t2, q2 + t2 − q1 − t1]
′ .
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From (3.3.1) we have that

Ru =

√
2

‖ (Q + T )1 ‖

(
q2 + t2 −q1 − t1
q1 + t1 q2 + t2

)
.

By straightforward calculations we can see that

ΣRuX = RuQDQ′R′
u and ΣRuY = RuTDT ′R′

u,

have the same diagonal and their off-diagonal elements are given by ρ = (d1 −
d2)(q1t1 + q2t2 + 1)(q1t1 − q2t2) and (−ρ) respectively. Without lack of generality
assume ρ ≤ 0, then RuX ≤pqd RuY (see Landsman and Tsanakas [35], Corollary
2.) and consequently X ≤Eu

Y. Therefore, if we consider the random variables

ZX =
1

2

(
1 +

q1 + t1
q2 + t2

)
X1 +

1

2

(
1− q1 + t1

q2 + t2

)
X2,

ZY =
1

2

(
1 +

q1 + t1
q2 + t2

)
Y1 +

1

2

(
1− q1 + t1

q2 + t2

)
Y2,

and the Corollary 3.3.15 with a =
‖(Q+T )1‖
2
√
2(q2+t2)

[1, 1]′, we have that ZY ≤cv ZX and

ZX ≤cx ZY. Then a risk averse rational decision maker would prefer the portfolio
ZX.

Moreover, the idea above allows also for criteria based on comparisons of either port-

folio variances or risks measured through a convex measure in the sense of Föllmer

and Schied [20]. Conditional Value at Risk (CVaR) is a convex risk measure; there-

fore under the same hypothesis as above, ZX has less variance and smaller (CVaR)

than the portfolio ZY since variance and CVaR are consistent with respect to the

convex order (see Shaked and Shanthikumar [55] pages 110 to 112 and Bäuerle and

Mülle [5]).

Consider now the case in which the agent has to allocate his capital in two

different but not independent risky assets X1 and X2. A typical problem in portfolio

theory is the determination of the allocation α ∈ [0, 1] such that Zα = (1−α)X1+αX2

maximizes the expected utility h(α) = E[U(Zα)], where U is the increasing and

concave utility function of the agent. In 1971, Hadar and Russel proved that, if X1

and X2 are iid, then h(1
2
) ≥ h(α) for all α ∈ [0, 1], thus proving that the maximal

diversification gives the maximal expected utility under the assumptions above. This

result was generalized in Ma [42] to the multivariate case, replacing the assumption

of independence with the assumption of exchangeability.

Related results have been provided in Pellerey and Semeraro [48]. Specifically,

they proved that if the vector (S,D) of the sum S = X1 + X2 and the difference
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D = X2 −X1 of the risks is positive quadrant dependent (PQD), i.e., if (S,D) ≥PQD

(S⊥, D⊥) where (S⊥, D⊥) is the independent version of (S,D), and if E[X2] ≤ E[X1],

then h(α) is decreasing in α = [1
2
, 1]. Similarly, they proved that if the vector

(S,D) is negative quadrant dependent, NQD, (i.e., if (S,D) ≤PQD (S⊥, D⊥)) and

E[X2] ≥ E[X1], then h(α) is increasing in α = [0, 1
2
]. As a consequence of these

results we have that if the vector (X1, X2) is such that E[X2] = E[X1], and S and D

are uncorrelated, then h(1
2
) ≥ h(α) for all α ∈ [0, 1]. A generalization of this result

is given in the following Theorem.

Theorem 3.4.3 Let X = (X1, X2) be random vector. Consider u = [u1, u2]
′ a unit

vector and v =
√
2
2
[u1 − u2, u1 + u2]

′. Let Z = (Z1, Z2) be any random vector of
independent components with mean RvE[X] and let Y = R′

vZ. If Y ≤Ev
[≥Ev

]X

and u1E[X2] ≤ [≥] u2E[X1], then for every increasing and concave utility function
U it holds that

E

[
U(

√
2

2
u1X1 +

√
2

2
u2X2)

]

≥ E

[
U

(√
2

2
(u1 + u2 − 2u2α)X1 +

√
2

2
(2u1α− u1 + u2)X2

)]

for all α ∈ [1
2
, 1] [for all α ∈ [0, 1

2
]].

Proof. We see the proof the case ≤, the another case is similar. It is immediate

that E[Y] = E[X]. From Theorem 3.3.14 we deduce that RvY ≤PQD RvX since

Y ≤Ev
X. However, RvY has independent components, soRvX is PQD. On account

of (3.3.1) we obtain

(
u1 u2

−u2 u1

)(
X1

X2

)
is PQD. (3.4.3)

Using the formula (3.3.1) to construct Ru, with u = [u1, u2]
′ , we have that

RuX =

√
2

2

(
u1 + u2 u2 − u1

u1 − u2 u1 + u2

)(
X1

X2

)
. (3.4.4)

Denote XR
i the i-th component of the vector RuX, i = 1, 2, and let (SR, DR)′ be

the vector of the sum and the difference of the components of (XR
1 , X

R
2 )

′. Therefore,

from (3.4.4),

SR = XR
1 +XR

2 =
√
2u1X1 +

√
2u2X2,

DR = XR
2 −XR

1 =
√
2u1X2 −

√
2u2X1.
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From (3.4.3) we have that (SR, DR)′ is PQD. Since u1E[X2] ≤ u2E[X1], it follows

that E[XR
2 ] ≤ E[XR

1 ]. By using Theorem 2.1 in Pellerey and Semeraro [48], we get

that

Zα = (1− α)XR
1 + αXR

2 =

√
2

2
(u1 + u2 − 2u2α)X1 +

√
2

2
(2u1α− u1 + u2)X2

is decreasing in the concave order in α ∈ [1
2
, 1]. Thus, in particular, for every

increasing and concave utility function U it holds

E

[
U(

√
2

2
u1X1 +

√
2

2
u2X2)

]

≥ E

[
U

(√
2

2
(u1 + u2 − 2u2α)X1 +

√
2

2
(2u1α− u1 + u2)X2

)]

for all α ∈ [1
2
, 1]. �

Remark 3.4.4 Note that if there exists a vector u = (u1, u2) such that

(
u1 u2

−u2 u1

)(
X1

X2

)

has uncorrelated components (so that it is neither PQD nor NQD), then the maximal
expected utility is reached in

Z1/2 =

√
2

2
u1X1 +

√
2

2
u2X2.

Since
√
2
2
u1 +

√
2
2
u2 ≤ 1, this means that under such conditions it is not necessary to

invest totally the available capital. It also is interesting to observe that some of the
allocations can be negative, thus the case of short selling are allowed.

3.5 Optimal portfolio selection through rotations

We now consider the particular case that the risks have joint elliptical distributions

that is a common assumption in portfolio theory since they allow for the presence

of heavy tails and asymptotic tail dependence distributions. The importance and

applications of elliptical distributions for risk management and insurance have been

widely studied by Embrechts et al. [16], Landsman [34] and Landsman and Valdez

[33].
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Definition 3.5.1 The random vector X = (X1, . . . , Xn)
′ is said to have an elliptical

distribution with parameters µ and Σ if its characteristic function can be expressed
as

E[exp(it′X)] = exp(it′µ)φ (t′Σt) , t = (t1, . . . , tn)
′, (3.5.1)

for some function φ, and if Σ is such that Σ = AA′ for some matrix A(n×m).

The moments of X do not necessarily exist. However, if the mean vector exits, then

it is the parameter µ. Besides, if the covariance matrix exists, then it is given by

Cov(X) = −2φ′(0)Σ. A necessary condition for this covariance matrix to exist is

‖ φ′(0) ‖< ∞, where φ′ denotes the first derivative of the characteristic generator φ

of X. Note that the class of multivariate elliptical distribution with φ(x) = exp(−x
2
)

corresponds to the class of multivariate normal distribution.

Recall that the components of a random vector X = (X1, . . . , Xn)
′ are said to be

exchangeable if for any permutation matrix P the vector PX has the same distribu-

tion as X. The following property will be used later.

Property 3.5.2 Let X = (X1, X2) be a random vector elliptically distributed with
parameters µ = 0 and ΣX. Then there exists a unit vector u such that RuX is
exchangeable.

