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RESUMEN EXTENDIDO

Este resumen contiene una descripcion de los aspectos mds relevantes de la pre-
sente tesis doctoral. Comienza motivando el trabajo desarrollado especificando
los objetivos fundamentales e incluyendo una breve exposicion de las contribu-
ciones originales. A continuacion, presenta las principales conclusiones alcan-
zadas durante la investigacion y traza una seria de lineas de trabajo futuras rela-
cionadas con las contribuciones generadas.

Motivacion de la tesis

La vision artificial es una disciplina cientifica que trata de generar maquinas con
capacidad de comprender el mundo visual de una forma similar a como lo hace-
mos los seres humanos. Millones de afios de evolucion han convertido la tarea
de navegar y comprender nuestro entorno en sencilla pero, dado que no hemos
conseguido esa habilidad mediante la implementacion de complejos modelos
matematicos que la expliquen, realmente no entendemos cémo el cerebro la
realiza. Esto es lo que convierte a la disciplina de la vision artificial en algo de-
safiante. Cuatro decadas tras los primeros intentos por atacar este problema [1]
todavia somos incapaces de crear ingenios mecanicos con una capacidad visual
similar a la nuestra.

En el mundo moderno, millones de imagenes son generadas y almacenadas
a diario utilizando todo tipo de sensores. Existe una necesidad creciente de
nuevos métodos basados en la vision artificial para indexar esos contenidos de
forma que puedan ser navegados y recuperados de manera eficiente. Utilizar
los nombres de los propios ficheros o descripciones textuales generadas por los
usuarios, no es una alternativa satisfactoria para indexar las imagenes, debido a
la cantidad de descripciones ausentes y erréneas que la anotacién manual intro-
duce. Otra aproximacion a este problema consiste en utilizar herramientas au-
tomaticas basadas en vision artificial para generar descripciones de los archivos
basadas en su contenido. Estas descripciones automadticas estd pensadas para
que una maquina pueda tomar decisiones basandose en ellas. Asi, dada una im-
agen consulta o guery, ésta se utiliza para localizar otros elementos relaciona-
dos en una base de datos. Este proceso es conocido como Recuperacion de
Iméagenes Basada en Contenido o CBIR por sus siglas en inglés (Content-Based
Image Retrieval).

Hoy en dia, las herramientas software mas utilizadas para generar descrip-
ciones automdticas de los archivos multimedia basandose en su contenido son
las Redes Neuronales Convolucionales (CNNs) [2]. Estos modelos profundos
han revolucionado el campo de CBIR; sin embargo, presentan algunas lim-
itaciones importantes que lastran su adopcion para atacar ciertos escenarios.
Con las arquitecturas actuales [3], cuanto mas profundo sea el modelo mejores
prestaciones pueden alcanzarse. Sin embargo, a medida que aumenta el tamafio



de la red, también lo hace la cantidad de ejemplos necesarios en la base de datos
para entrenarla y explotar todo su potencial. Estas grandes bases de datos, que
tipicamente incluyen millones de muestras, no deben contener errores en el eti-
quetado de las imdgenes. En trabajos previos se ha demostrado cdmo pequeiios
porcentajes de ruido en las anotaciones dafan seriamente la capacidad de las
redes utilizadas para CBIR [4]. Por ello, las CNNs necesitan grandes bases de
datos de entrenamiento libres de errores. Estas son dificiles de conseguir en
la prictica, porque las personas cometen errores al etiquetar debido a la fatiga
y las distracciones. Ademads, el esfuerzo humano necesario para anotar tales
bases de datos se ha vuelto prohibitivo a medida que éstas crecian de tamano.
Para empeorar la situacion, algunos estudios han demostrado que el tipo de ob-
jetos contenidos en las muestras de entrenamiento deben ser los mismos que se
esperan en test para conseguir un rendimiento éptimo [5]. Es por ello que se
necesita una nueva base de datos de gran tamafio y libre de errores cada vez
que cambia el dominio de la aplicacién CBIR para la cual queremos explotar
una CNNs. Para enfrentarse a esta problemadtica algunos autores han propuesto
herramientas automdticas que permitan generar grandes bases datos de entre-
namiento [6]. Desafortunadamente, los métodos automaticos son complejos
y estan adaptados al tipo de objetos presentes en las imagenes, lo que limita
su rapida adopcién en nuevos escenarios, reduciendo su aplicabilidad. Por otro
lado, las aproximaciones automaticas introducen sesgos en las bases de datos en
funcién del procedimiento empleado, lo que dafia las prestaciones del sistema
final.

Objectivos y contribuciones originales

Para incrementar la aplicabilidad de los modelos convoluciones profundos a
nuevos problemas de CBIR, en esta tesis proponemos dos funciones de coste
que permiten entrenar dichas redes utilizando bases de datos ruidosas:

1. Una funcidén de coste que emplea etiquetas blandas y permite especializar
CNNs generalistas, adaptdndolas a diferentes dominios, utilizando bases
de datos ruidosas. Estos conjuntos ruidosos son mads ficiles de obtener
sin intervencién humana, lo que aumenta la aplicabilidad de estas redes
para tareas de CBIR. En particular, la funcién propuesta emplea conjunta-
mente contenido y meta datos de las imagenes para inferir etiquetas blan-
das que se adaptan mejor al ruido, permitiendo hacer un ajuste fino de los
modelos generalistas. Para ilustrar un caso de uso de nuestra funcién y
medir sus prestaciones, se ha realizado una bateria de experimentos que
demuestran las posibilidades de nuestro método cuando este se aplica a la
tarea de descubrimiento automatico de lugares de interés.

2. Una segunda funcién de coste capaz de manejar la presencia de anota-



ciones ruidosas basandose unicamente en el contenido de las imagenes.
En particular, proponemos una funcioén exponencial novedosa basada en
bolsas de muestras que se inspira en las técnicas de aprendizaje miltiple o
MIL por sus siglas en inglés (Multiple Instance Learning). El fundamento
del método es pesar de manera dindmica la contribucion de cada instancia
dentro de las bolsas. con el objetivo de que los ejemplos mal etiquetados
pierdan su influencia nociva a la hora de ajustar el modelo. Los experi-
mentos realizados muestran la superioridad de nuestra aproximacién con
respecto a otros métodos del estado del arte. Ademas, estos resultados
permiten adoptar un nuevo paradigma a la hora de enfrentar problemas
de CBIR: permitir que las CNNs aprendan los mejores patrones visuales
para resolver un problema, al mismo tiempo que deciden de qué muestras
aprenderlos.

Conclusiones

En este trabajo nos hemos centrado en el problema de la recuperacion de imédgenes
basada en contenido. Se han presentado dos funciones de coste para entrenar
redes convolucionales profundas que generan descriptores globales adecuados
para este problema. La principal novedad de nuestras propuestas con respecto
a las existentes en la literatura, es que nuestras aproximaciones son capaces de
manejar el ruido en las bases de datos de manera explicita, en contraste con
los métodos habituales que filtran el ruido antes de comentar el entrenamiento
mediante complejas técnicas adaptadas a la naturaleza de las imagenes. Tener
la capacidad de entrenar con bases de datos ruidosas es preferible a un pre-
procesado por dos razones fundamentales: 1) se evita el sesgo introducido por
el método automadtico utilizado para eliminar el ruido del conjunto de entre-
namiento; 2) permite generar soluciones para CBIR basadas en CNNs de man-
era mucho mads 4gil, ya que no es necesario diseilar una compleja etapa previa
de filtrado que permita eliminar el ruido antes de poder entrenar el modelo.

En el Capitulo 3 de la tesis se presenta una funcion de correspondencia
blanda (Soft-Matching (SM) loss) capaz de adaptar CNNs generalistas a nuevos
dominios utilizando bases de datos de entrenamiento ruidosas. En concreto, la
funcidén de pérdida explota el propio contenido de las imdgenes junto con meta
datos asociados a éstas, para inferir etiquetas blandas que se adaptan mejor
al ruido que las etiquetas tradicionales binarias. Esto permite llevar a cabo
la especializacion de los modelos. El método se presenta utilizando un tipo
particular de meta datos, coordenadas GPS; sin embargo, la filosofia empleada
puede ser extensible a otro tipo de aplicaciones y tipos de meta datos como se
discute en la Seccién 3.2.4 de este manuscrito. En el Capitulo 4 se demustra que
nuestra funcion es util para realizar la especializacion de modelos generalistas,
aunque presenta dos importantes limitaciones: 1) la funcién propuesta necesita



algtn tipo de supervision blanda para generar las etiquetas necesarias para el
entrenamiento; 2) las etiquetas se fijan antes de comenzar a entrenar el modelo,
basdndose en los descriptores globales producidos por el modelo generalista, lo
que condiciona las prestaciones que puede alcanzar la red especializada.

El Capitulo 4 explora los efectos de especializar CNNs utilizado la funcion
de coste SM propuesta en el Capitulo 3. Para tal proposito, se disefia un sis-
tema de descubrimiento automdtico de lugares de interés y las prestaciones del
modelo generalista se comparan contras las de los modelos especializados uti-
lizando la funcién de coste propuesta. Los experimentos muestran que nuestras
redes consiguen mejorar hasta en un 55% las prestaciones de los modelos gen-
eralistas en la tarea. Esto implica que las redes profundas consiguen aprender
las pistas visuales y peculiaridades de la region para la cual han sido entre-
nadas, generando descriptores de imdgenes que estan mejor adaptados a la lo-
calizacion. Ademds, para aquellos lugares de interés que no estaban presentes
en las bases de datos, o incluso otras ciudades distintas, nuestros modelos re-
tienen las prestaciones de las redes originales de las que derivan, lo que indica
una buena resiliencia al sobre ajuste.

La segunda contribucion de la tesis es la funcion de pérdida exponencial
en bolsa (Bag Exponential (BE) Loss) que se presenta en el Capitulo 5. Esta
funcién estd inspirada en el aprendizaje multi-instancia (MIL) y trabaja con
bolsas de pares de imagenes en lugar de pares aislados. Esto permite pesar
la relevancia de cada muestra de entrenamiento dindimicamente, a medida que
progresa el modelo. La funcién BE aumenta la aplicabilidad de las CNNs a
problemas de CBIR, dado que el proceso de limpieza de las bases de datos
de entrenamiento es uno de los mds intensivos en horas de trabajo, y nuestro
sistema lo convierte en innecesario. Ademads, al permitir que sean los propios
modelos profundos los que manejen el ruido, eliminamos los sesgos introduci-
dos por los algoritmos de filtrado. Del mismo modo que las CNNs aprenden los
mejores patrones visuales para resolver una tarea especifica, proponemos este
mecanismo que las habilita también para decidir de qué muestras aprenderlos
para optimizar los resultados.

El Capitulo 6 explora los efectos de entrenar CNNs para CBIR utilizando
la funcién BE presentada en el Capitulo 5. Los resultados experimentales nos
permiten extraer las siguientes conclusiones: 1) la funcién BE es mas robusta
al ruido en las bases de datos de entrenamiento que las alternativas presentes
en la literatura; 2) la formulaciéon que define nuestra funcién de coste es lo
suficientemente general para ser aplicada con otros propositos diferentes a la
lucha contra el ruido. Por ejemplo, puede ser utilizada para incrementar la
influencia de las muestras mas dificiles; 3) la manera mas efectiva y rdpida de
desplegar una CNN para CBIR en un nuevo dominio es emplear la funcién de
coste BE sobre una base de datos ruidosa; 4) la funcién propuesta mejora las
prestaciones del estado del arte al permitir al modelo elegir al mismo tiempo



no solo los mejores patrones visuales para resolver la tarea, sino también las
muestras de las cuales aprenderlos.

Lineas futuras de trabajo

Tras analizar las principales contribuciones y conclusiones del trabajo presen-
tado, a continuacion se exponen dos lineas futuras de investigacion de especial
relevancia.

En primer lugar, la funcién de coste SM propuesta en la primera parte de
la tesis ha sido utilizada para especializar CNNs a ciudades o regiones particu-
lares. Los modelos adquieren esta adaptacion a la regién, encontrando patrones
arquitectonicos especificos que diferencian a cada objeto de interés (un edificio,
estatua, fuente, etc,) del resto de objetos presentes en la zona. En otras palabras,
los modelos estan incentivados para ignorar aquellas caracteristicas visuales que
son comunes a todos los objectos de una regién. Por tanto, una extension natu-
ral de este trabajo consiste en modificar la funcién de coste propuesta para que
utilice otras fuentes de meta datos distintas, y pueda asi adquirir esta habilidad
€N NUevos escenarios.

Una de las principales limitaciones de la funcién SM es la necesidad de
contar con un modelo inicial general que permita fijar las etiquetas blandas
antes de comenzar el entrenamiento. El rendimiento final de este método esta
de algin modo limitado por las capacidades del método general inicial. El
desarrollo de nuevas técnicas que permitan actualizar las etiquetas a medida que
avanza el entrenamiento constituye otro importante campo de trabajo futuro.

En segundo lugar, la funcién BE propuesta en la segunda parte de la tesis
ha sido explotada para entrenar modelos profundos para CBIR bajo bases de
datos ruidosas. La hipoétesis bajo la que trabaja nuestro método es la siguiente:
asumiendo un conjunto de entrenamiento con un cierto porcentaje de ruido en
cada categoria, muestrear un unico par de imdgenes de una categoria concreta
puede dar lugar a una correspondencia falsa, causando inestabilidad durante
el entrenamiento. Sin embargo, si muestreamos una bolsa de pares suficien-
temente grande, aunque muchas muestras pueden ser ruidosas, debe haber al
menos algunas imédgenes relevantes y bien etiquetadas de las que aprender. La
manera mediante la cual la funcidén propuesta pesa la relevancia de cada par de
imagenes es mediante una funcién de similitud basada en distancias euclideas.

Una linea futura de trabajo interesante consiste en disefiar esquemas que
generen estos pesos basados en otros criterios. Por ejemplo: se puede considerar
la conectividad entre muestras, limites que saturen bajo similitudes muy grandes
o pequeias, o la inclusion de los falsos negativos en escenarios donde puedan
ser un problema.

Otra linea interesante consiste en transformar la funciéon BE de un método
basado en pares a uno basado en listas. Las funciones de coste basadas en listas



estan adquiriendo mucho protagonismo para la comunidad de la vision artificial,
debido a que optimizan las redes utilizando una métrica mds ajustada a la que

se emplea finalmente para evaluar, lo que puede incrementar el rendimiento del
sistema.






ABSTRACT

In this thesis we study loss functions that allow to train Convolutional Neu-
ral Networks (CNNSs) under noisy datasets for the particular task of Content-
Based Image Retrieval (CBIR). In particular, we propose two novel losses to fit
models that generate global image representations. First, a Soft-Matching (SM)
loss, exploiting both image content and meta data, is used to specialized general
CNNss to particular cities or regions using weakly annotated datasets. Second,
a Bag Exponential (BE) loss inspired by the Multiple Instance Learning (MIL)
framework is employed to train CNNs for CBIR under noisy datasets.

The first part of the thesis introduces a novel training framework that, rely-
ing on image content and meta data, learns location-adapted deep models that
provide fine-tuned image descriptors for specific visual contents. Our networks,
which start from a baseline model originally learned for a different task, are spe-
cialized using a custom pairwise loss function, our proposed SM loss, that uses
weak labels based on image content and meta data.

The experimental results show that the proposed location-adapted CNNs
achieve an improvement of up to a 55% over the baseline networks on a land-
mark discovery task. This implies that the models successfully learn the visual
clues and peculiarities of the region for which they are trained, and generate
image descriptors that are better location-adapted. In addition, for those land-
marks that are not present on the training set or even other cities, our proposed
models perform at least as well as the baseline network, which indicates a good
resilience against overfitting.

The second part of the thesis introduces the BE Loss function to train CNNss
for image retrieval borrowing inspiration from the MIL framework. The loss
combines the use of an exponential function acting as a soft margin, and a MIL-
based mechanism working with bags of positive and negative pairs of images.
The method allows to train deep retrieval networks under noisy datasets, by
weighing the influence of the different samples at loss level, which increases the
performance of the generated global descriptors. The rationale behind the im-
provement is that we are handling noise in an end-to-end manner and, therefore,
avoiding its negative influence as well as the unintentional biases due to fixed
pre-processing cleaning procedures. In addition, our method is general enough
to suit other scenarios requiring different weights for the training instances (e.g.
boosting the influence of hard positives during training). The proposed bag ex-
ponential function can bee seen as a back door to guide the learning process
according to a certain objective in a end-to-end manner, allowing the model to
approach such an objective smoothly and progressively.

Our results show that our loss allows CNN-based retrieval systems to be
trained with noisy training sets and achieve state-of-the-art performance. Fur-
thermore, we have found that it is better to use training sets that are highly
correlated with the final task, even if they are noisy, than training with a clean



set that is only weakly related with the topic at hand. From our point of view,
this result represents a big leap in the applicability of retrieval systems and help
to reduce the effort needed to set-up new CBIR applications: e.g. by allowing
a fast automatic generation of noisy training datasets and then using our bag
exponential loss to deal with noise. Moreover, we also consider that this result
opens a new line of research for CNN-based image retrieval: let the models de-
cide not only on the best features to solve the task but also on the most relevant
samples to do it.
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Chapter 1

Introduction and Thesis Objectives

This introductory chapter is intended to give the reader a quick overview of the
work presented on this dissertation. Section 1.1 presents the main motivations
that guide our contributions in three steps. First, Subsection 1.1.1 introduces
the main field of this thesis: Content-Based Image Retrieval (CBIR), making
special emphasis on the nature of the task, its principal applications, strengths,
and weaknesses. Second, Subsection 1.1.2 discusses the main factors that in-
fluence the performance of CBIR systems, as well as the main tools that are
applied today to tackle the problem. Third, Subsection 1.1.3 focuses on the
current limitations of CBIR systems, how they are tackled in the literature, and
to what extent current solutions address them which, ultimately, motivates the
work presented on this thesis. Section 1.2 is devoted to main objectives of
this thesis. It introduces our approach to improve current CBIR limitations and
points out the main differences with respect to current solutions in the litera-
ture. Then, the section gives a brief description of the two main objectives for
our work. Finally, Section 1.3 contains a detailed description of the structure of
this document.

1.1 Motivation

1.1.1 From Image Retrieval (IR) to Content-Based Image Re-
trieval (CBIR)

Millions of new images are created and stored everyday around the world. There
is a pressing need for new methods to index them so they can be efficiently
searched and retrieved. The most immediate source of information available to
tackle this problem is the textual context surrounding the images. For instance,
the original file name given by the authors can offer clues about the content of
the picture. Image meta data is another piece of information that can be ex-
ploited as well. Some online platforms allow users to add textual descriptions
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Figure 1.1: A text-based Image Retrieval (IR) system. Green and red rectangles
indicate relevant and irrelevant images with respect to the query respectively.

to images that can be relevant. In the case of images inserted on web pages,
an analysis of the surrounding text can give insightful clues to index the pic-
tures. The approach of exploiting text for indexing and retrieving visual content
was the first taken in the 80s, back then, this practice was referred to as Image
Retrieval (IR). Figure 1.1 contains an schematic illustration of an early image
retrieval system based on text. First, a group of images along their associated
textual descriptions are collected. Then, those descriptions are used to gener-
ate an indexed image database. Later, a user inputs a textual query which is
compared against the indices on the database using some text-based measure of
similarity. Finally, a list of ranked images ordered by relevance with respect to
the query is returned.

There are several problems that limit the success of image retrieval systems
based on text. The first is that the user needs to formulate a textual query,
which implies that he must be able to verbalize the kind of content that he
expects to retrieve. This can be difficult for several reasons. For instance, a user
might want to retrieve examples from a specific breed of dog he can visually
recognize (beagle in Figure 1.1), but ignore the specific breed name. Thus, a
generalization is used as query ("dog”), and the relevant samples for the user
are not included in the top ranking positions. Another source of difficulties is
the heterogeneity and polysemy of the language itself. For instance, dogs in
the database can be indexed by: dog, doggy, pooch, hound, canine, etc. This
forces the similarity matching mechanism to include a language model which
is a challenging task in itself. Beyond the complex nature of language, human
generated textual descriptions can be wrong or missing. Wrong labels make
irrelevant instances to be returned and vice versa, while missing information is
often superseded by some form of automatic generated meta data, like camera
model, that rarely relates to the visual content of the pictures ( "Cmox EX” in
Figure 1.1).
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Figure 1.2: A Content-Based Image Retrieval (CBIR) system. F; is the auto-
matic content-based representation of image /; in the database. Fj is the repre-
sentation for the query. Green and red rectangles indicate relevant and irrelevant
images with respect to the query respectively.

To address the problems of the first image retrieval systems, the commu-
nity took a different but challenging approach: to employ computer vision algo-
rithms to describe the images based on their visual content. Figure 1.2 illustrates
this approach. A machine looks at a collection of images and generates some
form of convenient textual or numerical description (F;), that is later employed
as a key to index the pictures on database. The same process is done for a
query image (£7), and the resulting content-based representations are used by a
similarity function to rank the database instances based on their relevance with
respect to the query. This whole process is commonly referred to as Content
Based Image Retrieval (CBIR). Computing descriptions for the images based
on their content mitigates the problems of classical text-based IR systems. In
CBIR, it is possible to do gueries-by-example, thus, the user no longer needs
to be able to verbally articulate with precision the kind of objects that wants
to retrieve. The difficulties related to the language are also avoided, since the
descriptions can be numerical vectors instead of words. Finally, there are no
missing descriptions since they are automatically generated by an algorithm.

Nowadays, CBIR systems are used in many different applications. For in-
stance, in automatic face recognition, a collection of pictures for which the
names of the subjects appearing on them are known is compared against a query
image containing the face of an unknown individual. The labeled photographs
are ranked based on their similarity with respect to the query, and the identity of
the person is inferred considering the most similar images from the database. A
similar process can be employed to recognize car make and models, artworks,
landmarks, and in general, any visual concept that benefits from transferring



meta data between related images [13]. Beyond using images as queries, it
is also possible to automatically generate textual content-based descriptions,
which allow a later search and retrieval process using textual queries. For in-
stance, a system to automatically generate image captions describing the images
in a human-like way can be employed to index them on a database [14]. Later,
a textual query can be compared against the generated captions to find relevant
images.

1.1.2 Convolutional Neural Networks (CNNs) as the Domi-
nant Paradigm in CBIR

The key for the success of CBIR applications lies in their ability to represent the
content of the images in a way that a mathematical function can easily measure
the relevance of each dataset picture with respect to the query. Nowadays, the
most common form of representation for images is a numerical vector, usually
referred to as feature vector or visual descriptor, and the most common function
to assess the relevance is some sort of distance between feature representations.

In the early days of CBIR, image representations were computed based on
global color, shape or texture features, i.e., taking into account all image pixels.
That strategy worked for isolated objects in controlled scenarios but suffered
when facing more open-world applications with high levels of cluttering and
occlusions. This limitation gave rise to the development of local descriptors,
where images are represented by a set of feature vectors, each of them computed
over a local image neighborhood. These methods are hand-crafted algorithms
where the designer is in charge of deciding what kind of information is relevant
and will be contained in the feature.

