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2 Introduction 
 

We know that there are important economic problems which have mathematical models that 

are linear programs with integer variables. Among these problems are those that have 

variables taking only one of the values 0 or 1. 

Such binary integer programs, serve as mathematical models for capital budgeting, project 

selection, pipeline or communications network design, structural design, switching circuit 

design, information retrieval, fault detection, design of experiments, facility location, truck 

dispatching, tanker routing, crew scheduling, machine  sequencing, and a host of other 

decision problems involving logical alternatives. 

Because of the importance of these decision problems the project considers a program 

developed in C++ that solves linear programs with variables constrained to take only one of 

the values 0 or 1 following the steps of the algorithm that the prestigious mathematician, Egon 

Balas, developed in 1965.  

In this document we are going to study the basic ideas and outline of the algorithm, and 

subsequently we will analyze the algorithm in detail, showing interesting examples like the 

Diet Problem with 96 variables.  

Finally we will show a tutorial of the application and we will draw conclusions of the operation 

of the algorithm. 

3 Basic ideas and outline of the additive 

algorithm 
 

The general form of a linear program with zero-one variables may be stated as follows:  

min �� max  	 = ��
 

������� �� 
�
 ≤ b 

�� 
�
 ≥  b 


� = 0 �� 1 (� ∈  �) 
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Where 


= (
�) is an n-component column-vector. 

�= (��) is a given n-component row-vector. 

�= (� �) is a given mxn matrix. 

�= (��) is a given m-component column-vector.  

 

4 Form of an Integer Binary Problem 
 

Although we have defined the form of a linear program with zero-one variables problem, the 

Balas algorithm requires that the problem be put into a standard form, with the constraints 

inequalities of the form less than, and all the coefficients of the objective function (to be 

minimized) being nonnegative.  

Any problem can be brought to this form by the following operations:  

a) Replacing all equations by two inequalities.  

b) Multiplying by −1 all inequalities of the form ≥  
c) Setting 
� as 


� for �� ≥  0 when minimizing; for �� ≤ 0 when maximizing,  

(1 − 
�) for �� <  0 when minimizing; for �� > 0 when maximizing. 

So what we have to do is set all of the variables to zero to give the smallest value of 	. If we 

cannot do this without violating one or more constraints, then we prefer to set the variable 

that has the smallest index to 1. This is because the variables are ordered so that those earlier 

in the list increase 	 by the smallest amount. 
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6 Explanation of the algorithm for solving 

Integer Binary Problems  
 

The main idea of the algorithm is to set all the $ variables equal to 0 (minimizing), assign to 

certain variables the value 1 and after trying a part of all the two-possible combinations, one 

obtains either an optimal solution, or evidence of the fact that no feasible solution exists. 

To explain how the algorithm works internally we are going to consider that we have the 

problem in the standard form 

%&$ 	 = ��  
 
������� �� 

�
 ≤ b 


� = 0 �� 1 (� ∈  �) 

 

Where 


= (
�) is an n-component column-vector. 

�= (��) is a given n-component row-vector. 

�= (� �) is a given mxn matrix. 

�= (��) is a given m-component column-vector.  
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6.1 Steps of the algorithm 
 

6.1.1 Step 0: 

 

• Initialize: 

 

Verify if the solution for the vector x=0 is feasible. If it is, we have finished, the vector 0 

is the optimum. 

 

• Boundaries: 

 

We are going to use two variables to indicate de upper and low boundaries for the 

values of the objective function 	. 

 

o 	' is the upper bound and it is equal to the sum of the coefficients.  

o 	(  is the lower bound and it is the value of �1 and 
=(1,0,0,…,0)
T
. 

o We verify if 
 is feasible. If it is, this is the optimum. 

6.1.2 Step 1: 

 

Select one of the subsets of unverified solutions and we divided that subset into two, adding 
� = 0 and 
� = 1 when branching in the variable 
�  (in the first iteration � = 1). 
6.1.3 Step 2: 

 

For each new subset, we fix 
�*+ equal to 1 and the rest equal to 0, and we use this 
 to 

determine the value of the inferior boundary 	( for the objective function 	 in this subset.  

6.1.4 Step 3: 

 

We examine every subset of unverified solutions and we determine if it is just tested if: 

• If 	( ≥  	'  
• If it exists a constraint that can’t be satisfied with any variable value assigned to the 

rest of the variables of this subset, that is, from � + 1 to $. 

