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Abstract

Computing equilibria in general equilibria models with incomplete asset (GEI) markets is

technically difficult. The standard numerical methods for computing these equilibria are based

on homotopy methods. Despite recent advances in computational economics, much more can

be done to enlarge the catalog of techniques for computing GEI equilibria. This paper presents

an interior point algorithm that exploits the special structure of GEI markets. It is proved

that, under mild conditions, the algorithm converges globally at a quadratic rate, rendering it

particularly effective in solving large scale GEI economies. To illustrate its performance,

relevant examples of GEI markets are solved.
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1. Introduction

Since the time of Radner’s (1972) paper, the general equilibrium analysis of

sequential economies with incomplete markets has been the subject of extensive
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research in economic theory. These models, known as general equilibrium with

incomplete markets (GEI), represent the most general and versatile tool in

competitive economic theory, as they deal simultaneously with all real and financial

markets and their interactions. The size and complexity of these models often

demands the use of numerical methods to compute their equilibria. Surveys in this

area are due to Magill and Shafer (1991), Magill and Quinzii (1996) and Hens (1998).

The literature on the computation of GEI equilibria is based on path following or

homotopy methods. There are three main approaches to compute equilibria in the

GEI model. The first method was given by DeMarzo and Eaves (1996), who

considered the excess demand function defined on prices and elements of the

Grassmannian manifold (see e.g. Duffie and Shafer, 1985). By applying the work of

Brown et al. (1996a), they computed equilibria via a homotopy algorithm. The

second algorithm for computing fixed points was developed by Brown et al. (1996b),

who considered the excess demand function to be a function of prices only. Because

this excess demand function is discontinuous, Brown et al. introduced an auxiliary

asset to define a family of homotopies. The third approach is based on the work of

Schmedders (1998, 1999), who computed equilibria with homotopy techniques using

the first-order conditions of the no-arbitrage agents’ problems. To avoid

discontinuities in the excess demand correspondence, he considered one agent with

penalties for transactions on the asset markets instead of assuming lower bounds on

short sales. By making these penalties smaller and smaller, the solutions of the

homotopy function move closer and closer to the GEI equilibrium. Other

contributions of note are those of Kubler and Schmedders (2000), Kubler (2001)

and Herings and Kubler (2002).

Homotopy methods possess powerful theoretical properties, but these methods

may be inappropriate from a practical point of view, due to the difficulty of setting

up the homotopy function (see Kubler, 2001) and dealing with inequalities (see

Watson, 2000). Furthermore, homotopy methods may fail to produce a solution

even for relatively simple systems of nonlinear equations (e.g.. see Nocedal and

Wright, 1999, Example 11.2). The focus of this paper is a proposal for an alternative

algorithm for problems of practical relevance that cannot be solved by the existing

approaches.

This paper introduces a tailor-made interior-point algorithm to compute equilibria

in economies with incomplete asset markets. I consider a set of optimality conditions

which are necessary and sufficient conditions for the existence of a GEI equilibrium,

assuming the standard convexity assumptions for the agents’ problem. These

optimality conditions are the Karush–Kuhn–Tucker (KKT) first-order conditions of

the agents’ utility maximization problems, the market clearing and no-arbitrage

conditions. A distinctive characteristic in solving these optimality conditions is that

they often include inequalities (e.g. equilibria can be restricted-domain), which can

be difficult to handle using homotopy or continuation methods. I propose an

alternative interior-point approach which is tailored to deal effectively with

inequality-constrained nonlinear systems of equations.

Although interior-point methods are closely related to central path continuation

methods (see Gill et al., 1986), the solution procedures are completely different.



A relevant property of interior-point methods is their typical requirement for

significantly less function and derivative evaluations and linear algebra operations

than are required by homotopy methods (see Garcia and Zangwill, 1981). This

feature makes interior-point algorithms an attractive alternative to homotopy when

considering large-scale GEI models such as the pricing of financial assets. In a recent

survey, Esteban-Bravo (2004) suggests the application of interior-point methods to

compute equilibria in complete markets. In this paper I fully explore this approach

for solving GEI models, the complexity and scale of which demand efficient

algorithms to compute equilibria.

The proposed interior-point algorithm enjoys some computational advantages

over the standard algorithms. In particular, I introduce two devices for increasing

the speed of computations. Following the Gauss–Newton arguments, the second-

order information of the nonlinear elements of the problem is neglected, a strategy

that reduces the number of function evaluations needed. Second, the sparsity

properties of GEI models is exploited. As a consequence, the algorithm finds

accurate solutions with less computational costs than does a standard interior-

point method. To be rigorous, I prove that, under mild conditions, the algorithm

globally converges to KKT points at a quadratic rate (i.e. that the algorithm will

eventually find an equilibrium assuming that the economy has any and the required

conditions hold).

Computational examples are presented, documenting the fact that the implemen-

tation is capable of solving relevant examples of GEI markets robustly and

efficiently. Even though numerical comparisons lie beyond the scope of this paper, I

compute equilibria for GEI models considered by Schmedders (1998), showing

competitive running times. The numerical results are very encouraging, showing

computational gains when applying to large-scale models, and that this algorithm is

particularly suited to solving problems in which some or all of the variables of

interest are bounded. Such problems are commonly found in the literature of

incomplete markets, for example, when considering short-selling constraints.

Furthermore, I illustrate that the algorithm diverges when it is considered economies

in which equilibria do not exist.

