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him I discovered probability and statistics. During my studies in Cuba he

was my guide and inspiration for the study of mathematics.

Finally, and most importantly, I wish to thank my wife, Claudia, for her

constant support, love and affection. To my children Balaram and Anandi,

for their kisses, hugs and smiles that made me draw strength from where

there was none to go on. To my parents, for their love and constant support



Acknowledgements

throughout every step of my life. In spite of the distance I know that you

have always carried me in your innermost heart.

I also want to extend my gratitude to Fabrizio Ruggeri and Bo F. Nielsen,

for their collaboration, suggestions and support in the last chapter.

I am grateful to the Department of Statistics of Universidad Carlos III

de Madrid, for providing the financial support to carry out this thesis.

The work presented in this thesis was partially supported by research

grants and projects MTM2015-65915-R and ECO2015-66593-P (Ministe-

rio de Economı́a y Competitividad, Spain) and P11-FQM-7603, FQM-329
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Abstract

This dissertation is mainly motivated by the problem of statistical modeling

via a specific point process, namely, the (Batch) Markov Modulated Pois-

son process. Point processes arise in a wide range of situations in physics,

biology, engineering, or economics. In general, the occurrence of events is

defined depending on the context, but in many areas are defined by the

occurrence of an event at a specific time. Sometimes, in order to simplify

the models and obtain closed form expressions for the quantities of interest,

the exponentiality and/or independence of the inter-event times is assumed.

However, the independence and exponentiability assumptions become un-

realistic and restrictive in practice, and therefore, there is a need of more

realistic models to fit the data.

The Batch Markov Modulated Poisson Process (BMMPP) is a subclass

of the versatile Batch Markovian Arrival process (BMAP) which has been

widely used for the modeling of dependent and correlated simultaneous

events (as arrivals, failures or risk events). Both BMMPP and BMAP allow

for dependent and non-exponentially distributed inter-event times as well as

for correlated batches, but at the same time they inherit the tractability of

the Poisson processes. Therefore, they turn out suitable models to fit data

with statistical features that differ form the classical Poisson assumptions.

In spite of the large amount of works considering the BMAP subclasses of

processes, still there are a number of open problems of interest that will be

considered in this dissertation, which is organized as follows.

In Chapter 1, a brief theoretical background that introduces the most

important concepts and properties that are needed to carry out our analyses

is presented. The markovian point processes and their main properties are
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introduced.

In Chapter 2 the identifiability of the stationary BMMPPm(K) is proven,

where K is the maximum batch size and m is the number of states of the

underlying Markov chain. This is a powerful result for inferential issues. On

the other hand, some findings related to the correlation and autocorrelation

structures are provided.

Chapter 3 focuses on exploring the possibilities of the BMMPP for the

modeling of real phenomena involving point processes with group arrivals.

The first result in this sense is the characterization of the BMMPP2(K) by a

set of moments related to the inter-event time and batch size distributions.

This characterization leads to a sequential fitting approach via a moments

matching method. The performance of the novel fitting approach is illus-

trated on both simulated and a real teletraffic data set, and compared to

that of the EM algorithm. In addition, as an extension of the inference ap-

proach, the queue length distributions at departures in the queueing system

BMMPP/M/1 is also estimated.

Unlike Chapters 2 and 3, which are devoted to the Batch Markov Modu-

lated Poisson Process, Chapter 4 presents an extension to the two-dimensional

case of the Markov modulated Poisson process (MMPP), motivated by real

failure data in a two-dimensional context. The one-dimensional MMPP has

been proposed for the modeling of dependent and non-exponential inter-

event times (in contexts as queuing, risk or reliability, among others). The

novel two-dimensional MMPP allows for dependence among the two se-

quences of inter-event times, while at the same time preserves the MMPP

properties marginally. Such generalization is based on the Marshall-Olkin

exponential distribution. Inference is undertaken for the new process through

a method combining a matching moments approach and an ABC algorithm.

The performance of the method is shown on simulated and real datasets

representing failures of a public transport company.

To conclude, Chapter 5 summarizes the most significant contributions

of this dissertation, and also gives a short description of possible research

lines.
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Resumen

Esta tesis está principalmente motivada por el problema de la modelización

estad́ıstica mediante un tipo espećıfico de procesos puntuales: el (Batch)

Markov Modulated Poisson proces. Los procesos puntuales aparecen en una

amplia variedad de situaciones en la f́ısica, la bioloǵıa, la ingenieŕıa o la

economı́a. En general, la ocurrencia de eventos se define en relación con

el contexto, pero en muchas áreas están vinculados a la ocurrencia de un

evento en un momento espećıfico. En la mayoŕıa de las ocasiones con el

objetivo de simplificar los modelos y obtener expresiones cerradas para las

cantidades de interés, se asume que los tiempos entre eventos son indepen-

dientes y exponencialmente distribuidos. Sin embargo, las suposiciones de

independencia y exponencialidad pueden ser poco realistas y restrictivas en

la práctica, y por consiguiente, se necesitan modelos más alineados con la

realidad para ajustar los datos.

Los Batch Markov Modulated Poisson Processes (BMMPPs) son una

subclase de los Batch Markovian Arrival processes (BMAPs), los cuales han

sido ampliamente usados para la modelización de eventos correlados (tales

como llegadas, fallos o eventos de riesgo). Tanto los BMMPPs como los

BMAPs permiten la dependencia y no exponencialidad de los tiempos entre

eventos aśı como las llegadas en grupo correladas, pero al mismo tiempo

heredan la tratabilidad de los procesos de Poisson. Por lo tanto, resultan

ser modelos adecuados para ajustar los datos con caracteŕısticas estad́ısticas

que difieren de los supuestos clásicos de los procesos de Poisson. A pe-

sar de la gran cantidad de trabajos considerando las subclases de procesos

BMAP, persisten varios problemas abiertos que son de interés y que serán

considerados en esta tesis, la cual se organiza de la siguiente manera.



Resumen

En el Caṕıtulo 1, se presenta un breve recorrido teórico y metodológico

que introduce los conceptos y propiedades más importantes que se necesitan

para desarrollar las principales aportaciones de la tesis. Además se intro-

ducen los procesos puntuales Markovianos y sus principales propiedades.

En el Caṕıtulo 2 se prueba la identifiabilidad del BMMPPm(K) esta-

cionario, donde K es el tamaño máximo del grupo de llegada y m es el

número de estados de la cadena de Markov subyacente. Este es un resultado

deseable de cara a la inferencia. Además se prueban algunas propiedades

nuevas relacionadas con las estructuras de correlación y autocorrelación.

El Caṕıtulo 3 se centra en la exploración de las posibilidades del BMMPP

para la modelización de fenómenos reales que involucran procesos pun-

tuales con llegadas en grupo. El primer resultado en este sentido es la

caracterización del BMMPP2(K) por un conjunto de momentos relaciona-

dos con los tiempos entre llegadas y la distribución del tamaño de los grupos.

Esta caracterización lleva a un enfoque de ajuste secuencial a través de un

método de ajuste por momentos. El grado de ajuste y la potencia de este

nuevo enfoque se ilustran tanto con datos simulados como con una base

de datos reales de teletráfico y se compara con el algoritmo EM. Además,

como una extensión del enfoque de inferencia, se estiman las distribuciones

de la longitud de la cola en el momento en que terminan los servicios en un

sistema de cola BMMPP/M/1.

A diferencia de los Caṕıtulos 2 y 3, que se dedican al Batch Markov

Modulated Poisson Process, el Caṕıtulo 4 presenta una extension al caso

bidimensional del Markov Modulated Poisson process (MMPP), motivado

por datos reales de fallos en un contexto bidimensional. El modelo unidimen-

sional MMPP se ha propuesto para la modelización de tiempos entre eventos

dependientes y no exponenciales (en contextos como la teoŕıa de colas, el

riesgo o la fiabilidad, entre otros). El nuevo MMPP bidimensional permite

la dependencia entre las dos secuencias de tiempos entre eventos, mientras

conserva las propiedades del MMPP marginalmente. Esta generalización

se basa en la distribución exponencial bivariante Marshall-Olkin. Además

se lleva a cabo la inferencia para el nuevo proceso a través de un método

que combina el método de los momentos con el algoritmo ABC. Los resul-
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tados del método propuesto se muestran tanto para datos simulados como

para una base de datos reales que representa los fallos de una compañ́ıa de

transporte público de trenes.

Para concluir, el Caṕıtulo 5 resume las contribuciones más significativas

de esta tesis, y contiene además una breve descripción de posibles ĺıneas de

investigación.
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Background on (Batch) Markov

modulated Poisson processes





CHAPTER 1

Introduction

The main motivation for the dissertation is the exploration of the problem

of statistical modeling using the Batch Markov modulated Poisson process

(BMMPP). BMMPPs constitute a subclass of Batch Markovian arrival pro-

cesses (BMAP), a general class of point processes defined by Neuts (1979)

for the first time. This chapter presents an extensive overview of BMMPPs.

In particular, Section 1.1 reviews basic definitions and properties in regards

point processes, Markov processes and Markov renewal processes. Section

1.2 describes the Markovian arrival process (MAP) and its special case,

the Markov modulated Poisson process (MMPP) first, to later extend such

processes to their batch counterparts: namely, the batch Markovian arrival

process (BMAP) and batch Markov modulated Poisson process (BMMPP).

One of the key properties of BMAPs is the issue of identifiability, which

has a direct effect on statistical estimation for the processes. This shall be

considered in the first part of Section 1.3, which will be later devoted to a

review of statistical approaches for fitting BMAP processes.

1.1 Point Processes

1.1.1 Real examples and motivation

Stochastic point processes constitute a class of discrete stochastic processes,

whose importance relies on their suitability for modeling a wide variety of

phenomena in physics, biology, engineering, or economics, among others.
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6 Chapter 1: Introduction

Point processes allow to model a random distribution of points in a space,

which can be quite general, although in most of occasions each point rep-

resents the time and/or location of an event. As examples, consider the

breackdown times of certain part of a car, the position of proteins on a cell

membrane, the positions and times of earthquakes, the locations of diseased

of some animal species in a given region, the instants of arrival of customers

in a queue, the instants of withdrawal of items from a store, the instants of

failure of a component in some system, the arrival of a packet of bytes to a

computer, etc. In general, the occurrence of event is defined depending on

the context.

Probabilistic models for these phenomena have been developed. Some-

times, in order to simplify the models and obtain closed form expressions

for the quantities of interest, the exponentiality and/or independence of the

inter-event times is assumed. However, very often these assumptions are

too restrictive to be real. For example, in teletraffic contexts consider the

widely used Bellcore LAN database, which is publicly available at

ftp://ita.ee.lbl.gov/html/contrib/BC.html

The database consists of four traces, each one contains a million packet

arrivals seen on an Ethernet at the Bellcore Morristown Research and En-

gineering facility. We will focus on BC-pAug89, which began at 11:25 on

August 29, 1989, and ran for about 3142.82 seconds (until one million of

packets had been captured). The data file consists of two columns in ASCII

format, where the first column gives the time in seconds of the packet arrival

since the start of the trace, and the second column gives the Ethernet data

length in bytes where all packets have at least a minimum size of 64 bytes

and at most the maximum size of 1518 bytes. Figure 1.1a shows the arrival

times for the first 1000 packets and the size in bytes of each one. On the

other hand, Figure 1.1b shows the QQ-plot of the packet interarrival times

in comparison with that of an exponential distribution. From which it can

be concluded that the exponential distribution would not provide a good fit

for the data.
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(a) Plot of the first 1000 arrival
times versus the packet sizes in
bytes)

(b) Inter-arrival times QQ plot
versus the QQ plot fitted by an
exponential distribution

Figure 1.1: Analysis of the Bellcore dataset

Another example can be found in an insurance context, where typically

the Poisson process is considered for modeling. The first data set under

consideration in this context is the Norwegian fire insurance data, studied

in Beirlant et al. (1996). This dataset represents the amounts (in Krone)

and times of 9181 claims to a fire insurance company in Norway for the

period 1971-1992. The second one is the Secura Belgian Re data, analyzed

in Beirlant et al. (2006). This dataset contains 371 automobile claims made

to several European insurance companies from 1988-2001. Figures 1.2 and

1.3 show the QQ plot and empirical autocorrelation function for these two

data sets. In Figure 1.2 can be seen that the data has a non-negligible

correlation, and therefore any risk model assuming independence between

the inter-event times will not be reasonable and will produce unreliable

estimates and predictions. On the other hand, from Figure 1.3 is clear that

exponential model does not capture properly the quantiles structure of the

dataset.

Something similar occurs in finance problems related to the modeling

of the operational risk. Operational risk is in conjunction with market and

credit risk what is called financial risk, which is defined as the adverse impact

on performance due to different sources of uncertainty. To evaluate the op-

erational risk, both the frequency (or the probability of a risk event occurs);

as well as the severity, or the impact of risk events on the company results,
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Figure 1.2: The ACF for the claim amounts in the real databases

Figure 1.3: The empirical quantiles of the inter-arrival times versus those of
an exponential distribution
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Figure 1.4: Empirical autocorrelation functions of both variables

are usually considered. This hypothesis of independence facilitates greatly

the calculations, but in certain contexts it can be unrealistic. In order to

illustrate it, Figure 1.4 shows the autocorrelation functions of severities and

frequencies from some minority banking financial institution. The obser-

vations were taken from 30/12/93 to 29/06/2007, the trace consists of 225

observations and it is considered that there is a single type of risk event.

In Figure 1.4 it can be seen that the correlation is non-negligible. There-

fore, assuming that the variables are independent and identically distributed

would not be appropriate for this data set.

Finally, consider an example from a reliability context, which consists of

the records of the failures of two trains for about 8 years of an European

transportation company. This data set was studied in Pievatolo and Ruggeri

(2010) and Pievatolo et al. (2003). Figure 1.5 shows the non-exponentiality

of the inter-failures times and the distance travelled between such failures

distances for those two trains.

All previous datasets are examples of observed point proceses, for which

the exponential distribution and the assumption of independence are not
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(a) Train 35, inter-failure times (b) Train 35, inter-failure distances

(c) Train 36, inter-failure times (d) Train 36, inter-failure distances

Figure 1.5: QQ-plots of inter-failure times/distances: empirical versus ex-
ponential distribution.

valid. Next section formally defines a point process.

1.1.2 Formal definition and examples

A point process is a random distribution of points on a complete separable

metric space, taking values in the non-negative integers. This metric space

can be R if the events we want to model are the epochs at which a certain

event occurs.

Let us define {Sn, n ≥ 1} as an increasing sequence of random variables

that represent the time of the nth event occurrence and Tn as the elapsed

time between Sn−1 and Sn. Therefore, Sn can be written as Sn =
∑n

i=1 Ti.

This kind of time-dependent processes can also be specified by the counting

process {N(t), t ≥ 0}, where N(t) = max{n : Sn ≤ t}, in other words,

N(t) is a random variable that count the number of events occurred in the



Part I: Background on (Batch) Markov modulated Poisson processes 11

interval (0, t]. Note that {Sn ≤ t} if and only if {N(t) ≥ n}. A counting

process {N(t), t ≥ 0} is defined to possess stationary increments if for every

set of time instants t0 = 0 < t1 < t2 < · · · < tn, the increments N(t1) −
N(t0), N(t2) − N(t1), . . . , N(tn) − N(tn−1) are identically distributed. We

will now proceed to study two important examples of point processes: one

with stationary increments (the Poisson process) and another that generally

does not satisfy this property (the renewal process).

Poisson process

The Poisson process is usually defined as follows.

Definition 1. A counting process {N(t), t ∈ [0,∞)} is a homogeneous Pois-

son process with rates λ > 0, if all the following conditions hold:

(1) N(0)=0.

(2) N(t) has stationary and independent increments.

(3) P (N(h) = 1) = λh+ o(h).

(4) P (N(h) ≥ 2) = o(h).

where f(h) = o(h) means limh→0
f(h)
h = 0.

A characteristic property of the Poisson process is that the inter-event

times are exponentially distributed with mean 1
λ . This property provides

an alternative definition of the Poisson process and a convenient way of

simulating it.

This second characterization of homogeneous Poisson process implies

that, starting from an arbitrary point, the time until the rth point has a

gamma distribution, in other words

P (N(t)−N(s) = k) = e−λ(t−s) [λ(t− s)]k

k!
, 0 ≤ s ≤ t, k ∈ Z+.

A natural and useful generalization of the Poisson process is to consider

that λ depends on time. Under this assumption, the non-homogeneous
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Poisson process (NHPP) is obtained. However, the NHPP assumes that

inter-arrival times are also independent. Therefore, it does not seem to be

a viable option in contexts such as those presented in Section 1.1.1.

Renewal processes

Another important class of point processes are the renewal processes which

are obtained by assuming that the time intervals are independent of each

other, but are not governed by an exponential distribution. In other words,

the renewal process are point processes for which the sequence of inter-

event times (T1, T2, . . . ) are independent and identically distributed random

variables with an arbitrary distribution. In general it is assumed that T1

follow a general law G1, different from the general law G governing the rest

of the inter-event times (Ti, for i > 1). These models are very versatile and

used in practice due to their mathematical treatability that allows to obtain

explicit quantities related to the performance of the associated processes.

An example of this are the following studies using the renovation processes

applied to reliability in manufacturing processes (Ali and Pievatolo, 2016),

earthquake occurrences (Jatiningsih et al., 2019) and actuarial applications

(Lveill and Hamel, 2019).

A particular case of a tractable and widely applied renewal processes is

the Phase-type renewal processes which is examined below.

The PH renewal processes are renewal processes whose sequence of

inter-event times are independent and follow a phase-type distribution. They

have been widely used in practice in many areas, since they are analytically

and algorithmically tractable models. For example, in reliability (Montoro-

Cazorla and Pérez-Ocón, 2006), in queueing theory (Kim et al., 2010), and

in healthcare (Marshall et al., 2015). Intuitively, the phase-type distribution

can be represented as the time until absorption in a Markov process with

one absorbing state. From this, it can be inferred that a PH-distribution

can be written as a mixture of exponential distributions. Each of these ex-

ponential distributions represents a phase or state of the process and may
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or may not have the same parameter. Consider a process with m phases

starting in phase i (for i = 1, ...,m), after an exponential sojourn time in

that phase the processes jumps to phase j (for j = 1, ...,m). The process

goes from one phase to another until it arrives to the absorbing state. In

He (2014) the following algebraic definition of the PH-distribution can be

found.

Definition 2. Let X be a non-negative random variable. X is said to be

PH-distributed, represented as (ααα,TTT ), if its cumulative distribution function

is given as

FX = P (X ≤ s) = 1−αααeTTTseee = 1−ααα

( ∞∑
n=0

sn

n!
TTTn

)
eee, for s ≥ 0,

where eee is a column vector of ones, ααα = (α1, α2, ..., αm) is a row vector

of order m > 0 (number of phases), where αi ≥ 0 and αeαeαe = 1 and T is

an invertible m × m matrix satisfying that all row sums are non-positive,

(T )ii < 0 and (T )ij ≥ 0, for i, j ∈ {1, 2, ...m} and i 6= j.

The versatility of PH distributions, containing as particular cases the

exponential and Erlang distributions, along with the possibility of approx-

imating any positive-valued distribution for a sequence of PH-distributions

(see Asmussen (2008) for a proof), justify its extensive use. However, as

with the Poisson process, the assumption of independent inter-event times

in the renewal processes is restrictive in practice as shown in Section 1.1.1.

In Section 1.2 this assumption is relaxed by means of the Markov process.

1.1.3 Markov chains and Markov processes

A Markov chain is a collection of random variables having the property

that, given the present, the future is conditionally independent of the past.

A formal definition is as follow:

Definition 3. Let X(t), t ∈ T a stochastic process, whose values are ele-

ments of a state space S and T denotes time. Then X(t) is said to be a
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Markov process if the Markov property is satisfied:

P (X(tk+1) = xk+1|X(tk) = xk, ..., X(t0) = x0) = P (X(tk+1) = xk+1|X(tk) = xk) ,

for any 0 ≤ t0 ≤ ... ≤ tk ≤ tk+1 and xi ∈ S.

We can say that in a Markov process the future depends on the past only

through the present. In other words, if the state of the stochastic process at

a specific time is known, then it is possible to predict the future stochastic

behavior. For this reason the Markov processes are a very suitable tools in

stochastic modeling problems.

Discrete time Markov Process

Let {Xn, n = 0, 1, 2, ...} be a discrete-time stochastic process, where Xn

represents the state in which the process is at the instant of time n. Then,

{Xn, n ≥ 0} is a discrete Markov process or Markov chain, if

P (Xn+1 = j|Xn = i,Xk = xk, 0 ≤ k ≤ n− 1) = P (Xn+1 = j|Xn = i) = pij .

The previous property states that knowing the present state {Xn}, the future

state {Xn+1} does not depend on the previous states {X0, ..., Xn−1}. On

the other hand, the state transition probability can be represented in a

transition probability matrix

P =



p00 p01 · · · p0j · · ·

p10 p11 · · · p1j · · ·
...

... · · ·
...

...

pi0 pi1 · · · pij · · ·
...

... · · ·
...

. . .


.

Since the elements of the matrix P are state transition probabilities, they

are non-negative. In other words for any row i,
∑∞

j=0 pij = 1.
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Let p
(n)
ij be the probability that the process goes from state i to j after

n transitions, then

p
(n)
ij = P (Xm+n = j|Xm = i) , for n > 0

and

p
(0)
ij =

1 if i = j

0 if i 6= j
.

The transition probabilities satisfy the Chapman-Kolmogorov equations

p
(n)
ij =

∞∑
k=0

p
(r)
ik p

(n−r)
kj , 0 ≤ r ≤ n.

These equations also have a matrix version

P (n) = {p(n)
ij } = P (1)P (n−1) = PP (n−1) = ... = P n.

Therefore, a Markov chain is fully characterized by the transition prob-

ability matrix P and an initial probability vector α, where αi = P (X0 = i).

We can compute the probability that the process is in state j after the n-th

transition α
(n)
j = P (Xn = j) as

α
(n)
j =

∞∑
i=0

P [Xn = j,X0 = i]P [X0 = i] =
∞∑
i=0

p
(n)
ij αi.

A classification of Markov chains is given next. Let T be the time of the

first visit to state i. Then such state i can be classified as:

1. Recurrent if P (T <∞|X0 = i) = 1. In addition, state i is

(a) Null Recurrent if E(T |X0 = i) =∞

(b) Positive Recurrent if E(T |X0 = i) <∞

2. Transient if P (T =∞|X0 = i) > 0

Moreover, let d denote the largest integer for which P (T = nd|X0 = i) = 1.

If d = 1, then the recurrent state i is said to be aperiodic; otherwise, if d > 1
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is called periodic with period d. On the other hand, a Markov chain is said

to be irreducible if and only if all states can be reached from each other.

If a Markov chain is irreducible, it can be shown that all states are either

positive recurrent or transient. Finally, the stationary probability vector is

defined in the following result.

Proposition 1. For a finite, irreducible and aperiodic Markov chain, there

exists a unique stationary probability vector that satisfies

lim
n→∞

P (n) = eφ, φ = φP and φe = 1,

where eee is a vector of ones.

Next section considers continuous-time Markov Processes for which tran-

sitions can occur at any t > 0.

Continuous-time Markov Process

A continuous-time stochastic process {X(t), t ∈ R+} is a continuous-time

Markov process if

P (X(t+ s) = j|X(s) = i,X(u) = u, 0 ≤ u ≤ s) = P (X(t+ s) = j|X(s) = i)

= pij(t).

In other words, the future X(s+ t) depends on the past X(u) only through

the present X(s).

As for the discrete process in the continuum process, the probability of

passing from one state to another in a given time can be defined. Let pij(t)

be the probability that the Markov process will be in state j, given that

it was in i, t time units ago. This quantity is called transition probability

function and satisfies the Chapman-Kolmogorov equation given by

pij(t+ s) =
∑
k

pik(t)pkj(s).

Let P (t) = [pij(t)] be the matrix with transition probabilities. Then,

P (t) is called the transition probability matrix at time t and satisfies that
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all the elements of each row sum one,
∑

j pij(t) = 1. Using this matrix

representation the Chapman-Kolmogorov equation can be rewritten as

P (t+ s) = P (t)P (s).

Let Hi be the time that the process spends in state i before leaving it.

This time is called sojourn time and due to the Markovian property it is

memoryless, or, in other words

P [Hi > s+ t|Hi > s] = P [Hi > t], s, t ≥ 0.

Therefore, Hi is exponentially distributed with mean 1/λi, where λi repre-

sents the rate at which the process leaves state i, while λipij denotes the

rate of transition from state i to j. Using these two rates it is possible

to define a matrix that plays the same role as the transition matrix P of

the discrete-time Markov chains. This matrix, also known as infinitesimal

generator, is defined as Q = {qij}i,j∈S , where

qij =

λi if i = j

−λipij if i 6= j

and it satisfies

lim
t→0

P (t)− I
t

= Q and
P (t)

dt
= QP (t) = P (t)Q, for t ≥ 0,

where P (t) is the probability transition matrix of the process. From these

results when state-space is finite, it can be deduced that

P (t) = Qt.

If we consider the continuous-time Markov process {X(t), t ≥ 0} only

at the instants upon which a state transition occurs (t0, t1, t2, ...), then, it

is possible to construct a Markov chain {Xn, n ≥ 0}. The values of this

Markov chain will be the state of {X(t)} immediately after the transition
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at time tn. Using this construction the states of a Markov process can be

classified by the classification provided by the embedded Markov chain.

Definition 4. Let {X(t), t ≥ 0} be a continuous-time Markov process and

{Xn, n ≥ 0} its associated embedded discrete-time Markov chain. Then

1. {X(t)}t>0 is irreducible if and only if {Xn}n≥0 is irreducible.

2. A state i is recurrent/transient for {X(t)}t>0 if and only if it is recur-

rent/transient for {Xn}n≥0.

For irreducible and positive recurrent Markov process is possible to ob-

tain the follow limiting probability

Proposition 2. Let {X(t), t ≥ 0} be an irreducible and positive recurrent

Markov process, then there exists an unique stationary probability vector π

that is independent of the initial state and satisfies

πj = lim
t→∞

P [X(t) = j], and πQ = 0.

1.1.4 Markovian renewal processes

Markov renewal processes are stochastic processes in which the transitions

from one state to another one occur according to a Markov chain, and the

time between two successive state transitions is a random variable with a

general distribution that depends on the current state as well as the succes-

sive transition state. A stochastic process that combines renewal processes

and Markov chains is called a Markov renewal process. A formal definition

is given next. Let {Xn, n ≥ 0} be a stochastic process on state space S,

where Xn records the state of the process at n-th event occurrence and Sn

is a random variable that denotes the time at which that event occurs.

Definition 5. Let {Xn, Sn, }n≥0 and Ki,j(t) be a bivariate stochastic process

and the probability that the process passes from state i to state j in a period

of time t respectively. The process is called a Markov renewal process with

state space S if

Ki,j(t) = P [Xn+1 = j, Sn+1 − Sn ≤ t|X0, ..., Xn = i;S0, ..., Sn]
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= P [Xn+1 = j, Sn+1 − Sn ≤ t|Xn = i].

In other words, if we write this values in a matrix way asK(t) = [Ki,j(t)],

thenK(t) is known as the semi-Markov kernel of the Markov renewal process

{Xn, Sn}. If P ∗ij is defined as

P ∗ij = lim
t→∞

Kij(t),

then P ∗ is the transition probability matrix of the Markov chain {Xn, n ≥ 0}
with state space S. The Markov chain {Xn, n ≥ 0} governs transitions

between states, therefore it is said to be an embedded Markov chain. For

more details on Markov Renewal processes, we refer the reader to Nakagawa

(2011).

Next section introduces the stochastic process we are dealing with in

this dissertation. It is a specific class of Markov renewal process for which

the inter-arrival times are non-exponential and dependent. Such a process

is named Batch Markovian arrival process, a class of processes that gen-

eralize the renewal processes with phase-type distributions and allows for

dependence among inter-event times via its markovian structure.

