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Ačiū mano draugams iš Lietuvos ne tik už palaikymą, bet ir už smagiai praleistas poil-
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Chapter 1

Introduction

Understanding, modeling and predicting volatilities of financial time series has been

extensively researched for more than 30 years and the interest in the subject is far

from decreasing. Volatility prediction has a very wide range of applications in fi-

nance, for example, in portfolio optimization, risk management, asset allocation, as-

set pricing, etc. The two most popular approaches to model volatility are based on

the Autoregressive Conditional Heteroscedasticity (ARCH) type and Stochastic Volati-

lity (SV) type models. The seminal paper of Engle (1982) proposed the initial ARCH

model while Bollerslev (1986) generalized the purely autoregressive ARCH into an

ARMA-type model, called the Generalized Autoregressive Conditional Heteroscedas-

ticity (GARCH) model. On the other hand, Taylor (1982, 1986) proposed to model the

volatility as an unobserved process, giving the start to SV models. Since then, there

has been a very large amount of research on the topic, stretching to various model

extensions and generalizations. The supply of models, univariate and multivariate,

GARCH and SV, has been growing over the years. Meanwhile, the researchers have

been addressing two important topics: looking for the best specification for the errors

and selecting the most efficient approach for inference and prediction. This thesis puts

emphasis on these two questions as well.

Besides selecting the best model for the volatility, distributional assumptions for the

returns are equally important. It is well known, that every prediction, in order to be

useful, has to come with a certain precision measurement. In this way the agent can

1
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know the risk she is facing, i.e. uncertainty. Distributional assumptions permit to quan-

tify this uncertainty about the future. Traditionally, the errors have been assumed to be

Gaussian, however, it has been widely acknowledged that financial returns display fat

tails and are not conditionally Normal. Therefore, it is common to assume a Student-t

distribution, see Bollerslev (1987), He & Teräsvirta (1999), Bai et al. (2003) and Jacquier

et al. (2004), among many others. However, the assumption of Gaussian or Student-t

distributions is rather restrictive. An alternative approach is to use a mixture of distri-

butions, which can approximate arbitrarily any distribution given a sufficient number

of mixture components. A mixture of two Normals was used by Bai et al. (2003), Ausín

& Galeano (2007) and Giannikis et al. (2008), among others. These authors have shown

that the models with the mixture distribution for the errors outperformed the Gaussian

ones and do not require additional restrictions on the degrees of freedom parameter as

the Student-t one.

As for the inference and prediction, the Bayesian approach is especially well-suited

for GARCH and SV models and provides some advantages compared to classical esti-

mation techniques, as outlined by Ardia & Hoogerheide (2010). Firstly, the positivity

constraints on the parameters to ensure positive variance, may encumber some op-

timization procedures. In the Bayesian setting, constraints on the model parameters

can be incorporated via priors. Secondly, in most of the cases we are more interested

not in the model parameters directly, but in some non-linear functions of them. In the

maximum likelihood (ML) setting, it is quite troublesome to perform inference on such

quantities, while in the Bayesian setting it is usually straightforward to obtain the pos-

terior distribution of any non-linear function of the model parameters. Furthermore,

in the classical approach, models are usually compared by any other means than the

likelihood. In the Bayesian setting, marginal likelihoods and Bayes factors allow for

consistent comparison of non-nested models while incorporating Occam’s razor for

parsimony. Also, Bayesian estimation provides reliable results even for finite samples.

Finally, Hall & Yao (2003) add that the ML approach presents some limitations when

the errors are heavy tailed, also the convergence rate is slow and the estimators may

not be asymptotically Gaussian.

Therefore in this thesis we consider different Bayesian non-parametric specifications

for the errors for GARCH and SV models. Also, we employ two Bayesian estimation

approaches: Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC).
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The thesis is structured as follows:

Chapter 2 reviews the existing literature on the most relevant Bayesian inference meth-

ods for univariate and multivariate GARCH and SV models. The advantages and

drawbacks of each procedure are outlined as well as the advantages of the Bayesian

approach versus classical procedures. The chapter makes emphasis on Bayesian non-

parametrics for time-varying volatility models that avoid imposing arbitrary paramet-

ric distributional assumptions. Finally, the chapter presents an alternative Bayesian

estimation technique - Sequential Monte Carlo, that allows for an on-line type infer-

ence. The major part of the contents of this chapter resulted into a paper by Virbickaitė

et al. (2013), which has been accepted in the Journal of Economic Surveys.

Chapter 3 considers an asymmetric dynamic conditional correlation (ADCC) model to

estimate the time-varying correlations of financial returns where the individual vola-

tilities are driven by GJR-GARCH models. This composite model takes into consider-

ation the asymmetries in individual assets’ volatilities, as well as in the correlations.

The errors are modeled using a Dirichlet location-scale mixture of multivariate Nor-

mals allowing for a flexible return distribution in terms of skewness and kurtosis. This

gives rise to a Bayesian non-parametric ADCC (BNP-ADCC) model, as opposed to a

symmetric specification, called BNP-DCC. Then these two models are estimated using

MCMC and compared by considering a sample of Apple Inc. and NASDAQ Industrial

index daily returns. The obtained results reveal that for this particular data set the

BNP-ADCC outperforms the BNP-DCC model. Finally, an illustrative asset allocation

exercise is presented. The contents of this chapter resulted into a paper by Virbickaitė,

Ausín & Galeano (2014), which has been accepted in Computational Statistics and Data

Analysis.

Chapter 4 designs a Particle Learning (PL) algorithm for estimation of Bayesian non-

parametric Stochastic Volatility models for financial data. The performance of this par-

ticle method is then compared with the standard MCMC methods for non-parametric

SV models. PL performs as well as MCMC, and at the same time allows for on-line

type inference. The posterior distributions are updated as new data is observed, which

is prohibitively costly using MCMC. Further, a new non-parametric SV model is pro-

posed that incorporates Markov switching jumps. The proposed model is estimated
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by using PL and tested on simulated data. Finally, the performance of the two non-

parametric SV models, with and without Markov switching, is compared by using real

financial time series. The results show that including a Markov switching specification

provides higher predictive power in the tails of the distribution. The contents of this

chapter resulted into a working paper by Virbickaitė, Lopes, Ausín & Galeano (2014).

Finally, Chapter 5 concludes and proposes general future research lines that could be

viewed as natural extensions of the ideas presented in the thesis.



