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Abstract: This paper studies the detection of step changes in the variances and

in the correlation structure of the components of a vector of time series. Two

procedures are considered. The first is based on the likelihood ratio test and the

second on cusum statistics. These two procedures are compared in a simulation

study and we conclude that the cusum procedure is more powerful. The procedures

are illustrated in two examples.
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1. Introduction

The problem of detection of a sudden change in the marginal variance of a

univariate time series has been extensively studied. For independent observations

see Hinkley (1971), Hsu, Miller and Wichern (1974), Smith (1975), Hsu (1977),

Menzefricke (1981) and Booth and Smith (1982). More recently Inclán (1993)

studied variance changes in independent observations by means of a Bayesian

procedure and Inclán and Tiao (1994) proposed a cumulative sums of squares

statistic and an iterative procedure based on this statistic for the detection of

several variance changes in Gaussian independent observations. Chen and Gupta

(1997) considered an information theoretic approach based on the Bayesian Infor-

mation Criteria (BIC) for this problem. For dependent observations, Wichern,

Miller and Hsu (1976) considered a detection procedure for a variance change

at an unknown position in a first order autoregressive model and Abraham and

Wei (1984) analyzed the same problem under the Bayesian framework. Baufays

and Rasson (1985) proposed an iterative algorithm for changes in autoregressive

models. Tsay (1988) studied outliers, level shifts and variance changes in ARIMA

models. Park, Lee and Jeong (2000) and Lee and Park (2001) extended the Inclán
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and Tiao approach to autoregressive and moving average models, respectively.

The case of multivariate sequences has, to the best of our knowledge, not

been considered yet. In this article we study the detection of step changes in the

variance and in the correlation structure of the components of a vector autore-

gressive moving average (VARMA) model. Two approaches are introduced and

compared. The first is a likelihood ratio approach, which can be seen as a gener-

alization of the univariate procedure due to Tsay (1988). The second is a cusum

approach, which can be seen as a generalization of the univariate procedure due

to Inclán and Tiao (1994).

The rest of this article is organized as follows. In section 2, we present

the model for variance changes and two statistics that can be used for testing

for variance changes when the parameters of the VARMA model are known.

In section 3, we study two different procedures for detection and estimation of

these changes. In section 4, we extend this approach for allowing changes in

the correlation structure and present two statistics for testing for such a change.

In section 5 the two procedures are compared in a Monte Carlo experiment for

different models, sample sizes, number of changes and situation of the change

points. Finally, in section 6, we illustrate the procedures by means of two real

data examples. We conclude that the procedure based on the cusum statistic has

an overall better performance than the one based on the likelihood ratio test.

2. Variance changes in multivariate time series

Let xt = (x1t, ..., xkt)
′, t = 1, ..., n be a k−dimensional vector of time series

following a vector ARIMA model, given by

Φ (B) xt = c + Θ(B) at, (2.1)

where B is the backshift operator, Bxt = xt−1, Φ (B) = I−Φ1B− ...−ΦpB
p and

Θ (B) = I −Θ1B − ...−ΘqB
q, are k × k matrix polynomials of finite degrees p

and q, c is a k−dimensional constant vector, and at = (a1t, ..., akt)
′ is a sequence

of independent and identically distributed (iid) Gaussian random vectors with

zero mean and positive-definite covariance matrix, Σ. We assume that Φ (B) and

Θ (B) are left coprime and that all the zeros of the determinants |Φ(B)| are on

or outside the unit circle and those of |Θ(B)| outside the unit circle. The series
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xt is stationary if |Φ(z)| 6= 0 for all |z| = 1 and is unit-root nonstationary if

|Φ(1)| = 0. The autoregressive representation of the model (2.1) is,

Π(B)xt = cΠ + at, (2.2)

where Π(B) = Θ (B)−1 Φ(B) = I −∑∞
i=1 ΠiB

i, and cΠ = Θ (1)−1 c is a vector

of constants. In the stationary case we also have moving-average representation,

xt = cΨ + Ψ (B) at, (2.3)

where, Ψ (B) = Φ (B)−1 Θ (B) = I +
∑∞

i=1 ΨiB
i, and Φ (1) cΨ = c. We can also

use this representation in the nonstationary case where now Ψ (B) is defined by

Φ (B)Ψ (B) = Θ (B).

We generalize the variance change model in Tsay (1988) in a direct manner.

Suppose that instead of observing xt we observe a time series yt = (y1t, ..., ykt)
′,

defined as follows. Let S
(h)
t be a step function such that S

(h)
t = 0, t < h and

S
(h)
t = 1, t ≥ h. Let W a constant diagonal matrix of size k × k denoting the

impact of the variance change. Then, we assume that the innovations affecting

the series, et, is not a sequence of iid Nk(0,Σ) variables because it has a change

in the variance of the components at same point t = h, given by

et = at + WS
(h)
t at, (2.4)

and, therefore, the observed vector time series yt = (y1t, ..., ykt)
′ can be written

as

Φ (B) yt = c + Θ (B) (at + WS
(h)
t at),

and, by using (2.1), the relation between the observed series, yt, and the unob-

served vector ARIMA time series, xt, is given by

yt = xt + Ψ(B) WS
(h)
t at. (2.5)

The variance of et changes from Σ to Ω = (I + W )Σ (I + W ) at the time

point t = h. Without loss of generality we assume that (I + W ) is a positive

defined matrix, so that the matrix W is well identified. For that, the spectral

decompositions of the matrices Σ and Ω are given by Σ = DΣRΣDΣ and Ω =

DΩRΩDΩ respectively, where RΣ and RΩ are the correlation matrices of Σ and
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Ω which are assumed to be equal, and DΣ and DΩ are diagonal matrices whose

elements are the standard deviations of each component. Then, by taking

W = DΩD−1
Σ − I, (2.6)

we obtain that Ω = (I + W ) Σ (I + W ), and the matrix W is unique. We note

that the variance change may affect one or several components and the elements

different from 0 of W indicate the components with changing variance.

To test the significance of a variance change at t = h, suppose that the

parameters of the ARIMA model are known and using them we compute the

residuals:

et = yt −
p∑

i=1

Φiyt−i − c +
q∑

j=1

Θjet−j . (2.7)

We want to test the hypothesis that these residuals are iid homoskedastic, versus

the alternative hypothesis that they are heteroskedastic. Thus, we consider the

null hypothesis H0 : W = 0 versus the alternative hypothesis H1 : W 6= 0. The

most usual method for testing the homogeneity of the covariance matrices of two

Gaussian populations is the likelihood ratio (LR) test, which is asymptotically the

most powerful test. Let us define the three values s (i) =
∑n

t=1

(
e2
it

)
/n, sh−1

1 (i) =∑h−1
t=1

(
e2
it

)
/ (h− 1) and sn

h (i) =
∑n

t=h

(
e2
it

)
/ (n− h + 1). The likelihood ratio

statistic of the residuals in (2.7) for a variance change after the time point t = h

is given by

LRh = log
(s (1) · · · s (k))n

(
sh−1
1 (1) · · · sh−1

1 (k)
)h−1 (

sn
h (1) · · · sn

h (k)
)n−h+1

, (2.8)

and, under the null hypothesis of no variance change and assuming that the

model is known, the LRh statistic has an asymptotic chi-squared distribution

with k degrees of freedom.

An alternative test statistic can be built as follows. Under the null hypothesis

of homoskedasticity, the covariance matrix of et can be written as Σ = DΣRΣDΣ.