1.2 Fundamentals on Batch Markovian arrival pro-

cess

The Batch Markovian Arrival Process (BMAP), as stated above, were intro-

duced by Neuts (1979) as a versatile Markovian point process. However, its

matrix and more tractable notation is due to Lucantoni (1991). BMAPs have

the important characteristic of being dense in the family of all stationary

point processes. Asmussen and Koole (1993) proved that it is possible to find

a sequence of BMAPs that converges to a given point process. On the other

hand, BMMPP is simpler a subclass with fewer parameters than BMAP and

for some situations a BMMPP is enough to capture the complexity of the

problem. Therefore, both of them have been widely considered in a number

of real-life contexts where dependent arrivals are commonly observed. For
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example, in reliability (Montoro-Cazorla and Pérez-Ocón, 2006; Montoro-

Cazorla and Pérez-Ocón, 2014b,a; Rodŕıguez et al., 2016b; Rodŕıguez et al.,

2015), teletraffic (Kang et al., 2002; Casale et al., 2010; Wang et al., 2015),

insurance (Landriault and Shi, 2015; Li and Ren, 2013), and weather fore-

casting (Ramı́rez-Cobo et al., 2014b). On the other hand, the versatility and

tractability of BMAP and BMMPP make them suitable tools for modeling

the bursty arrival processes commonly arising in computer and communica-

tions applications, specially in queuing models, because it provides a way to

model more complex arrival systems.

BMMPP is the batch counterpart of the widely known Markov modu-

lated Poisson process (MMPP), which is a sub class of the Markov arrival

process (MAP). Therefore, continuing with the structure followed in the

description of the previous processes, the MAP and the MMPP will be in-

troduced first, to then, move on to the description of BMAP and BMMPP

which are more general processes.

1.2.1 The Markovian arrival process and the Markov mod-

ulated Poisson process

The MAP was introduced by Neuts (1979) as a versatile Markovian point

process. However, its matrix and more tractable notation is due to Lucantoni

(1991). Both MAP and MMPP can be seen as a matrix generalization of

the Poisson process inheriting its tractability and extending its capabilities.

Let consider a Poisson process with rate λ and denotes as N(t) the

number of arrivals in (0, t]. Then {N(t)}t≥0 is a Markov process on the

state space S = Z+ with infinitesimal generator

G =



d0 d1 0 0 · · ·

0 d0 d1 0 · · ·

0 0 d0 d1 · · ·
...

...
...

...
. . .


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where, d0 = −λ and d1 = λ.

As mentioned above, it is desirable to find a process that allows for non-

exponential times between event occurrences, dependence between inter-

event times but still preserving an underlying Markovian structure. A

process that fulfills these specifications is the m-states MAP, denoted as

MAPm, which is constructed by generalizing the above Poisson process.

Let {J(t), N(t)} be a two-dimensional Markov process on the state space

S = Z+ × [0,m]; where J(t) is an irreducible and continuous Markov pro-

cess with state space S = {1, ...,m} and N(t) is a counting process that

quantifies the number of events occurring in the interval (0, t]. While the

infinitesimal generator of the process is given by

G =



D0 D1 0 0 · · ·

0 D0 D1 0 · · ·

0 0 D0 D1 · · ·
...

...
...

...
. . .


,

where both D0 and D1 are m×m square matrix, being nonnegative all the

off-diagonal elements of D0 and all the elements of D1.

The MAPm behaves as follows: the initial state i0 ∈ S is generated

according to an initial probability vector α = (α1, ..., αm), and at the end

of an exponentially distributed sojourn time in state i, with mean 1/λi, two

types of transitions can occur. On one hand, with probability pij0, no event

occur and there is a transition from state i to state j (with i 6= j), in other

words, the process changes state. On the other hand, with probability pij1

an event occurs and there is a transition from i to state j (where it could

be i = j), in other words the process can change state or stay in the same

state. Therefore, the transition probabilities satisfy

m∑
j=1,j 6=i

pij0 +

m∑
j=1

pij1 = 1, for all i ∈ S. (1.1)
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Hence, any MAPm can be characterized by the initial probability vector, α,

and the rate matrices D0, and D1, which govern the transitions without

and with event occurrences, respectively, and are defined as

(D0)ii = −λi, i ∈ S,

(D0)ij = λipij0, i, j ∈ S, i 6= j,

(D1)ij = λipij1, i, j ∈ S.

(1.2)

On the other hand, in the stationary processes, which are the focus of this

thesis, the initial probability vector, α, coincides with the stationary prob-

ability vector, π, of the Markov process with generator Q = D0 +D1 (see

Chakravarthy (2001)). Consequently π = (π1, ..., πm), is the unique (posi-

tive) probability vector satisfying πQ = 0 and πe = 1, where 0 and e are

columns vector of zeros and ones respectively. Hence, πi is the stationary

probability that the process is in state i.

The MAPm can be viewed as a Markov renewal process. If we denote

Tn as the time between the (n− 1)-th and the n-th occurrences and Sn the

state of the process when n-th event occurs, then, {Sn, Tn}∞n=1 is a Markov

renewal process and {Sn}∞n=1 is a Markov chain whose transition probability

matrix is

P ∗ = (−D0)−1D1. (1.3)

On the other hand, its stationary probability vector φ is computed solving

the equation φ = φP ∗, whose solution is given by

φ = (πD1e)−1πD1, (1.4)

see Ramı́rez-Cobo et al. (2010) for a proof.

In practice, it is usually not possible to observe the sequence of states and

only a sequence of inter-event times t = (t1, t2, ..., tn) is observed. Hence, it is

important to study the properties of inter-event times. In the stationary case

the sequence of random variables {Tn}n≥1 are identically distributed. Let

T denote time between two successive events, then T follows a phase-type
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distribution with representation {φ,D0} (see Latouche and Ramaswami

(1999)). Therefore, the cumulative distribution function of T is

FT (t) = 1− φeD0te (1.5)

and its moments are

µn = E[Tn] = n!φ(−D0)−ne. (1.6)

As mentioned above, one of the most important properties of the MAPm is

that it allows for a dependence structure between the inter-event times. In

particular

ρT (l) = Corr(T1, Tl+1) =
π[(−D0)−1D1]l(−D0)−1e− µ1

2π(−D0)−1e− µ1
. (1.7)

Finally, Rodŕıguez et al. (2016a) give the Laplace-Stieltjes transform of the

n first consecutive inter-event times of a non-stationary MAPm. Taking

π as the initial probability vector, the Laplace-Stieltjes transform for the

stationary MAPm is given by

f∗T (s1, ..., sn) = φ(s1I −D0)−1D1...(snI −D0)−1D1e. (1.8)

The Markov modulated Poisson process (MMPPm) is an special sub-

class of the MAPm in which the state changes only take place when no

events occur. Therefore, the only change in the formulation given in (1.2)

is that pij1 = 0 for i 6= j, which implies that D1 is a diagonal matrix.

This simplification will allow MMPPm to be identifiable, a very desirable

property in terms of inference, while inheriting much of the versatility that

MAPm has.

Example: Stationary MMPP2. The simplest case of MMPPm is the

stationary MMPP2, hencem = 2 and state space is S = {1, 2}. The behavior

of this process is illustrated by means of the transition diagram of Figure

1.6, where all the different transitions that can occur in this process appear.
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Figure 1.6: Transition diagram for the MMPP2. Here 0 and 1 illustrate
moves without and with arrivals, respectively.

In this particular case the rate matrices are given by

D0 =

 −λ1 λ1p120

λ2p210 −λ2

 , D1 =

λ1p111 0

0 λ2p221

 ,

where p111 = 1 − p120 and p221 = 1 − p210. In the next section the batch

counterpart of MAPm and MMPPm will be analyzed.

1.2.2 The batch Markovian arrival process and the batch

Markov modulated Poisson process

In the same way that MAPm is defined as an extension of a Poisson process,

BMAPm(K), where K is the maximum batch arrival size, can also be defined

as an extension of a Poisson process with batch events. Let consider a Batch

Poisson process with rate λ and with pk being the probability that the batch

size is equals to k, with k ∈ N. If N(t) is the number of arrivals in (0, t], then

{N(t)}t≥0 is a Markov process on the state space S = Z+ with infinitesimal

generator

G =



d0 d1 d2 d3 · · ·

0 d0 d1 d2 · · ·

0 0 d0 d1 · · ·
...

...
...

...
. . .


where, d0 = −λ and dk = pkλ. The functioning of this process is as follows:

after an exponential sojourn time (with mean 1/λ) in state i, the process

jumps to state i+ k with probability pk, corresponding the transition to an
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arrival with batch size k.

The BMAPm(K) is constructed by generalizing the above batch Poisson

process. This construction allows for non-exponential times between the

arrivals of batches, but still preserving an underlying Markovian structure.

G now is the infinitesimal generator of a Markov process {J(t), N(t)} on

the state space S = N× {N ∩ [0,m]} and has the following structure:

G =



D0 D1 D2 D3 · · ·

0 D0 D1 D2 · · ·

0 0 D0 D1 · · ·
...

...
...

...
. . .


,

where Dk, for k ≥ 1, are m×m non-negative matrices and D0 is a m×m
matrix with negative diagonal and non-negative off-diagonal elements. The

irreducible infinitesimal generator for the BMAPm(K) is defined as

Q =

∞∑
k=0

Dk.

As in the MAPm, the stationary probability vector π = (π1, ..., πm), in the

BMAPm(K) satisfies that πQ = π and πe = 1.

The BMAPm(K) behaves as follows: at the end of an exponentially

distributed sojourn time in state i, with mean 1/λi, two possible state tran-

sitions can occur. First, with probability pij0 no arrival occurs and the

process enters in a different state j 6= i. On the other hand, with probabil-

ity pijl, with 1 ≤ l ≤ K, there will be a transition to state j (where it could

be i = j) with a batch arrival of size l. The transition probabilities satisfy

m∑
j=1,j 6=i

pij0 +

K∑
k=1

m∑
j=1

pijl = 1, for all i ∈ S.

Like the MAPm, the BMAPm(K) can be characterized by the rate ma-
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trices D0,D1, ...,DK , where the definition of these matrices for the batch

process is

(D0)ii = −λi, i ∈ S,

(D0)ij = λipij0, i, j ∈ S, i 6= j,

(Dl)ij = λipijl, i, j ∈ S, 1 ≤ l ≤ K.

(1.9)

If we denote by Sr the state of the BMAPm(K) at the time of the r-th,

Br the batch size of that arrive and Tr the time between the (r − 1)-th

and r-th events, then the process {Sr−1,
∑r

i=1 Ti,Br}∞r=1, associated to the

BMAPm(K), is a Markov renewal process. Note that in the process with

batch arrivals, both the times between arrivals and the states of the under-

lying process coincide with those of the single arrivals process. Therefore, in

the BMAPm(K), {Sr}∞r=0 is also a Markov chain, but its transition matrix,

which for the MAPm is given by (1.3), for the BMAPm(K) becomes

P ∗ = (−D0)−1D,

where D =
∑∞

l=1Dl. Note that when K = 1 (the MAPm) D = D1.

On the other hand, Tis are also phase-type distributed with representa-

tion {φ,D0} but for the BMAPm(K) we have to replace D by D1 in (1.4)

to obtain the stationary probability vector of P ∗ :

φ = (πDe)−1πD. (1.10)

Note that for K = 1 (1.4) and (1.10) coincide. Therefore the expressions

obtained for the MAPm for the cumulative distribution of T (1.5), its mo-

ments (1.6) and the auto-correlation function of the inter-event times (1.7)

are also valid for the BMAPm(K).

On the other hand, Rodŕıguez et al. (2016c) provide the Laplace-Stieltjes

transform (LST) of the n first inter-event times and batch sizes of a station-

ary BMAP (which is the same for the BMMPPm(K)):

f∗T,B(s, z) = φ(s1I −D0)−1ξ(z1)...(snI −D0)−1ξ(zn)e, (1.11)
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where s = (s1, ..., sn), z = (z1, ..., zn) and ξ(zi) =
∑K

k=1Dkz
k
i , for i =

1, ..., n.

From the Laplace-Stieltjes transform given by Rodŕıguez et al. (2016c),

it can be proved that the mass probability function of the stationary batch

size, B, is

P (B = k) = φ(−D0)−1Dke, for k = 1, ...,K,

from which the moments of B can be computed as

βr = E[Br] = φ(−D0)−1D∗
re, for r ≥ 1, (1.12)

where D∗
r =

∑K
k=1 k

rDk. Another quantity of interest obtained from the

LST is the autocorrelation function of the batch sequence given by

ρB(l) = Corr(B1, Bl+1) =
φ(−D0)−1D∗

1[(−D0)−1D]l−1(−D0)−1D∗
1e− β2

1

σ2
B

,

(1.13)

where β1 and σ2
B = β2 − β2

1 are computed from (1.12).

A measure of interest in the BMAPm(K) is the expected number of event

occurrences per unit of time, which is called the fundamental arrival rate

and is given by

λ∗ = π
k∑
l=1

lDle.

Concerning the counting process {N(t), t ≥ 0}, define the m×m matrix

P (n, t) = Pij(n, t)n∈N,t≥0, whose elements are

Pij(n, t) = P (N(t) = n, J(t) = j|N(0) = 0, J(0) = i).

This matrix, P (n, t), represents the conditional probability of n event oc-

currences in the interval (0, t] and the underlying Markov process is in state

j at time t, given that at initial time there was not events and the state was

i. Then,

P (N(t) = n|N(0) = 0) = φP (n, t)e
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and the expected number of event occurred up to time t can be computed

from the first factorial moment of the counting process:

M1(t) =

∞∑
n=0

nP (n, t),

for more details, see Chakravarthy (2010) and Neuts and Li (1996).

In the same way that MMPPm was defined as a subclass of the MAPm,

BMMPPm is a special sub-class of the BMAPm in which the state changes

only take place when no events occur. In other words, Dk for 1 ≤ k ≤ K

are all diagonal matrices. Therefore, its formulation is expressed as

(D0)ii = −λi, i ∈ S,

(D0)ij = λipij0, i, j ∈ S, i 6= j,

(Dl)ii = λipiil, i ∈ S, 1 ≤ l ≤ K,

(Dl)ij = 0, i 6= j, 1 ≤ l ≤ K.

(1.14)

In Chapter 2 will be proved that, like the MMPPm and unlike the

BMAPm(K), the BMMPPm(K) is identifiable. As with the MMPPm this

simplification will allow us to proof the identifiability of the BMMPPm in

Chapter 2 of this dissertation.

1.3 Statistical estimation for Batch Markovian ar-

rival process

Both BMMPPs as BMAPs have gained widespread use in stochastic mod-

eling due to their ability to describe a wide range of situations. Hence, it

is of interest to consider statistical inference for such models. A paramount

aspect when studying statistical inference for stochastic process is the identi-

fiability property which implies that the process is characterized by a unique

representation. Section 1.3.1 addresses this theoretical problem for BMAPs

and BMMPPs.
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1.3.1 The identifiability issue for BMAPs and BMMPPs

Both (B)MAPs and (B)MMPPs are highly-parametrized models where, in

practice, only inter-event times and batch sizes (in the case of the BMAP

and BMMPP) are usually observed. In general, the underlying Markov chain

transitions are not available, and therefore, the observed data for BMMPPs

and BMAPs can be viewed as generated from a hidden Markov process, see

Ephraim and Merhav (2002).

When dealing with inference for hidden Markov processes, it is common

that the likelihood function does not possess a unique global maximum, or in

other words, the process is non-identifiable. Several works have considered

the identifiability issue for different subclasses of BMAPs. For example, from

the results in Ito et al. (1992) and via a uniformization techinique, Rydén

(1996b) studied the identifiability of the MMPPm and phase type distri-

butions. From these works it can be concluded that while the MMPPm is

identifiable (up to permutations of states), the phase-type are not. The non-

identifiability of the phase-type distribution can be easily illustrated if we

consider that any two-state phase-type distribution can be represented as a

two-state Coxian distribution, which is not identifiable. Also, Green (1998)

and Bean and Green (1999) investigated when a MAP is a Poisson process,

while He and Zhang (2006, 2008, 2009) used the so-called spectral polyno-

mial algorithm to construct Coxian representations for phase-type distri-

butions whose generators have only real eigenvalues. On the other hand,

Bodrog et al. (2008) provided a canonical and unique representation for the

MAP2. Concerning the MAP2, Ramı́rez-Cobo et al. (2010) proved its lack

of identifiability and provided the conditions for which two different MAP2

representations are equivalent. The results in Ramı́rez-Cobo et al. (2010)

were partially extended to the stationary MAP3 by Ramı́rez-Cobo and Lillo

(2012) and to the non-stationary MAP2 by Rodŕıguez et al. (2016a). On

the other hand, Ramı́rez-Cobo et al. (2014a) studied how the lack of a

unique representation for the MAP2 can affect the statistical estimation of

the MAP2/G/1 queueing system.

In the previous works, the identifiability of the process is defined in terms
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of the observable quantities (that is, the inter-event times) distribution, as

follows.

Definition 6. Let B be a representation of a MAPm as in (1.2) and let Tn

denote the time between the occurrence of the (n − 1)-th and n-th events.

Then, B is said to be identifiable if there does not exist a different parametriza-

tion B̃, such that

(T1, ..., Tn)
d
= (T̃1, ..., T̃n), for all n ≥ 0,

where T̃i defined in analogous way as Ti, and where
d
= denotes equality in

distribution.

Since in this dissertation we study the modeling of real phenomena by the

BMMPP, it is of interest to investigate the identifiability of these processes

first. To such aim, Definition 6 is generalized as follows,

Definition 7. Let B be a representation of a BMMPPm(K) as in (1.14) and

let Tn and Bn denote the time between the (n− 1)-th and n-th events occur-

rences, and the batch size of the n-th event occurrence, respectively. Then,

B is said to be identifiable if there does not exist a different parametrization

B̃, such that

(T1, ..., Tn, B1, ..., Bn)
d
= (T̃1, ..., T̃n, B̃1, ..., B̃n), for all n ≥ 0,

where T̃i and B̃i are defined in analogous way as Ti and Bi, and where
d
=

denotes equality in distribution.

As far as we know, the only work where the identifiability of BMAP

or BMMPP has been studied is Rodŕıguez et al. (2016c); in particular, the

non-identifiability of BMAP2(k), for k ≥ 2 is proved. The proof, based on

Ramı́rez-Cobo et al. (2010), consists on the construction of an equivalent

BMAP2(k) to a given one, via a decomposition of the original process into

k BMAP2(2)s. Concerning the BMMPP, Chapter 2 of this dissertation

focuses on the identifiability or this process. As it will be shown, the proven

identifiability for the BMMPP turns out relevant for estimation purposes.
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The remainder of this section deals with the different statistical estima-

tion techniques that have been considered in the literature for the BMAP.

1.3.2 Likelihood-based approaches

This section provides an overview of the likelihood-based estimation methods

used for estimating BMAP-related processes. The first and natural approach

is to direct maximize the likelihood function for the observable sample. If

t = (t1, . . . , tn) and b = (b1, . . . , bn) represent the sequence of observed inter-

event times and the associated batch sizes, then the likelihood function is

given by

f{D0,...,Dk}(t, b) = φeD0t1Db1 . . . e
D0tnDbne. (1.15)

Note that if we are considering a MAP, then Dbi = D1, for all i. Carrizosa

and Ramı́rez-Cobo (2014) considered the direct maximization of (1.15) in

the simplest and most tractable case of the MAP2. For this, the authors

report several numerical problems related to the evaluation of the function,

which may turn out impossible when the sample size n grows. The reason

for this, which relies in expression (1.15), is explained in detailed in the

paper.

Because of the numerical trouble, the EM algorithm, see Dempster et al.

(1977), which uses the complete likelihood function, has been widely con-

sidered instead. At each iteration of the algorithm there are two steps: the

first is the expectation (E) and the other one is maximization (M). In par-

ticular, if X denotes the observable data, and Y represents the unobservable

observations, (or latent variables), then, the algorithm first picks a starting

value θ0 and, for j ≥ 1, it repeats the following steps until convergence is

achieved.

(1) (E-step) Calculate

J(θ|θj) = E[log f(X,Y |θ)|Y, θj ]
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(2) (M-step) Find the parameter that maximizes

θj+1 = argmax
θ
J(θ|θj)

The E-step consists in finding the distribution of the unobserved data,

given the observed data set and the value of the parameters obtained in

the previous step θj (or the initial values in the first step). While the M-

step re-estimates the parameters in each step using a maximum-likelihood

approach.

The EM algorithm has been proposed for inference of the BMAP and

BMMPP in a number of papers, see for example Asmussen et al. (1996),

Rydén (1996a), Klemm et al. (2003), Breuer (2002), Buchholz (2003), Ephraim

and Roberts (2008), Okamura et al. (2009) and Horváth and Okamura

(2013). It is known that the EM algorithm can be slow when the start-

ing solution is not close to the true one. Because of this, several adaptations

to the algorithm have been proposed in the context of BMAPs. For example,

Buchholz (2003) reduced the time complexity of the algorithm by applying

an uniformization technique. On the other hand, Okamura and Dohi (2009)

presented a novel EM algorithm using a hyper-Erlang distribution, which

does not need to compute the matrix exponential. This adaptation signif-

icantly improved the convergence of the algorithm. Also, Okamura et al.

(2013) provided a deterministic annealing for the EM algorithm for a MAP

in order to relax the local maximum convergence of algorithm. In Chapter

3 of this dissertation the EM algorithm is compared with a novel moments

matching method for the BMMPP2(K).

1.3.3 Moments-based methods

The method of moments consists in solving a system of equations that equal

a set of theoretical moments to their empirical counterparts. Specifically,

let θ = {θ1, θ2, . . . , θp} represent the unknown parameters characterizing our
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model. Then, for a sample of size n,

µ̂j =
1

n

n∑
i=1

tji ,

represents the j−th sample moment and

µj ≡ µj(θ) = E[T j ]

denotes the j-th theoretical moment. Then, the parameter estimates,

θ̂ = {θ̂1, θ̂2, . . . , θ̂p} is defined as the solution of the equations system given

by

µ̂j = µj(θ̂),

for j = 1, . . . , p.

This simple method has turned out very convenient in the context of the

BMAP since some sub-type of processes are completely characterized by a

set of moments related to the inter-event time distribution. For some refer-

ences, we refer the reader to Horváth and Telek (2002), Riska et al. (2004),

Telek and Horváth (2007), Eum et al. (2007), Bodrog et al. (2008), Casale

et al. (2010), Kriege and Buchholz (2011), Ramı́rez-Cobo et al. (2014b),

Carrizosa and Ramı́rez-Cobo (2014) and Rodŕıguez et al. (2015). It is our

experience that this method is fast, performs well in practice, and avoids

the use of intractable likelihood functions.

In Chapter 3 of this dissertation we illustrate the convenience of the

method of moments for the case of BMMPP2(K), for which the set of mo-

ments characterizing the process are first found. As it will be seen, this

theoretical task (finding the moments that characterizes the distribution)

is non trivial and indeed, it remains an open question for the majority of

BMAPs.

1.3.4 Bayesian approaches

Several authors have also considered Bayesian approaches to estimate both

the MMPP and the MAP. Concerning the Markov chain Monte Carlo



34 Chapter 1: Introduction

(MCMC) methods, Scott (1999) developed a Gibbs sampler algorithm for

the MMPP2. The algorithm allows to sample from the posterior distri-

bution of the model parameters given the observed event times. Scott and

Smyth (2003) estimated the MMPP parameters by a rapidly mixing Markov

chain Monte Carlo algorithm and apply it to a data set containing click rate

data for individual computer users browsing through the World Wide Web.

Fearnhead and Sherlock (2006) derived a Gibbs sampler which samples from

the exact distribution of the hidden Markov chain in a MMPP. On the other

hand, Ramı́rez-Cobo et al. (2017) considers an exact Gibbs sampler to sam-

ple for the posterior distribution of the model parameters. For designing

the sampler, the canonical forms of the process obtained by Bodrog et al.

(2008) turn out crucial.

In general, MCMC methods have proven to provide accurate approx-

imations for BMAP-related processes characterized by a small number of

parameters, as in the previous references. Up to our knowledge, MCMC for

general BMAPm(K) have not been considered in the literature. The com-

putational intensity inherent to Bayesian approaches with growing number

of parameters, the complexity of the likelihood functions as well as the elic-

itation of prior distributions may be some reasons for this fact. The Ap-

proximate Bayesian Computation (ABC) is an alternative Bayesian strategy

to MCMC method that avoids the evaluation of a complicated or unknown

likelihood function, see for example Pritchard et al. (1999).

The Approximate Bayesian computation (ABC) is a mathematically

well-founded algorithm applied in a wide variety of fields and as stated

before, the method bypasses the evaluation of the likelihood function. In-

stead, the ABC is based on random simulations from the likelihood function

at a number of iterations, where comparisons between empirical moments

of the given sample and those from the generated sample are made at each

iteration. Parameters leading to samples whose moments differ from those

of the given sample are discarded. This idea is illustrated in Algorithm 1

(simpler version of ABC), and detailed in, for example in Pritchard et al.

(1999) and Marin et al. (2012).

A description of Algorithm 1 is given next. First, a set of parameter
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Algorithm 1: ABC algorithm (simpler version)

1. Let t represent a given sample of the process whose likelihood in in-
tractable or unknown.

2. Fix a set of summary statistics, ν.

3. Fix a distance measure ρ{·, ·} and a tolerance parameter ε ≥ 0.

4. for i = 1 to N do

repeat

Generate θ? from the prior distribution π(·)
Generate z from the likelihood f(·|θ?)

until ρ{ν(t), ν(z)} < ε

set θ̂i = θ?

end for

points θ? is sampled from the prior distribution π(·). Given θ?, a data set

z is then simulated under the statistical model in study. If the generated

z is too different from the observed data t, the sampled parameter value

θ? is discarded. In precise terms, the sampled parameter value is accepted

with tolerance ε ≥ 0 if ρ{ν(y), ν(z)} < ε, where ν represents a set of sum-

mary statistics and ρ{·, ·} is a distance measure. A good choices of these

quantities is essential to obtain the desired result, and therefore this step is

the most complicated one when implementing the ABC. If the procedure is

repeated a number of N times, the methods results in a sequence of good

posterior estimates θ?1,θ
?
2, · · · . from which quantities of interest can be eas-

ily obtained. According to Biau et al. (2015) the justification of the ABC

algorithm lies in the fact that when ν is a sufficient statistic of θ, the distri-

bution of θ̂i converges to the genuine posterior distribution when ε goes to

zero. However, when the likelihood is unknown, then a sufficient statistics

can hardly be identified. In that case, the recommendation of Fearnhead

and Prangle (2012) is to find a low dimensional summary of the data that
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is sufficiently informative about θ. An alternative to select a value of ε is

to keep the best estimates, that is to accept just a certain proportion of the

sampled values (e.g. 5%, 1%, 0.5%), those closest to the real data according

to the defined distance measure. Wilkinson (2013) describes ε as controlling

a trade-off between computability and accuracy, because while smaller val-

ues of ε lead to better approximate of the true posterior, they also lead to

lower acceptance rates and consequently, more computation must be done

to get a given sample size.

For more details about the implementation of this method and possible

extensions to it, we refer the reader to Csilléry et al. (2010) or Mengersen

et al. (2013). Although to our knowledge it has not been used for BMAP

estimation before, it has been recently suggested by Dean et al. (2014) for

parametric estimation of hidden Markov models. In Chapter 4 we provide

an illustration of this method in the context of a bivariate MMPP process.

1.4 Structure of this dissertation

This dissertation is structured in five chapters. In Chapter 1 the most

important concepts and properties needed to develop our analyses was pre-

sented. Firstly, a brief review of the point processes and renewal processes

was introduced. The Poisson process, phase type distribution and Markov

processes were also described. Afterwards, the BMAP and BMMPP and

their main properties were detailed, and finally a review of the main esti-

mation procedures proposed in the literature for BMMPP and BMAP have

been presented.