The remainder of the paper is organized as follows. Section 2 presents a two-

period general equilibrium model with incomplete asset markets and the

characterization of the equilibrium as the first-order conditions of the agents’ utility

maximization problems, the market clearing, and no-arbitrage conditions. In Section

3, I present an interior-point algorithm to compute such an equilibrium and study its

convergence properties. Finally, the algorithm has been implemented for relevant

examples of GEI markets, illustrating its potential for application in many problems,

as shown in Section 4.

2. The GEI model

The basic GEI model describes an exchange economy over two time periods

ðt ¼ 0; 1Þ, with uncertainty over the state of nature in Period 1. At time t ¼ 0 the



economy is in state s ¼ 0 which is known by each of the I consumers participating in

the economy (i.e. all relevant information is symmetric across the economy).

However, it is not known which of the S possible states at time t ¼ 1 will occur.

Trade occurs sequentially over time.

Assume that the markets on which commodities and financial assets are traded are

competitive. In each state there are D goods, and for each good d in state s there

exists a spot market with spot price psd . Hence, the commodity space is R
DðSþ1Þ
þ . For

any x 2 R
DðSþ1Þ
þ , xT denotes the transpose of x, a DðS þ 1Þ-dimensional row vector.

For any x, y 2 R
DðSþ1Þ
þ , x � y ¼ xTy denotes the inner product of vectors x and y.

There is a finite number C of assets traded on financial markets. Let yi 2 R
C denote

the portfolio of traded assets by the ith consumer. An asset c can be purchased for a

price qc at time t ¼ 0, and delivers a return across the states at time t ¼ 1. The return

of an asset c is described by its asset matrix Ac ¼ ðAc
1; . . . ;A

c
SÞ

T, defined across all

states at time t ¼ 1, where Ac
s is the commodity bundle which asset c delivers for state

s. The matrix Ac can be specified exogenously or be given as a function of some

variables observed at t ¼ 1. The asset c delivers a nominal return V c
s ¼ ps � A

c
s in state

s. Therefore, the asset structure is summarized by the asset matrix A (given in units

of commodities) and the nominal return matrix V ðpÞ:

A
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Assume that SXC. The completeness condition is important in the context of GEI

markets. The financial markets are said to be complete if rankðV ðpÞÞ ¼ S for any p.

Under this condition, agents can insure themselves against any type of contingency

in period t ¼ 1. When rankðV ðpÞÞoS, the financial markets are said to be incomplete

(see Magill and Shafer, 1991).

Each consumer is described by a consumption set R
DðSþ1Þ
þ , initial endowments for

the DðS þ 1Þ goods in each state wi ¼ ðwi0;wi1; . . . ;wiSÞ 2 R
DðSþ1Þ
þ , and a preference

relation. The utility function ui : R
DðSþ1Þ
þ ÿ!R that represents the ith consumer’s

preferences is assumed to be continuously differentiable, concave, strictly mono-

tonous and increasing. Given p 2 R
DðSþ1Þ
þ and q 2 RC , each consumer faces the

following problem:

max
x;y

uiðxi0; . . . ;xiSÞ

s:t: p0 � xi0pp0 � wi0 ÿ q � yi,

ps � xispps � wis þ ps � Asyi; 8s. ð1Þ

An equilibrium for the GEI economy is defined to be the prices ðp�; q�Þ and the

allocation ðx�; y�Þ satisfying: (i) ðx�i ; y
�
i Þ is an optimal solution to Problem (1),

8i ¼ 1; . . . ; I ; (ii)
PI

i¼1 x
�
i ¼

PI
i¼1 wi, and

PI
i¼1 y

�
i ¼ 0.

The next theorem provides a characterization of GEI equilibria.



Theorem 1 (Characterization of GEI equilibria). Assume that As has full rank, i.e.

rankðAsÞ ¼ C, 8s. The allocation ðx�; y�; p�; q�Þ is an equilibrium for the economy if

and only if there exist d� 2 R
IðSþ1Þ
þþ and ðx�; y�; p�; q�Þ 2 RIDðSþ1Þ

þ � RIC � R
DðSþ1Þ
þþ �

R
C that satisfies the following optimality conditions:

d�isrxisuiðx
�
i Þ ÿ p�Ts ¼ 0; 8i; 8s;

p�T0 ðx�i0 ÿ wi0Þ þ q�Ty�i ¼ 0; 8i;

p�Ts ðx�is ÿ wis ÿ Asy
�
i Þ ¼ 0; 8i; 8s;

8

>

<

>

:

(2)

X

S

s¼1

d�i0
d�is

p�sAs ÿ q� ¼ 0; 8i, (3)

P

I

i¼1

x�i ¼
P

I

i¼1

wi;

P

I

i¼1

y�i ¼ 0:

8

>

>

>

<

>

>

>

:

(4)

Eq. (3) implies that in equilibrium the asset prices q� do not allow arbitrage—

namely that there exists a b 2 RS
þþ so that

PS
s¼1 bsp

�
sAs ÿ q� ¼ 0.

3. An interior-point algorithm

In this section I present an interior-point algorithm to compute GEI equilibria

using the characterization given in Theorem 1. To facilitate the exposition, HðzÞ ¼ 0

denotes the system of nonlinear equations given by (2)–(4), where z ¼ ðd;x; y; p; qÞ

2 R
IðSþ1Þ
þþ � R

IDðSþ1Þ
þ � RIC � R

DðSþ1Þ
þþ � RC .

