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STIELTJES-TYPE POLYNOMIALS ON THE UNIT CIRCLE

B. DE LA CALLE YSERN, G. LÓPEZ LAGOMASINO, AND L. REICHEL

Abstract. Stieltjes-type polynomials corresponding to measures supported
on the unit circle T are introduced and their asymptotic properties away from
T are studied for general classes of measures. As an application, we prove
the convergence of an associated sequence of interpolating rational functions
to the corresponding Carathéodory function. In turn, this is used to give
an estimate of the rate of convergence of certain quadrature formulae that
resemble the Gauss-Kronrod rule, provided that the integrand is analytic in a
neighborhood of T.

1. Introduction

Let µ be a finite positive Borel measure on the real line R whose compact support
contains infinitely many points. Let pn(x) = γn xn + . . . , γn > 0, denote the
orthonormal polynomial of degree n with respect to µ; i.e.,

(1)
∫

pn(x) pm(x) dµ(x) = δn,m.

The nth function of the second kind associated with µ is defined by

qn(z) =
∫

pn(x)
z − x

dµ(x).

Note that, by (1), qn(z) = O(1/zn+1), z → ∞. Therefore,

(2)
1

qn(z)
= γn En+1(z) + O (1/z) , z → ∞,

where En+1 is a monic polynomial of degree n + 1. The polynomials En+1 were
introduced by Stieltjes [12] in 1894 for the case of the Legendre measure dµ(x) = dx
and are usually named after him. It is easy to see that they satisfy the orthogonality
relations

(3)
∫

xk En+1(x) pn(x) dµ(x) = 0, k = 0, 1, . . . , n.
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Since their introduction, and especially in the last four decades, Stieltjes poly-
nomials have attracted a great deal of attention coming from a twofold origin. On
one hand, though they are orthogonal with respect to the real measure pn(x) dµ(x),
their zeros occasionally show similar properties to those of classical orthogonal poly-
nomials. The ultraspherical measures

dµ(x) = (1 − x2)λ−1/2dx, λ > −1/2,

suffice to display the rich behavior of the zeros of En+1. Depending on λ, they
may have exemplary zeros which are real, simple, and interlace the zeros of the
corresponding orthogonal polynomial, or erratic when most of the zeros are complex
(see [27, 21, 5]).

On the other hand, a renewed interest in Stieltjes polynomials is motivated by
the use of their zeros as additional nodes in the so-called Gauss-Kronrod quadrature
formulae introduced by Kronrod [15] in the sixties. Such quadrature rules arose
from the need of estimating simultaneously an approximate value of the integral
and the error as well. These rules take the form∫

f(x) dµ(x) =
n∑

i=1

An,i f(xn,i) +
n+1∑
j=1

Bn,j f(yn,j) + R2n+1(f),

where {xn,i}n
i=1 are the zeros of pn, i.e., the Gaussian nodes. The remaining nodes

{yn,j}n+1
j=1 and the quadrature weights {An,i}n

i=1 and {Bn,j}n+1
j=1 are chosen so that

the rule has the highest possible degree of polynomial exactness. This requirement
is equivalent to the fact that the nodal polynomial

n+1∏
j=1

(x − yn,j)

satisfies the orthogonality relations (3). Hence, the nodes {yn,j}n+1
j=1 turn out to be

the zeros of the Stieltjes polynomial En+1.
Gauss-Kronrod rules can be computed efficiently [1, 6, 16] and are used in pack-

ages for automatic integration [22]. Additionally, the zeros of the Stieltjes polyno-
mials have proved to be useful in product integration [7] and interpolation [8]. For
further details on Stieltjes polynomials and Gauss-Kronrod quadrature formulae;
see the surveys [9, 18, 19].

One of the aims of this paper is to define polynomials analogous to the Stieltjes
polynomials for measures supported on the unit circle T. This is done in Section 2.
As will be seen in the next two sections, the resulting polynomial, called of Stieltjes-
type, has some distinctive features but shares with its counterpart on the real line
two essential properties; namely, its special relationship with the corresponding
function of the second kind and satisfying orthogonality conditions which allow its
zeros to be considered optimal additional nodes to the Szegő quadrature (the analog
on T of the Gauss-Jacobi rule). Stieltjes-type polynomials are not required to have
their zeros lying on the support of the measure since this property is not fulfilled
by all Stieltjes polynomials on the real line.

The rest of the paper is organized as follows. Section 3 contains some auxiliary
material; in particular, an integral representation which is the key for subsequent
developments. Section 4 is mainly dedicated to studying the asymptotic behavior
of the second type functions. This is used in Section 5 to establish asymptotic
properties of the Stieltjes-type polynomials for general classes of measures. In
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particular, we prove that their zeros approach T as the degree of the polynomials
goes to infinity and find the zero limit distribution. Finally, in the last section,
we prove the convergence of a related sequence of interpolating rational functions
to the Carathéodory function defined by the measure. This is used to obtain an
estimate of the rate of convergence of the quadrature formulae given by the Szegő
and Stieltjes-type nodes provided that the integrand is analytic in a neighborhood
of T. We refer to these quadrature formulae as Szegő-Kronrod rules. They are well
suited for the integration of periodic functions with known periodicity. The present
paper provides the foundation for these quadrature rules. For Stieltjes polynomials
on the real line, similar properties to those appearing in this paper have been shown
in [2].

2. Stieltjes-type polynomials

Let Φn and ϕn be the monic orthogonal and orthonormal polynomials, respec-
tively, of degree n with respect to a finite positive Borel measure σ, whose sup-
port S(σ) is contained on the unit circle T and has infinitely many points. Thus,
ϕn = κnΦn = Φn/‖Φn‖, where

〈f, g〉 =
∫

f(ζ) g(ζ) dσ(ζ), ‖f‖2 = 〈f, f〉.

Let D = {z ∈ C : |z| < 1}. The polynomials Φn have all their zeros in D so they
cannot be used to construct on T an analog of the Gauss-Jacobi rule. Instead, poly-
nomials called para-orthogonal (because of deficiencies in their orthogonality prop-
erties) are considered (see [11, 14]). Though the introduction of para-orthogonal
polynomials is generally traced back to [14], we have noticed that they appear
previously in Theorem III of [10] by Ya. L. Geronimus.

A polynomial Wn of degree n is said to be para-orthogonal with respect to the
measure σ if it satisfies the conditions

(4)
〈Wn, zk〉 = 0, k = 1, . . . , n − 1; 〈Wn, 1〉 �= 0 �= 〈Wn, zn〉,

W ∗
n = β Wn, |β| = 1.

For each n such polynomials exist. It is well known that their zeros are simple and
lie on the unit circle T. Moreover (cf. [14], Theorem 6.1), Wn is para-orthogonal
with respect to σ if and only if Wn(z) = ξn (ϕn + τn ϕ∗

n), τn ∈ T, ξn ∈ C \ {0}, and
ϕ∗

n(z) = znϕn(1/z). In the sequel, we let wn = ϕn +τn ϕ∗
n, and write Wn for monic

para-orthogonal polynomials. Clearly, wn depends on τn but this omission will not
lead to confusion.

Throughout this paper Pn denotes the space of all polynomials of degree less
than or equal to n and Λp,q , p, q ≥ 0, is the space of all rational functions of the
form h/zp, h ∈ Pp+q. This notation differs from the one usually employed.

When approximating the integral

Iσ(f) =
∫

T

f(ζ) dσ(ζ)

by means of a quadrature rule

In(f) =
n∑

i=1

λn,i f(zn,i),
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it is natural to require that In be exact in a space Λp,q, p + q ≥ n− 1. It turns out
(cf. [14]) that if the nodes {zn,i}n

i=1 are chosen to be the zeros of a para-orthogonal
polynomial Wn, there exist positive numbers {λn,i}n

i=1 such that Iσ(f) = In(f), f ∈
Λn−1,n−1. Such quadrature formulae are called Szegő rules. It can be shown that
the space Λn−1,n−1 is the largest possible space of exactness of type Λp,q for any
rule In, provided that the n nodes belong to T.

Now, we want to construct a quadrature rule retaining the Szegő nodes and
adding m new nodes in an optimal way. The new nodes and all the quadrature
weights are chosen so that the quadrature rule is exact in the largest space Λp,q .
The number m will be the smallest natural number such that Λp,q � Λn−1,n−1.
The new nodes cannot be equal to 0, since the rational functions in Λp,q are to be
evaluated at these points.

In order to properly characterize those optimal additional nodes, we will need
some preliminary results on interpolatory rules with possibly repeated nodes. Given
the nodal polynomial

(5) PN (z) =
M∏
i=1

(z − zi)αi , α1 + · · · + αM = N, zi ∈ C \ {0},

where zi �= zj whenever i �= j, we consider the following generalized quadrature
formulae

(6) IN (f) =
M∑
i=1

αi−1∑
j=0

µi,j f (j)(zi),

where f (j) denotes the jth derivative of f . Such a rule is said to be interpolatory
if it is exact in Λp,q with p + q ≥ N − 1; that is, Iσ(L) = IN (L), L ∈ Λp,q.

Proposition 1. Let PN be the polynomial given by (5) and let p and q be non-
negative integers with p+q = N −1. Then, there exists a unique system of complex
numbers {µi,j}, i = 1, . . . , M, j = 0, . . . , αi − 1, such that the quadrature rule (6)
is exact in Λp,q.

