

Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002

ON LEARNING CONTROL KNOWLEDGE FOR A HTN-POP HYBRID
PLANNER

SUSANA FERNANDEZ; RICARDO ALER Y DANIEL BORRAJO

Universidad Carlos III de Madrid, 28911 Leganes (Madrid), Espafia
E-MAIL: sfarregu.aler@inf.uc3m.es.dborrajo@ia.uc3m.es

Abstract:
In this paper we present a learning method that is able to

automatically acquire control knowledge for a hybrid HTN·
POP planner called HYBIS. HYBIS decomposes a problem in
subproblems using either a default method or a user-defined
decomposition method. Then, at each level of abstraction, it
generates a plan at that level using a POCL (Partial Order
Causal Link) planning technique. Our learning approach
builds on HAMLET, a system that learns control knowledge
for a total order non·linear planner (PRODIGY 4.0). In this
paper, we focus on the operator selection problem for the POP
component of HYBIS, which is very important for efficiency
purposes.

1 lntrodnction

In this paper we present a system that learns control
knowledge by generating a bounded explanation of the
problem solving episodes. It is used in combination with a
planner which solves real world problems from
manufacturing systems (HYBIS [5]). HYBIS is a
hierarchical and nonlinear planner with an automata-based
representation of operators, which is able to obtain control
sequences for manufacturing processes. It mixes
hierarchical (HTN) [7] and Partial Order Planning (POP)
techniques [19]. The description of the problems that appear
in a manufacturing system consists of a set of
transfonnations which must be performed on raw products
in order to obtain the manufactured ones. A domain is a
knowledge·based model of the manufacturing system. The
model is divided into: a set of agents, which represents the
set of actuators (devices); their operations and their
interconnections described by the model of actions; and" a
set of axioms, which describe facts that are always true.
Every agent is described hierarchically according to the
different parts it is made of, which can also be other agents.
In this context, a planning problem consists of: an initial
state, which is represented as a conjunction of literals
which describe both the manufacturing system and the raw
products; and a set of goals, represented as a conjunction of
literals that describe the desired manufactured products.
The output will be a plan than defines the transformations
to be performed to obtain manufactured products from raw
ones.

As it is the case for all domain-independent planners,
HYBIS is not necessarily fast when searching for plans,

0·7803·7508-41021$17.00 ©20021EEE

since it has to spend time studying in valid alternatives. To
avoid this, we propose to automatically acquire knowledge
to guide the planning process. This knowledge is based on
the experience in solving previous real problems. In
planning, several approaches have been used successfully
in order to guide the search process by adding control
knowledge to the planninf ,Erocedure, either by learning
this control knowledge [1.4 •• 1 .14.16], or by adding it directly
by a human [3] Perhaps, the most basic scheme for learning
control knowledge has been deductive learning techniques
that generate control rules from a single or a set of problem
solving episodes and a correct domain theory. This is the

• [1214] d h' b '1 case of pure EBL techmques ' ,an tec mques ut t on
top of it [I]. These rules will be used in future situations to .
prune the search space. They allow to improve both the
search efficiency of the problem solver and, in some cases,
the quality of the generated plans. Another related work
applies various learning algorithms to induce task
hierarchies, instead of control knowledge [9,11,l3,l5]

The paper is organized in five sections. Section 2.
overviews the planner and the manufacturing domains to
which it has been applied. Section;1, discusses the learning
process. Section 'i: shows empirical results from different
domains from manufacturing systems. Finally section.5.
draws conclusions and describe future work.

2 The planner. HYBIS

The planner HYBIS mixes hierarchical and POCL
techniques to approximate planning techrtiques to the way

I . d' trl [5] that contra engmeers-reason to eSlgn con 0 programs .
These control programs obtain real world solutions for
manufacturing systems. The design of a correct and
complete industrial control program is very complex, even
for human experts. Traditionally control engineers have
used different methodologies, standards, formal tools and
computer utilities to carry out this task. The ISA.SP88 [2]

standard· is one of such methodologies used to
hierarchically design control programs for manufacturing
systems. This standard allows for a hierarchical
~pecification of physical, process and control models of a
manufacturing system. A planning domain is represented as
a hierarchy of agents where the root (a dummy agent)
represents the whole plant, leaf nodes are primitive agents

1899

Cita bibliográfica
Published in: First International Conference on Machine Learning and Cybernetics (ICMLC'02), 2002, vol. 4, p. 1899 - 1904

Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002

corresponding to the field devices of the plant, and
intermediate nodes are aggregate agents, The structure and
behavior of the aggregate agents represent a composition of
a set" of agents at lower "levels of abstraction. Each
aggregate agent has knowledge on different alternatives for
perfonning its activity at the next level of detail, so this is
equivalent to the different methods used in HTN for
decomposing a gi ven operator. Each agent follows a finite
automaton behavior, They are in a state, that can be
changed through the actions (operators) that are defined
inside the agent. Each aggregate agent has a interface, That
is a set of rules to transform its activity into a problem at
the next level in the planning hierarchy, Each aggregate
activity can also have a property called expansion, to
define different alternatives transforming the action into a"
problem of the next leveL If an aggregate activity hasn't
defined any expansion method, then the planer uses the
interface of the corresponding agent to do this
transformation,

2.1 Example of domain definition

The ITOPS domain, extracted from [181• can be used as an
example of domain definition. Figure 1 shows a high level
diagram of the plant. This domain contains the following
primitives agents and products: .

•

•
•

VD

Figure.1. ITOPS Plant. An example of domain for
HYB1S.

Products: RI to R5. They are initially in the tanks SI to
S5. Il to 14 are the intermediate products obtained by
the reaction of these products. following the scheme:

o Mix RI, R2, and R3 to result in Il
o Filter Il results in 13
o Heat R4, R5 and 13 resulting in 14

Valves: VI to V23
. Mixers: MIXI

• Heaters: HEAT!, HEAT2
• Distillers: DISTILLER I, DISTILLER2
• Filters: FILTER

The description of the hierarchical composition of the
system is shown in Figure~, that shows its three levels of
abstraction.

2.2

IXI I

Figure.2. ITOPS Plant. Hierarchy of agents for this
domain and problem.

The planning algorithm

The planning process is a generative and regressive
planning algorithm at different levels of detaiL Each plan at
a given level of abstraction is refined into lower level plans,
until no aggregate activities exist on the lowest abstraction
level of a hierarchical plan. At each level, the plans are
generated by MACHINE [61 using a POP approach .. The
input to the whole HYB1S planner is a domain description
(hierarchy of agents), a problem to be solved (recipe at the
highest abstraction level, or procedure level recipe in SP88)
and the initial states of the devices and products. Then it
proceeds as follows:
• First, by means of a generative.POP process it obtains

a sequence of control activities to be carried out by the
highest level.agents.

• Second, if the sequence obtained is only composed by
primitive" activities, then the problem is solved.
Otherwise, the sequence is hierarchically refined; that
is, the algorithm expands every' aggregate activity,
according to its agent interface and its default method
or any other method specifically defined, obtaining a
new lower level problem.

• Third, the algorithm recursively proceeds to solve the
new problem by the agents at. the next level.

Therefore, the final plan obtained by this' algorithm is a
hierarchy of control sequences at different granUlarity

1900

Proceedings of the First ~ntematio.nal Conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002

levels. The reader is referred· to [5] for more details on the
planning a1goritlJrn. . .

3 The.learning mechanism

In order to learn control knowledge forthis HTN-POCL
planner, we follow a three step approach: '
1. The planner is run on a planning problem. Then the

planning search tree is labelled so that the successful
decision. nodes are identified.

2. At successful decision points, control rules are created
in such a way that ,were the planner to be run again on
this problem, only the right decision would be taken.

3. The control rules are pararneterized (constants are
converted to variables), sO that they can be applied to
other problems involving other objects with different
names.

3_1 Labelling the search tree

The algorithm assigns four kinds of labels to the nodes:
o success, if the node belongs to a solution path
o jailure, if it belongs to a failed path
o abandoned, the planner started to expand this node but

the heuristic preferred other nodes and it was
abandoned

o unknown, if the planner did not expand the node
When a node is generated it is labelled as unknown. The

nodes which failed in the planning process are labelled as
jailure. When the planner finds a solution, all the nodes in
the success path are labelled as success. After labelling
these nodes, it labels the rest of the no<!~s bottom-up
recursively: "
o If all of the successors of a node have failed, 'then it is

labelled as failure
• If an unknown node has, at least; one successor then it

is considered abandoned
Once the search tree has been labelled; two kinds of

decisions points (i.e: nodes) are' considered as candidates
for learning control rules:"
o Failure-Success:' tbese are nodes which have at least

two branches, one with a' success node and, another
with a failure nOde

o . Abandoned-Success: the same as above but instead of a
failure node it has an abandoned 'node

When it finds any of these' decisions points a control rule
is generated, as explained 'next section. Obviously, if all
successor nodes are succe&sful, no control knowledge is
required. . ~. .