Proof. Since ΣX is a symmetric matrix, then it can be expressed as ΣX = QDQ′,

where Q = (qij) is an orthogonal matrix and D = (dii) is a diagonal matrix with

non-negative elements. Let u = (q11, q21)
′ be the first column of the matrix Q. Then,

according to (3.3.1),

Ru =

√
2

2

(
q11 + q21 q21 − q11

q11 − q21 q11 + q21

)
.

The vector RuX also is elliptically distributed, with parameters Ruµ = 0 and

ΣRuX = RuΣXR′
u (see, e.g., Valdez and Dhaene [62], Theorem 2).

It is clear that

ΣRuX = RuQDQ′R′
u =

1

2

(
d11 + d22 d11 − d22

d11 − d22 d11 + d22

)
.

Observe that ΣRuX is symmetric, with the same diagonal elements, which implies

that for any permutation matrix P we have that P′ΣRuXP = ΣRuX. It is easily

seen that P′RuX is elliptically distributed. Hence, its characteristic function will be

given by

E[exp(it′X)] = φ (t′P′ΣRuXPt) = φ (t′ΣRuXt) , t = (t1, t2)
′. (3.5.2)
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Since the characteristic function determines the distribution, then by (3.5.2) we

have that RuX =st PRuX, and as a consequence, the vector RuX has exchangeable

components. �

The next statement describes conditions to compare in the concave order two

different portfolios of elliptically distributed risky assets, with possibility of negative

weights.

Theorem 3.5.3 Let X = (X1, X2) be a elliptically distributed random vector with
parameter Σ and vector of means µ = 0. Let u = (u1, u2)

′ be an eigenvector of Σ.
If (α1, α2) and (β1, β2) are such that α1 + α2 = β1 + β2 and α1 ≤ β1, then

√
2

2
[α1(u1 + u2) + α2(u2 − u1)]X1 +

√
2

2
[(α1(u1 − u2) + α2(u1 + u2)]X2

≥cv

√
2

2
[β1(u1 + u2) + β2(u2 − u1)]X1 +

√
2

2
[(β1(u1 − u2) + β2(u1 + u2)]X2.

Proof. As u = (u1, u2)
′ is a eigenvector of Σ, we deduce from Property 3.5.2 that

RuX =

√
2

2

(
u1 + u2 u2 − u1

u1 − u2 u1 + u2

)(
X1

X2

)

is exchangeable. Applying Theorem 3.A.35 in Shaked and Shanthikumar [55] we

conclude the proof. �

The following Property is an extension of the Property 3.5.2 for high-dimension

Property 3.5.4 Let X = (X1, . . . , Xn)
′ be a random vector elliptically distributed

with parameters µX = 0 and ΣX is such that it has at least n − 1 equal eigenvalues
given by λ1 ≥ λ2 = · · · = λn = λ > 0. Then there exists a unit vector u such that
RuX has exchangeable components .

Proof. Our proof starts with the observation that the singular values decomposition

(SVD) of ΣX is given by ΣX = QDQ′, where D = diag{λ1, λ, . . . , λ} and Q = (qij)

is an orthogonal matrix. Consider the unit vector u = Q(c.1) = [q11, q21, . . . , qn1]
′.

From (3.3.1) we have that RuQ
(c.1) = 1√

n
[1, . . . , 1]′. It is easy to check that

ΣRuX = RuQDQ′R′
u =

(
RuQ

√
D
)(

RuQ
√
D
)′

(3.5.3)

Taking H = RuQ we can rewrite (3.5.3) as (H
√
D)(H

√
D)′. Of course, H is an

orthogonal matrix whose first column is 1√
n
[1, . . . , 1]′.
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Let σ∗
ij be the element (ij) of the matrix (3.5.3). Hence,

σ∗
ij =

λ1

n
+ λ

n∑

j=2

h2
ij =

λ1

n
+ λ

(
1− 1

n

)
=

λ1 + λ(n− 1)

n

=
tr (ΣX)

n
=

1

n

n∑

i=1

var(Xi), if i = j.

σ∗
ij =

λ1

n
+ λ

n∑

k=2

hikhjk =
λ1

n
+ λ

(
−1

n

)
=

λ1 − λ

n
, if i 6= j.

It is clear that the diagonal of ΣRuX has the same elements and the off-diagonal

also have the same elements. It follows that P ′ΣRuXP = ΣRuX for any (n × n)

permutation matrix P. It is easily seen that P′RuX is elliptically distributed (see,

e.g., Valdez and Dhaene [62], Theorem 2). Hence, its characteristic function will be

given by

E[exp(it′X)] = φ (t′P′ΣRuXPt) = φ (t′ΣRuXt) , t = (t1, . . . , tn)
′. (3.5.4)

By the one-to-one correspondence between distribution functions and characteristic

functions, and from (3.5.4), RuX =st PRuX, and as a consequence the vector RuX,

has exchangeable components. �

Remark 3.5.5 Property 3.5.4 is also valid when µX = kQ(c.1) for some k ∈ R since
RuµX = kRuQ

(c.1) = k√
n
[1, . . . , 1]′. Therefore, RuX has exchangeable components.

In Theorem 3.5.4 obviously k = 0.

We are thus led to the following strengthening of Theorem 3.5.3

Theorem 3.5.6 Let X = (X1, . . . , Xn)
′ satisfy the hypotheses of the Property 3.5.4.

Suppose that the (SVD) of ΣX is given by ΣX = QDQ′ and let u = Q(c.1) be the unit
vector. If a = (a1, . . . , an)

′ is majorized by b = (b1, . . . , bn)
′, then

n∑

i=1

a′R(c.i)
u Xi ≥cv

n∑

i=1

b′R(c.i)
u Xi. (3.5.5)

Proof. We conclude from Property 3.5.4 that RuX has exchangeable components;

hence the assertion follows by Theorem 3.A.35 in Shaked and Shanthikumar [55]. �
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3.6 Conclusions

We have introduced in this paper a generalization of the upper and lower orthant or-

ders. This new stochastic order allows for comparisons of random vectors in different

directions. We also have given some properties and their relationships with other

stochastic orders studied in the literature as necessary condition as sufficient condi-

tions and we have given new conditions for comparing in the concave order linear

combinations of random variables non necessary iid.

From applications point of view, we consider the single period portfolio problem

of allocating the wealth to n risks. Some solutions to this problem are given when

two random vectors are comparable in extremality order sense. In the special case

of risks elliptically distributed, we have studied directions to rotate the distributions

and finding easily the optimal allocations of the wealth in order to maximize the

expected utility of a risk averse decision maker.

For the case of random variables elliptically distributed with mean zero, we

showed that always is possible to find a rotation where the rotated distribution

has exchangeable components in dimension two. We also can find the linear com-

binations of the random variables that can improve an utility function. For greater

dimensions we studied the conditions under which the distribution can be rotated

so that it has exchangeable component. The results of this Chapter are based on

Laniado et al. [36]

Recall that a function φ : [0,∞) −→ R is said to be completely monotone if all its

derivatives φ(n)(x) exist and satisfy (−1)nφ(n)(x) ≥ 0, for all x ≥ 0 and n = 0, 1, 2 . . . .

It is well known that X is said to be smaller than Y in Laplace transform order if,

and only if,

E [φ(X)] ≥ E [φ(Y )] ,

for all completely monotone function φ, provided expectation exist (see Shaked and

Shanthikumar [55], pages 234 and 235). Therefore, there is a direction in which

this research might be continued. For example, Theorem 3.3.16 in this Chapter

establishes an interesting relationship between extremality stochastic order and the

Laplace transform order. Hence, it would be interesting to study the consistency

(preservation) of the extremality order in portfolios when the economic agent has

a Constant Absolute Risk Aversion (CARA) or a Constant Relative Risk Aversion

(CRRA) utility function since in those both cases, the utility function satisfies similar

conditions to the completely monotone function.