The system HðzÞ ¼ 0 is first reformulated as a least-squares problem and then,

logarithmic barrier terms are introduced in order to remove the non-negativity

bounds. The result is the following unconstrained barrier problem:

min 1
2
kHðzÞk22 ÿ mðlog dþ log xþ log pÞ, (5)

where log d ¼
PI

i¼1

PS
s¼0 log dis, log x ¼

PI
i¼1

PD
d¼1

PS
s¼0 log xids, and log p ¼

PD
d¼1

PS
s¼0 log pds, with ðd; x; pÞ40, and m40 is a scalar called the barrier parameter. By

letting m converge to zero, the sequence of solutions fz�mg to (5) converges to a

solution z� of min kHðzÞk22. I also consider a tolerance parameter �SIZE, which forces

the solutions fz�mg to satisfy kHðz�mÞk
2
2p�SIZE. To ensure that the local minimizer z� is

a solution of the original nonlinear system Hðz�Þ ¼ 0, the barrier parameter is

decreased from one barrier problem to the next and must converge to zero.

Therefore, I aim to compute the sequence of solutions to (5) with kHðz�mÞk
2
2p�SIZE.



A minimizer for Problem (5 must satisfy the perturbed KKT conditions:

JðzÞTHðzÞ ÿ mS 1e ¼ 0,

where JðzÞ denotes the Jacobian matrix of HðzÞ; S ¼ diagðd;x; 0IC�1; p; 0C�1Þ defines

a diagonal matrix, the diagonal entries of which are the components of vector

ðd;x; 0IC�1; p; 0C�1Þ, where 0IC�1 denotes the vector of IC zeros; and S 1 is the

pseudo-inverse matrix of S. Let e ¼ ð1; . . . ; 1ÞT denote the vector of ones, then Se

defines the vector ðd; x; 0IC�1; p; 0C�1Þ and S 1e denotes the vector

ð1=d; 1=x; 0IC�1; 1=p; 0C�1Þ.

Introducing an auxiliary variable w, so that w ¼ ðwd;wx; 0IC�1;w
p; 0C�1Þ 2

R
IðSþ1ÞþIDðSþ1ÞþICþDðSþ1ÞþC
þ , with wd;wx;wp

40, and w ¼ mS 1e; the KKT conditions

can be rewritten as follows:

JðzÞTHðzÞ ÿ w ¼ 0,

diagðdÞwd ÿ me ¼ 0,

diagðxÞwx ÿ me ¼ 0,

diagðpÞwp ÿ me ¼ 0, (6)

where diagðdÞ, diagðxÞ, and diagðpÞ define the diagonal matrices of vectors d, x, p,

respectively. Note that the nonlinear transformation w ¼ mS 1e is only con-

sidered for the bounded variables ðd;x; pÞ40, and therefore ðwd;wx;wpÞ 2

R
IðSþ1ÞþIDðSþ1ÞþDðSþ1Þ
þþ as m40.

In essence, an interior-point method consists of the application of Newton’s

method to find a solution to the nonlinear system (6). Newton’s method provides

search directions ðDz;Dwd;Dwx;DwpÞ from the first-order Taylor series expansion for

(6) about the values ðz;wd;wx;wpÞ. Let ðzk;w
d
k;w

x
k;w

p
kÞ be the current iterate. Then the

search direction ðDz;Dwd;Dwx;DwpÞ is the solution of the following system of linear

equations:

JT
kJk þ LkHk ÿI

diagðwd
k;w

x
k;w

p
kÞ diagðdk;xk; pkÞ

 !

Dz

Dwd

Dwx

Dwp

0

B

B

B

@

1

C

C

C

A

¼ ÿ

JT
kHk ÿ wk

diagðdkÞw
d
k ÿ me

diagðxkÞw
x
k ÿ me

diagðpkÞw
p
k ÿ me

0

B

B

B

B

@

1

C

C

C

C

A

, (7)

where Hk ¼ HðzkÞ denotes the system H evaluated at ðzk;w
d
k;w

x
k;w

p
kÞ, Jk ¼ JðzkÞ

denotes Jacobian ofHk evaluated at ðzk;w
d
k;w

x
k;w

p
kÞ, and Lk denotes the Hessian ofH

evaluated at ðzk;w
d
k;w

x
k;w

p
kÞ. Note that Dz denotes the search direction

ðDd;Dx;Dy;Dp;DqÞ.
The next iterate ðzkþ1;w

d
kþ1;w

x
kþ1;w

p
kþ1Þ is defined as ðzk;w

d
k;w

x
k;w

p
kÞ þ ðDz;Dwd

k;
Dwx

k;Dw
p
kÞ. However, rather than solving each system (7) as the standard interior-

point method would do, I am content with an approximate solution ðzk;w
d
k;w

x
k;w

p
kÞ



satisfying

JT
kJk ÿI

diagðwd
k;w

x
k;w

p
kÞ diagðdk;xk; pkÞ

 !

Dz

Dwd

Dwx

Dwp

0

B

B

B

@

1

C

C

C

A

¼ ÿ

JT
kHk ÿ wk

diagðdkÞw
d
k ÿ me

diagðxkÞw
x
k ÿ me

diagðpkÞw
p
k ÿ me

0

B

B

B

B

@

1

C

C

C

C

A

. (8)

In other words, I omit the second-order information of the system of equations

HðzÞ ¼ 0. The second-order term LkHk can be neglected, as Hk is small near the

solution zk of system (6). Most of the computational cost of an interior-point

method is associated with the computation of the search direction. By exploiting the

special features of the problem, I reduce the computational cost within the algorithm

in terms of function evaluations and number of iterations.