The hand-crafted features paradigm shifted in 2012 when Convolutional
Neural Networks (CNNs) were brought back to stage in the work presented in
[2]. There, a deep network called AlexNet surpassed the state-of-the-art perfor-
mance in an image classification task by a large margin. In essence, CNNs are
hierarchical layered structures where simple abstract visual patterns from pre-
vious layers are combined to form increasingly complex and specific ones. As
an example, consider the visual patterns contained in the filters of the CNN spe-
cialized on human faces depicted on Figure 1.3. The first layer gets as input the
original images and searches for elementary patterns on them: blobs and edges.
The second layer is applied over the outputs of the first one, thus, it looks for
combinations of elementary elements that give rise to more specific visual pat-
terns related to human faces: eyes, mouths, eyebrows, etc. Finally, the last layer
combines the outputs from the second to detect complete human faces. The
main difference between this approach taken by CNNs and traditional methods
for face detection [15] is the lack of designers input to decide what visual pat-
terns were relevant to detect the faces. Instead, the model inferred them from



Figure 1.3: Visual patterns contained in the kernels of the first layer (left), sec-
ond layer (top-right) and third layer (down-right), of a CNN specialized in hu-
man faces. Taken from [7].

data.

In this thesis, we employ CNNs to generate the image descriptors for CBIR.
CNNs learn how to extract useful features for a particular application by means
of an optimization target called the loss. The loss is a differentiable mathemati-
cal function that receives as input the image descriptors computed by the CNN
and measures how much they deviate from achieving the goal of the task. The
internal parameters of a CNN model are then adjusted such that the loss is min-
imized for a set of examples contained on a corpus known as the training set.
Thus, CNNs are used to tackle CBIR problems by means of specific training
sets and loss functions.

1.1.3 The Need of Large Correlated Training Datasets

Today, classical methods to learn image representations have been replaced by
CNNs because of their superior performance. However, these deep networks
also come with some limitations. With current model architectures, bigger net-
works usually yield better results [3]. However, using very deep models with
thousands of filters and millions of parameters to adjust, requires the creation
of huge labeled training sets to fully exploit their potential. In addition to being
large, training datasets need to be specific for the task at hand, which prevent
us from exploiting the massive corpuses available for related fields like image
classification [16]. But even if a great deal of human effort is directed towards
the creation of a very large retrieval dataset to fit the models, the expected per-
formance for the network is heavily dependent on the topic correlation between
the training and test sets. To understand this phenomenon, let us consider the



network from Figure 1.3 and suppose that it has been build for a face recogni-
tion tasks. The model will excel when dealing with human faces, but the visual
patterns learned for faces are not as useful to detect cars or trees. One can
consider including other topics than faces on the training set, but then, for the
same database size, there will be less human faces and the model will not be
so proficient in that particular area of expertise. Building a dataset containing
all possible objects is not feasible, and generating specific ones every time the
domain changes is too labor intensive for being practical.

In the literature, this dilemma is tackled using different alternatives although
none of them is ideal for several reasons. The most straightforward method to
build a large correlated retrieval dataset consists in defining the topic of interest
and use textual tags (or other metadata) in search engines to retrieve a collection
of potentially suitable images. This is perfectly feasible and can generate a large
database with limited human effort but, unfortunately, the resulting collection of
pictures will very likely contain a considerable amount of noise (mostly due to
labeling errors or imprecisions on the metadata). Indeed, the presence of noise
in the training datasets is known to hinder the learning process of deep retrieval
models [6]. The second, and more common approach, extends the previous
one by introducing (semi)automatic algorithms to post-process the initial set of
retrieved images, filtering out non-relevant samples and reducing the noise level.
For instance, the authors in [17] employ invariant keypoint matching combined
with spatial verification, to remove all instances of the database with no related
images on their respective categories. In [4], an Structure From Motion (SfM)
pipeline is employed to generate 3D building models using all available images.
Those instances that do not fit well the produced models are discarded as noise.
In [18], the associated geo-location of images is exploited to cluster all instances
into training categories, that are later refined using the same keypoint matching
with spatial verification strategy from [17].

The design of automatic methods to generate the necessary large and topic
dependent datasets is not straightforward and requires extensive engineering
work and innovation. Furthermore, these techniques need to manage a hard
tradeoff: on the one hand, if the filtering is too restrictive, both the size of the
database and its diversity will be dramatically reduced. Furthermore, the pro-
cess will be particularly aggressive with those relevant samples that are less
representative (e.g. hard positives). On the other hand, if the filtering is not
restrictive enough, the resulting training set will still contain some degree of
noise, which, even in small proportions, will significantly degrade the perfor-
mance of current approaches [4]. A final concern regarding automatic filtering
methods is that post-processing algorithms inevitably introduce a bias into the
training dataset, which conditions the subsequent learning task. Such bias can
limit the effectiveness of CNNs for retrieval to that of the method that was used
to filter the noise. In the next section, we discuss how we avoid these limita-



tions imposed by the post-processing approaches, by designing loss functions
capable of training under noisy datasets.

1.2 Thesis Objectives

In this thesis, we propose a paradigm shift from the use of complex pipelines
to reduce the presence of noise in the retrieval datasets to the design of novel
retrieval loss functions that can handle noise in a end-to-end manner. The ben-
efit of our approach is two fold. On the one hand, it facilitates the generation of
new topic-adapted datasets with minimal human intervention, because retriev-
ing a large noisy collection of images is fast using modern search engines. Since
the loss handles the noise internally, there is no longer a need for ad-hoc clean-
ing stages, and in consequence, our method enables a quick and broad adoption
of CNNs for new retrieval scenarios. On the other hand, putting aside the noise
filtering process avoids the biases that come with it. Hence, our deep networks
are no longer conditioned by an external process and can decide the best visual
patterns to solve the task, as well as the best samples to do it.
We have established the following objectives for this thesis:

1. The development of mechanisms to generate retrieval training sets with-
out the need of human annotations or complex filtering pipelines. These
methods should be based on image content and, optionally, image meta
data.

2. Prove that it is possible to exploit noisy training sets to improve the perfor-
mance of well established CNNs models, on some end-user applications
such as landmark discovery.

3. Generate a novel CNN-based solution to the problem of CBIR that is
robust to noise on the training sets.

4. Propose a new way to efficiently deploy retrieval CNNs for new domains
with minimal human effort.

To fulfill the previously stated objectives, two novel noise-robust retrieval
loss functions are presented on this dissertation:

1. A modified contrastive loss [19] that, making use of soft labels, is better
suited to handle noise than its original counterpart that employs a binary
categorization. In particular, image content and metadata are jointly ex-
ploited to infer the soft labels that allow to fine tune the models under
noisy datasets. To illustrate a case of use, the designed loss is used to
specialize general CNNSs to better represent images from particular cities



or regions, boosting the system performance in a subsequent landmark
discovery task.

2. A novel Bag Exponential loss capable of handling noise considering only
image content. In particular, we propose a novel retrieval loss that, in-
spired by the Multiple Instance Learning framework, works with bags of
matching images, and allows to dynamically weight the relevance of each
sample as the training progresses. Experimental evidence show the supe-
rior performance of our loss with respect to the state-of-the-art, propose a
novel way of facing new CBIR domains using noisy data, and paves the
road towards a new interesting goal: let the models decide not only on the
best features to solve the task, but also on the most relevant samples to do
1t.

1.3 Structure of the Document

This section presents a description of the contents present on the different chap-
ters of this thesis.

Chapter 2 revisits the previous work related to the main contributions on
this thesis. First, a historic revision of the CBIR field is presented. It starts by
discussing the earlier systems and follows the subsequent trends that have given
rise to the present era dominated by Convolutional Neural Networks. Then, it
categorizes and discusses loss functions used to train deep retrieval models in
modern systems, and traces similarities and differences with the ones proposed
on this work. Finally, the chapter revisits the different methods employed in the
literature to handle noise on the training datasets, and situates our own contri-
butions with respect to them.

Chapter 3 describes the theoretical framework behind our first contribution,
the Soft-Matching (SM) loss. First, an introduction presents the main prob-
lematic that leads to the design of the proposed loss function, and then, the
intuitions and mathematics behind the method itself are explained. This chapter
also includes a discussion about possible scenarios where our proposal can be
exploited.

Chapter 4 contains experiments where the SM loss introduced on the previ-
ous chapter is used to adapt CNNs models to new topics, boosting their perfor-
mance on a landmark discovery task. First, the chapter discusses and justifies
the use of this particular domain of application for the experiments. Then, a
description of the landmark discovery system itself is included. The final part
of the chapter is devoted to describing the experimental setup and main results
that lead to the final conclusions.

Chapter 5 describes the theory behind our second contribution, the Bag Ex-
ponential (BE) loss. The chapter begins with an introduction describing the



main motivations that leads to our proposal. Then, the mathematical framework
behind our contribution is presented, as well as a discussion of some efficiency
aspects of the method in comparison with others from the literature.

Chapter 6 presents a battery of experiments where the BE loss from the pre-
vious chapter is subjected to different tests and cases of use. It begins with an
introduction that includes a description of our claims as well as the parts of the
chapter where they are fulfilled. It continues with a description of the experi-
mental setup. Then, a set of experiments are presented that measure the noise
resilience of different losses from the literature with respect to our own. Also,
an state-of-the art comparative as well as ablation studies are included. This
chapter also includes an experiment proposing a novel approach to CBIR prob-
lems based on our method. The chapter ends outlining the main conclusions
achieved through the experiments.

Chapter 7 closes this thesis by presenting the main conclusions achieved
through this work and outlining future lines of research related to our contribu-
tions.






Chapter 2
Related Work

In this chapter we revisit literature related to Content-Based Image Retrieval,
the field of computer vision that represents the focus of this thesis. Section
2.1 contains a historical review of the field, describing the thinking process and
the most important contributions that have led to the current era dominated by
Convolutional Neural Networks. Section 2.2 revisits modern CNN methods
to generate content-based image descriptors for CBIR, with particular emphasis
on loss functions. Finally, Section 2.3 explores previous deep learning literature
that deals with the presence of noise in the training sets.

2.1 A Historical Overview of CBIR Systems

There is a vast amount of literature related to CBIR. It is so large and so varied
with respect to each particular module of the complete retrieval pipeline that
addressing all of it falls out of the scope of this thesis. Instead, we are going
to focus on the generation of content-based image descriptors and the metrics
used to measure their similarity. Thus, we will skip topics such as query defini-
tion and interaction with the user, efficient and compact encoding and storing of
descriptors, taxonomies for semantic categorizations, different system architec-
tures, and performance metrics, among others. The reader interested in a more
exhaustive overview, including those and other topics, is referred to the works
presented in [20] and [21].

2.1.1 The early CBIR systems (1990 - 1999)

Descriptors

Color [22] is a descriptor that has been commonly used for CBIR since the
very early systems [23]. The reasoning behind using color to describe image
content is that certain objects and concepts are related to predominant colors.
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For instance, fire extinguishers are mainly red, trees usually green and so on.
Thus, characterizing images based on color is a sensible choice. However, color
often varies among object instances of the same class due to factors as position
and spectrum of the illumination source, camera viewpoint, object material and
surface orientation. For this reason, color descriptors are particularly useful for
narrow scenarios where the image capturing conditions are under control. In
broader scenarios, like open world imagery, using color shows more limitations.
As an illustrative example, images a) and b) from Figure 2.1 share the exact
same histogram even though they depict completely different objects, at the
same time, images a) and d) have different histograms although both depict a
house in a forest.

Shape [24] was another popular descriptor in the early days, probably be-
cause it was thought that humans frequently used it for solving the task of visual
retrieval. However, the lack of precise and robust methods to exploit shape at the
time, made that the problem was considered a hard challenge [25] and limited
the usability of shape. Broadly speaking, two main variants existed for com-
puting shape features: the global and the local. Both exploited some form of
segmentation to generate binary masks containing objects shapes [26]. Global
shape features considered the whole shape of the object and summarize its con-
tent by measuring its area, perimeter, eccentricity, etc [23], which gave place to
a compact feature presentation. Local shape features focused on describing each
point of the shapes separately [27], yielding 2D signatures for the images. This
approach was able to better accommodate partial occlusions for the objects.

Texture [28] is another visual element that has thoroughly exploited since
the beginning of CBIR. The first methods used for retrieval usually focused on
measuring variants of contrast, directionality and coarseness [23]. Contrast can
give a sense of how prominent a texture pattern is; directionality aims to find
principal directions or how isotropic are the surfaces; and coarseness gives a
sense of scale, i.e., fine grained versus coarse elements.

During the 90s, a great effort was made to improve the robustness of those
initial features against common natural variation that occur on real world sce-
narios: changes in illumination, backgrounds, scale, cluttering, perspective and
occlusions. By the end of the decade, there were available color [29], shape
[30] and texture [31] features invariant to some of those transformations. How-
ever, cluttering and occlusions were still a major problem because most existing
methods extracted global descriptors, i.e., features based on all image pixels. If
an object of interest is small with respect to the background, or is occluded, only
a small fraction of image pixels conveys useful information. A global descrip-
tor dilutes the contribution from the relevant pixels limiting the discriminative
power of the resulting feature. In this regard, the next decade introduced local
descriptors, a major advance that boosted the performance and applicability of
new CBIR systems.
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(a) House, forest, cabin.  (b) Tiger, head, grass. (c) Color Histogram for (a) and (b)

(d) House, forest, cabin. (e) Color Histogram for (d)

Figure 2.1: Images a) and b) have exactly the same histogram but are not related,
while a) and d) have different histograms but are related. Taken from [8].

Similarity metrics

The most common approach to measure similarity between two images con-
sisted in assuming that the descriptors were vectors in a feature space. Then,
similarity was simply the inverse of the euclidean distance [23]. For histogram
descriptors, mostly used for color, common choices were the histogram inter-
section distance [32] or the cumulative histogram distance [33]. Other methods
tried to use the feature vectors to model similarities as a probabilistic concept us-
ing Bayesian analysis of images differences [34]. To address similarity between
shapes, the first option was to extract some information from the segmentation
masks, generate vectors, and employ any of the previous methods. However,
there were also alternatives to compute similarity based on the full silhouettes
[35].

2.1.2 From global to local descriptors (1999-2012)
Descriptors

Previous methods computed global descriptors that take into account all image
pixels at the same time. Although this had proved to work for images containing
isolated objects, it did not apply well to scenarios with clutter and partial occlu-
sions. This was a known problem for the community and researchers tried to
employ sliding windows to compute features for all image locations [36]. Nev-
ertheless, this strategy presented additional issues: on the one hand, if features
from all positions were finally aggregated, the dilution problem from the global
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Figure 2.2: Keypoints detected for the same object under an image transforma-
tion using the Harris corner detector [9].

descriptors still appeared; on the other hand, if all individual descriptors were
stored and compared, the computational cost dramatically increased and, be-
sides, some method was needed to establish correspondences between patches
of different images. To avoid the brute force approach of the sliding window,
the focus was shifted toward strategies for selecting a small subset of interesting
points, called keypoints [37], that defined where to compute local descriptors.
Keypoints are image locations that are distinct and repeatable. Distinct means
that they are easy to identify and distinguish from any other local regions, and
repeatable means that they are invariant to image transformations, and can be
detected as long as they appear in a scene. Figure 2.2 shows the keypoints
detected using a popular method, the Harris corner detector [9], for the same
object and different image transformations: illumination, rotation, view point,
and a non-rigid transformation (neck and head).

Keypoints have been around the computer vision community since the 80s
[39], although they were used in other tasks like stereo matching. The first work
to exploit them in CBIR was [40], where the Harris corner detector [9] was
employed to select a set of keypoints, and a multiscale and rotation-invariant
descriptor was assigned to each local region. Since the amount of available
keypoints was not fixed, each image was described by a different number of
feature vectors. This first approach was soon followed by a very influential
work known as Scale-Invariant Feature Transform (SIFT) [41] illustrated in
Figure 2.3. SIFT introduced a new keypoint detector based on blobs, that is
scale-invariant in contrast to the original Harris detector, and uses the scale in-
formation to choose the sizes of the local regions from where extracting the

13



I3
.
¥
“u
N
“a
t:.)/

-"'..-u-*.u

\
|
|

o
-
*

\

- /\"i"{

—
-3
im,““‘-#l"&-"//
~ I Al [

Image gradients Keypoint descriptor

Figure 2.3: The process of computing local features using the SIFT method.
First, a blobs detector is employed to find interest points (top left). Second,
the scale of the blob is used to establish the size of a local neighborhood, from
where dominant gradient orientations are computed on a grid (top right). Fi-
nally, gradient orientations are aggregated into histograms that describe the lo-
cal region (down). Taken from [38].

descriptors. Besides, the method defines a canonical direction for the descrip-
tors so that there is a common reference frame across images. The descriptor
itself its a scale and rotation-invariant 128-dimensional vector, containing his-
tograms of oriented gradients. One aspect that was later improved with respect
to the original method, was its robustness to affine transformations. In [42], the
authors proposed a new multi-scale Harris detector that brings affine invariance
to the interest points. The affine information was exploited to compute SIFT
descriptors over affine covariant local regions. Another common topic of the
decade was reducing the computational complexity of SIFT. Faster keypoint
detectors such as FAST [43], AGAST [44] and MSER [45], as well as binary
descriptors such as ORB [46], BRIEF [47], and FREAK [48], made possible
applications with real-time constrains [49].
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The success and influence of the SIFT local descriptor for image retrieval
have been staggering. Twenty years after it was proposed, is still found amongst
the top performing methods (including CNNs) in several recent benchmarks
comparing local descriptors [50, 51].

Similarity metrics

By using SIFT-like methods, an image is described by a set of local feature
vectors, where the cardinality of the set is defined by the amount of keypoints
found. The most simple way of measuring similarity between images, is to
count the number of matches between their local features. A common strat-
egy is to consider that two local features form a match if they are the closest
neighbor to each other. However, when comparing two sets of vectors, there is
always a closest neighbor, so filtering the candidates has been a prolific field of
study. Particularly, methods based on global image transformations (affine ho-
mography with RANSAC) or local coherence (ordering, neighbors) have been
proposed in the literature [41, 52, 42, 53, 54, 55, 56, 57, 58, 59].

The main drawback of measuring similarity using a nearest neighbor pro-
cess followed by a filtering stage is its computational complexity. In 2003, the
next milestone for image retrieval systems, the Bag of Visual Words (BoW)
model, was introduced in [60]. The goal of the model was to perform image
retrieval analogously to how text retrieval was done. In text retrieval, a docu-
ment is represented by a vector containing the number of times each word from
the dictionary occurs. Thus, to make image retrieval alike, an image is consid-
ered a document and a local feature plays the role of a text word. The main
difficulty is that in text, the dictionary of possible words is well established by
common language, but local features from images are real valued vectors with
infinite possibilities. To circumvent this problem, the authors generated a dictio-
nary of visual words by keeping the centroids resulting from clustering a large
amount of local features. Then, each local feature from an image can be vector-
quantized by association to its closest dictionary visual word. At the end, an
image is represented by a BoW signature containing the amount of times each
visual word from the dictionary appears on it. The full process is illustrated in
Figure 2.4. In essence, this strategy is pre-computing the matches during the
quantization process. For a new query, once its BoW signature is computed,
the retrieval process is identical to the highly efficient text retrieval analogous.
One important concern is that, since the matches between local patches are done
using approximate quantized versions of the feature vectors, some performance
might be lost. The authors in [60] proved that the possible lost in performance
was compensated by the applicability of all the text retrieval existing tools that
resulted to transfer well for images.

The BoW model was established as the most common tool for measuring
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Figure 2.4: The Bags of Words (BoW) model for image matching. First, a
collection of feature vectors are clusterized to establish the visual vocabulary.
Then, feature from images can be assigned to the centroids and described based
with a histogram of visual word occurrences. Taken from [10].

similarity between images for over a decade. Still, the negative effects of quan-
tizing the features to assign them to visual words of the dictionary continued
to be studied. There is a clear trade-off between using large visual dictionaries
and the time it takes to associated each visual word to them. If the vocabulary
is small, the association is fast but the quantization is poor and two different vi-
sual descriptors might be wrongly assigned to the same word. If the vocabulary
is large, association is slow, but the quantized version of the feature vectors is
more similar to the original. In two contemporary works [61, 62], the authors
introduced methods for fast assignation of local features to dictionary words
exploiting approximate and hierarchical clustering algorithms. This allowed
the use of much larger visual dictionaries efficiently (up to several millions of
words), which improved the performance and applicability of CBIR systems.
However, BoW signatures showed two main problems. First, with increas-
ing vocabulary sizes, the signatures were growing very fast, harming the com-
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Figure 2.5: Comparison between the generation of image signatures using: a)
Bag of Words (BoW); b) Vectors of Locally Aggregated Descriptors (VLAD);
and c) Fisher Vectors (FV). Taken from [11].

putational efficiency. Second, the descriptors were hardly assigned to dictionary
centroids without considering how far they were from them. In consequence,
some important information was discarded that limited the performance of the
method.

Two contemporary works addressed these issues: Fisher Vectors (FV) [63]
and Vectors of Locally Aggregated Descriptors (VLAD) [64]. A comparison
between BoW, FV and VLAD is illustrated in Figure 2.5. The idea behind FV
was to replace the k-means algorithm used to generate the visual dictionary in
Bow by a Gaussian Mixture Model (GMM) fitting the feature space. Hence,
each new local feature was assigned to a particular Gaussian from the mixture
in a similar way as in the k-means algorithm. But, importantly, instead of keep-
ing the index of the centroid, a set of derivatives from the underlaying GMM
distribution were used to encode the feature. With this approach, less informa-
tion is lost during the quantization, which improved the results and allowed the
use of smaller vocabularies. The underlying idea behind VLAD is similar, but,
instead of modeling the feature space with a GMM and keeping derivatives from
it, it encodes the accumulated differences between the image local descriptors
and their associated centroid (computed with k-means). Both FV and VLAD
are attacking the same problem using a very similar idea: do not simply use the
index of the centroid but some additional information that encodes the position
of the feature with respect to the centroid in the feature space. Finally, in order
to measure similarity between images, FV or VLAD signatures can be used in
a similar manner to standard BoW.
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2.1.3 From local descriptors to deep retrieval (2012-2020)

In 2012, Convolutional Neural Networks (CNNs) were brought back to stage in
the work presented in [2], where a deep network called AlexNet surpassed the
state-of-the-art performance in an image classification task by a large margin
over existing methods. Even though the paper was focused on classification,
in a qualitative experiment, the authors noted the potential of the image global
features extracted using their network for other visually related tasks like im-
age retrieval. Soon, the retrieval community started to propose methods to: 1)
exploit CNNs to generate global descriptors; 2) substitute the SIFT descriptor
by a CNN to generate the local feature vectors; 3) employ hybrid approaches
that exploit both local and global CNN-based descriptors. The remainder of
this section is devoted to the analysis of CBIR methods that use CNNs as deep
retrieval approaches.