59



60



4
Portfolio selection based on multivariate

extremality order

4.1 Introduction

In this Chapter, we propose a strategy for selecting portfolios based on the extre-

mality order introduced in Chapter 2. Instead of the usual optimization techniques,

our approach compares portfolios by means of the ordering provided by the extrema-

lity measure when a direction is chosen by the economic agent. Before introducing

our methodology, we provide some preliminaries on the classic problem of portfolio

selection. Consider the general portfolio optimization problem

min
w

[
ρ̂(Rw)− 1

γ
g(Rw)

]
, s.t.

n∑

i=1

wi = 1, (4.1.1)

where w = (w1, . . . , wn)
′ is the vector of portfolio weights and R is a m × n data

matrix being m the number of returns and n the number of assets. ρ̂ is a risk

measure based on the data; for instance, a risk statistic or a natural risk statistic

(Heyde et al. [26] and Ahmed et al. [1]); g : Rm −→ R quantifies the returns and γ

is the risk-aversion parameter. When ρ̂ is the variance and g(x) = x′1m

m
, we have the

classical mean-variance portfolio model discussed in Markowitz [43]. In this case,

the problem (4.1.1) becomes

min
w

[
w′Σ̂w − 1

γ
µ̂w

]
, s.t.

n∑

i=1

wi = 1. (4.1.2)

The model proposed in Markowitz [43] is relevant in modern portfolio theory where

the main goal is to maximize return and minimize risk. Its philosophy is that an
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investor’s decision regarding portfolio weights is based on the trade-off between ex-

pected return and risk. Markowitz [43] showed that an investor should hold a port-

folio that sits at the intersection of the set of portfolios with minimum variance and

the set of portfolios with maximum return. The set of possible options is usually

called the efficient frontier, and contains portfolios for which one cannot improve risk

and return at the same time. As γ −→ ∞, the problem (4.1.2) corresponds to the

minimum-variance portfolio and which has also been the subject of recent academic

research. In this case, only the covariances need to be estimated and the model

is thus, less vulnerable to estimation error than models with a finite risk-aversion

parameter. The problem of estimating population moments by sample moments is

widely explained in DeMiguel et al. [11]. Note that different values of γ may derive

in different mean-variance portfolios on the efficient frontier.

In the hyperplane w′1 = 1, each w generates a pair (ρ̂(Rw), g(Rw)) of feasible

portfolios. Figure 4.1 presents different possible linear combinations of the assets in

the risk-return space. We see that the efficient frontier is given by the maximum

return portfolios for a given level of risk. Conversely, for a given amount of risk, the

portfolio lying on the efficient frontier represents the combination offering the best

possible return. Also observe in Figure 4.1 that portfolios in the A square are more

attractive than portfolios in the B square because they have higher returns with less

risk.
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Figure 4.1: Feasible portfolios and efficient frontier
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Similarly, portfolios in C are more attractive than portfolios in B, but those

in A and C are not comparable in terms of return and risk, simultaneously. The

proposal made in this chapter enables us to avoid this problem since it permits a

total comparison between feasible portfolios. With our approach, portfolios in A can

be compared with portfolios in C.

Many criteria for portfolio selection have been proposed in the literature (see

DeMiguel et al. [12] and references therein). In general, the simpler strategy is to

choose w = 1
n
1n, (from now on called 1

n
-rule), which allocates the same proportion

of wealth across each of the n assets. Almost all models can be expressed as (4.1.1)

and in this case, the solution for the best portfolio will be that on the efficient

frontier that minimizes its scalar projection on the vector [1,− 1
γ
]′, where γ is the

risk-aversion parameter. The main difference between models is how the risk is

measured and estimated. For example it is usual to consider the sample standard

deviation as a risk measure although, other more stable estimators can be used for

this purpose. For example, DeMiguel and Nogales [13] propose portfolio policies that

are based on robust estimators. Another difference between models is comprised of

the constraints on weights, as may be seen in Jagannathan and Ma [27] and DeMiguel

et al. [11]) who discuss shortsales and constraining portfolio norms, respectively.

The main purpose of this Chapter is to present a novel methodology for comparing

portfolios based on an extremality data order in some direction. Directions are chosen

by the investor according to main criteria that he or she uses in selecting the portfolio.

Because these criteria can be different from the traditional mean and variance, we

also introduce new versions of the efficient frontiers which depend on criteria which

are most relevant to the investor.

The structure of Chapter is thus as follows. In Section 4.2, we provide new defi-

nitions of alternative efficient frontiers and their graphical representation. Next, in

Section 4.3, we present a methodology to select the portfolios through the extremality

order defined in Chapter 2. A version of this order will also be provided for ordering

portfolios and its main properties. In Section 4.4, we briefly present a methodology

for evaluating the performance of the strategies developed in this Chapter and we

introduce classic theories from the literature for purposes of comparison. Then, in

Section 4.5, we present the performance of the strategies in real data and discuss the

results. Finally in Section 4.6, we provide some conclusions and possible extensions

of our approach.

To introduce our methodology, we start by introducing alternative definitions of

efficient frontiers.
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4.2 Alternative efficient frontiers

The Markowitz model of mean-variance is the most common formulation of portfolio

selection problems. However, portfolio models that consider criteria other than re-

turns and variances have been widely studied in the recent literature. For example,

Rockafellar and Uryasev [52] and Quaranta and Zaffaroni [49] implemented the con-

ditional Value-at-Risk instead of the variance as risk measure; Gaivoronski and Pflug

[21] studied Value-at Risk in portfolio optimization and Usta and Kantar [61] pro-

posed a model of mean-variance-skewness for portfolio selection. What is more, Usta

and Kantar [61] also maximize entropy in the objective function to generate well-

diversified asset portfolio within optimal asset allocation. Transaction costs are also

considered in many models.

It is well known that in the portfolio optimization approach proposed by

Markowitz, the problem is modeled as a mean-variance optimization problem where

the expected return is maximized and the variance is minimized. The performance

of the portfolio can be measured with the Sharpe-ratio introduced in Sharpe [56]

and defined as the increasing of the portfolio return by unity of risk, commonly ex-

pressed as µ̂
σ̂
if a risk-free asset is not considered. However, it is interesting to consider

that the Markowitz model often leads to portfolios which are highly concentrated

on a few assets which stands in contradiction to the notion of diversification. This

phenomena also leads to high transaction costs every time that the portfolio is rebal-

anced. In order to improve diversification, maximization of Shannon’s entropy has

been accepted as a good criterion of diversity, (Usta and Kantar [61]). This Chapter

includes different criteria for choosing the portfolio that depend on investor choice.

Any consideration of criteria different from the, classical criteria of mean-variance

must therefore contemplate new versions of efficient frontier. We formalize these

ideas in the remainder of the Section.

Let Θ be a set of k criteria for evaluating the performance of the portfolio. In

the classical Markowitz model k = 2 and corresponds to mean and variance of the

portfolio. Consider any criterion ci ∈ Θ, i = 1, . . . , k and denote

θci =

{
1, if the investor wants a portfolio with a low value of the criterion ci

−1, if the investor wants a portfolio with a high value of the criterion ci

For example, if we assume Θ = {return, risk, Sharpe-ratio, entropy} =

{c1, c2, c3, c4}, clearly

θreturn = θc1 = −1, θrisk = θc2 = 1, θSr = θc3 = −1, θentropy = θc4 = −1.
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As we have mentioned in the Introduction, Markowitz defined the efficient frontier

as the set of feasible portfolios which cannot be improved in terms of return and risk

simultaneously.

Following the Markowitz idea, we introduce new definitions of efficient frontiers

which are determined by the criteria {c1, . . . , ck} belong to Θ. We define an efficient

frontier as the set of feasible portfolios which cannot be improved in terms of all the

criteria from Θ, simultaneously.

Let Ω be the set of possible weights for a collection of n assets and let P be given

by,

P : Ω −→ R
k

w −→ Pw = [c1(w), . . . , ck(w)]′.

where Pw denotes the vector of criteria considered in Θ evaluated in the weight vector

w = [w1, . . . , wn]
′. Therefore, we can define the Θ−Efficient Frontier as follows

Definition 4.2.1 (Θ−Efficient Frontier) Consider the unit vector u =
1√
k
[θc1 , . . . , θck ]

′, ci,∈ Θ. Let S = P(Ω) ⊂ R
k be the set of possible values of

P. The Θ−Efficient Frontier is the set given by

∂Θ =
{
Pw ∈ S : there is not another Pw′ ∈ S such that Cu

Pw
⊂ Cu

P
w′

}
.