The results in Chapter 2 concern the identifiability of the stationary

BMMPPm(K), where is proved that these processes are identifiable. This

result extends the finding made by Ryden (1996), who proved the identifi-

ability of the MMPPm. In addition, some results related to the correlation

and autocorrelation structure of the BMMPPm(K) are provided. The re-

sults of this chapter are published in Yera et al. (2019a).

Chapter 3, motivated by the identifiability of the BMMPPm(K) proved

in the Chapter 2, focuses on exploring the capabilities of BMMPPm(K) in
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modeling real phenomena that occur in the form of point processes with

group arrivals. First, it is proven that there is a set of moments that charac-

terize the BMMPP2(K). This characterization leads to a sequential fitting

approach via a moments matching method. We also provide a simulated and

a real teletraffic data set to illustrate the performance of the novel fitting

approach, which is compared to that of the EM algorithm. On the other

hand, the queue length distributions at departures in the queueing system

BMMPP/M/1 is also estimated. The results of this chapter are published

in Yera et al. (2019b).

With the aim to extend the properties of MMPP2, Chapter 4 presents the

two-dimensional version of this process. The motivation for this extension

arises from a real failures of trains data set, in which it could be appreciated

that neither the times between failures, nor the distances travelled by the

trains between failures were independent. In addition, these two variables

were correlated. Therefore, we propose a novel two-dimensional MMPP that

allows for dependence among the two sequences of inter-event magnitudes,

while at the same time preserves the MMPP properties, marginally. Such

generalization is based on the Marshall-Olkin exponential distribution. The

identifiability of this novel process is proved and the inference is undertaken

through a method combining a matching moments approach and an ABC

algorithm. The performance of the method is shown on simulated and real

dataset representing failures of a public transport company.

Finally, in Chapter 5 we summarize the most significant contributions

of this dissertation, and also provide a short description of possible research

lines.

References

Ali, S. and Pievatolo, A. (2016). High quality process monitoring using a

class of inter-arrival time distributions of the renewal process. Computers

& Industrial Engineering, 94:45 – 62.

Asmussen, S. (2008). Applied probability and queues, volume 51. Springer



38 Chapter 1: Introduction

Science & Business Media.

Asmussen, S., Nerman, O., and Olsson, M. (1996). Fitting phase-type

distributions via the EM algorithm. Scandinavian journal of statistics,

23:419–441.

Bean, N. and Green, D. (1999). When is a MAP poisson? Mathematical

and Computer Modelling, 82:127–142.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. L. (2006). Statis-

tics of extremes: theory and applications. John Wiley & Sons.

Beirlant, J., Teugels, J. L., and Vynckier, P. (1996). Practical analysis of

extreme values, volume 50. Leuven University Press Leuven.

Biau, G., Cérou, F., and Guyader, A. (2015). New insights into approx-

imate bayesian computation. In Annales de l’IHP Probabilités et statis-

tiques, volume 51, pages 376–403.
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Csilléry, K., Blum, M. G., Gaggiotti, O. E., and François, O. (2010).

Approximate Bayesian computation (ABC) in practice. Trends in ecology

& evolution, 25(7):410–418.

Dean, T. A., Singh, S. S., Jasra, A., and Peters, G. W. (2014). Param-

eter estimation for hidden markov models with intractable likelihoods.

Scandinavian Journal of Statistics, 41(4):970–987.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum

likelihood from incomplete data via the em algorithm. Journal of the

Royal Statistical Society: Series B (Methodological), 39(1):1–22.

Ephraim, Y. and Merhav, N. (2002). Hidden markov processes. IEEE

Transactions on information theory, 48(6):1518–1569.

Ephraim, Y. and Roberts, W. J. (2008). An em algorithm for markov

modulated markov processes. IEEE Transactions on Signal Processing,

57(2):463–470.

Eum, S., Harris, R., and Atov, I. (2007). A matching model for MAP -2

using moments of the counting process. In Proceedings of the International

Network Optimization Conference, INOC 2007, Spa, Belgium.

Fearnhead, P. and Prangle, D. (2012). Constructing summary statis-

tics for approximate bayesian computation: Semi-automatic approximate

bayesian computation. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 74(3):419–474.

Fearnhead, P. and Sherlock, C. (2006). An exact Gibbs sampler for the

Markov modulated poisson process. Journal of the Royal Statististical

Society: Series B, 65(5):767–784.

Green, D. (1998). MAP/PH/1 departure processes. PhD thesis, School

of Applied Mathematics, University of Adelaide, South Australia.



40 Chapter 1: Introduction

He, Q.-M. (2014). Fundamentals of matrix-analytic methods, volume 365.

Springer.

He, Q.-M. and Zhang, H. (2006). PH-invariant polytopes and coxian

representations of phase type distributions. Stochastic Models, 22(3):383–

409.

He, Q.-M. and Zhang, H. (2008). An algorithm for computing minimal

coxian representations. INFORMS Journal on Computing, 20:179–190.

He, Q.-M. and Zhang, H. (2009). Coxian representations of generalized

Erlang distributions. Acta Mathematicae Applicatae Sinica. English Se-

ries, 25:489–502.
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Abstract

The Batch Markov Modulated Poisson Process (BMMPP) is a subclass

of the versatile Batch Markovian Arrival process (BMAP) which has

been widely used for the modeling of dependent and correlated simul-

taneous events (as arrivals, failures or risk events). Both theoretical

and applied aspects are examined in this paper. On one hand, the

identifiability of the stationary BMMPPm(K) is proven, where K is

the maximum batch size and m is the number of states of the under-

lying Markov chain. This is a powerful result for inferential issues. On

the other hand, some novelties related to the correlation and autocor-

relation structures are provided.

Keywords: Markov-modulated Poisson process (MMPP), Batch Marko-

vian arrival process (BMAP), Correlation structure, Identifiability
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1 Introduction

The Batch Markovian arrival process (noted BMAP, see Neuts Neuts (1979))

has been suggested in the literature for modeling dependent data represent-

ing the occurrence of an arrival, failure or risk event. The BMAPs con-

stitute a large class of point processes that allows for non-exponential and

dependent times between (possibly correlated) consecutive batch events. It

is known that stationary (B)MAP s are capable of approximating any sta-

tionary (batch) point process (Asmussen and Koole, 1993), which suggests

the versatility and range of applications of such processes. Therefore, dif-

ferent classes of BMAPs have been considered in a number of real life con-

texts where batch dependent occurrence times are commonly observed, as in

queueing, teletraffic, reliability or insurance. See for example, Banerjee et al.

(2015), Sikdar and Samanta (2016), Banik and Chaudhry (2016), Ghosh and

Banik (2017), Montoro-Cazorla and Pérez-Ocón (2006), Montoro-Cazorla

et al. (2009), Okamura et al. (2009), Kang et al. (2002), Casale et al.

(2010), Wu et al. (2011), (Ramı́rez-Cobo et al. (2014a), Ramı́rez-Cobo et al.

(2014b)), Montoro-Cazorla and Pérez-Ocón (2015) and Liu et al. (2015).

The single arrival BMAP, the MAP, and the general BMAP are highly

parametrized models where, in practice, only inter-event times and batch

sizes are usually observed. Therefore, such processes commonly suffer from

identifiability problems, which occur when different representations lead to

the same likelihood function for the observed data. The study of the identi-

fiability is crucial when estimation of the model parameters is to be consid-

ered. In particular, the non-identifiability of a process has serious negative

consequences: the likelihood function may be highly multimodal, implying

that standard methods (as the EM algorithm) will be strongly dependent

on the starting values, running the risk of getting stuck at a poor local

maximum.

Different works have dealt with the problem of identifiability in BMAP-

related processes, especially for the MAP and some of its subclasses as the

well-known Markov-modulated Poisson process (MMPP). See for example,

Rydén (1996), where it is proven the identifiability of the MMPP. On the
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other hand, Bodrog et al. (2008) provided a canonical and unique represen-

tation for the MAP2. Another example is Ramı́rez-Cobo et al. (2010), where

it is shown that the MAP2 is not identifiable. Furthermore, the conditions

under which two different sets of parameters induce identical stationary laws

for the observable process are given. Also Ramı́rez-Cobo and Lillo (2012)

partially solved the identifiability problem for the stationary MAP3. For

the non-stationary MAP2 the lack of identifiability is studied in Rodŕıguez

et al. (2016a). On the other hand, Rodŕıguez et al. (2016c) proves the

non-identifiability of the stationary BMAP2 noted BMAP2(K), where K is

the maximum batch size. For the case where events occur simultaneously,

Rodŕıguez et al. (2016c) seems to be the unique paper devoted to study the

identifiability issue, up to the authors knowledge.

As commented previously, the MMPP is an identifiable class of MAP, a

fact that has eased its statistical estimation, see Landon et al. (2013), Öze-

kici and Soyer (2006), Özekici and Soyer (2003), Fearnhead and Sherlock

(2006), Heyman and Lucantoni (2003), Scott and Smyth (2003) and Scott

(1999). In this paper we consider the batch counterpart of the MMPP, the

so-called Batch Markov-modulated Poisson process, noted BMMPP. This

process has been already considered in the literature (Dudin, 1998; Akar and

Sohraby, 2009; Revzina, 2010; Takine, 2016) for modeling real-time multi-

media communication systems and computer networks systems. However,

in most of such papers, a reduced version of the BMMPP with batch proba-

bilities independent from the states of the underlying Markov chain, is used.

The BMAP version of this kind of process has been mentioned as a MAP

with i.i.d. batch arrivals by (Lucantoni, 1991, 1993). Here, we consider the

general BMMPP, for which two major contributions are provided. We study

the versatility of the process for modeling correlated batch events through

the autocorrelation function of the batch sizes. Our findings show the suit-

ability of the BMMPP2 for fitting positively correlated batch sizes. Second,

with the future aim of carrying out statistical inference of the process, we

prove the identifiability of the BMMPP.

This paper is structured as follows. The BMMPP is introduced in Section

2. Section 3 provides new results concerning the autocorrelation function
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of the batch sizes for the BMMPP2(K). In section 4 the identifiability

of the general BMMPPm(K), where m denotes the number of states of

the underlying Markov chain, is proven. Finally, Section 5 is devoted to

summarize the conclusions and some extensions of this work.

2 Description of the stationary BMMPPm(K)

In this section, the Batch Markov-Modulated Poisson Process, noted

BMMPPm(K), where K is the maximum batch size and m is the num-

ber of states of the underlying Markov chain, is formally defined. Also,

some properties that will be used throughout this paper are reviewed.

The BMMPPm(K) is a Poisson process whose rate is modulated by an

exogenous, irreducible Markov process, {J(t) : t ≥ 0}, with state space

S := {s1, s2, ..., sm}, a generator matrix Q and an initial distribution α.

Whenever J(t) = si, an event occur according to a Poisson process with rate

λi (λi > 0), and this status remains unchanged while the process remains

in this state. As soon as J enters another state, sj ∈ S, the arrival Poisson

process alters accordingly. The process behaves as follows: at the end of

an exponentially distributed sojourn time in state i, with mean 1/λi, two

possible state transitions can occur. First, with probability pij0, no event

occurs and the system enters into a different state j 6= i. Second, with

probability piik, a batch event of size k is produced, if the state of the

process is si, and the system continues in the same state i.

A BMMPPm(K) can be represented by the set of rate matrices B =

(D0,D1, ...,DK) such that

(D0)ii = −λi 1 ≤ i ≤ m

(D0)ij = λipij0 1 ≤ i, j ≤ m i 6= j

(Dk)iik = λipiik 1 ≤ i ≤ m 1 ≤ k ≤ K, (2.1)

(Dk)ijk = 0 1 ≤ i, j ≤ m i 6= j,
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where
m∑

j=1,j 6=i
pij0 +

K∑
k=1

piik = 1 for all i = {1, 2}.

The definition of the rate matrices implies that

Q =
K∑
k=0

Dk

is the infinitesimal generator of the underlying Markov process J(t), with

stationary probability vector π = (π1, π2, ..., πm), satisfying πQ = 0 and

πe = 1, where e is a vector of ones.

Figure 2.1 illustrates a realization of the BMMPP2(K), where the dashed

line corresponds to transitions without events and the solid lines correspond

to transitions where an event of size bi ∈ {1, . . . ,K} occurs.

Figure 2.1: Transition diagram for the BMMPP2(K). The dashed line cor-
responds to transitions without events, governed by D0, and the solid lines
correspond to transitions of size bk, governed by Dbk .

2.1 Performance measures

A review of the performance measures regarding the BMMPPm(K) is given

next. If Sn denotes the state of the BMMPm(K) at the time of the n-th

event, Bn the batch size of that event and Tn the time between the (n− 1)-

th and n-th events, then the process {Sn−1,
∑n

i=1 Ti,Bn}∞n=1, is a Markov
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renewal process (see for example, Chakravarthy (2010)). Furthermore, if

D =

K∑
k=1

Dk,

then {Sn}∞n=0 is a Markov chain with transition probability matrix

P ∗ = (−D0)−1D.

On the other hand, the variables Tns are phase-type distributed with

representation {φ,D0}, such that φ is the stationary probability vector

associated to P ∗, computed as φ = (πDe)−1πD (see Chakravarthy (2010)

and Latouche and Ramaswami (1999)). In consequence, the moments of Tn

in the stationary case are given by

µr = E(T r) = r!φ(−D0)−re, for r ≥ 1, (2.2)

and the auto-correlation function is

ρT (l) = ρ(T1, Tl+1) =
µπ[(−D0)−1D]l(−D0)−1e− µ2

1

σ2
T

,

where σ2 = µ2 − µ2
1.

According to Rodŕıguez et al. (2016c), the mass probability function of

the stationary batch size, B, is

P (B = k) = φ(−D0)−1Dke, for k = 1, ...,K,

from which the moments of B are obtained as

βr = E[Br] = φ(−D0)−1D∗
re, for r ≥ 1, (2.3)

where D∗
r =

∑K
k=1 k

rDk. Also, the autocorrelation function in the station-
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ary version of the process ρB(l) is given by

ρB(l) = ρ(B1, Bl+1) =
φ(−D0)−1D∗

1[(−D0)−1D]l−1(−D0)−1D∗
1e− β2

1

σ2
B

,

(2.4)

where β1 and σ2
B = β2 − β2

1 are computed from (2.3).

Finally, in Rodŕıguez et al. (2016c) it is proven that the Laplace-Stieltjes

transform (LST) of the n first inter-event times and batch sizes of a station-

ary BMAPm(K) is given by

f∗T,B(s, z) = φ(s1I −D0)−1ξ(z1)...(snI −D0)−1ξ(zn)e, (2.5)

where s = (s1, ..., sn), z = (z1, ..., zn) and ξ(zi) =
∑K

k=1Dkz
k
i , for i = 1, ..., n.

3 The autocorrelation function of the batch size

for the two-state BMMPP

It usually has been assumed in applications of the BMMPP that piik = pjjk

for all i, j; or, in other words, the state of the underlying Markov process

and the size events are independent, see Cordeiro and Kharoufeh (2011),

Takine (2016), Revzina (2010) and Dudin (1998). This kind of process

is a particular case of the MAP with i.i.d. batch arrivals introduced by

(Lucantoni, 1991, 1993). This definition can be restrictive in practice since

both the autocorrelation function of the batch size as well as the correlation

coefficient between the batch size and the times between the occurrence of

events are zero. This results is an immediate consequence of the definition

of the process. That implies independence between the arrival process and

the batch process.

In order to avoid the limited behavior of this simplified version of the

BMMPP we consider from now the general BMMPP2(K) with probabilities

piik dependent on state i ∈ {1, 2}. Figures 2.2 and 2.3 show the first-lag

autocorrelation coefficient of the batch size and the correlation coefficient

between the inter-event times and the batch sizes, respectively for a sequence
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of 10000 randomly simulated BMMPP2(2)s. Since the autocorrelation func-

tion of the batch size decreases with the lag value (see, Rodŕıguez et al.

(2016a)), then, it can be deduced from the figures that the autocorrelation

function of the batch size and the correlation coefficient between the batch

size and the inter-events arrival times are not zero in the general case.

Figure 2.2: Values of the first-lag autocorrelation coefficient of the batch
size for a total 100000 simulated BMMPP2(2) with the general formulation.

Figure 2.3: Values of the correlation between the batch size and the inter-
event time for a total 100000 simulated BMMPP2(2) with the general for-
mulation.

The auto-correlation function of the batch size is crucial when the model-

ing capability of the process is of interest. The auto-correlation function for

the inter-event times, ρT , is the same for the BMAP2(K) and MAP2. Then,

the results obtained for the MAP2 by Heindl et al. (2006) and Ramı́rez-Cobo

and Carrizosa (2012) also apply for the BMMPP2(K). In particular, it is
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known that the lag-one auto-correlation coefficient, ρT (1), is upper-bounded

by 0.5 and the auto correlation function is exponentially decreasing in ab-

solute value. On the other hand, Kang and Sung (1995) prove that for any

MMPP2, ρT (l) ≥ 0 for all l.

In the case of the event sizes, Rodŕıguez et al. (2016b) give a character-

ization of the auto-correlation functions in terms of the eigenvalues of the

stochastic matrix P ∗. For the two-states process, this representation allows

to prove that the autocorrelation function decreases geometrically to zero

through four different patterns. Moreover, through simulation, it is shown

that the function values lie in [-1,1]. In Figure 2.2 it can be seen how the

first-lag auto-correlation coefficient of the batch sizes for the BMMPP2(2)

may also take values very close to 1, but negative values are not obtained.

In this section it is proven that the autocorrelation function of the batch

sizes of the BMMPP2(K), ρB(l) as in (2.4), is non-negative.

Lemma 1. Consider a BMMPP2(2) and let ρB(1) denote the first-lag au-

tocorrelation coefficient of the batch sizes. Then, ρB(1) ≥ 0.

Proof. A stationary BMMPP2(2) is represented by B = {D0,D1,D2} where

D0 =

 −λ1 λ1p120

λ2p210 −λ2

 =

 x y

r u

 ,

D1 =

 p111λ1 0

0 p221λ2

 =

 w 0

0 q

 ,

D2 =

 p112λ1 0

0 p222λ2

 =

 −x− y − w 0

0 −r − u− q

 .

Consider the first-lag autocorrelation coefficient, ρB(1). It is not difficult

to see that after some computations, the numerator in (2.4), taking l = 1
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and K = 2, becomes

φ(−D0)−1D∗
1[I − eφ](−D0)−1D∗

1e =
ry[w(u+ r)− q(x+ y)]2

(xu− ry)(rx+ ry + ry + yu)2
.

Similarly, the denominator in (2.4) is found as

φ(−D0)−1D∗
2e− (φ(−D0)−1D∗

1e)2 =
(rw + yq)[r(−x− y − w)]

(rx+ ry + ry + yu)2

+
(rw + yq)[y(−r − u− q)]

(rx+ ry + ry + yu)2
.

Therefore,

ρB(1) =
ry[w(u+ r)− q(x+ y)]2

(xu− ry)(rw + yq)[r(−x− y − w) + y(−r − u− q)]
. (2.6)

Since,

ry = λ2p210λ1p120 ≥ 0,

rw + yq = λ2p210λ1p111 + λ1p120λ2p221 ≥ 0,

r(−x− y − w) + y(−r − u− q) = λ2p210λ1p112 + λ1p120λ2p222 ≥ 0,

xu− ry = Det(D0) = λ1λ2(1− p120p210) ≥ 0,

then, it can be concluded that ρB(1) as in (2.6) satisfies ρB(1) ≥ 0.

Lemma 1 is extended to Lemma 2 for the case K ≥ 3.

Lemma 2. Consider a BMMPP2(K) with K ≥ 3 and let ρB(1) denote the

first-lag autocorrelation coefficient of the batch sizes. Then, ρB(1) ≥ 0.

Proof. In this case, the process will be represented by B = {D0,D1, . . . ,DK}
where

D0 =

 −λ1 λ1p120

λ2p210 −λ2

 =

 x y

r u

 ,
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Dk =

 p11kλ1 0

0 p22kλ2

 =

 wk 0

0 qk

 for 1 ≤ k ≤ K − 1,

DK =

 p11Kλ1 0

0 p22Kλ2



=

 −x− y −∑K−1
k=1 wk 0

0 −r − u−
∑K−1

k=1 qk

 .

Here, the numerator in (2.4) with l = 1 and general K turns out

φ(−D0)−1D∗
1[I − eφ](−D0)−1D∗

1e =
ry[W1(u+ r)−Q1(x+ y)]2

(xu− ry)(rx+ ry + ry + yu)2
,

(2.7)

where W1 =
∑K−1

k=1 (K − k)wk and Q1 =
∑K−1

k=1 (K − k)qk. Since

ry = λ2p210λ1p120 ≥ 0,

xu− ry = Det(D0) = λ1λ2(1− p120p210) ≥ 0,

then Eq. (2.7) is positive or equal to zero. Similarly, the denominator is

given by

φ(−D0)−1[D∗
2 −D

∗
1eφ(−D0)−1D∗

1]e =
[r(W2 −KW1)](rx+ 2ry + yu)

(rx+ ry + ry + yu)2

+
[y(Q2 −KQ1)](rx+ 2ry + yu)

(rx+ ry + ry + yu)2

− (rW1 + yQ1)2

(rx+ ry + ry + yu)2
(2.8)

where W2 =
∑K−1

k=1 k(K−k)wk and Q2 =
∑K−1

k=1 k(K−k)qk. We prove next

the non-negativity of (2.8). First, define:

HK = [r(W2 −KW1) + y(Q2 −KQ1)] (rx+ 2ry + yu)− (rW1 + yQ1)2
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= −

(
K−1∑
k=1

(K − k)2[rwk + yqk]

)
(rx+ 2ry + yu)

−

(
K−1∑
k=1

(K − k)[rwk + yqk]

)2

. (2.9)

It can be seen that when K = 3, expression (2.9) reduces to:

H3 = [2(rw1 + yq1) + (rw2 + yq2)][−r(x+ y + w1 + w2)]

+[2(rw1 + yq1) + (rw2 + yq2)][−y(r + u+ q1 + q2)]

+[rw1 + yq1][−r(x+ y + w1 + w2)− r(x+ y + w1)]

+[rw1 + yq1][−y(r + u+ q1 + q2)− y(r + u+ q1)]

≥ 0,

We now proceed by induction. Assume that HK−1 ≥ 0, then after some

calculations HK can be rewritten as

HK =

(
K−1∑
k=1

(K − k)[rwk + yqk]

)[
−r(x+ y +

K−1∑
k=1

wk)

]
(
K−1∑
k=1

(K − k)[rwk + yqk]

)[
−y(r + u+

K−1∑
k=1

qk)

]

+

(
K−2∑
k=1

[(K − k − 1)][rwk + yqk]

)[
−r(x+ y +

K−1∑
k=1

wk)

]

+

(
K−2∑
k=1

[(K − k − 1)][rwk + yqk]

)[
−y(u+ r +

K−1∑
k=1

qk)

]

−

(
K−2∑
k=1

(K − k − 1)2[rwk + yqk]

)
(rx+ 2ry + yu)

−

(
K−2∑
k=1

(K − k − 1)[rwk + yqk]

)2

=

(
K−1∑
k=1

(K − k)[rwk + yqk]

)
[rwK + yqK ] +HK−1
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+

(
K−2∑
k=1

[(K − k − 1)][rwk + yqk]

)
[rwK + yqK ]

≥ 0,

since r, y, wk, qk are non-negative for all k and HK−1 ≥ 0 by the induc-

tion hypothesis. Therefore, Eq. (2.8) is is positive or equal to zero and

consequently ρB(1) ≥ 0 is proven.

Proposition 3. Consider a BMMPP2(K), with autocorrelation function of

the batch sizes given by ρB(l), as in (2.4). Then, ρB(l) ≥ 0 for all l ≥ 1.

Proof. In Rodŕıguez et al. (2016b) it is proven that the autocorrelation func-

tion of the batch sizes in a BMAP2(K) is given by

ρB(l) = ρB(1)ql−1
B , (2.10)

where qB is the only eigenvalue of P ∗ = (−D0)−1D less than 1 in absolute

value. Note that, in the BMMPP2(K), D can be computed as

D =
K∑
k=1

Dk =

 −x− y 0

0 −r − u

 .

Therefore, in this specific case, qB is given by

qB =
(−x− y)(r + u)

ry − xu
, (2.11)

for all K. Since

r + u = −λ2(1− p210) ≤ 0

−x− y = λ1(1− p120) ≥ 0

xu− ry = Det(D0) = λ1λ2(1− p120p210) ≥ 0,

then, it can be concluded that qB as in (2.11) satisfies qB ≥ 0 and conse-

quently, from (2.10) and Lemmas 1-2, ρB(l) ≥ 0 for all l ≥ 1.
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4 Identifiability of the BMMPPm(K)

Identifiability problems occur when different representations of the process

lead to the same likelihood functions for the observable data. In order to

develop an estimation method to fit real datasets to the model, a detailed

examination of the identifiability of the process is critical. It is well known

that the MAP and BMAP processes suffer from identifiability problems,

but, on the other hand, in Rydén (1996), the identifiability of the MMPP

was proven. Here, we extend such result to the BMMPPm(K) case. First,

consider the definition of identifiability that we will use in the paper. It is

valid to be adapted to real data sets.

Definition 8. Let B be a representation of a BMMPP2(K) and let Tn and

Bn denote the time between the (n − 1)-th and n-th event occurrences, and

the batch size of the n-th event occurrence, respectively. Then B is said to

be identifiable if there does not exist a different parametrization B̃, such that

(T1, ..., Tn, B1, ..., Bn)
d
= (T̃1, ..., T̃n, B̃1, ..., B̃n), for all n ≥ 0,

where T̃i and B̃i are defined in analogous way as Ti and Bi, and where
d
=

denotes equality in distribution.

In what follows we will concentrate on the LST, given in (2.5), in order

to prove the identifiability of BMMPP2(K). Note that the equality in dis-

tribution is equivalent to the equality of the LSTs, f∗T,B(s, z) = f∗
T̃ ,B̃

(s, z),

for all s, z. First, we review the concept of permutation matrix and some

of its properties that are useful to obtain the main result (for more details,

see for example Horn and Johnson (1990)).

Definition 9. A square matrix P is a permutation matrix if exactly one

entry in each row and column is equal to 1 and all other entries are 0.

Some properties concerning permutations matrices are:



Part II: Batch Markov modulated Poisson processes 63

P1. PA implies a permutations of the rows of A, where A is an m × n
matrix.

P2. AP permutes the columns of A.

P3. A permutation matrix is orthogonal (P−1 = P T )

P4. The permutation matrices are closed under product.

Next result establishes how to obtain equivalent representations to a

given BMMPPm(K), using permutation matrices. Note that in this context

of BMMPPm(K)s, the multiplication by a permutation implies a change of

the states’ labels, but the process is the same. The only practical implication

of this in modeling is that some order among the parameters have to be

established to avoid switching from one representation to the equivalent

one.

Lemma 3. Let B = {D0, ...,DK} be a representation of a BMMPPm(K)

and let BP = {PD0P , PD1P , ..., PDKP } be a different representation

where P is a permutation matrix. Then, B and BP are equivalent represen-

tations of the same process.