In addition, some components of the next iterate ðzkþ1;w
d
kþ1;w

x
kþ1;w

p
kþ1Þ should be

forced to remain strictly positive, a requirement that is achieved by rescaling the

search direction ðDz;Dwd;Dwx;DwpÞ. In particular, to ensure dkþ1, xkþ1, pkþ1, w
d
kþ1,

wx
kþ1, w

p
kþ140, scalars adk , axk , apk , awd

k
, awx

k
and awp

k
must be chosen such that

dk þ adkDd40, xk þ axkDx40, pk þ apkDp40, wd
k þ awd

k
Dwd

k40, wx
k þ awx

k
Dwx

k40

and w
p
k þ awp

k
Dw

p
k40. These parameters are called steplength parameters. Therefore,

at iteration k,

adk ¼ min 1;min ÿ
dki

Ddi
s:t: Ddio0

� �� �

,

axk ¼ min 1;min ÿ
xki

Dxi
s:t: Dxio0

� �� �

,

apk ¼ min 1;min ÿ
pki
Dpi

s:t: Dpio0

� �� �

,

awd
k
¼ min 1;min ÿ

wd
ki

Dwd
ki

s:t: Dwd
kio0

( )( )

,

awx
k
¼ min 1;min ÿ

wx
ki

Dwx
ki

s:t: Dwx
kio0

� �� �

,

and

awp

k
¼ min 1;min ÿ

w
p
ki

Dw
p
ki

s:t: Dwp
kio0

� �� �

,

where ðdki; xki; pki;w
d
ki;w

x
ki;w

p
kiÞ and ðDdi;Dxi;Dpi;Dw

d
ki;Dw

x
ki;Dw

p
kiÞ are the ith

component of vectors ðdk; xk; pk;w
d
k;w

x
k;w

p
kÞ and ðDd;Dx;Dp;Dwd;Dwx;DwpÞ.

An additional condition on a is required to ensure global convergence of fzkg;

namely, the scalar azk should be chosen such that the objective function 1
2
kHðzÞk22 ÿ

mðlog dþ log xþ log pÞ decreases sufficiently in each iteration zk (Armijo’s rule) and



the choice azk is not too far from a minimizer of the objective function (Goldstein’s

rule). If these requirements are not satisfied, azk should be modified. Because these

criteria help us to find an appropriate step length azk , they are called line-search

methods. This procedure relies on a univariate function called merit function mðaÞ,

to measure the progress of the algorithm. A suitable merit function for the algorithm

is

mðaÞ ¼ 1
2
kHðzþ aDzÞk22 ÿ mðlogðdþ aDdÞ þ logðxþ aDxÞ þ logðpþ aDpÞÞ.

(Other examples of merit functions can be found in Nocedal and Wright, 1999).

Then azk results in a sufficient decrease if

mðazk Þpmð0Þ þ razk,mð0ÞTDz, (9)

jrmðazk Þ
T
DzjpZjrmð0ÞTDzj, (10)

where 0oroZo1. Otherwise azk should be reduced until conditions (9) and (10) are

satisfied. In particular, when azk does not satisfy (9) and (10), then I consider an

update of the steplength as azk=2.
The complete iteration of the algorithm requires an update of the barrier

parameter m. This update should be carefully defined to obtain a rapidly convergent

algorithm. The choice of m is based on the satisfaction of the complementarity

conditions w ¼ mS 1e. Then the new value of m at the kth iteration is

mkþ1 ¼ g
zTkwk

n
¼ g

dTkw
d
k þ xTkw

x
k þ pTkw

p
k

n
, (11)

where 0pgo1 and n is the number of simple bounds (i.e. the dimension of vector

ðd;x; pÞ). This definition ensures that m ! 0 if Problem (5) has a solution. When I

choose g close to 0, I am requiring a rapid convergence of m to 0. The choice of the

updating parameter g may significantly affect the efficiency of the overall method.

The algorithm terminates when the following stopping criteria are satisfied:

JðzÞTHðzÞ ÿ w ¼ 0

diagðdÞwd ÿ me ¼ 0

diagðxÞwx ÿ me ¼ 0

diagðpÞwp ÿ me ¼ 0
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2

p�SIZE, ð12Þ

kHðzÞk22p�TOL. ð13Þ

The stopping criterion (12), hereafter called the first stopping criterion, is related to

the fulfillment of the first-order KKT conditions for Problem (5) and guarantees the

boundedness of the variables. The stopping criterion (13), which I call the second

stopping criterion, guarantees satisfaction of the optimality conditions for the

existence of equilibria under convexity assumptions. Therefore, if the algorithm

converges, it converges to an equilibrium of the economy.



3.1. The algorithm: general formulation

In the preceding description of the algorithm, I have considered simple lower-

bounds in order to simplify the exposition. The generalization of this algorithm to

problems such that HðzÞ ¼ 0 where z lie between the given bounds l4ÿ1 and

uo1 (i.e. lpzpu) is straightforward. First, I rewrite the problem as HðzÞ ¼ 0 with

zÿ lX0 and uÿ zX0, and then the finite bounds will be included in the objective

function via logarithmic barrier terms. Therefore, I consider two auxiliary vectors of

variables w1 and w2, defined by the nonlinear transformation w1 ¼ mðzÿ lÞ 1 and

w2 ¼ mðuÿ zÞ 1. Assuming that z 2 RN , there 2N bounds of the type zÿ lX0 and

uÿ zX0, and therefore, each auxiliary vector w1 and w2 has N components. Let

L;U ;Z;W 1;W 2 be diagonal matrices, the diagonal entries of which are the

components of vector l; u; z;w1;w2.

