

RESEARCH PROJECT

3 - June - 2010

AMA 492- Implicit Enumeration

Binary Integer Programming
Balas Algorithm

Registration No: 090248579

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

2

1 Index
1 Index .. 2

2 Introduction .. 4

3 Basic ideas and outline of the additive algorithm ... 4

4 Form of an Integer Binary Problem ... 5

5 Form of an Integer Binary Problem – Example of transformation.. 6

5.1 Multiplying by -1 first and third constraints .. 6

5.2 Making x1and x4 coefficients positive .. 7

5.3 Sorting Objective Function by Coefficients ... 7

6 Explanation of the algorithm for solving Integer Binary Problems 8

6.1 Steps of the algorithm ... 9

6.1.1 Step 0: .. 9

6.1.2 Step 1: .. 9

6.1.3 Step 2: .. 9

6.1.4 Step 3: .. 9

6.1.5 Step 4: .. 9

7 Working example of the algorithm ... 10

8 Program ... 19

8.1 Source Code .. 19

8.1.1 Queue.cpp ... 19

8.1.2 BalasAlgorithm.cpp ... 19

9 Improving the processing speed of the program .. 21

9.1 Operations Required ... 21

9.1.1 Example ... 21

9.2 Pointers ... 22

9.2.1 Example ... 22

10 User’s Guide .. 23

10.1 Format of the input file ... 24

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

3

10.2 Format of the Output File ... 26

11 Datasets tested ... 29

11.1 Problem 1 (Balas) .. 29

11.1.1 Input file .. 29

11.1.2 Output file ... 30

11.2 Problem 2 (Roodman) ... 31

11.2.1 Input File .. 31

11.2.2 Output File ... 32

11.3 Problem 3 (Diet problem) ... 33

11.3.1 Input file .. 33

11.3.2 Output file ... 34

12 Conclusions ... 34

13 References ... 35

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

4

2 Introduction

We know that there are important economic problems which have mathematical models that

are linear programs with integer variables. Among these problems are those that have

variables taking only one of the values 0 or 1.

Such binary integer programs, serve as mathematical models for capital budgeting, project

selection, pipeline or communications network design, structural design, switching circuit

design, information retrieval, fault detection, design of experiments, facility location, truck

dispatching, tanker routing, crew scheduling, machine sequencing, and a host of other

decision problems involving logical alternatives.

Because of the importance of these decision problems the project considers a program

developed in C++ that solves linear programs with variables constrained to take only one of

the values 0 or 1 following the steps of the algorithm that the prestigious mathematician, Egon

Balas, developed in 1965.

In this document we are going to study the basic ideas and outline of the algorithm, and

subsequently we will analyze the algorithm in detail, showing interesting examples like the

Diet Problem with 96 variables.

Finally we will show a tutorial of the application and we will draw conclusions of the operation

of the algorithm.

3 Basic ideas and outline of the additive

algorithm

The general form of a linear program with zero-one variables may be stated as follows:

min �� max 	 = ��

������� ��
�
 ≤ b

��
�
 ≥ b

� = 0 �� 1 (� ∈ �)

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

5

Where

= (
�) is an n-component column-vector.

�= (��) is a given n-component row-vector.

�= (� �) is a given mxn matrix.

�= (��) is a given m-component column-vector.

4 Form of an Integer Binary Problem

Although we have defined the form of a linear program with zero-one variables problem, the

Balas algorithm requires that the problem be put into a standard form, with the constraints

inequalities of the form less than, and all the coefficients of the objective function (to be

minimized) being nonnegative.

Any problem can be brought to this form by the following operations:

a) Replacing all equations by two inequalities.

b) Multiplying by −1 all inequalities of the form ≥
c) Setting
� as

� for �� ≥ 0 when minimizing; for �� ≤ 0 when maximizing,

(1 −
�) for �� < 0 when minimizing; for �� > 0 when maximizing.

So what we have to do is set all of the variables to zero to give the smallest value of 	. If we

cannot do this without violating one or more constraints, then we prefer to set the variable

that has the smallest index to 1. This is because the variables are ordered so that those earlier

in the list increase 	 by the smallest amount.

AMA 492

5 F

Example

5.1

AMA 492

Form of a

Example

5.1 Multiplying by

AMA 492- Implicit Enumeration Binary Integer

orm of an Integer Binary P

Example of transformation

Multiplying by

Implicit Enumeration Binary Integer

n Integer Binary P

of transformation

Multiplying by -1 first and third constraints

Implicit Enumeration Binary Integer

RESEARCH PROJECT

n Integer Binary P

of transformation

1 first and third constraints

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

n Integer Binary P

of transformation

1 first and third constraints

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

n Integer Binary Problem

of transformation

1 first and third constraints

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

roblem

1 first and third constraints

2010

Registration No: 090248579

roblem –

6

AMA 492

5.2

5.3

AMA 492

5.2 Making x

5.3 Sorting Objective Function by Coefficients

AMA 492- Implicit Enumeration Binary Integer

Making x1and x

Sorting Objective Function by Coefficients

Implicit Enumeration Binary Integer

and x4 coefficients positive

Sorting Objective Function by Coefficients

Implicit Enumeration Binary Integer

RESEARCH PROJECT

coefficients positive

Sorting Objective Function by Coefficients

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

coefficients positive

Sorting Objective Function by Coefficients

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

Sorting Objective Function by Coefficients

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

2010

Registration No: 090248579

7

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

8

6 Explanation of the algorithm for solving

Integer Binary Problems

The main idea of the algorithm is to set all the $ variables equal to 0 (minimizing), assign to

certain variables the value 1 and after trying a part of all the two-possible combinations, one

obtains either an optimal solution, or evidence of the fact that no feasible solution exists.