3.2 Generating control rules

At decision nodes with some un-successful successors,
c'ontrol rules are generated so that the planner always
selects in the future the successor node. 'More generally,
control knowledge, can either select a node,. reject it, or

prefer one over another fl7J. In this paper, we have focused
on the most straightforward sort, namely select rules.

In hybrid HTN-POCL planners, there are also different
types of nodes where rules can be learned: .
1. HTN points: how to downward refine (which

expansion method should be used?)
2. POCL points:

1. Whether to use an already existing ,opemtor or
a new one to achieve a goal

2. In both cases, which operator ,should. be
selected?

3. Whether to promote ord~mote an opemtor to
, solve a threat . '. . ..

In this paper we have studied .the operator s~lection
problem. Particularly, we learn SELECT OPERATOR­
PLAN (to select an operator already present in the plan to
achieve an unsolved goal) and SELECT OPERA TOR­
NEW (to select a hitherto unused operator to achieve a
goal). The kind of rule to be learned depends on what the
planner did.

The control rule has a template for describing iis
preconditions. The templates share a set of. common
features for both kinds of control rules, but each one has
certain local features. Examples of common features, which
become meta-predicates, of the control language, are: htn­
level, true-in-state, current-goal, some-candidate-goals.
Examples of local features for each one of the two kinds of
control rules are: Operator-in-plan and Operator-not-in-plan.
They are described below.

Variables may appear in the conditions of the control
rules. Every variable can only match with a ~ertain kind of
objects, a type, which is coded as a prefix in the. variable
name (what appears before the mark %%). Typing
preserves semantics and makes the matching process more
efficient. The condition part of a control rule is made of the
meta-predicates that were defined above.
o HTN-LEVEL meta-predicate to know the abstraction

level in which the planner is working.
o A CURRENT-GOAL meta-predicate to identify which

goal the planner is trying to achieve
o A SOME-CANDIDATE-GOALS meta-predicate to

identify what other goals need to be achieved,
o An OPERATOR-NOT-IN-PLAN· meta-predicate so

that an OPERATOR-NEW rule is activated only if the
operator to insert was not already present. Similarly,
OPERATOR-PLAN rules include the OPERATOR­
IN-PLAN meta-predicate to make sure the action to be
reused is already in the plan.

o Finally, there is a TRUE-IN-STATE meta-predicate for
every literal which is true in the initial state. Actually;
in order to make the control rules more general and
reduce the number of TRUE-IN-STATE meta­
predicates, a goal regression is carried out. Only those
literals in the initial state which are reqUired, directly or
indirectly, by the preconditions of the operator are
included. The regression of the preconditions is done
by using the causal-link structure.

1901

Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002

,A control rule following the previous template would
become activated only at the appropriate nodes. However,
all the arguments of the predicates of the TRUE-IN-STATE
meta-predicates are constants, because only particular
objects appear in the initial state literals, To avoid that the
rule depends on the names of the particular planning
problem used for learning, constants are generalized into
variables that belong to the same type as the constant.

Actually, not all constants are parameterized, In some
cases, it makes no sense to generalize them. For instance,
let us consider the literal (STATE TRANSPORTER-3
OFF), 'mANSPORTER-3 is a good candidate for
parameterization, but OFF is not, because in that case the
meaning that a transporter object is ofI- would be lost.
Currently, we do not generalize the second argument of
ST ATE predicates, In the future, we would like to detect
such cases automatically, although it does not seem an easy
task, '

The next control rule is an actual example that has been
generated after this process, It is an OPERATOR-NEW
control rule that selects to use a new action not in the partial
plan, FILTRATE«FILTER>,<RESULT», when the
planner decides to work on goal
CONTAINS(<I3>,<?SRC330», and it is true in the initial
state the literals that appear as arguments of the meta­
predicate TRUE-IN-STATE.

