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We study the effects of the genetic sequence on the propagation of nonlinear excitations in simple models of
DNA in which we incorporate actual data from the human genome. We show that kink propagation requires
forces over a certain threshold, a phenomenon already found for aperiodic sequences[F. Domínguez-Adameet
al., Phys. Rev. E52, 2183(1995)]. For forces below threshold, the final stop positions are highly dependent on
the specific sequence. Contrary to the conjecture advanced by Domínguez-Adame and co-workers, we find no
evidence supporting the dependence of the kink dynamics on the information content of the genetic sequences
considered. We discuss possible reasons for that result as well as its practical consequences. Physically, the
results of our model are consistent with the stick-slip dynamics of the unzipping process observed in experi-
ments. We also show that the effective potential, a collective coordinate formalism introduced by Salerno and
Kivshar [Phys. Lett. A 193, 263(1994)], is a useful tool to identify key regions in DNA that control the
dynamical behavior of large segments. As a side result, we extend the previous studies on aperiodic sequences
by analyzing the effect of the initial position of the kink, leading to further insight on the phenomenology
observed in such systems.
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I. INTRODUCTION

Nonlinear models are becoming widely used to capture
and understand emergent phenomena in complex systems
[1]. The pioneering field in this direction was physics, where
nonlinear phenomena have been the subject of intense study
since the seminal work of Fermi, Pasta, and Ulam almost 50
years ago[2]. The success of this approach in modeling com-
plex systems led scientists in other fields to apply it to their
own research. That is the case in biology, where nonlinear
models were successfully introduced more than 20 years ago
[3] (see also[4] for references). One of the subjects where
nonlinear models have been more productive is the modeling
of DNA physics[5–9], which began in 1980 with the model
proposed by Englander and co-workers[10]. Since then, a lot
of work has been devoted to nonlinear excitations in DNA,
both from the dynamics and the statistical mechanics view-
points. We refer the reader to[7,9] for historical accounts
and extensive summaries of the available results, among
which we want to highlight the Peyrard-Bishop model[11]
(see also the generalizations and improvements proposed in
[12,13]). In spite of its simplicity, this nonlinear lattice sys-
tem can accurately(sometimes even quantitatively) repro-
duce the phenomenology experimentally observed in DNA
(see, e.g.,[14]).

Most of the research done in the framework of the above-
mentioned models refers tohomopolymers, i.e., homoge-
neous DNA molecules consisting entirely of A-T or C-G
base pairs. One problem of special interest was the thermal
denaturation transition, which takes place at temperatures
around 90 °C when the two strands of the DNA molecule
separate. Having understood this transition quite well[9,15],
the main focus of research has been on dynamical and trans-
port features. Additional motivation for such a shift arises
from the capability to carry out experiments on single mol-
ecules, achieved in the last few years[16]. Another particu-
larly important, related question is genomics, or gene identi-
fication, which is profiting enormously from the information
obtained from dynamical models[17]. Of course, these ap-
plications require unavoidably the study of DNAheteropoly-
mers, where the distribution of A-T and C-G base pairs fol-
lows nonuniform, nonhomogeneous sequences obtained
from genome analysis. In this context, physical models are
also being used to identify dynamically relevant sites, such
as promoters[18] in short genomes(e.g., viral). Further ad-
vance along this line requires good models for DNA dynam-
ics that can be computationally efficient, in order to treat
much longer sequences. Such models will also be of use to
achieve a better understanding of the relationship between
sequence, physical properties, and biological function.