Proof. Following standard arguments of Hermite interpolation (see, for instance,
[3], Chapter 2, Section 11.2), given any i = 1, . . . , M and j = 0, . . . , αi − 1, set

Ri,j(z) =
PN (z)

zp (z − zi)αi

(z − zi)j

j!

αi−j−1∑
k=0

Ai,k
(z − zi)k

k!
,

where

Ai,k =
(

zp (z − zi)αi

PN (z)

)(k)

(zi).

It is clear that Ri,j ∈ Λp,q and not difficult to verify that

(7) R
(m)
i,j (zk) = δi,k δj,m,

where δj,m denotes the Kronecker delta.
For any function f for which the right-hand side of (6) makes sense, there exists

a unique element of Λp,q defined by

Rf (z) =
M∑
i=1

αi−1∑
j=0

f (j)(zi) Ri,j(z),
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such that

R
(j)
f (zi) = f (j)(zi), i = 1, . . . , M ; j = 0, . . . , αi − 1.

Now, take µi,j = Iσ(Ri,j). Then IN (f) = Iσ(Rf ). In particular, for any L ∈ Λp,q

we obtain that IN (L) = Iσ(RL) = Iσ(L) since RL = L.
Concerning uniqueness, suppose that there exists another system of complex

numbers {µ′
i,j}, i = 1, . . . , M, j = 0, . . . , αi − 1, such that (6) is exact in Λp,q .

Since Ri,j ∈ Λp,q , then because of (7), Iσ(Ri,j) = IN (Ri,j) = µ′
i,j . �

If IN is exact in a larger space Λr,s, r + s ≥ N , then the nodal polynomial must
satisfy certain orthogonality relations as indicated in the following proposition.

Proposition 2. Let IN be a quadrature rule given by (6) with nodal polynomial
(5). Let p and q be non-negative integers with p + q = N − 1. Then

IN is exact in Λr,s ⊃ Λp,q ⇐⇒

⎧⎨⎩
(i) IN is exact in Λp,q ,

(ii) 〈PN (z), zk〉 = 0, k = N − s, . . . , r.

Proof. If IN is exact in Λr,s ⊃ Λp,q, then (i) is trivial. As for (ii), note that
Λr,s = Λp,q would imply N−s > r and there would be nothing to prove. Otherwise,
fix k = N − s, . . . , r, and consider PN (z)/zk ∈ Λk,N−k ⊂ Λr,s. Then

〈PN (z), zk〉 = Iσ

(
PN (z)

zk

)
= IN

(
PN (z)

zk

)
= 0,

since the polynomial PN and its derivatives are evaluated at their zeros.
Conversely, let L ∈ Λr,s and denote by RL the unique element of Λp,q interpo-

lating L at the zeros of PN . We obtain

(8) IN (L) = IN (RL) = Iσ(RL),

because of (i). On the other hand, the polynomial (L−RL) zr ∈ Pr+s and vanishes
at the zeros of PN . Thus, (L−RL) zr = PN (z) T (z), where T ∈ Pr+s−N . It follows
that

Iσ(L − RL) = Iσ

(
PN (z)

T (z)
zr

)
= 〈PN (z), zr T (z)〉 = 0,

due to (ii), which together with (8) proves the result. �

The next proposition shows that in order to increase the degree of exactness of
a Szegő rule with n nodes, we must add at least n new nodes.

Proposition 3. Let Wn be a monic para-orthogonal polynomial of degree n with
respect to the measure σ and let Tm be a monic polynomial of degree m ∈ N with
Tm(0) �= 0. Let In+m be a quadrature rule with nodal polynomial Wn Tm, and
assume that In+m is exact in Λr,s � Λn−1,n−1. Then, m ≥ n.

Proof. We will reason by contradiction. Suppose that m ≤ n − 1. Then In+m is
exact in Λr,s ⊃ Λn−1,n−1 ⊃ Λn−1,m. Therefore, we can apply Proposition 2 with
N = n + m and PN = Wn Tm to obtain

(9) 〈Wn Tm, zk〉 = 0, k = m + n − s, . . . , r.
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Since Λr,s � Λn−1,n−1, either r ≥ n or s ≥ n. If r ≥ n, then Tm(z) = zpm−1 + a
with a �= 0 and pm−1 ∈ Pm−1. It follows from (9) and (4) that

0 = 〈Wn Tm, zn〉 = 〈Wn zpm−1(z), zn〉 + 〈Wn a, zn〉

= 〈Wn, zn−1pm−1(z)〉 + a 〈Wn, zn〉 = a 〈Wn, zn〉,
which contradicts (4). In the case s ≥ n, we can write Tm(z) = zm + qm−1 with
qm−1 ∈ Pm−1 and, using again (9) and (4), we have

0 = 〈Wn Tm, zm〉 = 〈Wn zm, zm〉 + 〈Wn qm−1(z), zm〉

= 〈Wn, 1〉 + 〈Wn, qm−1(z) zm〉 = 〈Wn, 1〉,
which also contradicts (4). Consequently, m ≥ n as we wanted to prove. �

We are in a position to define the Stieltjes-type polynomials based on the or-
thogonality conditions (9) for m = n. For convenience, we will write those relations
in an equivalent form. Fix n ∈ N, τn ∈ T, and m ∈ {0, 1, . . . , n − 1}. Let Sn,m be
the monic polynomial of least degree, such that

(10) 〈Sn,m zν−m, wn〉 = 0, ν = 0, 1, . . . , n − 1,

and set sn,m = Sn,m/‖Φn‖ = κn Sn,m. Finding Sn,m reduces to solving a homoge-
neous system of n equations with n+1 unknowns (thus non-trivial solutions exist).
We take any non-trivial solution of least degree and normalize it to have leading
coefficient one. It is easy to see that Sn,m is uniquely determined (for τn fixed).
We say that Sn,m is the (n, m) monic Stieltjes-type polynomial with respect to σ
and call sn,m the (n, m) orthonormal Stieltjes-type polynomial (though it is not
orthonormal in the usual sense). The polynomial Sn,m also depends on τn, but we
will not explicitly indicate this dependence.

Alternatively, we could have defined an (n, m) Laurent-Stieltjes polynomial as
the element of Λn,m given by Sn,m z−m orthogonal to a subspace not depending on
m. However, we find it more convenient to work with algebraic polynomials than
with Laurent polynomials since m will eventually depend on n.

Lemma 1. For each n ∈ N, deg Sn,m = n and Sn,m(0) = −τn �= 0.

Proof. Recall that wn = ϕn + τn ϕ∗
n , τn ∈ T. Suppose that deg Sn,m = k < n.

First, let us consider the case when k > m. We have: a) n ≥ n − k ≥ 1, b)
m + n − k ≤ n − 1, and c) deg zn−kSn,m = n. Using the orthogonality relations
satisfied by Sn,m and wn, it follows that

0 =
∫

ζm+n−k Sn,m(ζ)
ζm

wn(ζ) dσ(ζ) =
∫

ζn−kSn,m(ζ) ϕn(ζ) dσ(ζ)

= ‖Φn‖
∫

|ϕn(ζ)|2 dσ(ζ) = ‖Φn‖ �= 0,

which is absurd. Thus, k < n only if k ≤ m. Write Sn,m(z) = ak0z
k0+· · ·+zk, ak0 �=

0. Obviously, 0 ≤ m−k0. Using again the orthogonality relations satisfied by Sn,m

and wn, we have

0 =
∫

ζm−k0
Sn,m(ζ)

ζm
wn(ζ) dσ(ζ) = ak0 τn

∫
ϕ∗

n(ζ) dσ(ζ) = ak0 τn ‖Φn‖ �= 0,

which is also absurd. Therefore, deg Sn,m = n as stated.
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From (10) with ν = m, writing Sn,m(z) = zn + · · · + Sn,m(0), we obtain

0 =
∫

Sn,m(ζ) ϕn(ζ) dσ(ζ) + τn

∫
Sn,m(ζ) ϕ∗

n(ζ) dσ(ζ)

= ‖Φn‖(1 + τn Sn,m(0)),

that is, τn Sn,m(0) = −1 as we wanted to prove. �
We are ready for the proof of the next result.

Theorem 1. For n ∈ N and m = 0, 1, . . . , n − 1, the interpolatory quadrature rule
I2n with nodal polynomial Wn Sn,m is exact in Λn+m,2n−m−1.

Proof. Since deg Sn,m = n and Sn,m(0) �= 0, we can apply Proposition 2 with
N = 2n and PN = Wn Sn,m. Additionally, for ν = 0, 1, . . . , n − 1, we know that

0 = 〈Sn,m zν−m, wn〉 = τn 〈Sn,m zν−m, w∗
n〉 = τn 〈Sn,m w∗

n, zm−ν〉

= τn 〈Sn,m wn z−n, zm−ν〉 = τn 〈Sn,m wn, zn+m−ν〉.
Then, the defining conditions of Sn,m are precisely the relations appearing in part
(ii) of Proposition 2 with r = n + m and s = 2n − m − 1, which completes the
proof. �

Notice that we have excluded from the definition of the Stieltjes-type polynomials
the cases for which the rule I2n would be exact in Λn−1,2n and Λ2n,n−1, correspond-
ing to m = −1 and m = n, respectively. It is easy to see that it is not possible to
define in general such quadrature rules. In fact, take dσ(ζ) = dθ/(2π), ζ = exp(iθ).
Then, wn(z) = zn + τn and the solution of (10) for m = −1 is the polynomial
p(z) = zn which takes the value 0 at z = 0, whereas the solution of (10) for m = n
is p(z) ≡ 1. The convergence of the quadrature rules I2n for analytic integrands is
discussed in Section 6.