CNN global descriptors

An important work for deep retrieval using global descriptors was introduced
in 2014 [6]. The authors analyzed the retrieval performance of a classification
model [2] and found that the hand-crafted features based on Fisher Vectors [63]
were still superior. However, if they fine tunned the classification model using
a retrieval dataset, then they obtained a large boost in performance. Finally,
they were able to produce CNN-based highly compressed global features that
surpassed the state-of-the-art based on FV for smaller feature dimensions.

Up to this point, the architectures of deep retrieval models and the loss func-
tions used for training were the same ones used for classification. The first
CNN that was specifically tailored for image retrieval was proposed in [65].
The model combined a triplet network architecture [66] with a rank-based loss,
known as triplet loss [67]. This work presented the first method that surpassed
the state-of-the-art hand-crafted features by a significant margin. This approach
still employed the fully connected features as in classification, but some au-
thors discovered that convolutional features from the previous layers were more
effective for retrieval [68, 69, 70]. Thus, a lot of work have been directed to-
wards developing pooling layers for the aggregation of the convolutional fea-
tures into compact and global representations that are useful for retrieval: max-
pooling [71], average pooling [68], weighted average pooling [70], sum-pooling
[69], hybrid pooling [72], regional pooling (R-MAC) [73] and generalized mean
pooling (GeM) [74].

Other approaches have tried to pool the convolutional activations by imi-
tating the aggregation mechanisms designed for previous hand-crafted features.
In [75], the authors developed a trainable VLAD layer and created NetVLAD.
Their model is capable of generating VLAD feature vectors in a single forward
pass. Fisher Vectors approaches have also been explored in a similar way [76],
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by adding layers that encode the FV parameters and losses that jointly learn
global image representations and the FV parameters. However, those lines of
work have been discontinued as simpler pooling mechanisms over the convolu-
tional features (see GeM pooling [74]), have showed to outperform them.

Beyond architectures and pooling mechanisms to generate the global image
representations, the other line of research that has received a great deal of atten-
tion is the design of retrieval loss functions. Since the contributions presented
on this dissertation belong to this particular field, loss functions have their own
related work (see Section 2.2).

CNN local descriptors

Given the ability of CNNs to generate successful feature vectors in many com-
puter vision applications, its naturally appealing to explore the possibility of
using them to describe image local patches. The first attemps to employ deep
models to substitute SIFT-like methods were focused on individual parts of the
SIFT pipeline. In [77], the authors proposed a learnable keypoint detector that
outperformed the classical hand-crafted ones. In [78] a deep learning method is
used to predict stable feature orientations.

Describing local patches found with classical detectors was another popular
field. In [79], the authors present MatchNet, a model trained to learn local
feature representation and the best metric to perform the later matching. Other
similar approaches to learn how to describe local patches for different tasks,
such as stereo matching, include [80, 81, 82, 83].

A milestone for the field came with the first deep local detector and de-
scriptor that outperformed SIFT, it was called LIFT: Learned Invariant Feature
Transform [84]. It borrowed and improved the ideas of previous approaches that
only focused on particular steps of the complete pipeline, and integrated them
into a end-to-end differentiable architecture. The next big step came with the in-
troduction of DELF (DEep Local Features) [85]. The method included an atten-
tive mechanism to perform a task-dependent keypoint selection, thus, avoiding
to include patches with no relevant information for retrieval. Besides new ar-
chitectures, advances were also made with respect to the loss functions required
for learning the local representations. In [86], a novel loss function including
an intra-batch mining strategy was used to learn local descriptors that outper-
formed models trained with the most common contrastive and triplet losses.

An important limitation of previous approaches is that they used a classi-
cal feature detector to generate an initial training set from which to learn. This
in fact limits the performance of deep feature detectors to that of the reference
method used to create the training corpus. To avoid this phenomenon, the LF-
Net architecture was introduced [87]. The idea behind this approach is to exploit
stereo pairs to train the networks without the need of explicitly giving the model
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a set of pre-computed keypoints. Stereo pairs have the advantage that the ge-
ometric transformation between images is known a priori. Thus, LF-Net can
learn from raw image data the best strategy to select keypoints with no bias. A
similar approach is taken in AffNet [88], with particular emphasis on generating
affine invariance descriptors.

Modern CNN-based local descriptors have shown a great improvement with
respect to classical approaches using hand-crafted features. However, the CNN-
based detectors have shown only limited success when compared to descriptors.
The authors in [89] claim that this low repeatability for the detectors is due to
their wrong estimation of the region affine parameters and their lack of robust-
ness against scale variations. Thus, they propose Key.Net, a new architecture
that makes use of both handcrafted and automatically learned feature detectors
at the same time, as well as a multi-scale representation of images. In a more
recent work [90], the cause for the lack of repeatability in CNN-based detectors
is attributed to the low level image representations from which they are com-
puted. Thus, instead of a "first detecting then describing” strategy, the authors
propose to densely describe the whole image, and make the keypoints selection
at the end of the process where high-level information is available. Other rele-
vant work [91] claims that the models should detect not only salient points, but
the subset of those that is expected to be reliably matched. Thus, they propose
a new architecture that includes a regression mechanism to estimate the match-
ing reliability of each keypoint, which allows a filtering process of irrelevant
regions.

Lastly, there are some works trying to improve the descriptors too. In [92]
the authors propose to augment off-the-self local descriptors and aggregate in-
formation related with the 2D keypoints distribution as well as visual context
from high-level image representations.

CNN hybrid methods

Jointly exploiting global and local image representations is common in clas-
sical approaches. An initial raking is retrieved based on some form of BoW
embedding, followed by a re-ranking strategy based on geometrical constrains
applied over the matched local features. This strategy works because global
descriptors have an edge for recall, given that they have the highest level in-
formation across the image, while matching local descriptors with geometric
constrains is usually more reliable, and boosts precision [12]. In [93], a system
to perform indoor localization based on global and densely-local CNN features
is proposed. The authors employ the NetVLAD [75] global representation to
retrieve a first set of candidates which are later re-ranked exploiting correspon-
dences between low level convolutional activations from the same model. Other
work that exploits global and local CNN descriptors is [94]. The method uses
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Figure 2.6: The hybrid CNN proposed in [12] to simultaneously compute image
global and local descriptors.

the aggregated global descriptors to generate an initial ranking and, then, the
convolutional activations before the pooling layer are interpreted as local fea-
tures that refine the results via geometric verifications. The main drawback of
these approaches is that they interpret intermediate activations of models trained
to produce global features as local descriptors. However, since those interme-
diate activations were not optimized to be independently matched against other
local regions, they yield suboptimal performance for such task.

Recently, some works propose to train CNN models to produce global and
local features explicitly, using several output branches and multi-task losses as
illustrated in Figure 2.6. In [95], the authors use the outputs from global and
local independent CNN teachers, to train a single unified CNN student that gen-
erates both global and local outputs using several branches on a hierarchical
structure. In [12], a method is proposed to train a single CNN to generate both
local and global features in an end-to-end manner, avoiding the need of mim-
icking individual disjoint networks. The resulting model contains two output
branches: one produces global descriptors and tries to minimize a global loss
function, while the other incorporates and attention model to produced sparse
local features trying to minimize a local loss objective.

In this thesis, we propose two loss functions to produce image global de-
scriptors using deep models trained under noisy datasets. Our contributions can
be employed with both global and hybrid CNN architectures to generate suit-
able feature vectors for CBIR. In the remainder of this chapter, we review the
literature related to loss functions over global image representations in CBIR in
Section 2.2, and methods to deal with noise on the training datasets in Section
2.3.
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2.2 CNN Loss Functions to Learn Image Global
Representations for CBIR

In this section, we categorize and review the main loss functions used for gen-
erating global CNN features for Content-Based Image Retrieval (CBIR), and
discuss their connections with our proposals. In particular, our classification is
based on a granularity analysis of the feature space and leads to the following
three categories:

1. Pair-based: the methods of this family compute the loss by directly
measuring distances between image representations. They work with
small tuples of samples such as pairs [19], triplets [67, 96] or n-tuples
[97, 98, 99]. Their goal is to enforce the proper distribution of features in
a local neighborhood of the feature space. Given that the loss deals with
small tuples, one at a time, uniformly sampling them is not a good strat-
egy: most of the tuples might be either too easy to learn anything mean-
ingful, which slows down the training, or redundant with others, which
causes overfitting. Several authors have made comparative studies about
the importance of mining on image retrieval systems [100, 101, 102],
which in turn has stimulated the development of several complex mining
techniques [103, 104, 105].

2. Center-based: this family of losses exploits the hidden structure of the
feature space by setting-up local neighborhoods around identified cen-
troids and following an approach similar to the one used in classifica-
tion. During training, each category is represented by a centroid [106,
107, 108] (or a set of them [109, 110]) and the losses aim to concur-
rently learn the feature representation and the set of centroids that min-
imize intraclass distances while maximizing interclass ones. Hence, the
difference of this approach and traditional classification losses is that the
functions are modified to rank distances instead of providing per-category
probabilities. Then, during test, new samples (representing new unseen
objects/categories) are projected onto the set of centroids and image sim-
ilarities are computed using these projections. These methods are typ-
ically used for Fine-Grained Image Retrieval (FGIR) [111] tasks, where
all train and test instances share a common topic. Thus, the visual patterns
encoded by the learned centers are likely to fit well unseen test images of
the same topic.

3. List-based: these loss functions also make use of distances between pairs
of images but, instead of computing the loss directly over them (as the
pair-based do), distances are used to build intermediate list-like struc-
tures, such as soft-binning histograms, from which a final loss is derived
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[112, 113, 114, 115]. Since these losses take into account (potentially)
long lists containing all images in the training set, they circumvent the
problem of locality, and provide a global analysis of the feature space. Be-
sides, these rank-list structures can be used to approximate performance
measures such as the Average Precision (AP), which is more closely re-
lated to goal of the task than those performance functions implicitly con-
sidered by the tuple-based methods [116].

In this thesis, we contribute to the field with two novel losses. The first
one is a classical pair-based loss but modified to internally estimate soft labels
based on image content and metadata. This loss is paired with a classical hard
sample mining mechanism. The second one, although belongs to the pair-based
family, shows a fundamental difference regarding the granularity of the analy-
sis: inspired by the Multiple Instance Learning (MIL) framework, we use large
tuples of matching images, called bags, that therefore provide a global view of
the feature space, and a loss that automatically identifies the relevance of each
training image pair. To be more precise, the proposed bag loss involves a sam-
ple weighting mechanism which allows the models to perform a soft-mining of
samples which adapts dynamically as learning progresses.

2.3 Dealing with Noise in Training Datasets for CBIR
with CNNs

Dealing with the noise present in a training dataset has also received a great
deal of attention in the field of CNN-based image retrieval. The most common
approach consists in reducing noise before starting the training process. The
simplest method is to do it manually [6], but it is time-consuming and prone to
errors, which prevents its broad adoption. Conversely, automatic systems based
on meta-data or image content are popular in the literature. Some authors filter
noise by making use of contextual information such as Global Positioning Sys-
tem (GPS) coordinates [117]; others employ local feature matching with spatial
verification [118]; and others exploit 3D models generated with a structure-
from-motion algorithm to label outlier images as noise and remove them from
the training set [4].

In contrast, training deep models for image retrieval with noisy datasets is
uncommon due to the resulting performance degradation, as it has been pointed
out by some authors [4]. Nevertheless, approaches for reducing the influence of
noise in performance and the biases introduced by automatic cleaning tools or
human annotators have been explored in other tasks [119, 120]. In classification
problems, a transition matrix has been proposed to model the probability of a
sample switching its label to another class. Some authors estimated this matrix
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by means of an affine layer [119], others proposed a loss correction mechanism
to derive it [121], and others generated a subset of noise-free data from which
to carry out the estimation [122]. Other approaches for training classification
models with noisy datasets include the creation of noise resilient losses [123].
However, as noted in [124], though those noise-robust losses tend to work well
on synthetic data, due to certain unrealistic constrains or assumptions, they un-
derperform on real world datasets. Finally, another family of methods suggests
the use of secondary networks to correct the training labels [125], perform meta-
learning by comparing the gradient directions from different samples [126], or
simulate gradient-update steps with synthetic noisy labels to avoid overfitting
[127].

Other computer vision tasks, such as object detection, have also benefited
from using robust-to-noise loss functions. In [120] the authors deal with noise
in the training labels by generating bag of samples and using a constrained weak
loss with inequalities applied over the accumulated probabilities within the bag.
In [128], the authors relied on Multiple Instance Learning (MIL) to ensure that
data augmentation techniques that are not label-preserving could be used safely.
MIL is a form of weakly supervised learning where training instances are ar-
ranged in sets, called bags, and a label is provided for each bag, instead of for
each instance. It has been traditionally used in tasks where the granularity of
the expected outcomes and the available labels is not the same, and aggregation
methods are required to bridge the gap between data and labels. The applica-
tion of MIL principles in the context of CNNs involves the use of aggregation
operators, such as average [129], maximum [130, 131], Log-Sum-Exp (LSE)
[129], global weighted rank-pooling [132], negative evidence models [133], or
weighted average of regions with maximum and minimum scores [134].

In this thesis, we first explore the concurrent use of visual and contextual in-
formation, such as GPS coordinates, to generate weak labels that prevent losses
from overreacting to noisy data. Later, we exploit only visual content within a
MIL framework. From our point of view, MIL arises as a natural formulation
to deal with noise in training databases for image retrieval. Therefore, inspired
by this concept, we propose a novel loss function that builds bags of matching
images to naturally handle noise.
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Chapter 3

A Novel Soft-Matching Loss to
Learn Image Global

Representations Based on Content
and Meta data

In this chapter, we introduce the theory behind the Soft-Matching (SM) loss, the
first contribution of this thesis. Section 3.1 contains an introduction describing
the problem and main motivations that guide our work, that is later described in
Section 3.2. In particular, Subsection 3.2.1 sets forth a series of intuitions that
help to understand the fundamentals of our method, while Subsections 3.2.2 and
3.2.3 presents the mathematics. Finally, Subsection 3.2.4 exposes some possible
applications for our approach as well as its most notorious current limitations.

3.1 Introduction

In 2017, Facebook’s users generated a total of 300 million photos per day*. The
amount of new multimedia content has grown exponentially for the past decade,
and it is now so staggering that storing, managing, indexing and organizing
user-generated files efficiently is one of the main technological challenges for
the industry. During the last few years, the scientific community has tackled
this problem by means of novel computer vision techniques aiming to automat-
ically obtain content-based image descriptors which are distinctive, compact,
and allow an efficient search [135][136][137].

The best tool we have today to compute the necessary content-based de-
scriptors to index images are Convolutional Neural Networks (CNNs) [2]. These
deep architectures have shown its superior performance in a wide variety of

*https://zephoria.com/top-15-valuable-facebook-statistics/
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tasks. Modern deep classification models, such as residual networks [138],
have achieved human-like performance on the ImageNet challenge [16], where
a thousand object categories are recognized in a set of a few million images.
Segmentation models [139], that cluster together pixels that belong to the same
object class, have also surpassed traditional approaches in tasks such as city
scene understanding [140] or general objects segmentation [141]. Object de-
tection [142], which aims to locate all instances of a predefine set of objects
on images, has also benefited from the use of CNNs, autonomous driving is
probably the most known case of use of such networks [143]. Image retrieval,
where pictures are recovered based on the presence of specific object instances,
is another field that has experience a notable improvement with the advent of
CNNs [144].

Although all the previous applications share a common underlying CNN
architecture, the nature of the computed image descriptors is task-dependent.
For classification, the model should learn the common visual patterns of the
objects belonging to the same category, i.e., objects of the same category must
be described by similar feature vectors regardless of the intra-class variability
(e.g. all cars). For retrieval, only instances of the same specific object should
lie nearby in the feature space (e.g. a specific car make and model), while other
objects should stay far away, even if they belong to the same semantic category
(e.g. other cars). The models learn to adjust to the given nature of the problem
by means of specific task-oriented training sets and loss functions. This is one of
the weaknesses of CNNs with respect to classic local image descriptors which
were applicable over a wider range of application with little to no change.

Another known issue with the use of CNNis is that their performance strongly
depends on the correlation between the scene or objects present in the train and
test sets [6]. It is not only that a task-related training set is needed, but also that
the topic correlation between the train and test sets needs to be high to get an
optimal performance. For instance, a retrieval model trained with cars is not
expected to perform well when facing animals, since the visual patterns learned
from the cars will unlikely fit well the animals. Under these circumstances, to
deploy a retrieval system on a new domain, we envisage two options: 1) use
a highly general model trained under thousands of varied topics, which is ex-
pected to fit reasonably well the new visual domain or, 2) create a new specific
topic-related dataset for the task. None of the above options is ideal for differ-
ent reasons: the general model approach is quick but only moderately effective,
whereas the creation of a new dataset is slow and labor intensive, although it
ensures optimal performance.

In the following sections, we introduce a pair-based Soft-Matching (SM)
loss that is capable to adapt general CNNs to new domains with noisy training
sets, which are easier to generate without human intervention. In particular,
image content and meta data are jointly exploited to infer soft labels that, en-
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Figure 3.1: (left) Geo-location of six photos shown on a map of Jerez (Spain).
(right) Corresponding photos.

coding the probability of a pair of images of being a true match, allow to fine
tune general models to better represent certain topics. To illustrate one case of
use for the proposed SM loss, in Chapter 4 we will adapt general classification
CNNs s to better represent images from particular cities or regions, boosting the
performance in a subsequent landmark discovery task.

3.2 The Soft-Matching (SM) Loss

3.2.1 Intuitions

To introduce the proposed loss function we will make use of geotagged land-
marks datasets, where images are enriched with their corresponding GPS co-
ordinates. We have selected the landmarks domain because of the easiness to
obtain large collections of images with their corresponding metatada from pub-
lic repositories. In Section 3.2.4, other potential scenarios of application for our
loss will be discussed.

Geo-location systems can incur in measuring errors when determining po-
sitions. Even though we are aware of this fact, in our work we assume accurate
GPS coordinates. Hence, the main source of noise in our scenario is not due
to meta data inaccuracies, but to the fact that two pictures taken on spatially
close locations are not necessarily visually related. To illustrate this issue, let
us introduce Figure 3.1, where six pictures with their geo-location are shown.
The pair of images (D,E), were taken barely ten meters away from each other,
similar to what happens with the pair (A,D). However, D and E show different
objects while A and D show the same. Thus, geo-location, even when accurate,
yields noisy visual relations between samples. In consequence, in our approach
we consider image meta data as a form of weak supervision, which is comple-
mented with the image content itself. By jointly considering both sources of
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information, it is possible to draw more reliable relations between the dataset
instances, which can be further exploited with the final objective of CNN spe-
cialization using Distance Metric Learning (DML) [145].

DML and its application on pair-based loss functions has been extensively
studied in the context of pure matching tasks [19][146]. The goal is, given a
pair of either matching (y = 1) or non-matching (y = 0) images, to learn how
to embed their representations in the feature space, leading to matching pairs
that locate closer than non-matching ones. In general, this objective is analyti-
cally stated by penalizing the square euclidean distance for matching pairs, and
the negative counterpart for non-matching ones. In noise-free scenarios, this is
a sensible approach that achieve very good results. Unfortunately, these loss
functions are very sensitive to noise. For instance, false positives are likely to
present larger euclidean distances than true positives. Furthermore, since the
loss penalty is square w.r.t. the distances, false positives quickly become domi-
nant in the training process.

3.2.2 From image and meta data to soft labels

The common binary labels used on pair-based loss functions for DML are not
adequate for training sets where the visual relations are noisy. Instead, we pro-
pose to estimate the true match probability of any given pair of images, and ex-
ploit those estimations by encoding them into weak labels that can be swapped
in place of their existing binary counterparts in pair-based losses from the liter-
ature. In this manner, we can turn noise-sensitive losses into noise-robust ones.

In order to estimate the true match probability of a pair of images is not
enough to use their GPS coordinates. As illustrated in Figure 3.1, two images
taken nearby do not necessarily share a visual relation. Thus, the geo-location is
only a clue that needs to be complemented with visual content. GPS coordinates
are available on image meta data, but visual information needs to be extracted by
other means. In our work, to extract the complementary visual clues we propose
to employ a general CNN. By “general” we understand a model that has been
trained for a related task on a large variety of topics. Thus, it is expected to fit
reasonably well any kind of object on our datasets. Once this general CNN is
used to compute the visual descriptors for every image in our training sets, it
will be used as initialization for our adapted models. Hence, for the remainder
of this chapter, we refer to general model as the baseline CNN and to our fine-
tuned version as the adapted CNN.

The process for estimating the true match probability for the i-t4 pair of im-
ages in the training set is based on their content and geo-location, as depicted in
Figure 3.2. First, the pictures (/;, [2) of the i-th pair are forwarded through the
baseline-CNN to obtain their feature representations encoding visual informa-
tion (fp,, fB,). Then, the visual similarity between the images is computed as
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Figure 3.2: The process for estimating the true match probability of the i-#4 pair
of images on the training set. dp, is the visual euclidean distance between the
feature representations computed with the baseline-CNN. dg, is the spatial eu-
clidean distance between their GPS coordinates. y; is the true match probability
used as a weak label in the proposed loss.

the square euclidean distance between their feature representations (dQBi). Sim-
ilarly, the geo-location of the images is used to compute their spatial distance,
i.e., how close in meters the pictures were taken (d?gi). Finally, the true-match
probability (y;) of the i-th pair, is estimated by means of a function working
with their visual distance (computed with the baseline model) and their spatial
distance (as extracted from the GPS meta data).

Let us now discuss the nature of the function computing the true-match
probability that will be used as a weak label in the proposed loss. We would
like to assign a true-match probability y; > 0.5 to those pairs of images that
jointly exhibit a low visual and spatial distances. In other words, pictures that
were taken nearby and look alike (e.g. pair (A,B) in Figure 3.1). In contrast,
we expect to assign a value y; < 0.5 to pairs of images that are visually very
different (e.g. pair (E,D) in Figure 3.1) or, that are visually related but were
taken too far away to physically belong to the same landmark (e.g. pair (D,F)
in Figure 3.1). For this purpose, we set up two thresholds: 1) 7T’z related to the
distance of visual features computed with the baseline network; and 2) T’s asso-
ciated with the spatial distance of the landmarks in the physical world. In order
to obtain a robust solution that is aware of the actual data statistics, we derive
the threshold 75 from the distribution of square visual distances d2Bi computed
using the baseline model. Specifically, assuming a Gaussian distribution:

Tp = pup—kop (3.1)
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Figure 3.3: Piece-wise function defined by equation 3.2 for dg, < Tg as a
function of dQBi. The left hand side of Tz is almost flat giving positive pairs (y; >
0.5) large weights. The right hand side decreases slowly to avoid penalizing too
much false negatives lying close to the 7’z threshold .

where 153 is the average and o the standard deviation of the d%_distribu-
tion. We have found experimentally that a suitable range for k is between 2.0
to 2.5. Concerning the spatial distance, a simple threshold of T's = 300 meters
performs well in our training sets and generalizes properly on unseen locations.