We define bt = D−1
Σ et with Cov (bt) = RΣ. The principal components of the

series bt are given by ct = UΣbt, where UΣ is the matrix whose columns are the

eigenvectors of the matrix RΣ, and Cov (ct) = Λ, which is a diagonal matrix. The

components of ct are uncorrelated with variances equal to the diagonal elements
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of the matrix Λ. Let Am =
∑m

t=1 c′tct be the multivariate cumulative sum of

squares of the sequence {c1, . . . , cm} where m is any given value 1 ≤ m ≤ n. Let,

Bm =
Am

An
− m

n
, m = 1, . . . , n (2.9)

where B1 = Bn = 0, be the centered and normalized cumulative sum of squares

of the sequence ct. We study the asymptotic behavior of the statistic (2.9) under

the hypothesis of homoskedasticity.

Lemma 1 Under the null hypothesis of no change in the covariance matrix of

the sequence {e1, . . . , en} in (2.7), for a given value t = m,

E [Bm] = o
(
n−1

)
.

Proof. The second order Taylor expansion of the ratio Am/An about the

value (E [Am] , E [An]) is:

E

[
Am

An

]
=

E [Am]
E [An]

− E [AmAn]
E [An]2

+
E [Am] E

[
A2

n

]

E [An]3
+ o

(
n−1

)
.

Taking into account that tr (Λ) = k, where tr stands for trace, as E [Am] =

mk, and

E [AmAn] = E

[(
m∑

t=1

c′tct

)(
n∑

l=1

c′lcl

)]
=

=
m∑

t=1

n∑

l=1

E
[(

c′tct

) (
c′lcl

)]
= m

[
2tr

(
Λ2

)
+ k2

]
,

the ratio E [Am/An] can be written as:

E

[
Am

An

]
=

m

n
− m

[
2tr

(
Λ2

)
+ k2

]

n2k2
+

n
[
2tr

(
Λ2

)
+ k2

]
mk

n3k3
+ o

(
n−1

)
=

m

n
+ o

(
n−1

)
,

and therefore, E [Bm] = o
(
n−1

)
.

Consequently, the mean of the statistic Bm is asymptotically 0 for every m.

Let us study the asymptotic distribution of the statistic Bm under the hypothesis

of no change in the covariance matrix for t = 1, . . . , n. Let M a Brownian motion

process verifying E [Mr] = 0, and E [MrMs] = s, where 0 ≤ s < r ≤ 1. Let M0
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denote a Brownian bridge given by M0
r = Mr − rM1, verifying E

[
M0

r

]
= 0,

E
[
M0

r M0
s

]
= s (1− r), 0 ≤ s < r ≤ 1, and M0

0 = M0
1 = 0, with probability

1. The asymptotic distribution of the statistic Bm is obtained in the following

theorem.

Theorem 2 Let {e1, . . . , en} be a sequence of independent identically distributed

Gaussian random variables with zero mean and common covariance matrix Σ.

Let bt = D−1
Σ et with Cov (bt) = Λ, where DΣ is a diagonal matrix with elements

the square root of the variances of the components of et and let ct be the principal

components of the series bt. Let Bm = Am/An −m/n, where Am =
∑m

t=1 c′tct.

Therefore, B∗
m =

√
n
2

k√
tr(Λ2)

Bm
D−→ M0.

Proof. Let ξm = c′mcm − k, such that E [ξm] = 0, and,

σ2 = E
[
ξ2
m

]
= E

[(
c′mcm

)2
]
− k2 = 2tr

(
Λ2

)
.

Let Xn (r) = 1
σ
√

n
S[nr] + (nr − [nr]) 1

σ
√

n
ξ[nr]+1, where Sn =

∑n
i=1 ξi. By

Donsker’s Theorem, Xn
D−→ M , so {Xn (r)− rXn (1)} D−→ M0, see Billingsley

(1968, Th. 10.1 and Th. 5.1). Let nr = m, m = 1, . . . , n. Then,

Xn (r)− rXn (1) =
1

σ
√

n
S[nr] + (nr − [nr])

1
σ
√

n
ξ[nr]+1 − r

1
σ
√

n
S[n] =

=
1

σ
√

n

(
Sm − m

n
Sn

)
.

As Sn =
∑n

t=1 c′tct − nk and Sm =
∑m

t=1 c′tct −mk, we get,

Sm − m

n
Sn =

(
n∑

t=1

c′tct

)
Bm.

Then, when n →∞,

1
σ
√

n

(
n∑

t=1

c′tct

)
Bm −→

D
M0.

Therefore, as 1
n

∑n
t=1 c′tct → k,

1
σ
√

n

(
n∑

t=1

c′tct

)
Bm =

√
n

2
k√

tr (Λ2)

1
n

n∑
t=1

c′tct

k
Bm −→

D
M0
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that proves the stated result.

We have proved that the asymptotic distribution of the statistic B∗
m under

the hypothesis of no change in the covariance matrix is a Brownian Bridge. Thus,

we may use the statistic B∗
h−1 to test the presence of a change in the covariance

matrix at t = h, and the asymptotic critical value of the distribution of a Brow-

nian Bridge. The statistic B∗
m depends on tr

(
Λ2

)
, which in practice is unknown.

Let Λ (i, i) be the i diagonal element of the matrix Λ. Under the assumption of

no change, we can estimate Λ (i, i) by means of Λ̂ (i, i) =
∑n

t=1

(
c2
it

)
/n, which

is a consistent estimator of Λ (i, i). If Λ̂m
1 (i, i) =

∑m
t=1

(
c2
it

)
/m and taking into

account that tr
(
Λ̂

)
= k, then, we define the statistic, Cm, as follows,

Cm =

√
1
2n

mk√
tr

(
Λ̂2

)
(

Λ̂m
1 (1, 1) + · · ·+ Λ̂m

1 (k, k)
k

− 1

)
, (2.10)

Under the hypothesis of no change in the variances, as Λ̂ (i, i) is a consistent

estimator of Λ (i, i), the statistics B∗
m and Cm have the same asymptotic distri-

bution.

The impact of a variance change is estimated as follows. Let Ω (i, i), Σ (i, i)

and W (i, i) be the i diagonal elements of the matrices Ω, Σ and W , respectively.

Then,

(1 + W (i, i))2 =
Ω(i, i)
Σ (i, i)

, i = 1, . . . , k

and as the maximum likelihood estimates of Σ and Ω are given by Σ̂ = Sh−1
1 and

Ω̂ = Sn
h , we estimate Ŵ (i, i) by:

(
1 + Ŵ (i, i)

)2
=

Sn
h (i, i)

Sh−1
1 (i, i)

, i = 1, . . . , k

where Sh−1
1 (i, i) and Sn

h (i, i) are the i elements of the diagonals of the matrices

Sh−1
1 and Sn

h , respectively. Under the null hypothesis of no variance change,(
1 + Ŵ (i, i)

)2
is distributed as a F distribution with (n− h, h− 2) degrees of

freedom. Therefore, we can test the null hypothesis of W (i, i) = 0 against the

alternative of being different by means of the F distribution. As 1 + Ŵ (i, i)

should be larger than 1, we can obtain the final estimate of Ŵ (i, i) as:

Ŵ (i, i) =

√
Sn

h (i, i)

Sh−1
1 (i, i)

− 1, i = 1, . . . , k (2.11)
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A confidence interval for W (i, i) for a significant level α is given by:

1− α = P


 1 + Ŵ (i, i)√

F
1−α/2
(n−h,h−2)

− 1 ≤ W (i, i) ≤ 1 + Ŵ (i, i)√
F

α/2
(n−h,h−2)

− 1




where F
α/2
(n−h,h−2) and F

1−α/2
(n−h,h−2) are the critical values of the F distribution with

(n− h, h− 2) degrees of freedom for the significance levels α/2 and 1 − α/2,

respectively.

3. Procedures for variance changes detection

A series can be affected by several variance changes. In this case, we observe

a time series yt = (y1t, ..., ykt)
′, defined as follows:

yt = xt + Ψ(B) (I + WrS
(hr)
t ) · · · (I + W1S

(h1)
t )at,

where {h1, . . . , hr} are the time of r change points and W1, . . . , Wr are k × k

diagonal matrices denoting the impact of the r changes. Assuming that the

parameters are known, the filtered series of residuals is given by:

et = (I + WrS
(hr)
t ) · · · (I + W1S

(h1)
t )at,

and the residual covariance matrix of et changes from Σ to (I + W1)Σ (I + W1)

at t = h1, and to (I + W2) (I + W1)Σ (I + W1) (I + W2) at t = h2, . . .