To explain how the algorithm works internally we are going to consider that we have the

problem in the standard form

%&$ 	 = ��

������� ��

�
 ≤ b

� = 0 �� 1 (� ∈ �)

Where

= (
�) is an n-component column-vector.

�= (��) is a given n-component row-vector.

�= (� �) is a given mxn matrix.

�= (��) is a given m-component column-vector.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

9

6.1 Steps of the algorithm

6.1.1 Step 0:

• Initialize:

Verify if the solution for the vector x=0 is feasible. If it is, we have finished, the vector 0

is the optimum.

• Boundaries:

We are going to use two variables to indicate de upper and low boundaries for the

values of the objective function 	.

o 	' is the upper bound and it is equal to the sum of the coefficients.

o 	(is the lower bound and it is the value of �1 and
=(1,0,0,…,0)
T
.

o We verify if
 is feasible. If it is, this is the optimum.

6.1.2 Step 1:

Select one of the subsets of unverified solutions and we divided that subset into two, adding
� = 0 and
� = 1 when branching in the variable
� (in the first iteration � = 1).
6.1.3 Step 2:

For each new subset, we fix
�*+ equal to 1 and the rest equal to 0, and we use this
 to

determine the value of the inferior boundary 	(for the objective function 	 in this subset.

6.1.4 Step 3:

We examine every subset of unverified solutions and we determine if it is just tested if:

• If 	(≥ 	'
• If it exists a constraint that can’t be satisfied with any variable value assigned to the

rest of the variables of this subset, that is, from � + 1 to $.

• If
 is feasible. If it is satisfied we declare
 as the solution and we assign to 	' the

value of 	(
6.1.5 Step 4:

If we don’t have more subsets to test, we stop. The last solution is the optimum. Else, we go to

step 1.

AMA 492

7 Working examp

We are going to use an example to show how the algorithm operates

minimize

Subject

The terms in the objective function are written in increasing order, and that it is a minimization

problem. So having

We start

(0,0,0,0,0,0)

The first and third constraints are not satisfied.

Then we have to expand the tree. We will branch on

the objective function.

The objective

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

For the node

function

AMA 492

Working examp

We are going to use an example to show how the algorithm operates

minimize Z= 3x1 +

Subject to:

he terms in the objective function are written in increasing order, and that it is a minimization

problem. So having

We start the tree

(0,0,0,0,0,0). The root node has an objective

The first and third constraints are not satisfied.

Then we have to expand the tree. We will branch on

the objective function.

objective function solution at node

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

For the node
+
function is 3, but it is i

AMA 492- Implicit Enumeration Binary Integer

Working examp

We are going to use an example to show how the algorithm operates

+ 5x2 + 6x3 +

he terms in the objective function are written in increasing order, and that it is a minimization

problem. So having
+ = 0 and

tree in the Balas Algorithm with the root node.

The root node has an objective

The first and third constraints are not satisfied.

Then we have to expand the tree. We will branch on

the objective function.

function solution at node

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

= 1 the objective

is 3, but it is infeasible because it doesn

Implicit Enumeration Binary Integer

Working example of the algorithm

We are going to use an example to show how the algorithm operates

 9x4 + 10x5 +

(1) 2x1 - 6x

(2) 5x1 + 3x

(3) -5x1 + x

he terms in the objective function are written in increasing order, and that it is a minimization

and
- = 1

in the Balas Algorithm with the root node.

The root node has an objective

The first and third constraints are not satisfied.

Then we have to expand the tree. We will branch on

function solution at node

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

objective function solution is (1,0,0,0,0,0). The value of the objective

nfeasible because it doesn

Implicit Enumeration Binary Integer

RESEARCH PROJECT

le of the algorithm

We are going to use an example to show how the algorithm operates

 10x6

6x2 + 3x3 - 4x4

+ 3x2 - x3 - 3x4

+ x2 - 4x3 + 2x4

he terms in the objective function are written in increasing order, and that it is a minimization 1 is worse than having

in the Balas Algorithm with the root node.

The root node has an objective function value of 0, but this solut

The first and third constraints are not satisfied.

Then we have to expand the tree. We will branch on

function solution at node
+ = 0 is (0,1,0,

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

function solution is (1,0,0,0,0,0). The value of the objective

nfeasible because it doesn’t satisfy constraints 1 and 2.