A summary of the proposed interior-point algorithm is:

Step 1. Select the parameters r 2 ð0; 1Þ, y 2 ð0; 1Þ, g 2 ½0; 1Þ, the tolerance �SIZE, and
the final stop tolerance �TOL. Initialize variables ðz;w

1;w2Þ and set the initial value of

the barrier parameter m as

m ¼ g
ðzÿ lÞTw1 þ ðuÿ zÞTw2

2N
. (14)

Step 2. Evaluate the objective function and its derivatives at ðz;w1;w2Þ. Repeat

until

JTH ÿ w1 þ w2

ðZ ÿ LÞw1 ÿ me

ðU ÿ ZÞw2 ÿ me
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C

A











































p�TOL

and (13) are satisfied:

Step 2.1. Compute a Newton search direction:

JTJ ÿI I

W 1 ðZ ÿ LÞ 0

ÿW 2 0 ðU ÿ ZÞ

0

B

@

1

C

A

Dz

Dw1

Dw2

0

B

@

1

C

A
¼ ÿ

JTH ÿ w1 þ w2

ðZ ÿ LÞw1 ÿ me

ðU ÿ ZÞw2 ÿ me

0

B

@

1

C

A
.

Step 2.2. Compute scalars az, aw1 and aw2 such that:

az ¼ min 1;min ÿ
ðzi ÿ liÞ

Dzi
s:t: Dzio0

� �

;min ÿ
ðui ÿ ziÞ

Dzi
s:t: Dzio0

� �� �

,

aw1 ¼ min 1;min ÿ
w1
i

Dw1
i

s:t: Dw1
i o0

� �� �

,

aw2 ¼ min 1;min ÿ
w2
i

Dw2
i

s:t: Dw2
i o0

� �� �

,

and update az until (9) and 10) are satisfied.



Step 2.3. Update variables as zþ az Dz and wþ awDw.

Step 2.4. Update parameter m as described in (14).

Some of the entries in l and u can be equal to ÿ1 and 1. If the ith component of

li is equal to ÿ1 and the ith component of ui is equal to 1, the ith component of

variable z is unconstrained, and the ith component of the auxiliary variables w1 and

w2 are zero. This is the case presented in the beginning of Section 3. In case that the

ith component of li is equal to ÿ1 but the ith component of ui is less than 1, the ith

component of the auxiliary variable w1 should be greater than zero and the ith

component of the auxiliary variable w2 should be zero. The same argument can be

applied to any variable in the model.

There are many different types of interior-point algorithms with certain common

mathematical themes having to do with the logarithmic barrier function. The

distinguishing feature of the algorithm is the use of a Gauss–Newton approximation

of the search direction. In the Appendix I analyze the convergence properties of this

variant and prove that, under mild conditions, the algorithm globally converges to

KKT points (i.e. solution points of the system of equations given by (2)–(4)). Also I

prove that the algorithm converges quadratically, which broadly means that the

number of correct figures in zk eventually doubles at each step.

3.2. Practical implementation issues

The algorithm described in the preceding section includes certain parameters and

conditions that have not yet been completely specified. In the following paragraphs I

indicate how these implementation issues were treated.

3.2.1. Choosing the initial point

The algorithm performs better if the starting point ðz0;w0Þ meets the bound

constraints. For simplicity, the algorithm sets the auxiliary variables w0 and

d0; y0; p0; q0 equal to a vector of ones and x0 equal to the initial endowment.

3.2.2. Choosing the parameters

In the implementation, a current iterate is considered optimal when �TOL ¼ 10 14

and �SIZE ¼ 10 10. The Armijo and Goldstein parameters are r ¼ 0:0001 and

Z ¼ 0:9. The choice of the parameter m is based on the satisfaction of the

complementarity conditions and depends on the parameter g. Typically, g ¼ 0:1.

3.2.3. Computing the search direction

The computationally most expensive part of an interior-point algorithm is the

computation of the Newton search direction, because this calculation involves the

solution of a potentially large system of linear equations. It is important to note that

the matrix

JT
kJk ÿI

W k Zk

 !

(15)



is sparse—that it contains a significant number of zero-valued elements. Note that

matrices I , W k, and Zk are diagonal and, furthermore, that Jk is of the form

Jk ¼

rxu r2
xu 0 ÿI 0

0 P V X U

0 0 0 FA 0

0 I 0 0 0

0 0 I 0 0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

,

where rxu and r2
xu are diagonal matrices because the vector has the form

ðu1ðx10; . . . ; x1SÞ; . . . ; uI ðxI0; . . . ;xISÞÞ; P is the diagonal matrix of the prices vector

ðp0; p1; . . . ; pSÞ; X is the diagonal matrix of the consumption allocations for all

consumers ðx10; . . . ;x1S; . . . ; xi0; . . . ; xiS; . . . ; xI0; . . . ; xISÞ; F is the diagonal matrix of

the auxiliary variables ðd10; . . . ; d1S; . . . ; di0; . . . ; diS; . . . ; dI0; . . . ; dISÞ; V is the full

matrix of returns; and U is an auxiliary matrix, respectively, defined as

V ¼
q

ÿA

� �

; U ¼
e1�C

0S�C

 !

.

This sparsity can and should be exploited to improve the computational efficiency.

In the computational results reported in the next section, I exploit the sparsity

properties of the full matrix (15), which reduces computation time by eliminating

operations on zero elements.

4. Numerical examples

The algorithm has been implemented in MATLAB 6.5 on an Intel Centrino

Pentium M 1.6GHz with machine precision 10 16. The first example is intended to

show how the algorithm is set up and to compute a GEI equilibrium.