• If 
 is feasible. If it is satisfied we declare 
 as the solution and we assign to 	' the 

value of 	( 
6.1.5 Step 4: 

 

If we don’t have more subsets to test, we stop. The last solution is the optimum. Else, we go to 

step 1.  
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We are going to use an example to show how the algorithm operates 

minimize

Subject

The terms in the objective function are written in increasing order, and that it is a minimization 

problem. So having 

We start 

(0,0,0,0,0,0)

The first and third constraints are not satisfied.

Then we have to expand the tree. We will branch on 

the objective function.

The objective

function is 5. But the solution is infeasible because it doesn’t satisfy constraints 2 and 3.

For the node 

function
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8 Program 
 

The program is a console executable that has been programmed in the object oriented 

language C++, with features such as data abstraction, encapsulation, modularity, 

polymorphism, and inheritance. The software that has been used is using the software Dev-

C++ 4.9.9.4.  

8.1 Source Code 
 

The source code consists of two classes:  

• Queue.cpp 

• BalasAlgorithm.cpp 

 

8.1.1 Queue.cpp 

 

This class represents the Queue data structure, in which the entities in the collection are kept 

in order and the principal operations on the collection are the addition of entities to the rear 

terminal position and removal of entities from the front terminal position.  

This makes the queue a First-In-First-Out (FIFO) data structure, where the first element added 

to the queue will be the first one to be removed. 

We use this data structure to store what values of the 
 vector are the next to be tested, to 

check if the solution is feasible. 

 

8.1.2 BalasAlgorithm.cpp 

 

This is the main class of the program that includes all the functionalities that we are going to 

use to set the algorithm. 

Among the most important functions we have the following: 

• Reading the Input File. 

The program has the function void readFromFile(char *nfile) that reads the 

information of the input data file, and store it in data structures that correspond to the 

c vector, A matrix, b vector and equalities matrix. 
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• Conversion. 

The function is void conversion() and it has as aim converting the data inputs into the 

standard form. 

• Setting the values of the x vector. 

 

For setting the values of 
 vector in each iteration we use two functions: 

bool* createVariablesOne(bool* input, int index) that sets the value of the 
 1234  to 1 

and 

bool* createVariablesZero(bool* input, int index) that sets the value of the 
 1234  to 0 

and the value of 
 1234*+ to 1. 

• Constraint Satisfied. 

 

We have the function int constraintSatisfied(int constraint) to check if the constraint 

indicated by param is satisfied for the values of 
 vector in each iteration. 

 

• Calculating Objective Function. 

 

For this purpose we have the method double calculateZ() that in each iteration 

calculates de value of Z in case it is a feasible solution and store it in a data structure to 

keep this value. 

 

• Pruning. 

 

The function bool prune(int index) returns if the algorithm should continue through the 

current branch, from the index indicated by param. 

 

• Balas Algorithm. 

 

The function int balasAlgorithm() represents the functionality of the Balas Algorithm, 

using the functions explained before. 
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9 Improving the processing speed of the 

program 
 

We have to consider that the values that the 
 vector can take are binary values, 0 or 1. We 

can capitalize on it when we want to save processing time. 

 

9.1 Operations Required 
 

The first important thing is that the only operations that we need are additions and 

subtractions. When we calculate the value of the objective function or we check if the values 

of the 
 vector satisfy a constraint, we only need these two operations. 

 

It is an advantage taking in account the computational complexity of each operation compared 

with the multiplication. In the next tableau we can see the computational complexity of each 

operation: 

 

Operation Input Complexity 

Addition Two n-digit numbers Θ(n) 

Subtraction Two n-digit numbers Θ(n) 

Multiplication Two n-digit numbers O(n
2
) 

 

9.1.1 Example 

 

Suppose we have 
 vector as (0,1,0,1) and we have to check if it satisfies the constraint 

 2
+ +  3
- −  5
.   + 
/   <=  7 
 

As we can see 
+ and 
/ are 0. Hence, the only operations we have to do are with 
- and 
/ 

doing an addition of  3 +  1 

 

Thus, we see that in contrast to integer linear programming where we have to use 

multiplications, in binary integer programming we only have to use addition and 

multiplication. 
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9.2 Pointers 
 

One of the challenges that we have face in the project is trying to test the program with % and $ taking high values. It entails a high computational charge, making a difference in hours for 

the program to find the best solution. 

 

For that reason we have use pointers to cover the � matrix when we have to check if the 
 

vector satisfies the constraints of the problem. 

 

A lot of problems such as the 96 variables Diet Problem have many values in the � matrix that 

are 0. Specifically, in the 96 variables Diet Problem, the � matrix of dimension 39 x 96 has 1941 

values equal to 0. 

 

We can take advantage of this because we can save a lot of time covering the data structure 

that contains the � matrix. In order to do this, we use a 2 dimensions array of pointers of % 

rows that indicates what values in the � matrix are different from 0. With this array of pointers 

we save a lot of computational time. 