In this work, we address these issues in the framework of
a very simple model, namely the Englander model[10],
which we generalize by incorporating actual genetic se-
quences. Our aim is to assess whether the so-modified
model, in spite of its simplicity, reproduces the important
features of DNA molecule dynamics accurately enough to be
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useful for genomic and related applications. We will also
discuss an approximation in terms of an effective potential
and its application to understanding the dynamics of nonlin-
ear excitations in DNA. In addition, we will test a conjecture,
put forward by Domínguez-Adame and co-workers[19], that
the dynamics of nonlinear excitations along DNA molecules
should, at the level of the Englander model, depend on the
information content of the chain. To this end, the paper is
organized as follows. In Sec. II, we review the Englander
model and the previous attempts to include inhomogeneity or
genetic information in it. In so doing, we will discuss in
some detail the results of Domínguez-Adameet al., extend-
ing their work to consider the effects of changing the initial
location of the propagating kinks. Subsequently, in Sec. III,
we present our results on the Englander model with human
genome sequences. We analyze the results by comparing
them to the phenomenology observed on aperiodic sequences
and to the experimentally observed DNA dynamics. Finally,
Sec. IV concludes the paper by summarizing our main results
and their possible implications.

II. BACKGROUND

A. Model definition: The homogeneous case

The model proposed by Englanderet al. [10] is sketched
in Fig. 1, where the dynamics of one of the strands of the
DNA is represented as a chain of pendula; leaving the other
strand fixed(the one at the bottom in the picture), the base
pairs of the(upper)strand behave like pendula in an effective
“gravitational field” caused by the tendency of the base pairs
of the two strands to be facing each other. It must be realized
that this model describes only the dynamics of the base pairs
around the sugar-phosphate backbone, which is assumed to
be fixed as well. Introducing damping and an external force,
these pendula are described by the discrete, dc-driven,
damped sine-Gordon model, given by

ün −
1

a2sun+1 − 2un + un−1d + qn sinun = − au̇n − F, s1d

wherea is the lattice spacing,qn is a site-dependent constant
which arises from the specific parameters for the pendulum
at siten, a is the damping coefficient, andF is a driving term
possibly acting on the chain. We note at this point that Eq.
(1) reflects mainly the difference in interactions between A-T
and C-G base pairs, but not other differences such as in mass
or moments of inertia. It should also be clear that many other
relevant factors(geometry, inhomogeneous stacking interac-
tions [20]) have also been neglected, in the spirit of design-
ing a model as simple as possible that still behaves like DNA
molecules.

Whenqn=q (i.e., we have a homopolymer)in Eq. (1) and
the lattice spacing is very small, the system of ordinary dif-
ferential equations(1) can be very well approximated by its
continuum limit. Lettingunstd→usx,td whena2!q, we find
the driven, damped sine-Gordon equation,

]t
2u − ]x

2u + q sinu = − a]tu − F. s2d

It is well known [1] that, in the absence of force, i.e.,F=0,
Eq. (2) possesses soliton solutions of the kink type, whose
expression is

f±sx,td = 4 arctanHexpF±ÎqSx − x0 − vt
Î1 − v2 DGJ , s3d

where the plus or minus sign stands for kinks or antikinks,
respectively, and 0øvø1 represents their velocity. In the
caseF=0 and in the presence of damping,aÞ0, the only
possible value for the velocity isv=0. When both damping
and force are present, the balance between the two effects
leads to kinks propagating at a constant, nonzero velocity. An
analytical expression for that velocity can be easily derived
[again, for homogeneous sequences, i.e., from Eq.(2)] from
energy-conservation arguments(see[21]),

v = F1 + qS 4a

pF
D2G−1/2

. s4d

Figure 2 depictes the physical meaning of a kink solution in
the context of DNA modeling: the bases of the upper chain

FIG. 1. Sketch of the Englander model. The two sugar-
phosphate backbones of the DNA strands are depicted as two
straight lines connected by the base pairs(bases are the squares).
The lower strand is assumed to be fixed, and as shown on the right,
the angleun is the deviation of the upper base of thenth pair with
respect to the plane defined by the fixed base pairs in the lower
strand.

FIG. 2. Kink soliton in the sine-Gordon model. The kink joins a
sector of the chain where bases are closed,un=0, to another one
where bases have performed a complete turn,un=2p. In this last
part, the chain is said to be open if the model is to represent me-
chanical denaturation.
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perform a complete, smooth turn around the sugar-phosphate
backbone, fromun=0 to un=2p.