Example 2 (Two-period exchange economy. DeMarzo and Eaves, 1996). Consider a

two-period exchange economy with three consumers, three states in the second

period, two assets, and two goods. Each consumer i has a utility function of the form

uiðxÞ ¼
P3

s¼0 psðBÿ xais1x
1 ai
s2 Þ, with parameters B ¼ 57, p ¼ ð1; 1

3
; 1
3
; 1
3
Þ, a1 ¼ a2 ¼

3
4

and a3 ¼
1
4
. The agent’s endowments are w1 ¼ w2 ¼ ð10; 10; 25; 20; 20; 20; 15; 20ÞT and

w3 ¼ ð20; 20; 5; 10; 10; 10; 15; 20ÞT. The asset matrix A is given by

AT ¼
1 0 1 0 1 0

2 ÿ1 1 0 2 ÿ1

� �

.

For this example, H �ð Þ ¼ 0 is a system of 52 equations withh 52 variables (the

auxiliary variables d� 2 R12
þþ and the equilibrium ðx�; y�; p�; q�Þ 2 R40). Taking as an

initial point d0 ¼ e, x10 ¼ w1, x20 ¼ w2, x20 ¼ w3 and y0; p0; q0 ¼ e, where e is a

vector of ones, the algorithm converges in 0.56 s (20 iterations) with an error of

�SIZE ¼ 10 14. Table 1 shows the iterates of the portfolio allocations for each

iteration until convergence. yði; cÞ denotes the portfolio decision of the asset c

by agent i.



Table 2 shows the values of the first and second stopping criteria and the

computation time for each iteration until convergence, which reveal the good

performance of the algorithm, even though it started from a poor initial point.

The following computations are intended to demonstrate how the algorithm

behaves in large-scale markets.

Example 3 (Large-scale computations). I consider four variations of the two-period

exchange economy described in DeMarzo and Eaves (1996). All the models consider

a two-period exchange economy with two goods, two assets with the asset matrix A

given in Example 1, and three states in the second period. Endowments and

constants of the utility function were randomly generated using: wi�U½0:75; 1:25�
and ai�U½0; 1� for each consumer i. However, Model 1 considers three agents, Model

2 has 15 agents, Model 3 consists of 30 agents, and Model 4 has 60 agents. Table 3

shows the number of variables and equations for each model and the number of

iterations and running times until convergence with an error of �SIZE ¼ 10 14. For all

models, the algorithm converges to an equilibrium in a moderate number of

iterations, which illustrates its rapid convergence. The scale of the problem only

affects the cost of computation, mainly because of the cost of function evaluations.

The fourth example illustrates the behavior of the algorithm if the economy has no

equilibrium.

Table 1

Iterates of the portfolio allocations approaching convergence in Example 2

Iterations y (1,1) y (1,2) y (2,1) y (2,2) y (3,1) y (3,2)

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 7.5882 7.4157 13.6431 13.4706 20.3205 21.7970

3 5.3402 3.1748 11.1594 7.7269 16.4392 10.9132

4 1.6257 4.5227 10.2507 12.8887 11.8786 17.4080

5 4.5801 6.4406 8.3884 9.3628 12.9683 15.8037

6 1.6009 5.3987 2.5987 6.2855 4.1996 11.6842

7 1.2995 3.9109 1.0984 4.0964 2.3979 8.0074

8 0.7307 4.3251 0.7121 4.3375 1.4428 8.6626

9 0.6793 4.4071 0.6604 4.4248 1.3397 8.8319

10 0.6463 4.4258 0.6464 4.4253 1.2927 8.8512

11 0.6359 4.4387 0.6342 4.4404 1.2700 8.8791

12 0.6355 4.4379 0.6356 4.4378 1.2711 8.8757

13 0.6340 4.4397 0.6338 4.4398 1.2678 8.8795

14 0.6342 4.4393 0.6342 4.4393 1.2685 8.8786

15 0.6340 4.4395 0.6340 4.4396 1.2680 8.8791

16 0.6341 4.4395 0.6341 4.4395 1.2681 8.8790

17 0.6340 4.4395 0.6340 4.4395 1.2681 8.8790

18 0.6340 4.4395 0.6340 4.4395 1.2681 8.8790

19 0.6340 4.4395 0.6340 4.4395 1.2681 8.8790

20 0.6340 4.4395 0.6340 4.4395 1.2681 8.8790



Example 4 (One-period exchange economy with no equilibria). Suppose there is no

first period. Consider a one-period exchange economy with two consumers, two

states, two assets, and two goods. Each consumer i has a utility function of the form

U iðxÞ ¼ uiðx1Þ þ uiðx2Þ, with

uiðx1Þ ¼
1
3
logðxs1Þ þ

2
3
logðxs2Þ; uiðx2Þ ¼

2
3
logðxs1Þ þ

1
3
logðxs2Þ.

The agent’s endowments are w1¼ð1ÿ$; 1ÿ$;$;$ÞT and w2¼ð$;$; 1ÿ$; 1ÿ$ÞT

for some positive $o1
2
. For this example, Hðd�;x�; y�; p�; q�Þ ¼ 0 is a system of 20

equations with 20 variables. I assume that there are bounds only on the auxiliary

variables d� 2 R4
þþ, i.e. lpd� with l ¼ ð0; 0; 0; 0Þ.