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

le of the algorithm

We are going to use an example to show how the algorithm operates

4 - x5 + 2x6 <=

 + 2x5 - x6 <= 2

4 - 2x5 + x6 <=

he terms in the objective function are written in increasing order, and that it is a minimization

is worse than having
+

in the Balas Algorithm with the root node. The solution at the root node is

function value of 0, but this solut

Then we have to expand the tree. We will branch on
+ because it has the lowest coefficient in

is (0,1,0,0,0,0). The value of the

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

function solution is (1,0,0,0,0,0). The value of the objective

’t satisfy constraints 1 and 2.

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

le of the algorithm

We are going to use an example to show how the algorithm operates internally.

<= -2

<= 2

<= -3

he terms in the objective function are written in increasing order, and that it is a minimization = 1 and

The solution at the root node is

function value of 0, but this solut

because it has the lowest coefficient in

0,0,0). The value of the

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

function solution is (1,0,0,0,0,0). The value of the objective

’t satisfy constraints 1 and 2.

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

le of the algorithm

internally.

he terms in the objective function are written in increasing order, and that it is a minimization
- = 0 etc.

The solution at the root node is

function value of 0, but this solution is infeasible.

because it has the lowest coefficient in

0,0,0). The value of the objective

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

function solution is (1,0,0,0,0,0). The value of the objective

2010

Registration No: 090248579

he terms in the objective function are written in increasing order, and that it is a minimization

The solution at the root node is

ion is infeasible.

because it has the lowest coefficient in

objective

function solution is (1,0,0,0,0,0). The value of the objective

10

AMA 492

We now have two live nodes at the same level to expand. We will choose the node that has

the smallest value of the bounding function.

We will now branch on

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

value of 9, but the solution is infeasible for the constraints 1 and 2.

Now let us

AMA 492

We now have two live nodes at the same level to expand. We will choose the node that has

the smallest value of the bounding function.

We will now branch on

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

value of 9, but the solution is infeasible for the constraints 1 and 2.

Now let us set
-

AMA 492- Implicit Enumeration Binary Integer

We now have two live nodes at the same level to expand. We will choose the node that has

the smallest value of the bounding function.

We will now branch on
-. First we look at setting

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

value of 9, but the solution is infeasible for the constraints 1 and 2.

 to 1. The bounding function solution at this node is (1,1,

Implicit Enumeration Binary Integer

We now have two live nodes at the same level to expand. We will choose the node that has

the smallest value of the bounding function.

. First we look at setting

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

value of 9, but the solution is infeasible for the constraints 1 and 2.

to 1. The bounding function solution at this node is (1,1,

Implicit Enumeration Binary Integer

RESEARCH PROJECT

We now have two live nodes at the same level to expand. We will choose the node that has

the smallest value of the bounding function.

. First we look at setting
-

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

value of 9, but the solution is infeasible for the constraints 1 and 2.

to 1. The bounding function solution at this node is (1,1,

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

We now have two live nodes at the same level to expand. We will choose the node that has

 to 0.

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

value of 9, but the solution is infeasible for the constraints 1 and 2.

to 1. The bounding function solution at this node is (1,1,

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

We now have two live nodes at the same level to expand. We will choose the node that has

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

value of 9, but the solution is infeasible for the constraints 1 and 2.

to 1. The bounding function solution at this node is (1,1,0,0,0,0).

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

We now have two live nodes at the same level to expand. We will choose the node that has

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

0,0,0,0).

2010

Registration No: 090248579

We now have two live nodes at the same level to expand. We will choose the node that has

The bounding function solution at this node is (1,0,1,0,0,0). This gives a bounding function

11

AMA 492

This gives a bounding function solution of 8.

to decrease the left hand side making 1 the negative coefficients of

get a value less

The next node that we will select for expansion is the node with the bounding function value

of 9, because of

smaller bounding function than 9, depth

just created.

We now branch on

bounding function value of 12. This is our first feasible solution, so we will record it as our

incumbent.

We also mark it as feasible. This node will not be expanded furth

problem, and trying more non

AMA 492

This gives a bounding function solution of 8.

to decrease the left hand side making 1 the negative coefficients of

get a value less than

The next node that we will select for expansion is the node with the bounding function value

of 9, because of

smaller bounding function than 9, depth

just created.

We now branch on

bounding function value of 12. This is our first feasible solution, so we will record it as our

incumbent.

We also mark it as feasible. This node will not be expanded furth

problem, and trying more non

AMA 492- Implicit Enumeration Binary Integer

This gives a bounding function solution of 8.

to decrease the left hand side making 1 the negative coefficients of

than or equal t

The next node that we will select for expansion is the node with the bounding function value

of 9, because of the depth-

smaller bounding function than 9, depth

We now branch on
.. The bounding function solution for this node is (1,0,0,1,0,0). This gives a

bounding function value of 12. This is our first feasible solution, so we will record it as our

We also mark it as feasible. This node will not be expanded furth

problem, and trying more non

Implicit Enumeration Binary Integer

This gives a bounding function solution of 8.

to decrease the left hand side making 1 the negative coefficients of

or equal to 2. Then we prune this branch.