(control-rule regla-l
(if (and (current-goal (contains <i3>

<?src330»)
(some-candidate-goals

«state <line-3prod%%trans-3> off)
(state <still%%sti1l1-agg> oft)
(siate <still%%stilll-agg> ready»)

(operator-not-in-plan
(filtrate <filter-agg%%filteragg-agg>

<?result> »
(true-in-state (state <line-3prod%%trans-

3> oft)
(true-in-state (state <tank%%tankl-agg>

oft)
(true-in-state

(state <filter-agg%%filteragg-agg>
oft))
(then select operator-new

(filtrate <filter-agg%%filteragg-agg>
<?result»»)

4 Experiments and resultS

We have tested our approach in several domains.
Basically, we want to check whether the rules are correct
and save resources in the, planning process. If the
preconditions of the rules are not specific enough, a rule
can' be fired in a wrong point and the planner can choose
the wrong operator. Because the rule discards the

unselected alternatives, the correct ones might be pruned
from the search tree, and the planner could not find the
solution. This is specially relevant in the manufacturing
domains where there are several agents belonging to the
same type with the same named actions. For example, in
the !TOPS domain there' are 10 valves of type valve-fwd
and all of them have 2 actions OPEN and SHUT. It is
completely different to open one valve or another but it is
difficult to distinguish that automatically. Thus, it is very
important to determine whether the learning process is
producing correct rules.

The experiments have been carried out with one problem
in different domains, We obtained all the control rules for
all the levels by running the planner with one problem.
Then we run the planning process again with the same
problem twice, one using the rules learned before and the
other without the rules, and we compared the results. The
characteristics of the domains and the problems are shown
in Table 1. It displays the number of agents (Agents), the
number of levels (Levels), the total number of actions
(Actions), the number of initial states (Inits) and the
number of goals (Goals),

Table;t shows the results of runlling the planner with and
without rules. It displays the numbE!r of nodes generatedby
the planner process, the time (in seconds) until it finds the
solution, the savings in time to solve due to the use of rules,
and the number-of used rules.
It can be observed that nodes and time decrease when the,
rules are used. Also, control rules are correct, because they
solve the problems.

5 Conclusions and future work

Nowadays, it is often claimed that the most commonly
used planners in industry are IITN planners. In this
approach, plans are built at different levels of a hierarchy,
starting with a high level one and refining them towards the
bottom, more specific, level. It is the task of the users to
provide methods to step from one level to. a lower level.
Systems with higher autonomy can be devised. For instance,
HYBIS is a hybrid hierarchical planner which provides a
default method to step from one level to another. This plan
refinement requires to solve a new planning problem, which
is performed by a partial order planner (POP). However,
alth~ugh using a hierarchy' limits the computational
complexity, the process is still inefficient. Moreover, in a
hybrid planner like HYBIS, efficiency can be gained both
at HTN and POP decision points, Machine learning
techniques have been used in older planners to improve the
search process by means of previous experience. In this
paper, we discuss some of the issues on machine learning
applied to this kind of planners, We have extended some
machine learning ideas, to deal with hybrid IITN,POP
planners. In particular, we have focused in a decision point
where the planner has to decide whether to apply an
operator already in the plan or not, and in any c",!e, which
operator to apply.

1902

Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002

In the near future we intend to carry out experiments to
check that the control rules generalize to unseen planning
problems in the same domain and similar domains (i.e.
industrial plants that have more (or less) agents of the same
type as in the original plant, or with common levels in the
agent hierarchy). We also want to measure the effectiveness
of the rules in terms of time and plan quality. It is also
planned to extend this learning scheme so that control rules
can be inductively specialized, generalized, and combined
by using new learning planning problems.

,There are many other issues that we would like to
address in the future. In particular, we intend to learn
control knowledge for all the decision points of HYBIS,
including the HTN points. In addition, HYBIS is an agent­
based planner, where some agents are made of some other
agents. Capturing this part-of information would be useful
to include more semantics into the control rules. Also, there
is some other information about the connections between
agents which is distributed in the domain description that
would be interesting to capture as well. Finally, HYBIS has
been extended to be able to generate conditional plans,
which offers new learning opportunities.

Table 1. Domains characteristics. .

Domaln AGENTS I LEVELS I ACTIONS I INITS I GOALS

\TOPS 42 3 9'2 63 I

BC-2 19 2 44 27 5

PORRIDGE 26 2 61 46 3

HANDLER 15 3 46 26 I

PLANT-3 10 2 20 16 2

Table 2. Results of the execution of HYBIS with rules and without rules

Domain
No rules With rules

NODES TIME NODES

ITOPS 898 244 639

BC-2 637 60 319

PORRIDGE 583 62 326

HANDLER 235 21 185

PLANT-3 198 9 125

Acknowledgements

This work was partially supported by a grant from the
Ministerio de Ciencia y Tecnologfa through project
TAPI999-0535-C02-02. The authors would also like to
thank Luis Castillo and Juan Fermlndez for their help on
using HYBIS.