Table 2

Iterates of the first and second stopping criteria, the penalty parameter m, and the cumulative CPU time

(seconds) until convergence

Iterations 1st stopping criterion 2nd stopping criterion m CPU time

0 8915.4541 8500.9862 0.9091 0.06

1 3477.7741 98373.5254 0.0941 0.1

2 1488.1517 71632.9528 0.0209 0.11

3 238.2734 112039.2402 0.0086 0.12

4 2.4820 9962.1706 0.0019 0.13

5 0.1586 2032.0153 0.0004 0.15

6 0.1300 847.0930 0.0001 0.16

7 0.0209 340.7255 0.0000 0.17

8 0.0069 60.4907 0.0000 0.18

9 0.0012 12.7272 0.0000 0.19

10 0.0004 2.4646 0.0000 0.2

11 0.0001 0.6478 0.0000 0.21

12 0.0000 0.2791 0.0000 0.23

13 0.0000 0.1302 0.0000 0.24

14 0.0000 0.0762 0.0000 0.25

15 0.0000 0.0409 0.0000 0.26

16 0.0000 0.0272 0.0000 0.27

17 0.0000 0.0113 0.0000 0.29

18 0.0000 0.0100 0.0000 0.3

19 0.0000 0.0003 0.0000 0.31

20 0.0000 0.0000 0.0000 0.33

Table 3

Number of iterations and running times for four different models

Number variables/equations Number of iterations CPU (seconds)

Model 1: 3 agents 52 22 0.51

Model 2: 15 agents 260 26 4.09

Model 3: 30 agents 520 29 20.71

Model 4: 60 agents 1040 32 216.89



This economy has no equilibrium (see Hart, 1975) and the algorithm does not

converge. The collinearity of the return matrix makes system (7) incompatible, and

consequently the algorithm indicates that an unbounded search direction in the

portfolios iterates should be taken from the initial point (the computed search

direction is infinite). In other words, the algorithm fails to converge.

5. Summary and conclusions

In this paper I describe an efficient algorithm for the computation of equilibria in

general equilibrium models with incomplete asset markets. The procedure is based on an

interior-point method to define the search direction for the new iterates. Particular care

has been taken to reduce the computational cost, avoiding the use of second-order

information for the more complicated elements of the problem. The algorithm has

proven to be globally convergent and the local convergence rate is quadratic.

Given its practicability and efficiency, this algorithm seems to be a interesting

alternative for computing equilibria when the existing homotopy continuation

approaches are difficult to apply.
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Appendix A

A.1. Convergence properties of the algorithm

To prove convergence properties of the proposed algorithm, we must ensure a

sufficient descent on the merit function in every iteration, and this function should be

bounded below. For the sake of a clearer presentation, I consider the problem:

Hðz�Þ ¼ 0, where z� 2 RN
þ , and let w be an auxiliary variable, so that w ¼ mZ 1e

where Z ¼ diagðzÞ. Then, let us denote

Fmðzk;wkÞ ¼
JT
kHk ÿ wk

Zk Wk ÿ mke

 !

; Hmðzk;wkÞ ¼
JT
kJk ÿI

W k Zk

 !

.

The convergence of the algorithm is obtained under the following conditions:

A.1. The second derivatives of H are Lipschitz continuous on the region defined by

the bounds.

A.2. Strict complementarity holds at all first-order KKT points (i.e. w�
i 40 for i 2

fijz�i ¼ 0g and vice versa).

A.3. The matrix J has full rank at all first-order KKT points.



A.4. For a positive constant M, and any vector v 2 RN

1

M
kvk2pvTJTJvpMkvk2.

The basic GEI model describes an economy with agents represented by smooth,

strictly monotone and strictly convex preferences. The smoothness property implies

Condition A.1. Conditions A.2 and A.3 ensure that the matrix Hmðzk;wkÞ is non-

singular (assuming Condition A.1, both statements are equivalent) and the inverse of

Hmðzk;wkÞ is uniformly bounded near the solution. Condition A.3 is trivially

satisfied if As has full rank and strict complementarity holds. Condition A.2 limits

the applicability of the algorithm, as there could be economies with equilibria which

do not satisfy the strict complementarity assumption. In these cases, we can consider

other interior-point approaches, for example, Heinkenschloss et al. (1999).

Condition A.4 holds under strictly convex preferences assumption. Conditions A.3

and A.4 ensure the positive definiteness of JTJ, which guarantees that the search

direction is always well-defined.

I start by stating the boundedness of dual variables fwkg.

Lemma 5. For a fixed m, the lower bounds and the upper bounds of the box constraints

in the dual step-size rule are bounded away from zero and bounded from above, if the

corresponding components of zk are also bounded above and away from zero.

Proof. See Yamashita (1998). &

As a consequence, the elements of Z 1
k W k are bounded above and non-zero and,

by Assumption A.4, there exists a positive constant N such that

ð1=NÞkvk2pvTðJT
kJk þ Z 1

k W kÞvpNkvk2.

I now show that Dz is a descent direction for the merit function mðaÞ.

Theorem 6. For a fixed m, Dz is a descent direction for the merit function mðaÞ, i.e.

,mð0ÞTDzp0.

Proof. Note that the direction Dz is given as

ðJT
kJk þ Z 1

k W kÞDz ¼ ÿðJT
kHk ÿ mZ 1

k eÞ.

Then

DzT,mð0Þ ¼ DzTðJT
kHk ÿ mZ 1

k eÞ

¼ ÿ DzTðJT
kJk þ Z 1

k W kÞDzp0: &

By definition, the step size a is always bounded. I next prove that a is also non-zero.

Lemma 7. The step size a is always bounded and non-zero.