The next node that we will select for expansion is the node with the bounding function value

-first node selection strategy.

smaller bounding function than 9, depth-

. The bounding function solution for this node is (1,0,0,1,0,0). This gives a

bounding function value of 12. This is our first feasible solution, so we will record it as our

We also mark it as feasible. This node will not be expanded furth

problem, and trying more non-zero variables will make the objective function larger.

Implicit Enumeration Binary Integer

RESEARCH PROJECT

This gives a bounding function solution of 8. The solution is infeasible by constraint 2. If we try

to decrease the left hand side making 1 the negative coefficients of

o 2. Then we prune this branch.

The next node that we will select for expansion is the node with the bounding function value

first node selection strategy.

-first selection causes us to choose among

. The bounding function solution for this node is (1,0,0,1,0,0). This gives a

bounding function value of 12. This is our first feasible solution, so we will record it as our

We also mark it as feasible. This node will not be expanded furth

zero variables will make the objective function larger.

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

The solution is infeasible by constraint 2. If we try

to decrease the left hand side making 1 the negative coefficients of

o 2. Then we prune this branch.

The next node that we will select for expansion is the node with the bounding function value

first node selection strategy. Although

irst selection causes us to choose among

. The bounding function solution for this node is (1,0,0,1,0,0). This gives a

bounding function value of 12. This is our first feasible solution, so we will record it as our

We also mark it as feasible. This node will not be expanded further because it is a minimization

zero variables will make the objective function larger.

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

The solution is infeasible by constraint 2. If we try

to decrease the left hand side making 1 the negative coefficients of
.,
/ and

The next node that we will select for expansion is the node with the bounding function value

Although there is a node with a

irst selection causes us to choose among

. The bounding function solution for this node is (1,0,0,1,0,0). This gives a

bounding function value of 12. This is our first feasible solution, so we will record it as our

er because it is a minimization

zero variables will make the objective function larger.

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

The solution is infeasible by constraint 2. If we try

and
0 we will

The next node that we will select for expansion is the node with the bounding function value

there is a node with a

irst selection causes us to choose amongst the nodes

. The bounding function solution for this node is (1,0,0,1,0,0). This gives a

bounding function value of 12. This is our first feasible solution, so we will record it as our

er because it is a minimization

zero variables will make the objective function larger.

2010

Registration No: 090248579

The solution is infeasible by constraint 2. If we try

 never

The next node that we will select for expansion is the node with the bounding function value

there is a node with a

the nodes

. The bounding function solution for this node is (1,0,0,1,0,0). This gives a

bounding function value of 12. This is our first feasible solution, so we will record it as our

er because it is a minimization

12

AMA 492

Let u

bounding function gives a value of 9.

We will prune this node.

There are no more live nodes in this branch, so we will move to the node with the bounding

function value of 5. We will branch

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

infeasible for

AMA 492

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

bounding function gives a value of 9.

We will prune this node.

There are no more live nodes in this branch, so we will move to the node with the bounding

function value of 5. We will branch

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

nfeasible for constraint 1.

AMA 492- Implicit Enumeration Binary Integer

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

bounding function gives a value of 9.

We will prune this node.

There are no more live nodes in this branch, so we will move to the node with the bounding

function value of 5. We will branch

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

constraint 1.

Implicit Enumeration Binary Integer

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

bounding function gives a value of 9. With this solution

There are no more live nodes in this branch, so we will move to the node with the bounding

function value of 5. We will branch on

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

Implicit Enumeration Binary Integer

RESEARCH PROJECT

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

With this solution

There are no more live nodes in this branch, so we will move to the node with the bounding

on
-. First let’s look at setting

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

With this solution it is impossible

There are no more live nodes in this branch, so we will move to the node with the bounding

. First let’s look at setting

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

impossible to satisfy constraint 1.

There are no more live nodes in this branch, so we will move to the node with the bounding

. First let’s look at setting
- to 0. The bounding

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

to satisfy constraint 1.

There are no more live nodes in this branch, so we will move to the node with the bounding

to 0. The bounding

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is

2010

Registration No: 090248579

s look at the next node. The bounding function solution for this node is (1,0,1,0,0,0). The

to satisfy constraint 1.

There are no more live nodes in this branch, so we will move to the node with the bounding

to 0. The bounding

solution at this node is (0,0,1,0,0,0) . This gives a bounding function value of 6. The solution is
13

AMA 492

We will now look at the next node. The bounding function solut

This gives a bounding function solution of

We are going to branch on the node with the smallest value for bounding function at this level

in the depth

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

value of 14. The value of the bounding function is g

This branch cannot produce a so

is pruned.

AMA 492

We will now look at the next node. The bounding function solut

This gives a bounding function solution of

We are going to branch on the node with the smallest value for bounding function at this level

in the depth-first search

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

value of 14. The value of the bounding function is g

This branch cannot produce a so

is pruned.