Once we have settled both thresholds, we use the following piece-wise func-
tion to compute the true match probability y; based on visual dQBi and spatial dg,
distances:

0 if dsi > Ty
1 : 2

In d?
exp < Sl Bi) if ds, < Ts,d2, > Tp,

where it should be noted that, given ds, < T (i.e., the images of the i-th
pair are close enough according to their geolocation), the threshold 7z on the
visual distance decides between y; > 0.5 and y; < 0.5 as illustrated in Figure
3.3.

Let us gain some insight into eq. (3.2) by discussing its main advantages:
(a) the true-matching probability y; can be used as a soft label in a loss func-
tion to put more or less emphasis on certain pairs of images, thus, gaining the
ability to produce stronger gradients for high-confidence pairs and weaker gra-
dients for more doubtful cases; (b) the piece-wise function allows to establish
asymmetric behaviors at both sides of the threshold 77z. In particular, we have
observed that, by setting an appropriate conservative threshold (i.e., a low Tz
value that requires highly visual similar images to produce a y; > 0.5 label),
most image pairs with distances below 7T’z show the same visual scene, and the
variations in the distance are usually due to factors like varying viewpoints or
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Figure 3.4: The process for computing the Soft-Matching (SM) loss for the i-th
pair of images on the training set. d 4, is the visual euclidean distance between
the feature representations computed with the adapted-CNN. y; is the fixed true
match probability computed using the baseline-CNN for the i-th pair. L; is the
final computed SM loss

illuminations. Hence, we have designed a flat curve on this piece of the equa-
tion to ensure a similar contribution for all of them. However, if the threshold is
conservative, we may yet find related image pairs with distances above 71z. In
order to avoid the assignment of too low true-match probabilities to those cases,
a slowly decreasing slope seems to be more appropriate (see right part of the
curve in Figure 3.3).

3.2.3 Analytical shape

The proposed Soft-Matching loss addresses the noise sensitivity problem on
other pair-based approaches, by substituting the classic hard binary matching
labels by soft probabilistic versions that encode the true-matching probability
of each pair. The goal is to mitigate the influence on the training process of
those pairs of images for which the true label is more uncertain, and give more
weight to the others. The process for computing the loss for the i-th pair on
the training set is illustrated in Figure 3.4. First, the true-match probabilities
for all possible pairs in the training database are estimated and fixed, using the
procedure explained in Subsection 3.2.2 that employs the baseline-CNN and
the image geo-location. Second, a new adapted-CNN model is initialized using
the weights of the baseline CNN. Then, the pictures (/;, I5) inside the i-th pair
are forwarded through the adapted-CNN to obtain their feature representations
(fay, fa,), which are then used to compute the visual similarity as the square
euclidean distance between them (dii). Finally, the Soft-Matching loss receives
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as input the true-match probability for the pair (y;) and uses it as a soft label in
combination with the visual distance (dii) to calculate the loss for the i-th pair
(Ly).

Our function borrows the general analytical form of the contrastive function
[19] and computes the loss for the i-th pair as follows:

1 1
L;= §yz‘d,24i + B (1 —y;) max (O, m = d124i) 3-3)

where dii is the square Euclidean distance between the visual features of the -t
pair computed using the adapted-CNN; m > 0 is a margin that avoids that very
dissimilar pairs keep contributing to the loss; and y; € [0, 1] is the true-match
probability computed in Subsection 3.2.2, that signals whether the generated
visual descriptors for a pair of images need to be pushed closer (y; > 0.5) or
further away (y; < 0.5) in the feature space.

Let us now discuss the effects of different weak label (y;) values in the SM
loss (equation 3.3). First, for an i-th pair of visually similar images that were
taken nearby, we expect to have y; — 1. This, will increase the weight of the
first term of the loss that penalizes large square euclidean distances. Hence, the
function will generate a strong gradient response aiming at pulling together the
images in the feature space. Second, if images are visually different or were
taken too far away from each other, the weak label will take values y; — 0.
This causes the contribution from the second term of the loss to decrease, and a
strong gradient response towards pushing the features away will dominate. Last,
for those pairs of images where there is more uncertainty about their matching
relation, we expect our method to produce y; ~ 0.5, leading to a balanced
contribution from the pull-push terms in the loss, and avoiding large gradients
on either direction.

To ensure convexity, both the soft labels (y;) and the margin (m) must be
fixed during learning. To that end, we compute the margin and the soft labels
for every pair of images in the dataset only once, using the baseline model
before training begins.

3.2.4 Applications for the SM loss and current limitations
Other SM loss applications

We have introduced the SM loss for a particular source of metadata, the geo-
location. However, there are other scenarios and sources of weakly supervision
that will benefit from this kind of approach. For instance, suppose a cars dataset
where only the manufacturer is known, but the information about the specific
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model is missing or contain errors. In this scenario, the car make will take the
role of the geo-location in our loss, and again, a general model will be used to
extract image features, which, combined with the car make information, might
generate the soft labels necessary to specialize a CNN for retrieval of specific
car make and models. A similar strategy can be used to generate a specialized
network for paintings retrieval. By knowing with certainty the name of the
author, and combining that metadata with some content-based features from a
general model, a set of soft labels might be generated to adapt a model to carry
out retrieval of particular paintings. Other similar visual domains, where only
partial information about the labeling is known, might benefit from a similar
approach to the one proposed in this chapter, based on jointly exploiting content
and meta data.

Current limitations

Our method presents two important limitations. First, it needs some form of
weakly supervision to limit the presence of false positives. For instance, con-
sider the pair of images (D,F) from Figure 3.1: they are known to be a non-
matching pair because of the geo-location. However, they are visually quite
similar. Thus, the baseline model will fail to locate them far apart in the feature
space before any adaptation is carried out.

Second, generating fixed soft labels with the baseline model prior to the
training process is a limiting factor for the degree of proficiency that the spe-
cialized model can attain. For instance, suppose that a soft label y < 0.5 is
assigned to the pair of images (C,D) from Figure 3.1. At the same time, pairs
(A,B), (A,O), (A,D) could get y > 0.5. Since all those images are actually
depicting the same facade of the cathedral, the network is asked to perform a
contradictory visual task. Unfortunately, and due to the high expressibility of
modern CNNs, they might be able to do so via over-fitting. A possible solution
to prevent this effect consists in recomputing the soft labels at the beginning of
each epoch, using the updated specialized model from the previous one. If the
model has learned from the true positives how to describe that particular facade,
maybe the pair (C,D) can change its label and become positive (y > 0.5). We
have experimentally found that this is rarely the case. Once the model has been
instructed to push away a pair of images, the label of this pair rarely changes
from negative to positive. Besides, changing the labels continuously, makes the
optimization process non-convex, and leads to worse results than keeping the
labels fixed from the beginning. We hypothesize that this phenomenon is due
to the small size of our training datasets and could be alleviated using a larger
corpus.
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Chapter 4

Assessment of the Soft-Matching
Loss in a Landmark Discovery
Task

In this chapter, we present a set of experiments testing the capabilities of the
Soft-Matching loss presented in Chapter 3. Section 4.1 contains the main moti-
vations justifying the choice of a landmark discovery task to assess out method.
Section 4.2 describes the general system for landmark discovery. Sections 4.3
to 4.6 introduce the datasets, compared losses, evaluation metrics and experi-
mental setup necessary to replicate our results. Section 4.7 contains the main
results achieved, and Section 4.8 performs two ablation studies showing how
these results are affected when different parts of our method are suppressed.
The chapter ends outlining some conclusions in Section 4.9

4.1 Introduction

The main goal of our approach is to provide location-adapted CNN visual fea-
tures enabling subsequent end-user tasks. To prove the effectiveness of our
method, in this chapter we have chosen the specific task of automatic landmark
discovery to assess our model. There are several important reasons for choosing
this application domain to prove our claims. First, there exist public reposito-
ries containing thousands of landmark images with their associated meta data
that are readily available to train the models. Second, the landmark discovery
task has been a common topic in the computer vision literature; thus, the task in
itself is important for the community. Finally, and most importantly, the land-
mark discovery problem allow us to show how jointly exploiting image content
and meta data can be used to learn location-adapted deep models that provide
tuned image descriptors for specific visual contents.
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Figure 4.1: The proposed system to benchmark the Soft-Matching (SM) loss on
a landmark discovery task: first, all images available from a region are gathered;
then, we pick up those with geolocation and use them to fine-tune a baseline-
CNN model into a location-adapted CNN; lastly, we employ a controlled test
set to compute visual features that are finally passed to the clustering algorithm.

4.2 The Landmarks Discovery System

To evaluate the performance of our loss in a landmark discovery task, we have
implemented the system depicted in Figure 4.1. First, we automatically gather
from Flickr all available images from a particular location (city, region, etc.) us-
ing both geo-location and textual tags to build the query. On average, only 15%
of the images are geo-located. The recovered images are divided into two sub-
sets: 1) a training set containing the geo-located samples; and 2) a test set with
the remaining images. The test corpus has been manually filtered and labeled
to generate the experimental ground truth. Second, an initial baseline model
that was originally trained for a different task, such as classification or retrieval,
is fine-tuned using our proposed Soft-Matching (SM) loss on the training set,
producing an adapted network that we refer to as location-CNN (the Chapter
3 adapted-CNNs used for locations). Finally, the baseline and location CNNs
receive the test set and compute descriptors that are clustered with an automatic
algorithm to perform the discovery of landmarks. The assignments are then
compared with the ground truth to evaluate the system performance.

It is worth noting that the proposed landmark discovery system is executed
in a fully automated manner, since the training labels are generated based on
the images meta data. In our experiments, human intervention is only needed
to create a controlled ground truth that allow us to numerically evaluate the
effectiveness of the solution and compare different alternatives.
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Table 4.1: Training and test sets statistics

Training sets Test sets

Pos Neg
Images ) ) Images Landmarks
pairs  pairs
Jerez 1000 1.5k 250k 1000 19
Madrid 4000 30k 4M 3900 15

Rome 4000 30k 4M 3100 14

4.3 Datasets

Our dataset contains Flickr images from three different cities in Europe: Rome
(Italy), Madrid and Jerez de la Frontera (Spain). For each city, a train set of
geo-located images has been gathered within a 10km radius around the center
of each city. Additionally, we have used a list of generic keywords that helps
to retrieve images that are relevant to our task, namely: landmark, monument,
building, park or art. Finally, we filter out the results by allowing only one im-
age per user in order to avoid duplicates. The test set has been built by searching
for a predefined list of famous landmarks in each city, and manually cleaning
the initially retrieved results. In order to provide a fair analysis, the sets are
disjoint so no images are present in both sets. Table 4.1 summarizes the number
of images and landmarks per city in the corresponding training and test sets, as
well as the resulting number of positive and negative sample image pairs.

4.4 Compared Losses

In our experiments, we have used three loss functions to fine-tune location-
CNNs. In the next paragraphs, we provide a brief description of the considered
losses:

1. Contrastive (CT)[19]: one of the first and most successful losses used
to train deep models for retrieval. It is a pair-based function that receives
two images and a binary label, and tries to bring matching pairs closer in
the feature space, while pushing away non-matching ones, until a margin
is met.

2. Triplet (TL)[67]: another widely used loss for image retrieval. It uses
an anchor, a positive and a negative image, and attempts to increase the
relative distance between the anchor-negative pair and the anchor-positive
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one, up to a margin. It uses binary query-positive and query-negative
relations as CT loss.

3. Soft-Matching (SM): our proposed loss function. It incorporates a mech-
anism to exploit image content and meta data in order to generate soft
labels measuring the true matching probability of any given image pair.
Then, those estimations are inserted as soft labels in a contrastive function
to turn the noise-sensitive contrastive into our noise-robust SM loss.

4.5 Evaluation Metrics

To assess our models in the task of automatic landmark discovery, we have gen-
erated the visual descriptors of images in the test set, and used the k-means al-
gorithm with the pre-defined number of landmarks to cluster these descriptors.
The resulting partitions are then compared with the ground-truth using three
classical clustering evaluation metrics: the Rand (R) [147], Fowlkes-Mallows
(FM) [148] and Jaccard (J) [149] indexes. These indexes are based on count-
ing pairs of images whose members lie in the same or different clusters when
comparing the ground truth and the estimated labels. Given the ground truth
clustering partition C, and an estimated partition C’, the three considered met-
rics are computed as follows:

n11 + Noo

R(C,C") = Nyorre 4.1
/ ni
FM(C,C") = 4.2)
( ) \/(n11 + n10) (111 + no1)
J(C,C") = o (4.3)

ni1 + Nio + No1

where 74, is the amount of pairs of images whose members are assigned to
the same cluster in C' and C”; ng is the amount pairs of images whose members
are assigned to different clusters in C' and C”; ny is the amount pairs of images
whose members are assigned to the same cluster in C, but to different clusters
in C’; and ny is the amount pairs of images whose members are assigned to
different clusters in C', but to the same in C".

The metrics range from zero to one being one the perfect clustering. An in
depth analysis of these metrics to compare clustering performance is given in
[150].
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4.6 Experimental Setup

Starting from a ResNet50 network [138] pre-trained on ImageNet[16] as a com-
mon baseline, three independent models have been fine-tuned for the corre-
sponding training sets: JerezNet, MadridNet and RomeNet. The networks are
trained for 10 epochs with 1000 batches per epoch using Batch Gradient De-
scend (BGD). Each batch contains 40 pairs of images, from which at least 10%
of them are positive (y; > 0.5) and the rest are negative (y; < 0.5). Addition-
ally, a particular image is only included once per batch, allowing us to safely use
BGD instead Stochastic Gradient Descend (SGD), as it is a common practice
when working with pairwise loss functions. For the parameters update, we have
employed 0.9 for the momentum term, 1075 as learning rate and 10~3 as weight
decay. The affine layers of the original model have been removed and we have
kept the output of the last average pooling as our feature. The models were
trained using the open deep learning library PyTorch* on a NVIDIA TITAN XP
GPU.

To cluster the descriptors generated by the different models, a k-means al-
gorithm with a pre-defined number of clusters (the number of landmarks in the
test set) has been used. For the shake of stability and statistical significance, we
have repeated the clustering process ten times to account for different k-means
random initializations. This clustering algorithm has been selected due to its
simplicity, as it allows us to better isolate the influence of the proposed learn-
ing framework from the potential influence of the parameters of the clustering
method.

4.7 Results

In this section, we present the main results obtained for our SM loss on an
automatic landmark discovery task. In Subsection 4.7.1, we focus on the quan-
titative results achieved by our location-adapted CNNs in comparsion with the
baseline models. Then, Subsection 4.7.2 includes some visual qualitative results
than allow to gain some insight into the causes leading our networks to outper-
form the general models on this task. Finally, Subsection 4.7.3 presents an error
analysis explaining the main weaknesses of our adapted location-CNNss.

4.7.1 Quantitative results

Table 4.2 shows the averages and standard deviations of the Rand, Jaccard
and Fowlkes-Mallows indexes obtained in our experiments, using either vi-
sual descriptors generated by the baseline network Resnet50 or by our proposed

*http://pytorch.org/
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Table 4.2: Average and standard deviation of the Rand, Jaccard and Fowlkes
indexes as a result of comparing the proposed models: JerezNet, MadridNet
and RomeNet; with the baseline model ResNet50. Best results highlighted in
bold

Test set Model Rand Jaccard Fowlkes
0.9071 0.3203 0.4944
ResNet50
+0.0201 £0.0145 4 0.0208
Jerez
0.9242 0.3834 0.5627
JerezNet
+ 0.0201 =+ 0.0323 4 0.0254
0.9254 0.3817 0.5467
ResNet50 5 9
Madrid + 0.0051 £0.0239 4+ 0.03
. 0.9547 0.5911 0.7551
MadridNet
+ 0.0189 £ 0.0261 =+ 0.0257
0.9174 0.3728 0.5692
ResNet50
+ 0.0157 £0.0298 4 0.0182
Rome
0.9345 0.5473 0.6625
RomeNet

+0.0177 =£0.0138 =+ 0.0125

location-adapted CNNs (JerezNet, MadridNet, RomeNet) fine-tunned under our
proposed loss. Results show that for all the evaluation indexes and test sets, the
location-adapted CNNs provide a notable improvement over the baseline. This
means that the proposed SM loss is forcing models to dismiss visual struc-
tures from landmarks that might be prominent but not unique (and therefore
not discriminative). Our method is effectively shifting the CNNs attention from
common semantic visual features (doors, windows, cars, people) to specific dis-
tinctive elements of a particular city or region.

The large difference between the Rand index and the other two metrics is
due to the nature of the measures. The Rand index is highly biased towards true
negatives, i.e., pairs of images whose members were not in the same cluster
either in the ground truth or in the estimated labels, which are the vast majority
for any reasonable sized database. This can be observed in the formulation for
the Rand index in equation 4.1, which is the only one including the term 7 in
the computation. The other two indexes neglect true negatives, providing more
stable results over different dataset sizes and number of clusters.
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Figure 4.2: A map showing the locations of the landmarks on the Madrid test
set (see Table 4.1). The figure includes the ground truth (blue circles), and the
landmarks discovered by clustering the test images using the baseline-CNN (or-
ange rectangles) and the location-CNN (green circles). Only the closest twelve
of the fifteen available landmarks on the Madrid test set are shown to allow a
better visualization.

4.7.2 Qualitative results

To visually illustrate the benefits of our method, Figure 4.2 shows a street view
map of Madrid downtown containing three sets of GPS cluster centroids. Be-
fore we present an analysis of the map, let us first discuss the way in which it has
been generated. All the points shown in the map are based on the test images
from Madrid. Since we specifically chose the Flickr images without GPS infor-
mation for the test set (to ensure disjoint train and test sets), we have manually
geo-located all images from this set to carry out this visual experiment. Also,
we added the geo-location for each of the 15 landmarks present on the test set
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Figure 4.3: Two queries (g1, ¢2) from the Madrid test set that belong to land-
marks 1 and 2 of Figure 4.2 respetively. The top-10 most similar images with re-
spect to each query are shown using the baseline-CNN (top row for each query)
and location-adapted-CNN (bottom row for each query). Green rectangles indi-
cates relevant images.

(see Table 4.1). Figure 4.2 shows 12 out of these 15 ground truth landmarks
using blue circles. The three missing landmarks were removed because of their
large distance with respect to the others, which would have forced us to employ
a level of zoom in the map inconvenient for visualization. To compute the GPS
cluster centroids for the baseline ResNet50 model (orange squares in Figure
4.2) and our adapted MadridNet network (green circles in Figure 4.2) we took
the clustering labels obtained in the quantitative experiment presented in Sub-
section 4.7.1, and computed the average GPS coordinates for each individual
cluster.

An analysis of the map allow us to extract an interesting conclussion. The
adapted model (MadridNet) is generating GPS centroids closer to the actual
ground truth landmarks than the baseline (ResNet50) network. Take for in-
stance landmarks 1 and 2 that are individually analyzed in Figure 4.3. For
queries depicting the most common view of those landmarks, their top-10 most
similar images for the baseline ResNet50 contain several instances belonging to
other categories, while the adapted MadridNet correctly retrieved a clean top-
10. When the GPS centroids are computed by averaging the geo-locations of
all images belonging to the clusters, the mean is pulled away from its precise
location by the incorrectly labeled instances. Hence, the proximity of the esti-
mated GPS centroids to the actual landmarks can be understood as a qualitative
measure of model visual accuracy. In that regard, our adapted model shows a
superior performance.
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Figure 4.4: Two queries (g3, q4) from the Rome test set that show the benefits
of adapting a baseline-CNN to a particular city. The top-10 most similar im-
ages with respect to each query are shown using the baseline-CNN (top row
for each query) and location-adapted-CNN (bottom row for each query). The
figure shows the negative effect of common objects (people, cars) acting as dis-
tractors for the baseline-CNN, while the location-CNN successfully avoids the
distractions and focus on the landmarks. Green rectangles indicates relevant
images.

Beyond the city of Madrid, let us visually analyze the positive effect of fine-
tunning general models using our approach. In Figure 4.4 we show the retrieval
results for two queries belonging to Rome. The first query ¢s contains a picture
depicting the Spanish steps landmark in the city of Rome. Interestingly, the
photo was taken in black and white and, apart from the monument itself, the
picture also contains a large amount of persons. The baseline model, which has
been trained to focus on semantic categories, yields high similar feature vectors
for other pictures showing people, leading to only 2 out of 10 correct images
at the top-10. Instead, our location-adapted model has been trained to dismiss
visual elements from the pictures that might be prominent (like the people in this
case) but are not unique or discriminative of the landmark (people is likely to
be found at any other monument). Query ¢, presents a similar challenge where
a car takes up a large chunk of the picture foreground and the monument is
relegated to a distant background. On the one hand, the baseline model focuses
on the car retrieving mostly instances containing vehicles. This distraction leads
to only 2 out of 10 correctly retrieved images. On the other hand, the RomeNet
network is capable of finding other images of the same landmark and returns a
perfect top-10 without any of the retrieved images containing cars.
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Figure 4.5: A query from Rome (g5) and another from Jerez de la Frontera gg
where the baseline model outperforms our proposed location-adapted networks
(RomeNet and JerezNet respectively). Green rectangles indicates relevant im-
ages.

4.7.3 Error Analysis

The proposed location-CNNs have great advantages with respect to the gen-
eral baseline networks. However, for the task of landmark discovery, they also
present some limitations. Figure 4.5 contains two examples (gs, ¢s) where the
semantic baseline model is capable of achieving better results that our location-
adapted CNNs. The nature of the landmarks in a city is rarely semantic but,
sometimes, this is exactly the case. Take, for instance, g5 containing a picture
of the pontifical swiss guard at the Vatican city. The baseline ResNet50 is ca-
pable to find 5 relevant instances with respect to the query, with a perfect top-4
retrieval. In contrast, RomeNet can only find 4 relevant pictures and only 2 of
them are at the top-4. The cause for this behavior is that, in order to excel at
most landmarks, RomeNet needs to learn to dismiss people (see g3 from Figure
4.4). The side-effect of this learning policy is that it harms the performance
when the object of interest is, in fact, people. The other main cause of under
performance for our method are those landmarks that are hard to ascribe to a
particular physical location. For instance, gg shows a typical touristic horse
carriage from Jerez de la Frontera in Spain. The baseline-CNN is capable of
finding 9 out of 10 relevant instances, while JerezNet only retrieves 5 out of 10.
The problem is that, since the carriages move around the city, the GPS coordi-
nates are not as reliable as in static landmarks, leading to mislabeled pairs that
break the training process of the location-CNN. A similar problem can happen
with landmarks that spread along large areas, such as zoos or race tracks, or big
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landmarks that are typically photographed from very distant points, such as the
Egypt pyramids or the Eiffel tower.

4.8 Ablation Studies

In this section, we study the effects of depriving our method from two cru-
cial components. First, in Subsection 4.8.1 we measure the benefits of the soft
labels by training our location-CNNs using other well known losses that em-
ploy binary labels. Then, in Subsection 4.8.2, we explore how the absence of
landmarks in the training sets affect the capabilities of the location-CNNs to
represent images from a particular city.