Proof. The equivalence between B and BP is given by proving the equality of

their respective LTs as in (2.5). Consider first πP , the stationary probability

vector related to representation BP , which satisfies πPQP = 0. It is not

difficult to see that

πPQP = πP

(
K∑
k=0

PDkP

)

= πPP

(
K∑
k=0

Dk

)
P

= πPPQP

and

πPPQP = 0 ⇐⇒ πPPQ = 0.
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But πQ = 0 and πPPQ = πQ, since by applying the same permutation in

the columns of vector π (πP ) that in the in the rows of the matrix Q (PQ)

the product is not affected, therefore πP = πP . On the other hand, let φP

denote the stationary probability vector with transitions events related to

representation BP . Then

φP =

[
πP

(
K∑
k=1

PDkP

)
e

]−1

πP

(
K∑
k=1

PDkP

)
e

=

[
πPP

(
K∑
k=1

Dk

)
Pe

]−1

πPP

(
K∑
k=1

Dk

)
P

= [πPPDPe]−1πPPDP

= [πDe]−1πDP

= φP . (2.12)

From, the fact that Pe = e, the property P3 of permutation matrices and

(2.12), we have that

f∗TP ,BP
(s, z) = φP

[
n∏
i=1

(siI − PD0P )−1

(
k∑
l=1

PDlP z
l
i

)]
e

= φP

[
n∏
i=1

(P siIP − PD0P )−1

(
k∑
l=1

PDlP z
l
i

)]
e

= φP

[
n∏
i=1

[P (siI −D0)P ]−1P

(
k∑
l=1

Dlz
l
i

)
P

]
e

= φP

[
n∏
i=1

P T (siI −D0)−1P TP

(
k∑
l=1

Dlz
l
i

)
P

]
e

= φPP T

[
n∏
i=1

(siI −D0)−1

(
k∑
l=1

Dlz
l
i

)]
Pe

= φ

[
n∏
i=1

(siI −D0)−1

(
k∑
l=1

Dlz
l
i

)]
e = f∗T,B(s, z),
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and the lemma is proven.

The next result is a direct consequence of the identifiability of the MMPPs.

Lemma 4. Let B = {D0,D1, ...,Dk} and B̃ =
{
D̃0, D̃1, ..., D̃k

}
be two

different but equivalent representations of a BMMPPm(K). Then, D0 = D̃0

and Λ = Λ̃, except by permutation, where Λ (Λ̃) is the vector of exponential

rates of B (B̃).

Proof. It is clear that if representations B and B̃ are equivalent, then, the

MMPPs representations B′ = (D0,D) and B̃′ = {D̃0, D̃} will be also equiv-

alent, where D = D1 + . . . + DK and D̃ = D̃1 + ... + D̃K . From the

identifiability of the MMPP, D0 = D̃0 and D = D̃ except by permutation.

Hence, Λ = Λ̃, except by permutation.

The main contribution of this section is the Theorem 1 that proves the

identifiability of the general BMMPPm(K). However, some auxiliary results

are previously necessary.

Proposition 4. The BMMPP2(2) is identifiable except by permutation.

Proof. Consider two stationary BMMPP2(2)s represented by

B = {D0,D1,D2} and B̃ =
{
D̃0, D̃1, D̃2

}
. For n = 1, the LST of

the inter-event times and batch sizes corresponding to B is given by

f∗T,B(s, z) = φ(sI −D0)−1(zD1 + z2D2)e

= φ
z

(s− x)(s− u)− ry

 s− u y

r s− x


 w

q



+φ
z2

(s− x)(s− u)− ry

 s− u y

r s− x


 −x− y − w
−r − u− q


=

z [φ(sw − uw) + (1− φ)rw + φyq + (1− φ)(sq − xq)]
(s− x)(s− u)− ry
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+
z2 [φ(u− s)(x+ y + w) + (1− φ)r(−x− y − w)]

(s− x)(s− u)− ry

+
z2 [φy(−r − u− q) + (1− φ)(x− s)(r + u+ q)]

(s− x)(s− u)− ry

=
z(sα+ β) + z2(sγ − β + η)

s2 + sν + η
(2.13)

where

α = φ(w − q) + q

β = φ(−uw − rw + yq + xq) + (rw − xq)

γ = φ(r + u+ q − x− y − w)− (r + u+ q)

η = xu− ry

ν = −x− u,

and similarly for B̃. If B and B̃ are equivalent, then from Lemma 4,D0 = D̃0,

and therefore x = x̃, y = ỹ, u = ũ, r = r̃, and consequently, ν = ν̃ and

η = η̃ . This implies that the equality of LSTs,

f∗T,B(s, z) = f∗
T̃ ,B̃

(s, z), for all s, z.

becomes

z(sα+ β) + z2(sγ − β) = z(sα̃+ β̃) + z2(sγ̃ − β̃), for all s, z. (2.14)

Substituting first s = 0 and z = 2 in (2.14), and later from s = 1 and

z = −1, leads to β = β̃ and α = α̃:

β = φ(−uw − rw + yq + xq) + (rw − xq)

= φ(−uw̃ − rw̃ + yq̃ + xq̃) + (rw̃ − xq̃) (2.15)

= β̃

Similarly,

α = φ(w − q) + q = φ(w̃ − q̃) + q̃ = α̃



Part II: Batch Markov modulated Poisson processes 67

from which

w̃ =
φ(w − q + q̃) + q − q̃

φ
. (2.16)

If (2.16) is substituted in (2.15), then

φ[−w(u+ r) + q(y + x)] + (rw − xq) =− φ
[
φ(w − q + q̃) + q − q̃

φ

]
(u+ r)

+ φ(yq̃ + xq̃) + r
φ(w − q + q̃) + q − q̃

φ

− xq̃

=− [φ(−q + q̃) + q − q̃](u+ r)

− φw(u+ r)

+ φ(yq̃ + xq̃) + r
φ(−q + q̃) + q − q̃

φ

− xq̃ + rw,

hence

φ(yq + xq)− xq = −[φ(−q + q̃) + q − q̃](u+ r)

+φ(yq̃ + xq̃) +

(
r
φ(−q + q̃) + q − q̃

φ
− xq̃

)
,

= (1− φ)(q̃ − q)(u+ r)

+φq̃(y + x) +

(
r

φ
(1− φ)(q − q̃)− xq̃

)
,

=

(
u+ r − r

φ

)
(1− φ)(q̃ − q)

+q̃(φ(y + x)− x). (2.17)

From (2.17) it can be concluded that q = q̃. Therefore, from (2.16) w̃ = w

and consequently, D1 = D̃1 and D2 = D̃2.

Proposition 4 proves that the stationary BMMPP2(2) is an identifiable

process. The next Proposition goes further and ensures the identifiability of

the stationary BMMPPm(2), for all m ≥ 3.

Proposition 5. The BMMPPm(2) is identifiable except by permutation.
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Proof. We proceed by induction in m. The initial case (m = 2)

was proven by Proposition 4. We assume as hypothesis of induction

that if two BMMPPm−1(K) are equivalent then its transition matrices

are respectively equal. Consider two equivalent BMMPPm(2)s given by

Bm(2) = {D0,D1,D2} and B̃m(2) =
{
D̃0, D̃1, D̃2

}
and obtain from

them the BMMPPm−1(2) representations Bmm−1(2) = {Dm
0 ,D

m
1 ,D

m
2 } and

B̃mm−1(2) = {D̃m
0 , D̃

m
1 , D̃

m
2 }, where Dm

0 ,D
m
1 ,D

m
2 are m − 1 ×m − 1 ma-

trices given by

Dm
i =



d11i . . . d1m−2i d1m−1i + d1mi

...
. . .

...
...

dm−21i . . . dm−2m−2i dm−2m−1i + dm−2mi

dm−11i + dm1i . . . dm−1m−2i + dmm−2i dm−1m−1i + dm−1mi + dmm−1i + dmmi


with Di = (dlki). Similarly for D̃m

0 , D̃
m
1 , D̃

m
2 .

Figure 2.4: This Diagram represents the grouping of the states in the con-
struction of B1

m−1(2) (left) Bmm−1(2) (right) from Bm(2) (top).

Note that Bmm−1(2) and B̃mm−1(2) are derived from Bm(2) and B̃m(2)

respectively grouping the m-th and m − 1-th states in a single state (see

Figure 2.4 for clarification). With this construction the inter-events arrival

times and the batch size in Bmm−1(2) and Bm(2) are the same and similarly

for B̃mm−1(2) and B̃m(2). According to Definition 8 the identifiability of

the process depends only of the inter-events arrival times and the batch

sizes, therefore from the equivalence of Bm(2) and B̃m(2), the equivalence of
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Bmm−1(2) and B̃mm−1(2) is obtained. Now, from the hypothesis induction for

m− 1

λipiik = λip̃iik for 1 ≤ i ≤ m− 2 and k = 1, 2. (2.18)

Similarly, consider B1
m−1(2) = {D1

0,D
1
1,D

1
2} and B̃1

m−1(2) = {D̃1
0, D̃

1
1, D̃

1
2},

where D1
0,D

1
1,D

1
2 are also (m− 1)× (m− 1) matrices given by

D1
i=



d11i + d12i + d21i + d22i d13i + d23i . . . d1mi + d2mi

d31i + d32i d33i . . . d3mi

...
...

. . .
...

dm1i + dm2i d3mi . . . dmmi


,

with Di = (dlki). Similarly for D̃1
0, D̃

1
1, D̃

1
2. Again, B1

m−1(2) and B̃1
m−1(2)

are equivalent, which can be proven using the same reasoning as with Bmm−1(2)

and B̃mm−1(2) and the hypothesis of induction. Therefore,

λipiik = λip̃iik for 3 ≤ i ≤ m and k = 1, 2. (2.19)

From (2.18) and (2.19), Dk = D̃k, for all k, which completes the proof.

Next Theorem extends the previous result, proving the identifiability of

the stationary BMMPPm(K), for all K ≥ 3.

Theorem 1. The BMMPPm(K) is identifiable except by permutation.

Proof. We proceed by induction in K. The initial case (K = 2)

was proven by Proposition 5. Consider two equivalent BMMPPm(K)s

given by Bm(K) = {D0,D1, ...,Dk} and B̃m(K) =
{
D̃0, D̃1, ..., D̃k

}
and generate from them two BMMPPm(K − 1) equivalent representa-

tions BKm(K − 1) = {D0,D1, ...,DK−2,DK−1 +DK} and B̃Km(K − 1) ={
D̃0, D̃1, ..., D̃K−2, D̃K−1 + D̃K

}
. For the proof of the equivalence be-

tween BKm(K−1) and B̃Km(K−1) see Appendix A. Then, from the induction

hypothesis,
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DK−1 +DK = D̃K−1 + D̃K and Dk = D̃k for 1 ≤ k ≤ K − 2. (2.20)

Similarly, consider B1
m(K − 1) = {D0,D1 +D2,D3, ...,DK} and B̃1

m(K −
1)
{
D̃0, D̃1 + D̃2, D̃3, ..., D̃K

}
. Again, These two BMMPPm(K) are equiv-

alent and from the hypothesis of induction

D1 +D2 = D̃1 + D̃2 and Dk = D̃k, for 3 ≤ k ≤ K. (2.21)

From (2.20) and (2.21), Dk = D̃k, for all k, which completes the proof.

5 Conclusions

This paper considers the batch counterpart of the well-known Markov-

Modulated Poisson Process, the BMMPPm(K), a point process of interest

in real-life contexts as reliability or queueing, since it allows for the mod-

eling of dependent inter-event times and dependent batch sizes. Two main

problems concerning the BMMPP have been addressed. On one hand, we

prove the identifiability of the BMMMPPm(K), a property inherited from

that of the MMPP. The identifiability of the process is of crucial impor-

tance when inference is to be considered, as we plan to do as future work.

Either from a Bayesian viewpoint as in Scott (1999) or Ramı́rez-Cobo et al.

(2017), or from a moments matching method as in Rodŕıguez et al. (2015),

a statistical inference approach may be defined for fitting real datasets. On

the other hand, the non-negativity of the autocorrelation function of the

batch sizes of the BMMPP2(K) is proven. This property makes the process

suitable when positively correlated batch sizes are observed. Finally, an

important extension to this work would be to derive theoretical properties

concerning correlation bounds for both the inter-event times and batch size

autocorrelation functions when m ≥ 3. Work on this issues is underway.
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Appendix A: Proof of the equivalence between

BKm(K − 1) and B̃Km(K − 1)

Since BK = {D0,D1, ...,DK} and B̃K = {D̃0, D̃1, ..., D̃K} are equivalent,

then D0 = D̃0 and

f∗T,B(s, z) = f∗
T̃ ,B̃

(s, z), for all s, z,

or equivalently,

φS(s1, ..., sn, z1, ..., zn)e = φS̃(s1, ..., sn, z1, ..., zn)e for all s, z, (2.22)

where

S(s1, ..., sn, z1, ..., zn) = (s1I−D0)−1
K∑

k1=1

Dk1z
k1
1 ...(snI−D0)−1

K∑
kn=1

Dknz
kn
n

and similarly for S̃. Equality (2.22) can be rewritten as

φS(s1, ..., sn−1, z1, ..., zn−1)× (2.23)

×(snI −D0)−1
K∑

kn=1

Dknz
kn
n e = φS̃(s1, ..., sn−1, z1, ..., zn−1)×

×(snI −D0)−1
K∑

kn=1

D̃knz
kn
n e.

Next, consider the following three block of calculations related to value zn:
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Step1: Compute K times in both sides of (2.23) the partial derivative

with respect to zn:

φS(s1, ..., sn−1, z1, ..., zn−1)×

×(snI −D0)−1DKK!e = φS̃(s1, ..., sn−1, z1, ..., zn−1)×

×(snI −D0)−1D̃KK!e. (2.24)

Step 2: Multiply (2.24) by (zK−1
n − zKn )/K!:

φS(s1, ..., sn−1, z1, ..., zn−1)× (2.25)

×(snI −D0)−1DK(zK−1
n − zKn )!e = φS̃(s1, ..., sn−1, z1, ..., zn−1)×

×(snI −D0)−1D̃K(zK−1
n − zKn )e.

Step 3: Summing (2.23) + (2.25), we arrive to

φS∗(s1, ..., sn, z1, ..., zn)e = φS̃∗(s1, ..., sn, z1, ..., zn)e, (2.26)

where

S∗(s1, ..., sn, z1, ..., zn) =φS(s1, ..., sn−1, z1, ..., zn−1)(snI −D0)−1

×

K−1∑
kn=1

Dknz
kn
n +DKz

K−1
n

 e
and equivalently

S̃∗(s1, ..., sn, z1, ..., zn) =φS̃(s1, ..., sn−1, z1, ..., zn−1)(snI −D0)−1

×

K−1∑
kn=1

D̃knz
kn
n + D̃Kz

K−1
n

 e.
If the previous Steps 1-3 are reproduced for zn−1, zn−2, . . . , z1, the equiva-
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lency between B2
K−1 and B̃2

K−1 is obtained. Since the LTS for B2
K−1 is

f∗T,B(s, z) = φ(s1I −D0)−1

K−1∑
k1=1

Dk1z
k1
1 +DKz

K−1
1

×
...× (snI −D0)−1

K−1∑
kn=1

Dknz
kn
1 +DKz

K−1
n

 e
and similarly for B̃2

K−1.

Finally, by a parallel procedure, the equivalence between B1
K−1 and B̃1

K−1

is also derived.
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Özekici, S. and Soyer, R. (2003). Reliability of software with an opera-

tional profile. European Journal of Operational Research, 149(2):459–474.
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Abstract

The Batch Markov Modulated Poisson Process (BMMPP) is a sub-

class of the versatile Batch Markovian Arrival Process (BMAP) which

has been proposed for the modeling of dependent events occurring in

batches (such as group arrivals, failures or risk events). This paper

focuses on exploring the possibilities of the BMMPP for the modeling

of real phenomena involving point processes with group arrivals. The

first result in this sense is the characterization of the BMMPP2(K) by

a set of moments related to the inter-event time and batch size distri-

butions. This characterization leads to a sequential fitting approach

via a moments matching method. The performance of the novel fitting

approach is illustrated on both simulated and a real teletraffic data

set, and compared to that of the EM algorithm. In addition, as an

extension of the inference approach, the queue length distributions at

departures in the queueing system BMMPP/M/1 is also estimated.
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Keywords: Stochastic processes. Markov modulated Poisson process (MMPP).

Moments matching method. Teletraffic data.

1 Introduction

In this work, we propose a fitting approach for correlated times between the

occurrence of events (that may occur in batches) via a general subclass of the

Batch Markovian Arrival Process (BMAP), the Batch Markov Modulated

Poisson Process (BMMPP). Events can be understood from multiple con-

texts: failures in an electronic system, arrivals of packets of bytes in a tele-

traffic setting, arrivals of customers in a queue or risk events, among others.

The BMAP constitutes a large class of point processes that allows for non-

exponential and dependent times between the occurrence of events, which

may occur in batches (that is, more than one event at a time). BMAPs were

first introduced by Neuts (1979), although the current and more tractable

description is due to Lucantoni (1991). It is known that stationary BMAPs

are capable of approximating any stationary batch point process (Asmussen

and Koole, 1993) which points to the versatility of the process. In addi-

tion, the BMAP is a tractable process from an analytical viewpoint, since

most of the associated descriptors and probabilities of interest can be com-

puted in a straightforward way. For these reasons, BMAPs have been widely

considered in a number of real-life contexts, such as queueing, teletraffic, re-

liability, hydrology or insurance, where dependent events (possibly occurring

in batches) are commonly observed. For a recent account of the literature

on BMAPs applications, we refer the reader to Ramı́rez-Cobo et al. (2014),

Banerjee et al. (2015), Liu et al. (2015), Montoro-Cazorla and Pérez-Ocón

(2015), Singh et al. (2016), Sikdar and Samanta (2016), Banik and Chaudhry

(2016), Ghosh and Banik (2017), and Buchholz and Kriege (2017).

The complexity and versatility of BMAPs increase with the number of

parameters defining the process, which is related to the identifiability issue.

In the context of BMAPs, the lack of identifiability may be formulated along

the lines of Rydén (1996b) or Ramı́rez-Cobo et al. (2010). Specifically, if Tn



Part II: Batch Markov modulated Poisson processes 81

and Bn represent the time between the (n−1)-th and n-th events ocurrences,

and the batch size of the n-th event in a BMAP noted by B, then B is said to

be non-identifiable if there exists a differently parametrized BMAP, noted

as B̃, such that

(T1, . . . , Tn, B1, . . . , Bn)
d
=
(
T̃1, . . . , T̃n, B̃1, . . . , B̃n

)
for all n ≥ 1,

where
d
= denotes equality of joint distributions, and T̃n and B̃n represent

the inter-event times and batch sizes of the BMAP noted as B̃. The lack

of a unique representation affects the statistical inference of the process: if

the process is non-identifiable, this means that the likelihood function of

the inter-event times will be multimodal, and therefore any likelihood-based

fitting algorithm will turn out to be strongly dependent on the starting

point. Because of this, the issue of identifiability has been broadly studied

in the literature for certain classes of BMAPs, see for instance Green (1998);

Bean and Green (1999); He and Zhang (2006, 2008, 2009); Rydén (1996b);

Ramı́rez-Cobo et al. (2010); Ramı́rez-Cobo and Lillo (2012); Rodŕıguez et al.

(2016a,c); Yera et al. (2019). As a result, it is known that both the Markov

modulated Poisson process (MMPP) (Heffes and Lucantoni, 1986; Scott,

1999; Scott and Smyth, 2003; Fearnhead and Sherlock, 2006; Landon et al.,

2013) and its batch counterpart, the BMMPP considered in this paper, are

identifiable.

Taking advantage of the identifiability of the BMMPP, this paper ad-

dresses the problem of statistical inference for the BMMPP2(K) where K

represents the maximum batch size. The choice of the BMMPP2(K) over

higher order BMMPPm(K)s (that is, processes with m ≥ 3) is motivated

by several reasons. First, the model considered is characterized by a smaller

number of parameters, a fact that facilitates the estimation process. Second,

it is expected that higher order BMMPPm(K)s present more versatility and

are able to model more complex patterns (Rodŕıguez et al. (2016b) give some

empirical results in this line); however, to our knowledge there are no studies

exploring in depth such degrees of versatility and in consequence, it is im-

possible to know a priori which is the smallest order m needed for fitting a
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given data set. Finally, as will be shown in Section 3, the BMMPP2(K) can

be completely characterized in terms of a set of 2(K + 1) moments related

to the inter-event times and batch size distribution, which naturally leads

to a moments-matching fitting approach. However, this characterization in

terms of moments remains an open question for the case m ≥ 3, and will be

the subject of future work as indicated in the conclusions section.

The contribution of this paper is two-fold. On one hand and as com-

mented before, it is proven that the BMMPP2(K), which is represented by

2(K + 1) parameters, is characterized by a set of 2(K + 1) moments con-

cerning the distributions of both the inter-event times and batch sizes. On

the other hand, a sequential estimation approach for fitting real data sets

is derived and illustrated for simulated and real data sets. At this point,

some remarks concerning statistical inference for the BMAPs need to be

made. First, concerning the observed information, in most papers it is as-

sumed that the sequence of inter-event times, t = (t1, t2, ..., tn) (and if it

is the case, of batch sizes b = (b1, b2, ..., bn)) constitute the available ob-

served samples. This implies that many components of the process (such

as the transition times or sequence of visited states) remain unobserved.

Other authors instead consider that the observed information is related to

the counting process (number of accumulated events at some time instants,

for example), see Andersen and Nielsen (2002); Arts (2017); Nasr et al.

(2018). In this paper, the approach considered will be the first one. Second,

there are a number of papers in the literature dealing with strategies (either

Bayesian, frequentist or moments matching based) for estimation of some

types of MAPs (characterized by single events at a time). In these works, ei-

ther the MAPs considered are identifiable (as the MMPP, see Rydén (1994);

Rydén (1996a); Scott (1999)) or non-identifiable, but with a known canon-

ical form (such as the MAP2 see Eum et al. (2007); Bodrog et al. (2008);

Carrizosa and Ramı́rez-Cobo (2014); Ramı́rez-Cobo et al. (2017)). However,

if events occurring in batches are observed, fewer studies dealing with infer-

ence for the BMAP can be found and to our knowledge they all are based

on the EM algorithm, see for example Breuer (2002); Klemm et al. (2003).

In this paper the performance of the proposed sequential fitting algorithm
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shall be compared to that of the EM, as designed in such papers.

The paper is structured as follows. After a brief review of

the BMMPP2(K) in Section 2, the moments characterization for the

BMMPP2(K) is proven in Section 3. Section 3.2 analyzes in depth the case

K = 2 and Section 3.3 extends the findings for the case K ≥ 3. The char-

acterization in terms of moments leads to the sequential fitting algorithm

presented and illustrated in Section 4. After the detailed description of the

method in Section 4.1, its performance on simulated traces is illustrated in

Section 4.2 and a comparison with the EM algorithm is provided in Section

4.3. Finally, Section 4.4 considers a real application of the novel approach:

the modeling of a well-referenced data set from the teletraffic context. In

the numerical analyses, the estimation of the queue length distribution at

departures in a BMMPP/M/1 queueing system is also considered. Finally,

Section 5 presents conclusions and delineates possible directions for future

research.

2 Description of the stationary BMMPP2(K)

In this section, the BMMPP2(K), where K is the maximum batch size,

is formally defined. Also, some properties that will be used throughout

this paper are reviewed. Consider a two-state Markov process J(t) with

generator Q on {1, 2}. For each state i ∈ {1, 2}, events occur according to

a Poisson process with rate λi and each event has a batch distribution on

{1, . . . ,K} that also depends on J(t). In other words, whenever J(t) = i,

it is said that the process is in state i at time t and this status remains

unchanged while the process remains in this state. As soon as the Markov

process enters another state j (j ∈ {1, 2}), then the Poisson process alters

accordingly. Specifically, the BMMPP2(K) behaves as follows: at the end

of an exponentially distributed sojourn time in state i, with mean 1/λi,

two possible state transitions can occur. First, with probability pij0, no

event occurs and the system enters into a different state j 6= i. Second,

with probability piik, an event of batch size k is produced if the state of the

process is i, and the system continues in the same state. It is clear that
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pij0 +
K∑
k=1

piik = 1 i, j = 1, 2, i 6= j.

A BMMPP2(K) can be thus expressed in terms of the initial probability

vector and the parameters {λ,P0, ..,PK}, where λ = (λ1, λ2), and P0,

P1,...,PK are 2 × 2 transition probability matrices with (i, j)-th elements

pijk, for k = 1, ...,K. On the other hand, instead of transition probability

matrices, any BMMPP2(K) can also be characterized in terms of rate (or

intensity) matrices. In the case of the BMMPP2(K), these rate matrices are

{D0,D1, ...,DK} where

D0 =

 x y

r u



Dk =

 wk 0

0 qk

 , 1 ≤ k ≤ K − 1 (3.1)

DK =

 −x− y −∑K−1
i=1 wi 0

0 −r − u−
∑K−1

i=1 qi

 .

Under this representation, the transitions where no event occurs are gov-

erned by the D0, while the transitions characterized by a batch event of

size k are governed by Dk. In addition, the definition of the rate matrices

implies that Q =
∑K

k=0Dk is the infinitesimal generator of the underlying

Markov process J(t), with stationary probability vector π = (π∗, 1 − π∗),
satisfying πQ = 0 and πe = 1, where e is a column vector of ones. The re-

lationship between the transition probabilities matrices representation and

the one based on rate matrices is

x = −λ1, u = −λ2, y = λ1p120, r = λ2p210, wk = λ1p11k, qk = λ2p22k.
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In this paper, the characterization given by (3.1) will be the one considered

from now on.

For a better understanding of the considered process, Figure 3.1 illus-

trates a realization of the BMMPP2(K), where the dashed line corresponds

to transitions where no events occur, and the solid lines correspond to tran-

sitions where an event of size bi ∈ {1, . . . ,K} occurs.

Figure 3.1: Transition diagram for the BMMPP2(K). The dashed line cor-
responds to transitions without events, governed by D0, and the solid lines
correspond to transitions of size bk, governed by Dbk .

It is important to note that if BK = {D0, . . . ,DK} rep-

resents a BMMPP with maximum batch size equal to K, then

M = {G0 = D0, G1 = D1 + ...+DK} defines a Markov modulated Pois-

son process (MMPP), which satisfies the same inter-event time properties

as BK , but is not able to model events occurring in batches.

Remark 1. Some authors define the BMMPP taking piik = pjjk for all

i 6= j, see for example Chakravarthy (2001). In this case, the intensity

matrices are expressed as D0 = Q − ∆(δ), where Q is the infinitesimal

generator of the underlying Markov process J(t) and ∆(δ) is a non-negative

diagonal matrix; and Dk = ∆(δ)∆(pk), for all k ≥ 1, where ∆(pk) is

a non-negative diagonal matrix with ith diagonal entry given by pk, being∑K
k=1 pk = 1. This is a particular case of the process introduced by Lucantoni

(1993) and denoted as a MAP with i.i.d. batch arrivals. These processes

have the advantage of being simpler than the one considered in this paper,

but also have the drawback that corr(T,B) and the first-lag autocorrelation

coefficient of the inter-event times, ρB(1), are both null by construction.
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(See the Appendix B for a proof of these properties). As will be seen in

Section 4.2 , using the simple model in the estimation with data leads to a

worse performance in modeling and its posterior use.

2.1 Performance measures regarding the inter-event times

and batch sizes

A review of the performance measures concerning the inter-event times and

batch sizes in a BMMPP2(K) is given next. If Sn denotes the state of the

underlying Markov process at the time of the n-th event, Bn the batch size

of that event and Tn the time between the (n− 1)-th and n-th events, then

the process {Sn−1,
∑n

i=1 Ti, Bn}∞n=1, is a Markov renewal process (see for

example, Chakravarthy (2010)). Furthermore, if

D =
K∑
k=1

Dk,

then {Sn}∞n=0 is a Markov chain with transition matrix

P ∗ = (−D0)−1D.

On the other hand, the variables Tns are phase-type distributed with

representation {φ,D0}, where φ is the stationary probability vector associ-

ated to P ∗ computed as φ = (πDe)−1πD (see Latouche and Ramaswami

(1999) and Chakravarthy (2010)). In consequence, the moments of Tn in

the stationary case are given by

µr = E(T r) = r!φ(−D0)−re, for r ≥ 1, (3.2)

and the auto-correlation function of the sequence of inter-event times is

ρT (l) = ρ(T1, Tl+1) = γl
µ2 − 2µ2

1

2(µ2 − µ2
1)
, for l > 0. (3.3)

In (3.3), γ is one of the two eigenvalues of the transition matrix P ∗ (as P ∗

is stochastic, then necessarily the other eigenvalue is equal to 1). According
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to Kang and Sung (1995), the value of γ in (3.3) is non-negative in the case

of the BMMPP2 and MMPP2 which implies that the inter-event times are

always positively correlated.