In practice, the parameters of the VARMA model, the number, location and

the sizes of the variance changes are unknown. Let L̂Rt and Ĉt be the statistics

(2.8) and (2.10) respectively computed using the estimated residuals which are

obtained by (2.7). We define the maximum of these statistics in the sample as,

Λmax

(
hLR

max

)
= max

{∣∣∣L̂Rt

∣∣∣ , 1 ≤ t ≤ n
}

, Γmax

(
hC

max

)
= max

{∣∣∣Ĉt

∣∣∣ , 1 ≤ t ≤ n
}

(3.1)

where hLR
max and hC

max + 1 are the estimates of the time of the change using the

LR test or the cusum statistic, respectively. The distribution of Λmax in (3.1) is

intractable and critical values should be obtained by simulation. The distribution

of Γmax in (3.1) is asymptotically the distribution of sup
{∣∣M0

r

∣∣ : 0 ≤ r ≤ 1
}

which

is given by (see, Billingsley, pg. 85, 1968),

P
{
sup

∣∣M0
r

∣∣ ≤ a : 0 ≤ r ≤ 1
}

= 1 + 2
∞∑

i=1

(−1)i exp
(−2i2a2

)
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and critical values can be obtained from this distribution. If several changes have

occurred in the series, we propose two iterative procedures to detect them and

estimate its impacts based on the statistics Λmax and Γmax.

To motivate the proposed procedures let us consider a bivariate series from

a first order vector autoregressive model. We consider three different situations

which are illustrated in Figure 1. The three columns in this matrix of plots

represents three different generating processes. The first column corresponds to

the case of no variance changes. The second column corresponds to the case of a

single change in the covariance matrix at t = 250, where the innovation covariance

matrix goes from I to the matrix 3 × I. The third column corresponds to the

case of two changes at t = 166, where the innovation covariance matrix goes from

I to 3× I, and t = 333, where the innovation covariance matrix goes back to I.

The rows represent the two components of the bivariate time series and the two

statistics introduced in the previous section. The first (second) rows in Figure

1 shows a sample of 500 observations of the first (second) component of this

bivariate series, and the third and fourth rows show the LR statistic (2.8) and

the cusum statistic (2.10) respectively computed with the bivariate time series in

the same column. In the first column in Figure 1, no variance change case, the

two statistics plotted in the third and fourth row are inside the two straight lines

computed as explain next as for the 95% confidence interval of the distributions of

Λmax and Γmax. In the second column, a single change at t = 250, the maximum

of both statistics in absolute value is around t = 250, and the maximum is larger

than the critical value, so the hypothesis of no change is rejected. In the third

column, two variance changes at t = 166 and t = 333, these changes appear as

two significant extremes around the times of the changes t = 166 and t = 333.

3.1 LR procedure

1. Assuming no variance changes, a vector ARIMA model is specified for the

observed series yt. The maximum likelihood estimates of the model are

obtained as well as the filtered series of residuals.

2. Compute the statistics LRh, h = d + 1, ..., n − d, for a given value of an

integer d, using the residuals obtained in Step 1. The number d = k + m
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Figure 3.1: Bivariate series and statistics for variance change detection.

is a positive integer denoting the minimum number of residuals needed to

estimate the covariance matrix. The value m can be fixed by the user, and

in the examples and simulations we have taken m = 10. With them, the

statistic Λmax

(
hLR

max

)
in (3.1) is obtained.

3. Compare Λmax

(
hLR

max

)
with a specified critical value C for a given critical

level. If Λmax

(
hLR

max

)
< C, it is concluded that there is not a significant

variance change and the procedure ends. If Λmax

(
hLR

max

) ≥ C, it is assumed

that a variance change is detected at time t = hLR
max.

4. The matrix Ŵ is estimated by (2.11) and a modified residual series is com-

puted as follows:

e∗t =





êt t < hLR
max(

I + Ŵ
)−1

êt t ≥ hLR
max
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and, with this residual series, a corrected time series is defined by

y∗t =

{
yt t < hLR

max

ĉ + Φ̂1y
∗
t−1 + . . . + Φ̂py

∗
t−p + e∗t − Θ̂1e

∗
t−1 − . . .− Θ̂qe

∗
t−q t ≥ hLR

max

where the polynomials Φ̂ (B) and Θ̂ (B) are the maximum likelihood esti-

mates of the parameters. Then go back to Step 1 considering y∗t as the

observed process.

5. When no more variance changes are detected, the parameters of the series

and all the variance changes detected in the previous steps are estimated

jointly, using the model

Φ (B) yt = c + Θ (B) (I + WrS
(hr)
t ) · · · (I + W1S

(h1)
t )at, (3.1)

This joint estimation is carried out in two steps. First, estimate the pa-

rameters assuming no variance changes and then estimate the matrices Wi.

After that, correct the series, and repeat these two steps until convergence.

3.2 Cusum procedure

The following procedure is a generalization to the one proposed by Inclán

and Tiao (1994). The algorithm is based on successive divisions of the series into

two pieces when a change is detected and proceeds as follows:

1. Assuming no variance changes, a vector ARIMA model is specified for the

observed series yt. The maximum likelihood estimates of the model are

obtained as well as the series of residuals. Then, obtain the principal com-

ponents of the residual series, ct, as in Section 2. Let t1 = 1.

2. Obtain Γmax

(
hC

max

)
for ct in (3.1) for t = 1, . . . , n. If Γmax

(
hC

max

)
> C,

where C is the asymptotic critical value for a critical level, go to step 3. If

Γmax

(
hC

max

)
< C, it is assumed that there is not a variance change in the

series and the procedure ends.

3. Step 3 has three substeps:

(a) Obtain Γmax

(
hC

max

)
for t = 1, . . . , t2, where t2 = hC

max. If Γmax

(
hC

max

)
>

C, redefine t2 = hC
max and repeat Step 3(a) until Γmax

(
hC

max

)
< C.
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When this happens, define hfirst = t2 where t2 is the last value such

that Γmax

(
hC

max

)
> C.

(b) Repeat a similar search in the interval t2 ≤ t ≤ n, where t2 is the point

hC
max obtained in Step 2. For that, define t1 = hC

max + 1, where hC
max =

arg max {Ct : t = t1, . . . , n} and repeat it until Γmax

(
hC

max

)
< C. De-

fine hlast = t1−1, where t1 is the last value such that Γmax

(
hC

max

)
> C.

(c) If |hlast − hfirst| < d, there is just one change point and the algorithm

ends here. Otherwise, keep both values as possible change points and

repeat Steps 2 and 3 for t1 = hfirst and n = hlast, until no more possible

change points are detected. Then, go to step 4.

4. Define a vector ` = (`1, . . . , `s) where `1 = 1, `s = n and `2, . . . , `s−1 are the

points detected in Steps 2 and 3 in increasing order. Obtain the statistic

Ct in each one of the intervals (`i, `i+2) and check if its maximum is still

significant. If it is not, eliminate the corresponding point. Repeat Step 4

until the number of possible change points does not change, and the points

found in previous iterations do not differ from those in the last one. The

vector (`2 + 1, . . . , `s−1 + 1) are the points of variance change.

5. Finally, estimate the parameters of the series and the variance changes

detected in the previous steps jointly by using (3.1).

Some comments with regards to these algorithms are in order. First, the

critical values in the LR algorithm have to be obtained by simulation as we will

study in section 5, while the critical values used in the cusum procedure are the

asymptotic critical values of the maximum of the absolute value of a Brownian

Bridge. Second, in both algorithms we require a minimum distance between

variance changes larger than d, so that the covariance matrix can be estimated.