One feature of the model that deserves some comment is
its mesoscopic character. Experiments and a large part of the
theoretical work done so far on mechanical denaturation or
unzipping ([16]; for the first unzipping experiments, see
[22]) deal with forces acting on the last base of one of the
strands pulling them apart. In the perspective of Englander’s
model, we are not trying to describe accurately the way the
chain is pulled but rather we are looking at how this pulling
affects the “propagation” of the opening. Of course, both
approaches are different and need not yield the same results,
although one expects in principle that the qualitative behav-
ior should be the same. As we will see below, the advantage
of our approach is that it allows some analytic insight into
the problem, much less amenable from the microscopic
viewpoint.

B. Inclusion of inhomogeneities

The results we have summarized in the previous subsec-
tion refer mostly to the homopolymer case, which was the
one initially considered by Englanderet al. [10]. As stated in
the Introduction, our main goal is to understand the effects of
inhomogeneity, particularly of genetic sequences obtained
from real data. We stress that including inhomogeneity, i.e.,
qn depending onn in Eq. (1), renders the theoretical ap-
proach in the preceding subsection inapplicable. To our
knowledge, DNA sequences from living organisms were first
studied in the framework of the Englander model by Salerno,
who considered the effects of the sequence by studying spon-
taneously traveling kinks along the T7A1 promoter(a region
of the genome preceding a gene where the transcription ac-
tivity starts)of the bacteriophage T7. Salerno studied further
other regions of the bacteriophage[24], finding that the dy-
namical activity of kinks should be very special in the pro-
moters. Recently, the problem was revisited in[25] following
the sequencing of the whole genome of the bacteriophage
T7. The main conclusion of this work was that there is in-
deed a significantly higher degree of activity in promoter
regions, even in the presence of noise.

The results of the simulations reported in[23,24] were
analyzed theoretically by Salerno and Kivshar[26], who,
using a collective coordinate approach(see, e.g.,[27] for a
review on collective coordinate techniques for soliton-
bearing equations), developed a description of the kink dy-
namics in terms of an effective potential. We will not review
in detail the procedure to obtain this effective potential but,
instead, we will simply outline the main steps. The idea is to
consider the undamped model, i.e., Eq.(1) with a=0, on a
finite lattice ofN sites, described by the Hamiltonian

HsGfhujg = o
n=1

N H1

2
u̇n

2 +
1

2a2fun+1 − ung2 + qns1 − cosund

+ FunJ . s5d

We now take the following ansatz:

fn„Xstd… = 4 arctan„exphÎqavgfna− Xstdgj…, s6d

whereqavg is the average value ofqn over the chain, andXstd
is a collective coordinate variable which stands for the center
of the kink. Substituting this expresion into the Hamiltonian
(5), we arrive at

Eeff =
1

2
Ẋ2 + Veffsn,hqnjd, s7d

which is formally equivalent to the energy of a particle sub-
jected to the action of the effective potentialVeff. The exact
formula for this potential is quite cumbersome and we do not
need to reproduce it here. We refer the reader interested in
the details of the calculation and the full result to[19,26,28].

C. Aperiodic chains

Since the sequences considered by Salerno[23,24] are
very small, the question arises immediately as to the real
relevance of those results. On the other hand, in 1995 there
were not many genomic data available, making the question
difficult to answer. To overcome this difficulty, Domínguez-
Adame and co-workers[19] proposed to mimic the behavior
of DNA heteropolymers of biological relevance by replacing
the sequence-dependent valuesqn by an aperiodic, but fully
deterministic sequence. The rationale behind this choice is to
consider the DNA sequence as nonperiodic but also nonran-
dom, in so far as it carries information. As an example, they
considered the Fibonacci and Thue-Morse sequences. Most
of the results were related to the former, which is generated
according to the rulesqa→qaqb, qb→qa repeteadly applied
to the initial seedqa.