Also, from Rodŕıguez et al. (2016c), the mass probability function of the

stationary batch size, B, is

P (B = k) = φ(−D0)−1Dke, for k = 1, ...,K,

from which the moments of B are obtained as

βr = E[Br] = φ(−D0)−1D∗
re, for r ≥ 1, (3.4)

where D∗
r =

∑K
k=1 k

rDk. Also, the autocorrelation function in the station-

ary version of the process ρB(l) is given by

ρB(l) = ρ(B1, Bl+1) =
φ(−D0)−1D∗

1[(−D0)−1D]l−1(−D0)−1D∗
1e− β2

1

σ2
B

,

where β1 and σ2
B = β2 − β2

1 are computed from (3.4).

Using the Laplace-Stieltjes transform (LST) of the n first inter-event

times and batch sizes of a stationary BMAP2(K) given in Rodŕıguez et al.

(2016c), then E[TB] is found as

η = E[TB] = φ(−D0)−2D∗
1e. (3.5)

See the Appendix A for a proof. From this, the covariance between T and

B is obtained as

cov(T, B) = φ(−D0)−2D∗
1e− φ(−D0)−1eφ(−D0)−1D∗

1e.

2.2 Performance measures regarding the counting process

Consider a stationary BMMPP2(K) represented by BK = {D0,D1, . . . ,DK}
with underlying phase process {J(t)}t≥0. Then, the counting process N(t)

represents the number of events that occur in (0, t]. For n ∈ N and t ≥ 0,
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let P (n, t) denote the 2× 2 matrix whose (i, j)-th element is

P ij(n, t) = P (N(t) = n, J(t) = j | N(0) = 0, J(0) = i) ,

for 1 ≤ i, j ≤ 2. From the previous definition it is clear that

p(n, t) = P (N(t) = n | N(0) = 0) = πP (n, t)e. (3.6)

The values of the matrices P (n, t) cannot be computed in closed-form. How-

ever, their numerical computation is straightforward from the uniformization

method addressed in Neuts and Li (1997).

If the interest is focused on counting the events of a specific size k ∈
{1, . . . ,K}, define N(t, k) as the number of such events that have occurred

up to time t. Then, it is clear that N(t, k)
d
= Nk

M(t), where Nk
M(t) is the

counting process of the MMPP given by M = {G0 = D0 + D1 + . . . +

Dk−1 + Dk+1 + . . . + DK , G1 = Dk}. Therefore, the probabilities of

N(t, k) can be computed as those of Nk
M(t), via expression (3.6).

Some moments concerning the counting process are as follows, see

Narayana and Neuts (1992) or Eum et al. (2007). In the stationary ver-

sion of the process, the mean number of events in an interval of length t

(known as the Palm function) is

E [N(t)] = λ?t,

where λ? = µ−1
1 represents the events rate. The variance of that count is

given by

V [N(t)] = (1 + 2λ?)E [N(t)]− 2πD (eπ +Q)−1Det

−2πD
(
I − eQt

)
(eπ +Q)−2De. (3.7)

3 Moments characterization

In this section we prove that the BMMPP2(K) is completely characterized by

a set of 2(K+ 1) moments. As will be seen, the results are based on Bodrog
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et al. (2008), who provide a canonical representation for the MAP2. The

case where K = 2 shall be first addressed to later consider the generalization

for an arbitrary batch size.

3.1 The MMPP2, the MAP2 and their canonical represen-

tations

As previously commented, in this paper we deal with the BMMPP2(K),

which is the batch counterpart of the well-known MMPP2. As described in

Section 1, the MMPP2 is an identifiable subclass of MAP2, a general, non-

identifiable point process that includes both renewal processes (phase type

renewal processes such as the Erlang and hyperexponential renewal process)

and non-renewal processes, as is the case of the MMPP2. It is common in

the literature to represent the MAP2 by the rate matrices

G0 =

 x y

r u

 , G1 =

 w −x− y − w

v −r − u− v

 , (3.8)

where {x, y, r, u, w, v} are defined in a similar way to in (3.1) (see Ramı́rez-

Cobo et al. (2010) for more details). Then, a MMPP2 will be defined as

(3.8) such that w = −x− y and v = 0,

G0 =

 x y

r u

 , G1 =

 −x− y 0

0 −r − u

 . (3.9)

Without loss of generality, we will assume from now on that x+ y ≥ r + u

(otherwise, an equivalent process is obtained by permuting the states). Note

that representation (3.9) implies that events only occur at self-transitions of

the underlying Markov chain, and every self-transition produces an event.

Even though the MAP2 in (3.8) is non-identifiable, Bodrog et al. (2008)

provide a canonical, unique representation; in particular, if γ > 0 (see Eq.

3.3), as is the case of the BMMPP2(K) and MMPP2, then, the canonical
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form of (3.8) is given by

Gc0 =

 −ζ1 (1− a)ζ1

0 −ζ2

 , Gc1 =

 aζ1 0

(1− b)ζ2 bζ2

 , (3.10)

for certain exponential rates ζ1, ζ2 and probabilities a and b. The canon-

ical form implies that all equivalent representations of a MAP2 as in (3.8)

with associated γ satisfying γ > 0, can be written - in unique way - as in

(3.10). Bodrog et al. (2008) also show that any MAP2 as in (3.8) can be

completely characterized by four moments regarding the inter-event time

distribution, namely, the first, second and third moment of the inter-event

time distribution, µ1, µ2, µ3, and the first-lag autocorrelation coefficient

of the inter-event times, ρT (1), see Eq. (3.2) and Eq. (3.3), for their ex-

plicit expressions. Indeed, there exists a one-to-one correspondence between

the parameters of the canonical form (3.10) {ζ1, ζ2, a, b} and the moments

{µ1, µ2, µ3, ρT (1)}. As will be seen in the next sections, this fact shall be

the basis for proving the characterization of the BMMPP2(K) in terms of a

set of moments. However, in order to find such characterization, the canon-

ical form as in (3.10) for a MMPP2 given by (3.9) needs to be found. The

following result provides such a canonical representation.

Lemma 5. Let G = {G0,G1} represent a MMPP2 as in (3.9). Then rep-
resentation G is equivalent to the canonical representation Gc =

{
Gc0,G

c
1

}
,

where

Gc
0 =


x− y

x− 2r − u−
√

(u− x)2 + 4ry

x+ 2y − u+
√

(u− x)2 + 4ry
−y 2(r + u− x− y)

x+ 2y − u+
√

(u− x)2 + 4ry

0 u+ y
x− 2r − u−

√
(u− x)2 + 4ry

x+ 2y − u+
√

(u− x)2 + 4ry

 ,

Gc
1 =

 −x− y 0

−
x− 2r − u−

√
(u− x)2 + 4yr

2
−r − u

 .

Proof. The proof follows Rodŕıguez et al. (2016a), where a similarity trans-
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form via an invertible matrix A satisfying Ae = e,

Gc0 = AG0A
−1, Gc1 = AG1A

−1 (3.11)

is used to convert any MAP2 as in (3.8) in its canonical form. In particular,

for the MMPP2, A−1 can be easily found as

A−1 =

 1 0

−
x− 2r − u−

√
(u− x)2 + 4yr

x+ 2y − u+
√

(u− x)2 + 4yr

2(x+ y − u− r)
x+ 2y − u+

√
(u− x)2 + 4yr

 .

Hence, from (3.11), the result is obtained.

Lemma 5 shows how representation (3.10) can be obtained from (3.9). In

an analogous way, the opposite transformation can be found, as the following

Lemma 6 shows.

Lemma 6. Let a MMPP2 be represented in a canonical way by Gc =
{
Gc0,G

c
1

}
as in (3.10). Then, its representation G = {G0,G1} as in (3.9) is given by

G0 =
1

aζ1 − bζ2

ζ1ζ2 − aζ2
1 − aζ1ζ2 + abζ1ζ2 −a2ζ2

1 + aζ2
1 + ζ2aζ1 − ζ2ζ1

(ζ1 − bζ2)(ζ2 − bζ2) −ζ1ζ2 + bζ2
2 + bζ1ζ2 − abζ1ζ2


G1 = diag(Gc1).

Proof. From Lemma 5 the canonical form associated to a MMPP2 can be

written as

Gc
0 =

−ζ1 (1− a)ζ1

0 −ζ2



=


x− y

x− 2r − u−
√

(u− x)2 + 4ry

x+ 2y − u+
√

(u− x)2 + 4ry
−y 2(r + u− x− y)

x+ 2y − u+
√

(u− x)2 + 4ry

0 u+ y
x− 2r − u−

√
(u− x)2 + 4ry

x+ 2y − u+
√

(u− x)2 + 4ry

 ,



92
Paper 2: Fitting procedure for the two-state Batch Markov modulated

Poisson process

Gc
1 =

 aζ1 0

(1− b)ζ2 bζ2



=

 −x− y 0

−
x− 2r − u−

√
(u− x)2 + 4yr

2
−r − u

 .

Solving for x, y, r, u, the result is obtained. The proof that G0 and G1 are

well defined can be found in Appendix C.

3.2 Moments characterization for the BMMPP2(2)

Consider a BMMPP2(2) represented by B2 = {D0,D1,D2} where, accord-

ing to (3.1),

D0 =

 x y

r u

 , D1 =

 w 0

0 q

 , D2 =

 −x− y − w 0

0 −r − u− q

 .

(3.12)

Note that M = {G0 = D0, G1 = D1 + D2} is a representation of a

MMPP2, and therefore, according to Lemma 1, M has a canonical form as

in (3.10). Then, from Bodrog et al. (2008) such a canonical representation

can be written in terms of {µ1, µ2, µ3, ρT (1)}, the first three inter-event

time moments and the first-lag auto-correlation coefficient of the inter-event

times. The next result establishes that, in order to completely characterize

(3.12), two more moments involving the batch size, β1 and η, as in (3.4) and

(3.5), respectively, should be added.

Theorem 2. Let B2 = {D0,D1,D2} be a representation of a BMMPP2(2)

as in (3.12). Then, B2 is completely characterized by the six moments

{µ1, µ2, µ3, ρT (1), β1, η}.

Proof. Let M = {D0,D1 +D2} be the MMPP2 associated to

B2 = {D0,D1,D2}. From Lemma 6, representation M can be rewritten

as
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D0 =

 x(µ, ρT ) y(µ, ρT )

r(µ, ρT ) u(µ, ρT )



D1 +D2 =

 −x(µ, ρT )− y(µ, ρT ) 0

0 −r(µ, ρT )− u(µ, ρT )

 ,

where µ = {µ1, µ2, µ3}. Hence

D0 =

 x(µ, ρT ) y(µ, ρT )

r(µ, ρT ) u(µ, ρT )



D1 =

 w 0

0 q



D2 =

 −x(µ, ρT )− y(µ, ρT )− w 0

0 −r(µ, ρT )− u(µ, ρT )− q

 .

The quantities β1 and η defined in (3.4) and (3.5) respectively, can be

written in the case of the BMMPP2(K) as

β1 =
2(rx+ 2ry + yu) + rw + yq

(rx+ 2ry + yu)
(3.13)

and

η =
rw(y − u) + qy(r − x) + (ry − xu)(2r + 2y)

(rx+ 2ry + yu)(xu− ry)
. (3.14)

From (3.13)

rw = (β1 − 2)(rx+ ry + ry + yu)− yq (3.15)
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and from substituting (3.15) in (3.14),

η =
[(β1 − 2)(rx+ 2ry + yu)− yq](y − u)

(rx+ 2ry + yu)(xu− ry)

+
qy(r − x) + (ry − xu)(2r + 2y)

(rx+ 2ry + yu)(xu− ry)

=
(β1 − 2)(rx+ 2ry + yu)(y − u)

(rx+ 2ry + yu)(xu− ry)

+
qy(r + u− x− y) + (ry − xu)(2r + 2y)

(rx+ 2ry + yu)(xu− ry)
.

Hence

q =
η(rx+ 2ry + yu)(xu− ry)− (β1 − 2)(rx+ 2ry + yu)(y − u)

y(r + u− x− y)

−(ry − xu)(2r + 2y)

y(r + u− x− y)

=
(rx+ 2ry + yu)[(xu− ry)η − (y − u)(β1 − 2)]

y(r + u− x− y)

−(ry − xu)(2r + 2y)

y(r + u− x− y)
(3.16)

and from substituting (3.16) in (3.15), w is finally found as

w =
(rx+ 2ry + yu)[(β1 − 2)(r − x)− (xu− ry)η] + (ry − xu)(2r + 2y)

r(r + u− x− y)

Since the parameters defining B2 are written in terms of the moments

{µ1, µ2, µ3, ρT (1), β1, η}, the proof is completed.

3.3 The case K ≥ 3

In this section the characterization in terms of moments is extended from

the case K = 2 to the case with an arbitrary maximum batch size K. The

key for such generalization is the fact that given a BMMPP2(K) represented

by BK = {D0,D1, ...,DK}, then K different BMMPP2(2)s can be obtained



Part II: Batch Markov modulated Poisson processes 95

as

B(i)
2 = {D0,Di,

∑
k 6=i

Dk}, i = 1, ...,K. (3.17)

Theorem 3. Let BK = {D0,D1, ...,DK} be the representation of a

BMMPP2(K). Then, BK is characterized by the set of (2K + 2) moments

{
µ1, µ2, µ3, ρT (1), β

(1)
1 , η(1), . . . , β

(K−1)
1 , η(K−1)

}
, (3.18)

where β
(i)
1 and η(i) are the moments defined according to (3.4) and (3.5) of

B(i)
2 , for i = 1, . . . , (K − 1), that is the BMMPP2(2) as in (3.17).

Proof. The proof is straightforward by applying Theorem 2 to each one of

the BMMPP2(2)s defined by B(i)
2 , as in (3.17), for i = 1, . . . , (K − 1).

4 Inference for the BMMPP2(K)

In this section, an approach for estimating the parameters of a BMMPP2(K)

given observed inter-event times, t = (t1, t2, ..., tn) and batch sizes, b =

(b1, b2, ..., bn), is proposed. This implies that some components of the process

such as the complete sequence of transition times and the sequence of visited

states in the underlying Markov process are not observed, which corresponds

with what usually occurs in practice.

Section 4.1 presents in detail the novel fitting algorithm, where the rate

matrices D0, . . . ,DK are sequentially estimated via (K + 1) optimization

problems solved by standard optimization routines. Then, Section 4.2 illus-

trates the performance of the method on simulated data sets and Section

4.3 compares the novel approach with an EM-based strategy proposed in

the literature. Finally, Section 4.4 addresses the modeling of the well-known

Bellcore Aug89 data set, where in addition, a performance analysis related

to the BMMPP/M/1 queueing system is considered.

4.1 The fitting algorithm

Theorem 3 shows that any BMMPP2(K), with rate matrix representation

as in (3.1), is characterized by the set of 2(K + 1) moments given by (3.18).
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Specifically, such moments are given by µ1, µ2, µ3, and ρT (1) (concern-

ing the inter-event time distribution), β
(1)
1 , . . . , β

(K−1)
1 (related to the batch

size distribution), and η(1), . . . , η(K−1) (joint moments concerning times and

sizes). Carrizosa and Ramı́rez-Cobo (2014) derive a moments matching

method for estimating the parameters of a MAP2 as in (3.8), given a se-

quence of inter-event times t = (t1, t2, ..., tn). A modified version of the

approach in Carrizosa and Ramı́rez-Cobo (2014) shall constitute the first

step in our sequential fitting algorithm aimed to estimate matrix D0. Any

BMMPP2(K) given by B2 = {D0,D1, . . . ,DK} defines a MMPP2 repre-

sented by M = {G0 = D0, G1 =
∑K

k=1Dk}, where G0 and G1 are as in

(3.9); therefore, G0 (D0) can be estimated by the solution of the following

moments matching optimization problem (P0):

(P0)



min
x,y,r,u

δ0,τ (x, y, r, u)

s.t. x, u ≤ 0,

y, r ≥ 0,

x+ y ≤ 0,

r + u ≤ 0,

where the objective function is

δ0,τ (x, y, r, u) = {ρT (1)− ρ̄T (1)}2 +

+ τ

{(
µ1 − µ̄1

µ̄1

)2

+

(
µ2 − µ̄2

µ̄2

)2

+

(
µ3 − µ̄3

µ̄3

)2
}
,

for a value of τ to be tuned in practice, and where µ̄i, for i = 1, 2, 3 and

ρ̄T (1) denote the empirical moments (computed from the sample t). Note

that in the previous objective function, ρT (1) = ρT (1)(x, y, r, u), and µi =

µi(x, y, r, u), for i = 1, 2, 3.

Once D̂0 is obtained as the solution of (P0), then, in order to esti-

mate D1 (or equivalently w1, q1), consider (3.17) for i = 1, that is, the
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BMMPP2(2) represented by B(1)
2 = {D0, D1, D2 + . . . + DK} and the

optimization problem

(P1)


min
w1,q1

δ1,τ (x̂, ŷ, û, v̂, w1, q1)

s.t. 0 ≤ w1 ≤ −x̂− ŷ,

0 ≤ q1 ≤ −r̂ − û,

where, according to (3.1), x̂, ŷ, r̂, û are the elements of D̂0 and

δ1,τ (x, y, u, v, w1, q1) = τ


(
β

(1)
1 − β̄(1)

1

β̄
(1)
1

)2

+

(
η(1) − η̄(1)

η̄(1)

)2
 . (3.19)

In the previous objective function (3.19), β
(1)
1 = β

(1)
1 (x, y, u, r, w1, q1) and

similarly, η(1) = η(1)(x, y, u, r, w1, q1). It is crucial to remark that, in or-

der to compute the empirical moments β̄
(1)
1 and η̄(1), all batch sizes in b

larger than 2 are considered as equal to 2. Once ŵ1 and q̂1 are obtained

as the solutions of (P1), the approach will be repeated for estimating D2

(using the representation of B(2)
2 ), D3,..., and finally DK . The algorithm is

summarized in Table 3.1.

It is important to comment that the optimization problems (Pk) in Ta-

ble 3.1 for k = 0, . . . ,K − 1 are straightforward problems in two variables

each, solved using standard optimization routines ( fmincon in MATLAB c©),

where a multistart with 100 randomly chosen starting points was executed.

4.2 A simulational study

The aim of this section is twofold: on one hand, the behavior of the se-

quential algorithm described in Section 4 is illustrated on the basis of two

simulated data sets and, on the other hand, a sensitivity analysis concerning

the tuning parameter τ is undertaken. Each simulated data set consists of a

sequence of inter-event times t = (t1, t2, ..., tn) and a sequence of batch sizes

b = (b1, b2, ..., bn). The first data set was simulated from the BMMPP2(2)
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1. Obtain (x̂, ŷ, r̂, û) (equivalently, D̂0) as the solution of

(P0).

2. For k = 1, . . . ,K − 1 repeat:

(a) Compute the empirical moments β̄
(k)
1 and η̄(k) from t

and the sample of baches b? = (b?1, . . . , b
?
n), where for

j = 1, . . . , n, b?j = 1 if bj = k, or b?j = 2, otherwise.

(b) From D̂0, . . . , D̂k−1 and the moments β̂
(k)
1 , η̂(k), obtain

ŵk, q̂k (D̂k) as the solutions of

(Pk)


min
wk,qk

δk,τ (x̂, ŷ, û, v̂, ŵ1, q̂1, . . . , ŵk−1, q̂k−1, wk, qk)

s.t. 0 ≤ wk ≤ − (x̂+ ŷ + ŵ1 + . . .+ ŵk−1) ,

0 ≤ qk ≤ − (r̂ + û+ q̂1 + . . .+ q̂k−1) ,

where

δk,τ (wk, qk) = τ


(
β

(k)
1 − β̄(k)

1

β̄
(k)
1

)2

+

(
η(k) − η̄(k)

η̄(k)

)2
 .

Table 3.1: Sequential algorithm for estimating the BMMPP2(K) parameters

represented by the rate matrices {D0,D1,D2} shown in the second column

of Table 3.2; the second one was generated from the BMMPP2(4) charac-

terized by {D0,D1,D2,D3,D4} as in the second column of Table 3.3. An

important remark concerning the samples sizes n needs to be made at this

point. The estimation approach proposed in Section 4 uses as input argu-

ments a set of empirical moments concerning both the inter-event times and

batch sizes. Since the process is known to be identifiable (Yera et al., 2019)

then, the closer the empirical moments are to the theoretical moments, the

more accurate the estimated parameters will be. Therefore, the issue of the

sample size is critical in this context. In this paper, we adopt the approach as

in Ramı́rez-Cobo et al. (2017), where the coefficient of variation of the inter-

event times is taken into account. Specifically, if the coefficient of variation
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is high, then the sequence of inter-event times will present more variability

and therefore, the approximation of the empirical moments to the theoret-

ical ones may be poor. Under the two generator processes considered, the

coefficients of variation are equal to 1.02 and 2.048, respectively. Similarly

as in Ramı́rez-Cobo et al. (2017), we fix a lower value of the sample size

(n = 300) for the first case than for the second case (n = 1000).

The results obtained when the novel estimation approach is used to fit

the traces are shown in Tables 3.2 and 3.3. Tables 3.2 is related to the

simulated sample from the BMMPP2(2) while the Tables 3.3 concerns the

second simulated sample from the BMMPP2(4). The second column in the

Tables 3.2 and Tables 3.3 show the generator process and the characterizing

theoretical moments according to Sections 3.2 and 3.3. The third column in

these Tables show the empirical moments from the simulated traces. The

rest of columns show the estimated rate matrices and estimated character-

izing moments under the new approach for an assortment of values of the

tuning parameter τ (τ ∈ {0.001, 0.01, 0.1, 1, 10, 100}). Finally, the last

row in both Tables shows the running time (measured in seconds) employed

for the novel method in an Intel Core i5 of dual-core 2.6 GHz processor with

4Gb of memory ram (for a prototype code written in MATLAB c©).

Some comments arise from the results presented in Tables 3.2 and 3.3.

First, from the third column it can be concluded that the selected sample

sizes (n = 300 and n = 1000) are good enough to guarantee an accurate

approximation of the empirical moments to the theoretical ones. Second,

the value of τ does not seem to affect the estimation significantly: both the

rate matrices and estimated moments are close to the real ones in all cases.

However, the value of τ seems to have an impact on the computational time:

the lower τ is, the faster the method turns out to be. For this reason, the

smallest tested value (τ = 0.001) will be considered from now on in the rest

of the experiments. Finally, it is important to note that the sample size does

not affect the running times, a fact which in any case was expected since

the input arguments of the algorithm are empirical moments (and not the

original traces).

The choice of processes in Tables 3.2 and 3.3 is also related to Remark
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1. As can be observed, the process analyzed in Table 3.2 presents autocor-

relation between batches, autocorrelation between the inter-arrivals times

and correlation between T and B close to zero; while in the second process,

studied in Table 3.3, they are significantly different from zero. The differ-

ence between fitting a BMMPP as defined in this work and the MAP with

i.i.d. batch arrivals is more relevant in the second model than in the first as

is illustrated in Table 3.4. It can be seen that the quality of the performance

in the adjustment is better using the methodology developed in this paper,

while the computational times are very similar.
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Emp Est BMMPP
Est MMPP with

Emp Est BMMPP
Est MMPP with

i.i.d. batches i.i.d. batches

µ1 0.2801 0.2797 0.2798 0.9657 0.9657 0.9656

µ2 0.1602 0.1602 0.1604 3.2627 3.2628 3.2635

µ3 0.1382 0.1382 1.381 17.0847 17.0842 17.0827

ρT (1) 5.990× 10−3 5.989× 10−3 5.989× 10−3 0.2241 0.2241 0.2241

β
(1)
1 1.6397 1.6397 1.6423 1.4182 1.4182 1.5358

η(1) 0.4603 0.4603 0.4595 1.6472 1.6472 1.4830

β
(2)
1 - - - 1.8563 1.8558 1.7962

η(2) - - - 1.6833 1.6835 1.7345

β
(3)
1 - - - 1.7389 1.7390 1.6681

η(3) - - - 1.5148 1.5148 1.6107

CV 1.0208 1.0218 1.0242 1.5806 1.5807 1.5812

Skewness 5.9111 5.9004 5.8675 4.8034 4.8030 4.7997

Kurtosis 23.7610 27.7867 23.7164 22.0435 21.9988 21.9887

β1 1.6397 1.6397 1.6423 1.7064 1.7062 1.8679

β2 2.9190 2.9190 2.9270 3.7224 3.7217 4.2679

Corr(T,B) 7.536× 10−3 8.734× 10−3 0 0.3268 0.3270 0

ρB(1) 2.248× 10−3 1.025× 10−3 0 0.3633 0.2665 0

ρB(2) 3.577× 10−4 2.907× 10−4 0 0.2635 0.1991 0

ρB(3) 7.479× 10−4 8.247× 10−5 0 0.2060 0.1488 0

ρT (2) 6.426× 10−4 1.699× 10−3 1.537× 10−3 0.1652 0.1675 0.1674

ρT (3) 1.755× 10−3 5.819× 10−4 3.943× 10−4 0.1211 0.1251 0.1250

P (B = 1) 0.3603 0.3603 0.3577 0.5818 0.5818 0.4642

P (B = 2) 0.6397 0.6397 0.6423 0.1437 0.1437 0.2038

P (B = 3) - - - 0.2611 0.2611 0.3319

P (B = 4) - - - 0.0135 0.0135 6.932× 10−5

running

time
- 21.59 19.55 - 37.04 33.13

Table 3.4: Comparisson between the estimated descriptors via the BMMPP)
and the MMPP with i.i.d. batches.

4.3 Comparison with the EM algorithm and estimation of

the BMMPP2(K)/M/1 queue

This section serves two purposes. First, as commented in Section 1, some

authors have considered inference for the general BMAPs, such as Breuer
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(2002) and Klemm et al. (2003) who adapt the EM algorithm for the BMAP.

Therefore, one of the aims of this section is to compare the performance of

the novel sequential fitting methods with that of the EM algorithm as im-

plemented in Breuer (2002). Second, one of the main applications of BMAP

processes are related to queueing theory, see for example Lucantoni et al.

(1990); Ramaswami (1990); Lucantoni (1991, 1993); Lucantoni et al. (1994),

who explore theoretical properties of the BMAP/G/1 queueing system. In

this section, we consider estimation for the BMMPP2(K)/M/1 queueing

system where the BMMPP2(K) is the arrival process in a single-server, first

in first out queueing system with independent, Markovian service times. In

particular, the inference approach described in Section 4 will be combined

with techniques from the queueing literature in order to estimate the sta-

tionary queue length distribution at departures.

In Breuer (2002) and Klemm et al. (2003), the EM algorithm is consid-

ered and adapted for the BMAP. In order to compare the performance of the

novel method with that of the EM algorithm, we consider the first simulated

trace from Section 4.2, with generator process and theoretical moments as

in the second column of Table 3.5. To explore in depth the performance

of the EM algorithm, two different starting points are considered; the first

quite close to the true solution (fourth column of Table 3.5) and a second

point that is far away from the true solution (seventh column of Table 3.5).