AMA 492- Implicit Enumeration Binary Integer

We will now look at the next node. The bounding function solut

This gives a bounding function solution of

We are going to branch on the node with the smallest value for bounding function at this level

first search. We will be branching on

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

value of 14. The value of the bounding function is g

This branch cannot produce a so

Implicit Enumeration Binary Integer

We will now look at the next node. The bounding function solut

This gives a bounding function solution of

We are going to branch on the node with the smallest value for bounding function at this level

. We will be branching on

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

value of 14. The value of the bounding function is g

This branch cannot produce a solution that is better than the current incumbent, so this node

Implicit Enumeration Binary Integer

RESEARCH PROJECT

We will now look at the next node. The bounding function solut

This gives a bounding function solution of 5. The solution is infeasible for

We are going to branch on the node with the smallest value for bounding function at this level

. We will be branching on
.. First we will set

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

value of 14. The value of the bounding function is g

lution that is better than the current incumbent, so this node

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

We will now look at the next node. The bounding function solution

. The solution is infeasible for

We are going to branch on the node with the smallest value for bounding function at this level

. First we will set

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

value of 14. The value of the bounding function is greater than the current incumbent

lution that is better than the current incumbent, so this node

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

ion at this node is (0,1,0,0,0,0).

. The solution is infeasible for constraints 2 and 3.

We are going to branch on the node with the smallest value for bounding function at this level

. First we will set
. to 0.

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

reater than the current incumbent

lution that is better than the current incumbent, so this node

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

at this node is (0,1,0,0,0,0).

constraints 2 and 3.

We are going to branch on the node with the smallest value for bounding function at this level

to 0.

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

reater than the current incumbent

lution that is better than the current incumbent, so this node

2010

Registration No: 090248579

at this node is (0,1,0,0,0,0).

constraints 2 and 3.

We are going to branch on the node with the smallest value for bounding function at this level

The bounding function solution for this node is (0,1,0,1,0,0). This gives a bounding function

reater than the current incumbent (12).

lution that is better than the current incumbent, so this node 14

AMA 492

We now

gives a bounding function value of 11. This value does not violate any

a feasible solution. This feasible solution is better than the current incumbent. This solution

will take its place as the incumbent.

AMA 492

We now look the next node

gives a bounding function value of 11. This value does not violate any

a feasible solution. This feasible solution is better than the current incumbent. This solution

will take its place as the incumbent.

AMA 492- Implicit Enumeration Binary Integer

look the next node. The bounding function solution at this node is (0,1,1,0,0,0). This

gives a bounding function value of 11. This value does not violate any

a feasible solution. This feasible solution is better than the current incumbent. This solution

will take its place as the incumbent.

Implicit Enumeration Binary Integer

. The bounding function solution at this node is (0,1,1,0,0,0). This

gives a bounding function value of 11. This value does not violate any

a feasible solution. This feasible solution is better than the current incumbent. This solution

will take its place as the incumbent.

Implicit Enumeration Binary Integer

RESEARCH PROJECT

. The bounding function solution at this node is (0,1,1,0,0,0). This

gives a bounding function value of 11. This value does not violate any

a feasible solution. This feasible solution is better than the current incumbent. This solution

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

. The bounding function solution at this node is (0,1,1,0,0,0). This

gives a bounding function value of 11. This value does not violate any

a feasible solution. This feasible solution is better than the current incumbent. This solution

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

. The bounding function solution at this node is (0,1,1,0,0,0). This

gives a bounding function value of 11. This value does not violate any constraint;

a feasible solution. This feasible solution is better than the current incumbent. This solution

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

. The bounding function solution at this node is (0,1,1,0,0,0). This

constraint; therefore

a feasible solution. This feasible solution is better than the current incumbent. This solution

2010

Registration No: 090248579

. The bounding function solution at this node is (0,1,1,0,0,0). This

erefore it is

a feasible solution. This feasible solution is better than the current incumbent. This solution

15

AMA 492

We now go back to the node with the bounding

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

solution is impossible by constraint 3. The node is pruned.

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

we will expand this node for

AMA 492

now go back to the node with the bounding

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

solution is impossible by constraint 3. The node is pruned.

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

we will expand this node for

AMA 492- Implicit Enumeration Binary Integer

now go back to the node with the bounding

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

solution is impossible by constraint 3. The node is pruned.

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

we will expand this node for

Implicit Enumeration Binary Integer

now go back to the node with the bounding

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

solution is impossible by constraint 3. The node is pruned.

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so
/

Implicit Enumeration Binary Integer

RESEARCH PROJECT

now go back to the node with the bounding function value of 6. We will branch

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

solution is impossible by constraint 3. The node is pruned.

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

function value of 6. We will branch

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

solution is impossible by constraint 3. The node is pruned.

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

function value of 6. We will branch

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

function value of 6. We will branch on
.
bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bound

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

2010

Registration No: 090248579

.. The

bounding solution for this node is (0,0,0,1,0,0). This gives a bounding function value of 9. This

The bounding function solution for the next node is (0,0,1,0,0,0). This gives a bounding

function value of 6. This solution is infeasible by constraint 1. This node is the only live node, so

16

AMA 492

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

function value of 16.