(4.2.1)

Recall that Cu
Pw

is an oriented orthant (see Definition 2.2.3) with vertex in Pw and

oriented by u, i.e,

Cu
Pw

= {Pw′ ∈ S | Ru(Pw′ − Pw) ≥ 0} , (4.2.2)

where Ru is the known orthogonal rotation matrix from (3.3.1) such that

Ruu =
1√
n

1. (4.2.3)

Consider the set {return, risk, Sharpe-ratio, entropy} = {c1, c2, c3, c4} of criteria

for choosing some portfolio weights. If we fix k = 2 then six possible Θ’sets given

by Θij = {ci, cj}, for i 6= j can be considered. Hence, according to Definition 4.2.1,

we have six different efficient frontiers which some points on these are displayed in

Figure 4.2. In order to illustrate those efficient frontiers, we have used the 5Ind data

set of monthly assets in the period 07/1963−12/2004 from Kenneth French web-site.
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Figure 4.2: Points on the efficient frontier

In this case, we have considered Ω as the hyperplane

{(w1, . . . , w5) :
∑

wi = 1, wi ≥ 0} and we have simulated 10000 elements from

previous set Ω via 10000 copies drawn from the random vector with a uniform

distribution of independent marginals.

U =

(
5∑

i=1

Ui

)−1

[U1, . . . , U5]
′ where Ui ∼ Uniform(0, 1), for all i = 1, . . . , 5.

(4.2.4)

Observe that the red points can not be improved for other points in terms of the

respective criteria ci, cj, simultaneously. Hence, we say that the red points belong

to the Θij−Efficient Frontier. In the previous cases the efficient frontiers can be

determined by a curve, however our procedure allows us to build efficient frontiers

when the investor wants to include more than two criteria to take decisions. In the

cases when Θ’ set is such that k > 2, the efficient frontiers will be determined by

a surface in k dimension. For example, Figure 4.3 shows the efficient frontier when

k = 3.
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Figure 4.3: Points on the efficient frontier

Although Figure 4.2 is clearer than Figure 4.3, in both Figures it can be seen that

the red points cannot be improved in terms of all the criteria from Θ, simultaneously.

Note that in all Figures displayed in this Section, we show the best portfolio

(black point) in the same Figures which is obtained through the results given in the

following Section.

4.3 Portfolio selection based on the extremality

order

Chapter 2 proposes a methodology to sort multivariate data based on a new con-

cept called extremality. This new concept induces an order which can be seen as

a generalization of the usual componentwise order over a fixed direction u. This

multivariate order has also been developed in Laniado et al. [37]. In this Section

we propose to sort feasible portfolios according to the order induced by a direction

u which is determined by the criteria chosen for selecting the portfolio. Following

the extremality order, our approach is to choose the smallest portfolio as the best

portfolio instead of those traditional portfolios selected through optimization tech-

niques. It should be noted that the advantage of our strategy depends on what the

economic agent considers to be most interest when choosing a portfolio. What is

more, we have not used optimization techniques since some criteria do not have the

appropriate properties for optimization, for example, it is well known that the Value

at Risk is not a convex risk measure and that its optimization process is complex. In

addition, if the risk is measured with the variance, there is the problem of estimating

a large number of parameters in the covariance matrix and as a consequence, the
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estimation errors will have a larger impact on portfolio weights when they come from

some optimization process.

We rank a sample of feasible portfolio using the order introduced in Definition

2.3.2 where we say that the best portfolio is that with smallest extremality value.

The feasible portfolios are built using Monte Carlo simulation. Our methodology

consists in selecting a portfolio on each Θ−Efficient Frontier and which is displayed

as a black point in Figures 4.2. The portfolio is obtained by using the order induced

by extremality studied in Chapter 2 and whose version to sort feasible portfolios is

given as follows.

Definition 4.3.1 Let w and w′ ∈ Ω and u = 1√
k
[θc1 , . . . , θck ]

′. We say that w

dominates w′ if, and only if, Pw ≤Eu Pw′.

Observe that the dominance of w on w′ can also be written as

Pw ≤Eu Pw′ ≡ P
(
Cu
Pw

)
≥ P

(
Cu
P
w′

)
. (4.3.1)

Now, we give some details of what is meant by the term dominance in Definition

4.3.1. Let w1,w2 ∈ Ω such that w1 dominates to w2 according to Definition 4.3.1,

that is, from (4.3.1), we can affirm

P
(
Cu
Pw1

)
≥ P

(
Cu
Pw2

)
implying by (4.2.2) that,

for any w ∈ Ω randomly chosen

P [Ru(Pw −Pw1
) ≥ 0] ≥ P [Ru(Pw − Pw2

) ≥ 0] . (4.3.2)

Observe that if we consider the criteria c1, c2 as in the classical risk-return model,

Pw, w ∈ Ω represents a couple (riskw, returnw) ∈ P(Ω). Obviously, in this case

u = 1√
2
[1,−1]′ and the respective orthogonal rotation matrix (stated in (4.2.3)) will

be given by

Ru =

(
0 −1

1 0

)
, since Ruu =

1√
2
[1, 1]′.

Hence, the inequality (4.3.2) can be written as

P

[(
0 −1

1 0

)(
riskw − riskw1

returnw − returnw2

)
≥
(

0

0

)]
≥

P

[(
0 −1

1 0

)(
riskw − riskw2

returnw − returnw2

)
≥
(

0

0

)]
,
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equivalent to

P

[(
0 −1

1 0

)(
riskw

returnw

)
≥
(

0 −1

1 0

)(
riskw1

returnw1

)]
≥

P

[(
0 −1

1 0

)(
riskw

returnw

)
≥
(

0 −1

1 0

)(
riskw2

returnw2

)]
.

Therefore, it is easily seen that

P [riskw ≥ riskw1
and returnw ≤ returnw1

]

≥ P [riskw ≥ riskw2
and returnw ≤ returnw2

] ,

which means that the probability of finding a worse portfolio, in terms of risk-return,

is greater for Pw1
than Pw2

and this is what is meant by the dominance of w1 on w2.

Hence, our strategy for selecting portfolios consists in choosing the more dominant

portfolio, i.e, the smallest in terms of extremality. In Figure 4.2 it can be observed

that the best portfolio is drawn as the black point on each Θ-efficient frontier. Figure

4.1 also shows the best portfolio obtained through extremality order, and in fact the

same Figure also shows 30% of the best portfolios. We emphasize again in Figure

4.1 that with our methodology it is possible to compare portfolios in the A-square

with those from the C-square.

Consider u = 1√
k
[θc1 , . . . , θck ]

′, the following property indicates that a portfolio

which is a vertex of some oriented orthant Cu
Pw

has a better performance when

compared to another portfolio that belongs to that orthant.

Property 4.3.2 Let w and w′ ∈ Ω and u = 1√
k
[θc1,, . . . , θck ]

′. Then

Pw ≤Eu Pw′, for all Pw′ ∈ Cu
Pw

.

Proof. Suppose that Pw′ ∈ CPu
w
which implies that, Cu

P
w′ ⊂ Cu

Pw
. Therefore,

PF

(
Cu
P
w′

)
≤ PF

(
Cu
Pw

)
=⇒ Pw ≤Eu Pw′ .

�

The order of the criteria can affect the position of the Θ-Efficient frontier, however

the extremality portfolio order given in the Definition 4.3.1 is invariant to the order

selected for the criteria. This is demonstrated in the following property.

Property 4.3.3 Let Π be a permutation matrix. If Pw ≤Eu Pw′, then ΠPw ≤EΠu

ΠPw′ .
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Proof. The assertion follows on immediately from the invariance of the extremality

under orthogonal transformations. (see Property 2.4.3). �

The following Proposition shows that our strategy can be linked with the

Markowitz solution since the portfolio selected under criteria Θ belongs to the Θ-

efficient frontier.