If several changes were found in an interval smaller than d, these changes will

be considered as outliers and estimated by the procedure proposed by Tsay et al

(2000). Third, the last step in the LR procedure is needed for avoiding bias in

the size of the estimated variance changes. Note that in Step 4, the size of the

variance change is estimated after detecting it. Thus, if there are two variance

changes the impact of the first change detected is estimated without taking into
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account the second one. Therefore, a joint estimation is needed taking into

account all the changes detected by the procedure.

4. A generalization for allowing variance and correlation changes

Suppose now that instead of observing xt we observe a time series yt =

(y1t, ..., ykt)
′, defined as follows. Let W a constant lower triangular matrix of size

k×k. Then, we assume that the innovations affecting the series, et, has a change

in the variance of the components at same point t = h given by (2.4) with W

lower triangular and therefore the observed vector time series yt = (y1t, ..., ykt)
′

can be written as in (2.5). The variance of et at the time point t = h changes

from Σ to Ω = (I + W )Σ (I + W )′. Without loss of generality, it is assumed

that (I + W ) is a positive defined matrix so that the matrix W is well identified.

For that, let Σ = LΣL′Σ and Ω = LΩL′Ω be the Cholesky decompositions of Σ

and Ω, respectively. Then, by taking,

W = LΩL−1
Σ − I (4.1)

with W lower triangular, we obtain that Ω = (I + W )Σ (I + W )′, and as the

Cholesky decomposition of a matrix is unique, the matrix W is also unique.

As in the previous case, to test the significance of a change at t = h, suppose

that the parameters of the ARIMA model are known and using then we compute

the residuals as in (2.7). We consider the null hypothesis H0 : W = 0 versus

the alternative hypothesis H1 : W 6= 0. Let us define the three matrices S =∑n
t=1 (ete

′
t) /n, Sh−1

1 =
∑h−1

t=1 (ete
′
t) / (h− 1) and Sn

h =
∑n

t=h (ete
′
t) / (n− h + 1).

The likelihood ratio statistic of the residuals in (2.7) for a variance change after

the time point t = h is given by

LRh = log
|S|n∣∣∣Sh−1

1

∣∣∣
h−1 ∣∣Sn

h

∣∣n−h+1
(4.2)

and under the null hypothesis of no variance change and assuming that the

model is known, the LRh statistic has an asymptotic chi-squared distribution

with 1
2k (k + 1) degrees of freedom.

An alternative cusum test statistic can be built as follows. Let Am =∑m
t=1 e′tΣ−1et be the multivariate cumulative sum of squares of {e1, . . . , em}
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where m is any given value 1 ≤ m ≤ n. Let,

Bm =
Am

An
− m

n
, m = 1, . . . , n (4.3)

where B1 = Bn = 0, be the centered and normalized cumulative sum of squares

of the sequence et. The asymptotic distribution of the statistic (4.3) under the

hypothesis of homoskedasticity can be obtained similarly to the case of changing

variance. We state the following Lemma and Theorem which proofs are similar

to the first case and are not shown here.

Lemma 3 Under the null hypothesis of no change in the covariance matrix of

the sequence {e1, . . . , en} in (2.7), for a given value t = m,

E [Bm] = o
(
n−1

)
.

The asymptotic distribution of the statistic Bm is obtained in the following

theorem.

Theorem 4 Let {e1, . . . , en} be a sequence of independent identically distributed

Gaussian random variables with zero mean and common covariance matrix Σ.

Let Bm = Am/An − m/n, where Am =
∑m

t=1 e′tΣ−1et. Therefore, the statistic

B∗
m =

√
nk/2Bm

D−→ M0.

The asymptotic distribution of the statistic B∗
m = (nk/2)

1
2 Bm under the

hypothesis of no change in the covariance matrix is a Brownian Bridge. Thus,

we may use the statistic B∗
h−1 to test the presence of a change in the covariance

matrix at t = h, and the asymptotic critical value of the distribution of a Brow-

nian Bridge. The statistic B∗
m depends on the covariance matrix Σ, which in

practice can be estimated consistently by means of S =
∑n

t=1 (ete
′
t) /n. Then,

we define the statistic Cm as follows,

Cm =

√
k

2n
m

(
trace

(
S−1Sm

1

)

k
− 1

)
, (4.4)

where Sm
1 =

∑m
t=1 (ete

′
t) /m. Under the hypothesis of no change, the statistics

B∗
m and Cm have the same asymptotic distribution.

The impact of a covariance change is estimated using (4.1) by means of

Ŵ = LSn
h
L−1

Sh−1
1

− I (4.5)



15

Table 5.1: Models for the simulation study.

k = 2 k = 3

Φ Σ Φ Σ����� 0.6 0.2

0.2 0.4

����� ����� 1 0

0 1

�����
�������

0.6 0.2 0

0.2 0.4 0

0.6 0.2 0.5

�������
�������

1 0 0

0 1 0

0 0 1

�������

When several changes are present, the LR and cusum procedures for variance

changes are directly applied to the case of covariance changes where the matrix

W is estimated with (4.5). The maximum statistics (3.1) are defined in the same

way for the statistics (4.2) and (4.4).

5. Simulation study

The simulations in this section and the analysis of real datasets in the next

section have been done using MATLAB (developed by The MathWorks, Inc.)

by means of various routines written by the authors which can be downloaded

from http://halweb.uc3m.es/esp/Personal/personas/dpena/esp/perso.html. We

first obtain critical values for the statistic Λmax in (3.1) for W diagonal and W

lower triangular by simulating from the vector AR(1) models in Table 5.1, where

k = 2, 3 and sample sizes n = 100, 200, 500 and 1000. For each model and

sample size, we generate 10000 realizations and estimate a vector AR(1) model,

obtain the residuals, êt, and compute the statistics (3.1). Table 5.2 provides some

quantiles of the distribution of Λmax for both models and different sample sizes

under the null hypothesis of no variance change in the sample. Note that the

quantiles depend on the time series dimension. The asymptotic distribution of

the statistic Γmax is known but we also study the finite sample behavior of the

quantiles of this statistic and Table 5.2 provide these quantiles. As we can see,

the finite sample quantiles are always smaller than the asymptotic ones implying

that the use of the asymptotic quantile is a conservative decision and therefore,

the type I error will not increase. Note also that the quantiles do not depend on

k.

First, we consider the case of variance changes and make a simulation study
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Table 5.2: Empirical quantiles of the Λmax and Γmax statistics based on 10000 realiza-
tions.

W diagonal

Probability-LR Probability-CUSUM

k=2 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%

n=100 9.02 13.94 16.08 17.96 20.02 0.73 1.12 1.27 1.41 1.55

n=200 9.74 15.10 16.76 18.80 21.27 0.76 1.13 1.28 1.42 1.56

n=500 10.87 15.91 17.82 19.92 21.70 0.80 1.18 1.31 1.46 1.61

n=1000 11.24 16.65 18.55 20.27 22.65 0.81 1.19 1.33 1.47 1.62

n=∞ - - - - - 0.82 1.22 1.35 1.48 1.62

k=3 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%

n=100 11.97 17.76 19.82 21.55 24.68 0.72 1.08 1.22 1.32 1.45

n=200 13.03 18.89 20.79 22.44 25.04 0.77 1.17 1.31 1.41 1.56

n=500 14.34 20.10 22.16 24.13 26.06 0.80 1.19 1.32 1.43 1.57

n=1000 14.71 20.47 22.40 24.40 26.68 0.81 1.20 1.34 1.45 1.59

n=∞ - - - - - 0.82 1.22 1.35 1.48 1.62

W lower triangular

Probability-LR Probability-CUSUM

k=2 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%

n=100 11.07 16.87 18.93 20.67 23.66 0.75 1.16 1.30 1.39 1.55

n=200 11.73 17.29 19.34 21.57 23.97 0.77 1.17 1.31 1.41 1.57

n=500 12.69 18.36 20.60 22.31 25.07 0.79 1.18 1.32 1.42 1.58

n=1000 13.16 19.01 21.44 23.56 26.52 0.80 1.19 1.33 1.44 1.60

n=∞ - - - - - 0.82 1.22 1.35 1.48 1.62

k=3 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%

n=100 17.37 24.66 27.30 29.15 32.32 0.75 1.13 1.26 1.38 1.51

n=200 18.24 24.94 27.38 29.18 32.68 0.76 1.14 1.29 1.44 1.54

n=500 19.26 25.88 28.47 30.65 34.78 0.78 1.17 1.33 1.44 1.56

n=1000 19.96 26.86 28.86 30.80 34.95 0.80 1.20 1.34 1.46 1.60

n=∞ - - - - - 0.82 1.22 1.35 1.48 1.62
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in order to study the size and power of the two procedures. For that, we consider

the models in Table 5.1 for n = 100, 200 and 500. For the case of one variance

change, for each n, we consider three locations of the change point, h = [0.25n],