Being the immediate predecessor of the present work, it is
worth summarizing here the results in[19]. As a first step,
Domínguez-Adameet al. constructed aperiodic sequence
hqnj whose unit cell was a Fibonacci sequence of orderk,
FksF1=qa,F2=qaqb,F3=qaqbqa, . . . d. This amounts to saying
that the resulting chain is given byhqnj=FkFkFk. . . . The
number of unit cells was chosen such that the length of the
whole sequencehqnj was about 4000 sites. Subsequently,
they placed a kink of the form(6) at restin the middle of the
sequenceand pulled it with a constant forceF in order to
find the asymptotic velocity of the kink[recall thataÞ0 in
Eq. (1), implying the existence of damping]. This computa-
tion was performed for various orders(i.e., sizes)of the Fi-
bonacci unit cells,Fk, up to a nonperiodic, full Fibonacci
sequence of 4181 sitessk=18d. The results of Domínguez-
Adame et al., subsequently confirmed in[28], pointed out
the existence of an intriguing phenomenon, namely the exis-
tence of a threshold force for a kink to start moving along the
chain. Once the force is above the threshold, the kink moves
asymptotically with a periodic velocity, as a consequence of
the periodicity of the constructed sequence(except in the
case of the aperiodicF18 sequence, in which the asymptotic,
aperiodic velocity fluctuates around a mean value), given by
the balance of damping and driving. Although the original
derivation of Eq.(4) is valid for a homogeneous chain, re-
producing it with a valueqavg, obtained by averagingqn over
all lattice sites leads to a prediction which is very accurate,
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above the threshold, for all the periodic chains, including the
final, full Fibonacci chainF18. Such a prediction overesti-
mates slightly the velocity when increasing the ratio between
the two parametersqa and qb (see Fig. 3 for details). In
addition, in [19], it was also found that the threshold value
depended on the length of the periodic chain considered:
Increasing the size of the unit cellFk led to an increasing of
the threshold, reaching a limiting value for the full Fibonacci
sequence.

Based on the above summarized results and on the fact
that, for the same parameters, random chains exhibited much
larger threshold values(aroundF.0.5), Domínguez-Adame
et al. concluded that long-range-order effects give rise to
measurable consequences on kink dynamics in aperiodic
chains. Further, they suggested that the fact that there are
long-range correlations in DNA and, in any event, that it
contains information and is not purely random, could lead to
similar phenomenology in the propagation of nonlinear co-
herent excitations along the molecule. At this point, we re-
visit this question, benefiting from the huge body of genome
data available nowadays. As we will show in the next sec-
tion, on the grounds of the revision presented here, the con-
jecture about the information in[19] is likely to be incorrect,
at least if we consider that the information content of coding
DNA is different from noncoding DNA. We will come back
to this issue in the Conclusions, after discussing the results
for real DNA sequences in the next section. Before proceed-
ing to those results, we find it interesting to extend the results
in [19] by discussing the relevance of the choice of the initial
location for the kink. This we do in the subsection immedi-
ately below.

D. Effect of the initial position of the kink

As we have said above, Domínguez-Adameet al. consid-
ered only the existence of a threshold force for propagation
on aperiodic chains. Although this phenomenon was ad-
dressed and interpreted correctly in[19], we have found that

depending on the shape of the effective potential around the
starting position of the kink, it is more or less difficult to
make it move until the end of the lattice. If the initial posi-
tion of a kink is a peak of the effective potential, it will cost
less force to overcome the next barrier than if the starting
point is a well, as shown in Fig. 4.

Given the above considerations, one can expect that for
sequences formed with unit cells of different sizes, but with
an identical effective potential in the vicinities of the starting
points, the threshold force will be the same in both cases.
This can be seen in Fig. 5: In Figs. 5(a) and 5(b), we see that
for small unit cells, the main structure of peaks and wells of
the Fibonacci sequence has not been formed yet. This can be
seen, for instance, in the effective potentials of sequences
with unit cell given byF7 (of size 21)and larger, which have
the same values in the surroundings of the beginning of each
unit cell. If we choose the initial position of a kink to be near
the beginning of a unit cell, the force needed to overcome the
first barrier will be the same as in another sequence with a
different unit cell, if the initial positions, related to the be-
ginning of each unit cell, are the same. For unit cells of
smaller size, the effective pottential is different and, there-
fore, so is the threshold force[see Fig. 5(c)].