Proposition 4.3.4 If Pw ≤Eu Pw′, for all Pw′ ∈ S, then Pw belongs to the

Θ-Efficient Frontier.

Proof. Let Θ = {c1, . . . , ck} be the criteria used by the investor for selecting his\her
portfolio. Therefore, we already know that the unit vector that determines the

direction for ordering the feasible portfolios is given by u = 1√
k
[θc1 , . . . , θck ]

′. Now,

suppose that Pw does not belong to the Θ−Efficient Frontier. From (4.2.1) there is

a different portfolio Pv = [c1(v), . . . , ck(v)]
′ ∈ S, such that Cu

Pw
⊂ Cu

Pv
implying that

Pw ∈ Cu
Pv

which means from Property 4.3.2 that Pv has better performance than

Pw, i.e, Pv <Eu Pw which contradicts the hypothesis. �

DeMiguel et al. [12] show the advantages of ignoring the data on asset returns

and using the 1
n
rule to allocate an equal proportion of wealth for each one of n assets

whose performance in terms of Sharpe ratio and transaction cost is, in general, very

well accepted among investors. We also propose another strategy that considers the

standard deviation vector of data as a director vector. When the risk is measured as

the variance, we prove in the 2-dimensional case that the portfolio selected with this

strategy has less risk than 1
n
rule. However, the computational performance of this

strategy for higher dimensions reveals that this result could hold for n > 2. This

strategy will be denoted as PR and is introduced as follows.

Consider X = (X1, . . . , Xn)
′ a random vector of risky assets such that V ar(Xi) <

∞, for i = 1, . . . , n. Let σ = (σ1, . . . , σn)
′ be the standard deviation vector of the

n random variables. Let u = σ
‖σ‖ be a unit vector in the direction of the standard

deviations. Let Ru be as in (4.2.3), so Ru
σ

‖σ‖ = 1√
n
1n, i.e., in this case Ru is the

matrix becoming the standard deviation vector in a homogeneous vector with norm

unitary. Here we propose a portfolio whose weights are given by

w =
Ru1n

1′
nRu1n

, where u =
σ

‖ σ ‖ . (4.3.3)

The main idea of the strategy (4.3.3) is to ensure that the riskiest asset receives

the smallest proportion of the budget available for investment. The goal with this
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strategy is basically to improve the 1
n
-rule. We will show show that PR works better

in terms of risk, and almost as well in terms of turnover, as the the 1
n
-rule. The

following Proposition shows that if the components of X have the same variances,

the strategy PR is equivalent to 1
n
-rule.

Proposition 4.3.5 Let X = (X1, . . . , Xn)
′ be a random vector of risky assets such

that V ar(Xi) = c, for i = 1, . . . , n. Then the portfolio weights given in (4.3.3) are
equivalents to 1

n
.

Proof. Since the variances are the same, it is easily seen that u = σ
‖σ‖ = 1√

n
1n.

Clearly from (4.2.3) the matrix Ru has to be the identical matrix. Hence, from

(4.3.3)

w =
Ru1n

1′
nRu1n

=
1n

1′
n1n

=
1

n
1n.

�

Some special cases where X satisfies the conditions as in Proposition 4.3.5 are when

X1, . . . , Xn i.i.d. or X a random vector with exchangeable components.

Assuming that the risk of the portfolio is measured through its variance, we show

below that for the 2-dimensional case the 1
n
-rule is risker than the portfolio PR. This

is stated in the following Property.

Property 4.3.6 Let X = (X1, X2)
′ be random vector with finite margin variance σ2

1

and σ2
2, respectively and σ12 the covariance. Consider w1 as in (4.3.3) and w2 =

(1
2
, 1
2
)′. Then

V ar (w′
1X) ≤ V ar (w′

2X) .

Proof. Since the unit vector u = 1
‖σ‖(σ1, σ2)

′, the orthogonal rotation matrix stated

in (4.2.3) is given by

Ru =

√
2

2 ‖ σ ‖

(
σ1 + σ2 σ2 − σ1

σ1 − σ2 σ1 + σ2

)
, so the condition Ruu =

1√
n
1n holds.

(4.3.4)

Replacing the matrix (4.3.4) in (4.3.3), we obtain that w1 = ( σ2

σ1+σ2
, σ1

σ1+σ2
)′. Hence,

V ar (w′
1X) = V ar

(
σ2

σ1 + σ2
X1 +

σ1

σ1 + σ2
X2

)
=

σ1σ2

(σ1 + σ2)2
(2σ1σ2 + 2σ12) .

The variance of the 1
n
-rule is given by

V ar (w′
2X) = V ar

(
1

2
X1 +

1

2
X2

)
=

1

4

(
σ2
1 + σ2

2 + 2σ12

)
.
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The proof is completed by the simple fact that

σ1σ2

(σ1 + σ2)2
≤ 1

4
and (2σ1σ2 + 2σ12) ≤

(
σ2
1 + σ2

2 + 2σ12

)
, for all σ1, σ2, σ12.

�

As we have commented previously, we have not the proof for the case n > 2 being

this result a conjecture. However, we have computational evidence that it holds.

4.4 Portfolio performance measures

In this Section, we illustrate the approach developed in the previous Section and

compare it with other alternatives in the literature of portfolio optimization. To

evaluate the performance of the portfolios obtained in this Chapter, we will compare

five classic strategies: Mean-variance portfolio with shortsales constrained and risk

aversion parameter γ = 1 (MEAN), Mean-Variance portfolio with shortsales uncon-

strained (MEANU), Minimum-Variance portfolio with shortsales constrained (MIN),

Minimum-Variance portfolio with shortsales unconstrained (MINU) and Equally-

weighted Portfolio ( 1
n
). The comparison is carried out using out-of-sample portfolio

returns, out-of-sample portfolio risk, out-of-sample portfolio Sharpe ratio and port-

folio turnovers. We use the technique “rolling-horizon” implemented in DeMiguel et

al. [11], which depends on a window τ to perform the estimation. Thus, using the

monthly data over the estimation window, we estimate the feasible portfolios set S

through the simulation of ten thousand points of the hyperplane
∑n

i=1 wi = 1 with

wi ≥ 0 of the same way as in (4.2.4) and we sort the feasible portfolio following the

Definition 4.3.1 depending on the criteria selected. In this Chapter we are working

with strategies based on a set of two criteria, i.e, k = 2. The notation for our strate-

gies is given in Table 4.1. For each estimation window, we compute six previous

Tables 4.1: Portfolios notation

Criteria returns and variance returns and Sharpe ratio

Portfolio notation P12 P13

Criteria returns and entropy variance and Sharpe ratio

Portfolio notation P14 P23

Criteria variance and entropy Sharpe ratio and entropy

Portfolio notation P24 P34

strategies from Table 4.1 and the strategy PR introduced in (4.3.3). In order to
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establish comparisons, we also compute the (MEAN), (MEANU), (MIN), (MINU)

and ( 1
n
) strategies. This procedure is repeated month to month, including the next

month and dropping the earliest month, until the end of the data set is reached.

Comparison criteria are calculated as follows (see DeMiguel et al. [11], DeMiguel

and Nogales [13] for additional information):� Out-of-sample portfolio returns

µ̂i =
1

m− τ

m−1∑

t=τ

(wi
t)

′rt+1

where wi
t denotes the portfolio weight vector chosen at time t under strategy

i, rt+1 denotes the asset returns at time t + 1 and m is the sample size.� Out-of-sample portfolio standard deviation

σ̂i =

(
1

m− τ − 1

m−1∑

t=τ

(
(wi

t)
′rt+1 − µ̂i

)2
) 1

2

.� Out-of-sample portfolio Sharpe ratio

ŜR
i
=

µ̂i

σ̂i
.