[0.50n] and [0.75n]. The changes are introduced by transforming the original

covariance matrix, Σ = I, into Ω = (I + W ) (I + W ), where W is a diagonal

matrix. We consider three possible matrices of the form W = αI, where α takes

three possible values: α = 0, in the case of no variance change, α =
√

2 − 1, so

that the covariance matrix is multiplied by 2, and α =
√

3−1, and the covariance

matrix is multiplied by 3. For each case, we generate 5000 realizations. Then,

we apply the two procedures with the 95% critical values from Table 5.2. The

results are shown in Tables 5.3 and 5.4, where columns 4 to 6 and 9 to 11 report

the number of variance changes detected by the algorithms and columns 7, 8,

12 and 13 show the median and the mean absolute deviation of the estimates of

the change points for each case. The cases with α = 0 indicate the type I error

of the procedures, which is around 5 % in all the sample sizes considered. From

these two tables we conclude that when n = 100 the cusum procedure appears to

work better than the LR procedure. For n = 200 and for a small change, α = 2,

the cusum procedure is slightly better than the LR one, but for a larger change

α = 3, the LR seems to be slightly more powerful. The estimates of the time of

the change, h, are similar for both procedures.

For two change points, we consider the same sample sizes and the change

points at (h1, h2) = ([0.33n] , [0.66n]). Each change point is associated with

two matrices, Ω1 and Ω2, which give the residual covariance matrices after each

change. Six combinations are considered. For each case, we generate 5000 re-

alizations with the corresponding changes. Then, we apply the two procedures

with the 95% critical values from Table 5.2. The results are shown in Tables

5.5 and 5.6. Columns 6 to 9 in these tables are the number of variance changes

detected by the algorithms, and columns 10 to 13 show the median and the mean

absolute deviation of the estimates of the change points. For two change points,

the advantage of the cusum procedure over the LR one is clearer. Note that, first,

the detection frequency of two change points are larger for the cusum procedure

in almost all the cases, and, second, the LR procedure suffers of an overestima-

tion of the number of changes in some situations. In general, except when k = 2,
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Table 5.3: Results for model 1 and one variance change.

LR procedure Cusum Procedure

Ω n h frequency bh frequency bh
0 1 ≥ 2 Med. Mad 0 1 ≥ 2 Med. Mad

I 100 — 95.8 4.2 0 — — 96.6 3.4 0 — —

I 200 — 95.4 4.4 0.2 — — 95.6 4.2 0.2 — —

I 500 — 95.6 4.2 0.2 — — 96.2 3.6 0.2 — —

25 55.7 43.5 0.8 26 4 52.3 47.1 0.6 34 7

2× I 100 50 37.7 61.5 0.8 51 5 14.2 84.8 1.0 52 3

75 49.5 50.3 0.2 75 4 25.3 74.7 0 74 3

50 22.8 75.0 2.2 51 6 13.4 83.2 3.4 57 7

2× I 200 100 7.6 90.6 1.8 100 5 1.2 96.2 2.6 101 3

150 14.8 84.2 1.0 150 4 4.8 93.8 1.4 150 4

125 0 98.6 1.4 126 4 0.2 95.4 4.4 130 6

2× I 500 250 0 96.8 3.2 251 3 0 94.0 6.0 252 3

375 0.2 97.4 2.4 376 4 0 95.2 4.8 375 4

25 9.6 88.8 1.6 25 2 9.4 88.4 2.2 28 3

3× I 100 50 2.2 97.0 0.8 50 2 0.2 98.0 1.8 51 1

75 6.4 92.6 1.0 75 2 1.6 97.0 1.4 75 2

50 0 97.4 2.6 50 2 0 95.8 4.2 52 2

3× I 200 100 0 96.8 3.2 100 2 0 96.6 3.4 101 1

150 0.2 97.4 2.4 150 1 0.2 95.6 4.2 150 1

125 0 95.4 4.6 125 1 0 92.0 8.0 126 2

3× I 500 250 0 97.2 2.8 250 1 0.2 91.8 8.0 251 1

375 0 96.6 3.4 375 2 0 93.4 6.6 375 1
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Table 5.4: Results for model 2 and one variance change.

LR procedure Cusum Procedure

Ω n h frequency bh frequency bh
0 1 ≥ 2 Med. Mad 0 1 ≥ 2 Med. Mad

I 100 — 95.8 4.0 0.2 — — 96.0 4.0 0 — —

I 200 — 93.4 6.2 0.4 — — 95.4 4.4 0.2 — —

I 500 — 97.0 3.0 0 — — 95.8 3.8 0.4 — —

25 39.7 59.7 0.6 25 3 30.5 68.1 1.4 30 5

2× I 100 50 23.4 76.0 0.6 50 4 5.4 92.6 2.0 51 2

75 41.1 58.3 0.6 75 4 14.4 84.8 0.8 75 3

50 8.4 90.4 1.2 50 4 1.2 96.2 2.6 53 4

2× I 200 100 1.2 96.6 2.2 100 3 0.2 97.2 2.6 101 2

150 5.4 92.8 1.8 150 3 1.2 96.8 2.0 150 2

125 0 97.8 2.2 125 2 0 92.0 8.0 127 4

2× I 500 250 0 97.8 2.2 250 2 0.2 94.4 5.4 251 2

375 0 98.2 1.8 375 3 0.2 92.6 7.2 375 2

25 1.2 97.6 1.2 25 1 0.8 97.8 1.4 26 2

3× I 100 50 0 98.2 1.8 50 1 0 96.4 3.6 50 1

75 2.4 96.4 1.2 75 1 0.4 96.8 2.8 75 1

50 0 98.4 1.6 50 1 0 96.0 4.0 51 1

3× I 200 100 0 95.6 4.4 100 1 0.2 92.2 7.6 101 1

150 0 97.6 2.4 150 1 0 97.0 3.0 150 1

125 0 97.8 2.2 125 1 0.2 93.0 6.8 126 2

3× I 500 250 0 96.4 3.6 250 1 0 92.8 7.2 251 1

375 0 97.8 2.2 375 1 0 95.2 4.8 375 1
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the sample size is small (n = 100) and small changes (Ω1 = 2 × I, Ω2 = I), the

detection frequency is low: 17.2 % and 34.9 % for k = 2 and k = 3, respectively.

In the rest of the cases, the cusum procedure works quite well, with several cases

over the 90 % of detection frequency. As in the previous case, as the sample

size increase, the change is larger and the number of components increase, the

procedure works better. It also appears that the estimate of the second change

point has smallest mad, suggesting that the procedure detect more precisely the

change at the end of the series. The median of the estimates are quite approx-

imated to the real change points except with the smallest sample size and the

smallest changes.