Chapter 2

Bayesian Inference for Time-Varying

Volatility Models

This chapter reviews the existing Bayesian inference methods for univariate and mul-

tivariate GARCH and SV models while having in mind their error specifications. The

main emphasis of this chapter is on the recent development of an alternative inference

approach for these models using Bayesian non-parametrics. The classical paramet-

ric modeling, relying on a finite number of parameters, although so widely used, has

some certain drawbacks. Since the number of parameters for any model is fixed, one

can encounter underfitting or overfitting, which arises from the misfit between the data

available and the parameters needed to estimate. Then, in order to avoid assuming

wrong parametric distributions, which may lead to inconsistent estimators, it is better

to consider a semi- or non-parametric approach. Bayesian non-parametrics may lead

to less constrained models than classical parametric Bayesian statistics and provide an

adequate description of the data, especially when the conditional return distribution is

far away from Gaussian.

The literature on non-parametric GARCH and SV type models is still very recent, how-

ever, the popularity of the topic is rapidly increasing, see Jensen & Maheu (2010, 2013,

2014), Delatola & Griffin (2011, 2013) and Ausín et al. (2014). All of them have consid-

ered infinite mixtures of Gaussian distributions with a Dirichlet process (DP) prior over

the mixing distribution, which results into DP mixture (DPM) models (see Lo 1984 and

Ferguson 1973, among others). This approach proves to be the most popular Bayesian

5
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non-parametric modeling procedure so far. The results over the papers have been con-

sistent: Bayesian non-parametric methods lead to more flexible models and are better

in explaining heavy-tailed return distributions, which parametric models cannot fully

capture.

The outline of this chapter is as follows. Sections 2.1 and 2.2 shortly introduce univari-

ate and multivariate GARCH and SV models and different inference and prediction

methods. Section 2.3 introduces the Bayesian non-parametric modeling approach and

reviews the limited literature of this area in time-varying volatility models. Finally,

Section 2.5 concludes.

2.1 Univariate and multivariate GARCH

In this section we shortly introduce the most popular univariate and multivariate

GARCH specifications. In the description of the models and the review of the inference

methods we are not going to enter into the technical details of the Bayesian algorithms

and refer to Robert & Casella (2004) for a more detailed description of the mentioned

Bayesian techniques.

Univariate GARCH

The general structure of an asset return series modeled by a GARCH-type models can

be written as:

rt = µt + at = µt +
√

htεt, (2.1)

where µt = E
[
rt|I t−1] is the conditional mean given I t−1, the information up to time

t− 1, at is the mean corrected returns of the asset at time t, ht = Var
[
rt|I t−1] is the

conditional variance given I t−1 and εt is the standard white noise shock. There are

several ways to model the conditional mean µt. The usual assumptions are to consider

that the mean is either zero, equal to a constant (µt = µ), or follows an ARMA(p,q) pro-

cess. However, sometimes the mean is also modeled as a function of the variance, say

g(ht), which leads to the GARCH-in-Mean models. On the other hand, the conditional
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variance, ht, is usually modeled using the GARCH-family models. In the basic GARCH

model the conditional volatility of the returns depends on a sum of three parts: a con-

stant variance as the long-run average, a linear combination of the past conditional

volatilities and a linear combination of the past mean squared returns. For instance, in

the GARCH(1,1) model, the conditional variance at time t is given by

ht = ω + αa2
t−1 + βht−1, for t = 1, . . . , T. (2.2)

There are some restrictions which have to be imposed such as ω > 0, α, β ≥ 0 for posi-

tive variance, and α + β < 1 for covariance stationarity.

Nelson (1991) proposed the exponential GARCH (EGARCH) model that acknowledges

the existence of asymmetry in the volatility response to the changes in the returns,

sometimes also called “leverage effect", introduced by Black (1976). Negative shocks

to the returns have a stronger effect on volatility than positive ones. Other ARCH ex-

tensions that try to incorporate the leverage effect are the GJR model by Glosten et al.

(1993) and the TGARCH of Zakoian (1994), among many others. As Engle (2004) puts it,

“there is now an alphabet soup” of ARCH family models, such as AARCH, APARCH,

FIGARCH, STARCH etc, which try to incorporate such return features as fat tails, vola-

tility clustering and volatility asymmetry. Papers by Bollerslev et al. (1992), Bollerslev

et al. (1994), Engle (2002b), Ishida & Engle (2002) provide extensive reviews of the ex-

isting ARCH-type models. Bera & Higgins (1993) review ARCH type models, discuss

their extensions, estimation and testing, also numerous applications. Additionally, one

can find an explicit review with examples and applications concerning GARCH-family

models in Tsay (2010) and Chapter 1 in Teräsvirta (2009).

The most used estimation approach for GARCH-family models is the maximum likeli-

hood method. However, recently there has been a rapid development of Bayesian esti-

mation techniques, which offer some advantages compared to the frequentist approach

as already discussed in the beginning of this chapter. In addition, in the empirical fi-

nance setting, the frequentist approach presents an uncertainty problem. For instance,

optimal allocation is greatly affected by the parameter uncertainty, which has been rec-

ognized in a number of papers, see Jorion (1986) and Greyserman et al. (2006), among

others. These authors conclude that in the frequentist setting the estimated parameter

values are considered to be the true ones, therefore, the optimal portfolio weights tend
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to inherit this estimation error. However, instead of solving the optimization prob-

lem on the basis of the choice of unique parameter values, the investor can choose

the Bayesian approach, because it accounts for parameter uncertainty, as seen in Kang

(2011) and Jacquier & Polson (2013), for example. A number of papers in this field

have explored different Bayesian procedures for inference and prediction and differ-

ent approaches to model the fat-tailed errors and/or asymmetric volatility. The recent

development of modern Bayesian computational methods, based on Monte Carlo ap-

proximations and MCMC methods have facilitated the usage of Bayesian techniques,

see e.g. Robert & Casella (2004).

The standard Gibbs sampling procedure does not make the list because it cannot be

used due to the recursive nature of the conditional variance: the conditional posterior

distributions of the model parameters are not of a simple form. One of the alternatives

is the Griddy-Gibbs sampler as in Bauwens & Lubrano (1998). They discuss that previ-

ously used importance sampling and Metropolis algorithms have certain drawbacks,

such as that they require a careful choice of a good approximation of the posterior den-

sity. The authors propose a Griddy-Gibbs sampler which explores analytical properties

of the posterior density as much as possible. In their paper GARCH model has Student-

t errors, which allows for fat tails. The authors choose to use flat (Uniform) priors on

parameters (ω, α, β) with whatever region is needed to ensure the positivity of vari-

ance, however, the flat prior for the degrees of freedom cannot be used, because then

the posterior density is not integrable. Instead, they choose a half-right side of Cauchy.