3. Auxiliary results

The following integral formulas follow easily from the defining orthogonality
relations satisfied by the polynomials involved.

Lemma 2. Let z �∈ T. Then the following properties hold.
For all p ∈ Pn,

(11) p(z)
∫

ϕn(ζ)
z − ζ

dσ(ζ) =
∫

p(ζ)ϕn(ζ)
z − ζ

dσ(ζ).

For all p ∈ Pn+1,

(12) p(z)
∫

ϕ∗
n(ζ)

1 − ζ/z
dσ(ζ) =

∫
p(ζ)ϕ∗

n(ζ)
1 − ζ/z

dσ(ζ) + ‖Φn‖ (p(z) − p(0)) .

For all p ∈ Pn,

(13) p(z)
∫

wn(ζ)
1 − ζ/z

dσ(ζ) =
∫

p(ζ)wn(ζ)
1 − ζ/z

dσ(ζ) + τn ‖Φn‖(p(z) − p(0)).

For all L ∈ Λm,n−m, m ∈ {0, 1, . . . , n − 1},

(14) L(z)
∫

sn,m(ζ)wn(ζ)
z − ζ

dσ(ζ) =
∫

L(ζ)sn,m(ζ)wn(ζ)
z − ζ

dσ(ζ).
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Proof. From orthogonality, for any p ∈ Pn, we have∫
p(z) − p(ζ)

z − ζ
ϕn(ζ) dσ(ζ) = 0.

The property (11) follows directly by dividing the integral into two parts.
Recall that 〈1, ϕ∗

n〉 = 〈ϕn, zn〉 = ‖Φn‖ and, for ν = 1, . . . , n, 〈zν , ϕ∗
n〉 = 0. Let

p(z) =
∑n+1

k=0 akzk. Then∫
p(z) − p(ζ)

z − ζ
ϕ∗

n(ζ) dσ(ζ) =
n+1∑
k=0

ak

∫
zk − ζk

z − ζ
ϕ∗

n(ζ) dσ(ζ)

=
n+1∑
k=1

ak

∫
(zk−1 + zk−2ζ + · · · + ζk−1)ϕ∗

n(ζ) dσ(ζ)

=
n+1∑
k=1

ak zk−1

∫
ϕ∗

n(ζ) dσ(ζ) = ‖Φn‖
p(z) − p(0)

z
.

Multiplying this equality by z and rewriting it conveniently yields (12).
The next relation is obtained similarly. Let p(z) =

∑n
k=0 akzk. Then∫

p(z) − p(ζ)
z − ζ

wn(ζ) dσ(ζ) =
n∑

k=1

ak zk−1

∫
ϕn(ζ) + τn ϕ∗

n(ζ) dσ(ζ)

= τn
p(z) − p(0)

z
‖Φn‖,

which is equivalent to (13).
If L ∈ Λm,n−m, then L(z) = p(z)/zm, where p ∈ Pn. Therefore,

L(z) − L(ζ)
z − ζ

=
ζmp(z) − zmp(ζ)

(z − ζ)zmζm
.

Since (ζmp(z) − zmp(ζ))/(z − ζ) is a polynomial in ζ of degree at most n − 1, the
orthogonality relations satisfied by sn,m yield∫

L(z) − L(ζ)
z − ζ

sn,m(ζ) wn(ζ) dσ(ζ) = 0,

which is equivalent to (14). �

Applying (13) with p(z) = zk , k = 1, . . . , n, we obtain

(15) gn(z) :=
∫

wn(ζ)
1 − ζ/z

dσ(ζ) − τn ‖Φn‖ =
1
zk

∫
ζkwn(ζ)
1 − ζ/z

dσ(ζ).

We refer to gn as the nth second type function associated with σ and wn, and will
investigate some of its properties.

Lemma 3. For z �∈ T, we have

(16) gn(z) =
τn

zn

∫
wn(ζ)

1 − ζ/z
dσ(ζ), gn(1/z) = −τnzngn(z),
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and

(17) wn(z)gn(z) =
∫ |wn(ζ)|2

1 − ζ/z
dσ(ζ) − (1 + τn Φn(0)).

Consequently,

(18) |wn(z)gn(z)| ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|1 + τn Φn(0)|

(
1 +

2
1 − 1/|z|

)
, |z| > 1,

|1 + τn Φn(0)|
(

1 +
2

1 − |z|

)
, |z| < 1,

and

(19) |wn(z)gn(z)| ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + �{τn Φn(0)})

(
2

1 + 1/|z| − 1
)

, |z| > 1,

(1 + �{τn Φn(0)})
(

1 − 2
1 + 1/|z|

)
, |z| < 1.

In particular, gn(z) �= 0 for |z| �= 1. If limn→∞(1 + �{τn Φn(0)})1/n = 1, then

(20) lim
n→∞

|wn(z)gn(z)|1/n = 1,

uniformly on compact subsets of C \ T, where C = C ∪ {∞}.

Proof. Using (15) with k = n, it follows that

gn(z) =
1
zn

∫
ζnwn(ζ)
1 − ζ/z

dσ(ζ) =
τn

zn

∫
τn w∗

n(ζ)
1 − ζ/z

dσ(ζ),

which is the first part of (16), since w∗
n(z) = znwn(1/z) and τn w∗

n(z) = wn(z).
Hence,

−τnzngn(z) = −
∫

wn(ζ)
1 − ζ/z

dσ(ζ).

Using (15) with k = 1, we have

gn(1/z) = z

∫
ζwn(ζ)
1 − ζz

dσ(ζ) = −
∫

wn(ζ)
1 − ζ/z

dσ(ζ),

and we obtain the second relation in (16).
Multiplying the first equality in (15) by wn(z) and using (13), formula (17)

readily follows in view of the fact that wn(0) τn ‖Φn‖ = 1 + τn Φn(0).
For |ζ| = 1 and |z| �= 1, write ζ/z = reiθ. Then

�
{

1
1 − ζ/z

}
=

1 − r cos θ

1 − 2 r cos θ + r2
=

1 − rt

1 − 2 rt + r2
, t ∈ [−1, 1].

The function on the right-hand side increases with t when r < 1 and decreases
when r > 1. Therefore,

�
{

1
1 − ζ/z

}
≤ 1

1 + 1/|z| <
1
2
, |z| < 1,

and
1
2

<
1

1 + 1/|z| ≤ �
{

1
1 − ζ/z

}
, |z| > 1.
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Let |z| > 1. It follows from (17) that

|wn(z)gn(z)| ≤ |1 + τn Φn(0)| + 1
1 − 1/|z|

∫
|wn(ζ)|2dσ(ζ).

Direct calculations give∫
|wn(ζ)|2dσ(ζ) = 2 (1 + �{τn Φn(0)}) .

Thus,

|wn(z)gn(z)| ≤ |1 + τn Φn(0)|
(

1 +
2

1 − 1/|z|

)
, |z| > 1.

On the other hand,

|wn(z)gn(z)| ≥ |�{wn(z)gn(z)}|

=
∣∣∣∣∫ |wn(ζ)|2�

{
1

1 − ζ/z

}
dσ(ζ) − (1 + �{τn Φn(0)})

∣∣∣∣
≥ 2

1 + �{τn Φn(0)}
1 + 1/|z| − (1 + �{τn Φn(0)})

= (1 + �{τn Φn(0)})
(

2
1 + 1/|z| − 1

)
, |z| > 1.

For |z| < 1, proceeding analogously, one obtains

|wn(z)gn(z)| ≤ |z|
1 − |z|

∫
|wn(ζ)|2dσ(ζ) + |1 + τn Φn(0)|

≤ |1 + τn Φn(0)|
(

1 +
2

1 − |z|

)
and

|wn(z)gn(z)| ≥ |�{wn(z)gn(z)}|

=
∣∣∣∣∫ |wn(ζ)|2�

{
1

1 − ζ/z

}
dσ(ζ) − (1 + �{τn Φn(0)})

∣∣∣∣
≥ (1 + �{τn Φn(0)}) − 2

1 + �{τn Φn(0)}
1 + 1/|z|

= (1 + �{τn Φn(0)})
(

1 − 2
1 + 1/|z|

)
.

These are the inequalities (18) and (19).
The fact that gn(z) �= 0 for |z| �= 1 follows from the lower bounds in (19),

since �{τnΦn(0)} > −1 and the factors in parentheses are positive. The limit (20)
is an immediate consequence of the inequalities in (18) and (19) under the given
conditions. �

The following integral formulae are the key to obtaining the asymptotic behavior
of {sn,m} as n → ∞ discussed in Section 5 below.
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Lemma 4. Let n ∈ N, m ∈ {0, 1, . . . , n − 1}. We have

(21) sn,m(z)gn(z) − 1 =
∫

sn,m(ζ)wn(ζ)
1 − ζ/z

dσ(ζ), |z| �= 1.