4.8.1 The effect of removing the soft labels

In this subsection, we study the influence of the soft-labels on the landmark
discovery performance. For that purpose, we repeat the experiment described
in Section 4.7, and compare the results achieved using our SM loss working
with soft labels, with the contrastive (CT) and triplet (TL) losses, that employ
hard binary ones. To that end, the binary labels are computed from the soft ones
as follows:

0 ify; <05
Yp = 4.4)
1 ify; >20.5

where y; are the soft labels used by our SM loss and v, are the binary ones
necessary for the CT and TL losses. Table 6.2 contains the results achieved by
the different losses for the three cities. It can be seen that the soft labels and
our SM loss consistently achieve the best results for all test sets and clustering
metrics. These results were somewhat expected given the noise-sensitive nature
of the CT and TL losses. However, we can see that the CT loss is getting
very competitive results for Rome. It is posible that the restrictive threshold
used in equation 3.2 is fitting particularly well the Rome training set decreasing
the amount of mislabeled pairs but, this might be just a coincidence since this
behavior is not present for the other cities. Thus, we can conclude that using the
soft labels is a critical step to consistently achieve good results in our task.

In addition, an unexpected finding is that the TL loss seems to be the mostly
affected by the noise in the labels. Interestingly, this fact will be also revealed
in the experiments of the second part of this thesis (see Subsection 6.5.2).
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Table 4.3: Average and standard deviation of the Rand, Jaccard and Fowlkes
indexes as a result of comparing the same model trained under three different
loss functions: Triplet (TL), Contrastive (CT) and Soft-Matching (SM). Best
results highlighted in bold

Test set Model-Loss Rand Jaccard  Fowlkes
0.8467 0.1572 0.2711

+0.0181 +£0.0157 +0.0302

0.8834 0.2797 0.4142

+0.0087 +£0.0111 +£0.0214

0.9242 0.3834 0.5627

+0.0201 +0.0323 + 0.0254

0.8942 0.4128 0.5974

+0.0274 +£0.0077 +0.0275

0.9147 0.4390 0.6250

+0.0189 +£0.0170 +0.0246

MadridNet-SM (Ours) 0.9547 0.5911 0.7551
+0.0189 +0.0261 + 0.0257

0.9236 0.5209 0.6457

+0.0171 £0.0154 +0.0121

0.9248 0.5399 0.6488

+0.0323 +£0.0201 =+ 0.0201

0.9345 0.5473 0.6625

+0.0177 +0.0138 + 0.0125

JerezNet-TL

Jerez JerezNet-CT

JerezNet-SM (Ours)

MadridNet-TL

Madrid MadridNet-CT

RomeNet-TL

Rome RomeNet-CT

RomeNet-SM (Ours)

4.8.2 The effect of unseen landmarks

As a second ablation study, we have tested the ability of the learned models to
deal with unseen city landmarks, or even with images from other cities. In other
words, we would like to check if our models are overfitting the previously seen
data and would therefore perform badly on unseen scenes. This would become
a significant weakness if we do not have geo-located images of a particular
landmark of interest in our training set.

Table 4.4 shows the results achieved by JerezNet when tested in Madrid
or Rome. It can be seen that, in this scenario, both the baseline and JerezNet
achieve very similar performances. This is a very important result, as it proves
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Table 4.4: Average and standard deviation of the Rand, Jaccard and Fowlkes
indexes as a result of clustering images from Madrid and Rome using JerezNet.
Best results highlighted in bold

Test set Model Rand Jaccard Fowlkes
0.9254 0.3817 0.5467

ResNet>0 + 0.0051 £0.0239 =+ 0.0322
Madrid i i i
0.9287 0.3867 0.5522
JerezNet
+ 0.0153 +0.0238 <+ 0.0301
0.9174 0.3728 0.5692
ResNet50
+ 0.0157 =+ 0.0298 + 0.0182
Rome
0.9105 0.3646 0.5525
JerezNet

+0.0054 =£0.0179 =£0.0223

that our model adapts to the trained location, but does not over-fit on the training
data. Consequently, it is not necessary to see all the interesting places from a
city during training in order to deploy a useful model. Even for those unseen
landmarks, the model would perform at least as well as a general purpose CNN.

4.9 Conclusions

In Chapters 3 and 4, we have proposed an assessed a novel training framework
that relies on image content and metadata to learn location-adapted deep models
that provide tuned image descriptors for specific visual contents. Our networks,
which start from an initial model pretrained on a different task, are then fine-
tunned by means of a custom pairwise loss function using weak labels that are
computed from image content and meta-data.

Our experiments on a landmark discovery task show that the proposed location-
CNNs achieve an improvement of up to a 55% over the baseline model (Jaccard
index on Madrid test set). This implies that the network successfully learns the
visual clues and peculiarities of the region of interest and generates image de-
scriptors that are location-adapted. Besides, the location-CNNs are capable of
dismissing visual information that might be prominent on an image if it is not
specific to any particular landmark, thus, avoiding the influence of distractors
decreasing the accuracy. In addition, ablation studies show that the use of weak
labels is crucial to consistently outperform the baseline models, and that for
those landmarks that were not present on the training set (or even images from
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other cities), our proposed networks perform at least as well as the baseline
CNN, which indicates a good resilience to overfitting.

Further work will explore research lines like other meta data and scenarios
where specialized networks are necessary to outperform existing general mod-
els, mechanisms to update the fixed soft labels as training progresses, and new
ways to incorporate the notion of soft labels into modern list-based loss function
for deep retrieval.
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Chapter 5

Training Deep Retrieval Models
with Noisy Datasets: Bag
Exponential Loss

In this chapter, we dive into the theory behind the Bag Exponential (BE) loss,
the second of our contributions. Section 5.1 contains an introduction describ-
ing the problematic and main motivations that guide our work, while Section
5.2 includes several subsections that put forward the BE loss itself. Subsection
5.2.1 presents the analytical shape of our loss and relates it to previous exist-
ing functions on which we inspired our work. Subsection 5.2.1 introduces the
implemented mechanism to deal with noise on the training sets that and points
out to other possible applications than dealing with mislabeled samples for our
method. Finally, Subsection 5.2.3 discusses efficiency aspect of our approach
in comparison with other loss functions used in the literature.

5.1 Introduction

Instance image retrieval aims to find an element contained in a query in an
unordered collection of images. It is different from class retrieval since the
goal is not to find samples belonging to a certain category (e.g., buildings), but
a concrete instance (e.g., the Big Ben). Image retrieval has been extensively
studied by the community because it enables several important applications,
such as place or product recognition, fingerprint or face identification, query
by example and, in general, any task that benefits from transferring meta-data
between related images [13].

Nowadays, deep learning and, in particular, Convolution Neural Networks
(CNNss) are the state-of-the-art paradigm to tackle the instance image retrieval
problem. The first clues that classification CNNs produced global features that
were useful for retrieval were found in [2]. Later, the first CNN that was specifi-
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cally tailored for image retrieval was proposed in [151]. This network combined
a novel siamese architecture [66] with a rank-based loss, known as contrastive
loss [19]. Two concurrent works [74][17] demonstrated that substituting the
top fully connected layer of classification models by some pooling mechanisms
over the convolutional activations turned out to be quite effective to improve
performance. Beyond global image representations, other works have focused
on computing deep local features which are more robust against clutter, oc-
clusions and view point variations. In [85], the authors generate deep local
descriptors (DELF) by coupling an attention model with a CNN in order to find
keypoints and describe them in a single forward pass. More recently, some au-
thors have proposed hybrid retrieval models that extract both local and global
descriptors by combining state-of-the-art global CNNs with deep local networks
[12]. In this chapter of the thesis, we focus on improving image global repre-
sentations under noisy training datasets.

Since the very first attempts to tackle image retrieval problem using CNNgs,
it is clear that the performance of the developed solutions is strongly tied to
the training datasets. In particular, training and test datasets must exhibit a
high correlation in the type of objects or scenes in order to achieve an optimal
performance [6]. This correlation allows models to learn the most effective
visual patterns for the task at hand but, in exchange, requires building a training
dataset for that task.

Generating training datasets for image retrieval is time-consuming and labor-
intensive. There are several alternatives to carry out this task, but none is good
enough for several reasons. The most straightforward method consists in defin-
ing the type of objects and use textual tags or other meta-data in search engines
to retrieve a collection of potentially suitable images. This is perfectly feasible
and can generate a large database with limited effort but, unfortunately, the re-
sulting collection of pictures will very likely contain a considerable amount of
noise (mostly due to labeling errors or imprecisions on the meta-data). Indeed,
the presence of noise in the training datasets is known to hinder the learning
process [6]. The second, and more common approach, extends the previous
one by introducing (semi-)automatic algorithms to post-process the initial set
of retrieved images, filtering out non-relevant samples and reducing the level
of noise. Designing such methods is not straightforward and requires extensive
engineering work and innovation [18][4]. Furthermore, these techniques need
to manage a difficult trade-off: on the one hand, if the filtering is too restrictive,
both the size of the database and its diversity will be dramatically reduced. Fur-
thermore, the process will be particularly aggressive with those relevant samples
that are less representative (e.g. hard positives). On the other hand, if the fil-
tering is not restrictive enough, the resulting training set will still contain some
degree of noise, which, even in small proportions, will significantly degrade the
performance of current approaches [4]. A final concern regarding automatic
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filtering methods is that the post-processing algorithms inevitably introduce a
bias into the training dataset, which conditions the subsequent learning task.

In contrast to previous techniques dealing with the noise of the dataset, our
approach handles noise during training, by introducing a novel loss function
which is effective for training deep learning models using noisy datasets. More
specifically, we employ a similar idea to the Multiple Instance Learning (MIL)
framework. Since we can not rely on individual sample labels because of the
noise, our loss uses bags of pairs of images from which we expect at least some
of them to be true matches. The goal is to estimate the likelihood of each pair
in the bag to be a true positive and weight their contribution to the loss propor-
tionally. Since the weighting is done as the training progresses, the model can
choose dynamically the importance of the different images. This eliminates po-
tential biases found in post-processing approaches that filter the datasets before
training. In the same way that deep models learn the best features to solve a
task, we propose an automatic way to choose the samples of the training dataset
from which learning will optimize the results.

In this chaper, we introduce a novel loss function that, inspired by the MIL
framework and working with bags of matching images instead of single pairs,
allows a dynamic weighing of the relevance of each sample as the training pro-
gresses. The proposed method greatly enhances the applicability of CNNs in
real-world image retrieval tasks, given that the dataset cleaning step is the most
labor-intensive task, which is made unnecessary by our system. Moreover, it
opens the door to a new line of research in image retrieval based on automatic
data weighting and selection. This chapter is devoted to a thorough descriptiosn
of the method. Then, Chapter 6 describes a series of experiments that prove the
efficacy of our approach.

5.2 The Bag Exponential Loss Function

In this part of the thesis, we seek to develop a loss function to train CNNs for
image retrieval that is suitable to deal with noisy datasets. The proposed loss
relies on two main contributions. First, we suggest to revisit the concept of mar-
gin typically found in previous losses to make it smoother and more tractable
from a mathematical point of view. In particular, we propose to embed the
margin concept into a negative exponential function, which smoothly vanishes,
acting as a soft margin. Second, inspired by the MIL paradigm [152], we have
developed a bag-based loss that allows us to weight each sample contribution
and shields the learned models against noise. Figure 5.1 illustrates this concept
by comparing how noise affects the computation of the gradients in traditional
pair-based losses in contrast to how it affects the proposed loss. Our hypothe-
sis is the following: assuming a training set with a certain percentage of noise
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Figure 5.1: Conceptual differences between the proposed Bag Exponential loss
and conventional pair-based approaches. For simplicity, only positive pairs (true
or false) are considered. Our function involves a bag mechanism, inspired by
MIL, that weights the relevance of the image pairs in order to generate better
gradients when dealing with noisy training sets. In the figure, the relevance
is represented by the size of the boxes containing the pairs, and the resulting
accumulated batch gradient is represented by G

on each category, sampling a pair of images will yield either a true ((py, p3) in
Figure 5.1) or a false ((py, p2) on Figure 5.1) match, causing instability during
the training process. However, if we sample a large enough bag, although many
of the samples may be noisy, there should be at least some relevant image pairs
to learn from. Thus, as it can be seen in Figure 5.1, the goal of our system is to
ensure that the noise-free pairs have the larger influence on the loss, becoming
the ones responsible for the gradient directions in the backpropagation phase. In
other words, we propose to go beyond instance-based retrieval losses by means
of a MIL loss working with bags of images.

5.2.1 The Exponential Loss Function

For the sake of clarity, we will present the design of our loss function based on
a well-known instance-based loss, the triplet loss [67]. Let T,, = (x4, ,, ©,)
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be a 3-tuple, where x, is a query image, x,, is a potential positive instance with
respect to x,, and x,, a potential negative. The objective of the triplet loss is
typically stated as follows: for any given query, the Euclidean distance between
the query and the positive image should be lower than that between the query
and the negative image. Furthermore, in the original formulation a parame-
ter was introduced to control the minimum acceptable difference between both
distances (the margin), thus improving the model robustness. In our proposal,
we have followed a similar principle, but we have required instead a minimum
acceptable ratio between the distances from the query to negative and positive
samples. In particular, this ratio should be larger than a predefined threshold a:

gl
g |

>« (5.1)

where o somehow inherits the role of the margin in the triplet loss, pre-
venting the model from generating relevant gradients when the corresponding
sample has already been properly learned. Moreover, we have found that a
suited way to accomplish the objective of the margin in a less abrupt manner
was to embed it into a negative exponential function, leading to what we have
named exponential loss:

L(T,) = e~ (ldgnll—alldgpll) (5.2)

where o € R>;. The parameter « inside the negative exponential function
naturally behaves as a soft margin, controlling how quickly the already well
represented triplets start producing negligible gradients. Furthermore, given
a sample, the exponential loss produces a gradient that is proportional to the
model performance, instead of going to zero abruptly as it would happen when
a hard margin is satisfied. Although we have experimentally found that soft
margins provide slightly better results in our scenario, the proposed bag mecha-
nism described in the following section might also be successfully incorporated
into losses working with hard margins (see Appendix A).

5.2.2 The Bag Exponential (BE) Loss Function

Let us now consider the effect of dealing with a noisy training set, where there
is a significant probability of randomly sampling a mislabeled (query, positive)
image pair. Ideally, we would like the loss to prevent such pairs from affecting
the training process. However, it is not feasible for the loss to discern, without
any context, whether or not a pair of positive images is a true match. To provide
some context to the loss, we propose the process illustrated in Figure 5.2, where
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Figure 5.2: Illustration of the computation process of the loss for a mini batch
of samples using the proposed Bag Exponential function. The different sizes of
the boxes containing each pair inside the bags represent their relevance in the
loss computation. Best viewed in color.

we have changed the typical structure of pair or triplet samples to bags of pairs.
In particular, we suggest building a positive bag (B™) of size b(b — 1) pairs, by
sampling b queries from a category and generating all possible pairwise combi-
nations. Likewise, we sample hard negatives, one for each of the b queries, and
generate the bag of negative pairs (B™), of size b, that is:

+ _
BT = {pij}gi,jgb,#i
B~ = {pi7 nz‘hggb

where {p,},.,., denote feature vectors representing images labeled as belong-
ing to the same category; {m;},.,., are typically images of other categories
considered as hard negatives for their corresponding positives (i.e., showing
small distances); and b might take values in the range from 2 (similar to the
standard triplet) to the size of whole dataset. This formulation is asymmetric
in terms of the size of positive and negative bags, i.e., we did not include all
possible query-to-negative permutations because in our datasets for image re-
trieval there are no false negatives. However, the negative bag definition might
be easily adapted to account for such a factor.
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Considering bags instead of instances leads to extend the previous definition
of the exponential loss. Taking inspiration from the MIL paradigm, we need
to define the aggregated positive (D) and negative (D) distances computed
over their corresponding bags B+ and B, respectively, and reformulate our
exponential loss (5.2) to produce what we call the Bag Exponential (BE) loss:

L(B*,B™) = ¢~ (P —aD") (5.3)

where the exponential now applies to the bag-aggregated distances. We have
defined D* and D~ in such a way that the learning process is capable of dy-
namically assigning weights to the samples and, thus, governing their impact on
the loss according to certain criterion. In particular, these aggregated distances
take the following forms:

D* = Z wi; ||p: — py|
I (5.4)
D~ =Y w |Ipi— il

where, according to our previous definitions of B+ and B—, we have con-
sidered b(b — 1) different pairs of positives to define D* and b (positive, hard
negative) pairs to define I)~. The aggregated distances depend on two sets of
weights: w;; and w;, one for each pair of positive images and the other as-
sociated with each negative sample, respectively. It is important to notice that
the formulation is general enough to accommodate any proper definition of the
weights, according to the purpose and the task at hand.

As the main purpose of this paper is to deal with noisy datasets we have
defined the weights as follows:

wt — c—Bllpi—;|
SR

i (5.5)
w;:ijl‘j

i

where —oo < f§ < oo is a design parameter, each positive weight w;;
has been defined as a normalized similarity between the representations of the
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Figure 5.3: Illustration of the weight distribution resulting from eq. ((5.5)) for
a positive p, included on a bag of size 6. The set of weights for two different 3
values (8 = 1 in blue and § = 10 in orange) are shown. Green frames denote
true positives inside the bag, red frames denote false positives (noise) and the
yellow frame is the true negative associated with the positive p,. Best viewed in
color.

respective images, p; and p;, and each negative weight w; is computed by ac-
cumulating all the positive weights involving the instance 7, in order to balance
positive and negative contributions to the loss.

It is worth discussing the role of the /3 parameter, as it determines the shape
of the weight distribution and should be adapted to the intended task (e.g., by
cross-validation). First, we focus on the positive range of potential values,
which allows our bag exponential loss to be robust against noise.

We aim to deal with noise in the training dataset by assigning lower weights
to those samples that are wrongly labeled (red frames in Figure 5.3). Assuming
that two images forming a false positive pair will likely produce more distant
representations in the feature space (i.e., large H D, — Pj H distance), and given
that our exponential function generates gradients which are proportional to the
distances between samples, false positive pairs would become dominant during
training compared to true positive pairs.

The introduction of weights alleviates this problem, by reducing the contri-
bution of false positive pairs to the aggregated distance D and, consequently,
to the loss and its gradients. In particular, small positive values of 5 provide
a more uniform weight distribution, less dependent on the actual distances be-
tween positive pairs and, therefore, more suitable for low levels of noise (5 = 1
in Figure 5.3). In contrast, large positive values of S produce a more sparse
distribution of weights, concentrated on a few pairs containing the most sim-
ilar images, which turns out to be more convenient for higher levels of noise
(8 = 10 in Figure 5.3). In the limit, when S — oo, our proposed aggregated
weight distribution tends to an indicator function and the corresponding aggre-
gated distance becomes a soft approximation of the max operator.

Whereas a similar approach could be applied to negative pairs as well, the
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lack of false negatives in our datasets discourages it in our scenario. Instead,
we have preferred to make negative weights dependent on the positive ones,
and assign more weight to those non-relevant images that look similar to the
dominant relevant ones.

In summary, large values of 3 help to drastically mitigate the effect of noise
during training, but at the expense of reducing the influence of hard positive
examples (i.e., image pairs of the same category that look more different and
whose distances are generally larger than those of the rest of positive pairs).
This effect is clearly visible in the case of 5 = 10 in Figure 5.3, where the
fourth positive, p4, is assigned a very small weight in contrast to what happens
when 3 = 1. However, as we will show in the experimental section, the positive
effect of the noise reduction clearly outweighs the negative effect derived from
the lack of hard positives during training, and leads to optimal performance
when dealing with noisy datasets.

It is also worth noting that this end-to-end approach for dealing with noise
dynamically updates the weights as the network training progresses. Compared
to preprocessing stages, the proposed solution is seamlessly integrated with the
learning process, preventing unintended biases inherited from filtering stages,
and favoring a more adequate convergence of the learning process, as we will
show in the experimental section.

Beyond the noise-handling scenario, the loss function proposed in this sec-
tion is general enough to tackle a wide range of applications, whenever weight-
ing samples according to a certain criterion may be of interest. As an illustrative
example of an alternative application, this approach could be used in noise-free
scenarios to attribute a higher relevance to hard positives. To that end, we can
use 4 < 0in ((5.5)) and set uniform weights for negative samples w; (to prevent
hard positives from dominating the learning of negatives). We also illustrate the
use of this specific configuration for the weights in the experimental section.

5.2.3 Efficiency Aspects

Since we need to simultaneously consider all the images in the bag to compute
the weights in eq. (5.5), the memory requirement of our method is typically su-
perior to those of simpler pair-based losses. In our experiments, we found our
12GB GPU to be unable to manage bag sizes larger than 10 when using the ex-
perimental setup described in Section 6.4 in combination with images in which
the largest dimension is 1024 pixels. To circumvent this problem we used mul-
tistaged backpropagation[114] to reduce the training memory footprint. This
method works by passing the mini batch through the network twice. During
the first pass, in inference mode, all the features are computed and saved. Dur-
ing the second pass, in training mode, images are passed one at a time and the
features from the first step are used to generate the corresponding gradients.
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Finally, all the individual gradients are accumulated to carry out the parameter
update for the complete mini-batch. This solution is equivalent to use a GPU
with more memory and go through the complete mini-batch in one pass. Never-
theless, it is significantly slower since every image has to go through the model
twice. In particular, we have measured the extra time incurred to train our state-
of-the-art model using multistaged backpropagation (with smaller images that
can fit in our GPU) and found a 20% overhead.
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Chapter 6

Experiments on the Bag
Exponential Loss

In this chapter, we present a set of experiments to test the proposed Bag Ex-
ponential (BE) loss introduced in Chapter 5. Section 6.1 contains a relation
between our different claims and the parts of the chapter where they are proved,
as well as an extended description of the structure of this chapter. Sections
6.2 to 6.4 introduce the datasets, compared losses and the experimental setup
necessary to replicate our results. Section 6.5 is devoted to results comparing
the noise robustness of different methods. Section 6.6 offers an state-of-the-art
comparison for deep image retrieval. Section 6.7 test the effect of suppressing
different parts of our method in an ablation study. A new approach to build
image retrieval systems exploiting our approach is presented in Section 6.8. Fi-
nally, the chapter ends outlining the main conclusions achieved in Section 6.9.