The posteriors of the parameters were found to be skewed, which is a disadvantage

for the commonly used Gaussian approximation. On the other hand, Ausín & Galeano

(2007) modeled the errors of a GARCH model with a mixture of two Gaussian distri-

butions. The advantage of this approach, compared to that of Student-t errors, is that

if the number of the degrees of freedom is very small (less than 5), some moments may

not exist. The authors have chosen flat priors for all the parameters, and discovered

that there is little sensitivity to the change in the prior distributions (from Uniform to

Beta), unlike in Bauwens & Lubrano (1998), where the sensitivity for the prior choice

for the degrees of freedom is high. Other articles using a Griddy-Gibbs sampling ap-

proach include Bauwens & Lubrano (2002), who have modeled asymmetric volatility

with Gaussian innovations and have used Uniform priors for all the parameters, and

by Wago (2004), who explored an asymmetric GARCH model with Student-t errors.
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Another MCMC algorithm used in estimating GARCH model parameters, is the

Metropolis - Hastings (MH) method, which samples from a candidate density and then

accepts or rejects the draws depending on a certain acceptance probability. Ardia (2006)

modeled the errors as Gaussian distributed with zero mean and unit variance while

the priors are chosen as Gaussian and a MH algorithm is used to draw samples from

the joint posterior distribution. The author has carried out a comparative analysis be-

tween ML and Bayesian approaches, finding, as in other papers, that some posterior

distributions of the parameters were skewed, thus warning against the abusive use of

the Gaussian approximation. Also, Ardia (2006) has performed a sensitivity analysis

of the prior means and scale parameters and concluded that the initial priors in this

case are vague enough. This approach has been also used by Müller & Pole (1998),

Nakatsuma (2000) and Vrontos et al. (2000), among others. A special case of the MH

method is the random walk Metropolis-Hastings (RWMH) where the proposal draws

are generated by randomly perturbing the current value using a spherically symmetric

distribution. A usual choice is to generate candidate values from a Gaussian distribu-

tion where the mean is the previous value of the parameter and the variance can be

calibrated to achieve the desired acceptance probability. This procedure is repeated at

each MCMC iteration. Ausín & Galeano (2007) have also carried out a comparison of

estimation approaches, Griddy-Gibbs, RWMH and ML. Apparently, RWMH has dif-

ficulties in exploring the tails of the posterior distributions and ML estimates may be

rather different for those parameters where posterior distributions are skewed.

In order to select one of the algorithms, one might consider some criteria, such as fast

convergence for example. Asai (2006) numerically compares some of these approaches

in the context of GARCH models. The Griddy-Gibbs method is capable in handling the

shape of the posterior by using shorter MCMC chains comparing with other methods,

also, it is flexible regarding parametric specification of the model. However, it can re-

quire a lot of computational time. This author also investigates MH, adaptive rejection

Metropolis sampling (ARMS), proposed by Gilks et al. (1995), and acceptance-rejection

MH algorithms (ARMH), proposed by Tierney (1994). For more in detail about each

method in GARCH models see Nakatsuma (2000) and Kim et al. (1998), among others.

Using simulated data, Asai (2006) calculated geometric averages of inefficiency factors

for each method. Inefficiency factor is just an inverse of Geweke (1992) efficiency fac-

tor. According to this, the ARMH algorithm performed the best. Also, computational
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time was taken into consideration, where ARMH clearly outperformed MH and ARMS,

while Griddy-Gibbs stayed just a bit behind. The author observes that even though the

ARMH method showed the best results, the posterior densities for each parameter did

not quite explore the tails of the distributions, as desired. In this case Griddy-Gibbs per-

forms better; also, it requires less draws than ARMH. Bauwens & Lubrano (1998) inves-

tigate one more convergence criteria, proposed by Yu & Mykland (1998), which is based

on cumulative sum (cumsum) statistics. It basically shows that if MCMC is converg-

ing, the graph of a certain cumsum statistic against time should approach zero. Their

employed Griddy-Gibbs algorithm converged in all four parameters quite fast. Then,

the authors explored the advantages and disadvantages of alternative approaches: the

importance sampling and the MH algorithm. Considering importance sampling, one

of the main disadvantages, as mentioned before, is to find a good approximation of

the posterior density (importance function). Also, comparing with Griddy-Gibbs al-

gorithm, the importance sampling requires much more draws to get smooth graphs of

the marginal densities. For the MH algorithm, same as in importance sampling, a good

approximation needs to be found. Also, compared to Griddy-Gibbs, the MH algorithm

did not fully explore the tails of the distribution, unless for a very big number of draws.

Another important aspect of the Bayesian approach, as commented before, is the ad-

vantage in model selection compared to classical methods. Miazhynskaia & Dorffner

(2006) reviews some Bayesian model selection methods using MCMC for GARCH-type

models, which allow for the estimation of either marginal model likelihoods, Bayes

factors or posterior model probabilities. These are compared to the classical model se-

lection criteria showing that Bayesian approach clearly considers model complexity in

a more unbiased way. Also, Chen et al. (2009) includes a revision of Bayesian selec-

tion methods for asymmetric GARCH models, such as the GJR-GARCH and threshold

GARCH. They show how using Bayesian approach it is possible to compare complex

and non-nested models to choose for example between GARCH and stochastic vola-

tility models, between symmetric or asymmetric GARCH models or to determine the

number of regimes in threshold processes, among others.

Markov Switching GARCH (MS-GARCH). One of the most prominent features of

the volatilities of financial time series is a very high persistence of the variance process,

which in some cases is very close to having a unit root. Some authors argue that the



Chapter 2. Review 11

upward bias in the persistence parameter might occur due to the presence of struc-

tural changes in volatility, which simple GARCH models do not account for. Therefore,

Hamilton & Susmel (1994) and Cai (1994) independently proposed a Markov Switch-

ing ARCH model, which later was generalized by Gray (1996) into MS-GARCH. Dif-

ferently than simple GARCH model, defined in Equation 2.1 and Equation 2.2, the

MS-GARCH model has the following representation:

rt = µst + at = µst +
√

htεt,

ht = ωst + αst a
2
t−1 + βst ht−1, for t = 1, . . . , T,

where st are the regime variables following a J-state first order Markov Process with

the following transition probabilities:

pij = P [st = j|st−1 = i] , for i, j = 1, . . . , J.