Set sn,m = sn,m,1 + sn,m,2, where sn,m,1 contains the first m + 1 terms of sn,m.
Then

(22) sn,m,2(z)gn(z) − 1 =
zm+1gn(z)

2πi

∫
γR

dζ

ζm+1gn(ζ)(ζ − z)
, |z| > R,

and

(23) sn,m,1(z)gn(z) − 1 =
zm+1gn(z)

2πi

∫
γr

dζ

ζm+1gn(ζ)(z − ζ)
, |z| < r,

where γR is any positively oriented circle centered at the origin of radius R > 1 and
γr is any positively oriented circle centered at the origin of radius r < 1.

Proof. Combining the first equality in (15), formula (13) with p = sn,m, and the
last equality in Lemma 1, we obtain

sn,m(z)gn(z) =
∫

sn,m(ζ)wn(ζ)
1 − ζ/z

dσ(ζ) − τn ‖Φn‖ sn,m(0)

=
∫

sn,m(ζ)wn(ζ)
1 − ζ/z

dσ(ζ) + 1,

which is (21).
According to (16), zngn(z) = ‖Φn‖(1+o(1)), z → ∞. On the other hand, relation

(14) with L(z) = zn−m gives us that∫
sn,m(ζ)wn(ζ)

1 − ζ/z
dσ(ζ) = O

(
1/zn−m

)
, z → ∞.

Consequently, sn,m(z) − 1/gn(z) = O(zm), z → ∞. Therefore, we have

sn,m(z) − 1/gn(z)
zm+1

= O(1/z), z → ∞,

and the left-hand side is analytic outside the unit circle because gn(z) �= 0 for
|z| �= 1. Making use of Cauchy’s integral formula and Cauchy’s theorem, we obtain

sn,m(z) − 1
gn(z)

zm+1
=

1
2πi

∫
γR

sn,m(ζ) − 1/gn(ζ)
ζm+1(z − ζ)

dζ

=
1

2πi

∫
γR

sn,m(ζ)
ζm+1(z − ζ)

dζ +
1

2πi

∫
γR

dζ

ζm+1gn(ζ)(ζ − z)

=
sn,m,1(z)

zm+1
+

1
2πi

∫
γR

dζ

ζm+1gn(ζ)(ζ − z)
.

Rearranging this formula gives (22).
In order to prove (23), let us show that the function

sn,m(z) − 1/gn(z)
zm+1
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is analytic inside the unit circle. In fact, since gn(z) �= 0 whenever |z| �= 1, it can
only have a singularity at z = 0 which is not the case since, according to (14) with
L(z) = z−m, we know that (see also (21))∫

sn,m(ζ)wn(ζ)
1 − ζ/z

dσ(ζ) = O
(
zm+1

)
, z → 0.

Applying Cauchy’s integral formula and Cauchy’s theorem, it follows that

sn,m(z) − 1
gn(z)

zm+1
=

1
2πi

∫
γr

sn,m(ζ) − 1/gn(ζ)
ζm+1(ζ − z)

dζ

=
1

2πi

∫
γr

sn,m(ζ)
ζm+1(ζ − z)

dζ +
1

2πi

∫
γr

dζ

ζm+1gn(ζ)(z − ζ)

=
sn,m,2(z)

zm+1
+

1
2πi

∫
γr

dζ

ζm+1gn(ζ)(ζ − z)

and (23) readily follows. �

From the proof of Lemma 4, we obtain

(24)
1/gn(z) = sn,m,2(z) + O(zm), z → ∞,

1/gn(z) = sn,m,1(z) + O(zm+1), z → 0.

Keeping in mind that sn,m = sn,m,1 + sn,m,2, relations (24) are the analog in this
setting of (2) and could have been taken as the starting point for defining the poly-
nomials sn,m. Having two points to interpolate explains the need for the parameter
m and the richer structure of the Stieltjes-type polynomials when compared with
the construction on the real line.

With the aid of Lemma 4, we can reduce the asymptotic behavior of the polyno-
mials sn,m to that of the second type functions gn which are defined, independently
of the first, in terms of the para-orthogonal polynomials. The asymptotic properties
of para-orthogonal polynomials are easy consequences of the corresponding results
for orthonormal polynomials (cf. [4]). For convenience of the reader and easy refer-
ence, we state these properties in the form of lemmas in Section 4. Nonetheless, to
our knowledge, equation (26) below is new under the assumption that σ ∈ RegT.
The main part of the following section is devoted to the study of the asymptotics
of the second type functions.

4. Asymptotics of second type functions

Throughout this section, we will for brevity use the notation

lim
n→∞

fn(z) = f(z), K ⊂ U,

which stands for uniform convergence of the sequence of functions {fn}, n ∈ N, to
f for z varying in any given compact subset K of a specified open set U .

Let us recall some important classes of measures. A measure σ supported on the
unit circle is said to belong to the class Reg if

lim
n→∞

κ1/n
n = 1/cap(S(σ)),
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where cap(S(σ)) denotes the logarithmic capacity of the support S(σ) of σ. For
more details on this class of measures and equivalent formulations of the defining
condition; see Theorem 3.1.1 in [26]. We are interested in an important subclass,
which will be denoted by σ ∈ RegT, for which (cf. [24], Corollary 5.2.2)

(25) lim
n→∞

κ1/n
n = 1 = 1/cap(T).

In this case, the condition above is equivalent to (see [26])

lim
n→∞

|ϕn(z)|1/n = |z|, K ⊂ C \ D,

where D = {z ∈ C : |z| ≤ 1}. Recall that D = {z ∈ C : |z| < 1}.
Another important class of measures is that for which

lim
n→∞

Φn(0) = 0.

This condition is equivalent (see Theorem 1.7.4 and the historical remark concerning
this theorem on page 107 in [25], Part I) to

lim
n→∞

κn+1

κn
= 1, lim

n→∞

ϕn+1(z)
ϕn(z)

= z, K ⊂ C \ D,

and

lim
n→∞

ϕ∗
n(z)

ϕn(z)
= 0, K ⊂ C \ D

(among other relations). E. A. Rakhmanov proved that if σ′ > 0 almost everywhere
on the unit circle, then limn→∞ Φn(0) = 0 (see [23] and the references therein for
an historic background).

We also consider the Szegő class of measures. We say that σ ∈ S if log σ′ ∈ L1(T).
In this case (see, for example, Theorem 2.4.1 in [25], Part I)

lim
n→∞

ϕ∗
n(z) =

1
Sσ(z)

, K ⊂ D,

which is equivalent to

lim
n→∞

ϕn(z)
zn

=
1

Sσ(1/z)
= Sσ(z), K ⊂ C \ D,

where

Sσ(z) = exp
{

1
4π

∫
T

ζ + z

ζ − z
log σ′(ζ)|dζ|

}
, z �∈ T.

Obviously, σ ∈ S implies that σ′ > 0 almost everywhere on T which, in turn,
yields σ ∈ RegT. These classes of measures have in common that for all of them
S(σ) = T. Many of the results that follow may be adapted to more general classes of
measures whose support is contained (strictly) in T, but following this trail would
lead us too far away from our main objectives.

Lemma 5. If σ ∈ RegT, then (20) holds. Moreover,

(26) lim
n→∞

|wn(z)|1/n =

⎧⎨⎩ |z|, K ⊂ C \ D,

1, K ⊂ D,
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and

(27) lim
n→∞

|gn(z)|1/n =

⎧⎨⎩ 1/|z|, K ⊂ C \ D,

1, K ⊂ D.

Proof. Notice that |Φn(0)| < 1, which implies that

lim sup
n→∞

|1 + τn Φn(0)|1/n ≤ 21/n = 1.

On the other hand,

|1 + �{τn Φn(0)}| ≥ 1 − |Φn(0)| =
1 − |Φn(0)|2
1 + |Φn(0)|

≥ 1
2

(
1 − |Φn(0)|2

)
=

κ2
n−1

2 κ2
n

,

and σ ∈ RegT means that limn→∞ κn
1/n = 1, so we also have

lim inf
n→∞

(1 + �{τn Φn(0)})1/n = 1.

Thus, limn→∞(1 + �{τn Φn(0)})1/n = 1 and (20) follows.
Let |z| > 1. Since

|wn(z)|
|z|n =

|ϕn(z)|
|z|n

(
1 +

|Φ∗
n(z)|

|Φn(z)|

)
≤ 2

|ϕn(z)|
|z|n , |z| ≥ 1,

it follows that

lim sup
n→∞

|wn(z)|1/n

|z| ≤ 1, K ⊂ C \ D.

According to (16) and the Cauchy-Schwarz inequality, we have

|zngn(z)| ≤ 2
1 − 1/|z|

∫
|ϕn(ζ)| dσ(ζ) ≤ 2 ‖σ‖1/2

1 − 1/|z| , |z| > 1,

where ‖σ‖ denotes the total mass of σ. Consequently,

|z| lim sup
n→∞

|gn(z)|1/n ≤ 1, K ⊂ C \ D.

Combining the last inequality and (20), we get

lim inf
n→∞

|wn(z)|1/n

|z| = lim inf
n→∞

|wn(z)gn(z)|1/n

|z||gn(z)|1/n
=

lim
n→∞

|wn(z)gn(z)|1/n

|z| lim sup
n→∞

|gn(z)|1/n
≥ 1,

uniformly on compact subsets, and the first part of (26) follows. This, together
with (20), gives us the first part of (27).