III. EFFECTS OF THE SEQUENCE

We now turn to the question we posed above, namely the
effects of inhomogeneity arising from the genetic sequence
on the kink propagation. To this end, we have simulated
numerically Eq.(1) with hqnj sequences obtained from the
human genome. We want to stress that this description of
DNA, arising from the original model of Englander and co-
workers[10], intends to be only qualitatively correct. There-
fore, the parameters can be freely chosen, trying, of course,
to mimic the real ones. Accordingly, we chooseqa=2 and
qb=3 depending on whether we have at siten an A-T pair,
linked by two hydrogen bonds, or a C-G pair, with three
hydrogen bonds. The other parameters are chosen as in[19],

FIG. 3. Steady-state velocity vs applied force for a periodic
Fibonacci chain. The lines correspond to the theoretical approach
and the points to numerical simulations, both for two periodic
chains with unit cellF9, of 55 sites, but with different values ofqa

and qb: (3) qa=1 and qb=10, theoretical approach withqavg

=4.436;(s) qa=2, qb=3, theoretical approach withqavg=2.382.

FIG. 4. Numerical results of steady-state velocity vs applied
force for a periodic Fibonacci chain with unit cellF9, qa=1 and
qb=10, but starting from a peak(s) and from a well(3). The
corresponding threshold force of the simulation starting from a well
is larger than the one starting from a peak.
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namely, lattice spacinga=0.1 and dampinga=0.1. With re-
spect to the lattice spacing, we want to point out that the
chosen value leads to a width of the kink, which is compa-
rable to that of spontaneous openings of real DNA chains
(some 20–40 base pairs). The numerical simulations have
been carried out with a standard fourth-order Runge-Kutta
scheme, with free or periodic boundary conditions. Finally,
for the sequences we use data obtained from the National
Center for Biotechnology Information for the human genome
[29].

Typical results from our simulations are plotted in Fig. 6,
which presents a phase-space plot for the center of the kink
on an actual DNA sequence when the kink is forced with two
different drivings. For reference, we plot in the same graph
the effective potential, which can be computed for any se-
quence as described in the previous section. It is important to
note that the effective potential does not contain the contri-
bution of the forceF, and therefore its most relevant infor-
mation is the position of the peaks and valleys. With this in
mind, we see that the dynamics occurs basically as in the
case of the Fibonacci chain. There is a threshold for the kink
to propagate along the whole chain, shown by the fact that
the kink ends up trapped at a potential well in the upper plot
of Fig. 6, although the effective potential structure is very

FIG. 5. (a) and(b) Effective potential around the beginning of a
unit cell. There is a translationnk;uFku in n for each sequence
constructed withFk’s in order to see the shape of the curve in the
surroundings of the beginning of a unit cell within each type of
sequence. There is another vertical shift to put the maxima of the
different curves at the same level. For clarity, the plots fork=5, 6
are shown in(a), and those fork=7, 8, 11 are shown in(b). (c)
Steady-state mean velocity versus applied force for chains with dif-
ferent orderings and parametersqa=1 andqb=10. The line corre-
sponds to theoretical asymptotic velocity forqavg=4.438, which is
the averaged value of an infinite Fibonacci sequence,F`. The points
correspond to the numerical results for different periodic chains
with unit cell Fk.

FIG. 6. Simulations of the kink soliton in the sine-Gordon
model with genome data. Shown are the velocity(solid line)and the
(properly scaled to fit in the plot)effective potential(dashed line)vs
the position along the chain. Up:F=0.06; the kink travels along the
sequence but stops at an effective potential well. Down:F=0.07;
the kink travels along the whole chain. The DNA sequence corre-
sponds to contig NTI028395.2 of human chromosome 22, between
positions 114 100 and 115 100, part of a gene.
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different from the Fibonacci case. When the applied force
exceeds the threshold, the kink can propagate along the
whole chain(lower plot), with a velocity which is again a
(fluctuating)balance of damping and forcing.