Kaufmann & Frühwirth-Schnatter (2002) designed an MCMC scheme to generate a

sample from the posterior of a MS-ARCH model, which has not been done before,

by combining a multi-move sampling of a hidden Markov process with Metropolis –

Hastings for parameter estimation. The authors have performed model selection us-

ing Bayes factors and model likelihoods to determine the number of states and the

number of autoregressive parameters in the volatility process. Bauwens et al. (2010)

note that ML estimation of MS-GARCH model is basically impossible, because of the

unobservable regimes. Therefore, they propose an MCMC algorithm that evades the

problem of path dependence by treating the state variables as additional parameters.

The authors carry out an extensive simulation study to evaluate the performance of

the algorithm and then apply it to a sample of S&P500 daily returns. Based on the BIC

they find that the MS-GARCH model with two regimes fits the data better than the MS-

ARCH model. Next, Henneke et al. (2011) generalize the MS-GARCH model by includ-

ing the ARMA process in the return evolution, resulting into a MS-ARMA–GARCH

model. The authors design a MCMC scheme for estimation and compare their model

with the one of Hamilton & Susmel (1994) by using the same data set and conclude
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that full MS–ARMA–GARCH models outperform models such as of Hamilton & Sus-

mel (1994). Bauwens et al. (2014) design a particle MCMC (PMCMC) method for es-

timation, called particle Gibbs sampler, which samples state variables jointly, rather

than individually, as in Bauwens et al. (2010), and then sample the parameters given

the states. The authors compare the performance of the MS-GARCH model with the

change point GARCH (CP-GARCH), as in He & Maheu (2010), where the chain is not

recurrent, differently than in Markov switching models. Bauwens et al. (2014) intro-

duce an efficient method to compute marginal likelihoods, which was not feasible until

then. The authors apply the two models - MS and CP - to several series of financial re-

turns and find that MS-GARCH models with two regimes dominate CP-GARCH mod-

els. For some other financial returns, more regimes or breaks are necessary. However,

MS-GARCH models are preferable in all cases. Finally, Billio et al. (2014) develop an

efficient MCMC estimation approach for MS-GARCH model, which simultaneously

generates the states from their joint distribution. The authors design a multiple-try

sampling strategy, where a candidate path of the state variable is obtained by applying

FFBS algorithm to an auxiliary MS-GARCH model. Billio et al. (2014) use the same data

set as in Bauwens et al. (2014) and obtained results that are consistent with the ones in

Bauwens et al. (2014).

Multivariate GARCH

Returns and volatilities depend on each other, so multivariate analysis is a more natural

and useful approach. The starting point of multivariate volatility models is a univariate

GARCH, thus the most simple MGARCH models can be viewed as direct generaliza-

tions of their univariate counterparts. Consider a multivariate return series {rt}T
t=1 of

dimension K. Then

rt = µt + at = µt + H1/2
t εt,

where µt = E[rt|I t−1], at are mean-corrected returns, εt is a random vector, such

that E[εt] = 0 and Cov[εt] = IK and H1/2
t is a positive definite matrix of dimensions

K× K, such that Ht is the conditional covariance matrix of rt, i.e., Cov[rt|I t−1] =

H1/2
t Cov[εt](H1/2

t )′ = Ht. There is a wide range of MGARCH models, where most of

them differ in specifying Ht. In the rest of this section we will review the most popular
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of them and also the different Bayesian approaches to make inference and prediction.

For general reviews on MGARCH models, see Bauwens et al. (2006), Silvennoinen &

Teräsvirta (2009) and Tsay (2010) (Chapter 10), among others.

Regarding inference, one can also consider the same arguments provided in the uni-

variate GARCH case above. Maximum likelihood estimation for MGARCH models can

be obtained by using numerical optimization algorithms, such as Fisher scoring and

Newton-Raphson. Vrontos et al. (2003b) have estimated several bivariate ARCH and

GARCH models and found that some ML estimates of the parameters were quite dif-

ferent from their Bayesian counterparts. This was due to the non-Normality of the pa-

rameters. Thus, the authors suggest careful interpretation of the classical estimation ap-

proach. Also, Vrontos et al. (2003b) found it difficult to evaluate the classical estimates

under the stationarity conditions, and consequently the resulting parameters, evalu-

ated ignoring the stationarity constraints, produced non-stationary estimates. These

difficulties can be overcome using the Bayesian approach.

VEC, DVEC and BEKK. The VEC model was proposed by Bollerslev et al. (1988),

where every conditional variance and covariance (elements of the Ht matrix) is a func-

tion of all lagged conditional variances and covariances, as well as lagged squared

mean-corrected returns and cross-products of returns. Using this unrestricted VEC for-

mulation, the number of parameters increases dramatically. For example, if K = 3, the

number of parameters to estimate will be 78, and if K = 4, the number of parameters

increases to 210, see Bauwens et al. (2006) for the explicit formula for the number of pa-

rameters in VEC models. To overcome this difficulty, Bollerslev et al. (1988) simplified

the VEC model by proposing a diagonal VEC model:

Ht = Ω + A� (at−1a′t−1) + B� Ht−1,

where � indicates the Hadamard product, Ω, A and B are symmetric K× K matrices.

As noted in Bauwens et al. (2006), Ht is positive definite provided that Ω, A, B and the

initial matrix H0 are positive definite. However, these are quite strong restrictions on

the parameters. Also, DVEC model does not allow for dynamic dependence between

volatility series. In order to avoid such strong restrictions on the parameter matrices,

Engle & Kroner (1995) propose the BEKK model, which is just a special case of VEC and,
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consequently, less general. It has the attractive property that the conditional covariance

matrices are positive definite by construction. The model looks as follows:

Ht = Ω∗Ω∗
′
+ A∗(at−1a′t−1)A∗

′
+ B∗Ht−1B∗

′
, (2.3)

where Ω∗ is a lower triangular matrix and A∗ and B∗ are K× K matrices. In the BEKK

model it is easy to impose the definite positiveness of the Ht matrix. However, the

parameter matrices A∗ and B∗ do not have direct interpretations since they do not rep-

resent directly the size of the impact of the lagged values of volatilities and squared

returns.

Osiewalski & Pipien (2004) present a paper that compares the performance of vari-

ous bivariate ARCH and GARCH models, such as VEC, BEKK, etc., estimated using

Bayesian techniques. As the authors observe, they are the first to perform model com-

parison using Bayes factors and posterior odds in the MGARCH setting. The algorithm

used for parameter estimation and inference is Metropolis-Hastings, and to check for

convergence they rely on cumsum statistics, introduced by Yu & Mykland (1998), and

used by Bauwens & Lubrano (1998) in the univariate GARCH setting. Using the real

data and assuming Student-t distribution for the mean-corrected returns, the authors

found that BEKK models performed best, leaving VEC not so far behind. To sum up,

the authors choose t-BEKK model as clearly better than the t-VEC, because it is rela-

tively simple and has less parameters to estimate.