Now, we study the case of both changes in variances and correlations. We

make a simulation study in order to study the power of the proposed procedures

for the case of a single change. For that, we consider the same models and

sample sizes for k = 2 that in the previous case. The changes are introduced by

transforming the original covariance matrix, Σ = I, into Ω = (I + W ) (I + W )′,
where W is a lower triangular matrix. We consider two possible matrices W

associated with two matrices Ω1 and Ω2 that represent the situation in which the

variances of each component is multiplied by 2 and the covariances pass from 0

to 0.5 and -0.5 respectively. For each case, we generate 5000 realizations. Then,

we apply the two procedures with the 5% critical values from Table 5.2. The

results are shown in Table 5.8, with the same design as before. The case with

Ω = I shows the type I error of the procedures, which is around the 5 % in all

the sample sizes considered. When n = 100, the cusum procedure appears to

work better than the LR procedure. For n = 200 the cusum procedure is slightly

better than the LR one, but when n = 500, the detection frequency of one change

point is larger than 90 % and there is a little increase of the detection of two

changes in the cusum procedure. The estimates of the time of the change, h, are

quite similar for both procedures.

Finally, we study the power of the statistics when there is also a change in

the parameter matrices, which will be called a structural change. Let yt a series

generated by the following model:
{

Φ1 (B) yt = c1 + Θ1 (B) at t < h

Φ2 (B) yt = c2 + Θ2 (B) (at + WS
(h)
t at) t ≥ h

,
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Table 5.5: Results for model 1 and two variance changes.

LR procedure

Ω1 Ω2 n h1 h2 frequency bh1
bh2

0 1 2 ≥ 3 Med. Mad Med. Mad

100 33 66 75.2 18.2 6.6 0 33 4 68 4

2× I I 200 66 133 51.1 17.8 30.7 0.4 66 3 133 4

500 166 333 6.6 3.6 85.0 4.8 166 4 333 4

100 33 66 33.9 14.8 50.9 0.4 33 2 66 2

3× I I 200 66 133 2.6 2.0 92.4 3.0 66 2 133 2

500 166 333 0 0 82.6 17.4 166 1 333 1

100 33 66 9.4 67.5 22.8 0.2 32 3 66 1

2× I 1/2× I 200 66 133 3.8 37.7 57.9 0.6 65 4 133 1

500 166 333 17.4 2.4 76.4 3.8 166 4 333 1

100 33 66 12.4 86.0 1.6 0 21 4 66 1

1/2× I 2× I 200 66 133 9.2 71.1 19.0 0.6 59 7 133 1

500 166 333 21.4 9.0 59.9 9.6 163 5 334 1

100 33 66 3.6 23.4 72.1 0.8 33 2 66 0

3× I 1/3× I 200 66 133 4.6 3.8 88.6 3.0 66 2 133 0

500 166 333 0 1.0 81.2 17.8 166 1 333 0

100 33 66 3.8 83.0 12.4 0.8 26 4 66 1

1/3× I 3× I 200 66 133 9.0 19.8 63.3 7.8 63 3 133 0

500 166 333 0.8 1.6 78.6 19.0 164 2 333 0

Cusum Procedure

Ω1 Ω2 n h1 h2 frequency bh1
bh2

0 1 2 ≥ 3 Med. Mad Med. Mad

100 33 66 75.4 7.4 17.2 0 35 2 64 2

2× I I 200 66 133 31.3 2.8 64.9 1.0 68 2 132 2

500 166 333 0.6 0.2 91.8 7.4 167 3 331 3

100 33 66 27.5 3.2 68.9 0.4 34 1 65 1

3× I I 200 66 133 0.2 0 95.0 4.8 67 1 132 2

500 166 333 0 0.2 91.4 8.4 167 1 331 2

100 33 66 20.8 31.5 47.5 0.2 35 3 65 1

2× I 1/2× I 200 66 133 26.5 5.2 65.5 2.8 67 3 132 1

500 166 333 23.4 0.6 70.5 5.4 168 4 332 1

100 33 66 12.6 72.7 14.0 0.6 31 2 67 1

1/2× I 2× I 200 66 133 30.9 22.6 41.7 4.8 64 3 134 1

500 166 333 23.4 3.6 65.3 7.6 165 3 334 1

100 33 66 16.2 4.4 78.4 1.0 34 1 65 1

3× I 1/3× I 200 66 133 8.2 2.2 86.0 3.6 67 1 132 1

500 166 333 0.2 0.8 92.0 7.0 167 2 332 1

100 33 66 18.4 43.9 34.5 3.2 32 1 67 1

1/3× I 3× I 200 66 133 9.2 7.4 78.6 4.8 65 2 134 1

500 166 333 0.8 4.0 87.8 7.4 165 2 334 1
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Table 5.6: Results for model 2 and two variance changes.

LR procedure

Ω1 Ω2 n h1 h2 frequency bh1
bh2

0 1 2 ≥ 3 Med. Mad Med. Mad

100 33 66 67.9 21.8 10.2 0 32 4 67 3

2× I I 200 66 133 3.6 6.4 80.4 9.6 64 2 133 0

500 166 333 1.2 0.2 93.8 4.8 166 4 333 3

100 33 66 19.4 13.2 66.5 0.8 33 2 66 1

3× I I 200 66 133 0.2 0.2 95.0 4.6 66 1 133 1

500 166 333 0 0 73.3 26.7 166 1 333 1

100 33 66 2.8 65.1 32.1 0 32 3 66 1

2× I 1/2× I 200 66 133 3.8 25.1 68.3 2.8 65 4 133 1

500 166 333 7.6 1.0 85.8 5.6 166 3 333 1

100 33 66 3.0 93.0 4.0 0 24 6 66 0

1/2× I 2× I 200 66 133 7.0 61.3 29.9 1.8 61 5 134 1

500 166 333 10.2 3.0 71.1 15.6 163 4 334 1

100 33 66 3.6 13.2 82.4 0.8 33 1 66 0

3× I 1/3× I 200 66 133 1.6 1.2 90.9 6.2 66 1 133 0

500 166 333 0 0 78.8 21.2 166 1 333 0

100 33 66 4.8 76.4 18.4 0.4 29 4 66 0

1/3× I 3× I 200 66 133 4.8 5.6 78.6 11.0 64 2 133 0

500 166 333 0 0.4 81.0 18.6 165 1 333 0

Cusum Procedure

Ω1 Ω2 n h1 h2 frequency bh1
bh2

0 1 2 ≥ 3 Med. Mad Med. Mad

100 33 66 54.9 9.8 34.9 0.4 34 2 65 1

2× I I 200 66 133 3.6 4.6 88.0 3.8 65 1 133 0

500 166 333 0 0.2 92.6 7.2 167 2 332 2

100 33 66 6.4 0.8 90.6 2.2 34 1 65 1

3× I I 200 66 133 0.2 0 95.2 4.6 66 1 132 1

500 166 333 0 0 92.0 8.0 167 1 333 1

100 33 66 15.0 18.8 65.7 0.4 34 1 65 1

2× I 1/2× I 200 66 133 20.8 1.4 74.3 3.4 67 2 132 1

500 166 333 10.0 0.4 81.4 8.2 167 2 332 1

100 33 66 14.4 59.5 23.8 2.2 32 2 66 0

1/2× I 2× I 200 66 133 19.4 9.0 64.9 6.6 65 2 133 0

500 166 333 12.8 3.0 78.8 5.4 165 2 334 1

100 33 66 13.4 0.8 84.4 1.4 33 1 66 0

3× I 1/3× I 200 66 133 2.0 0.8 93.4 3.8 67 1 133 0

500 166 333 0 0 90.6 9.4 167 1 333 0

100 33 66 12.4 24.6 58.7 4.2 33 1 66 0

1/3× I 3× I 200 66 133 4.6 3.0 85.0 7.4 65 1 133 0

500 166 333 0 0.8 90.8 8.4 165 1 333 0
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Table 5.7: Models for the simulation study with structural changes.