6.1 Introduction

This part of the thesis explores the effects of training CNN models by means
of the Bag Exponental (BE) loss presented in Chapter 5. In particular, the ex-
perimental results support the following claims: 1) the BE loss is more resilient
to noise than other state-of-the-art retrieval loss functions (Sections 6.5.1 and
6.5.2); 2) the formulation of our loss is general enough to be applied with other
purposes than dealing with noise, such as increasing the hard positives influence
(Section 6.5.2); 3) the BE loss surpasses current state-of-the-art performance by
allowing models to simultaneously choose the best visual features and samples
from which to optimize (Section 6.6); 4) the most effective way to quickly de-
ploy new retrieval CNNs for new domains is to employ our loss over a noisy
training set (Section 6.8);

This chapter is organized as follows. In Section 6.2, we introduce three
training sets, with various sizes and levels of noise, commonly used as bench-
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marks for the state-of-the-art. Section 6.3 lists the five loss functions used in
the experiments and provide a brief overview of them. Section 6.4 describes
the experimental setup necessary to replicate our results. Section 6.5.1 presents
an experiment that measures how several controlled levels of synthetic noise
in the training data affect the performance of state-of-the-art loss functions in
comparison with our Bag Exponential loss. Section 6.5.2 includes another set
of experiments over the three previously described datasets commonly used as
reference in the literature. Section 6.5.3 measures the influence of 5 from equa-
tion 5.5, a key parameter of our method. Section 6.6 shows how our loss can
be combined with other complementary techniques for image retrieval to pro-
vide state-of-the-art results in various retrieval problems. Section 6.7 presents
an ablation study discussing the influence of the bag size as a function of the
estimated noise level in the training dataset. Section 6.8 presents a new ap-
proach to build image retrieval applications in new domains by exploiting the
proposed method. Finally, Section 6.9 draws the main conclusions achieved for
this second part of the thesis.

6.2 Training Datasets

Three landmark datasets have been used to fine-tune retrieval networks with var-
ious losses. Specifically, we have used the Retrieval SfM-120k (SfM) dataset
[4], the Google landmarks (GL) dataset [18], and a partial subset of the Land-
marks (L) dataset [6], containing those images that are still available online. The
information describing them is summarized in Table 6.1. These datasets vary
in size, number of categories, topic granularity and noise level. By topic gran-
ularity we refer to the instance diversity within a given topic. For example, the
SfM training set has been built around a list of classical European building-like
landmarks, while GL and L contain a larger variety of objects from a broader
geographical coverage, such as statues, parks, paintings, natural landscapes,
buildings, etc. By noise level we refer to the quantity of errors affecting the
training labels, which we have coarsely discretized into three categories: low,
medium and high. In particular, the SfM training set has undergone a strict au-
tomatic filtering process that successfully removed all noise; the L dataset has
been generated by text-querying a search engine and accepting all returned im-
ages in bulk, if at least 20% of them look correct to a human; and the GL is an
intermediate case where the filtering was not aggressive enough to remove all
noise, but in exchange, it produced a larger database.

Beyond landmarks, Table 6.1 also includes the Top 1000 Paintings (T1KP)
set, a paintings training set that will be discussed in Section 6.8.

59



Table 6.1: Summary of the training (up) and test (down)
datasets used in the experiments. Topic granularity refers to
the instance diversity within a given topic.

Name  Size Lt NS Gl
SftM 90k 551 None Low
GL 1.2M 12894 Low High
L 130k 674 High Medium
T1KP 90k 950 High Low
Name Size qiijés Distractors Gra]:blt) llcjrity
OxfSk S5k 55 None Low
ROxf5k S5k 70 None Low
Oxf105k 105k 55 100k High
Par6k 6k 55 None Medium
RPar6k 6k 70 None Medium
Par106k 106k 55 100k High
Holidays 1491 500 None High
S0P 1782 1782 None Low

6.3 Compared Losses

In our experiments, we have considered five loss functions to train deep mod-
els: two of them constitute the most well-known and broadly adopted losses
(Contrastive [19] and Triplet [67]), other two currently hold the state-of-the-art
performance for the benchmark datasets in the literature (Multi-similarity [99]
and Quantized mAP [114]), and our proposed BE loss. In the next paragraphs,
we provide a brief description of the considered losses:

e Contrastive (CT) [19]: one of the first losses used for this task. It is a
pair-based function that receives two images and a binary label, and tries
to bring matching pairs closer in the feature space, while pushing away
non-matching ones, until a margin is met.

e Triplet (TL) [67]: another widely used loss for image retrieval. It uses
an anchor, a positive and a negative image, and attempts to increase the
relative distance between the anchor-negative pair and the anchor-positive
one, up to a margin.
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o Multi-Similarity (MS) [99]: this loss currently achieves state-of-the-art
performance for the CUB200 [153] and the In-Shop clothes Retrieval
[154] datasets used in the task of Fine-Grained Image Retrieval (FGIR).
The function is a generalization of previous pair-based losses and, simi-
larly to our proposal, weighs sample pairs to account for three different
types of similarities, one related to the pair of images itself and other two
related to their positive and negative neighbors.

¢ Quantized mAP (mAPq) [114]: aloss that holds the state-of-the-art per-
formance for the task of instance image retrieval in Oxford [155], Paris
[156], and their revisited versions [157]. It is a list-based loss that opti-
mizes directly for a soft version of the Average Precision (AP) metric.

e Bag Exponential (BE): the loss proposed in this paper. It relies on a
soft margin by embedding the distances into an exponential function, and
extends the previous pair-based losses to work with bags of instances,
allowing the model to weigh the samples according to a predefined crite-
rion. In our experiments we explore two configurations: one to deal with
noisy datasets and another to pay more attention to hard-positives.

6.4 Experimental Setup

Unless explicitly stated otherwise, we have used the following configuration for
all the experiments:

e Model: as retrieval CNN, we have used the Resnet101-GeM architecture
[4], which is a popular choice on the image retrieval literature, and cur-
rently holds the state-of-the-art for several benchmarks we used in this
paper [114]. It is composed of a Resnet101 [3] backbone (without the
last average pooling and fully connected layers) followed by a general-
ized mean pooling and L2-normalization layers. The Resnet backbone
has been pretrained on ImageNet [16].

e Optimizer parameters: as a baseline configuration, we use Adam [158]
with momentum of 0.9, learning rate of 1x107%, learning rate exponential
decay of exp(—0.001e), for epoch e, and weight decay of 1x10~%.

e Training parameters: the models are trained for 100 epochs, each epoch
consists of a full pass through 2000 training tuples, and each batch con-
tains 5 tuples (400 model parameters updates per epoch). The final com-
position of each training tuple depends both on the loss function and
dataset: 1) CT loss uses a query, a positive, and five negatives in all
datasets; 2) TL loss considers a query, a positive and a single negative
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for all sets; 3) MS, mAPq and our EB loss use b positives and b negatives,
with b = 3 for SfM, b = 10 for GL and b = 15 for L. Images are resized
to 362 pixels on their longer side, and standard color jitter with random
gray scale conversions (p = 0.1) is used as data augmentation.

Parameters of the Losses: CT uses a 0.85 margin and TL a 0.4 margin,
as proposed by [4]. MS loss uses « = 3, A = 1,8 = 2. We found
these values to work better in our experiments than the ones proposed by
the original authors in [99], probably due to the different nature of the
problem ([99] was proposed for FGIR). The mAPq loss uses M = 20,
which was the best in our experiments and the same suggested by the
authors.

Our BE loss uses @ = 1.05 in all experiments, which means that we aim
to enforce that negative pairs produce distances at least a 5% larger than
positive ones. The [ parameter for the bag kernel depends on the noise
present on the training dataset. In particular, unless indicated otherwise,
we used § = —1 (enhancing hard positives) for the clean dataset (SfM),
and 5 = 10 when working with noise (GL,L). Note that the optimal value
for 3 is expected to be different for GL and L, since their noise levels dif-
fer. This can be seen in Section 6.5.3 where the effect of the 5 parameter
value has been analyzed in detail for both GL and L.

All the hyperparameters (those of our proposed method and those of the
compared methods by other authors) have been selected by cross valida-
tion on a disjoint 30k image validation set that comes along with SfM
training corpus.

Evaluation: the considered loss functions are compared in terms of the
mean average precision (mAP) on three classical retrieval test sets: Ox-
ford [155] (Oxf5k), Paris [156] (Par6k) and Holidays [159] (Holidays).
The revisited versions of Paris (RPar6k) and Oxford (ROxf5k) [157]
have been also included in the experiments and, additionally, the 100k
Flickr distractors provided with the Oxford dataset have been added to
Oxford (Oxf105k) and Paris (Par106k). Oxford and Paris queries are
cropped according to the given bounding boxes in order to comply with
the standard protocol of evaluation proposed by the authors. For the Hol-
idays dataset, we provide results with the original and rotated versions of
the set. All test images have been scaled to have a larger size of 1024
pixels. A summary for all the test sets can be found in table 6.1
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Figure 6.1: Noise robustness comparison of several state-of-the-art losses for
oxford5k and paris6k datasets and a wide range of synthetic noise levels (0 to

80%).

6.5 Robustness to Noise

6.5.1 Training with Synthetic Noise Levels

Since we would like to assess how different losses behave when dealing with
varying levels of noise on the training set, in this first experiment we aim to
control such noise levels. Unfortunately, there are not enough datasets in the
literature to cover a wide range of noise levels, and even if there were, manually
labeling millions of images to quantify the actual noise levels would turn out
to be unfeasible. Instead, we have artificially contaminated the noise-free StM
training set with several controlled levels of noise. Specifically, we define the
noise level of a training set as the percentage of mislabeled instances in the
corpus. We set a particular noise level for the complete dataset by enforcing it on
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Figure 6.2: Differences in performance at the eleven queries of paris6k due to
the use of distinct training sets: Retrieval-SfM-120k (SfM) and Landmarks (L).
Non-building landmarks (La Defense, Louvre, Moulin Rouge, Pompidou) ben-
efited from more diverse training sets containing landmarks other than building
facades (L). Best viewed in Color.

each of its categories. Thus, all the categories have exactly the same noise level.
To contaminate each category, images from others are copied into it until the
target proportion of mislabeled samples is reached. Instead of using unrelated
distractors as false positives, we used images from the same SfM dataset, which
share the same general topic with the relevant samples.

Figure 6.1 shows the mean AP achieved in oxford5k and paris6k datasets
by the compared losses for a wide range of noise levels. The training setup is
the same described in Section 6.4 except for the number of epochs, which was
halved to 50 (to save computation time), and the bag size, which was set to
b = 20 (big enough for all noise levels). The BE [ parameter has been set to
B = —1 (focus on hard positives) for the 0% noise case, and 5 = 10 (noise
awareness) for all other noise levels.

First of all, our proposed BE loss outperforms the other losses for every
noise level, except for clean datasets (noise% = 0), where is tied with MS and
closely followed by mAPq. These results clearly reveal that while in noise-free
environments all these losses are comparable, when the training set becomes
noisier, the performance can degrade quickly, specially, for pair-based losses
such as MS.

Second, the proposed BE loss is able to keep its performance level over a
very wide range of noise intensities, something that does not happen with MS
and mAPq, which degrade as the noise level increases. The bag mechanism of
BE assigns small weights to the samples of the positive bag that are likely to
be mislabeled (see eq. 5.5). In particular, if 3 is large enough, a single true
positive pair of images can concentrate most of the weights distribution. In this
experiment, we are using bags of size b = 20, and the highest noise level is
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80%, thus, every bag contains on average 4 true positives. Obviously, the size
of the bag is a very important parameter and will be discussed in detail in the
ablation study of Section 6.7.

Finally, it is worth noting that the mAPq loss also exhibits a meritorious
resilience to noise. In our opinion, this is due to its ranking-oriented nature.
mAPq will push noisy samples until they are correctly ranked, hence avoiding
the intrinsic need of pair-wise losses to minimize distances between all posi-
tives, which is really harmful in presence of mislabeled data. However, it can
be seen how the proposed BE notably outperforms mAPq, specially when noise
reaches high levels (e.g. 60%), where the performance of the latter suddenly
degrades.

6.5.2 Training on Real Noise: The Reference Datasets

In this second experiment we compare performance achieved by the same net-
work when it is trained using five different loss functions (see Appendix B for
an additional loss function) and the three landmarks training sets introduced
in Section 6.2, each one with a different qualitative noise level: none (SfM),
low (GL) and high (L). To isolate the influence of the loss functions, no post-
processing techniques (e.g. multiscale, whitening, query expansion, etc.) have
been used. The parameterization of each loss and training set is the one de-
scribed in Section 6.4. Table 6.2 summarizes the results.

As it can be observed, the proposed BE loss achieves the best performance in
most of the train/test combinations: 20 out of 36. For datasets with higher levels
of noise, such as GL and L, this might be somehow expected given the sample
weighting mechanism embedded in the loss to deal with noise. However, BE
is also very competitive compared to other losses when trained using the clean
SfM dataset, which means that dealing with noise is not the only strength of our
loss function. In particular, its ability to focus on hard positives in the absence
of noise ( = —1) is remarkable too.

A very interesting result is the fact that the overall maximum scores in Par6k
and Par106k are achieved by our method when trained on the L dataset, which
contains the highest levels of noise. This result supports one of our main claims:
it is possible to train highly effective CNNs for retrieval using noisy datasets
(which are easy to generate), thus, increasing the applicability of CNNs for this
task.

Compared to our loss, the TL performance is, in general, notably worse. In
particular, it suffers a dramatic performance decrease when used in combina-
tion with noisy training datasets, leading to a very poor performance with GL,
and even failing to converge to a useful solution with L. TL is, therefore, lim-
ited to be used in combination with noise-free training datasets, as SfM, and
behaves particularly well when distractors are added (Oxf105k, Par106k). CT
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Table 6.2: mAPs for nine Resnetl01-GeM models [4] trained using three
datasets and five different loss functions. No post-processing has been ap-
plied to the feature vectors. Holidays mAP evaluation contains both: unro-
tated/rotated* versions of the dataset. The "E”,”M” and "H” columns are the
Easy, Medium, and Hard queries in the revisited versions of Oxford and Paris
test sets. —’ means that the corresponding loss (either TL or MS) was unable
to converge to a useful solution on the noisier L dataset. All figures were ob-
tained using our own code, which has been made publicly available. The best

results are highlighted in bold.

Train LOS.S Test set
set | function
Oxf| Oxf | Par | Par Holidays ROxf5k RPar6k
5k |105k| 6k 106k EIMIHIE | M| H
CT 80.6/76.385.5|77.2|82.1/85.4*|71.8|55.1|26.3|83.1|66.5(40.3
TL 80.2(76.9 |85.3| 80.2 |86.0/89.5%|72.9|54.5|26.2|84.8/66.9|42.6
% mAPq |76.0{73.0(83.9|78.6 |86.1/89.9%|69.2(49.5|20.2|84.0|{65.5|38.9
MS 80.5/76.9 |86.5| 80.5 |83.7/88.0*|74.5(55.0(24.3(85.5|68.143.1
BE(Ours)|80.9| 76.6 |86.5| 80.3 [83.3/87.3*|74.3|56.6|30.0/84.9|67.7|43.0
CT 77.5/74.9|87.1|82.488.8/91.8%|71.9/54.5|28.4/86.9(71.9|49.2
TL 74.5172.0 |86.5|82.0|88.1/91.9%|70.4|50.9|22.6|85.6(68.8 |45.4
8 mAPq |76.4|73.0(83.9|78.6 85.3/89.6%|69.5|52.5|24.9|83.566.0|40.5
MS 75.2172.3184.4179.4|86.4/89.9%|69.550.9|22.4|84.0|68.0|43.2
BE(Ours)|79.0| 75.5 |88.3| 83.8 [85.3/89.1%*|73.1|55.1|29.4/86.2|70.5|47.5
CT 52.6/47.4|68.4|58.4|76.2/77.6*%42.7(30.5| 8.1 [66.2(50.2|23.9
TL =] = SN IS [ (N [ N
— |mAPq |70.6/66.2|87.4|82.7 |84.2/88.7*|61.5|45.8|18.9/83.9/71.2|49.2
MS — | — | = — — — | == —|—|—
BE(Ours)|77.0| 72.9 |89.5| 85.0 (84.5/87.4%|72.8|52.5|24.6|86.3|70.2|47.2

loss attains a similar performance to that of TL, although it is slightly more ro-
bust to moderated levels of noise, being competitive when trained on SfM and
GL. Finally, MS loss is very successful when trained with SfM, getting the best
scores in 6 out of 12 cases. However, its performance degrades quickly as noise
appears, even at moderate levels, such as those in the GL training set. In con-
trast, mAPq seems to be competitive across a wide range of noise levels, and
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Figure 6.3: Evolution of performance in oxford5k and paris6k when a model is
trained under GL and L for different values of the 3 parameter (eq 5.5) .

particularly outstanding when evaluated at the Holidays test set.

There are two loss functions, TL and MS, which were not able to converge
to an appropriate local minimum for the L dataset. This dataset exhibits the
highest noise level (we have estimated in a small subset of image pairs that the
probability of sampling a false positive pair may be around 70%). Given such
a high percentage of false positives, both TL and MS fail to converge because
they are paying a proportional attention to them.

Finally, it is worth noticing that models trained with SfM consistently per-
form better in Oxford-related test sets, while higher scores are obtained in Paris
and Holidays when models were trained with GL and L (even though they are
noisy). In order to understand the rationale behind these results, let us refer
to Figure 6.2, where we compare the test performance of each Paris query for
models trained with both SfM and L. The Paris benchmark contains a broader
topic granularity than Oxford, which is mainly composed by classic building-
like structures, such as those present in the SfM dataset. In particular, note how
training with L. makes the model better at non building-like structures such as
La Defense, Louvre, Moulin Rouge, or the Pompidou Center. In contrast, the

SfM-trained model is superior for Des Invalides and Pantheon, which are the
kind of building landmarks typically found in the SfM dataset. This deepens
on the critical importance of the topic correlation required between train and
test sets. Our experimental results suggest that optimal performance can be ex-
pected by generating training sets that are highly-correlated with the final task,

even though if they show high levels of noise.
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6.5.3 The influence of the Bag Exponential loss § parameter

Although these experiments could have been considered as a part of the ablation
study (Section 6.7), we have included them in this subsection because of the
direct influence of the [ parameter on the robustness of the method against
noise. In particular, we study the sensitivity of our BE loss to the value of the
hyperparameter /3 (see eq. (5.5)). As it is shown in Figure 5.3, § controls the
distribution of the weights associated with the image pairs in the bag. Figure
6.3 shows the performance achieved in oxford5k and paris6k when a model is
trained on GL and L training sets using different values for 3. The rest of the
training setup is the same described in Section 6.4.

Let us first focus on the noisy L dataset. For § < 8 the performance quickly
degrades. In this case, the distribution of weights is fairly uniform and the
loss is giving a non-negligible weight to false positive pairs, which generates
gradients that diverge from the optimal solution. As f increases, the weights
start to concentrate on the portion of true positives within each bag, reducing
the influence of the false pairs. However, if we keep growing the parameter (e.g.
£ > 12.5) the system starts to loose some performance. The rationale behind
is the following: larger values for [ increase the concentration of the weights
on the most similar pairs (see eq. (5.5)), which in turn, reduce the effective
size of the training set by disregarding most of the other images. This effect is
amplified if we employ employ large bag sizes, losing diversity during training.
In fact, if we take this situation to the extreme (e.g. 5 — oo and a bag size that
is large enough to accommodate all the samples on each training category), only
the two most similar images per category will be considered during training. In
consequence, a wrong combination of bag size and  value might be the main
cause of poor performance.

Regarding the GL training dataset, small values of (5 are not a threat to find
a suitable local minima. In fact, using = 0, which uniformly distributes the
weights to all the training pairs, provides a reasonable performance in this case.
This can be also seen in the baseline comparison of losses provided in Table
6.2, where all losses perform reasonably well despite lacking any mechanism to
deal with the moderate noise level of the GL set. Indeed, using small values of
[ also has a positive effect as it reduces influence of the false positives on each
category. Finally, the behavior for large values of (3 is the same as that described
for the L dataset.

6.5.4 Error Analysis

In this section we analyze some errors made by our method and reflect on the
underlying reasons. Figure 6.4 compares the retrieval capabilities of the mAPq
loss and our BE function for two illustrative queries: go7 from rOxford5k and
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Figure 6.4: Comparison of the retrieved results for the query 27 of the rOxford5k
dataset and the query 63 from rParis6k, using the mAPq loss (first row for each
query) and our proposed BE loss (second row). For go7 the top ten returned
results are shown, while for gg3 eleventh to twentieth first ranked images are
included. Green rectangles indicates relevant images.

qe3 from rParis6k. The models used to generate the descriptors were trained
using the GL dataset in Subsection 6.5.2.

Let us analyze go7 first. As can be seen, the relevant images for this query
exhibit a high degree of view point variation. The mAPq loss handles well the
change in perspective and ends up including seven relevant images in the top
ten. In contrast, our BE loss only includes the most similar three. In the case of
Qo3 the relevant images present a high degree of scale variation instead. Since
the top ten retrieved images for both losses were correct, we focus on the fol-
lowing ten. The mAPq retrieves seven relevant images showing a large scale
variation, while our BE only includes one. These examples lead us to conclude
that our method shows a preference to retrieve images presenting smaller varia-
tions in view point and scale. The reason lies in the way our loss is weighing the
contributions of the different images pairs. In order to deal with noise, we used
£ = 10 to train the model. This makes the most similar pairs contribute more to
the gradients than those presenting large variation in viewpoint and scale (hard
positives). Thus, our method achieves a better overall performance by improv-
ing it robustness to noise in exchange for certain penalty on particularly hard
cases.
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Table 6.3: Performance comparison (mAP) of the same
deep model trained on GL with three state-of-the-art
losses in oxford5k, paris6k and their revisited versions.
Best results highlighted in bold.

Loss Test set

Oxf5k | Par6k | rOxf(M/H) | rPar(M/H)
mAPq' 88.1 93.1 66.3/42.5 | 80.2/60.8
MS* 89.0 942 | 66.8/41.4 | 79.9/60.6
BE(ours)* | 89.9 943 | 67.5/41.8 | 80.3/61.2

T Performances provided by the original authors. * Per-
formances computed using our own code.

6.6 Comparison with the State of the Art

In this section we show that our method, in a more competitive set-up, and
combined with other extensions and post-processing techniques, can achieve
state-of-the-art results in the reference datasets. Table 6.3 summarizes the per-
formance of the same deep model [4] trained with the same database (GL), for
three different state-of-the-art losses (mAPq, MS, and proposed BE). We use
this model and GL as training set to replicate the same conditions used by the
authors of mAPq. Since the results reported by the authors of MS were focused
on datasets for fine-grained retrieval [99], we rely on our own implementation
of the method.

The training setup for our method is the one described in Section 6.4, with
the exceptions of (3, which was reduced from 10 to 1.5, and b which was also
reduced to 5. These parameters reductions are done to better adapt the method
to the GL dataset, which presents only a small amount of noise. Additionally,
the size of the longer side of the images during training was increased to 1024,
which leads to a notable improvement in the performance at the expense of
longer training times. As feature post-processing, we included multiscale and
whitening from [4]. Since the scope of this paper is the loss functions, we did
not report results for dimensionality reduction or query expansion techniques.