On the other hand, Hudson & Gerlach (2008) developed a prior distribution for a VEC

specification that directly satisfies both necessary and sufficient conditions for positive

definiteness and covariance stationarity, while remaining diffuse and non-informative

over the allowable parameter space. These authors employed MCMC methods, includ-

ing Metropolis-Hastings, to help enforce the conditions in this prior.

More recently, Burda & Maheu (2013) use the BEKK-GARCH model to show the useful-

ness of a new posterior sampler called the Adaptive Hamiltonian Monte Carlo (AHMC).

Hamiltonian Monte Carlo (HMC) is a procedure to sample from complex distributions.

The AHMC is an alternative inferential method based on HMC that is both fast and

locally adaptive. The AHMC appears to work very well when the dimensions of the

parameter space are very high. Model selection based on marginal likelihood is used
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to show that full BEKK models are preferred to restricted diagonal specifications. Ad-

ditionally, Burda (2013) suggests an approach called Constrained Hamiltonian Monte

Carlo (CHMC) in order to deal with high-dimensional BEKK models with targeting,

which allows for a parameter dimension reduction without compromising the model

fit, unlike the diagonal BEKK. Model comparison of the full BEKK and the BEKK

with targeting is performed indicating that the latter dominates the former in terms

of marginal likelihood.

Factor-GARCH. Factor-GARCH was first proposed by Engle et al. (1990) to reduce

the dimension of the multivariate model of interest using an accurate approximation

of the multivariate volatility. The definition of the Factor-GARCH model, proposed by

Lin (1992), says that BEKK model in Equation 2.3 is a Factor-GARCH, if A∗ and B∗ have

rank one and the same left and right eigenvalues: A∗ = αwλ′, B∗ = βwλ′, where α and

β are scalars and w and λ are eigenvectors. Several variants of the factor model have

been proposed. One of them is the full-factor multivariate GARCH by Vrontos et al.

(2003a):

rt = µ + at,

at = WXt,

Xt|I t−1 ∼ NK(0, Σt),

where µ is a K× 1 vector of constants, which is time invariant, W is a K× K parameter

matrix, Xt is a K× 1 vector of factors and Σt = diag(σ2
1t, . . . , σ2

Kt) is a K× K diagonal

variance matrix such that σ2
it = ci + bix2

i,t−1 + giσ
2
i,t−1, where σ2

it is the conditional vari-

ance of the ith factor at time t such that ci > 0, bi ≥ 0, gi ≥ 0. Then, the factors in

the Xt vector are GARCH(1,1) processes and the vector at is a linear combination of

such factors. It can be easily shown that Ht is always positive definite by construction.

However, the structure of Ht depends on the order of the time series in rt. Vrontos et al.

(2003a) have considered the problem of finding the best ordering under the proposed

model. Furthermore, Vrontos et al. (2003a) investigate a full-factor MGARCH model

using the ML and Bayesian approaches. The authors compute maximum likelihood

estimates using Fisher scoring algorithm. As for the Bayesian analysis, the authors

have adopted a Metropolis-Hastings algorithm, and found that the algorithm is very
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time consuming, especially in high-dimensional data. To speed-up the convergence,

Vrontos et al. (2003a) have proposed reparametrization of positive parameters and also

a blocking sampling scheme, where the parameter vector is divided into three blocks:

mean, variance and the matrix of constants W. As mentioned before, the ordering of the

univariate time series in full-factor models is important, thus to select “the best” model

one has to consider K! possibilities for a multivariate dataset of dimension K. Instead of

choosing one model and making inference (as if the selected model was the true one),

the authors employ a Bayesian approach by calculating the posterior probabilities for

all competing models and model averaging to provide “combined” predictions. The

main contribution of this paper is that the authors were able to carry out an extensive

Bayesian analysis of a full-factor MGARCH model considering not only parameter un-

certainty, but model uncertainty as well.

As already discussed above, a very common stylized feature of financial time series is

the asymmetric volatility. Dellaportas & Vrontos (2007) have proposed a new class of

tree structured MGARCH models that explore the asymmetric volatility effect. Same as

the paper by Vrontos et al. (2003a), the authors consider not only parameter-related un-

certainty, but also uncertainty corresponding to model selection. Thus in this case the

Bayesian approach becomes particularly useful because an alternative method based

on maximizing the pseudo-likelihood is only able to work after selecting a single model.

The authors develop an MCMC stochastic search algorithm that generates candidate

tree structures and their posterior probabilities. The proposed algorithm converged

fast. Such modeling and inference approach leads to more reliable and more informa-

tive results concerning model-selection and individual parameter inference.

There are more models that are nested in BEKK, such as the Orthogonal GARCH for

example, see Alexander & Chibumba (1997) and Van der Weide (2002), among others.

All of them fall into the class of direct generalizations of univariate GARCH or linear

combinations of univariate GARCH models. Another class of models are the nonlin-

ear combinations of univariate GARCH models, such as constant conditional correla-

tion (CCC), dynamic condition correlation (DCC), general dynamic covariance (GDC)

and Copula-GARCH models. A very recent alternative approach that also considers

Bayesian estimation can be found in Jin & Maheu (2013) who proposes a new dynamic
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component models of returns and realized covariance (RCOV) matrices based on time-

varying Wishart distributions. In particular, Bayesian estimation and model compar-

ison is conducted with the existing range of multivariate GARCH models and RCOV

models.

CCC. The CCC model, proposed by Bollerslev (1990) and the simplest in its class,

is based on the decomposition of the conditional covariance matrix into conditional

standard deviations and correlations. Then, the conditional covariance matrix Ht looks

as follows:

Ht = DtRDt,

where Dt is diagonal matrix with the K conditional standard deviations and R is a time-

invariant conditional correlation matrix such that R = (ρij) and ρij = 1, ∀i = j. The

CCC approach can be applied to a wide range of univariate GARCH family models,

such as exponential GARCH or GJR-GARCH, for example.