Proof. Assume that a is reduced infinitely. This means that the descent condition

does not hold; therefore

mð0Þ ÿmðaÞpÿ ra,mð0ÞT DzT; for all a. (16)



From the Taylor expansion, I have mðaÞ ÿmð0Þ ¼ a,mð0ÞTDzþ oðaÞ. Then for a

small enough a, using Theorem 6,

mðaÞ ÿmð0Þ ÿ ra,mð0ÞTDzT ¼ ð1ÿ rÞa,mð0ÞTDzTp0,

which contradicts (16). &

The next two results prove the global convergence of the algorithm for a fixed m.

Lemma 8. For a fixed m, assume also that at any initial point z0, the set fz :

mðzk; mÞpmðz0; mÞg is bounded. Then limk!1kDzk ¼ 0.

Proof. Assume limk!1kDzkXe40. Using the descent lemma (see Bertsekas, 1995,

p. 553)

mðzkþ1; mÞ ÿmðzk; mÞpa,mðzkÞ
T
Dzþ 1

2
Ka2kDzk2p1

2
Ka2kDzk2

for some positive constant K , as m is a Lipschitz continuous function and Dz is a

descent direction of the merit function m, using Theorem 6.

By hypothesis, the sequence fmðzk; mÞg converges and limk!1ðmðzk; mÞ

ÿmðzkþ1; mÞÞ ¼ 0, thus

mðzk; mÞ ÿmðzkþ1; mÞXÿ
1

2
KLa2kDzk2 ! 0,

which implies kDzk ! 0, using Lemma 7. &

Theorem 9. For a fixed m, the algorithm terminates at a point, satisfying the perturbed

optimality conditions (6).

Proof. As Dw ¼ ÿðW k ÿ m Z 1
k eþ Z 1

k W kDzÞ and limk!1kDzk ¼ 0, by Lemma 8,

the following holds:

lim
k!1

kwk þ Dwÿ mZ 1
k ek ¼ 0.

Therefore, there exists a vector w� such that limk!1kwk þ Dwk ¼ mZ 1
� e.

Furthermore, the first equation of system (6) satisfies

ðJT
kJk þ Z 1

k W kÞDz ¼ ÿðJT
kHk ÿ m Z 1

k eÞ,

and letting k ! 1,

lim
k!1

kJT
kHk ÿ mZ 1

k ek ¼ 0,

i.e. there exists a z� such that JT
�H� ÿ mZ 1

� e ¼ 0. Then ðz�;w�Þ is a solution of the

perturbed optimality conditions (6). &

The convergence of the algorithm can be proven using the next theorem.

Theorem 10. Suppose that Assumptions A.1–A.4 hold. The limit of sequence fðzk;wkÞg

exists and satisfies the optimality conditions of Problem (5).

Proof. Note that the definition of mk ensures that fmkg is positive and monotonically

decreasing with m ! 0. Thus, it follows from Theorems 9 and 10 that the algorithm

terminates at a point ðzk;wkÞ, satisfying the optimality conditions of Problem (5).



Using analogous arguments to those discussed in Akrotirianakis and Rustem

(2000), it is satisfied limk!1kFmðzk;wkÞk2 ¼ 0. &

Next I prove the Q-quadratic convergence of the algorithm. First, I present an

auxiliary result.

Lemma 11. Suppose that Assumptions A.1–A.4 hold. Then

kLk ÿ IkpOðkFmðzk;wkÞkÞ þOðmkÞ,

where Lk ¼ diagðakÞ.

Proof. See Yamashita and Yabe (1996). &

Using this lemma, I establish the quadratic convergence of the algorithm.

Theorem 12. Suppose that Assumptions A.1–A.4 hold and that the sequence fðzk;wkÞg

generated by the proposed algorithm converges to the solution ðz�;w�Þ. Assume that

mk ¼ OðkFmðzk;wkÞkÞ. Then there exists e40 such that for all ðz0;w0Þ 2 Bððz�;w�Þ; eÞ,
the sequence fðzk;wkÞg is well defined and converges to ðz�;w�Þ Q-quadratically.

Proof. Denote hk ¼ ðzk;wkÞ and h� ¼ ðz�;w�Þ. Since h0 2 Bðh�; eÞ, kh0 ÿ h�koe.

Assume khk ÿ h�koe, then

hkþ1 ÿ h� ¼ hk þ LkðDz;DwÞ ÿ h� ¼ hk ÿ LkHmðhkÞ
1
FmðhkÞ ÿ h�

¼ Hmðzk;wkÞ
1½LkFmðh

�Þ ÿ LkFmðhkÞ þHmðzk;wkÞðhk ÿ h�Þ�

¼ LkHmðzk;wkÞ
1½Fmðh

�Þ ÿFmðhkÞ þHmðzk;wkÞðhk ÿ h�Þ�

ÿðLk ÿ 1Þðhk ÿ h�Þ.

Taking Euclidean norms, I have

khkþ1 ÿ h�kpkHmðzk;wkÞ
1kOðkhk ÿ h�k2Þ þ kLk ÿ 1kkhk ÿ h�k

pOðkhk ÿ h�k2Þ þ ½OðkFmðhkÞkÞ þOðmkÞ�khk ÿ h�k.

From Assumption A.1, H is Lipschitz continuous, and therefore there exists a

constant N40 such that, for all ðzk;wkÞ 2 Bððz�;w�Þ; eÞ,

kFmðhkÞk ¼ kFmðhkÞ ÿFmðh
�ÞkpNkhk ÿ h�k.

Then there exists a constant x40, such that khkþ1 ÿ h�kpxkhk ÿ h�k2. Hence the

sequence fðzk;wkÞg converges Q-quadratically to ðz�;w�Þ. &
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