The second parts of (26) and (27) follow from the first ones, using the formulas
gn(1/z) = −τnzngn(z) and τnw∗

n = wn, which we have seen before. �

Lemma 6. If σ is such that limn→∞ Φn(0) = 0, then, for all j ∈ Z and f contin-
uous on T, it holds that

(28) lim
n→∞

∫
f(z) ϕn(z) ϕ∗

n+j(z) dσ(z) = 0.
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Consequently, for all f continuous on T, we have

(29) lim
n→∞

∫
f(z)|wn(z)|2dσ(z) =

1
π

∫ 2π

0

f(z) |dz|.

In particular,

(30) lim
n→∞

wn(z) gn(z) =

⎧⎨⎩ 1, K ⊂ C \ D,

−1, K ⊂ D.

Proof. We first show (28). Because of the Weierstrass theorem, it suffices to show
that (28) holds for f(z) = zk, k ∈ Z. Let k = 0. If j ≤ −1, then by orthogonality∫

ϕn(z)ϕ∗
n+j(z) dσ(z) = 0,

(for all sufficiently large n) which implies (28) for this value of k.
Let us assume that when k = 0, (28) is true for all j ≤ l − 1 and let us show

that it is also fulfilled for j = l. Using the recurrence formula

κn+l−1 ϕ∗
n+l(z) = κn+l ϕ

∗
n+l−1(z) + ϕn+l(0) z ϕn+l−1(z),

we have∫
ϕn(z)ϕ∗

n+l(z) dσ(z) =
κn+l

κn+l−1

∫
ϕn(z)ϕ∗

n+l−1(z) dσ(z)

+ Φn+l(0)
κn+l

κn+l−1

∫
z ϕn(z)ϕ∗

n+l−1(z) dσ(z).

Since limn→∞ κn+l/κn+l−1 = 1 and limn→∞ Φn(0) = 0, using the induction hy-
pothesis and the Cauchy-Schwarz inequality on the last integral, we obtain (28)
when j = l. Thus, (28) is true when k = 0.

Now, let us assume that (28) holds for all |k| ≤ l−1 and for all j ∈ Z, and let us
show that it is also satisfied when |k| = l. For the case k = l, from the recurrence
formula

κn−1 ϕn(z) = κn z ϕn−1(z) + ϕn(0)ϕ∗
n−1(z),

we find that∫
zl ϕn(z) ϕ∗

n+j(z) dσ(z) =
∫

zl−1 ϕn(z)
z

ϕ∗
n+j(z) dσ(z)

=
κn

κn−1

∫
zl−1 ϕn−1(z)ϕ∗

n+j(z) dσ(z)

+ Φn(0)
κn

κn−1

∫
zl ϕ∗

n−1(z) ϕ∗
n+j(z) dσ(z).

Using the induction hypothesis and the Cauchy-Schwarz inequality, we obtain (28)
when k = l for all j ∈ Z. The proof when k = −l is analogous and we leave it to
the reader. Thus, we conclude that (28) is true.

In order to prove (29), it suffices to show that for all k ∈ Z,

lim
n→∞

∫
zk|wn(z)|2 dσ(z) =

1
π

∫ 2π

0

zk |dz|,
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and apply the Weierstrass theorem. Since

|wn(z)|2 = 2 |ϕn(z)|2 + 2�
{
τn ϕ∗

n(z) ϕn(z)
}

, |z| = 1,

and limn→∞ Φn(0) = 0 implies that (see Theorem 5 in [17])

lim
n→∞

∫
zk |ϕn(z)|2 dσ(z) =

1
2π

∫ 2π

0

zk |dz|,

formula (29) follows from (28).
According to (17) and (29),

lim
n→∞

wn(z) gn(z) + 1 = lim
n→∞

∫ |wn(ζ)|2
1 − ζ/z

dσ(ζ) =
2

2πi

∫
T

dζ

ζ (1 − ζ/z)
.

Applying the residue theorem to the last integral we arrive at (30) in the sense of
pointwise limit. It is easy to see that the family of functions{∫ |wn(ζ)|2

1 − ζ/z
dσ(ζ)

}
n∈N

is uniformly bounded on compact subsets of C \ T; therefore, the limit is uniform
on compact subsets of C \ T. �

A result analogous to (28) appears as Proposition 9.4.4 in [25]. The author
assumes that σ′ > 0 a.e. on T and the conclusion is drawn for all f ∈ L∞. To be
precise, his proof goes through continuous functions and for that part only uses the
fact that limn→∞ Φn(0) = 0. As a matter of fact, under that stronger assumption,
limit (29) holds for all f ∈ L∞ as well.

Lemma 7. If σ is such that limn→∞ Φn(0) = 0, then

(31) lim
n→∞

wn+1(z)
wn(z)

=

⎧⎨⎩ z, K ⊂ C \ D,

1, K ⊂ D,

and

(32) lim
n→∞

gn+1(z)
gn(z)

=

⎧⎨⎩ 1/z, K ⊂ C \ D,

−1, K ⊂ D.

Proof. We have

wn+1(z)
wn(z)

=
ϕn+1(z)
ϕn(z)

1 + τn ϕ∗
n+1(z)/ϕn+1(z)

1 + τn ϕ∗
n(z)/ϕn(z)

, |z| > 1,

and
wn+1(z)
wn(z)

=
ϕ∗

n+1(z)
ϕ∗

n(z)
ϕn+1(z)/ϕ∗

n+1(z) + τn

ϕn(z)/ϕ∗
n(z) + τn

, |z| < 1.

Using the relations equivalent to limn→∞ Φn(0) = 0, (31) follows.
Since

gn+1(z)
gn(z)

=
wn(z)

wn+1(z)
wn+1(z) gn+1(z)

wn(z) gn(z)
,

the second statement is a combination of the first and (30). �
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Lemma 8. If σ ∈ S, then

(33) lim
n→∞

wn(z)
zn

=
1

Sσ(1/z)
, K ⊂ C \ D,

and

(34) lim
n→∞

τnwn(z) = S−1
σ (z), K ⊂ D.

Consequently,

(35) lim
n→∞

zngn(z) = Sσ(1/z) = S−1
σ (z), K ⊂ C \ D,

and

(36) lim
n→∞

τngn(z) = −Sσ(z), K ⊂ D.

Proof. Notice that σ ∈ S implies that σ′ > 0 a.e. on T. Therefore, by Rakhmanov’s
theorem, limn→∞ Φn(0) = 0 and we can use all the equivalent forms of this condi-
tion. The rest of the proof is an immediate consequence of the asymptotic relations
satisfied by orthonormal polynomials corresponding to measures in S, (30), and the
formulae

wn(z) = ϕn(z)(1 + τn Φ∗
n(z)/Φn(z)), |z| > 1,

wn(z) = ϕ∗
n(z)(Φn(z)/Φ∗

n(z) + τn), |z| < 1.

�

5. Asymptotics of Stieltjes-type polynomials

In the sequel, we assume that m depends on n, i.e., m = mn. We denote
lim supn→∞ mn/n = ρ and lim infn→∞ mn/n = ρ. Obviously, 0 ≤ ρ ≤ ρ ≤ 1.

Lemma 9. Let σ ∈ RegT. Then, for each compact set K,

(37) lim sup
n→∞

‖sn,mn,2 gn − 1‖1/n
K ≤ ‖1/z‖1−ρ

K , K ⊂ C \ D,

and

(38) lim sup
n→∞

‖sn,mn,1 gn − 1‖1/n
K ≤ ‖z‖ρ

K , K ⊂ D.

If 0 < ρ ≤ ρ < 1, then for any ε > 0 there exists n0, such that for n ≥ n0 the zeros
of sn,mn,1 and sn,mn,2 are in {z : |z| ≥ 1 − ε} and {z : |z| ≤ 1 + ε}, respectively.

Proof. For brevity, we will write m instead of mn throughout the proof. Fix a
compact subset K of C \D. Take the circle γR in Lemma 4 of radius R sufficiently
close to 1 so that K lies in the unbounded component of the complement of γR.
Thus, (22) is satisfied for all z ∈ K and

|sn,m,2(z)gn(z) − 1| ≤ C

(
|z|
R

)m+1 |gn(z)|
inf

ζ∈γR

|gn(ζ)| ,

where C is a constant independent of n. Using (27), given ε > 0, for all n ≥ n0(ε),
we have

|gn(z)| ≤ 1
(|z| − ε)n

, inf
ζ∈γR

|gn(ζ)| ≥ 1
(R + ε)n

.
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Therefore, for all n ≥ n0(ε) and z ∈ K,

|sn,m,2(z)gn(z) − 1| ≤ C
|z|m+1

(|z| − ε)n

(R + ε)n

Rm+1

=
C

|z|n−m−1(1 − ε/|z|)n

(R + ε)n

Rm+1
;

that is,

‖sn,m,2(z) gn(z) − 1‖K ≤ C
‖1/z‖n−m−1

K

(1 − ε‖1/z‖K)n

(R + ε)n

Rm+1
.

Taking the nth root and letting n → ∞, ε → 0, R → 1, gives (37). The fact that
(37) also holds on compact subsets of C\D follows immediately from the maximum
modulus principle. The proof of (38) is analogous and we leave it to the reader.