Figure 7 addresses one of the main issues we want to
discuss: the relevance of the information content for the ex-
istence and characteristics of the threshold force. To this end,
it collects our observations regarding the existence of thresh-
olds in two examples: a coding region and a noncoding re-
gion. We again see the existence of threshold forces, in
agreement with a description in terms of an effective poten-
tial. However, we do not observe any qualitative or otherwise
relevant difference between the kink dynamics(or the effec-
tive potential)in the two regions. This is the case with all the
regions we have analyzed. Therefore, the conjecture by
Domínguez-Adameet al. based on their Fibonacci results
that information may lead to different kink dynamical prop-
erties is, at least at the level of our simple model, not in
agreement with the simulation results. Of course, this is one
example; although similar results are obtained for different
coding and noncoding sequences, we cannot exclude that the
threshold behavior is statistically different in the two types of
regions. However, from our simulations we consider this
possibility quite unlikely.

Having disregarded the relevance of the genetic informa-
tion to the determination of the threshold force, it is interest-
ing to proceed with the comparison between the previous
work on the Fibonacci chain and the present results, in order
to understand what is the difference and what leads to differ-
ent conclusions. To this end, we have simulated periodic sys-
tems with a unit cell built from pieces of a genetic sequence,
repeated to complete a longer chain, much as was done with
the Fk building blocks in[19] (see above). The sizes for the
unit cells were chosen to mimic the sizes for the Fibonacci
iterations, and again the starting points were chosen in the
same position related to the beginning of a unit cell. The
results are collected in Fig. 8(a). From this plot, we see that
the most important difference between the two cases is that
in the actual DNA chain, the threshold value does change
much more for sequences with different unit cells than in the
Fibonacci case, and there is not a maximum value for the
threshold force when increasing the sizes of the unit cells.

One important point we want to stress is that the analyti-
cal approach in terms of collective coordinates and an effec-
tive potential is a very good picture of the observed phenom-
enology, even in this more realistic setting. In fact, the results
in Fig. 8(a) can be correlated with the effective potentials
depicted in Fig. 8(b). On the basis of this scenario, we sug-
gest that the reason for the difference between the two mod-

FIG. 7. Simulations of the kink soliton in the sine-Gordon
model with genome data. Shown are the force(solid line) required
to reach a certain position and the(properly scaled to fit in the plot)
effective potential(dashed line)vs the position along the chain.
Thresholds can be seen as the maximum force values in each plot.
Comparison of propagation along a coding region(up, same contig
as in Fig. 6, positions 114 000 to 115 000) and a noncoding region
(down, same contig as in Fig. 6, positions 50 000 to 51 000).

FIG. 8. (a) Velocity vs applied force for different periodic sys-
tems formed by repeating as a unit celln sites of the same contig as
in Fig. 6 beginning at site 114 241, withn=21, 34, 55, and 89(as in
the Fibonacci case) and for the whole sequence going from 114 100
to 115 100.(b) Effective potential for the systems in(a).
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els lies in the larger diversity available for possible DNA
chains. The fact that, in Fibonacci chains, sites of typeqb are
always isolated and that more than two sites of typeqa can-
not be found together is very restrictive as to the shapes and
sizes of the peaks of wells of the potential felt by the kinks,
giving rise to the Fibonacci structure mentioned in Sec. II C,
and therefore the Fibonacci model cannot capture the rich-
ness of the DNA model. This is clearly seen when comparing
the effective potential for the Fibonacci chains in Figs. 5(a)
and 5(b)with that for the DNA chain in Fig. 8(b). On the
other hand, when joining two unit cells in the DNA model,
the local A-T/C-G concentration can vary more than in the
Fibonacci case(where it is restricted to be close to a golden
mean ratio), so a lower well or a higher peak may arise at the
joining places. Finally, it is clear that considering longer and
longer sequences of DNA increases the probability of finding
longer repeated GC sequences, and hence of finding larger
thresholds, as discussed above.