From the results in the table, some conclusions can be obtained. First, the

estimated rate matrices provided by the EM algorithms seem more depen-

dent on the starting solution than those under the novel approach; while

the solutions obtained with the moments matching method are similar un-

der the two choices of the initial values, the solutions given by the EM differ

among themselves, with the first one being more accurate than the second

one. Concerning the estimation of the empirical moments, both methods

provide similar values, all close to the empirical ones. Something similar

occurs with respect to the log-likelihood values given the estimated parame-

ters (second-to-last row of Table 3.5). Finally, concerning the running times,

the EM algorithm turns out to be notably slower than the novel method,

especially when the starting solution is not close to the true one.
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Consider next the BMMPP2(K)/M/1 queueing system and denote by

µ? < ∞ the expected value of the service time. Then, the traffic intensity

of this system is given by

ρ = λ?µ?,

where λ? is the stationary arrival rate (inverse of the expected inter-event

time), defined as

λ? = 1/µ1,

where µ1 is defined as in (3.2). Now define Z(t) to be the number of cus-

tomers in the system (including in service, if any) at time t and let τk be

the epoch of the k-th departure from the queue, with τ0 = 0. If the system

is stable (ρ < 1), then for i ≥ 1

zi = lim
k→∞

P [Z(τk) = i] ,

represents the stationary probability that the queue length is equal to i when

a departure occurs. Closed-form expressions for the generating function of

the queue length distributions can be found in Lucantoni (1993). Assume

that the simulated trace of inter-event times used in Table 3.5 represents the

inter-arrival times in a BMMPP2(2)/M/1 queue. Then, given the point es-

timates of the BMMPP2(2) from the table, the numerical routines described

in Lucantoni (1993), as well as in Abate and Whitt (1995) can be imple-

mented to invert the generating function of the queue length distribution.

Figure 3.2 depicts the estimated tail distributions of the queue length at

departures for two different service times (that is, for two different traffic

intensities, ρ = 0.3, 0.7) and for both solutions (from the sequential fitting

approach and EM algorithm) and under the two possible choices of starting

points considered in Table 3.5. In the figure, the solid line represents the

true distribution, the dashed line is the estimated function using the EM

solution and finally, the dotted line depicts the estimated tail distribution

under the solution obtained by the sequential fitting method. From the fig-

ure some comments can be made. First, as expected, larger values for the

tail distribution are obtained in the case of ρ = 0.7, a consequence of the
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higher degree of saturation of the system. Second, an additional expected

fact is that the estimated tail distributions using a close starting point are

slightly more accurate than those obtained under the distant starting points.

Finally, in the case of the distant starting point with ρ = 0.7, the sequen-

tial fitting approach leads to a slightly more precise solution than the EM

algorithm.

(a) Close starting point, ρ = 0.3 (b) Close starting point, ρ = 0.7

(c) Distant starting point, ρ = 0.3 (d) Distant starting point, ρ = 0.7

Figure 3.2: Estimated tail distributions of the queue length at departures
in a BMMPP2(2)/M/1 queue.

4.4 Numerical illustration on a teletraffic real data set

In this section we illustrate the performance of the novel approach for fit-

ting a well-referenced database, namely the Bellcore Aug89 data set, which

has been considered in a number of papers concerning teletraffic modeling,

see Horváth et al. (2005),Ramı́rez-Cobo et al. (2008); Ramı́rez-Cobo et al.
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(2010); Li et al. (2010); Kriege and Buchholz (2011); Okamura et al. (2011);

Rodŕıguez et al. (2015); Casale et al. (2016).

Data description

The data set BC-pAug89, available at the web site

http://ita.ee.lbl.gov/html/contrib/BC.html

consists of one million of packet arrivals seen on Ethernet at the Bellcore

Morristown Research and Engineering facility. The trace began at 11:25 on

August 29, 1989, and ran for about 3142.82 seconds until the arrival of one

million packets (of different size each). The times are originally expressed to

6 places after the decimal point (milisecond resolution), which implies that

packets arrive in isolated way. However, if instead of observing the process

every 10−6 seconds, it is observed every 10−3 seconds, then this form of

aggregation leads to packets arriving in batches, with batches sizes varying

from 1 to 4, as shown by the left panel of Figure 3.3. This structure of

the data set will be called from now on Data set in format I. On the other

hand, the original data set can be viewed from a different perspective if the

size of the packets is taken into account. Due to the Ethernet protocol the

size of the packets takes 866 different values ranging from 64 to 1518 bytes.

Therefore, packets can be divided into small packets, when the size is lower

than 100 bits, and large, otherwise, see the right panel of Figure 3.3. This

new format, proposed in an analogous way in Klemm et al. (2003), will be

called henceforth Data set in format II, where the batch size equal to 1 will

refer to small sizes, and a batch size of 2 will be used to refer to the large

sizes.

Consider first Data set in format I. There are strong reasons to not as-

sume a Poisson process for the Data set in format I . First, the average, me-

dian, variation coefficient, minimum and maximum value of the inter-arrivals

times are 0.0036, 0.0020, 1.6553, 1× 10−3 and 0.3420 seconds, respectively,

which suggests a right-skewed distribution with a tail longer than that of an

exponential distribution. Indeed, Figure 3.4 shows the empirical quantiles



Part II: Batch Markov modulated Poisson processes 109

Figure 3.3: Left panel: packets arriving in batches of sizes 1, . . . , 4, observed
in intervals of length 10−3 seconds (Data set in format I). Right panel:
packets divided into small (batch size equal to 1) and large (batch size
equal to 2) (Data set in format II).

comparison with that of the fitted (via MLE) exponential distribution. Note

how the larger empirical quantiles are far from the fitted ones. Something

similar occurs with Data set in format II, where the average, median, varia-

tion coefficient, minimum and maximum value of the inter-arrivals times are

given by 0.0031, 0.0020, 1.7954, 2 × 10−5 and 0.3419 seconds. In addition,

the empirical first-lag correlation coefficients of the inter-arrival times are

0.1908 and 0.2, respectively. This implies that a model capturing depen-

dence between the arrivals may turn out to be suitable. Since arrivals occur

in batches, a BMMPP2(2) and a BMMPP2(4) will be fitted to the data sets

using the novel sequential fitting approach; the results shall be shown in the

next section.

Results

The sequential algorithm described in Section 4 is applied to fit the tele-

traffic data sets. Table 3.6 shows the empirical values of a set of descriptors

concerning the inter-arrivals times distribution, the batch sizes distribution

and joint moments, as well as the estimated values under a BMMPP2(4)

and BMMPP2(2) models for Data set in format I and II, respectively. From

the first to the 10-th row, the fitted values to the characterizing moments,
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Figure 3.4: Empirical quantiles of the inter-arrival times of Data set in
format I versus those of a fitted exponential distribution.

according to Theorem 2, are provided. Then, the estimated coefficients

of variation, skewness and kurtosis are shown. The 14-th and 15-th rows

concern the first and second moments of the batch size. Then, some de-

scriptors related to the correlation between the inter-arrival times and the

batches and the autocorrelation coefficients of the inter-event times are also

depicted. The probability mass distribution of the batch size is also shown.

Most of the quantities are well estimated by the models considered, with

the exception of the values of ρT (2) and ρT (3), which are slightly underes-

timated.

Table 3.6 also shows a comparison between the general model proposed

in the paper and a MMPP with i.i.d batches. For the estimation of the

MMPPs with i.i.d batches, the sequential algorithm described in Section

4 was used, adding qk(ŷ − x̂) = wk(r̂ − û) as a restriction to each (Pk)

optimization problem. In Table 3.6 it can be appreciated that in the case

of Data set in format I, for which ρ(T,B) and ρ(B) are almost null, both

estimations are quite similar. But by slightly increasing these amounts for

Data set in format II the estimation using the general BMMPP improves over

the case with independent batches. In conclusion, although the correlations

or autocorrelations shown by the data are negligible, it is more reliable

to adjust the general model since the computation time does not increase

substantially but it does improve the quality of the adjustment in general.



Part II: Batch Markov modulated Poisson processes 111

The good performance of the fitted models is also supported by Figure 3.5

which depicts the fit to the empirical distribution functions of the inter-

arrival times.

Data set in format I Data set in format II

Emp Est BMMPP
Est MMPP with

Emp Est BMMPP
Est MMPP with

i.i.d. batches i.i.d. batches

µ1 3.5625× 10−3 3.5625× 10−3 3.5625× 10−3 3.1428× 10−3 3.1428× 10−3 3.1428× 10−3

µ2 4.7465× 10−5 4.7465× 10−5 4.7465× 10−5 4.1718× 10−5 2.0859× 10−5 4.1718× 10−5

µ3 2.2802× 10−6 2.2802× 10−6 2.2802× 10−6 2.0104× 10−6 2.0104× 10−6 2.0104× 10−6

ρT (1) 0.1908 0.1908 0.1908 0.2 0.2 0.2

β
(1)
1 1.1241 1.1096 1.1040 1.8121 1.8121 1.7788

η(1) 3.8663× 10−3 3.9189× 10−3 3.9329× 10−3 5.4932× 10−3 5.4932× 10−3 5.5905× 10−3

β
(2)
1 1.8849 1.8970 1.9019 - - -

η(2) 6.8387× 10−3 6.7898× 10−3 6.7756× 10−3 - - -

β
(3)
1 1.9915 1.9935 1.9942 - - -

η(3) 7.1082× 10−3 7.1037× 10−3 7.1044× 10−3 - - -

CV 1.6553 1.6553 1.6553 1.7954 1.7954 1.7954

Skewness 11.1199 11.1199 11.1199 11.1896 11.1896 11.1896

Kurtosis 170.3031 168.1339 168.1340 179.2370 166.8824 166.8824

β1 1.1335 1.1162 1.1100 1.8121 1.8121 1.7788

β2 1.4205 1.3618 1.3424 3.4364 3.4363 3.3365

Corr(T,B) −0.0707 −0.0180 0 −0.0916 −0.0916 0

ρB(1) 0.0500 6.1083× 10−3 0 0.1037 0.1141 0

ρT (2) 0.1791 0.1146 0.1146 0.1893 0.1160 0.1160

ρT (3) 0.1278 0.0689 0.0689 0.1390 0.0673 0.0673

P (B = 1) 0.8759 0.8904 0.8960 0.1879 0.1879 0.2212

P (B = 2) 0.1151 0.1031 0.0891 0.8121 0.8121 0.7788

P (B = 3) 0.0085 0.0065 0.0058 - - -

P (B = 4) 4.7042× 10−4 1.7143× 10−5 1.0262× 10−4 - - -

Table 3.6: Empirical and estimated descriptors via the BMMPP2(4) (Data
set in format I) and the BMMPP2(2) (Data set in format II).

Next, we focus on some quantities of interest associated to the the count-

ing process, see Section 2.2. The top panels of Figure 3.6 show the estimated

and empirical expected number of arrivals in the interval (0, 100) for both

Data sets in formats I and II. The bottom panels depict the estimated inter-

vals centered on E[N(t)]± kSd(N(t)), for k = 1, 2, where Sd(N(t)) denotes
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Figure 3.5: Left panel: Estimated cdf (dashed line) under the BMMPP2(2)
versus the empirical cdf (solid line) of the inter-arrival times. Right panel:
Estimated cdf (dashed line) under the BMMPP2(4) versus the empirical cdf
(solid line) of the inter-arrival time.

the standard deviation of the number of counts, computed from (3.7). On

the other hand, Figure 3.7 illustrates the estimated probabilities p(n, t) as

in (3.6). The left panel shows the estimated probabilities for Data set in

format I for n ∈ [0, 100] and t = [0.1, 0.2]. As can be observed, the sequence

of functions for different values of t are bimodal, with a maximum around

a high number of n, and another local maximum for a small value of n. In

addition, the probability functions are not symmetric with a left tail that is

longer than the right tail. Concerning Data set in format II, the left panel of

Figure 3.7 shows the probabilities of the counts, for different time values and

for large sizes. It can be seen how the variability of the variable increases

with the value of t.

Finally, the queue length distribution of the BMMPP2(4)/M/1 queueing

system was estimated, under the assumption that the inter-arrival times of

Data set in format I constitute the observed arrival process. For that, a

traffic intensity ρ = 0.5 was set. Figure 3.8 shows the resulting tail distri-

bution.
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Figure 3.6: Top panels: Estimated (dashed line) and empirical (solid line)
expected number of arrivals, for Data sets in formats I and II, respectively.
Bottom panels: Estimated E[N(t)] (solid line) and E[N(t)] ± kSd(N(t)),
for k = 1 (dashed line) and k = 2 (dotted line), for Data sets in formats I
and II, respectively.

5 Conclusions

This paper considers the batch counterpart of the two-state Markov modu-

lated Poisson process. The point process, noted as BMMPP2(K) turns out

to be of interest in real-life contexts as reliability or queueing, since it allows

for the modeling of dependent inter-event times and dependent batch sizes.

The contribution of this paper is two-fold. On one hand, it is proven that

the BMMPP2(K), represented by 2(K + 1) parameters, is completely char-

acterized in terms of a set of 2(K + 1) moments related to the inter-event

time distribution as well as to the batch size distribution. On the other
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Figure 3.7: Left panel: estimated density function of the number of arrivals
in different time instants for Data set in format I. Right panel: distribution
of the number of large packets for Data set in format II for three different
time instants.

Figure 3.8: Estimated tail distribution of the queue length at departures in
a BMMPP2(4)/M/1 with ρ = 0.5 assuming that the inter-arrival times of
Data set in format I constitute the observed arrival process.

hand, an inference approach for fitting real data sets based on a moments

matching method is described. The method involves solving, in an iterative

way, K − 1 optimization problems with two unknowns, yielding an efficient

and tractable algorithm. The performance of the novel inference technique

is illustrated using both simulated and a real teletraffic trace, for which

the queue length distribution at departures in a BMMPP2(K)/M/1 queue

are estimated. The method is also compared to the classic EM algorithm
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Figure 3.9: Scatter plot of ρT (1) versus the coefficient of variation of the
inter-event times from 700000 simulated BMMPP s

which has been considered by previous studies dealing with inference for the

BMAP. The results show that the novel approach turns out to be faster and

less dependent on starting points than the EM algorithm.

Prospects regarding this work concern both applied and theoretical is-

sues. In the first case, given that higher order BMMPPm(K) are expected

to show more versatility for modeling purposes (Rodŕıguez et al., 2016b),

it is of interest to develop inference methods in these cases. A moment-

matching approach similar to the one proposed in this paper could be con-

sidered for higher order BMMPPs (which are known to be identifiable, Yera

et al. (2019)). However, the set of moments characterizing BMMPPm(K)

processes is still unknown when m ≥ 3. From a theoretical viewpoint, a

challenging problem to be considered is related to the correlation struc-

tures (of both inter-event times and batch sizes) of the BMMPPm(K), for

m ≥ 3. Similar approaches such as in Ramı́rez-Cobo and Carrizosa (2012);

Rodŕıguez et al. (2016b) shall be taken into account to address this issue. Fi-

nally, another theoretical problem that needs to be examined in more detail

refers to the sample sizes required for the estimation method. In this direc-

tion, Ramı́rez-Cobo et al. (2017) suggest that the values of the coefficient

of variation of the inter-event times (CV ) and the first-lag autocorrelation

coefficient (ρT (1)) are positively correlated. This would imply that the re-
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quired sample size should increase with the value of the correlation between

consecutive events. From Figure 3.9, it can be seen that even though there

exist processes for which the CV is high and the value of ρT (1) is low, it is

true that high values of ρT (1) seem to be linked to values of the CV larger

than a lower bound (CV ∼ 1.6). On the contrary, if ρT (1) is very close to

zero, then the CV seems to be closer to 1. This problem is an open question

that, together with the previous issues, will be undertaken in future work.
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Appendix A: Proof of the 3.5

Using the Laplace-Stieltjes transform (LST) of the n first inter-event times

and batch sizes of a stationary BMAP2(K) given in Rodŕıguez et al. (2016c),

then E[TB] is found as

η = E[TB] = E

[
∂(−e−sT zB)

∂s∂z

] ∣∣∣∣∣
s=0,z=1

= −
∂f∗T,B(s, z)

∂s∂z

∣∣∣∣∣
s=0,z=1

= − ∂

∂z

[
∂

∂s

[
φ(sI −D0)−1

(
K∑
k=1

zkDk

)
e

]] ∣∣∣∣∣
s=0,z=1

=

[
φ(sI −D0)−2

(
K∑
k=1

kzk−1Dk

)
e

] ∣∣∣∣∣
s=0,z=1

= φ(−D0)−2D∗
1e
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Appendix B: cor(T ;B) and ρB are zero for a MMPP

with i.i.d. batches (Remark 1)

Proposition 6. Let B = {D0, p1∆(δ), ..., pK∆(δ)} be a stationary MMPP

with i.i.d. batches. Then,

(i) the autocorrelation function of the batch sizes, ρB(l) = 0, for all l ≥ 1

(ii) the covariance between T and B is equal to zero.

Proof. Consider the first-lag autocorrelation coefficient given by

ρB(1) =
φ(−D0)−1D∗

1(−D0)−1D∗
1e− (φ(−D0)−1D∗

1e)2

φ(−D0)−1D∗
2e− (φ(−D0)−1D∗1e)2

. (3.20)

Using that Dk = pk∆(δ) for k = 1, ...,K, (3.20) can be rewritten as

ρB(1) =
φ(−D0)−1

(∑K
k=1 kpk

)
∆(δ)(−D0)−1

(∑K
k=1 kpk

)
∆(δ)e

φ(−D0)−1
(∑K

k=1 k
2pk

)
∆(δ)e−

[
φ(−D0)−1

(∑K
k=1 kpk

)
∆(δ)e

]2
−

[
φ(−D0)−1

(∑K
k=1 kpk

)
∆(δ)e

]2
φ(−D0)−1

(∑K
k=1 k

2pk

)
∆(δ)e−

[
φ(−D0)−1

(∑K
k=1 kpk

)
∆(δ)e

]2
=

(∑K
k=1 kpk

)2 [
φ(−D0)−1∆(δ)(−D0)−1∆(δ)e− (φ(−D0)−1∆(δ)e)2

]
φ(−D0)−1

(∑K
k=1 k

2pk

)
∆(δ)e−

[
φ(−D0)−1

(∑K
k=1 kpk

)
∆(δ)e

]2
=

(∑K
k=1 kpk

)2 [
φ(−D0)−1∆(δ)e− 1

]
(∑K

k=1 k
2pk

)
φ(−D0)−1∆(δ)e−

(∑K
k=1 kpk

)2
[φ(−D0)−1∆(δ)e]

2
(3.21)

=

(∑K
k=1 kpk

)2
[1− 1](∑K

k=1 k
2pk

)
−
(∑K

k=1 kpk

)2
= 0.

In (3.21) it is used that (−D0)−1∆(δ)e = e and φ(−D0)−1∆(δ)e = 1,
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which can be derived from Qe = 0 as follow

(−D0)−1∆(δ)e = (−D0)−1(Q−D0)e

= (−D0)−1Qe− (−D0)−1D0e

= (−D0)−1Qe+ e

= e, (3.22)

and consequently,

φ(−D0)−1∆(δ)e = φe = 1. (3.23)

In Rodŕıguez et al. (2016b), it is proven that for a general BMAP2(K),

the auto-correlation function decreases in absolute value (|ρB(l)| ≥ |ρB(l+1)|
for all l ≥ 1). Therefore, if ρB(1) = 0 implies ρB(l) = 0 for all l ≥ 1.

For the second proposition, using the expresion for η, µ1, β1 and (3.22)-

(3.23), the nullity of Cov(T,B) is proven as follow

Cov(T,B)= φ(−D0)−2D∗
1e− µ1β1

= φ(−D0)−2D∗
1e− φ(−D0)−1eφ(−D0)−1D∗

1e

= φ(−D0)−2

(
K∑
k=1

kpk

)
∆(δ)e− φ(−D0)−1eφ(−D0)−1

×

(
K∑
k=1

kpk

)
∆(δ)e

=

(
K∑
k=1

kpk

)[
φ(−D0)−2∆(δ)e− φ(−D0)−1eφ(−D0)−1∆(δ)e

]
=

(
K∑
k=1

kpk

)[
φ(−D0)−1e− φ(−D0)−1e

]
= 0.
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Appendix C:G0 andG1 in Lemma 6 are well defined

First, denote as Gij0 the (i, j)−th element of

G0 =
1

aζ1 − bζ2

ζ1ζ2 − aζ2
1 − aζ1ζ2 + abζ1ζ2 −a2ζ2

1 + aζ2
1 + ζ2aζ1 − ζ2ζ1

(ζ1 − bζ2)(ζ2 − bζ2) −ζ1ζ2 + bζ2
2 + bζ1ζ2 − abζ1λ2


and, in analogous way, let Gij1 the (i, j)−th element of

G1 = Diag(Gc1) =

 aζ1 0

0 bζ2

 .

The aim is to prove that G0 and G1 are indeed matrices defining a MMPP,

that is. 
Gii0 < 0 i = {1, 2}

0 ≤ Gij0 <∞ i 6= j, i, j = {1, 2}

(G0 +G1)e = 0

From the definition of the MMPP2, the cannonical form for the MAP

and the initial assumption x + y ≥ r + u, it is not difficult to see that aζ1,

bζ2 and bζ2 − aζ1 are non-negative, therefore

G120 +G111 =
−a2ζ2

1 + aζ2
1 + ζ2aζ1 − ζ2ζ1

aζ1 − bζ2
+ aζ1

=
−a2ζ2

1 + aζ2
1 + ζ2aζ1 − ζ2ζ1 + aζ1(aζ1 − bζ2)

aζ1 − bζ2

=
aζ2

1 + ζ2aζ1 − ζ2ζ1 − aζ1bζ2

aζ1 − bζ2

=
ζ1[aζ1 − ζ2(1− a+ ab)]

aζ1 − bζ2
(3.24)
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≥ 0

Note that 1 − a + ab > b, hence both the numerator and the denominator

in (3.24) are non-positive.

On the other hand,

G110 +G120 =
abζ1ζ2 − a2ζ2

1

aζ1 − bζ2
=
aζ1(bζ2 − aζ1)

aζ1 − bζ2
= −aζ1 = −G111

Therefore G110 +G120 +G111 = 0, G110 ≤ 0 and G120 ≥ 0.

Similarly, for the second line we have

G210 +G221 =
(ζ1 − bζ2)(ζ2 − bζ2)

aζ1 − bζ2
+ bζ2

=
(ζ1 − bζ2)(ζ2 − bζ2) + bζ2(aζ1 − bζ2)

aζ1 − bζ2

=
ζ2ζ1 + aζ1bζ2 − bζ2

2 − ζ2bζ1

aζ1 − bζ2

=
ζ2[ζ1(1− b+ ab)− bζ2]

aζ1 − bζ2
(3.25)

≥ 0

Note that a < 1 − b + ab, hence both the numerator and the denominator

in (3.25) are non-positive, which completes the proof.
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Landon, J., Özekici, S., and Soyer, R. (2013). A markov modulated pois-

son model for software reliability. European Journal of Operational Re-

search, 229(2):404–410.

Latouche, G. and Ramaswami, V. (1999). Introduction to matrix analytic

methods in stochastic modeling, volume 5. SIAM.

Li, M., Chen, W., and Han, L. (2010). Correlation matching method

for the weak stationarity test of lrd traffic. Telecommunication Systems,

43(3-4):181–195.

Liu, B., Cui, L., Wen, Y., and Shen, J. (2015). A cold standby repairable

system with working vacations and vacation interruption following marko-

vian arrival process. Reliability Engineering & System Safety, 142:1–8.

Lucantoni, D. (1991). New results for the single server queue with a Batch

Markovian Arrival Process. Stochastic Models, 7:1–46.



124
Paper 2: Fitting procedure for the two-state Batch Markov modulated

Poisson process

Lucantoni, D. (1993). The BMAP/G/1 queue: A tutorial. In Donatiello,

L. and Nelson, R., editors, Models and Techniques for Performance Evalu-

ation of Computer and Communication Systems, pages 330–358. Springer,

New York.

Lucantoni, D., Choudhury, G., and Whitt, W. (1994). The transient

BMAP/G/1 queue. Stochastic Models, 10:145–182.

Lucantoni, D., Meier-Hellstern, K., and Neuts, M. (1990). A single-server

queue with server vacations and a class of nonrenewal arrival processes.

Advances in Applied Probability, 22:676–705.
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Abstract

This paper presents an extension to the two-dimensional case of the

Markov modulated Poisson process (MMPP), motivated by real fail-

ure data in a two-dimensional context. The one-dimensional MMPP

has been proposed for the modeling of dependent and non-exponential

inter-event times (in contexts as queuing, risk or reliability, among oth-

ers). The novel two-dimensional MMPP allows for dependence among

the two sequences of inter-event times, while at the same time preserves

the MMPP properties, marginally. Such generalization is based on the

Marshall-Olkin exponential distribution. Inference is undertaken for
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the new process through a method combining a matching moments

approach and an ABC algorithm. The performance of the method is

shown on simulated and real datasets representing failures of a public

transport company.

Keywords: Stochastic processes. Markov modulated Poisson process

(MMPP). Moments matching method. Teletraffic data.

1 Introduction

Transportation means are essential in every day life and it is crucial to know

if there is any failure, what its nature is and how to prevent it. Reliabil-

ity studies associated with airplanes, automobiles or ships have appeared in

several academic articles, see for example Goel and Gupta (1984), Sheikh

et al. (1996), Al-Garni et al. (1999), Zhang and Liu (2002), Zhang et al.

(2005), Karim (2008) Fang and Das (2005), Ivanov (2009) and Decò et al.

(2012). With the rapid development of the railway industry and especially

with high-speed lines, the safety and reliability of the train system has at-

tracted increasing attention. Over the years, more and more safety and

operational reliability analyses of train traffic have been carried out. For

example, Eliashberg et al. (1997) develop a model that describes failures by

two scales, for example time and mileage, and applies that model to cal-

culate the optimal reserve that a manufacturer of locomotive traction mo-

tors should have to cover the warranty of possible breakages; Bearfield and

Marsh (2005) use event tree analysis and study train derailments; Pievatolo

et al. (2003), Ruggeri (2006) and Pievatolo and Ruggeri (2010) use non-

homogeneous Poisson processes to assess if the reliability of underground

train doors was compliant with the contract signed by a manufacturer and

a transportation company; Jafarian and Rezvani (2012) present a study on

the evaluation of the railway safety risks using the fuzzy fault tree analysis

and Navas et al. (2017) use various models to estimate the reliability in rail-

way repairable systems. In this article we consider the same dataset as in
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Pievatolo et al. (2003), which represents the records of the failures of trains

for about 8 years. In particular, the data records failures from 40 under-

ground trains, which were delivered to an European transportation company

between November 1989 and March 1991 and all of them were put in service

from 20th March 1990 to 20th July 1992. Failure monitoring ended on 31st

December 1998. When a failure took place, both the reading of the odome-

ter (which quantifies the number of kilometres covered) and the date of the

failure were recorded, which suggests the need of a two-dimensional stochas-

tic process to model the data. This data set was motivated by the need for

detecting as soon as possible any unexpected poor reliability of the compo-

nent (as agreed in the contract signed with the manufacturer). In Pievatolo

et al. (2003) a Poisson process with double measurements (time and kilome-

tres) related by a gamma process is proposed. Later, the same problem was

addressed in Pievatolo and Ruggeri (2010), where the authors use again a

Poisson process, but now considering a bivariate intensity function.

An exploratory analysis of the dataset is considered next. On one hand,

the scatter plots of four trains shown in Figure 4.1 evidence a high linear de-

pendence between the inter-failure times and distances (intra-dependence).

On the other hand, Figure 4.2 shows the first-lag autocorrelation coeffi-

cient of the inter-failure times versus those of the distances between fail-

ures. From Figure 4.2, a non-negligible inter-dependence in the sequence

is observed. Another important feature of this data is that, neither the

inter-failure times, nor the inter-failure distances, seem to come from an ex-

ponential distribution, as it can be seen from Figure 1.5. Therefore, it would

be desirable to find a bivariate process, versatile enough to allow for non-

exponential spacing (both in time and distance) between failures, as well as

able to model both intra and inter-dependence in the observed sequences.

Therefore, the aim of this paper is to present a tractable, analytical model

able to jointly fit the data set and from which performance quantities of

interest are derived in straightforward way. In analogous circumstances but

in univariate case, some authors recommend the use of the Markovian ar-

rival process (MAP), see for example Ramı́rez-Cobo et al. (2017), Buchholz

(2003), Klemm et al. (2003), Ramı́rez-Cobo et al. (2008), Ramı́rez-Cobo
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and Carrizosa (2012), Rodŕıguez et al. (2016a) and Rodŕıguez et al. (2015).