The bounding function solution at this node is (0,0,1,1,0,0)

value of 15 that is greater than the incumbent

AMA 492

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

function value of 16.

The bounding function solution at this node is (0,0,1,1,0,0)

value of 15 that is greater than the incumbent

AMA 492- Implicit Enumeration Binary Integer

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

function value of 16. This value is greater than the incumbent. This node is pruned.

The bounding function solution at this node is (0,0,1,1,0,0)

value of 15 that is greater than the incumbent

Implicit Enumeration Binary Integer

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

This value is greater than the incumbent. This node is pruned.

The bounding function solution at this node is (0,0,1,1,0,0)

value of 15 that is greater than the incumbent

Implicit Enumeration Binary Integer

RESEARCH PROJECT

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

This value is greater than the incumbent. This node is pruned.

The bounding function solution at this node is (0,0,1,1,0,0)

value of 15 that is greater than the incumbent. This node is pruned.

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

This value is greater than the incumbent. This node is pruned.

The bounding function solution at this node is (0,0,1,1,0,0). This gives a bounding function

. This node is pruned.

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

This value is greater than the incumbent. This node is pruned.

. This gives a bounding function

. This node is pruned.

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

This value is greater than the incumbent. This node is pruned.

. This gives a bounding function

2010

Registration No: 090248579

The bounding function solution for this node is (0,0,1,0,1,0). This node gives a bounding

. This gives a bounding function

17

AMA 492

The optimum for this p

AMA 492

The optimum for this p

AMA 492- Implicit Enumeration Binary Integer

The optimum for this problem is Z=11.

Implicit Enumeration Binary Integer

roblem is Z=11.

Implicit Enumeration Binary Integer

RESEARCH PROJECT

Implicit Enumeration Binary Integer

Programming

RESEARCH PROJECT

Implicit Enumeration Binary Integer

Programming

 | Registration No: 090248579

Implicit Enumeration Binary Integer

Programming

2010

Registration No: 090248579

2010

Registration No: 090248579

18

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

19

8 Program

The program is a console executable that has been programmed in the object oriented

language C++, with features such as data abstraction, encapsulation, modularity,

polymorphism, and inheritance. The software that has been used is using the software Dev-

C++ 4.9.9.4.

8.1 Source Code

The source code consists of two classes:

• Queue.cpp

• BalasAlgorithm.cpp

8.1.1 Queue.cpp

This class represents the Queue data structure, in which the entities in the collection are kept

in order and the principal operations on the collection are the addition of entities to the rear

terminal position and removal of entities from the front terminal position.

This makes the queue a First-In-First-Out (FIFO) data structure, where the first element added

to the queue will be the first one to be removed.

We use this data structure to store what values of the
 vector are the next to be tested, to

check if the solution is feasible.

8.1.2 BalasAlgorithm.cpp

This is the main class of the program that includes all the functionalities that we are going to

use to set the algorithm.

Among the most important functions we have the following:

• Reading the Input File.

The program has the function void readFromFile(char *nfile) that reads the

information of the input data file, and store it in data structures that correspond to the

c vector, A matrix, b vector and equalities matrix.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

20

• Conversion.

The function is void conversion() and it has as aim converting the data inputs into the

standard form.

• Setting the values of the x vector.

For setting the values of
 vector in each iteration we use two functions:

bool* createVariablesOne(bool* input, int index) that sets the value of the
 1234 to 1

and

bool* createVariablesZero(bool* input, int index) that sets the value of the
 1234 to 0

and the value of
 1234*+ to 1.

• Constraint Satisfied.

We have the function int constraintSatisfied(int constraint) to check if the constraint

indicated by param is satisfied for the values of
 vector in each iteration.

• Calculating Objective Function.

For this purpose we have the method double calculateZ() that in each iteration

calculates de value of Z in case it is a feasible solution and store it in a data structure to

keep this value.

• Pruning.

The function bool prune(int index) returns if the algorithm should continue through the

current branch, from the index indicated by param.

• Balas Algorithm.

The function int balasAlgorithm() represents the functionality of the Balas Algorithm,

using the functions explained before.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

21

9 Improving the processing speed of the

program

We have to consider that the values that the
 vector can take are binary values, 0 or 1. We

can capitalize on it when we want to save processing time.

9.1 Operations Required

The first important thing is that the only operations that we need are additions and

subtractions. When we calculate the value of the objective function or we check if the values

of the
 vector satisfy a constraint, we only need these two operations.

It is an advantage taking in account the computational complexity of each operation compared

with the multiplication. In the next tableau we can see the computational complexity of each

operation:

Operation Input Complexity

Addition Two n-digit numbers Θ(n)

Subtraction Two n-digit numbers Θ(n)

Multiplication Two n-digit numbers O(n
2
)

9.1.1 Example

Suppose we have
 vector as (0,1,0,1) and we have to check if it satisfies the constraint

 2
+ + 3
- − 5
. +
/ <= 7

As we can see
+ and
/ are 0. Hence, the only operations we have to do are with
- and
/

doing an addition of 3 + 1

Thus, we see that in contrast to integer linear programming where we have to use

multiplications, in binary integer programming we only have to use addition and

multiplication.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

22

9.2 Pointers

One of the challenges that we have face in the project is trying to test the program with % and $ taking high values. It entails a high computational charge, making a difference in hours for

the program to find the best solution.