 

9.2.1 Example 

 

If we have the � matrix 4x4: 

 

: 4 0 5 33.5 7 8 02 0 1.5 00 4 0 9.3> 
 

We see that the first row has the positions �+, �. and �/ different from 0. In the second row 

they are the positions �+, �- and �.. In the third row they are �+ and �.. The last row has �- 

and �/ different from 0. 

 

Then the array of pointers contains the index of the positions different from 0: 

 

1 3 3 

1 2 3 

1 3 

2 4 

 

Thus, we have to cover 10 positions of the array of pointers instead of to cover 4x4=16 

positions of the � matrix. 
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10 User’s Guide 
 

The program consists of an executable written in C++ which reads an input file with the data of 

the integer binary problem. When clicking the executable a console window appears with 

these characteristics: 

• The first line will be the name of the program “Binary Integer Problems Solver”. 

• The next line it asks one to indicate the name of the input file. 
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10.1 Format of the input file 
 

The format of the input file follows this structure: 

m n 

A matrix 

b vector 

min or max 

c vector 

Equalities vector, that should be as long as the b vector, and should 

have for each constraint a 0 if it is <= or 1 if it is >= 

F that should be 1 to show feasible solutions or 0 otherwise 

P that should be 1 to show the internal operation of the algorithm or 

0 otherwise. 

 

For example, if we have the following problem: 

Max 10x1 -7x2 + x3 -12x4 + 2x5 + 8x6 -3x7 –x8 +5x9 + 3x10 

Subject to 

3x1+ 12x2 -8x3 -1x4 -7x9 +2x10 >= -8 

x2+10x3+ 5x5 –x6+ 7x7+ x8<= 13 

-5x1 -3x2+ x3 -2x8  -x10 <= -6 

5x1+ 3x2 –x3 + 2x8 +x9 >= -6 

-4x3 +2x4  -5x6 –x7+ 9x8 -2x9 >=-8 

-9x2+ 12x4 -7x5+ 6x6 -2x8 -15x9 -3x10 <=-12 

8x1+ 5x2 -2x3 -7x4+x5 -5x7+ 10x9<= 16 
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The input file would be as follows 

7 10 

3 12 -8 -1 0 0 0 0 -7 2 

0 1 10 0 5 -1 7 1 0 0 

-5 -3 1 0 0 0 0 -2 0 -1 

5 3 -1 0 0 0 0 2 0 1 

0 0 -4 2 0 -5 -1 9 -2 0 

0 -9 0 12 -7 6 0 -2 -15 -3 

8 5 -2 -7 1 0 -5 0 10 0 

-8 13 -6 -6 -8 -12 16 

max 

10 -7 1 -12 2 8 -3 -1 5 3 

1 0 1 1 1 1 0 

F (0 or 1) 

P (0 or 1) 
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The next step is to indicate the name of the input file in the program. 

 

 

 

When we execute the program an output file is generated with the name output.txt 

10.2 Format of the Output File 
 

The output file has the following format: 

Data of the problem 

[Internal Operation of the program] 

[Feasible Solutions] 

Optimal Solution 

Number of iterations 

Computing Time 
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Hence, for our problem, the output is 

min 

c 1x3 + 1x8 + 2x5 + 3x7 + 3x10 + 5x9 + 7x2 + 8x6 + 10x1 + 12x4 

A matrix 

-8 -0 0 -0 2 -7 -12 0 3 1  

-10 1 -5 7 -0 -0 1 1 -0 0  

1 2 0 -0 -1 0 3 0 -5 -0  

-1 -2 0 -0 1 0 -3 0 5 -0  

-4 -9 0 1 0 -2 -0 -5 0 -2  

0 2 -7 -0 -3 -15 9 6 0 -12  

2 0 -1 -5 -0 -10 5 -0 -8 -7  

B matrix 

-2 -1 1 11 -3 -7 -1  

Inequalities 

<= <= <= <= <= <= <=  

min Z=6 

For:x3=x5=x7=1 

The remaining variables are zero. 

Number of iterations:10 

Computing Time: 3.00 milliseconds elapsed. 
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11 Datasets tested 
 

In this section we are going to show the different datasets that have been used to test the 

program. We are going to show five different datasets that go from the easy problems with 

seven variables and ten constraints to problems more complicated like the Diet Problem, with 

96 variables and 39 constraints. 

 

11.1 Problem 1 (Balas) 
 

This is a problem with 10 variables and 7 constraints taken from the article of Egon Balas 

(1965). The optimum is for Z=6 for x3=x5=x7=1. 