However, it is known that MAPs cannot be identified in a unique way, which

is inconvenient for their statistical estimation, see for example Bodrog et al.

(2008), Ramı́rez-Cobo et al. (2010) and Rodŕıguez et al. (2016b). Hence,

the identifiable subclass of Markov-modulated Poisson process (MMPPs) is

preferable. For more details on the identifiability of the MMPP and its ef-

fect on the estimation, Rydén (1996a), Yera et al. (2019a) and Yera et al.

(2019b) can be reviewed. In this paper we propose a stochastic process

that maintains the same good analytic properties of the MMPP, namely,

a matrix representation, non-exponential distributions of the inter-failures

times (and distances), dependence among failures and able to model cor-

relations between the two observed sequences. Several models have been

already proposed in the literature for modeling two-dimensional inter-event

sequences. For example, Griffiths and Milne (1978) and Griffiths et al. (1979)

propose the bivariate Poisson process and Assaf et al. (1984) and Badescu

et al. (2009) consider the bivariate phase-type distribution. Pievatolo et al.

(2003) and Pievatolo and Ruggeri (2010) make use of a non-homogeneous

Poisson processes with a double scale to study the database analyzed in this

paper. Nadar and Kızılaslan (2015) and Yuan (2018) use different types of

bivariate Weibull distributions, while Kızılaslan and Nadar (2018) make use

of a bivariate Kumaraswamy distribution. On the other hand, Cai and Li

(2005) and Zadeh and Bilodeau (2013) use bivariate phase type distributions

to solve problems of risk and insurance loss models respectively. However,

all these approaches to the problem of modeling events in two dimensions

use processes in which the times between events are independent and as can

be seen in Figure 2 this is a starting hypothesis that does not have the data

on which this work is based. Therefore, our proposal is the extension of the

MMPP to its bivariate counterpart, which, to the best of our knowledge,

has not been done previously in the literature. For simplicity, in this paper

we will focus on the MMPP2.

The goal of the paper is twofold. The first is to propose an extension of

the MMPP2 to the bivariate case, in such a way that the statistical features

previously commented are well modeled. Some theoretical properties of this
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(a) Train 19 (b) Train 20

(c) Train 35 (d) Train 36

Figure 4.1: Linear relationship between inter-failure times and distances for
four trains

novel process such as the identifiability will also be studied. The identifi-

ability of the process is a crucial property to be taken into consideration

in order to develop an estimation method, since it determines the possible

multimodality of the likelihood function. Therefore, from a theoretical view

point, the identifiability of the novel process will be addressed in this pa-

per. The second main objective is to propose an estimation method for the

novel process. As it will be seen, it will be divided into two steps. The first

one is based on a matching moments approach and it provides an estimate

for some parameters, those linked to the marginal processes. The second

step, which consists in an ABC algorithm in terms of some joint moments,

generates estimates for the remaining parameters.

After a brief review of the MMPP2 and the bivariate Marshall-Olkin

Exponential distribution in Section 2.1, Section 2.2 describes the two-
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Figure 4.2: Fist-lag autocorrelation coefficient of the inter-failure times and
distances for each train

dimensional version of the MMPP2. Section 2.3 addresses the issue of the

identifiability of the novel process, while a matrix representation for the pro-

cess is provided in Section 2.4. The statistical inference part of the process is

addressed in Section 3. In particular, Section 3.1 describes the fitting algo-

rithm. Section 3.2 illustrates the performance of the algorithm on simulated

traces. In Section 3.3 a real application of the novel approach is considered

to model the dataset related to train failures described at the beginning of

Section 1. In the numerical analyses, the estimation of some conditional

probabilities of the bivariate processes are also considered. Finally, Section

4 presents conclusions and delineates possible directions for future research.

2 A bivariate two-state Markov Modulated Pois-

son Process

In this section the two-state bivariate Markov Modulated Poisson Process

is introduced. This model can be considered as an extension of the classi-

cal two-state Markov Modulated Poisson Process (MMPP2). This section

is divided into four parts to facilitate the reading and understanding of

the results. The first one is devoted to review the MMPP2 as well as the

Marshall-Olkin bivariate exponential distribution on which the novel bivari-
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ate model is based. Section 2.2 formally introduces the new bivariate process

where an algorithm to simulate traces is also included. Section 2.4 provides

a matrix representation of the process as well as some theoretical quantities

of interest. Finally, Section 2.3 considers the problem of identifiability of

the new bivariate model.

2.1 Preliminaries

The MMPP2 is governed by a two-states underlying Markov process J(t)

with infinitesimal generator Q on {1, 2}. The MMPP2 is also frequently

referred to as a Switched Poisson Process (SPP ), see e.g. van Hoorn and

Seelen (1983). Then, at the end of an exponentially distributed sojourn

time in state i, with mean 1/λi, two possibilities can occur. First, with

probability a if i = 1 (b if i = 2), no event occurs and the system enters into

the other state j 6= i. Second, with probability 1− a if i = 1 (1− b if i = 2),

an event is produced and the system continues in the same state.

The MMPP2 can be characterized in terms of rate (or intensity) matrices

{D0,D1} where

D0 =

 −λ1 λ1a

λ2b −λ2

 , D1 =

 λ1(1− a) 0

0 λ2(1− b)

 . (4.1)

This definition of the rate matrices implies that Q = D0 +D1.

For a better understanding of the model’s behaviour, Figure 4.3 illus-

trates a realization of the MMPP2.

If Tn denotes the time between the (n − 1)-th and n-th events, the

inter-event times, Tns, are phase-type distributed with representation

{φ,D0}, where φ is the stationary probability vector associated with

P ∗ = (−D0)−1D1, computed as φ = (πD1e)−1πD1 (see Latouche and

Ramaswami (1999) and Chakravarthy (2010)), where π is the stationary

probability vector of Q and e is a vector of ones. This implies that the

cumulative distribution function of Tn is given by
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Figure 4.3: Transition diagram for the MMPP2. The blue line corresponds
to transitions without events, governed by D0, and the red lines correspond
to transitions with events, governed by D1.

FTn(t) = 1−αneD0te, (4.2)

where αn = φ[(−D0)−1D1](n−1) = φ, since the process is stationary φ

is defined to satisfy φ[(−D0)−1D1] = φ. It is easy to check that for the

case of the MMPP2, φ only depends on the probabilities associated with the

underlying process:

φ = (φ1, φ2) =

(
b(1− a)

b(1− a) + a(1− b)
,

a(1− b)
b(1− a) + a(1− b)

)
. (4.3)

On the other hand, the moments of Tn in the stationary case are given by

µT (r) = E(T r) = r!φ(−D0)−re, for r ≥ 1, (4.4)

and the auto-correlation function of the sequence of inter-failure times is

ρT (l) = ρ(T1, Tl+1) =
π[(−D0)−1D1]l(−D0)−1e− µT (1)

2(π(−D0)−1e− µT (1))
, for l > 0.

(4.5)

Further details of the properties of the MMPP can be found, for example, in

Fischer and Meier-Hellstern (1993), Rydén (1996a) or Yera et al. (2019a).

The construction of the bivariate MMPP proposed in this article is based

on maintaining the same underlying structure of the univariate case, but re-

placing the exponential univariate distribution with a bivariate exponential

distribution.
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As it is known in the literature, there are several options to define a

bivariate exponential distribution and in principle any would serve for the

purpose of simulating the bivariate MMPP. In this paper we have applied the

bivariate Marshall-Olkin exponential distribution, which is a bivariate dis-

tribution that fits into the MPH∗ framework proposed in Kulkarni (1989),

see also Chapter 8 in Bladt and Nielsen (2017). The distribution is originally

defined in Marshall and Olkin (1967) as follows:

Definition 10. Let X and Y be positive continuous random variables. Then

X and Y are distributed according to the bivariate exponential distribution

(BVE) with parameters λ1, λ2, λ3, noted as (X,Y ) ∼ BV E(λ1, λ2, λ3) if

F̄ (x, y) = P (X > x, Y > y) = exp{−λ1x− λ2y − λ3 max(x, y)},

where λ1, λ2 > 0 and λ3 ≥ 0.

In Marshall and Olkin (1967) basic properties of the BVE are provided.

For example, the density function is given by

f(x, y) =


λ1γk exp{−λ1x− γky} if x < y

λ2γt exp{−γtx− λ2y} if x > y

λ3 exp{−(λ1 + λ2 + λ3)x} if x = y

The measure has a singular decomposition with a part that is absolutely

continuous with respect to the two-dimensional Lebesgue measure in the

first quadrant and a measure on the half line x = y in the first quadrant.

From the definition it can be shown that X and Y follow an exponential

distribution with means 1/γt and 1/γk respectively, where γt = λ1 + λ3 and

γk = λ2 +λ3. Marshall and Olkin (1967) also deduce the Laplace transform,
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and consequently, a formula for the joint moments

E(XY ) =
1

λ1 + λ2 + λ3

(
1

γt
+

1

γk

)
(4.6)

and the correlation between X and Y

ρ(X,Y ) =
λ3

λ1 + λ2 + λ3
,

respectively. The selection of the Marshall-Olkin BVE is also motivated by

the fact that the correlation between the two sequences of events generated

by this distribution, ρ, is non-negative as it is the case of the empirical

correlation observed in the train failures dataset.

In Kulkarni (1989) and Bladt and Nielsen (2017) the bivariate Marshall-

Olkin exponential distribution is represented as a multivariate phase-type

distribution and denoted as MPH∗. This representation is given by an

initial probability vector and two matrices (α,S,R) as follow:(1, 0, 0),


−(λ1 + λ2 + λ3) λ2 λ1

0 −γt 0

0 0 −γk

 ,


1 1

1 0

0 1



 .

In section 2.4 it will be seen that this representation of the bivariate

Marshall-Olkin exponential distribution will make it possible to obtain a

matrix representation for the bivariate MMPP2.

2.2 The bivariate MMPP2

To formally define the bivariate MMPP a two-state Markov process J(t)

with generator Q on {1, 2} is considered as for the MMPP2. Whenever

J(t) = i, it is said that the process is in state i and this status remains un-

changed while J(t) remains in this state. Specifically, the bivariate MMPP2

behaves as follows: the initial state i0 ∈ S = {1, 2} is defined according to

an initial probability vector α= (α1, α2). The time during which the process
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remains in each state is given by two bivariate Marshall-Olkin exponential

distribution. The first one models the sojourn times in state i. It is charac-

terized by the parameters λ = (λ1, λ2, λ3), and the marginal distributions

have mean 1/γt1 and 1/γk1 respectively, with

γt1 = λ1 + λ3 and γk1 = λ2 + λ3. (4.7)

The second BVE associated with state i = 2 has parameters ω = (ω1, ω2, ω3)

and its marginal exponential distributions have mean 1/γt2 and 1/γk2 re-

spectively, with

γt2 = ω1 + ω3 and γk2 = ω2 + ω3. (4.8)

At the end of each bivariate Marshall-Olkin exponentially distributed so-

journ time, two possible state transitions can occur. First, with probability

a if i = 1 (b if i = 2), no failure occurs and the bivariate MMPP2 enters into

the other state j 6= i. Second, with probability 1− a if i = 1 (1− b if i = 2),

a failure is produced and the system continues in the same state.

This construction allows to create a bivariate sequence

{(T1,K1), . . . , (Tn,Kn)}. In relation with the train failure dataset,

the times between failures will be denoted by Ti while the distances traveled

Ki are recorded in the other variable.

On the other hand, it is noteworthy that the construction of the MMPP

bivariate process facilitates the simulation of traces of this process as indi-

cated in Algorithm 1 in Table 4.1. For a better understanding of the con-

sidered process, Figure 4.4 illustrates a realization of the bivariate MMPP2,

where (Ti,Ki) are represented in two ”time” lines (one for times and the

other one for distances). In this figure, it can be appreciated how both

”time” lines have a common starting point (t = 0 and k = 0) and a com-

mon sequence of transitions through the states of the underlying process

{s = 1, s = 2, s = 1, s = 1, . . . }.

Summarizing, the bivariate MMPP2 proposed in this paper is defined by

two marginal processes with the same underlying process and two bivari-
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Figure 4.4: Transition diagram for two sequence of events generated by a
bivariate MMPP2, where the one above is for ”time” and the one below is
for ”distances”. The blue lines corresponds to transitions without failures
and the red lines correspond to transitions with failures.

ate Marshall-Olkin exponential distributions. Essentially, the two marginal

processes are running alongside, with the same transitions, the same under-

lying process and simultaneous failures, but each with different inter-failures

”time” rates between failures. The structure of the marginal processes make

it possible to capture the inter-dependence of the data. On the other hand,

the existence of a single underlying process that relates to both marginal

processes is what brings about the correlation between the two ”timelines”

(the intra-dependence in the data). Therefore, the bivariate MMPP2 is fully

described by eight parameters: the three parameters associated to each BVE

λ = (λ1, λ2, λ3) and ω = (ω1, ω2, ω3) and the two probabilities associated to

the Markov underlying process (a, b).

2.3 Identifiability of the bivariate MMPP2

Identifiability problems occur when different representations of the process

lead to the same likelihood functions for the observable data. It is well known

that the MAP and BMAP processes suffer from identifiability problem,

but, on the other hand, Rydén (1996b) and Yera et al. (2019a) prove the
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ALGORITHM 1

Algorithm to generate a trace from a bivariate MMPP2.

0. Input: {a, b,λ,ω}

1. Compute φ as in (4.3).

2. Generate p ∼ U(0, 1).

3. If φ1 < p, set s0 = 1 else s0 = 2.

4. Initialize i = 1, j = 0, t = 0 and k = 0.

5. While i < n repeat:

(a) Generate (X,Y) as a bivariate Marshall-Olkin

exponential distribution (BVE).

If sj = 1, (X,Y ) ∼ BV E(λ) else (X,Y ) ∼ BV E(ω)

(b) Set (ti, ki) = (ti, ki) + (X,Y )

(c) Generate p ∼ U(0, 1).

(d) if (sj = 1 and p < a) or (sj = 2 and p < b), then (there

is not failure) sj+1 = sj. Else (there is a failure)

sj+1 = 2sj − 1 and i = i+ 1.

(d) Set j = j + 1.

6. Output: {(t1, k1), . . . , (tn, kn)}

Table 4.1: Algorithm to generate a trace of a bivariate MMPP2

identifiability of the MMPP and BMMPP. In this section the identifiability

of the MMPP2 will be extended to the bivariate case. Let us first define the

identifiability notion used in this paper.

Definition 11. Let B = {λ,ω, a, b} be a representation of a bivariate

MMPP2 and let Tn and Kn denote the sequences between the (n − 1)-th

and the n-th event occurrence. Then B is said to identifiable if there exists
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no different parameterization B̃ = {λ̃, ω̃, ã, b̃} such that

{(T1,K1), . . . , (Tn,Kn)} d
= {(T̃1, K̃1), . . . , (T̃n, K̃n)} for all n ≥ 1, (4.9)

where T̃i and K̃i are defined in analogous way as Ti and Ki, and where
d
=

denotes equality in distribution.

Theorem 4. Let B = {λ,ω, a, b} and B̃ = {λ̃, ω̃, ã, b̃} be two different, but

equivalent, representations of a bivariate MMPP2. Then λ = λ̃, ω = ω̃ and

(a, b) = (ã, b̃), except for a swap of a by b and λ by ω.

See Appendix A for the proof.

2.4 Matrix representation

This section presents one of the most interesting findings regarding the bi-

variate MMPP2. It is a matrix representation that facilitates obtaining

analytical and algorithmic results in relation to the amounts of interest aso-

ciated with the process. Indeed, the bivariate MMPP2 can be represented

by B = {φ,D0,D1,R}, where the initial probability vector is constructed

from the stationary probability vector given in (4.3):

φ = (φ1, 0, 0, φ2, 0, 0)

Note that φ1 and φ2, defined in (4.3), only depend on the probabilities

associated with the underlying process. The matrices governing transitions
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in which failures do not occur and occur are given by

D0 =



−(λ1 + λ2 + λ3) λ2 λ1 λ3a 0 0

0 −γt1 0 γt1a 0 0

0 0 −γk1 γk1a 0 0

ω3b 0 0 −(ω1 + ω2 + ω3) ω2 ω1

γt2b 0 0 0 −γt2 0

γk2b 0 0 0 0 −γk2


,

and

D1 =



λ3(1− a) 0 0 0 0 0

γt1(1− a) 0 0 0 0 0

γk1(1− a) 0 0 0 0 0

0 0 0 ω3(1− b) 0 0

0 0 0 γt2(1− b) 0 0

0 0 0 γk2(1− b) 0 0


respectively. Finally

R =



1 1

1 0

0 1

1 1

1 0

0 1


.

Remark 2. Note that the previous matrix representation is not a canonical
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representation of the process since it is possible to construct another matrix

representation similar to this one that fully describes the process (see Ap-

pendix B for an equivalent matrix representation). However, the parameters

used in the alternative matrix representation are the same than those used

previously and described in Theorem 4. The in-depth study of the different

matrix representations for this process and the search for a canonical rep-

resentation is outside the scope of this work and will be addressed in the

future.

Under this representation it can be seen that the pair of variables (Tn,Kn)

follows a multivariate phase type distribution MPH∗ as defined in Kulkarni

(1989) and Bladt and Nielsen (2017), with representation {φ,D0,R}. This

result will allow the use of Theorem 8.1.2. in Bladt and Nielsen (2017) in

which the moment-generating function for an MHP ∗ is derived in order

to obtain the moment-generating function until the occurrence of the first

failure in the bivariate MMPP2. We recall that ∆(a) denotes the diagonal

matrix with vector a as diagonal.

Proposition 7. Let B = {φ,D0,D1,R} be a representation of a bivariate

MMPP2 and let A = (T1,K1) be the records related to the first failure.

Then there exists a K > 0 such that the moment-generating function for A

(denoted by H(θ)) exists and is given by

H(θ) = E
(
eAθ

)
= φ (−∆(Rθ)−D0)−1D1e,

for any s, t < K and with θ = [θ1, θ2]t.

Proof. Due to A ∼ MPH∗(φ,D0,R), the Theorem 8.1.2. in Bladt and

Nielsen (2017) can be applied directly to A. Substituting α = φ, S = D0



Part III: Bivariate Markov modulated Poisson processes 147

and s = D1e the result is immediate.

From Proposition 7, the formulae for moments and cross moments of the

process can be derived.

Proposition 8. Let B = {φ,D0,D1,R} be a representation of a bivariate

MMPP2, then the joint moments between {T}i and {K}i are given by

ηnm = E (Tni K
m
i ) = φ

(m+n)!∑
i=1

n+m∏
j=1

(−D0)−1∆(R·σi(j))

 e, (4.10)

where R·j is jth column of R, σ1, ..., σ(n+m)! are the ordered permutations

of duples of derivatives, and σi(j) ∈ {1, 2} and is the ith position of the

permutation σi.

Proof. As the pair of the variables (Ti,Ki) follows a multivariate phase type

distribution MPH∗ Theorem 8.1.5 in Bladt and Nielsen (2017) can be ap-

plied directly to (Ti,Ki). Substituting α = φ, and U = (−D0)−1 the result

is immediate.

The joint moments that will be used in the estimation method are:

η11 = E(TK) = φ(−D0)−1∆(R[·1])(−D0)−1R[·2] (4.11)

+φ(−D0)−1∆(R[·2])(−D0)−1R[·1]

η21 = E(T 2K) = 2φ(−D0)−1∆(R[.1])(−D0)−1∆(R[.1])(−D0)−1R[.2]

+2φ(−D0)−1∆(R[.1])(−D0)−1∆(R[.2])(−D0)−1R[.1]

+2φ(−D0)−1∆(R[.2])(−D0)−1∆(R[.1])(−D0)−1R[.1]

η12 = E(TK2) = 2φ(−D0)−1∆(R[.2])(−D0)−1∆(R[.2])(−D0)−1R[.1]

+2φ(−D0)−1∆(R[.2])(−D0)−1∆(R[.1])(−D0)−1R[.2]

+2φ(−D0)−1∆(R[.1])(−D0)−2∆(R[.1])(−D0)−1R[.2]



148
Paper 3: A bivariate two-state Markov modulated Poisson process for

failure modeling

where R[.j] is the jth column of R.

From the expressions previously obtained for η11, η21 and η12 it is not

difficult to deduce a closed expression for corr(T,K). One of the advan-

tages of the bivariate MMPP2 that has been introduced in this work is the

versatility with respect to the correlations that can be generated between

the two sequences of events. Figure 4.5 shows this good property with four

examples of scatter plots.

(a) corr(T,K) = 0.38 (b) corr(T,K) = 0.64

(c) corr(T,K) = 0.84 (d) corr(T,K) = 0.94

Figure 4.5: Scatter plot of simulated sequences generated from a bivariate
MMPP2.

In a similar way to the univariate case, from Proposition 7 the moment

generating function is deduced for the sequences of the events.

Proposition 9. The moment generating function of the n first consecutive
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events ((T1,K1), (T2,K2), . . . , (Tn,Kn)) is given by

f∗{(T1,K1),...,(Tn,Kn)}(θ1, . . . ,θn) = E


e

−
∑n

i=1(Ti,Ki)


θi1

θi2




= φ(−∆(Rθ1)−D0)−1D1 × . . .

×(−∆(Rθn)−D0)−1D1e

Corollary 1. With X1 = T1 or X1 = S1 and Y1+n = T1+n or Y1+n = S1+n

we have

E(X1Y1+n) = φ(−D0)−1R[·i]P
n−1(−D0)−1R[·j]e, n = 1, 2 . . .

where P = (−D0)−1D1, i = 1 for X1 = T1, i = 2 for X1 = S1, j = 1 for

Y1+n = T1+n, and j = 2 for Y1+n = S1+n.

Remark 3. From Proposition 9 it can be verified that the marginal processes

of the bivariate MMPP2 defined in this paper, using the Marshall-Olkin bi-

variate exponential, are MMPP2 with the following rate matrices:

Bt =

D0t =


−γt1 γt1a

γt2b −γt2

 , D1t =


γt1(1− a) 0

0 γt2(1− b)




(4.12)
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and

Bk =

D0k =


−γk1 γk1a

γk2b −γk2

 , D1k =


γk1(1− a) 0

0 γk2(1− b)


 .

(4.13)

Remark 4. We have formulated Proposition 9 and Corollary 1 for the bi-

variate MMPP2 process, but both holds in the greater generality of a sequence

of correlated MPH∗ variables. The only modification needed is to consider

θ vectors of higher dimension and replace T and X. Similarly, Corollary 1

can be extended to higher powers and to include more variables, but at the

expense of loosing transparency.

3 Inference for the bivariate MMPP2

In this section, an approach for estimating the parameters of a bivariate

MMPP2 is proposed. Since, in practice the complete sequence of visited

states of the underlying Markov process are not observed, the proposed

procedure assumes that t = (t1, t2, ..., tn), and k = (k1, k2, ..., kn), are the

only available information. An important issue to take into account is the

complication when applying the likelihood principle to a singular measure.

Therefore, the proposed fitting algorithm avoids evaluating or optimizing the

likelihood. Indeed, the algorithm is a two-step approach. In the first one, the

rate matrices of the marginal processes D0t,D1t,D0k,D1k are estimated

through a moments matching method defined by a standard optimization

problem. The remaining parameters are estimated in a second step via an

ABC algorithm. Section 3.2 illustrates the performance of the method on

simulated data sets and finally, Section 3.3 addresses the modeling of the

real train failures database described in Section 1.
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3.1 The fitting algorithm

Bodrog et al. (2008) characterizes the MMPP2 by the first three moments

and first-lag auto-correlation coefficient of the inter-failure time distribution,

µT (1), µT (2), µT (3) as in (4.4) and ρT (1) as in (4.5). This implies that, for

the bivariate MMPP2 considered in this paper, the matrix representation

of the marginal processes as in (4.12) and (4.13) will be characterized by a

set of eight moments. Four of them are related to the variable (T ), {µT (1),

µT (2), µT (3), ρT (1)} and the other four to the variable (K), {µK(1), µK(2),

µK(3), ρK(1)}.

Carrizosa and Ramı́rez-Cobo (2014), using the results found by Bodrog

et al. (2008), derive a moments matching method for estimating the param-

eters of a MAP2, given a sequence of inter-failure times t = (t1, t2, ..., tn).

Posterior adaptations of this procedure can be found in Rodŕıguez et al.

(2016a) and Yera et al. (2019a) to estimate the non-stationary MAP and

BMMPP2 respectively. In the case of the bivariate MMPP2, it is an open

problem to represent the process by a set of moments. However, a moments

matching approach similar as in Carrizosa and Ramı́rez-Cobo (2014) can

be designed to partially estimate its parameters. In particular, the parame-

ters associated to the marginal processes D0t, D1t, D0k and D1k in terms

of γt1, γt2, γk1, γk2, a and b (see (4.12) and (4.13)), can be estimated as the

solution of the following optimization problem:

(P0)


min
γ,a,b

δ0(a, b, γt1, γt2, γk1, γk2)

s.t. γt1, γt2, γk1, γk2 ≥ 0,

0 ≤ a, b ≤ 1,



152
Paper 3: A bivariate two-state Markov modulated Poisson process for

failure modeling

where the objective function is

δ0(γt1, γt2, γk1, γk2, a, b) = [ρT (1)(a, b, γt1, γt2)− ρ̄T (1)]2

+[ρK(1)(a, b, γk1, γk2)− ρ̄K(1)]2

+
∑3

j=1

(
µT (j)(a,b,γt1,γt2)−µ̄T (j)

µ̄T (j)

)2

+
∑3

j=1

(
µK(j)(a,b,γk1,γk2)−µ̄K(j)

µ̄K(j)

)2

where µ̄T (i), for i = 1, 2, 3 and ρ̄T (1) denote the empirical moments asso-

ciated to the first marginal process (computed from the sample t), whereas

µ̄K(i), for i = 1, 2, 3 and ρ̄K(1) denote the empirical moments associated to

the second one (computed from the sample k). Note that in the previous

objective function, ρT (1) and µT (i), for i = 1, 2, 3 depend on a, b, γt1 and γt2,

while ρK(1) and µK(i) for i = 1, 2, 3 depend on a, b, γk1 and γk2. Probabili-

ties a and b are common for the two marginal process since both marginal

MMPP2 share the same underlying Markovian process. For more details of

this procedure, see Step 1 of Algorithm 2. Note also that we propose to solve

problem P0 a number I of times, so that the final solution will be the one that

provides the lowest objective function. Each time, problem P0 is solved us-

ing a different starting point (a(0), b(0), γt1(0), γt2(0), γk1(0), γk2(0)) to avoid

getting stuck at a poor local optimum. In practice, I is set to be equal to

100, which has proven in the numerical experiments to be high enough so as

to get reasonable solutions. The final solution {â, b̂, γ̂t1, γ̂t2, γ̂k1, γ̂k2} shall

be considered the starting point for the second step in the proposed fitting

algorithm, an ABC approach whose output is the complete set of parameters

characterizing the bivariate MMPP2, that is {a, b,λ,ω}. From Step 1, the

estimated values of a and b are already obtained With regards to the values

of λ and ω note that since γt1 = λ1 + λ3, γt2 = ω1 + ω3, γk1 = λ2 + λ3 and

γk2 = ω2 +ω3, see (4.7) and (4.8), the estimated values for λ1 +λ3, λ2 +λ3,

ω1 +ω2 and ω2 +ω3 are obtained from the moment matching approach. On

the other hand, as it has been commented previously, the likelihood func-

tion is not trivial to apply in the current setting with a singular measure.
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Although simulated traces from the bivariate MMPP2 are easy to generate

(see Algorithm 1). In this setting, the ABC algorithm turns out suitable,

see for example Csilléry et al. (2010), Marin et al. (2012) and Kypraios et al.

(2017). The ABC algorithm is mathematically well-founded and applied in

a wide variety of fields, but there are some issues that have to be carefully

considered for a good performance, as the dimension of the parameter space.