Even though the GL dataset has a low level of noise, results in Table 6.3
show that our BE loss is highly competitive and achieves the best performance
in 5 out of 6 cases. This finding, in combination with those reported previously
in Sections 6.5.1 and 6.5.2, leads to the conclusion that the proposed loss allows
CNN-based retrieval systems to be trained with noisy training sets and achieve
state-of-the-art performance. From our point of view, this represents a big leap
in the applicability of this type of systems and helps to reduce the needed effort
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to set-up new applications. Moreover, this result opens an emerging line of
research for CNN-based image retrieval: let the models decide not only on the
best features to solve the task, but also on the most relevant samples to do it
[160].

6.7 Ablation Study

Among the parameters of the method, the size of the bag, b, yet deserves an
in-depth discussion due to its relation to the noise level in the training dataset
and its importance regarding the supporting hypothesis of our approach: there
exists at least one true matching pair of positive images in each training bag.
To perform this analysis, we have conducted an experiment similar to that of
Section 6.5.1, but now focusing on our loss and comparing different bag sizes
(including b = 2, i.e., no bag). Figure 6.5 shows the results achieved maintain-
ing the same experimental setup of Section 6.5.1. Since the conclusions for both
test sets (oxford5k, paris6k) are very similar, we will refer to them indistinctly
throughout the discussion.

Let us first discuss the impact of removing the bag mechanism from the BE
loss and focus on the b = 2 curves (positive and negative bags with one positive
and one negative pair, respectively). If the training set is clean (noise% = 0),
the results are very good. In particular, we achieve mAPs = 79.4/86.7 for
oxford5k and paris6k, respectively. However, as soon as the noise increases to
30%, the performance is severely reduced, and when noise reaches 50%, the
network is unable to converge. The explanation is simple, if we randomly pick
two images from categories with a 50% noise level, we get, on average, only
one true positive per tuple, therefore, true matching pairs can not be formed,
which leads to unreliable gradients and degeneration of the learning process.

For b values of 3 and higher, we are effectively implementing the bag mech-
anism. As can be seen in Figure 6.5, there is a relation that must be fulfilled
between bag size and noise level for the network to properly converge. In par-
ticular, having an estimation of the noise level, nl € [0, 1], the bag size must
satisfy b > 2/(1 — nl). This selection ensures that, on average, the loss has
access to at least a true matching pair of images to compute meaningful gra-
dients. The largest noise level used in this experiment was 95%, which would
have required a bag size of b = 40 to converge.

Finally, if the noise level could not be estimated, using a large size of the
bag is always a safe alternative (at the cost of some extra-training time). As can
be observed in Figure 6.5, the performance of the system for b = 10 is always
competitive for any level of noise below 80%.
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Oxford5k results for BE loss as bag size and noise increase
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Figure 6.5: Influence of the bag size parameter, b, on the BE loss in relation
with the noise level present on the training set.

6.8 A novel approach to build image retrieval ap-
plications in new domains

In this subsection we assess the potential of our approach to efficiently deploy
retrieval applications in new domains for which labeled datasets are not avail-
able. To this purpose, we will only consider automatic solutions and avoid those
that require manual annotations or ad hoc cleaning processes of the training
data.

In particular, we have built the Paintings Dataset (T1kP) by simply taking
the top thousand artworks of a public list *, using their names as text queries
on an image search engine, and downloading the top hundred results returned

*http://es.most-famous-paintings.com/MostFamousPaintings.nsf/
ListOfTop1000MostPopularPainting?OpenForm
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Table 6.4: Retrieval performance (mAP) achieved by the same model
(Resnet101-GeM [4]) on the S0P Painting Dataset when trained on datasets
coming from different tasks (classification: ImageNet; retrieval: SfM, GL,
T1kP), when trained on datasets for retrieval with varying levels of topic corre-
lation between train and test sets (SfM, GL: Landmarks; T1kP, S50P: paintings),
and when trained on retrieval datasets with different levels of noise (clean: Im-
ageNet, SM; noisy: GL, T1kP

Train set |Loss S0P Test set
ImageNet|CrossEntropy| 65.33
mAPq 74.33
StM
BE (Ours) 75.70
mAPq 72.77
GL
BE (Ours) 71.87
mAPq 75.48
T1kP
BE (Ours) 82.88

per query. This has been done by means of an automated script that collected
about 100k images distributed over the 1000 artwork categories. We have then
randomly chosen 950 categories for the training dataset, which turns out to be
quite noisy (including many irrelevant images for each category). This corpus
has been generated in an analogous way to the Landmarks (L) [6] dataset, and
exhibits a similar level of noise. In fact, we have replicated the exact same setup
of Subsection 6.5.2 and swapped the L dataset for our new T1kP.

Moreover, in order to perform a fair comparison, we have generated a clean
test dataset (SOP). Specifically, we took the remaining 50 artworks and manually
removed those images that were irrelevant given the category. This led to a total
of 1782 images, all of which were used as queries in our experiments (~ 35
relevant images per query).

To assess our approach, we have compared three systems:

a) A classification CNN trained on a wide variety of topics (i.e., ImageNet).

b) A retrieval CNN trained on clean but topic-unrelated datasets (i.e., STM
and GL).

¢) Our proposal, a retrieval CNN trained on a topic-related but noisy dataset
(i.e., T1kP).

Table 6.4 shows mAP performances of the compared systems. Additionally,
we have included the results for mAPq and our BE losses, to explicitly assess the
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influence of the loss function in the process (other alternatives were not able to
converge, analogously to what happened in Subsection 6.5.2 on the L dataset).
The model trained for classification using the ImageNet dataset is the worst
performing alternative. Hence, as expected, the alignment between training and
test tasks is a key factor. Models trained for retrieval, but on topic-unrelated
datasets show varying performance depending on the loss function: if the loss
is not designed to account for high levels of noise, such as the mAPq, it is safer
and almost equally effective to use a clean dataset (SfM) even if it does not share
the topic with the target application. However, if the loss successfully handles
the presence of noise (as our proposed BE loss), models clearly benefit from
being trained on topic-related datasets, and lead to the optimal solution. Hence,
we can conclude that the combination of an automatic approach to build noisy
but topic-related datasets and our robust-to-noise BE loss function becomes an
efficient and accurate solution to address image retrieval in new domains with
no available labeled data.

6.9 Conclusions

In this chapter, inspired by the Multiple Instance Learning framework, we in-
troduced a Bag Exponential Loss function to train CNNs for image retrieval.
The loss combines the use of an exponential acting as a soft margin and a MIL-
based approach working with bags of positive and negative pairs of images. We
have thoroughly compared this loss function with two widely adopted losses, as
well as two current state-of-the-art references. Our experimental results show
its superior performance for both clean and, specially, noisy datasets. The ratio-
nale behind the achieved improvement in the noisy cases is that we are handling
noise in an end-to-end manner and, therefore, avoiding its negative influence as
well as the unintentional biases due to fixed pre-processing cleaning procedures.
In addition, our method is general enough to suit other scenarios requiring dif-
ferent weights for the training instances (e.g. boosting the influence of hard
positives during training). The proposed bag exponential function can bee seen
as a back door to guide the learning process according to certain objective in a
end-to-end manner, allowing the model to approach such an objective smoothly
and progressively.

Our results also show that our loss allows CNN-based retrieval systems to be
trained with noisy training sets and achieve state-of-the-art performance. Fur-
thermore, we have found that it is better to use ad-hoc training sets that are
highly correlated with the final task, even if they are noisy, than training with a
clean set that is only weakly related. From our point of view, these results rep-
resent a big leap in the applicability of retrieval systems and help to reduce the
needed effort to set-up new applications and scenarios: e.g. by allowing a fast
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automatic generation of noisy training datasets and then using our bag exponen-
tial loss to deal with noise. Moreover, we also consider that this result opens a
new line of research for CNN-based image retrieval: let the models decide not
only on the best features to solve the task, but also on the most relevant samples
to do it [160].

Future lines of work include the design of more complex schemes to gener-
ate the weights inside the loss, such as certain connectivity patterns among the
different samples of the bag, kernels that saturate at very small or large similar-
ities, and adapting the weights to work with false negatives in scenarios where
they can be a problem.
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Chapter 7

Conclusions and Future Lines of
Work

7.1 Conclusions

This thesis has tackled the problem of Content Based Image Retrieval. We have
presented two loss functions to train Convolutional Neural Networks that gen-
erate global image descriptors suitable for retrieval. The main novelty of our
methods with respect to the previous work, is that the proposed functions in-
clude mechanisms to handle the noise in the training datasets explicitly, instead
of taking the traditional approach consisting in a pre-cleaning process using add
hoc complex methods. Training models with noisy datasets is desirable for two
main reasons: 1) It avoids the bias induced by the pre-processing methods that
try to find and filter noise; 2) It allows to quickly deploy CNN-based solutions
for retrieval in new domains without the need of complex pipelines to generate
the training sets.

In Chapter 3 we introduced a Soft-Matching (SM) loss that is capable of
adapting general CNNs to new domains using noisy training sets, that can be
collected without human intervention. In particular, image content and meta
data are jointly exploited to infer soft labels to fine tune general models. The
approach is developed upon a particular type of metadata, image geo-locations,
although the philosophy of the method is extensible to other types of weak an-
notations, as discussed in Section 3.2.4. In Chapter 4, the function is proved
to successfully specialize CNNs to particular cities or regions without incurring
in overfitting. However, the method presents two limitations. First, it needs
some form of weak supervision to limit the presence of false positives. Sec-
ond, the method estimates the soft labels using global features computed using
an auxiliary general model and fix them during training. Thus, the proficiency
of the general models is therefore a limiting factor for the effectiveness of our
specialized CNNGs.
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Chapter 4 explores the effects of fine tunning CNN models by means of the
SM loss presented in Chapter 3. For that purpose, a landmark discovery system
has been developed and a performance comparison has been carried out between
global features computed with a general model and our own specialized CNN's
trained with the proposed SM loss. The experimental results allow us to draw
the following conclusions:

1. The proposed location-CNNs achieve an improvement of up to a 55%
over the baseline model on the landmark discovery task. This implies that
the networks have successfully learned the visual clues and peculiarities
of the regions for which they have been trained, and generated image
descriptors that are better location-adapted.

2. The SM loss allows models to dismiss visual information that might be
prominent on an image if it is not specific to any particular landmark.
Thus, it avoids the influence of distractors that might decrease the accu-
racy.

3. For those landmarks that were not present on the training set or images
belonging to other cities, our proposed models performed at least as well
as the baseline networks, which indicates a good resilience to overfitting.

4. The use of soft labels is crucial to consistently outperform the baseline
models which showed notably worse performance using other losses with
binary annotations.

Chapter 5 presents the second contribution of this thesis, the Bag Exponen-
tial Loss (BE). The BE loss is inspired by the Multiple Instance Learning (MIL)
framework and works with bags of matching images instead of single pairs.
This allows a dynamic weighting of each sample as the training progresses.
The proposed method greatly enhances the applicability of CNNs in real-world
image retrieval, given that the dataset cleaning step is the most labor-intensive
task, and our method made it unnecessary. Moreover, allowing the CNN to
handle noise in an end-to-end manner, eliminates potential biases found in post-
processing approaches that filter the datasets before training. In the same way
that deep models learn the best features to solve a task, we propose an auto-
matic way to choose the samples of the training dataset from which learning
will optimize the results.

Chapter 6 explores the effects of training CNN models for retrieval by means
of the BE loss presented in Chapter 5. In particular, the experimental results
allow us to conclude that:

1. The BE loss is more robust to noise than other state-of-the-art retrieval
functions. This has been proved for both synthetic and real noisy datasets,
and for two different topics: landmarks and paintings.
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2. The formulation of our loss is general enough to be applied with other
purposes than dealing with noise, such as increasing the hard positives
influence.

3. The BE loss surpasses current state-of-the-art performance by allowing
models to simultaneously choose the best visual features and samples
from which to optimize, and opens the door to a disruptive line of re-
search: learning with automatic sample selection.

4. The most efficient way to deploy retrieval CNNs into new domains is
to employ our loss over automatically generated datasets, even if they
are noisy. This notably increases the applicability of deep retrieval since
generating and cleaning the training sets is the most labor intensive task
for this technology.

7.2 Futures Lines of Research

In this final section of the manuscript, we discuss possible future lines of re-
search related to our contributions.

First, the proposed SM Loss has been used in this thesis to adapt CNNs to
particular cities or regions. The retrieval models acquire this location-oriented
knowledge by finding out which specific fine-grained architectural patterns dif-
ferentiate particular objects of interest (a specific building) from the rest in the
city. In other words, the models are encouraged to dismiss any visual features
that are common across different landmarks in the corpus. Thus, a natural ex-
tension to this work is to modify the proposed loss function in order to employ
different sources of metadata to gain this ability in other domains.

One of the main weaknesses of the SM loss is the need for a general model
that allows the initial computation of the weak labels. Consequently, the final
performance of our method is somehow limited by the proficiency of that ini-
tial model. The development of some technique to allow updating the initial
labels as training progresses and the model becomes better at the task is another
important field of study based on our work.

Second, the Bag Exponential Loss (BE) is exploited in this manuscript to
train deep retrieval models under noisy datasets. The hypothesis that supports
our method is the following: assuming a training set with a certain percentage
of noise on each category, sampling a pair of images from a training category
will yield either a true or a false match, causing instability during the training
process. However, if we sample a large enough bag, although many of the
samples may be noisy, there should be at least some relevant image pairs to
learn from. The way in which the loss decides how much weight give to each
sample, is by using a similarity kernel based on euclidean distances.
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The principal future line of research that we identify is the design of more
complex schemes to generate the weights inside the loss, such as certain con-
nectivity patterns among the different samples of the bag, kernels that saturate
at very small or large similarities, or weights that account for false negatives in
scenarios where they can be a problem.

Another interesting research line could lead to a transformation of our loss
from a pair-based to a list-based. List-based losses [114] are becoming more
popular because they optimize for a metric more closely related to the final task
than the pair-based alternatives. Finding a way to include the weighting mech-
anism inside such losses could improve the CNN performance even further.
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Appendix A

The Influence of the Alpha Ratio in
the Bag Exponential Loss

In our Bag Exponential (BE) loss (Chapter 5) an « ratio (equation 5.1) is used
instead of a common absolute margin. The ratio was introduced in preliminary
experiments because we found that it provided slightly better results than a mar-
gin based on absolute distances. However, our MIL-based approach can be suc-
cessfully combined with a standard triplet using L.2-normalized features. In this
Appendix, we present results including bag-based distances into the standard
triplet loss function. These results are summarized in Table A.1. In particular,
we use the Google-Landmarks (GL) training set and compared our proposed
loss (BE-alpha-ratio), the standard triplet with bag-based distances (Triplet-
with-bags) and the standard triplet (Triplet). As it can be seen, although the
results of the triplet with bags are good, the proposed ratio provides a slight
advantage over the standard margin.

Table A.1: mAP results for the same CNNs trained under the Google-
Landmarks dataset (see Section 6.2) employing three different loss functions:
the standard triplet (Triplet), a triplet working over bag distances computed with
our MIL approach but using common absolute margins (Triplet-with-bags) and,
the proposed BE loss (BE-alpha-ratio) using an « ratio as margin (see Subsec-
tion 5.2.1). Best results in bold.

Training set Loss Test set
OxfordSk | Paris6k
Triplet 74.5 86.5
Google-Landmarks | Triplet-with-bags 78.7 87.5
BE-alpha-ratio 79.0 88.3
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Appendix B

Comparing the Results for the
SNCA Loss

In the comparative performance study presented on Subsection 6.5.2, pair-based
as well as list-based losses are included. However, no center-based approach
is covered. We tried to include a function from such category, the Scalable
Neighborhood Component Analysis (SNCA) [110]. However, we faced some
difficulties because of the large models that we use and the high dimensionality
of the feature vectors in our problem, in contrast to those found in the problems
addressed by the original SNCA authors. In our baseline, we used resnet101
with 2048-dimensional feature vectors, while the original work for the SNCA
loss combine resnet18 and resnet50 with dimensionality reduction techniques to
end up with 128-dimensional features. In particular, the memory footprint for
SNCA-related methods is too high for Google-Landmarks dataset (it is far from
fitting in our 12GB Nvidia Titan GPU). Although it fits for Landmarks dataset,
it fails to converge (as well as almost any other loss) due to the large amount
of noise in this dataset. We were able to train the model using the SfM dataset
and the results included in Table B.1 were obtained after a thorough selection of
the three hyperparameters of the SNCA loss (temperature, memory-momentum,
and margin).

As it can be observed, SCNA is rather competitive in paris6k, but not in
oxfordSk. In our honest opinion, it is difficult to establish a fair comparison
with SNCA using SfM as training set. While SNCA was initially designed
to address a classification problem, SfM dataset was created to support image
retrieval. Hence, SfM does not have categories as such and, although we did our
best to group all related images into the same category, we found that there are
thousands of categories with only 3 or 4 images, which does not fit well with
the datasets used in the original SNCA work. We believe that an adaptation of
the SNCA method to better fit these datasets is feasible, but it falls out of the
scope of this thesis.
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Table B.1: mAP results for the same CNNs trained with the SfM dataset em-
ploying different loss functions. See Section 6.2 for more information on the
SfM dataset and Subsection 6.5.2 for the complete results without the SNCA
loss. Best results in bold.

Training set | Loss Test set
OxfordSk | Paris6k
Contrastive 80.6 85.5

Triplet 80.2 85.3
AP 76.0 83.
SfM At ?
MS 80.5 86.5
SNCA 72.8 84.0

BE (Ours) 80.9 86.5

83



Bibliography

[1]
(2]

[3]

[4]

[5]

[6]

[71]

[8]

[9]

S. Papert, “The summer vision project,” 1966.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, eds.), pp. 1097-1105, Curran Associates, Inc., 2012. ,
4,18, 25,48

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. , 5, 61

F. Radenovic, G. Tolias, and O. Chum, “Fine-tuning CNN image retrieval
with no human annotation,” CoRR, vol. abs/1711.02512, 2017. , 6, 23,
49, 59, 61, 62, 66, 70, 73

T. Martinez-Cortés, I. Gonzalez-Diaz, and F. Diaz-de-Maria, “Automatic
learning of image representations combining content and metadata,” in
2018 25th IEEE International Conference on Image Processing (ICIP),
pp. 1972-1976, Oct 2018.

A. Babenko, A. Slesarev, A. Chigorin, and V. S. Lempitsky, “Neural
codes for image retrieval,” CoRR, vol. abs/1404.1777, 2014. , 6, 18,
23,26, 49, 59, 73

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, Convolutional Deep Be-
lief Networks for Scalable Unsupervised Learning of Hierarchical Repre-
sentations, p. 609616. New York, NY, USA: Association for Computing
Machinery, 2009. , 5

H. Bannour, Building and Using Knowledge Models for Semantic Image
Annotation. Theses, Ecole Centrale Paris, Feb. 2013. , 12

C. Harris and M. Stephens, “A combined corner and edge detector,” in In
Proc. of Fourth Alvey Vision Conference, pp. 147-151, 1988. , 13

84



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Y.-G. Jiang, J. Yang, C.-W. Ngo, and A. Hauptmann, “Representations
of keypoint-based semantic concept detection: A comprehensive study,”
Multimedia, IEEE Transactions on, vol. 12, pp. 42 — 53, 02 2010. , 16

L. Liu, J. Chen, P. Fieguth, G. Zhao, R. Chellappa, and M. Pietikinen, “A
survey of recent advances in texture representation,” 01 2018. , 17

B. Cao, A. Araujo, and J. Sim, “Unifying deep local and global features
for image search,” arXiv, pp. arXiv-2001, 2020. , 20, 21, 49

A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images:
A large data set for nonparametric object and scene recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,

pp. 1958-1970, Nov 2008. 4, 48

A. Karpathy and F. Li, “Deep visual-semantic alignments for generating
image descriptions,” CoRR, vol. abs/1412.2306, 2014. 4

M. Jones and P. Viola, “Fast multi-view face detection,” Mitsubishi Elec-
tric Research Lab TR-20003-96, vol. 3, no. 14, p. 2, 2003. 4

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg,

and F. Li, “Imagenet large scale visual recognition challenge,” CoRR,
vol. abs/1409.0575, 2014. 5, 26, 38, 61

A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “Deep image re-
trieval: Learning global representations for image search,” CoRR,
vol. abs/1604.01325, 2016. 6, 49

H. Noh, A. Araujo, J. Sim, and B. Han, “Image retrieval with deep lo-
cal features and attention-based keypoints,” CoRR, vol. abs/1612.06321,
2016. 6, 49, 59

R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in 2006 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2,
pp- 1735-1742, 2006. 7, 22, 28, 32, 36, 49, 60

A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
pp- 1349-1380, Dec 2000. 10

L. Zheng, Y. Yang, and Q. Tian, “Sift meets cnn: A decade survey of
instance retrieval,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 5, pp. 1224-1244, 2017. 10

85



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Yihong Gong, Hongjiang Zhang, Chuan, and Sakauchi, “An image
database system with content capturing and fast image indexing abili-
ties,” in 1994 Proceedings of IEEE International Conference on Multi-
media Computing and Systems, pp. 121-130, 1994. 10

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Qian Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker,

“Query by image and video content: the gbic system,” Computer, vol. 28,
no. 9, pp. 23-32, 1995. 10, 11, 12

B. M. Scassellati, S. Alexopoulos, and M. D. Flickner, “Retrieving im-
ages by 2D shape: a comparison of computation methods with human
perceptual judgments,” in Storage and Retrieval for Image and Video
Databases I (C. W. Niblack and R. C. Jain, eds.), vol. 2185, pp. 2 — 14,
International Society for Optics and Photonics, SPIE, 1994. 11

D. Mumford, “Mathematical theories of shape: do they model percep-
tion?,” Geometric Methods in Computer Vision, vol. 1570, 09 1991. 11

R. Schettini, “Multicolored object recognition and location,” Pattern
Recognition Letters, vol. 15, no. 11, pp. 1089 — 1097, 1994. 11

E. Rivlin and I. Weiss, “Local invariants for recognition,” /IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 17, no. 3,

pp. 226-238, 1995. 11

L. J. Guibas, B. Rogoff, and C. Tomasi, “Fixed-window image descrip-
tors for image retrieval,” in Storage and Retrieval for Image and Video
Databases III (W. Niblack and R. C. Jain, eds.), vol. 2420, pp. 352 — 362,
International Society for Optics and Photonics, SPIE, 1995. 11

D. Slater and G. Healey, “The illumination-invariant recognition of 3d
objects using local color invariants,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 18, pp. 206-210, Feb 1996. 11

T. Gevers and A. W. Smeulders, “Content-based image retrieval by
viewpoint-invariant color indexing,” Image and Vision Computing,
vol. 17, no. 7, pp. 475 — 488, 1999. 11

A. Pentland, R. W. Picard, and S. Sclaroff, “Photobook: Content-based
manipulation of image databases,” International Journal of Computer
Vision, vol. 18, pp. 233-254, Jun 1996. 11

M. J. Swain and D. H. Ballard, “Color indexing,” International Journal
of Computer Vision, vol. 7, pp. 11-32, Nov 1991. 12