In order to statistically evaluate the difference in Sharpe ratios, we use the test

devised by Memmel [45] , which is a corrected version of the original proposal

of Jobson and Korkie [28]. It is illustrated in Usta and Kantar [61] as follows:

Let a and b be two portfolio selection models generating two Sharpe ratios SRa

and SRb , respectively. Under the null hypothesis that the Sharpe ratios are the

same, the test statistic for SRa − SRb is asymptotically normally distributed

with mean zero and variance ϑ:

ϑ =
1

m− τ

[
2− 2ρab +

1

2

(
SR2

a + SR2
b − 2SRaSRbρ

2
ab

)]
,

where m, τ is the sample size and windows size in the rolling horizon,

respectively. ρab is the correlation coefficient between portfolio returns ob-

tained from a and b models. Thus, the test statistic for difference in Sharpe

ratios is calculated as follows:

Z =
SRa − SRb√

ϑ
.
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In this study, the p-value corresponding to the previous test statistic will be

calculated for each model with respect to the 1
n
-rule, which is taken as a bench-

mark due to its easy implementation and widespread use. Additionally, in the

literature, DeMiguel et al. [12] show that the 1
n
-rule has good behavior in the

out-of-sample case.� Turnover

Turnover =
1

m− τ − 1

M−1∑

t=τ

n∑

j=1

(
|wi

j,t+1 − wi
j,t+|
)
,

where wj,t is the portfolio weight of the asset j chosen at time t and wi
j,t+ is

the portfolio weight before rebalancing, but an t + 1 and wi
j,t+1 the desired

portfolio weight at time t + 1, after rebalancing. The Turnover for 1
n
strategy

may be different to zero due to changes in asset prices between t and t + 1.

The Turnover can be interpreted as the average percentage of wealth traded

period to period and it is related to transaction costs.

4.5 Empirical study

In this Section we give the descriptions of the empirical data sets used in this work

and also present the results of the empirical study.

4.5.1 Data description

Regarding the data sets, we have used portfolios of different sizes. They have been

built using a set of 50 companies from Spain and taking monthly returns from

10/2001 to 01/2008. The 50 companies are given in Table 4.2.

With companies from Table 4.2, we build some portfolio sets to evaluate the

strategies discussed in this Chapter. These portfolios are given in Table 4.3. We also

use other two data sets more. One of them has been taken from Kenneth French

web-site:

http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data−library.html,

which is a monthly returns data set of 48 industry portfolios representing the U.S.

stock market and which is denoted by 48Ind. The other dataset consists of monthly

eight international indexes, which are taken from yahoo finance web site, NASDAC,
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S&P500 from US, FTSE100 DAX, NIKKEI225UK from Europe and HSI, STRAITS-

TIMES from Asia for the period from January 2000 to April 2012 and which are

denoted by 8Indexes.

Tables 4.2: Companies from Spain for constructing the portfolios

Code 1 2 3

Company ACERINOX ADOLFO DOMINGUEZ ALTADIS

Code 4 5 6
Company ACCIONA AGUAS BARCELONA -A- AMPER

Code 7 8 9

Company AZKOYEN TAVEX ALGODONERA BARON DE LEY

Code 10 11 12

Company BAYER BEFESA VISCOFAN

Code 13 14 15

Company BANCO CASTILLA CEPSA CAMPOFRIO

Code 16 17 18

Company DINAMIA ENDESA EUROPISTAS

Code 19 20 21

Company FCC FUNESPANA GAS NATURAL

Code 22 23 24

Company IBERDROLA IBERPAPEL IBERIA

Code 25 26 27

Company INBESOS INDITEX LINGOTES ESPECIALES

Code 28 29 30

Company METROVACESA NH HOTELES PRISA

Code 31 32 33

Company REPSOL YPF BODEGAS RIOJANAS BANCO SANTANDER

Code 34 35 36

Company SOGECABLE SOL MELIA TELEFONICA

Code 37 38 39

Company TUBACEX ACUMULADOR TUDOR URBAS

Code 40 41 42

Company UNION FENOSA UNIPAPEL URALITA

Code 43 44 45

Company VIDRALA AMERICA MOVIL-L BBVA

Code 46 47 48

Company TELMEX VALE-R-12 VOLCAN-B

Code 49 50

Company ZELTIA ZARDOYA
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Tables 4.3: Portfolio data sets from Spain

Set Company code

5Spain 10− 14− 17− 21− 22

6Spain 9− 23− 32− 39− 47− 48

10Spain 9− 14− 23− 24− 25− 32− 34− 39− 47− 48

25Spain 3− 4− 6− 9− 10− 13− 14− 15− 19− 21− 22− 23− 24

25− 31− 32− 34− 35− 38− 39− 42− 45− 47− 48− 49

40Spain 2− 3− 4− 5− 6− 8− 9− 10− 11− 12− 13− 14− 15− 16

18− 19− 21− 22− 23− 24− 25− 26− 27− 28− 30− 31− 32

33− 34− 35− 37− 38− 39− 41− 42− 44− 45− 47− 48− 49

The summary of data considered in this study are given in the following Table

Tables 4.4: Data sets of monthly asset returns.

Data Sets Abrev. n Period

5 companies from Spain see Table 4.3 5Spain 5 10/2001-01/2008

6 companies from Spain see Table 4.3 6Spain 6 10/2001-01/2008

10 companies from Spain see Table 4.3 10Spain 10 10/2001-01/2008

25 companies from Spain see Table 4.3 25Spain 25 10/2001-01/2008

40 companies from Spain see Table 4.3 40Spain 40 10/2001-01/2008

48 industry portfolio representing the U.S. stock market 48Ind 48 07/1963-12/2004

8 international indexes from US, Europe, Asia 8ndexes 8 01/2000-04/2012

These data are monthly asset returns and are presented in the Table 4.4 , with

the abbreviation used to refer to each data set, the number of assets in each data

set and the time period.

4.5.2 Results of the empirical study

Tables 4.5, 4.6, 4.7 and 4.8 report the out-of-sample criteria for the portfolios conside-

red and the strategies analyzed. The windows size τ in the technique “rolling-

horizon” is τ = 50 for data sets from Spain and also for 8Index data set, and

τ = 300 for 48Ind data set.
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Tables 4.5: Portfolio returns

Strategy 5Spain 6Spain 10Spain 25Spain 40Spain 48Ind 8Indexes

in this paper
P12 0.0282

(0.9472)
0.0347
(0.8341)

0.0361
(0.5075)

0.0194
(0.7978)

0.0169
(0.7605)

0.0111
(0.9341)

0.0047
(0.9240)

P13 0.0312
(0.7430)

0.0446
(0.5458)

0.0367
(0.4705)

0.0234
(0.5854)

0.0177
(0.7078)

0.0107
(0.9834)

0.0049
(0.9039)

P14 0.0280
(0.9598)

0.0397
(0.7016)

0.0293
(0.7715)

0.0205
(0.7453)

0.0164
(0.7908)

0.0111
(0.9485)

0.0042
(0.9833)

P23 0.0320
(0.7060)

0.0243
(0.7487)

0.0256
(0.9180)

0.0192
(0.8088)

0.0133
(0.9833)

0.0106
(0.9738)

0.0042
(0.9846)

P24 0.0278
(0.9759)

0.0235
(0.7487)

0.0208
(0.8531)

0.0182
(0.8787)

0.0133
(0.9833)

0.0111
(0.9345)

0.0037
(0.9591)

P34 0.0285
(0.9223)

0.0310
(0.9764)

0.0292
(0.7622)

0.0199
(0.7826)

0.0162
(0.9833)

0.0107
(0.9981)

0.0042
(0.9788)

PR 0.0283
(0.9378)

0.0135
(0.3829)

0.0168
(0.6492)

0.0115
(0.6727)

0.0102
(0.8148)

0.0107
(0.9864)

0.0039
(0.9790)

for comparison
1/n 0.0274 0.0304 0.0240 0.0164 0.0130 0.0108 0.0041

MEAN 0.0246
(0.8421)

0.0023
(0.1140)

0.0030
(0.1368)

0.0088
(0.5199)

−0.0083
(0.1558)

0.0102
(0.9143)

0.0026
(0.8323)

MEANU 0.0327
(0.6770)

0.0220
(0.6557)

0.0310
(0.6814)

0.0427
(0.2437)

0.0398
(0.5245)

0.0072
(0.6197)

−0.0156
(0.7417)

MIN 0.0297
(0.8544)

0.0045
(0.1485)

0.0082
(0.2640)

0.0085
(0.4517)

0.0136
(0.9611)

0.0082
(0.5604)

0.0033
(0.9003)