The larger the dimension of the parametric space, the more simulations are

needed since, as Csilléry et al. (2010) points out, the probability of accepting

the simulated values for the parameters under a given tolerance decreases

exponentially with increasing dimensionality of the parameter space.

ALGORITHM 2

Step 1: Moments matching approach

0. Input: {µ̄T (1), µ̄T (2), µ̄T (3), ρ̄T (1), µ̄K(1), µ̄K(1), µ̄K(1), ρ̄K(1)}

1. For i = 1, . . . , I repeat:

(a) Randomly select a starting point

{a(i)(0), b(i)(0), γ
(i)
t1 (0), γ

(i)
t2 (0), γ

(i)
k1 (0), γ

(i)
k2 (0)}.

(b) Solve (P0)i and save the value of objective function

δ
(i)
0 and the solution {â(i), b̂(i), γ̂

(i)
t1 , γ̂

(i)
k1 , γ̂

(i)
t2 , γ̂

(i)
k2 }.

2. Obtain j = arg mini δ
(i)
0 and set δ0 = δ

(j)
0 , γ̂t1 = γ̂

(j)
t1 ,

γ̂t2 = γ̂
(j)
t2 , γ̂k1 = γ̂

(j)
k1 , γ̂k2 = γ̂

(j)
k2 , â = â(j) and b̂ = b̂(j)

3. Output: {â, b̂, γ̂t1, γ̂t2, γ̂k1, γ̂k2}

Step 1 in the fitting approach: moments matching method to estimate the
parameters of the marginal components in the bivariate MMPP2

In the case of the bivariate MMPP2, estimates for a, b, λ1 + λ3 (γt1),

λ2 +λ3 (γk1), ω1 +ω3 (γt2) and ω2 +ω3 (γk2) are obtained in Step 1. Taking

into account expressions (4.7) and (4.8) and setting prior distributions for

λ3 and ω3 as

λ3 ∼ Unif(0,min[γ̂t1, γ̂k1]), ω3 ∼ Unif(0,min[γ̂t2, γ̂k2]), (4.14)
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then, a simple ABC algorithm in terms of only two parameters can be

easily formulated. At each iteration i ∈ 1, . . . , I, values of λ3 and ω3

are generated from the prior π(·) as in (4.14). Then, the values of λ1,

λ2, ω1 and ω2 are obtained according to (4.7) and (4.8). Then, a sam-

ple s(i) = {(t1, k1), . . . , (tn, kn)} from a bivariate MMPP2 with parameters

(â, b̂,λ(i),ω(i)) is simulated according to Algorithm 1. If the generated sam-

ple s(i) is too different from the observed data s = {(t1, k1), . . . , (tn, kn)},
the set of parameter is discarded. For this purpose a distance measure and

a tolerance, ε > 0, are usually established. The level of discrepancy be-

tween the generated sample at iteration i and the original sample shall be

measured according to:

δ1(s(i), s) =

2∑
l=1,j=1

(
η̄lj(s

(i))− η̄lj(s)
η̄lj(s)

)2

, (4.15)

where η̄lj , for l, j = 1, 2 denote the first empirical joint moments asso-

ciated to the bivariate MMPP2 process (E(TK), E(T 2K), E(TK2)) as in

(4.11). Expressions similar as (4.15), in which with a structure similar to

this one, theoretical and estimated moments intervene, have already been

used as an objective function in problems of adjustment of moments for

BMAPs processes (see for example Rodŕıguez et al. (2015) and Yera et al.

(2019b)). The rationale behind this selection is the fact that for all itera-

tions, the simulated samples come from a bivariate MMPP2 processes with

the same marginal moments (a consequence of constant γ̂t1, γ̂t2, γ̂k1, γ̂t1, â

and b̂). Therefore, it makes sense to include joint moments in the distance

measure. From extensive, empirical experiments it has been observed that

η11, η12 and η21 in combination with the eight marginal moments used in

Step 1 (µT (1), µT (2), µT (3), ρT (1), µK(1), µK(2), µK(3)ρK(1)) are enough to

characterize the parameters of the bivariate process. With respect to the

tolerance level, instead of fixing a specific value of epsilon, we proceed in

analogous way by keeping the 1% of the samples with smallest differences

from the original sample. Finally, the estimated parameters are average val-

ues among the selected proportion. For a summary of the ABC procedure,
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see Step 2 of Algorithm 2.

ALGORITHM 2

Step 2: ABC approach

0. Input: {η̄11, η̄12, η̄21, â, b̂, γ̂t1, γ̂k1, γ̂t2, γ̂k2}

1. For i = 1, . . . , I2 do repeat:

(a) Generate (λ
(i)
3 , ω

(i)
3 ) from the prior distribution π(·)

(b) Obtain

λ
(i)
1 = γ̂t1 − λ(i)

3

λ
(i)
2 = γ̂k1 − λ

(i)
3

ω
(i)
2 = γ̂t2 − ω(i)

3

ω
(i)
2 = γ̂k2 − ω

(i)
3

(c) Simulate a sample s(i) from the likelihood

f(· | â, b̂,λ(i),ω(i)).

(c) Compute the moments η̄11, η̄12, η̄21 associated to the

generated sample s(i).

(d) Compute δ
(i)
1 (s(i), s) as in (4.15)

4. The 1% of the sampled values with the smallest

differences from the real data are accepted.

5. The Bayesian estimates is computed as the average of the

accepted values.

6. Output: {â, b̂, λ̂1, λ̂2, λ̂3, ω̂1, ω̂2, ω̂3}

Step 2 in the fitting approach: ABC method to estimate the parameters of
the bivariate MMPP2

3.2 A simulation study

The aim of this section is to illustrate the behavior of the procedure de-

scribed in Section 3.1 on the basis of two simulated data sets. Each sim-
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ulated data set consists of a sequence of 1000 pairs of events (t,k) =

{(t1, k1), (t2, k2), ..., (tn, kn)} simulated from two different bivariate MMPP2s,

whose parameter sets {a, b,λ,ω} are listed in Table 4.2 Generator Process

columns.

The first example considers a simulated sample from a bivariate MMPP2

with low intra-dependence (both marginal processes present a the first lag

autocorrelation coefficient around 0.2) and very high inter-dependence (cor-

relation between times and distances around 0.9). The second considered

trace is from a bivariate MMPP2 with relatively high intra-dependence (with

an autocorrelation for both marginal processes of around 0.4) and a moder-

ate intra-dependence (correlation between times and distances around 0.7).

The results obtained after running the fitting approach are shown in Table

4.2.

The first eight rows in Table 4.2 show the parameters of the process (the

real ones under the column Generator Process and the estimated ones under

the column Estimated). The ninth to sixteenth rows depict the marginal

empirical moments that characterize marginal processes (theoretical and

empirical in parenthesis in the Generator Process column and estimated

ones in the Estimation column). The analogous can be found from row 17th

to row 19th, but regarding the joint moments. The penultimate row shows

the correlation between inter-failures times and distances, and finally, the

last row shows the running time (measured in seconds) in an Intel Xeon

Six-cores 3.6 GHz with 12 threads processor with 128Gb of memory ram

(for a prototype code written in MATLAB c©).

Some comments arise from the results presented in Table 4.2. On one

hand, it should be pointed out the good performance of the method for

estimating the moments of the bivariate process (both marginal and joint)

and in particular, the correlation between the inter-failure times and dis-

tances. Parameters a and b are also well fitted, a fact that also happens for

λ3 and ω3 since the ABC approach is specifically designed in terms of them.

However, it has been observed that estimations for the rest of parameters

(λ1, λ2, ω1 and ω2) may be less good for some cases. Consider for example,

the first simulated trace. From Step 1 in the fitting approach, the values
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Example 1 Example 2

Generator

Process
Estimation

Generator

Process
Estimation

a 0.02 0.02 0.008 0.008

b 0.44 0.44 0.08 0.09

λ1 0.82 0.68 4.11 4.28

λ2 0.40 0.31 1.79 1.62

λ3 1.86 1.84 5.95 5.66

ω1 2.35× 10−2 2.51× 10−2 0.12 0.12

ω2 5.27× 10−3 7.91× 10−3 0.12 0.12

ω3 0.24 0.22 0.33 0.33

µT (1) 0.58 (0.57) 0.57 0.29 (0.28) 0.28

µT (2) 1.99 (1.92) 1.92 0.88 (0.87) 0.87

µT (3) 20.16 (20.40) 20.42 5.67 (5.63) 5.65

ρT (1) 0.22 (0.21) 0.22 0.41 (0.40) 0.40

µK(1) 0.66 (0.66) 0.65 0.31 (0.32) 0.32

µK(2) 2.38 (2.30) 2.31 0.89 (0.89) 0.90

µT (3) 25.37 (25.78) 25.75 5.72 (5.79) 5.77

ρK(1) 0.21 (0.22) 0.21 0.39 (0.40) 0.39

η11 2.02 (1.99) 1.93 0.69 (0.70) 0.69

η21 20.10 (19.26) 19.98 3.84 (3.90) 3.85

η12 21.27 (21.87) 21.16 3.85 (3.81) 3.88

Cor(T,K) 0.91 (0.90) 0.90 0.76 (0.75) 0.76

running

time
- 219.79 - 213.89

Table 4.2: Comparison between the theoretical, empirical (within parenthe-
ses) and estimated values for obtained with Algorithm 1 for two examples.
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of γt1 = λ1 + λ3 and γk1 = λ2 + λ3 (equal to 2.53 and 2.26) are estimated

as 2.53 and 2.25. Since the generated values of λ3 in Step 2 (ABC) are

upper-bounded by min{γ̂t1, γ̂k1}, then the results under the ABC approach

will be better or worse depending on the estimates for γt1 and γk1. In the

previous example, the final estimation for λ2 turns out slightly better than

that of λ1, as expected. A similar fact occurs in the case of the parameter

ω3.

An additional comment regards the computational time of the proposed

fitting approach. For the considered examples, the total running time is

around 6 minutes, where the most of computational cost is due to the ABC

algorithm. The matching moment approach defining Step 1 is not expensive

from a computational point of view (see Yera et al. (2019b)). However, it

is known from the literature that the ABC algorithm is time consuming,

in particular for high values of I2 (number of iterations or number of times

where traces are simulated), see Minter and Retkute (2019). In our case,

such value, I2, is set as 10000 which provides a good compromise between

performance of the inference approach and computing time.

In order to explore in more depth the results under the ABC algorithm,

consider Figure 4.6 and Table 4.2. Figure 4.6 shows the evolution of the

estimation of parameter λ3 as the acceptance percentage considered in the

ABC Algorithm varies. Note that in left panel (Example 1) the estimated

value with 10% acceptance is 1.14, which is very close to the mean value

of the prior distribution of λ̂3 (min(γ̂t1, γ̂k1)/2). As the acceptance rate

decreases, λ̂3 approaches to λ3, as expected. A similar behavior can be seen

in the right panel (Example 2). Table 4.3 shows the whole set of parameters

(λ,ω) for different acceptance rates. Again, it can be seen that as the

acceptance percentage decreases, the estimate becomes more accurate.

3.3 Case study: failures in train

In this section the performance of the approach for fitting the real database

concerning failures in trains and described in Section 1 is illustrated. In

particular, the fitting approach described in Section 3.1 shall be applied to
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Figure 4.6: Evolution of the estimated value λ3 for different acceptance
percentages in the ABC algorithm (Step 2 in the fitting approach). The left
(right) panel refers to the first (second) simulated example.

model failures in the trains numbered 35 and 36. A detailed exploratory

analysis of the data is made in Pievatolo and Ruggeri (2010). Train 35 went

into operation on 20/12/90 and in the almost 8 years, it traveled 359908

km and suffered 47 failures. The average, median, variation coefficient,

minimum and maximum value of the inter-failures times for train 35 are

71.12, 24, 1.92, 1 and 736 days, respectively, which suggests a right-skewed

distribution with a tail longer than that of an exponential distribution, a

fact also deduced from Figure 1.5. Something similar occurs with the inter-

failures distances, with the average, median, variation coefficient, minimum

and maximum equal to 8778, 3592, 1.6842, 87 and 75998 kilometers. On the

other hand, for train 36 there are records between 04/09/90 and 04/09/98,

period in which it covered 379709 km and whose doors failed 51 times. The

analysis carried out on the non-exponentiality of the inter-failures times and

distances for train 35 applies also for train 36. Empirically, the consecutive

inter-failure times and distances are not independent since the first lag au-

tocorrelation coefficients are equal to 0.13 and 0.21, for trains 35 and 36,

respectively. There is also interdependence among the traces, reflected by

an empirical correlation coefficient equal to 0.97 and 0.93 for trains 35 and

36, respectively. The non-exponentiality of the traces in combination with

both intra and inter-dependence makes the bivariate MMPP2 proposed in
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Example 1

λ1 λ2 λ3 ω1 ω2 ω3

Generating

process
0.82 0.40 1.86 0.02 0.005 0.24

1% 0.69 0.32 1.84 0.03 0.008 0.22

5% 1.25 0.88 1.27 0.02 0.007 0.22

10% 1.39 1.01 1.14 0.03 0.01 0.21

Example 2

λ1 λ2 λ3 ω1 ω2 ω3

Generating

process
4.11 1.79 5.95 0.12 0.12 0.33

1% 4.28 1.62 5.66 0.12 0.12 0.33

5% 6.29 3.63 3.66 0.12 0.12 0.33

10% 6.28 3.63 3.66 0.12 0.12 0.33

Table 4.3: Estimates for λ and ω when varying the acceptance percentage
in the ABC algorithm (Step 2 in the fitting approach)
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this paper a suitable model for fitting the data.

The fitting approach described in Section 3.1 is run on the real traces

to obtain estimates for the empirical quantities. The results are shown in

Table 4.4, where the empirical marginal characterizing moments (first to

eighth row), joint moments (ninth to eleventh rows) and correlation coeffi-

cient (twelfth row) are shown as well as their estimates.

The good performance of the fitted models is also supported by Figures

4.7 and 4.8. In particular, Figure 4.7 shows the fit to the empirical dis-

tribution function of the inter-failure times and inter-failure distances, see

expression (4.2). On the other hand, Figure 4.8 concerns the estimation of

conditional joint probabilities P (T | K), for which a close-form expression

is unknown, up to the authors. Once the estimated model is obtained, then,

traces of the same size as the real ones (n = 47 for train 35 and n = 51 for

train 36) are simulated 1000 times. Estimations of P (T < t | K < k) are av-

erage values of the sampled frequencies. The left panel of Figure 4.8 concerns

train 35, where the probability of having a failure in less than approximately

six months given that a failure was observed in less than k ∈ [0, 10000] km

is estimated. The analogous probability is estimated in the right panel, for

train 36 and in a period less than 3 months.

Figure 4.7: Estimated cdf (dashed line) under the bivariate MMPP2 ver-
sus the empirical cdf (solid line) of the inter-failures times (left panel) and
distances (right panel) for train 35.

Figure 4.9 shows the estimated expected number of failures occurred in
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Train 35 Train 36

Emp Est biv MMPP Emp Est biv MMPP

µT (1) 71.12 71.07 64.73 63.83

µT (2) 2.33× 104 2.35× 104 1.11× 104 1.07× 104

µT (3) 1.25× 107 1.24× 107 2.64× 106 2.71× 106

ρT (1) 0.13 0.13 0.21 0.19

µK(1) 8.78× 103 8.79× 103 8.44× 103 8.23× 103

µK(2) 2.90× 108 2.88× 108 1.83× 108 1.79× 108

µK(1) 1.58× 1013 1.59× 1013 5.68× 1012 5.81× 1012

ρK(1) 0.12 0.12 0.26 0.20

η11 2.54× 106 2.52× 106 1.36× 106 1.22× 106

η21 1.33× 106 1.30× 106 3.22× 108 2.95× 108

η12 1.44× 1011 1.40× 1011 4.18× 1010 3.94× 1010

Corr(T,K) 0.97 0.96 0.93 0.82

Table 4.4: Empirical and estimated moments by the bivariate MMPP2 for
both trains 35 and 36.

the time recorded for trains 35 and 36. It is possible to observe that train 35

is subject to an abrupt increased failure rate after the initial period and then

heavy intervention likely occurred since the failure rate went down. Train

36 is subject to an increase in the failure rate which then decreases (both

changes occur over long periods of time) when better reliability begins to

be appreciated. Finally, Figure 4.10 shows the estimation for train 36 of the

expected number of failures in different joint time and distance intervals.

4 Conclusions

A bivariate extension of the two-state Markov modulated Poisson process

is considered in this paper. This process allows for the modeling of non-
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Figure 4.8: Comparison between the estimated (asterisk) and empirical
(square) values of the conditional probabilities p(T < t|K < k) for train
35 (left panel) and 36 (right panel).

Figure 4.9: Estimated mean of number of failures under the bivariate
MMPP2 for train 35 (left panel) and train 36 (right panel).

exponential bivariate traces presenting inter and intra-dependence, proper-

ties that make the model suitable either in reliability or other real contexts.

Some properties concerning the novel model are shown, in particular its iden-

tifiability, inherited from the marginal processes, and crucial if inference is

to be undertaken.

Once the process is properly described, a fitting approach is presented.

The method combines a matching moment approach (Step 1) with an ABC

algorithm (Step 2). The first step helps alleviating the computational cost
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Figure 4.10: Estimation of the expected number of failures under the bivari-
ate MMPP2 for train 36.

inherent in the ABC since the number of parameters to be estimated go

from 8 to 2.

The methodology is illustrated for both simulated and real datasets. In

particular, an application to real failures data set concerning train failures

is presented. The results show the potential of the proposed bivariate model

as well as the right performance of the fitting method.

Prospects regarding this work concern both theoretical and applied is-

sues. Some theoretical problems to be considered are as follows. First, find

closed expressions for quantities of interest as joint probabilities in terms

of (T ) and (K) or the joint predictive distributions. Also, it is of interest

to obtain probabilities of the counting process NT (t) (NK(k)), number of

events up to t(k), as in Neuts and Li (1997). A third theoretical problem is

the extension of the process proposed in this paper to its batch counterpart,

where failures can occur in simultaneous way (see Yera et al. (2019a,b)) for

results concerning the batch counterpart of the MMPP2). Also obtaining

some set of moments that characterize the bivariate MMPP2 would be very

useful for the estimation of the process. Finally obtaining a canonical ma-
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trix representation would allow a more in-depth study of some theoretical

properties of this process.

From an applied viewpoint, it is of interest to develop a more sophisti-

cated version of the ABC algorithm, so that a low number of parameters

is sampled, but where the existing dependence between the estimates from

Step 1 and Step 2 is mitigated. It would be important also to estimate how

many failures will occur in future time and km intervals, both in terms of

expected number and probability of no failure in a given [time, km] interval.

Work on these issues is underway.
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Appendix A: Proof of Theorem 4

It is clear that if the representations B and B̄ are equivalent, their respective

marginal MMPP2 will also be equivalent. Since Rydén (1996b) proves that

the MMPP is identifiable except by permutations of states, the probabilities

associated to the underlying process for the two marginals are the same

(except by permutation); that is,

a = ã, b = b̃, (4.16)

and the failure occurrence rates of the marginal processes also coincide,

(except by permutation of the vector λ by the vector ω), which implies

that,

λj + λ3 = λ̃j + λ̃3, ωj + ω3 = ω̃j + ω̃3, for j = {1, 2}. (4.17)
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On the other hand, from (4.9) it can be proven that the bivariate exponential

distribution associated to B and B̃ are equally distributed. Note that taking

n = 1 in (4.9), the following equality is obtained:

(T1,K1)
d
= (T̃1, K̃1). (4.18)

(T1,K1) can be rewritten as the sum of N bivariate exponential distribution,

where N − 1 is the number of times the underlying process changes state

before the first failure occurs. On the other hand, since the underlying

process is the same for both processes (4.18) is equivalent to

(X1 + · · ·+XN , Y1 + · · ·+ YN )
d
= (X̃1 + · · ·+ X̃N , Ỹ1 + · · ·+ ỸN ), (4.19)

and it is possible to take conditional distribution on the initial state and the

number of changes state of the underlying process in (4.19) obtaining

(X1+· · ·+XN , Y1+· · ·+YN |N = 1, s0 = i)
d
= (X̃1+· · ·+X̃N , Ỹ1+· · ·+ỸN |N = 1, s0 = i).

Hence the bivariate exponential distributions associated to B and B̃ have

to be equally distributed and consequently they have the same moments.

Therefore, using (4.17) and (4.6), the following relationship is obtained

λ1 + λ2 + λ3 = λ̃1 + λ̃2 + λ̃3, ω1 + ω2 + ω3 = ω̃1 + ω̃2 + ω̃3. (4.20)

Then, from (4.17) and (4.20), λi = λ̃i and ωi = ω̃i, for i = {1 . . . 3}, which

implies the identifiability of the process in the terms defined in the paper.

Equivalent Matrix Representation

An alternative matrix representation for the bivariate MMPP is given by

the initial probability vector (4.3):

φ =

(
φ1
λ2

λ
, φ1

λ1

λ
, φ1

λ3

λ
, φ2

ω2

ω
, φ2

ω1

ω
, φ2

ω3

ω

)
,
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where λ = λ1 + λ2 + λ3 and ω = ω1 + ω2 + ω3, and the matrices

D0 =



−γt1 0 γt1 0 0 0

0 −γk1 γk1 0 0 0

0 0 −λ λ
ωω2a

λ
ωω1a

λ
ωω3a

0b 0 0 −γt2 0 γt2

0 0 0 0 −γk2 γk2

ω
λλ2b

ω
λλ1b

ω
λλ3b 0 0 −(ω)



,

D1 =



0 0 0 0 0 0

0 0 0 0 0 0

(1− a)λ2 (1− a)λ1 (1− a)λ3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ω2(1− b) ω1(1− b) ω3(1− b)


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and

R =



1 1

0 1

0 1

1 1

0 1

1 1


.

Note that the parameters associated to this alternative representation are

the same than for the previous one but they offer a different arrangement

in the matrix representation.
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Rodŕıguez, J., Lillo, R., and Ramı́rez-Cobo, P. (2015). Failure modeling

of an electrical N-component framework by the non-stationary Markovian

arrival process. Reliability Engineering and System Safety, 134:126–133.
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CHAPTER 5

Conclusions and future work

The initial objective of this thesis, as was shown in the Introduction, is

to incorporate the MMPP point processes into the field of data modeling

for which independence in occurrences or exponential distribution between

arrival times could not be assumed. The versatility of MMPP processes

and their extensions allowing group arrivals or in its two-dimensional ver-

sion, has been highlighted throughout the different chapters included in the

dissertation. By way of summary, the work carried out for the estimation

of these processes is especially relevant in the thesis. The use of alterna-

tive techniques and methodologies has allowed to consider these processes

to real problems. As shown in the case studies it has led to some of the

methodological advances that have been incorporated into this manuscript.

In this last chapter we compile the main contributions of the thesis and

we outline some of the problems in which we think it would be interesting

to deepen or advance by taking a further step.

• The Batch Markov modulated Poisson process is studied in Chapter 2

in its general version (BMMPPm(K)), where K is the maximum batch

size and m is the number of states of the underlying Markov chain.

Specifically, the findings of this chapter are listed below and were pub-

lished in Yoel G. Yera, Rosa E. Lillo and Pepa Ramı́rez-Cobo (2019)

Findings about the BMMPP for modeling dependent and simultaneous

data in reliability and queueing systems. Applied Stochastic Models in

Business and Industry, 35(2):177-190.
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The most important contributions of this chapter are:

X The important property of identifiability that holds the MMPPm

is extended to its counterpart with arrivals in batch (BMMPPm(K)).

X The correlation structure of the two-states Batch Markov modu-

lated Poisson process (BMMPP2(K)) is analyzed.

X It was illustrated with numerical examples that the correlation

between the batch size and the times between events of the

BMMPP2(K) can take both negative and positive values.

X The non-negativity of the batch size autocorrelation function for

the BMMPP2(K) is proven.

X These properties makes the BMMPP2(K) suitable for practical

applications.

• Motivated by the results of Chapter 2 in which the identifiability prop-

erty facilitates the estimation of the BMMPPm(K), Chapter 3 is de-

voted to develop the estimation of the process and the validation of

the proposed method in a real case.

This chapter is published in Yoel G. Yera, Rosa E. Lillo and Pepa

Ramı́rez-Cobo (2019). Fitting procedure for the two-state Batch Markov

modulated Poisson process. European Journal of Operational Re-

search, 279(1):79-92.

The most important contributions of Chapter 3 are the following,

X The BMMPP2(K), represented by 2(K + 1) parameters, is com-

pletely characterized by 2(K + 1) moments.

X An inference approach for fitting real data sets based on a mo-

ments matching method is proposed.

X The method proposed solves in an iterative way an optimization

problem with four unknowns parameters and other K − 1 opti-

mization problems with two variables.

X Both simulated and a real teletraffic trace are used to illustrate

the performance of the inference technique proposed.
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X The method proposed is compared to the classic EM algorithm.

X The proposed algorithm is faster and less dependent on starting

points than the EM algorithm.

• A bivariate extension of the two-state Markov modulated Poisson pro-

cess is introduced in Chapter 4. This novel process inherits the prop-

erties of the MMPP marginally and also allows for the modeling of

correlations between two magnitudes in two-dimensional contexts and

allows for the modeling of non-exponential bivariate traces presenting

inter and intra-dependence. What is most interesting from our point

of view in this chapter is that the modeling is motivated by a real

set of data related to train failures that jointly takes into account the

time and the kilometers traveled between failures. This paper is sub-

mitted for possible publication. The most important contributions of

this chapter are:

X Some properties of the novel model are show, in particular its

identifiability, which is inherited from the marginal processes and

is crucial for inference.

X A matrix representation for the process that allowed to obtain

the joint moments used in the estimation process is obtained.

X A fitting approach that combines a matching moment approach

with an ABC algorithm is presented.

X The methodology proposed is illustrated for both simulated and

real data set.

Obviously, a work of many years is not completely closed in this docu-

ment. During the time dedicated to understanding this type of process,

new paths have come up and they have seemed like problems derived

from the initial ideas. Below we list some of these lines of future work

that we think can be of interest.

Possible research lines as extensions of the presented work are the following:
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• In Chapter 2 it was proved that the autocorrelation function of the

BMMPP2(K) is non-negative. A possible extension of this work is to

study the correlation structure of the BMMPPm(K) for m ≥ 3 or to

find out bounds for the correlation between inter-arrivals times and

the batch size for BMMPP2(K). One of our global concerns is the

study of this type of model when the number of states is greater than

2. We think that despite the increase in analytical complexity, the

model is much more flexible in modeling real data.

• In Chapter 3 an inference method for the BMMPP2(K) is proposed,

but given that higher order of BMMPPm(K) are expected to show

more versatility for modeling purposes it is of interest to develop in-

ference methods for processes with m ≥ 3. One option is to develop

a moment-matching approach similar to the one proposed in chapter

3 for a BMMPPm(K) with m ≥ 3, but it would require finding a set

of moments characterizing the processes with higher number of states.

Therefore we are facing objectives of both theoretical and algorithmic

types.

• In Chapter 4 a bivariate extension of the two-state Markov modu-

lated Poisson process is presented. Because this model has never been

studied in the literature, the lines of research emerging are several.

Some theoretical problems to be considered are:

– Find closed expressions for quantities of interest as joint probabil-

ities in terms of (T ) and (K) or the joint predictive distributions.

– Obtain probabilities of the counting process as a function of t and

k.

– Extend the process proposed to its batch counterpart, allowing

the modeling of situations where failures occur in a simultaneous

way.

– Find a canonical matrix representation that allow an in-depth

study of some theoretical properties of this process.
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– Obtain a set of moments that characterize the bivariate MMPP2

in order to improve the estimation method of the process.

On the other hand from an applied viewpoint, it is of interest to esti-

mate how many failures will occur in future time and distances inter-

vals, both in terms of expected number and probability of no failure

in a given [t, k] interval.
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