For that reason we have use pointers to cover the � matrix when we have to check if the

vector satisfies the constraints of the problem.

A lot of problems such as the 96 variables Diet Problem have many values in the � matrix that

are 0. Specifically, in the 96 variables Diet Problem, the � matrix of dimension 39 x 96 has 1941

values equal to 0.

We can take advantage of this because we can save a lot of time covering the data structure

that contains the � matrix. In order to do this, we use a 2 dimensions array of pointers of %

rows that indicates what values in the � matrix are different from 0. With this array of pointers

we save a lot of computational time.

9.2.1 Example

If we have the � matrix 4x4:

: 4 0 5 33.5 7 8 02 0 1.5 00 4 0 9.3>

We see that the first row has the positions �+, �. and �/ different from 0. In the second row

they are the positions �+, �- and �.. In the third row they are �+ and �.. The last row has �-

and �/ different from 0.

Then the array of pointers contains the index of the positions different from 0:

1 3 3

1 2 3

1 3

2 4

Thus, we have to cover 10 positions of the array of pointers instead of to cover 4x4=16

positions of the � matrix.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

23

10 User’s Guide

The program consists of an executable written in C++ which reads an input file with the data of

the integer binary problem. When clicking the executable a console window appears with

these characteristics:

• The first line will be the name of the program “Binary Integer Problems Solver”.

• The next line it asks one to indicate the name of the input file.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

24

10.1 Format of the input file

The format of the input file follows this structure:

m n

A matrix

b vector

min or max

c vector

Equalities vector, that should be as long as the b vector, and should

have for each constraint a 0 if it is <= or 1 if it is >=

F that should be 1 to show feasible solutions or 0 otherwise

P that should be 1 to show the internal operation of the algorithm or

0 otherwise.

For example, if we have the following problem:

Max 10x1 -7x2 + x3 -12x4 + 2x5 + 8x6 -3x7 –x8 +5x9 + 3x10

Subject to

3x1+ 12x2 -8x3 -1x4 -7x9 +2x10 >= -8

x2+10x3+ 5x5 –x6+ 7x7+ x8<= 13

-5x1 -3x2+ x3 -2x8 -x10 <= -6

5x1+ 3x2 –x3 + 2x8 +x9 >= -6

-4x3 +2x4 -5x6 –x7+ 9x8 -2x9 >=-8

-9x2+ 12x4 -7x5+ 6x6 -2x8 -15x9 -3x10 <=-12

8x1+ 5x2 -2x3 -7x4+x5 -5x7+ 10x9<= 16

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

25

The input file would be as follows

7 10

3 12 -8 -1 0 0 0 0 -7 2

0 1 10 0 5 -1 7 1 0 0

-5 -3 1 0 0 0 0 -2 0 -1

5 3 -1 0 0 0 0 2 0 1

0 0 -4 2 0 -5 -1 9 -2 0

0 -9 0 12 -7 6 0 -2 -15 -3

8 5 -2 -7 1 0 -5 0 10 0

-8 13 -6 -6 -8 -12 16

max

10 -7 1 -12 2 8 -3 -1 5 3

1 0 1 1 1 1 0

F (0 or 1)

P (0 or 1)

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

26

The next step is to indicate the name of the input file in the program.

When we execute the program an output file is generated with the name output.txt

10.2 Format of the Output File

The output file has the following format:

Data of the problem

[Internal Operation of the program]

[Feasible Solutions]

Optimal Solution

Number of iterations

Computing Time

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

27

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

28

Hence, for our problem, the output is

min

c 1x3 + 1x8 + 2x5 + 3x7 + 3x10 + 5x9 + 7x2 + 8x6 + 10x1 + 12x4

A matrix

-8 -0 0 -0 2 -7 -12 0 3 1

-10 1 -5 7 -0 -0 1 1 -0 0

1 2 0 -0 -1 0 3 0 -5 -0

-1 -2 0 -0 1 0 -3 0 5 -0

-4 -9 0 1 0 -2 -0 -5 0 -2

0 2 -7 -0 -3 -15 9 6 0 -12

2 0 -1 -5 -0 -10 5 -0 -8 -7

B matrix

-2 -1 1 11 -3 -7 -1

Inequalities

<= <= <= <= <= <= <=

min Z=6

For:x3=x5=x7=1

The remaining variables are zero.

Number of iterations:10

Computing Time: 3.00 milliseconds elapsed.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

29

11 Datasets tested

In this section we are going to show the different datasets that have been used to test the

program. We are going to show five different datasets that go from the easy problems with

seven variables and ten constraints to problems more complicated like the Diet Problem, with

96 variables and 39 constraints.