Notice that when 0 < ρ ≤ ρ < 1, (37) and (38) yield that

(39) lim
n→∞

sn,m,1(z) gn(z) = 1, lim
n→∞

sn,m,2(z) gn(z) = 1,

uniformly on compact subsets of D and C \ D, respectively. Since gn has no poles
in C \T, (39) and the Hurwitz theorem imply the assertion concerning the zeros of
sn,m,1 and sn,m,2. �

The limit behavior of the zeros of the polynomials sn,mn,1 and sn,mn,2 is essential
in the remaining part of this paper. It is convenient to have a similar result for the
limit case when ρ = 0, ρ = 1 even if this imposes some loss of generality.

Lemma 10. Let σ ∈ S and limn→∞ mn = limn→∞ n − mn = ∞ Then,

(40) lim
n→∞

sn,mn,2(z) gn(z) = 1,

uniformly on compact subsets of C \ D and

(41) lim
n→∞

sn,mn,1(z) gn(z) = 1,

uniformly on compact subsets of D. Consequently, for any ε > 0 there exists n0

such that for n ≥ n0 the zeros of sn,mn,1 and sn,mn,2 are in {z : |z| ≥ 1 − ε} and
{z : |z| ≤ 1 + ε}, respectively.

Proof. The proof is basically the same as the one above. Fix a compact subset K
of C \ D. Take the circle γR in Lemma 4 of radius R sufficiently close to 1 so that
K lies in the unbounded component of the complement of γR. Using (35), there
exists n0(ε), such that for all n ≥ n0(ε) and z ∈ K,

|gn(z)| ≤ C1

|z|n , inf
ζ∈γR

|gn(ζ)| ≥ C2
1

Rn
,

where C1, C2 are positive constants. The representation (22) yields

|sn,m,2(z)gn(z) − 1| ≤ C

(
|R|
|z|

)n−mn+1

,

where C is a constant. Letting n → ∞ shows (40). The property of the zeros of
sn,mn,2 now follows from the Hurwitz theorem. Formula (41) and the property of
the zeros of sn,mn,1 are shown similarly. �

The next result is the key to all subsequent developments in the paper.
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Theorem 2. Let σ ∈ RegT. Then, for each compact set K,

(42) lim sup
n→∞

‖sn,mn
gn − 1‖1/n

K ≤

⎧⎨⎩
‖1/z‖1−ρ

K , K ⊂ C \ D,

‖z‖ρ

K , K ⊂ D.

If 0 < ρ ≤ ρ < 1, then for any ε > 0 there exists n0, such that for n ≥ n0 the zeros
of sn,mn

are in the annulus Aε = {z ∈ C : 1 − ε ≤ |z| ≤ 1 + ε}, and

(43) lim
n→∞

|sn,mn
(z)|1/n =

⎧⎨⎩ |z|, z ∈ C \ D,

1, z ∈ D,

uniformly on compact subsets of the indicated regions.

Proof. As before, we write m instead of mn. Fix a compact subset K of C \D. By
the triangle inequality

‖sn,m gn − 1‖K ≤ ‖sn,m,2 gn − 1‖K + ‖sn,m,1 gn‖K .

Using (37), the first term in the right-hand side of this inequality has nth root
asymptotic behavior as n goes to ∞ equal to the right-hand side of (42). To
conclude the proof it is sufficient to show that the second term also has the same
nth root asymptotic behavior as n tends to ∞.

As mentioned, s∗n,m,1(z) = zmsn,m,1(1/z); then, using the second relation in
(16), we get

(44) sn,m,1(z) gn(z) =
sn,m,1(z)
s∗n,m,1(z)

zm−n

−τn
sn,m,1(1/z) gn(1/z).

Since z ∈ K, 1/z lies in a compact subset of D and, according to (38), the product
of the last two functions in the right-hand side converges uniformly to 1 for z ∈ K.
Hence,

(45) lim
n→∞

‖sn,m,1 gn‖1/n
K = 1.

Writing sn,m,1(z) = cn

∏m
k=1(z − zn,k), we have the expression

sn,m,1(z)
s∗n,m,1(z)

=
cn

cn

m∏
k=1

z − zn,k

1 − zn,k z
.

According to the last assertion of Lemma 9, given ε > 0 there exists n0(ε), such
that for all n ≥ n0 all the zeros of sn,m,1 are of absolute value greater than 1 − ε.
We take ε sufficiently small so that 1/zn,k �∈ K. In the rest of the proof we restrict
our attention to such values of n. If |zn,k| ≥ 1, it is well known and easy to verify,
that ∣∣∣∣ z − zn,k

1 − zn,k z

∣∣∣∣ ≤ 1, z ∈ K.

Let us consider the remaining zn,k for which 1 − ε ≤ |zn,k| < 1. Then,

|1/zn,k| ≤ (1 − ε)−1

and
|1/zn,k − zn,k| ≤ (1 − ε)−1 − (1 − ε) = ε(2 − ε)/(1 − ε)
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(the points 1/zn,k, zn,k are symmetric with respect to T). Without loss of generality,
we may assume that ε is chosen so that

inf
z∈K

|z| ≥ (1 + ε1/2(2 − ε))/(1 − ε).

Hence,
inf
z∈K

|z − 1/zn,k| ≥ inf
z∈K

|z| − |1/zn,k| ≥ ε1/2(2 − ε)/(1 − ε).

For such points zn,k and selection of ε, it follows that∣∣∣∣ z − zn,k

1 − zn,k z

∣∣∣∣ ≤ 1
|zn,k|

|z − 1/zn,k| + |1/zn,k − zn,k|
|z − 1/zn,k|

≤ 1 + ε1/2

1 − ε
.

Putting all of this together, we find∥∥∥∥∥sn,m,1

s∗n,m,1

∥∥∥∥∥
K

≤
(

1 + ε1/2

1 − ε

)m

,

which implies that

lim sup
n→∞

∥∥∥∥∥sn,m,1

s∗n,m,1

∥∥∥∥∥
1/n

K

≤
(

1 + ε1/2

1 − ε

)ρ

.

Letting ε → 0, we obtain

(46) lim sup
n→∞

∥∥∥∥∥sn,m,1

s∗n,m,1

∥∥∥∥∥
1/n

K

≤ 1.

To conclude this part of the proof, using (44)–(46), it follows that

lim sup
n→∞

‖sn,m,1gn‖1/n
K ≤ ‖1/z‖1−ρ

K ,

as needed.
The case of compact subsets K ⊂ D is treated analogously. We start with

‖sn,m gn − 1‖K ≤ ‖sn,m,1 gn − 1‖K + ‖sn,m,2 gn‖K .

The first term in the right-hand side behaves correctly according to (38). To
show that the second term follows the same asymptotics, we define s∗n,m,2(z) =
znsn,m,2(1/z) and, due to the second relation in (16), we obtain

sn,m,2(z) gn(z) =
sn,m,2(z)
s∗n,m,2(z)

sn,m,2(1/z) gn(1/z)
−τn

.

From (37), we have
lim sup

n→∞
‖sn,m,2 gn‖1/n

K = 1,

and all we need to show is that

lim sup
n→∞

∥∥∥∥∥sn,m,2

s∗n,m,2

∥∥∥∥∥
1/n

K

≤ ‖z‖ρ

K .

Indeed, this is the case since sn,m,2(z) = zm+1
∏n−m−1

k=1 (z − zn,k) has a zero at
z = 0 of multiplicity at least m + 1 and, therefore,

sn,m,2(z)
s∗n,m,2(z)

= zm+1
n−m−1∏

k=1

z − zn,k

1 − zn,k z
.
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The first factor in the right-hand side gives us

lim
n→∞

‖zm+1‖1/n
K ≤ ‖z‖ρ

K ,

and one can show that

lim sup
n→∞

∥∥∥∥∥
n−m−1∏

k=1

z − zn,k

1 − zn,k z

∥∥∥∥∥
1/n

K

≤ 1

in a similar fashion as we did above with the other Blaschke product.
To conclude, when 0 < ρ ≤ ρ < 1, (42) implies that

lim
n→∞

sn,mn
(z) gn(z) = 1, lim

n→∞
|sn,mn

(z) gn(z)|1/n = 1,

uniformly on compact subsets of C\T. The first one of these limits and the Hurwitz
theorem give the statement concerning the zeros of sn,m. The second limit together
with (27) imply (43). �

The following theorem is the analogue of Theorem 2 under the assumptions of
Lemma 10. The proof is similar to that of Theorem 2 and therefore is omitted.

Theorem 3. Let σ ∈ S and limn→∞ mn = limn→∞n − mn = ∞. Then,

(47) lim
n→∞

sn,mn
(z) gn(z) = 1,

uniformly on compact subsets of C\T. Consequently, for any ε > 0 there exists n0,
such that for n ≥ n0 the zeros of sn,mn

are in the annulus Aε = {z ∈ C : 1 − ε ≤
|z| ≤ 1 + ε}.

Theorem 2 shows that the zeros of the Stieltjes-type polynomials may only ac-
cumulate on T when σ ∈ RegT, ρ > 0, ρ < 1. This assertion is complemented by
Theorem 4 below, whose formulation requires some additional definitions.

It is well known (see [24], Section 3.3) that among all probability measures λ
supported on a compact set K, there is a probability measure λK (which is unique
if cap K > 0) with support in K, called the extremal or equilibrium measure of K,
which minimizes the energy

I(ν) =
∫ ∫

log
1

|z − t| dλ(z) dλ(t).