11.1.1 Input file 

 

The name of the file is problemBalas.txt 

7 10 

3 12 -8 -1 0 0 0 0 -7 2 

0 1 10 0 5 -1 7 1 0 0 

-5 -3 1 0 0 0 0 -2 0 -1 

5 3 -1 0 0 0 0 2 0 1 

0 0 -4 2 0 -5 -1 9 -2 0 

0 -9 0 12 -7 6 0 -2 -15 -3 

8 5 -2 -7 1 0 -5 0 10 0 

-8 13 -6 -6 -8 -12 16 

max 

10 -7 1 -12 2 8 -3 -1 5 3 

1 0 1 1 1 1 0 

F 0 

P 0 
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11.1.2 Output file 

 

min 

c 1x3 + 1x8 + 2x5 + 3x7 + 3x10 + 5x9 + 7x2 + 8x6 + 10x1 + 12x4 

A matrix 

-8 -0 0 -0 2 -7 -12 0 3 1  

-10 1 -5 7 -0 -0 1 1 -0 0  

1 2 0 -0 -1 0 3 0 -5 -0  

-1 -2 0 -0 1 0 -3 0 5 -0  

-4 -9 0 1 0 -2 -0 -5 0 -2  

0 2 -7 -0 -3 -15 9 6 0 -12  

2 0 -1 -5 -0 -10 5 -0 -8 -7  

B matrix 

-2 -1 1 11 -3 -7 -1  

Inequalities 

<= <= <= <= <= <= <=  

min Z=6 

For:x3=x5=x7=1 

The remaining variables are zero. 

Number of iterations:10 

Computing Time: 2.00 milliseconds elapsed. 
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11.2 Problem 2 (Roodman) 
 

Roodman’s problem is taken from the article ROODMAN, G. M., "Postoptimality Analysis in 

Zero-One Programming by Implicit Enumeration" (1972). The problem consists of 8 variables 

and 3 constraints. 

The optimum is Z=6 for x3=x5=1. 

11.2.1 Input File 

 

The name of the file is problemRoodman.txt 

3 8 

-2 0 0 2 -6 1 -1 2  

-4 11 -11 -7 4 3 -5 1  

0 1 1 1 -1 -2 0 1  

-5 -6 0 

min 

2 5 5 6 4 1 8 1 

0 0 0 

F 0 

P 0 
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11.2.2 Output File 

 

min 

c 1x6 + 1x8 + 2x1 + 4x5 + 5x2 + 5x3 + 6x4 + 8x7 

A matrix 

1 2 -2 -6 0 0 2 -1  

3 1 -4 4 11 -11 -7 -5  

-2 1 0 -1 1 1 1 0  

B matrix 

-5 -6 0  

Inequalities 

<= <= <= 

min Z=9 

For:x5=x3=1 

The remaining variables are zero. 

Number of iterations: 8 

Computing Time: 0.00 milliseconds elapsed. 
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11.3 Problem 3 (Diet problem) 
 

One of the problems that we have used to test the program is the Diet Problem. The goal of 

this problem is to find the cheapest combination of foods that will satisfy all the daily 

nutritional requirements of a person. For the complicated model see Sufahani (2010). 

The problem is formulated as a linear program with 96 variables and 39 constraints, where the 

objective is to minimize cost and meet constraints which require that human nutritional needs 

are satisfied. 

The optimum for this problem is min Z=8 for  

x9=x20=x22=x47=x51=x58=x60=x68=x90=x5=x10=x36=x37=x3=x34=x79=x2=x8=1 

 

11.3.1 Input file 

 

The name of the file is problemDiet.txt 
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11.3.2 Output file 

 

min Z=8 

For: 

x9=x20=x22=x47=x51=x58=x60=x68=x90=x5=x10=x36=x37=x3=x34=x79=x2=x8=1 

The remaining variables are zero. 

Computing Time: 119.00 milliseconds elapsed. 

 

The optimal solution for this problem is Z=8, which is the same solution that we can get with 

other software as LPSolve or AMPL. 

The computing time for the problem is 119 milliseconds. For AMPL it takes 0.039 seconds and 

for LPSolve 0.031 seconds, not so much difference taking into account that these type of 

software use presolving. 

12 Conclusions 
 

In a finite number of iterations, the additive algorithm yields either an optimal feasible 

solution, or the conclusion that the problem has no feasible solution at all.  

The only operations required under the algorithm described above are additions and 

subtractions saving computational time. 

The algorithm does not impose a heavy burden on the storage system of the computer. 

The number of iterations depends on the characteristics of the problem. 
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