Π1 Π2 Ω1 Ω2����� 0.6 0.2

0.2 0.4

����� ����� 0.3 0.4

0.4 0.7

����� ����� 2 0.5

0.5 2

����� ����� 2 −0.5

−0.5 2

�����

Table 5.8: Results for model 1 with variances and correlation changes.

LR procedure Cusum Procedure

Ω n h frequency bh frequency bh
0 1 ≥ 2 Med. Mad 0 1 ≥ 2 Med. Mad

I 100 — 95.4 4.6 0 — — 94.6 5.4 0 — —

I 200 — 95.0 5.0 0 — — 95.4 4.4 0.2 — —

I 500 — 94.6 5.2 0.2 — — 94.6 5.0 0.4 — —

25 63.3 36.3 0.4 26 6 60.7 38.1 1.2 34 7

Ω1 100 50 45.9 53.3 0.8 50 5 18.0 81.2 0.8 52 3

75 58.7 40.7 0.6 75 3 31.3 67.9 0.8 74 3

50 26.1 71.9 2.0 51 4 21.0 77.6 1.4 56 6

Ω1 200 100 9.2 89.0 1.8 101 5 1.6 95.8 2.6 103 4

150 16.6 81.8 1.6 151 4 5.4 91.8 2.8 149 4

125 0.2 96.4 3.4 126 4 0.2 93.0 6.8 129 6

Ω1 500 250 0 97.4 2.6 251 3 0 94.0 6.0 252 4

375 0 96.8 3.2 376 3 0 93.0 7.0 375 4

25 65.3 34.1 0.6 26 5 60.7 38.1 1.2 36 7

Ω2 100 50 47.1 52.3 0.6 51 6 20.8 78.6 0.6 52 3

75 53.9 45.3 0.8 75 4 31.3 68.1 0.6 74 3

50 20.2 77.8 2.0 51 5 15.4 81.8 2.8 56 6

Ω2 200 100 9.4 87.8 2.8 101 4 0.4 97.6 2.0 102 4

150 15.8 83.0 1.2 151 5 5.4 92.2 2.4 150 4

125 0.4 98.0 1.6 126 4 0.2 95.4 4.4 130 6

Ω2 500 250 0 97.2 2.8 251 3 0 94.8 5.2 252 4

375 0 96.4 3.6 376 3 0.2 93.6 6.2 375 4
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Table 5.9: Results for structural changes.

LR procedure Cusum Procedure

Ω n h frequency bh frequency bh
0 1 ≥ 2 Med. Mad 0 1 ≥ 2 Med. Mad

25 74.1 25.3 0.6 24 6 73.3 26.5 0.2 41 10

Ω1 100 50 54.3 45.3 0.4 50 5 28.1 71.5 0.4 52 3

75 54.1 45.7 0.2 75 4 30.5 69.1 0.4 74 3

50 43.7 54.9 1.4 50 8 43.9 54.5 1.6 63 12

Ω1 200 100 15.8 81.8 2.4 101 8 5.0 92.6 2.4 102 5

150 14.2 80.4 5.4 152 5 5.4 91.6 3.0 149 4

125 3.2 91.2 5.6 126 6 2.0 94.0 4.0 132 11

Ω1 500 250 0 91.6 8.4 251 4 0 93.2 6.8 252 5

375 0.2 72.5 27.3 377 4 0 94.0 6.0 375 5

25 73.7 26.1 0.2 25 5 75.8 23.8 0.4 38 10

Ω2 100 50 53.9 44.9 1.2 49 8 31.5 67.7 0.8 52 4

75 48.7 50.5 0.8 75 4 31.3 67.9 0.8 74 4

50 44.5 53.1 2.4 50 8 40.9 58.3 0.8 62 12

Ω2 200 100 12.4 85.6 2.0 101 7 3.0 93.0 4.0 102 5

150 11.2 83.4 5.4 151 4 5.0 92.8 2.2 149 5

125 5.8 91.4 2.8 126 8 3.2 93.4 3.4 132 10

Ω2 500 250 0 90.2 9.8 251 5 0 96.0 4.0 253 5

375 0.2 71.9 27.9 377 4 0 92.0 8.0 375 4
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such that the covariance matrix as well as the polynomials of the model change

at time t = h. The polynomials Φ1 (B), Φ2 (B), Θ1 (B) and Θ2 (B) are assumed

to verify the conditions for stationarity and invertibility in section 2. If the

procedures had good power properties for detecting a covariance change under

a structural change, they could be an useful tool for detecting both covariance

changes and structural changes. Consider the models in Table 5.7 and the sample

sizes n = 100, 200 and 500, for k = 2. The changes are introduced by transform-

ing the original covariance matrix, Σ = I, into Ω1 and Ω2, and the autoregressive

polynomial Π1 into Π2. For each case, we generate 5000 realizations. Then, we

apply the two procedures with the 5% critical values from Table 5.2. The results

are shown in Table 5.9. We conclude that both procedures have a small decrease

in power for small samples sizes, specially in the case in which h = [0.25n], but

they do not lose power for big sample sizes, here n = 500.

6. Illustrative examples

6.1 Example: Flour data

We consider the trivariate series of the logarithms of monthly flour price

indices from three U.S. cities over the period August 1972 through November

1980. This vector series was analyzed by Tiao and Tsay (1989), Grubb (1992)

and Lütkepohl and Poskitt (1996) and is shown in Figure 2. Tiao and Tsay

(1989) fitted a restricted vector ARMA(1,1) to the series whereas Grubb (1992),

by using the Akaike Information Criteria (AIC), chose a restricted VAR(2) model.

Lütkepohl and Poskitt (1996) investigate cointegration in these series using the

Johansen’s test in a VAR(2) model, rejecting the null hypothesis of cointegration.

Then, they fitted a VAR(1) for the differenced series, which is showed in the

second row in Table 10.

Using this model, we will apply the LR and cusum procedures for variance

changes to the data. Table 11 summarizes the results. No variance changes are

detected by both procedures. Then, we apply the LR and cusum procedures for

variances and correlation changes for the data, and both procedures detect one

change point at t = 33 (April, 1975). The estimation of W is done as in (4.5).

Taking into account that there is no evidence of variance changes, apparently the

change happen in the correlation between the components of the series.
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Logarithm of the Flour Price Index for Buffalo 

Logarithm of the Flour Price Index for Minneapolis  

Logarithm of the Flour Price Index for Kansas City  

Figure 6.2: Monthly Flour Price Indices for Three U.S. Cities.

We include in the table the values of the Akaike and Bayesian information cri-

teria (AIC and BIC) for each model, given by, −(2/n) log (maximized likelihood)+

(c/n)(number of parameters), where c = 2 for AIC and c = log(n) for BIC. Note

that the value of both criteria is reduced when the covariance change is intro-

duced. Both criteria indicate that the model with one covariance change at t = 33

(April, 1975) appears to be most appropriate for the data. The final estimated

model is shown in the third row in Table 10.

Finally, we estimate a VAR(1) model to the subsamples 1-32 and 33-100.

The two estimated models with their standard errors are given in the fourth

and fifth rows in Table 10. As we can see, the parameters of the model and

the sample residual covariance matrices are different in both models so that we

conclude that the series has an structural change at t = 33. The model for the

second part of the series is apparently a random walk and the sample residual

covariance matrix has smaller values than the obtained in the first part of the

series.



27

Table 6.10: AR parameter matrix (Π̂) and estimated covariance matrix (Σ̂) for three
models fitted to the flour series. Standard errors of the coefficients are under parenthesis.