Let P (λ; z) = −
∫

log |z − t| dλ(t) be the potential of the measure λ. There exists
a constant F , called the equilibrium constant of K, such that

(48)

⎧⎨⎩
P (λK ; z) ≤ F, z ∈ C,

P (λK ; z) = F, z ∈ K \ A with capA = 0.

It may be shown that (48) characterizes the equilibrium measure and that the
equilibrium constant F is precisely the minimal energy I(λK). We also recall that
cap K = exp{−F}.

If we take K = T, then F = 0 and λT = dθ/(2π), since

P (dθ/(2π); z) =
1
2π

∫ 2π

0

1
log |z − eiθ| dθ =

⎧⎨⎩
− log |z|, |z| ≥ 1,

0, |z| < 1,

which solves the equilibrium problem (48) for K = T.
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Let ρn and ρ be finite Borel measures on C. By ρn
∗−→ ρ, n → ∞, we denote

the weak∗ convergence of ρn to ρ as n tends to infinity. This means that for every
continuous function f on C,

lim
n→∞

∫
f(x) dρn(x) =

∫
f(x) dρ(x).

For a given polynomial T , we denote by ΘT the normalized zero counting measure
of T ; that is,

ΘT =
1

deg T

∑
ξ: T (ξ)=0

δξ.

The sum is taken over all the zeros of T and δξ denotes the Dirac measure concen-
trated at ξ.

Theorem 4. Let σ ∈ RegT and 0 < ρ ≤ ρ < 1. Then

ΘSn,mn

∗−→ dθ

2π
, n → ∞.

Proof. Set ΘSn,mn
≡ Θn. All the measures Θn are probability measures. Let ∆ ⊂ N

be a subsequence of indices, such that

(49) Θn
∗−→ Θ, n ∈ ∆, n → ∞.

It suffices to show that Θ ≡ λT for any such sequence ∆ of indices. We also may
assume that the sequence mn/n is convergent when n ∈ ∆.

According to Theorem 2, the support of Θ is contained in T. Taking (43) and
(25) into account, we have that

lim
n∈∆

P (Θn; z) = − lim
n∈∆

1
n

log |Sn,mn
| = P (λT; z),

uniformly on compact subsets of C \ T. On the other hand, from (49) one obtains

lim
n∈∆

P (Θn; z) = P (Θ; z),

uniformly on compact subsets of C \ T. Thus, P (Θ; z) = P (λT; z) except for a set
of Lebesgue measure zero in the complex plane; therefore, from Theorem 3.7.4 in
[24], we obtain that Θ ≡ λT as we wanted to show. �

For the other two classes of measures, we have the following result.

Corollary 1. If σ is such that limn→∞ Φn(0) = 0 and 0 < ρ ≤ ρ < 1, then

(50) lim
n→∞

sn+1,mn
(z)

sn,mn
(z)

=

⎧⎨⎩ z, z ∈ C \ D,

−1, z ∈ D,

uniformly on compact subsets of the indicated regions. When σ∈S, and limn→∞ mn

= limn→∞ n − mn = ∞, we obtain

(51) lim
n→∞

τnsn,mn
(z) = −S−1

σ (z),

uniformly on compact subsets of D and

(52) lim
n→∞

sn,mn
(z)

zn
=

1
Sσ(1/z)

= Sσ(z),

uniformly on compact subsets of C \ D.



STIELTJES-TYPE POLYNOMIALS ON THE UNIT CIRCLE 991

Proof. We write again m instead of mn throughout the proof. Using (42) or (47),
depending on the assumptions, we have

lim
n→∞

sn,m(z) gn(z) = 1,

uniformly on compact subsets of C \ T. For the proof of (50), notice that

lim
n→∞

sn+1,m(z)
sn,m(z)

= lim
n→∞

sn+1,m(z) gn+1(z)
sn,m(z) gn(z)

gn(z)
gn+1(z)

= lim
n→∞

gn(z)
gn+1(z)

,

and we only have to use (32) to conclude what we need. For (51), since

lim
n→∞

τnsn,m(z) = lim
n→∞

sn,m(z) gn(z)
1

τngn(z)
= lim

n→∞

1
τngn(z)

,

use (36), whereas to demonstrate (52), write

lim
n→∞

sn,m(z)
zn

= lim
n→∞

sn,m(z) gn(z)
1

zn gn(z)
= lim

n→∞

1
zn gn(z)

and apply (35). �

6. Convergence of quadrature formulae

Fix n ∈ N, τn ∈ T, and m ∈ {0, 1, . . . , n − 1}. Let L2n,m be the polynomial of
degree at most 2n given by

(53)
L2n,m(z)

zn
=

∫
ζ + z

ζ − z

(
sn,m(z) w∗

n(z)
zn

− sn,m(ζ) w∗
n(ζ)

ζn

)
dσ(ζ).

We denote by

Fσ(z) =
∫

ζ + z

ζ − z
dσ(ζ)

the Carathéodory function associated with the measure σ and define

R2n,m(z) =
L2n,m(z)

sn,m(z) w∗
n(z)

.

Theorem 5. Assume that either σ ∈ RegT and 0 < ρ ≤ ρ < 1, or σ ∈ S and
limn→∞ mn = limn→∞ n − mn = ∞. Then, for each compact set K,

(54) lim sup
n→∞

‖Fσ − R2n,mn
‖1/n

K ≤

⎧⎨⎩
‖1/z‖2−ρ

K , K ⊂ C \ D,

‖z‖1+ρ

K , K ⊂ D.

Proof. Formula (53) may be expressed as

sn,m(z) w∗
n(z) Fσ(z) − L2n,m(z) = zn

∫
ζ + z

ζ − z

sn,m(ζ) w∗
n(ζ)

ζn
dσ(ζ).

Since (ζ + z)/(ζ − z) = 1 + 2z/(ζ − z), using the identity wn(ζ) = w∗
n(ζ)/ζn and

orthogonality, we have

(55)
sn,m(z) w∗

n(z) Fσ(z) − L2n,m(z) = −2 zn

∫
sn,m(ζ) wn(ζ)

1 − ζ/z
dσ(ζ)

= 2 zn (1 − sn,m(z) gn(z))
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for z �∈ T, where we have used (21) in the second equality. We may rewrite (55) as

(56) Fσ(z) − R2n,m(z) =
2 zn gn(z)

sn,m(z) gn(z) w∗
n(z)

(1 − sn,m(z) gn(z)), z �∈ T.

Fix a compact set K contained either in D or C \D and choose ε > 0 sufficiently
small, so that the annulus Aε = {z ∈ C : 1− ε ≤ |z| ≤ 1 + ε} does not intersect K.
According to Theorem 2 or 3, depending on the hypothesis, there exists n0, such
that for all n ≥ n0 all the zeros of sn,m lie in Aε. We will only consider such values
of n and recall that m = mn.

Using the definition of w∗
n, it is easy to verify that (26) is equivalent to

(57) lim
n→∞

|w∗
n(z)|1/n =

⎧⎨⎩ |z|, z ∈ C \ D,

1, z ∈ D,

uniformly on compact subsets of the indicated regions. On the basis of the error
formula (56), (54) follows directly from (27), (42), (57), and (47) (when working
with the second group of assumptions). �

Since the zeros of wn are simple and lie on T, the same is true for the zeros of
w∗

n. Regarding the zeros of sn,m, all we know is that they accumulate on T under
appropriate assumptions, so they may be multiple, coincide with some zeros of w∗

n,
or lie outside T. Nonetheless (see Lemma 1), sn,m(0) = −τn/‖Φn‖ �= 0. Therefore,
we have

Wn(z) Sn,m(z) =
M∏
i=1

(z − zn,i)αi , α1 + · · · + αM = 2n,

where zn,i �= 0 for i = 1, . . . , M , and Wn is w∗
n normalized to be monic.

Lemma 11. The rational function R2n,m admits the representation

R2n,m(z) =
M∑
i=1

αi−1∑
j=0

λi,j g(j)
z (zn,i),

where gz(w) = (w + z)/(w − z).

Proof. Consider the following decomposition into simple fractions

R2n,m(z)
2z

=
a

2z
−

M∑
i=1

αi−1∑
j=0

j! λi,j

(z − zn,i)j+1
.

Certainly, a, M, αi, and λi,j depend on n and m. However, since for the time being
these indices remain fixed, we will for notational simplicity omit indicating this
dependence.

Set hz(w) := 1/(z − w). Taking derivatives with respect to w, we find that
h

(j)
z (w) = j!/(z − w)j+1. With this notation, the previous formula may be written

as

R2n,m(z) = a − 2z

M∑
i=1

αi−1∑
j=0

λi,j h(j)
z (zn,i).

In particular, R2n,m(0) = a and R2n,m(∞) = a − 2
∑M

i=1 λi,0.
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The interpolation conditions satisfied by R2n,m with respect to Fσ at 0 and ∞
imply that R2n,m(0) = Fσ(0) and R2n,m(∞) = Fσ(∞); therefore,

R2n,m(0) + R2n,m(∞) = 2

(
a −

M∑
i=1

λi,0

)
= Fσ(0) + Fσ(∞) = 0.

It follows that

(58) a =
M∑
i=1

λi,0.