86



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. A. Stricker and M. Orengo, “Similarity of color images,” in Storage
and Retrieval for Image and Video Databases III (W. Niblack and R. C.
Jain, eds.), vol. 2420, pp. 381 — 392, International Society for Optics and
Photonics, SPIE, 1995. 12

B. Moghaddam, W. Wahid, and A. Pentland, “Beyond eigenfaces: prob-
abilistic matching for face recognition,” in Proceedings Third IEEE In-
ternational Conference on Automatic Face and Gesture Recognition,
pp- 30-35, 1998. 12

R. C. Veltkamp and M. Hagedoorn, “State of the art in shape matching,”

in Principles of visual information retrieval, pp. 87-119, Springer, 2001.
12

K. Ohba and K. Ikeuchi, “Detectability, uniqueness, and reliability of
eigen windows for stable verification of partially occluded objects,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19,

pp. 1043-1047, Sep. 1997. 12

R. Deriche and G. Giraudon, “A computational approach for corner and
vertex detection,” International Journal of Computer Vision, vol. 10,
pp- 101-124, Apr 1993. 13

A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms.” http://www.v1feat.org/, 2008. 14

H. P. Moravec, Obstacle Avoidance and Navigation in the Real World
by a Seeing Robot Rover. PhD thesis, Stanford, CA, USA, 1980.
AAI8024717. 13

C. Schmid and R. Mohr, “Local grayvalue invariants for image re-
trieval,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 19, pp. 530-535, May 1997. 13

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the International Conference on Computer Vision-Volume
2 - Volume 2, 1CCV 99, (USA), p. 1150, IEEE Computer Society, 1999.
13, 15

K. Mikolajczyk and C. Schmid, “An affine invariant interest point de-
tector,” in Computer Vision — ECCV 2002 (A. Heyden, G. Sparr,
M. Nielsen, and P. Johansen, eds.), (Berlin, Heidelberg), pp. 128—-142,
Springer Berlin Heidelberg, 2002. 14, 15

87


http://www.vlfeat.org/

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

E. Rosten and T. Drummond, ‘“Machine learning for high-speed corner
detection,” in European conference on computer vision, pp. 430—443,
Springer, 2006. 14

E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adap-
tive and generic corner detection based on the accelerated segment test,”

in European conference on Computer vision, pp. 183-196, Springer,
2010. 14

J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline
stereo from maximally stable extremal regions,” Image and vision com-
puting, vol. 22, no. 10, pp. 761-767, 2004. 14

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision, pp. 2564-2571, Ieee, 2011. 14

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in European conference on computer
vision, pp. 778-792, Springer, 2010. 14

A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,”
in 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 510-517, Ieee, 2012. 14

J. Figat, T. Kornuta, and W. Kasprzak, ‘“Performance evaluation of binary
descriptors of local features,” in International Conference on Computer
Vision and Graphics, pp. 187-194, Springer, 2014. 14

D. Bojani, K. Bartol, T. Pribani, T. Petkovi, Y. D. Donoso, and J. S. Mas,
“On the comparison of classic and deep keypoint detector and descriptor
methods,” in 2019 11th International Symposium on Image and Signal
Processing and Analysis (ISPA), pp. 64—69, Sep. 2019. 15

V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, “Hpatches: A
benchmark and evaluation of handcrafted and learned local descriptors,”
CoRR, vol. abs/1704.05939, 2017. 15

D. G. Lowe, “Local feature view clustering for 3d object recognition,”
in Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-1, IEEE,
2001. 15

S. Obdrzalek and J. Matas, “Object recognition using local affine frames
on distinguished regions.,” in BMVC, vol. 1, p. 3, Citeseer, 2002. 15

88



[54] F. Schaffalitzky and A. Zisserman, “Automated scene matching in
movies,” in International Conference on Image and Video Retrieval,
pp. 186197, Springer, 2002. 15

[55] F. Schaffalitzky and A. Zisserman, ‘“Multi-view matching for unordered
image sets, or how do i organize my holiday snaps?,” in European con-
ference on computer vision, pp. 414-431, Springer, 2002. 15

[56] D. Tell and S. Carlsson, “Combining appearance and topology for
wide baseline matching,” in European Conference on Computer Vision,
pp. 68-81, Springer, 2002. 15

[57] T. Tuytelaars and L. Van Gool, “Wide baseline stereo matching based on
local, affinely invariant regions.,” in BMVC, vol. 412, Citeseer, 2000. 15

[58] I. Gonzdlez-Diaz, C. E. Baz-Hormigos, and F. Diaz-de-Maria, “A gener-
ative model for concurrent image retrieval and roi segmentation,” /[EEE
Transactions on Multimedia, vol. 16, no. 1, pp. 169—183, 2014. 15

[59] I. Gonzdalez-Diaz, M. Birinci, F. Diaz-de-Maria, and E. J. Delp, “Neigh-
borhood matching for image retrieval,” IEEE Transactions on Multime-
dia, vol. 19, no. 3, pp. 544-558, 2017. 15

[60] Sivic and Zisserman, “Video google: a text retrieval approach to object
matching in videos,” in Proceedings Ninth IEEE International Confer-
ence on Computer Vision, pp. 1470-1477 vol.2, Oct 2003. 15

[61] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2, pp. 2161-2168, Ieee, 2006.
16

[62] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object re-
trieval with large vocabularies and fast spatial matching,” in 2007 IEEE
conference on computer vision and pattern recognition, pp. 1-8, IEEE,

2007. 16

[63] F. Perronnin, J. Sanchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in European conference on com-
puter vision, pp. 143—-156, Springer, 2010. 17, 18

[64] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local de-
scriptors into a compact image representation,” in 2010 IEEE com-

puter society conference on computer vision and pattern recognition,
pp- 3304-3311, IEEE, 2010. 17

89



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,
and Y. Wu, “Learning fine-grained image similarity with deep ranking,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014. 18

J. Bromley, I. Guyon, Y. LeCun, E. Sickinger, and R. Shah, “Signature
verification using a ”siamese” time delay neural network,” in Proceed-
ings of the 6th International Conference on Neural Information Process-
ing Systems, NIPS’93, (San Francisco, CA, USA), pp. 737-744, Morgan
Kaufmann Publishers Inc., 1993. 18, 49

G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” J. Mach. Learn. Res.,
vol. 11, pp. 1109-1135, Mar. 2010. 18, 22, 36, 51, 60

A. Sharif Razavian, J. Sullivan, A. Maki, and S. Carlsson, “A baseline
for visual instance retrieval with deep convolutional networks,” in Inter-

national Conference on Learning Representations, May 7-9, 2015, San
Diego, CA, ICLR, 2015. 18

A. Babenko and V. Lempitsky, “Aggregating deep convolutional features
for image retrieval,” arXiv preprint arXiv:1510.07493, 2015. 18

Y. Kalantidis, C. Mellina, and S. Osindero, “Cross-dimensional weight-
ing for aggregated deep convolutional features,” in European conference
on computer vision, pp. 685-701, Springer, 2016. 18

A. S. Razavian, J. Sullivan, S. Carlsson, and A. Maki, “Visual instance
retrieval with deep convolutional networks,” ITE Transactions on Media
Technology and Applications, vol. 4, no. 3, pp. 251-258, 2016. 18

A. Mousavian and J. Kosecka, “Deep convolutional features for
image based retrieval and scene -categorization,” arXiv preprint
arXiv:1509.06033, 2015. 18

G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with integral
max-pooling of cnn activations,” arXiv preprint arXiv:1511.05879, 2015.
18

F. Radenovié, G. Tolias, and O. Chum, “Cnn image retrieval learns from
bow: Unsupervised fine-tuning with hard examples,” in Computer Vi-
sion — ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.),
(Cham), pp. 3-20, Springer International Publishing, 2016. 18, 19, 49

90



[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad:
Cnn architecture for weakly supervised place recognition,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016. 18, 20

E.-J. Ong, S. Husain, and M. Bober, “Siamese network of deep fisher-
vector descriptors for image retrieval,” arXiv preprint arXiv:1702.00338,
2017. 18

Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “Tilde: A temporally invariant
learned detector,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5279-5288, 2015. 19

K. M. Yi, Y. Verdie, P. Fua, and V. Lepetit, “Learning to assign orienta-
tions to feature points,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 107-116, 2016. 19

X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet:
Unifying feature and metric learning for patch-based matching,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 3279-3286, 2015. 19

S. Zagoruyko and N. Komodakis, “Learning to compare image patches
via convolutional neural networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4353-4361, 2015.
19

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-
Noguer, “Discriminative learning of deep convolutional feature point de-

scriptors,” in Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 118126, 2015. 19

J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1592—-1599, 2015. 19

V. Balntas, E. Johns, L. Tang, and K. Mikolajczyk, “Pn-net: Conjoined

triple deep network for learning local image descriptors,” arXiv preprint
arXiv:1601.05030, 2016. 19

K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant feature
transform,” in European Conference on Computer Vision, pp. 467-483,
Springer, 2016. 19

91



[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-scale image
retrieval with attentive deep local features,” in Proceedings of the IEEE
international conference on computer vision, pp. 3456-3465, 2017. 19,
49

A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard
to know your neighbor’s margins: Local descriptor learning loss,” in Ad-

vances in Neural Information Processing Systems, pp. 4826-4837, 2017.
19

Y. Ono, E. Trulls, P. Fua, and K. M. Yi, “Lf-net: learning local fea-
tures from images,” in Advances in neural information processing sys-
tems, pp. 6234-6244, 2018. 19

D. Mishkin, F. Radenovic, and J. Matas, “Repeatability is not enough:
Learning affine regions via discriminability,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 284-300, 2018. 20

A. Barroso-Laguna, E. Riba, D. Ponsa, and K. Mikolajczyk, “Key.
net: Keypoint detection by handcrafted and learned cnn filters,” in Pro-
ceedings of the IEEE International Conference on Computer Vision,

pp. 5836-5844, 2019. 20

M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and
T. Sattler, “D2-net: A trainable cnn for joint detection and description of
local features,” arXiv preprint arXiv:1905.03561, 2019. 20

J. Revaud, P. Weinzaepfel, C. De Souza, N. Pion, G. Csurka, Y. Cabon,
and M. Humenberger, “R2d2: Repeatable and reliable detector and de-
scriptor,” arXiv preprint arXiv:1906.06195, 2019. 20

Z. Luo, T. Shen, L. Zhou, J. Zhang, Y. Yao, S. Li, T. Fang, and L. Quan,
“Contextdesc: Local descriptor augmentation with cross-modality con-

text,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2527-2536, 2019. 20

H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic, T. Pa-
jdla, and A. Torii, “Inloc: Indoor visual localization with dense matching
and view synthesis,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 7199-7209, 2018. 20

O. Siméoni, Y. Avrithis, and O. Chum, “Local features and visual words
emerge in activations,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 11651-11660, 2019. 20

92



[95] P-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse
to fine: Robust hierarchical localization at large scale,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1271612725, 2019. 21

[96] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning with
angular loss,” CoRR, vol. abs/1708.01682, 2017. 22

[97] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in Advances in Neural Information Processing Systems 29
(D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
eds.), pp. 1857-18635, Curran Associates, Inc., 2016. 22

[98] M. T. Law, N. Thome, and M. Cord, “Quadruplet-wise image similarity
learning,” in 2013 IEEE International Conference on Computer Vision,
pp- 249-256, 2013. 22

[99] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-
similarity loss with general pair weighting for deep metric learning,”
CoRR, vol. abs/1904.06627, 2019. 22, 60, 61, 62, 70

[100] B. G. V. Kumar, B. Harwood, G. Carneiro, 1. D. Reid, and T. Drummond,
“Smart mining for deep metric learning,” CoRR, vol. abs/1704.01285,
2017. 22

[101] H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei, W. Zheng, and S. Z. Li, “Em-
bedding deep metric for person re-identication A study against large vari-
ations,” CoRR, vol. abs/1611.00137, 2016. 22

[102] C. Wang, X. Zhang, and X. Lan, “How to train triplet networks with 100k
identities?,” CoRR, vol. abs/1709.02940, 2017. 22

[103] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler, “VSE++: improved
visual-semantic embeddings,” CoRR, vol. abs/1707.05612, 2017. 22

[104] C.Wu, R. Manmatha, A.J. Smola, and P. Kridhenbiihl, “Sampling matters
in deep embedding learning,” CoRR, vol. abs/1706.07567, 2017. 22

[105] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard to
know your neighbor’s margins: Local descriptor learning loss,” CoRR,
vol. abs/1705.10872, 2017. 22

[106] X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai, “Triplet-center loss for
multi-view 3d object retrieval,” 2018. 22

93



[107] X. Zheng, R. Ji, X. Sun, B. Zhang, Y. Wu, and F. Huang, “Towards
optimal fine grained retrieval via decorrelated centralized loss with
normalize-scale layer,” in AAAI 2019. 22

[108] B. Chen and W. Deng, “Deep embedding learning with adaptive large
margin n-pair loss for image retrieval and clustering,” Pattern Recogni-
tion, vol. 93, pp. 353 — 364, 2019. 22

[109] Q. Qian, L. Shang, B. Sun, J. Hu, H. Li, and R. Jin, “Softtriple loss: Deep
metric learning without triplet sampling,” 2019. 22

[110] Z. Wu, A. A. Efros, and S. Yu, “Improving generalization via scalable
neighborhood component analysis,” in European Conference on Com-
puter Vision (ECCV) 2018, 2018. 22, 82

[111] X. Wei, J. Wu, and Q. Cui, “Deep learning for fine-grained image analy-
sis: A survey,” CoRR, vol. abs/1907.03069, 2019. 22

[112] K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for average
precision,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2018. 23

[113] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N. M. Robertson,
“Ranked list loss for deep metric learning,” CoRR, vol. abs/1903.03238,
2019. 23

[114] J. Revaud, J. Almazan, R. S. Rezende, and C. R. d. Souza, “Learning
with average precision: Training image retrieval with a listwise loss,” in
The IEEE International Conference on Computer Vision (ICCV), October
2019. 23, 56, 60, 61, 79

[115] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, “Deep metric learn-
ing to rank,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 23

[116] T.-Y. Liu, Learning to Rank for Information Retrieval. Springer, 2011.
23

[117] R. Arandjelovic, P. Gronét, A. Torii, T. Pajdla, and J. Sivic, “Netvlad:
CNN architecture for weakly supervised place recognition,” CoRR,
vol. abs/1511.07247, 2015. 23

[118] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “End-to-end learning of
deep visual representations for image retrieval,” International Journal of
Computer Vision, vol. 124, pp. 237-254, Sep 2017. 23

94



[119] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus, “Training
convolutional networks with noisy labels,” 2014. 23, 24

[120] 1. Gonzalez-Diaz, J. Benois-Pineau, J.-P. Domenger, D. Cattaert, and
A. [de Rugy], “Perceptually-guided deep neural networks for ego-action
prediction: Object grasping,” Pattern Recognition, vol. 88, pp. 223 — 235,
2019. 23,24

[121] G. Patrini, A. Rozza, A. Menon, R. Nock, and L. Qu, “Making deep
neural networks robust to label noise: a loss correction approach,” 2016.
24

[122] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted
data to train deep networks on labels corrupted by severe noise,” 2018.
24

[123] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for train-
ing deep neural networks with noisy labels,” CoRR, vol. abs/1805.07836,
2018. 24

[124] J. Han, P. Luo, and X. Wang, “Deep self-learning from noisy labels,”
2019. 24

[125] K.-H. Lee, X. He, L. Zhang, and L. Yang, “Cleannet: Transfer learning
for scalable image classifier training with label noise,” 2017. 24

[126] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight exam-
ples for robust deep learning,” 2018. 24

[127] J. Li, Y. Wong, Q. Zhao, and M. Kankanhalli, “Learning to learn from
noisy labeled data,” 2018. 24

[128] M. Sun, T. X. Han, M.-C. Liu, and A. Khodayari-Rostamabad, “Multiple
instance learning convolutional neural networks for object recognition,”
2016. 24

[129] P. H. O. Pinheiro and R. Collobert, “From image-level to pixel-level la-
beling with convolutional networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12, 2015, pp. 1713-1721, 2015. 24

[130] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization for
free? - weakly-supervised learning with convolutional neural networks,”
pp- 685-694, 2015. 24

95



[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]
[140]

A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van Gool,
“Weakly supervised cascaded convolutional networks,” in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 5131-5139, July 2017. 24

A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three
principles for weakly-supervised image segmentation,” in European
Conference on Computer Vision (ECCV), pp. 695-711, Springer, 2016.
24

T. Durand, N. Thome, and M. Cord, “Weldon: Weakly supervised learn-
ing of deep convolutional neural networks,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4743-4752, June
2016. 24

T. Durand, T. Mordan, N. Thome, and M. Cord, “WILDCAT: Weakly Su-
pervised Learning of Deep ConvNets for Image Classification, Pointwise
Localization and Segmentation,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5957-5966, 2017. 24

J. H. Su, C. Y. Chin, J. Y. Li, and V. S. Tseng, “Efficient big image
data retrieval using clustering index and parallel computation,” in 2017

IEEE 8th International Conference on Awareness Science and Technol-
ogy (iCAST), pp. 182-187, Nov 2017. 25

Y. Cao, M. Long, J. Wang, and S. Liu, “Deep visual-semantic quantiza-
tion for efficient image retrieval,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 916-925, July 2017. 25

X. Lu, L. Song, R. Xie, X. Yang, and W. Zhang, “Deep hash learning
for efficient image retrieval,” in 2017 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), pp. 579-584, July 2017. 25

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp- 770-778, 2016. 26, 38

M. Thoma, “A survey of semantic segmentation,” 2016. 26

L. Wang, D. Li, Y. Zhu, L. Tian, and Y. Shan, “Dual super-resolution
learning for semantic segmentation,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June
2020. 26

96



[141] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” 2018. 26

[142] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikidinen, “Deep learning for generic object detection: A survey,’

International Journal of Computer Vision, vol. 128, pp. 261-318, Feb
2020. 26

[143] S. Devi, P. Malarvezhi, R. Dayana, and K. Vadivukkarasi, “A comprehen-
sive survey on autonomous driving cars: A perspective view,” Wireless
Personal Communications, vol. 114, pp. 2121-2133, Oct 2020. 26

[144] W. Zhou, H. Li, and Q. Tian, “Recent advance in content-based image
retrieval: A literature survey,” CoRR, vol. abs/1706.06064, 2017. 26

[145] M. Kaya and H. S. Bilge, “Deep metric learning: A survey,” Symmetry,
vol. 11, no. 9, p. 1066, 2019. 28

[146] I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features for im-
age matching,” in 2016 23rd International Conference on Pattern Recog-
nition (ICPR), pp. 378-383, Dec 2016. 28

[147] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical Association, vol. 66, no. 336,
pp. 846850, 1971. 37

[148] E. B. Fowlkes and C. L. Mallows, “A method for comparing two hi-
erarchical clusterings,” Journal of the American Statistical Association,
vol. 78, no. 383, pp. 553-569, 1983. 37

[149] A. Ben-Hur, A. Elisseeff, and 1. Guyon, “A stability based method for
discovering structure in clustered data,” vol. 2002, pp. 6-17, 02 2002. 37

[150] S. Wagner and D. Wagner, “Comparing clusterings - an overview,” Tech-
nical Report 2006-04, 01 2007. 37

[151] S. Bell and K. Bala, “Learning visual similarity for product design with
convolutional neural networks,” ACM Transactions on Graphics, vol. 34,
pp- 98:1-98:10, 07 2015. 49

[152] M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon, “Multi-
ple instance learning: A survey of problem characteristics and applica-
tions,” Pattern Recognition, vol. 77, p. 329353, May 2018. 50

97



[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds-200-2011 dataset,” Tech. Rep. CNS-TR-2011-001,
California Institute of Technology, 2011. 61

Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, “Deepfashion: Powering
robust clothes recognition and retrieval with rich annotations,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 1096-1104, 2016. 61

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object re-
trieval with large vocabularies and fast spatial matching,” in 2007 IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1-8, June
2007. 61, 62

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization: Improving particular object retrieval in large scale image
databases,” in 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-8, June 2008. 61, 62

F. Radenovic, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revisit-
ing oxford and paris: Large-scale image retrieval benchmarking,” CoRR,
vol. abs/1803.11285, 2018. 61, 62

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014. 61

H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Computer Vision
— ECCV 2008 (D. Forsyth, P. Torr, and A. Zisserman, eds.), (Berlin, Hei-
delberg), pp. 304-317, Springer Berlin Heidelberg, 2008. 62

Y. Mohsenzadeh, H. Sheikhzadeh, and S. Nazari, “Incremental relevance
sample-feature machine: A fast marginal likelihood maximization ap-
proach for joint feature selection and classification,” Pattern Recognition,
vol. 60, pp. 835 — 848, 2016. 71, 75

98



	Contents
	List of Figures
	List of Tables
	Introduction and Thesis Objectives
	Motivation
	From Image Retrieval (IR) to Content-Based Image Retrieval (CBIR)
	Convolutional Neural Networks (CNNs) as the Dominant Paradigm in CBIR
	The Need of Large Correlated Training Datasets

	Thesis Objectives
	Structure of the Document

	Related Work
	A Historical Overview of CBIR Systems
	The early CBIR systems (1990 - 1999)
	From global to local descriptors (1999-2012)
	From local descriptors to deep retrieval (2012-2020)

	CNN Loss Functions to Learn Image Global Representations for CBIR
	Dealing with Noise in Training Datasets for CBIR with CNNs

	A Novel Soft-Matching Loss to Learn Image Global Representations Based on Content and Meta data 
	Introduction
	The Soft-Matching (SM) Loss
	Intuitions
	From image and meta data to soft labels
	Analytical shape
	Applications for the SM loss and current limitations


	Assessment of the Soft-Matching Loss in a Landmark Discovery Task 
	Introduction
	The Landmarks Discovery System
	Datasets
	Compared Losses
	Evaluation Metrics
	Experimental Setup
	Results
	Quantitative results
	Qualitative results
	Error Analysis

	Ablation Studies
	The effect of removing the soft labels
	The effect of unseen landmarks

	Conclusions

	Training Deep Retrieval Models with Noisy Datasets: Bag Exponential Loss 
	Introduction
	The Bag Exponential Loss Function
	The Exponential Loss Function
	The Bag Exponential (BE) Loss Function
	Efficiency Aspects


	Experiments on the Bag Exponential Loss 
	Introduction
	Training Datasets
	Compared Losses
	Experimental Setup
	Robustness to Noise
	Training with Synthetic Noise Levels
	Training on Real Noise: The Reference Datasets
	The influence of the Bag Exponential loss  parameter
	Error Analysis

	Comparison with the State of the Art
	Ablation Study
	A novel approach to build image retrieval applications in new domains
	Conclusions

	Conclusions and Future Lines of Work
	Conclusions
	Futures Lines of Research

	Appendices
	The Influence of the Alpha Ratio in the Bag Exponential Loss
	Comparing the Results for the SNCA Loss
	Bibliography