Vrontos et al. (2003b) have estimated some real data using a variety of bivariate ARCH

and GARCH models in order to select the best model specification and to compare the

Bayesian parameter estimates to those of the ML. The authors have considered three

ARCH and three GARCH models, all of them with constant conditional correlations

(CCC). They have used a Metropolis-Hastings algorithm, which allows to simulate

from the joint posterior distribution of the parameters. For model comparison and se-

lection, Vrontos et al. (2003b) have obtained predictive distributions and assessed com-

parative validity of the analyzed models, according to which the CCC model with di-

agonal covariance matrix performed the best considering one-step-ahead predictions.

DCC. A natural extension of the simple CCC model are the dynamic conditional cor-

relation (DCC) models, firstly proposed by Tse & Tsui (2002) and Engle (2002a). The

DCC approach is more realistic, because the dependence between returns is likely to be

time-varying.

The models proposed by Tse & Tsui (2002) and Engle (2002a) consider that the condi-

tional covariance matrix Ht looks as
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Ht = DtRtDt,

where Rt is now a time-varying correlation matrix at time t. The models differ in the

specification of Rt. In the paper by Tse & Tsui (2002), the conditional correlation matrix

is

Rt = (1− θ1 − θ2)R + θ1Rt−1 + θ2Ψt−1,

where θ1 and θ2 are non-negative scalar parameters, such that θ1 + θ2 < 1, R is a pos-

itive definite matrix such that ρii = 1 and Ψt−1 is a K× K sample correlation matrix of

the past m standardized mean-corrected returns ut = D−1
t at.

On the other hand, in the paper by Engle (2002a), the specification of Rt is

Rt = (I �Qt)
−1/2Qt(I �Qt)

−1/2,

where

Qt = (1− α− β)Q̄ + α(ut−1u′t−1) + βQt−1.

ui,t = ai,t/
√

hii,t is a mean-corrected standardized returns, α and β are non-negative

scalar parameters, such that α + β < 1 and Q̄ is unconditional covariance matrix of ut.

As noted in Bauwens et al. (2006), the model by Engle (2002a) does not formulate the

conditional correlation as a weighted sum of past correlations, unlike in the DCC model

by Tse & Tsui (2002), seen above. The drawback of both these models is that θ1, θ2, α

and β are scalar parameters, so all conditional correlations have the same dynamics.

However, as Tsay (2010) notes it, the models are parsimonious.

Moreover, as financial returns display not only asymmetric volatility, but also excess

kurtosis, previous research, as in univariate case, has mostly considered using a mul-

tivariate Student-t distribution for the errors. However, as already discussed above,

this approach has several limitations. Galeano & Ausín (2010) propose a DCC model,

where the standardized innovations follow a mixture of Gaussian distributions. This

allows to capture long tails without being limited by the degrees of freedom constraint,
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which is necessary to impose in the Student-t distribution so that the higher moments

could exist. The authors estimate the proposed model using the classical MLE and

Bayesian approaches. In order to estimate the parameters of the dynamics of individual

assets and dynamic correlations, and the parameters of the Gaussian mixture, Galeano

& Ausín (2010) have relied on RWMH algorithm. BIC criteria was used for selecting

the number of mixture components, which performed well in simulated data. Using

real data, the authors provide an application to calculating the Value at Risk (VaR) and

solving a portfolio selection problem. MLE and Bayesian approaches have performed

similarly in point estimation, however, the Bayesian approach, besides giving just point

estimates, allows the derivation of predictive distributions for the portfolio VaR.

An extension of the DCC model of Engle (2002a) is the Asymmetric DCC also proposed

by Engle (2002a), which incorporates an asymmetric correlation effect. It means that

correlations between asset returns might be higher after a negative return than after a

positive one of the same size. Cappiello et al. (2006) generalizes the ADCC model into

the AGDCC model, where the parameters of the correlation equation are vectors, and

not scalars. This allows for asset-specific correlation dynamics. In the AGDCC model,

the Qt matrix in the DCC model is replaced with:

Qt = S(1− κ̄2 − λ̄2 − δ̄2/2) + κκ′ � u′t−1ut−1 + λλ′ �Qt−1 + δδ′ � η′t−1ηt−1,

where ut = D−1
t at are mean corrected standardized returns, ηt = ut � I(ut < 0) selects

just negative returns, “diag" stands for either taking just the diagonal elements from

the matrix, or making a diagonal matrix from a vector, S is a sample correlation matrix

of ut, κ, λ and δ are K× 1 vectors, κ̄ = K−1 ∑K
i=1 κi, λ̄ = K−1 ∑K

i=1 λi and δ̄ = K−1 ∑K
i=1 δi.

To ensure positivity and stationarity of Qt, it is necessary to impose κi, λi, δi > 0 and

κ2
i + λ2

i + δ2
i /2 < 1, ∀i = 1, . . . , K. The ADCC by Engle (2002a) is just a special case

where κ1 = . . . = κK, λ1 = . . . = λK and δ1 = . . . = δK.

Copula-GARCH. The use of copulas is an alternative approach to study dependen-

cies between individual returns and their volatilities. The main convenience of using

copulas is that individual marginal densities of the returns can be defined separately

from their dependence structure. Then, each marginal time series can be modeled us-

ing univariate specification and the dependence between the returns can be modeled
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by selecting an appropriate copula function. A K-dimensional copula C(u1, . . . , uK), is

a multivariate distribution function in the unit hypercube [0, 1]K, with Uniform [0, 1]

marginal distributions. Under certain conditions, the Sklar Theorem (Sklar 1959) af-

firms that, every joint distribution F(x1, . . . , xK), whose marginals are given by

F1(x1), . . . , FK(xK), can be written as

F(x1, . . . , xK) = C(F1(x1), . . . , FK(xK)),

where C is a copula function of F, which is unique if the marginal distributions are

continuous.

The most popular approach for modeling time-varying volatilities through copulas is

called the Copula-GARCH model, where univariate GARCH models are specified for

each marginal series and the dependence structure between them is described using a

copula function. A very useful feature of copulas, as noted by Patton (2009), is that the

marginal distributions of each random variable do not need to be similar to each other.

This is very important in modeling return time series, because each of them might be

following different distributions. The choice of copulas can vary from a simple Gaus-

sian copula to more flexible ones, such as Clayton, Gumbel, mixed Gaussian, etc. In the

existing literature different parametric and non-parametric specifications can be used

for the marginals and copula function C. Also, the copula function can be assumed to

be constant or time-varying, as seen in Ausín & Lopes (2010), among others.

The estimation for Copula-GARCH models can be performed in a variety of ways.