IV. CONCLUSIONS

In this paper, we have reported the first conclusions of our
work on the effects of the genetic sequence on the propaga-
tion of nonlinear excitations along(simple models of)DNA
chains. The present stage of the research was motivated by
previous results on chains given by aperiodic sequences[19],
which led to the hypothesis that the information content of
the inhomogeneities might be relevant for the dynamical be-
havior. While this general statement cannot be ruled out at
this stage(at least from a probabilistic approach, as discussed
above), we believe that at the level of the Englander model
[10], the simulations presented here do not confirm that hy-
pothesis. Specifically, we have not observed a qualitative dif-
ference in the dynamics of kinks propagating along coding or
noncoding regions, which in principle prevents the use of
this simple model as a genome sequencing tool. In this re-
spect, it is important to realize that unzipping experiments
cannot distinguish between the breaking of single base pairs,
as discussed in[9]. Therefore, the fact that kink-pulling ex-
periments or simulations do not discriminate between coding
and noncoding regions would have a physical basis, because
such discrimination would require a much better resolution.
On the other hand, we are becoming increasingly aware that
the function and information content of noncoding regions
are far from well known, and it may well be that the dynam-
ics in the two types of sequences is the same because the
quantity of information is similar. Indeed, we are now begin-
ning to realize that the noncoding regions do have crucial
implications in the DNA-protein connections, either by in-
hibiting the fabrications of proteins from DNA or by switch-
ing on and off specific genes[30]. This is certainly an inter-

esting issue that deserves further attention. In this regard, it
would be interesting to come back to the model with artifi-
cially designed sequences, with different information content
(in the Shannon-Kolmogorov sense), in order to settle defi-
nitely this question.

Even if the answer to the relation between behavior under
applied forces and information content is finally negative,
there is another conclusion arising from our research that can
be relevant from the genomical viewpoint. We have verified
that the effective potential approach[19,26,28]to the dynam-
ics of nonlinear excitations in DNA gives a very good de-
scription of the important points of the sequence, namely,
valleys and peaks. Although the precise dynamics of kinks is
difficult to predict, and specifically, the identification of the
relevant valleys among all those present in the sequence is
not yet understood, this analytical approximation allows us
to identify the possible stop positions as well as the barriers
that control the total opening(mechanical denaturation) of
the chain. In fact, the complicated structure of the effective
potential is consistent with the mechanical unzipping dynam-
ics as observed in experiments[22], characterized by a stick-
slip behavior with large fluctuations in the velocity(also re-
produced by our simple model). On the other hand, the
comparison with the Fibonacci system suggests that the fea-
tures of the effective potential that are most relevant for the
dynamics are the highest peaks and the deepest valleys, the
total potential landscape being responsible only for finer de-
tails. This is also true in the presence of thermal noise: Re-
sults from Langevin simulations show that very(in the scale
of the applied forces)large temperatures do not change much
the threshold values[31]. This suggests that the effective
potential may be a way to identify promoter sequences much
simpler than the full simulations reported in[25]. In addition,
the effective potential can also be used as a tool in the gene
identification procedure of Yeramian[17], which may lead to
results of similar quality with much less computational ef-
fort. Of course, a detailed comparison with more complex
models, such as the Peyrard-Bishop one[11–13], is needed
to ascertain the usefulness of the effective potential picture.
Work along these lines is in progress.

ACKNOWLEDGMENTS

We thank Michel Peyrard for many discussions about this
work and for his patient explanations on DNA dynamics. We
thank also Fernando Falo for discussions on the unzipping
experiments. This work has been supported by the Ministerio
de Ciencia y Tecnología of Spain through Grant No.
BFM2003-07749-C05-01. S.C. is supported by the Conse-
jería de Educación de la Comunidad Autónoma de Madrid
and the Fondo Social Europeo.