Notice that gz(w) = 1−2zhz(w). Taking derivatives with respect to w, we obtain
g
(j)
z (w) = −2zh

(j)
z (w), j ≥ 1. With this notation and (58), we obtain

R2n,m(z) = a − 2z

M∑
i=1

λi,0 hz(zn,i) − 2z

M∑
i=1

αi−1∑
j=1

λi,j h(j)
z (zn,i)

= a −
M∑
i=1

λi,0(1 − gz(zn,i)) +
M∑
i=1

αi−1∑
j=1

λi,jg
(j)
z (zn,i)

=
M∑
i=1

αi−1∑
j=0

λi,jg
(j)
z (zn,i). �

Define the quadrature formula

(59) Ĩ2n(f) =
M∑
i=1

αi−1∑
j=0

λi,j f (j)(zn,i)

determined by the representation of R2n,m in Lemma 11. Let γr = {z : |z| = r}.
We also denote the corresponding circle with positive orientation by γr.

Theorem 6. Let f be analytic in A = {z : r1 < |z| < r2}, r1 < 1 < r2. Suppose
that the zeros zn,i, i = 1, . . . , M, of Wn Sn,m lie in A. Then

(60) Iσ(f) − Ĩ2n(f) = − 1
2πi

∫
γ

(Fσ(ζ) − R2n,m(ζ))
f(ζ)
2 ζ

dζ,

where γ = γr′
2
− γr′

1
, r1 < r′1 < |z| < r′2 < r2 and r′1 < |zn,i| < r′2.

Proof. Let f be analytic in the annulus A. From Cauchy’s integral formula, for all
z with r1 < r′1 < |z| < r′2 < r2, we have

(61) f(z) =
1

2πi

∫
γ

f(ζ)
ζ − z

dζ =
1

2πi

∫
γ

2ζ

ζ − z

f(ζ)
2 ζ

dζ =
1

2πi

∫
γ

ζ + z

ζ − z

f(ζ)
2 ζ

dζ,

where γ = γr′
2
− γr′

1
. Consequently, using Fubini’s theorem,

(62) Iσ(f) =
∫ (

−1
2πi

∫
γ

z + ζ

z − ζ

f(ζ)
2 ζ

dζ

)
dσ(z) = − 1

2πi

∫
γ

Fσ(ζ)
f(ζ)
2 ζ

dζ.

From (61), we also obtain

(63) f (j)(z) = − 1
2πi

∫
γ

g
(j)
ζ (z)

f(ζ)
2 ζ

dζ, j ≥ 0,

for all z with r′1 < |z| < r′2.
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Since the zeros of Sn,m lie in the annulus {z : r′1 < |z| < r′2}, on account of (63)
and the representation of R2n,m in Lemma 11, we obtain

(64)
Ĩ2n(f) =

M∑
i=1

αi−1∑
j=0

λi,j
−1
2πi

∫
γ

g
(j)
ζ (zn,k)

f(ζ)
2 ζ

dζ

=
−1
2πi

∫
γ

R2n,m(ζ)
f(ζ)
2 ζ

dζ.

Finally, formula (60) is the difference between (62) and (64). �

Corollary 2. The quadrature rule (59) is exact in Λn+m,2n−m−1 and therefore
coincides with the interpolatory rule I2n considered in Theorem 1.

Proof. Combining the first equality in (55) and (14), with L(z) = zn−m and L(z) =
1/zm, it follows that

Fσ(z) − R2n,m(z) =
−2zm

sn,m(z)w∗
n(z)

∫
ζn−msn,m(ζ) wn(ζ)

1 − ζ/z
dσ(ζ)

and

Fσ(z) − R2n,m(z) =
−2 zn+m+1

sn,m(z) w∗
n(z)

∫
sn,m(ζ) wn(ζ)

ζm(z − ζ)
dσ(ζ).

Therefore (recall that sn,m(0) w∗
n(0) �= 0),

Fσ(z) − R2n,m(z) =

⎧⎨⎩
O(zm−2n), z → ∞,

O(zn+m+1), z → 0.

Consequently, if L ∈ Λn+m,2n−m−1, then

(65) (Fσ(z) − R2n,m(z))
L(z)
2z

=

⎧⎨⎩
O(1/z2), z → ∞,

O(1), z → 0.

The Laurent polynomial L is analytic in C\{0}. We may apply Theorem 6 with
r1 = 0 and r2 = +∞ and choose r′1 and r′2 sufficiently small and large, respectively,
so that the zeros of Sn,m belong to the set {z : r′1 < |z| < r′2}. Then, formula (60)
implies

(66)

Iσ(L) − Ĩ2n(L) = − 1
2πi

∫
γr′

2

(Fσ(ζ) − R2n,m(ζ))
L(ζ)
2 ζ

dζ

+
1

2πi

∫
γr′

1

(Fσ(ζ) − R2n,m(ζ))
L(ζ)
2 ζ

dζ.

Taking into consideration (65) and the fact that (Fσ(z) − R2n,m(z))L(z)/2z is
analytic in open neighborhoods of {z : |z| ≤ r′1} and {z : |z| ≥ r′2}, we obtain from
Cauchy’s integral formula applied in those open sets that∫

γr′
1

(Fσ(ζ) − R2n,m(ζ))
L(ζ)
2ζ

dζ =
∫

γr′
2

(Fσ(ζ) − R2n,m(ζ))
L(ζ)
2ζ

dζ = 0,

which, together with (66), gives the result. �
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Theorem 7. Let f be analytic in A = {z : r1 < |z| < r2}, r1 < 1 < r2. Assume that
either σ ∈ RegT and 0 < ρ ≤ ρ < 1, or σ ∈ S and limn→∞ mn = limn→∞ n−mn =
∞. Then

(67) lim sup
n→∞

|Iσ(f) − I2n(f)|1/n ≤ max
{

(1/r2)2−ρ, r
1+ρ

1

}
.

Proof. Fix ε > 0. For all sufficiently large n, from (54), we have

‖Fσ − R2n,mn
‖γr′

2
≤ (r′2 − ε)(ρ−2)n,

‖Fσ − R2n,mn
‖γr′

1
≤ (r′1 + ε)(1+ρ)n.

The zeros of Sn,mn
tend to T due to either Theorem 2 or 3. Using (60) and Corollary

2, it follows that

|Iσ(f) − I2n(f)| ≤ 1
2π

∫
γr′

2

∣∣∣∣(Fσ(ζ) − R2n,mn
(ζ))

f(ζ)
2 ζ

∣∣∣∣ |dζ|

+
1
2π

∫
γr′

1

∣∣∣∣(Fσ(ζ) − R2n,mn
(ζ))

f(ζ)
2 ζ

∣∣∣∣ |dζ|

≤ C[(r′2 − ε)(ρ−2)n + (r′1 + ε)(1+ρ)n],

where C is a constant that depends on ‖f(ζ)/(2 ζ)‖γ and the length of γ but is
independent of n. Hence,

|Iσ(f) − I2n(f)|1/n ≤ (2C)1/n max
{

(r′2 − ε)(ρ−2), (r′1 + ε)(1+ρ)
}

.

Taking limits as n goes to ∞ and then letting ε → 0, r′2 → r2, and r′1 → r1, gives
(67). �

Suppose that we have taken a sequence {mn}, n ∈ N, such that ρ = ρ = ρ in the
above theorem. Notice that the two elements under the maximum sign in the right-
hand side of (67) react oppositely as ρ increases from 0 to 1 (for r1, r2 fixed). The
first one increases with ρ and the second one decreases. In the bound we have to take
the largest of the two. Therefore, to obtain the best possible estimate, depending
on the region where f is analytic, we should choose the sequence {mn}, n ∈ N,
appropriately.

When r1r2 = 1, the best possible estimate is obtained for ρ = 1/2. When r1 r2 <
1 we should interpolate more often at ∞ than at 0. The contrary is appropriate
when r1 r2 > 1. The best possible choice of ρ is such that r1+ρ

1 = (1/r2)2−ρ;
that is, ρ = (2 + η)/(1 − η), η = log r1/ log r2. Unfortunately, this choice is not
always possible with ρ ∈ [0, 1]. Therefore, the rule is the following: take a sequence
{mn}, n ∈ N, such that

ρ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (2 + η)/(1 − η) < 0,

(2 + η)/(1 − η), (2 + η)/(1 − η) ∈ [0, 1],

1, (2 + η)/(1 − η) > 1.

The values ρ = 0 and ρ = 1 are only allowed if limn→∞ mn = limn→∞ n−mn = ∞
and σ ∈ S. If this is not the case, then we must take values of ρ close to 0 or 1.
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In order to extend this theorem to non-analytic integrands, it is convenient to
find (non-trivial) families of measures for which the zeros of the Stieltjes-type poly-
nomials lie on T and are simple. This is a nice open problem. Nevertheless, we
have found a number of examples for which either the corresponding Stieltjes-type
polynomials satisfy such nice properties or there is numerical evidence of this good
behavior.

The results of this section provide the foundation for the development of Gauss-
Kronrod-type quadrature rules, referred to as Szegő-Kronrod rules, for the integra-
tion of 2π-periodic functions. A few low-order Szegő-Kronrod rules can be found
in [13]. We are presently developing numerical methods for the determination of
Szegő-Kronrod rules of arbitrary order. These methods along with the examples
mentioned above will be presented in a forthcoming paper.

After this paper was submitted, we have learned that F. Peherstorfer [20] also
has results on Szegő-Kronrod rules with good properties. His construction differs
slightly from ours.
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