Maximum likelihood is the obvious choice for fully parametric models. Estimation is

generally based on a multi-stage method, where firstly the parameters of the marginal

univariate distributions are estimated and then used to condition in estimating the pa-

rameters of the copula. Another approach is non- or semi-parametric estimation of the

univariate marginal distributions followed by a parametric estimation of the copula pa-

rameters. As Patton (2006) has showed, the two-stage maximum likelihood approach

lead to consistent, but not efficient estimators.

An alternative is to employ a Bayesian approach, as done by Ausín & Lopes (2010). The
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authors have developed a one-step Bayesian procedure, where all parameters are esti-

mated at the same time using the entire likelihood function and provided the method-

ology for obtaining optimal portfolio, calculating VaR and CVaR. Ausín & Lopes (2010)

have used a Gibbs sampler to sample from a joint posterior, where each parameter is

updated using a RWMH. In order to reduce computational cost, the model and cop-

ula parameters are updated not one-by-one, but rather by blocks, that consist of highly

correlated vectors of model parameters.

Arakelian & Dellaportas (2012) have also used Bayesian inference for Copula-GARCH

models. These authors have proposed a methodology for modeling dynamic depen-

dence structure by allowing copula functions or copula parameters to change across

time. The idea is to use a threshold approach so these changes, that are assumed to be

unknown, do not evolve in time but occur in distinct points. These authors have also

employed a RWMH for parameter estimation together with a Laplace approximation.

The adoption of an MCMC algorithm allows the choice of different copula functions

and/or different parameter values between two time thresholds. Bayesian model av-

eraging is considered for predicting dependence measures such as the Kendall’s corre-

lation. They conclude that the new model performs well and offers a good insight into

the time-varying dependencies between the financial returns.

Hofmann & Czado (2010) developed Bayesian inference of a multivariate GARCH

model where the dependence is introduced by a D-vine copula on the innovations.

A D-vine copula is a special case of vine copulas which are very flexible to construct

multivariate copulas because it allows to model dependency between pairs of mar-

gins individually. Inference is carried out using a two-step MCMC method closely

related with the usual two-step maximum likelihood procedure for estimating Copula-

GARCH models. The authors then focus on estimating VaR of a portfolio that shows

asymmetric dependencies between some pairs of assets and symmetric dependency

between others.

An alternative approach to the previous parametric GARCH specifications is the use of

Bayesian non-parametric methods, that allow to model the errors as an infinite mixture

of Normals, as seen in Ausín et al. (2014) and Jensen & Maheu (2013). The Bayesian

non-parametric approach for time-varying volatility models will be discussed in detail

in Section 2.3.
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To sum up, considering the amount of articles published quite recently regarding the

topic of estimating univariate and multivariate GARCH models using MCMC methods

indicates still growing interest in the area. Although numerous GARCH-family models

have been investigated using different MCMC algorithms, there are still a lot of areas

that need further research and development.

2.2 Univariate and multivariate SV

SV models are a closely related to GARCH and are also used to model time-varying

volatility. SV models express the logarithm of volatility as dependent on the past vola-

tilities and an error term, thus making volatility not deterministic anymore.

Univariate SV

The basic autoregressive SV(1) (ARSV) model for regularly spaced data looks as fol-

lows:

at = exp {ht/2}εt, (2.4)

ht = ω + αht−1 + σηηt, t = 1, . . . , T, (2.5)

where at is the mean corrected return of the asset at time t, εt and ηt are uncorrelated

standard white noise shocks, log ht is log-volatility, which is a stationary process, pro-

vided that the absolute value of α, which is also called the persistence parameter, is

α < |1| and ση is the standard deviation of the shock to log ht.

There has been a plentiful amount of research on this model and extensions. For a

review on the properties of SV models see Taylor (1994) and Shephard (1996), for ex-

ample. Instead of considering Gaussian errors, some authors investigate heavy-tailed

distributions, or correlated errors to include the asymmetry effect, see e.g. Harvey &

Shephard (1996) and Jacquier et al. (2004), among others. Shephard & Andersen (2009)

overview the origins of the SV models and Broto & Ruiz (2004) discuss in detail the

estimation methods for the SV models.
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There has been some discussion concerning the comparison of GARCH and SV models.

A number of papers have provided empirical evidence of better fit of SV rather than

GARCH models, however, as commented in the next section, SV models are harder to

estimate, which is a serious drawback concerning a choice of a model, see e.g. Kim

et al. (1998), Ghysels et al. (1996), Shephard (1996) and Taylor (1994).

The main estimation methods for SV models include Method of Moments (MM), Gen-

eralized MM (GMM), Efficient Method of Moments (EMM) and Quasi-Maximum Like-

lihood approach, among others. The use of Sequential Monte Carlo (SMC) and MCMC

algorithms for inference and prediction in the context of SV models is more recent:

Geweke (1994) was the first to apply importance sampling algorithm to SV models. Al-

gorithms developed by Jacquier et al. (1994), Kim et al. (1998) and Shephard (1993) have

been the basis for numerous subsequent papers, see Broto & Ruiz (2004) for a detailed

review.

The paper by Jacquier et al. (1994) is one of the first articles to propose a new Bayesian

approach for inference and prediction for SV models, which allows to conduct finite

sample inference and calculate predictive distributions (as opposed to previously dom-

inating estimation procedures, where one had to rely on asymptotic approximations for

inference and the uncertainty of forecasted variability was not accounted for at all). The

joint posterior of interest is given by the Bayes theorem:

π(h, θ|y) ∝ p(y|h)× p(h|θ)× p(θ),

where θ is the vector of parameters θ = (ω, α, ση) , h = (h1, . . . , hT) is the vector of

volatilities and y = (y1, . . . , yT) is the vector of returns, as seen in the basic ARSV(1)

formulation, Equation 2.4 and Equation 2.5. The authors use a cyclic independence

Metropolis chain. Instead of sampling directly from p(h|θ, y), they sample indirectly

from p(ht|h−t, θ, y), where h−t is the rest of the vector h, except for ht. The empirical

analysis using real data sets revealed that almost all marginal posterior distributions

were skewed, which is a strong evidence against the usage of Gaussian approxima-

tions. The authors also found out that the Method of Moments produced very different

estimates. Thus, they investigated the sampling properties of Bayes, MM and QML-

Kalman filtering estimators and concluded that Bayesian approach outperforms the

other two.
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Another very important paper is by Kim et al. (1998), which has been later cited in many

subsequent papers, see Omori et al. (2007), Chib et al. (2002), and their developed al-

gorithm, referred as KSC (named after Kim, Shephard and Chib), has been extended

later in a numerous ways. The authors first use a simple Gibbs sampling algorithm,

which proves to be inefficient and converge very slowly. Then, they develop another

method, that samples unobserved volatilities using an offset mixture of seven Normal

distributions to accurately approximate the exact likelihood, followed by an impor-

tance re-weighting procedure. Using simulated data, the authors conclude that their

proposed method is significantly more efficient than previously suggested methods for

estimating stochastic volatility, as the one proposed by Jacquier et al. (1994).