MINU 0.0306
(0.8002)

0.0029
(0.1260)

0.0080
(0.2628)

−0.0042
(0.0644)

0.0001
(0.4270)

0.0041
(0.1315)

−0.0016
(0.3476)

Tables 4.6: Portfolio standard deviations

Strategy 5Spain 6Spain 10Spain 25Spain 40Spain 48Ind 8Indexes

in this paper
P12 0.0390 0.0651 0.0656 0.0388 0.0457 0.0380 0.0436
P13 0.0417 0.0844 0.0613 0.0463 0.0437 0.0382 0.0486
P14 0.0389 0.0904 0.0660 0.0451 0.0461 0.0396 0.0468
P23 0.0452 0.0489 0.0476 0.0355 0.0419 0.0379 0.0424
P24 0.0400 0.0683 0.0569 0.0385 0.0418 0.0393 0.0439
P34 0.0401 0.0719 0.0599 0.0440 0.0431 0.0393 0.0465
PR 0.0426 0.0508 0.0472 0.0386 0.0412 0.0390 0.0442

for comparison
1/n 0.0392 0.0809 0.0628 0.0434 0.0440 0.0396 0.0459

MEAN 0.0595 0.0292 0.0279 0.0398 0.0591 0.0446 0.0474
MEANU 0.0493 0.0462 0.0579 0.1016 0.2032 0.0780 0.5845

MIN 0.0456 0.0328 0.0298 0.0295 0.0388 0.0358 0.0346
MINU 0.0494 0.0331 0.0311 0.0328 0.0675 0.0363 0.0367
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Tables 4.7: Portfolio Sharpe ratios

Strategy 5Spain 6Spain 10Spain 25Spain 40Spain 48Ind 8Indexes

in this paper

P12 0.7218
(0.6948)

0.5333
(0.1315)

0.5498
(0.0418)

0.5006
(0.0314)

0.3700
(0.0956)

0.2929
(0.0965)

0.1070
(0.3158)

P13 0.7478
(0.6084)

0.5279
(0.1399)

0.5989
(0.0378)

0.5056
(0.0854)

0.4044
(0.0179)

0.2789
(0.5170)

0.1003
(0.4829)

P14 0.7196
(0.6466)

0.4391
(0.0519)

0.4438
(0.2303)

0.4558
(0.0978)

0.3564
(0.0819)

0.2793
(0.3309)

0.0896
(0.8759)

P23 0.7080
(0.9093)

0.4962
(0.2988)

0.5375
(0.1723)

0.5406
(0.0178)

0.3166
(0.5215)

0.2801
(0.4466)

0.0985
(0.5582)

P24 0.6941
(0.8454)

0.3446
(0.3012)

0.3656
(0.7308)

0.4735
(0.0610)

0.3182
(0.5137)

0.2836
(0.1533)

0.0848
(0.6856)

P34 0.7114
(0.6893)

0.4308
(0.1397)

0.4881
(0.0025)

0.4514
(0.0198)

0.3766
(0.0204)

0.2731
(0.8809)

0.0910
(0.7383)

PR 0.6657
(0.3425)

0.2659
(0.1807)

0.3550
(0.7324)

0.2986
(0.3307)

0.2471
(0.4175)

0.2737
(0.8022)

0.0879
(0.9461)

for comparison

1/n 0.6997 0.3753 0.3815 0.3791 0.2955 0.2719 0.0883

MEAN 0.4132
(0.0750)

0.0804
(0.1902)

0.1075
(0.1999)

0.2213
(0.4145)

−0.1400
(0.0024)

0.2296
(0.4806)

0.0555
(0.7131)

MEANU 0.6632
(0.7598)

0.4750
(0.3314)

0.5354
(0.1060)

0.4201
(0.8452)

0.1960
(0.6209)

0.0921
(0.0519)

−0.0267
(0.4246)

MIN 0.6502
(0.5314)

0.1373
(0.2605)

0.2745
(0.5303)

0.2881
(0.5073)

0.3500
(0.5276)

0.2293
(0.4326)

0.0961
(0.8968)

MINU 0.6199
(0.4932)

0.0871
(0.1989)

0.2577
(0.4981)

−0.1271
(0.0276)

0.0012
(0.0948)

0.1123
(0.0393)

−0.0426
(0.0640)

Tables 4.8: Portfolio turnovers

Strategy 5Spain 6Spain 10Spain 25Spain 40Spain 48ind 8Indexes

in this paper

P12 0.4573 0.3272 0.4951 0.6106 0.6028 0.6468 0.5152

P13 0.3310 0.2931 0.5066 0.6377 0.6691 0.6510 0.5937

P14 0.1358 0.1839 0.2367 0.4187 0.4728 0.5358 0.1946

P23 0.2387 0.3343 0.4985 0.5773 0.6297 0.6622 0.5324

P24 0.0988 0.1164 0.1969 0.3775 0.4804 0.5012 0.2282

P34 0.1401 0.1520 0.2019 0.4212 0.4934 0.4963 0.3084

PR 0.0448 0.0414 0.0468 0.0439 0.0449 0.0345 0.0365

for comparison

1/n 0.0348 0.0558 0.0476 0.0378 0.0368 0.0324 0.0342

MEAN 0.1572 0.2112 0.2163 0.3503 0.4930 0.1112 0.2996

MEANU 0.1976 0.2056 0.2419 1.1022 3.9736 0.9607 39.0375

MIN 0.0848 0.0597 0.0698 0.1313 0.2292 0.0422 0.0744

MINU 0.1442 0.0682 0.0986 0.3243 1.4437 0.2312 0.2830
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4.5.3 Discussion of results

We also want to emphasize that obtaining the best portfolio through an extremality

order for any strategy is fast to compute and may be applied to portfolios of high-

dimensional data. Considering k criteria chosen by the investor and a size m of

feasible portfolios to be simulated, the computational cost of this calculation has

complexity O(k.m), where k << m� Portfolio return. Table 4.5

Table 4.5 reports the out-of-sample returns of the benchmark portfolios and

the portfolios obtained through the strategies proposed in this Chapter. The

corresponding p-value of the difference between the return of each strategy

and that 1
n
-rule and we affirm that the difference is significant if the p- value

is smaller than 0.05. The p-values are computed by using the well-known t-

student test for difference of means.

We observe that the strategies that consider the return as a selected criterion

of Θ, for example, P12, P13 and P14, in general, have a better out-of sample

return than those used as benchmark. Note also that the best behavior, in

terms of the returns, for all data sets is given for one of our strategies, except

for the 5Spain and 40Spain sets. We can also see that all of our strategies have

higher returns than (MEAN) strategy for all data set.

Although we cannot see a significant statistical difference, the out-of-sample

portfolio returns based on the strategies discussed in this Chapter are higher

than those of other classical strategies used for comparison. This is attractive

for the investors, but it is not the main criterion for choosing a good strategy,

since investors would also want to take risk into account.� Portfolio standard deviation. Table 4.6

We can see from Table 4.6 that Property 4.3.6 seems be true for portfolios

with a major numbers of assets, since our PR strategy has a lower out-of-

sample standard deviation than 1
n
-rule for all data sets except for 5Spain set.

Observe also that the best among our strategies are those where the standard

deviation has been considered as a criterion for selecting the portfolio, i.e.,

P12, P23 and P24. Another observation to highlight is that P23 and P24 also

have a out-of-sample standard deviation than 1
n
-rule for all data sets except

for 5Spain set. In general, (MIN) and (MINU) are the strategies which behave

well with respect to standard deviation, however their performance in terms of
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returns and the Sharpe ratio is lower than any of the strategies studied in this

Chapter.� Portfolio Sharpe ratio. Table 4.7

Table 4.7 shows the out-of-sample Sharp ratio for the different portfolios and

their corresponding p-values that the Sharpe ratio for each one of these strate-

gies is different from that for the 1
n
rule. The p-values are computed by using

the test for difference in Sharpe ratios as previously defined. We see that the

P12 strategy always has higher Sharpe ratios than the policies for comparison

in all data sets and that the differences are wide in almost all cases and statis-

tically significant for 10Spain and 25Spain. Observe also that the P13 strategy

always has higher Sharpe ratios than those policies for comparison in all data

sets and the differences are wide in almost all cases but are only statistically

significant for 10Spain and 40Spain. P14 attains a better Sharpe ratio than

the benchmark strategies except for 6Span and 10Spain. The same applies for

P23 which, in terms of Sharpe ratio, is only surpassed by (MIN) in 40Spain

data. We see that P14 has a better behavior than (MEAN) and (MINU) for all

data sets. This strategy also has higher Sharpe ratio than (MEAN) except for

6Spain, 10Spain data sets and it has higher Sharpe ratio than (MIN) except

40Spain data set. On the other hand, P34 attains higher Sharpe ratios than all

policies of comparison except for (MEANU). Note also that our PR strategy

reaches higher Sharpe ratios than both the (Mean) and the (MINU) strategies

for any of the data sets.