11.1 Problem 1 (Balas)

This is a problem with 10 variables and 7 constraints taken from the article of Egon Balas

(1965). The optimum is for Z=6 for x3=x5=x7=1.

11.1.1 Input file

The name of the file is problemBalas.txt

7 10

3 12 -8 -1 0 0 0 0 -7 2

0 1 10 0 5 -1 7 1 0 0

-5 -3 1 0 0 0 0 -2 0 -1

5 3 -1 0 0 0 0 2 0 1

0 0 -4 2 0 -5 -1 9 -2 0

0 -9 0 12 -7 6 0 -2 -15 -3

8 5 -2 -7 1 0 -5 0 10 0

-8 13 -6 -6 -8 -12 16

max

10 -7 1 -12 2 8 -3 -1 5 3

1 0 1 1 1 1 0

F 0

P 0

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

30

11.1.2 Output file

min

c 1x3 + 1x8 + 2x5 + 3x7 + 3x10 + 5x9 + 7x2 + 8x6 + 10x1 + 12x4

A matrix

-8 -0 0 -0 2 -7 -12 0 3 1

-10 1 -5 7 -0 -0 1 1 -0 0

1 2 0 -0 -1 0 3 0 -5 -0

-1 -2 0 -0 1 0 -3 0 5 -0

-4 -9 0 1 0 -2 -0 -5 0 -2

0 2 -7 -0 -3 -15 9 6 0 -12

2 0 -1 -5 -0 -10 5 -0 -8 -7

B matrix

-2 -1 1 11 -3 -7 -1

Inequalities

<= <= <= <= <= <= <=

min Z=6

For:x3=x5=x7=1

The remaining variables are zero.

Number of iterations:10

Computing Time: 2.00 milliseconds elapsed.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

31

11.2 Problem 2 (Roodman)

Roodman’s problem is taken from the article ROODMAN, G. M., "Postoptimality Analysis in

Zero-One Programming by Implicit Enumeration" (1972). The problem consists of 8 variables

and 3 constraints.

The optimum is Z=6 for x3=x5=1.

11.2.1 Input File

The name of the file is problemRoodman.txt

3 8

-2 0 0 2 -6 1 -1 2

-4 11 -11 -7 4 3 -5 1

0 1 1 1 -1 -2 0 1

-5 -6 0

min

2 5 5 6 4 1 8 1

0 0 0

F 0

P 0

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

32

11.2.2 Output File

min

c 1x6 + 1x8 + 2x1 + 4x5 + 5x2 + 5x3 + 6x4 + 8x7

A matrix

1 2 -2 -6 0 0 2 -1

3 1 -4 4 11 -11 -7 -5

-2 1 0 -1 1 1 1 0

B matrix

-5 -6 0

Inequalities

<= <= <=

min Z=9

For:x5=x3=1

The remaining variables are zero.

Number of iterations: 8

Computing Time: 0.00 milliseconds elapsed.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

33

11.3 Problem 3 (Diet problem)

One of the problems that we have used to test the program is the Diet Problem. The goal of

this problem is to find the cheapest combination of foods that will satisfy all the daily

nutritional requirements of a person. For the complicated model see Sufahani (2010).

The problem is formulated as a linear program with 96 variables and 39 constraints, where the

objective is to minimize cost and meet constraints which require that human nutritional needs

are satisfied.

The optimum for this problem is min Z=8 for

x9=x20=x22=x47=x51=x58=x60=x68=x90=x5=x10=x36=x37=x3=x34=x79=x2=x8=1

11.3.1 Input file

The name of the file is problemDiet.txt

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

34

11.3.2 Output file

min Z=8

For:

x9=x20=x22=x47=x51=x58=x60=x68=x90=x5=x10=x36=x37=x3=x34=x79=x2=x8=1

The remaining variables are zero.

Computing Time: 119.00 milliseconds elapsed.

The optimal solution for this problem is Z=8, which is the same solution that we can get with

other software as LPSolve or AMPL.

The computing time for the problem is 119 milliseconds. For AMPL it takes 0.039 seconds and

for LPSolve 0.031 seconds, not so much difference taking into account that these type of

software use presolving.

12 Conclusions

In a finite number of iterations, the additive algorithm yields either an optimal feasible

solution, or the conclusion that the problem has no feasible solution at all.

The only operations required under the algorithm described above are additions and

subtractions saving computational time.

The algorithm does not impose a heavy burden on the storage system of the computer.

The number of iterations depends on the characteristics of the problem.

AMA 492- Implicit Enumeration Binary Integer

Programming

2010

RESEARCH PROJECT | Registration No: 090248579

35

13 References

Balas E. “An additive algorithm for solving linear programs with zero-one variables”.

Operations Res. 13:517-46, 1965.

Sufahani Diet Problem (2010).

Richard Bronson Schaum's Outline of Operations Research (Schaum's Outline Series)

Alexander Schrijver Theory of Linear and Integer Programming

Hamdy A. Taha Integer Programming: Theory, Applications and Computations (Operations

research in industrial engineering).

George Hadley Linear Programming.