NONLINEAR EXCITATIONS IN DNA: APERIODIC … PHYSICAL REVIEW E 70, 051903(2004)

051903-7



[1] A. C. Scott,Nonlinear Science(Oxford University Press, Ox-
ford, 1999).

[2] E. Fermi, J. R. Pasta, and S. Ulam, Los Alamos Report LA-
UR-1940 (1955); reprinted inCollected Papers of Enrico
Fermi, edited by E. Segré(University of Chicago Press, Chi-
cago, 1965).

[3] A. S. Davydov, Phys. Scr.20, 387(1979).
[4] A. S. Davydov,Solitons in Molecular Systems, 2nd ed.(Klu-

wer, Dordrecht, 1991).
[5] L. V. Yakushevich, Q. Rev. Biophys.26, 201(1993).
[6] G. Gaeta, C. Reiss, M. Peyrard, and T. Dauxois, Riv. Nuovo

Cimento 17, 1 (1994).
[7] L. V. Yakushevich, Nonlinear Physics of DNA(Wiley,

Chichester, 1998).
[8] G. Gaeta, J. Biol. Phys.24, 81 (1999).
[9] M. Peyrard, Nonlinearity17, R1 (2004).

[10] S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krum-
hansl, and A. Litwin, Proc. Natl. Acad. Sci. U.S.A.77, 7222
(1980).

[11] M. Peyrard and A. R. Bishop, Phys. Rev. Lett.62, 2755
(1989).

[12] T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E47,
R44 (1993).

[13] T. Dauxois and M. Peyrard, Phys. Rev. E51, 4027(1995).
[14] A. Campa and A. Giansanti, Phys. Rev. E58, 3585(1998).
[15] R. M. Wartell and A. S. Benight, Phys. Rep.126, 67 (1985).
[16] A good summary of the experimental advances can be found in

the collection of articles,The Double Helix—50 Years[Nature

(London) 421, 396(2003)].
[17] E. Yeramian, Gene255, 139 (2000); 255, 151 (2000); E.

Yeramian, S. Bonnefoy, and G. Langsley, Bioinformatics18,
190 (2002); E. Yeramian and L. Jones, Nucleic Acids Res.31,
2843 (2003).

[18] G. Kalosakas, K. Ø Rasmussen, A. R. Bishop, C. H. Choi, and
A. Usheva, e-print cond-mat/0309157(2003); C. H. Choi, G.
Kalosakas, K. Ø Rasmussen, M. Hiromura, A. R. Bishop, and
A. Usheva, Nucleic Acids Res.32, 1584(2004).

[19] F. Domínguez-Adame, A. Sánchez, and Yu. S. Kivshar, Phys.
Rev. E 52, R2183(1995).

[20] C. R. Calladine and H. R. Drew,Understanding DNA, 2nd ed.
(Academic Press, San Diego, 1997).

[21] D. W. McLaughlin and A. C. Scott, Phys. Rev. A18, 1652
(1978).

[22] U. Bockelmann, B. Essevaz-Roulet, and F. Heslot, Phys. Rev.
Lett. 79, 4489(1997).

[23] M. Salerno, Phys. Rev. A44, 5292(1991).
[24] M. Salerno, Phys. Lett. A167, 49 (1992).
[25] E. Lennholm and M. Hörnquist, Physica D177, 233(2003).
[26] M. Salerno and Yu. S. Kivshar, Phys. Lett. A193, 263(1994).
[27] A. Sánchez and A. R. Bishop, SIAM Rev.40, 579(1998).
[28] E. Lennholm and M. Hörnquist, Phys. Rev. E59, 381(1999).
[29] http://www ncbi nlm nih.gov.
[30] S. R. Eddy, Nat. Genet.2, 919(2001).
[31] S. Cuenda and A. Sánchez, Fluct. Noise Lett.(to be pub-

lished), e-print q-bio/0403003.

S. CUENDA AND A. SÁNCHEZ PHYSICAL REVIEW E 70, 051903(2004)

051903-8