References

[I] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using
genetic programming to learn and improve control
knOWledge. Artificial Intelligence, 2002.

[2] ANSI/ISA. Batch Control Part I, Models &
Terminology (S88.01), 1995.

[3] Fahiem Bacchus and Froduald Kabanza. Using
temporal logics to express search control knowledge
for planning. Artificial Intelligence, 116:123-191,
2000.

[4] Daniel Borrajo and Manuela Veloso. Lazy
incremental learning of control knowledge for

TIME SAVINGS RULES

212 13% 59

34 43% 36

40 35% 40

15 29% 33

4 55% 14

efficiently obtaining quality plans. AI Review Journal .
. -Special Issue on Lazy Learning, 1\(1-5): 371-405,

February 1997.
[5] Luis Castillo, Juan Femandez-Olivares, and Antonio

GonzaJez. A hybrid hierarchical/operator-based
planning approach for the design of control programs.
In ECAI Workshop on Planning and configuration:
New results in planning, scheduling and design, 2000.

[6] Luis Castillo, Juan Femandez-Olivares, and Antonio
Gonz31ez. Mixing expressiveness and efficiency in a
manufacturing planner. Journal of Experimental and
Theoretical Artificial Intelligence, 13:141-162,2001.

[7] Ken Curtie and Austin Tate. O-Plan: the open
planning architecture. Artificial Intelligence, 52(1):
49-86, 1991.

[8] Tara A. Estlin and Raymond J. Mooney. Learning to
improve both efficiency and quality of planning. In
Martha Pollack, editor, Proceedings of the 15th
International Joint Conference on Artificial
Intelligence (UCAI-97), pages 1227-1232. Morgan
Kaufmann, 1997.

[9] A. Garland, K. Ryall, and C. Rich. Learning
hierarchical task models by defining and refining

1903

Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002

e~~ples. In In First International Conference on
. Knowledge Capture, 2001.

[1O]"Yi-Cheng Huang, Bart Selman, and Henry Kautz.
Learning' declarative control rules for constraint­

"based planning. In Pat Langley, editor, Proceedings
.. , of the Seventeenth International Conference on

., Machine 'Learning, ICML'OO, Stanford, CA (USA),
" , . 'June-July 2000,
[H] Okhtay Ilghaini,Dana S. Nan, Hector Muiioz-Avila,

and David W. Aba, Camel:learning method
'preconditions for htn planning, In Proceedings of
AIPS02, 2002.

[12] Subbarao Kambharnpati, Improving graphplan's
search with ebl & ddb techniques. In Thomas Dean,
editor; Proceedings of the IJCAI'99, pages 982-987,
Stockholm, Sweden, July-August 1999. Morgan
Kaufmann Publishers.

[13] Amnon Lotem and Dana S. Nau, New advances in
graphhtn: Identifying independent subproblems in
large InN domains, In Anificial Intelligence
Planning Systems, pages 206-215, 2000.

[14] Steven Minton, Learning Effective Search Control
Knowledge: An Explanation-Based Approach, PhD
thesis, Computer Science Department, Carnegie
Me/Ion' University, 1988,
Available as technical report CMU-CS-88-133.

[15] M. van Lent and J Laird. Learning hierarchical
performance knowledge by observation, In
Proceedings of the 16th International Conference on
Machine Learning, pages 229-238, San Francisco,
CA, 1999. Morgan Kaufmann,

'[16] Manuela Veloso, Planning and Learning by
L Analogical Reasoning. Springer Verlag, December

1994,
[171 Manuela Veloso, J aime Carbonell, Alicia Perez,
...•.. Daniel Borrajo, Eugene Fink, and Jim Blythe .

. . Integrating planning and learning: The PRODIGY
architecture, Journal of Experimental and Theoretical
AI, 7:81-120,1995,

[18] S, Viswanathan, C. Johnsson, R. Srinivasan,
V. Venkatasubramanian, and K-E, Arzen. Procedure
synthesis for batch processes: Part I. knowledge
representation and planning framework. Computers
and Chemical Engineering, 22:1673-1685, 1998.

[19] Daniel S, Weld, An introduction to least commitment
planning. AI Magazine, 15(4):27-61, 1994.

1904

!!'• ,.