Model bΠ 102bΣ
VAR(1)

����������
−0.86
(0.17)

1.01
(0.18)

0

−0.43
(0.17)

0.62
(0.19)

0

0 0.25
(0.10)

0

����������
�������

0.20 0.21 0.20

0.21 0.24 0.22

0.20 0.22 0.27

�������
1 Variance Change

����������
−0.83
(0.15)

0.96
(0.16)

0

−0.48
(0.13)

0.64
(0.14)

0

0 0.21
(0.11)

0

����������
�������

0.20 0.21 0.20

0.21 0.23 0.22

0.20 0.22 0.26

�������
First part (1-32)

����������
−0.61
(0.14)

0.95
(0.20)

0

0 0.40
(0.16)

0

0 0.43
(0.18)

0

����������
�������

0.24 0.26 0.27

0.26 0.30 0.31

0.27 0.31 0.37

�������
Second part (33-100)

��������
−0.28
(0.11)

0.26
(0.11)

0

0 0 0

0 0 0

��������
�������

0.19 0.26 0.17

0.20 0.21 0.19

0.17 0.19 0.21

�������

Table 6.11: Summary of the LR and cusum procedures for the flour data.

Method VAR(1) LR
W diag.

Cusum
W diag.

LR
W triang.

CUSUM
W triang.

h — 28 60 33 33

Λmax/Γmax — 13.26 0.63 28.95 1.78

cW — — —

�������
-0.14 0 0

0.40 -0.53 0

-0.02 -0.17 -0.09

�������
�������

-0.14 0 0

0.40 -0.53 0

-0.02 -0.17 -0.09

�������
AIC -14.01 -14.01 -14.01 -27.39 -27.39

BIC -13.77 -13.77 -13.77 -26.99 -26.99
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6.2 Example: Wheat data

0 100 200 300 400 500 600 700 800 900
−40

−20

0

20

40

0 100 200 300 400 500 600 700 800 900
−40

−20

0

20

40

IBM monthly log returns: 1/1926−12/1999 

Monthly log returns of SP500 index: 1/1926−12/1999 

Figure 6.3: Monthly Wheat Price Indices for Five Provinces in Castillia, Spain.

We consider the series of the logarithms of the monthly wheat price indices

from five provinces in Castillia, Spain, over the period July 1880 through Decem-

ber 1890. This vector series was analyzed in Peña and Box (1987) and is shown

in Figure 3. We investigate cointegration in these series using the Johansen’s test

and by using the BIC we chose a VAR(1) model with three cointegration relation-

ships. This is in agreement with the two factors found by Peña and Box (1987).

Then, we apply the LR and cusum procedures for variance changes to the data

assuming first, an unrestricted VAR(1) model, and second, a vector correction

model with three cointegration relationships. As the results obtained with these

two models were the same, we only report here the one with the estimated unre-

stricted VAR(1) model which is shown in the second row in Table 12. Table 13

summarizes the results. The LR procedure detects one change at h = 22 (April,

1882) and another at h = 90 (December, 1888). The cusum procedure detects

three changes at h = 22 (April, 1882), h = 41 (November, 1883) and h = 90
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Table 6.12: AR parameter matrix (Π̂) and estimated covariance matrix (Σ̂) for two mod-
els fitted to the wheat series. Standard errors of the coefficients are under parenthesis.

Model bΠ1 103bΣ
VAR(1)

����������������

0.87
(0.07)

0 0 0.44
(0.12)

0

0.13
(0.05)

0.32
(0.07)

0 0.43
(0.09)

0

0 −0.26
(0.13)

0.40
(0.09)

0.82
(0.16)

0

0.17
(0.05)

−0.21
(0.08)

0.15
(0.06)

0.85
(0.10)

0

0 0 0 0.46
(0.14)

0.47
(0.08)

����������������

������������
1.44 0.46 0.59 0.68 0.59

0.46 0.84 0.48 0.32 0.40

0.59 0.48 2.39 0.59 0.62

0.68 0.32 0.59 0.91 0.50

0.59 0.40 0.62 0.50 2.00

������������

3 V. C.

����������������

0.92
(0.05)

−0.34
(0.10)

0 0.48
(0.09)

0

0.10
(0.03)

0.39
(0.05)

0.06
(0.03)

0.37
(0.05)

0

0 −0.73
(0.18)

0.41
(0.09)

1.10
(0.16)

0

0.17
(0.05)

−0.50
(0.10)

0.14
(0.05)

1.05
(0.09)

0

0 0 0.14
(0.06)

0.55
(0.10)

0.54
(0.11)

����������������

������������
0.64 0.21 0.34 0.30 0.35

0.21 0.18 0.31 0.24 0.26

0.34 0.31 1.94 0.32 0.71

0.30 0.24 0.32 0.61 0.37

0.35 0.26 0.71 0.37 0.77

������������

Table 6.13: Summary of the LR and cusum procedures for variance changes for the
wheat data.

Method VAR(1) LR Cusum

h — 23 90 22 41 90

Λmax/Γmax — 30.99 90.93 1.61 1.71 1.70cW (1, 1)
I.C.

— 0 −0.48
(−0.57,−0.37)

0.54
(0.02,1.22)

−0.38
(−0.60,−0.13)

−0.38
(−0.52,−0.21)cW (2, 2)

I.C.

— 0.71
(−0.46,−0.21)

−0.34
(−0.46,−0.21)

1.16
(0.43,2.10)

0 −0.33
(−0.49,−0.15)cW (3, 3)

I.C.

— −0.30
(−0.52,−0.04)

−0.58
(−0.66,−0.50)

0 0 −0.53
(−0.64,−0.40)cW (4, 4)

I.C.

— 0 −0.29
(−0.42,−0.15)

0 −0.37
(−0.59,−0.11)

0cW (5, 5)
I.C.

— 0.51
(0.03,1.05)

−0.29
(−0.42,−0.14)

1.12
(0.40,2.04)

−0.43
(−0.63,−0.20)

0

AIC -19.84 -32.85 -37.52

BIC -19.52 -32.28 -36.98
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Table 6.14: Summary of the LR and cusum procedures for variance and correlation
changes for the wheat data.

Method h Λmax/Γmax
cW AIC BIC

VAR(2) — — — -19.84 -19.52

LR 88 82.79

������������
−0.50 0 0 0 0

−0.17 0.09 0 0 0

0.07 −0.42 −0.53 0 0

−0.07 0.00 −0.03 −0.20 0

−0.20 −0.33 −0.16 0.72 −0.32

������������
-29.33 -27.36

Cusum 22 2.35

������������
0.74 0 0 0 0

−0.51 2.00 0 0 0

0.53 −1.67 0.31 0 0

0.81 −2.55 0.35 0.50 0

0.22 −2.35 −0.33 0.06 1.48

������������
-38.85 -37.43

35 2.26

������������
−0.41 0 0 0 0

0.07 −0.42 0 0 0

0.11 0.32 −0.33 0 0

−0.12 0.30 −0.05 −0.41 0

0.00 0.25 0.19 −0.06 −0.28

������������
90 2.03

������������
−0.39 0 0 0 0

0.03 −0.32 0 0 0

−0.08 −0.21 −0.40 0 0

−0.04 0.05 −0.06 0.00 0

−0.08 −0.02 −0.33 0.61 −0.32

������������
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(December, 1888). The estimation of the changes and their confidence intervals

appears in Table 13. If one of the changes in one component is not significant,

we represented it by 0. The minimum of the values of both the AIC and BIC is

obtained in the model proposed by the cusum with three changes.

Then, we apply the LR and cusum procedures for variances and correlation

changes for the data which are summarized in Table 14. The LR procedure

detects now one change at h = 88 (October, 1888), while the cusum procedure

detects three changes at h = 22 (April, 1882), h = 35 (May, 1883) and h = 90

(December, 1888). The estimation of the changes appears in Table 14. The

minimum of the values of both the AIC and BIC corresponds to the model

proposed by the cusum with three changes.

The final model is selected by the BIC (although AIC gives the same results)

and is the one obtained by the cusum procedure allowing variances and correla-

tion changes. The estimated parameters for this VAR(1) model are shown in the

third row in Table 12.
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