Summarizing, we can affirm that the strategies introduced in this Chapter,

generally have higher Sharpe ratios than the policies that we have considered

as benchmark. Observe also that among our strategies, those that have the

Sharpe ratio as criterion attain a very good performance in this aspect, i.e.,

P13, P23, P34� Portfolio Turnovers. Table 4.8

In Table 4.8 it may be observed that those of our strategies that employ en-

tropy as criterion of selection ,i.e, P14, P24, P34 attain a lower turnover than the

strategies with other criteria. Obviously the best strategy in terms of turnover

is the 1
n
rule, since this diversification always reaches the maximum entropy.

However, the PR strategy not only performs well with respect to the turnover

but, in fact behaves better for all data sets than any strategy except for the
1
n
rule. Observe that PR even attains the best turnover for all strategies in
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6Spain and 10Spain data sets.

4.5.4 Sensitivity

In order to analyze the sensitivity of the results obtained with our strategies, we

have used 6FF which is a monthly data set taken from the Kenneth French web-site,

for the time period 07/1963− 12/2004. Figure 4.4 depicts the box-plots for different

numbers of portfolios generated through

U =

(
6∑

i=1

Ui

)−1

[U1, . . . , U6]
′ where Ui ∼ Uniform(0, 1), for all i = 1, . . . , 6.

(4.5.1)

for each number of portfolios feasible, we have calculated 5000 times the performance

measure discussed in this Chapter, i.e, returns, risk, Sharpe ratio and turnovers and

the box plots of each single measure are reported in the following Figure 4.4.

We can see that when there is an increase in the number of generated feasible

portfolios, there is an improvement in the performance of the criteria considered. In

general, we can affirm that the results given for these strategies are stable since the

box plots display little variability and the distributions of the performance measures

do not present outliers.

Although, we have made the box plots for each of the strategies discussed in

this Chapter, we only show the box plots associated with strategy P12. The same

conclusions, however, can be observed with the other strategies described in the

Chapter.
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Figure 4.4: Box Plot for different numbers of feasible portfolio
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4.6 Conclusions

We present portfolio selection strategies based on the data order induced by extrema-

lity and propose a procedure to sort feasible portfolios. We provide a methodology

for selecting portfolio weights considering some criteria which are different from the

classical criteria of mean and variance. Through the order discussed in this Chapter,

we rank feasible portfolios and we select the best portfolio as the smallest in terms of

extremality. Therefore, this framework is not based on optimization. We also define

alternative efficient frontiers which depend on the criteria chosen by the investor,

which could be surfaces rather than curves, and we show that the portfolio selected

with the strategies studied belongs to the efficient frontier. The performance of the

strategies introduced is compared with the performance of classic policies from the

literature and we find that our strategies are better in terms of the Sharpe ratio than

those used as a benchmark.

We also have introduced the strategy PR that depends on the standard deviation

vector of assets. We find that this policy often has a lower variance than 1
n
rule.

While we have proved that the previous statement holds in the case of two assets,

We do not have the results for the general case. It would therefore be interesting to

investigate the conditions that extend the result for a data set of n assets.

Our methodology can be extended by considering the criteria set Θ with k > 2

or by considering other criteria different from those studied in this Chapter. For

example, it is well known that the popular Value at Risk (VaR) is not a convex

measure risk, therefore its optimization process is complex, and so we also propose

to develop our strategies taking (VaR) as a criterion of selection.
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5
Conclusions and main contributions

This chapter summarizes the main contributions of the thesis. In general terms, this

work has provided a methodology based on directions for comparing both multi-

variate data and random vectors. Each chapter offers a theoretical basis for construc-

ting either multivariate data orders or multivariate stochastic orders. Also included

are the respective applications of the orders introduced, especially applications that

are addressed toward the financial framework.

Although each chapter of this thesis states its main conclusions and contributions,

the principal aspects developed are briefly described as follows:� We have developed an alternative approach for analyzing multivariate extremes

by considering directions. In order to do this, an oriented convex cone has been

constructed to calculate a new multivariate measure referred to throughout the

work as extremality.

– Through the extremality measure, a new way to sort multivariate data

based on directions is introduced. Each orientation of the convex cone

allows us to define different forms to rank the sample.

– The inclusion of directions is a versatile way of introducing new definitions

of multivariate quantiles and generalizes some quantiles already studied

in the literature.

– As an application of extremality, an oriented multivariate Value at Risk

is defined as its level set. A direction chosen by the investor allows to

identify the riskiest events. The VaR introduced in this work can be

seen, by inclusion of directions, as a generalization of some VaR’s already

studied in the literature.
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– A study is made of the relationship between the oriented multivariate

Value at Risk and the classical one-dimensional Value at Risk when an

investor wants to diversify his/her wealth in a portfolio.� We have provided a multivariate stochastic order which in this thesis also is

referred as extremality order. Unlike previous comparisons of multivariate

data, the second contribution is an order to compare random vectors. The new

multivariate stochastic order is defined through a oriented convex cone. Both

necessary and sufficient conditions are investigated and a study is also made

of the relationships between other multivariate stochastic orders introduced in

the literature.

– In this work, the well known upper orthant order and lower orthant or-

ders have been generalized by including directions. We have shown some

examples where other directions can be more useful than those used to

define the classical upper and lower orthant orders

– We present some examples of application in the determination of optimal

allocations of wealth among risks in single period portfolio problems. We

present some examples of application in the determination of optimal

allocations of wealth among risks in single period portfolio problems

– We have studied the case in which an agent has to allocate his capital in

different but not independent risky assets and we find an optimal solution

based on rotations of the risky assets (random variables) such that the

maximal diversification in the rotated vector gives the maximal expected

utility.� Markowitz defined the efficient frontier as the set of feasible portfolios which

cannot be improved in terms of risk and return simultaneously. Inspired by the

Markowitz idea, we have introduced new concepts of efficient frontier which de-

pend on some indexes that the investor can choose and which may be different

from the classical variance- return in Markowitz’s model.

– We have provided a version of extremality data order in order to sort fea-

sible portfolio. This portfolio order allows us to estimate which portfolio

is best. The procedure used does not use optimization techniques.

– The methodology proposed is also versatile since the investor can choose

the portfolio depending on the criteria which are most relevant and which

may be different those of mean and variance.
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– The different policies introduced in this work frequently attain a better

performance in terms of the Sharpe ratio than those classical strategies

used as a benchmark.

– A strategy is developed which is based on rotations in the direction of the

standard deviation vector of data. We have proved that at least for the

bivariate case, the policy mentioned has less risk than the 1
n
rule which

assigns the same weight to every risky asset.
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[20] H. Föllmer and A. Schied. Convex measures of risk and trading constraints.

Finance and Stochastics, 6(4):429–447, 2002.

[21] A.A. Gaivoronski and G. Pflug. Value at risk in portfolio optimization: prop-

erties and computational approach. Journal of Risk, 7(2):1–28, 2000.

[22] P. Gänssler. Empirical processes. Lecture notes-monograph series. Institute of

Mathematical Statistics, 1983.

90



Conclusions and main contributions

[23] J.E. Gentle. Numerical linear algebra for applications in statistics. Statistics

and computing. Springer, 1998.

[24] J. Hadar and W. R. Russell. Stochastic dominance and diversification. Journal

of Economic Theory, 3(3):288–305, 1971.
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