The first work to model correlated errors in order to include the asymmetric volati-

lity effect using likelihood-based inference is developed by Jacquier et al. (2004). The

authors make use of Bayes Factors to provide justification for using fat-tailed asym-

metric SV model. The basic ARSV(1) model given in Equation 2.4 and Equation 2.5

is extended by defining ρ as the correlation between errors (εt, ηt), and assuming that

the marginal distribution of εt is Student-t to incorporate fat tails. The priors proposed

by the authors are Normal-Gamma for the θ = (ω, α, ση), an Inverse-Gamma for the

correlation ρ and a discrete Uniform prior for the degrees of freedom ν of a Student-t

distribution. The authors combine rejection and Metropolis-Hastings algorithms, find-

ing strong evidence for fat tails and asymmetry effect. Finally, they investigate the

sampling properties of their proposed MCMC algorithm and the convergence of the

parameters, concluding that the algorithm is reliable and fast.

A paper by Omori et al. (2007) extends Kim et al. (1998) approach by approximating the

joint distribution of the outcome and volatility innovations by ten-component mixture

of bivariate gaussian distributions, followed by a re-weighting procedure. In this man-

ner, the authors are able to extend the previous model into the SV model with leverage,

and also include the heavy-tailed feature of the returns. They show that the new al-

gorithm performs as well as the one developed by Kim et al. (1998), and is applicable

under wider conditions.

Markov Switching SV (MSSV). The motivation of introducing Markov switching

jumps in the volatility process of the SV models is the same as in the case of GARCH
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models, discussed above. MSSV model, first introduced by So et al. (1998), is of the

following form:

at = exp {ht/2}εt,

ht = αst + βht−1 + τηt, ηt ∼ N (0, 1),

where st is a state variable, defined the same as in MS-GARCH above. Differently

than in MS-GARCH models, here only parameter α displays different regimes. The

authors propose a MCMC and the data-augmentation methodology, where they use

Gibbs sampler to generate samples from the joint posterior distribution of the unknown

parameters and the latent variables. Kalimipalli & Susmel (2004) have proposed a two-

factor SV model with regime switching and estimated it using Gibbs sampler. They find

that the high volatility persistence is reduced when the regimes are incorporated in the

model. Also, the authors compare the new model with other two alternative two-factor

models, simple SV and GARCH, and find that SV always outperforms GARCH, both

in sample and out of sample. The regime switching SV performs better than the simple

SV in sample, however, out of sample, it is only marginally better. Lopes & Carvalho

(2007) extend SV model to multivariate case and present a Factor Stochastic Volatility

(FSV) model with Markov switching jumps. They construct a novel MCMC scheme

for inference and find that the new model can capture market crashes in an instanta-

neous way, as opposed to the traditional FSV models. Carvalho & Lopes (2007) have

constructed a sequential Monte Carlo filter by combining auxiliary particle filter (APF)

with the filter of Liu & West (2001) to estimate a SV model with Markov switching

regimes. They found that in terms of prediction the Markov switching SV specification

outperforms a simple SV model.

Multivariate SV

As for the multivariate case, the basic setting for a MSV model, proposed by Harvey

et al. (1994), is given by
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at = H1/2
t εt (2.6)

H1/2
t = diag (exp{hi,t/2}), i = 1, . . . , K, t = 1, . . . , T (2.7)

ht+1 = ω + α� ht + ηt (2.8) εt

ηt

 |ht ∼ N

 0

0

 ,

 Σεε 0

0 Σηη

 , (2.9)

where at = (a1,t, . . . , aK,t) is a vector of mean-corrected K assets returns at time t, ht =

(h1,t, . . . , hK,t) is a vector of unobserved log-volatilities, ω and α are K× 1 parameters

vectors, Σηη = ση,ij is a positive definite covariance matrix and Σεε = ρij is the correla-

tion matrix such that ρij = 1, ∀i = j and V[yt|ht] = H1/2
t ΣεεH1/2

t . There has been other

proposals of similar basic MSV models by So et al. (1997), Daníelsson (1998) and Smith

& Pitts (2006), among others. For an extensive review of Multivariate SV models, see

e.g. Asai et al. (2006) and Chib et al. (2009).

Same as in GARCH models, the SV model can be augmented in order to incorporate the

asymmetric volatility, or the so-called leverage effect. This can be done by letting the

errors to be correlated. Daníelsson (1998) and Chan et al. (2006) consider the correlation

between εt and ηt−1, which means that there is not time lag between the shock to the

return and the volatility shock. As Yu (2005) discussed it in the univariate setting, this

is not a correct way to introduce the leverage effect, because such correlations do not

have clear interpretations and the volatility needs time to react to the shock. Thus,

the correlation between εt and ηt makes much more sense. Asai & McAleer (2006)

introduced a MSV model with leverage effect where a covariance matrix, L, between εt

and ηt is defined such that L = diag {λ1σν,11, . . . , λNσν,KK}, where the parameter λi is

expected to be negative.

Factor models. There are two kinds of factor models, as discussed by Asai et al. (2006).

The first one is called Additive Factor Models, proposed by Harvey et al. (1994) and ex-

tended by Jacquier et al. (1995). The basic idea of this model is that the mean-corrected

returns are decomposed into two parts: the first one has a smaller number of factors to

capture the information relevant to all the assets, and the second component is idiosyn-

cratic noise,
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at = D ft + et (2.10)

fit = exp {hit/2} εit (2.11)

hi,t+1 = ωi + αihit + ηit, (2.12)

where ft is a B× 1 vector of factors, such that (B < K), where K is a number of assets,

D is a K× B matrix of factors loadings, et ∼ N(0, diag{σ2
1 , . . . , σ2

K}), εit ∼ N(0, 1) and

ηit ∼ N(0, σ2
η). The covariance matrix of at is always positive definite.

On the other hand, the multiplicative factor model, also called stochastic discount fac-

tor model, was proposed by Quintana & West (1987), where the returns are decom-

posed into two multiplicative components. However, unlike the additive factor model,

the correlations are time-invariant, which is quite a strong restriction.

Time-varying correlation models. To allow for time-varying correlations, firstly the

assumption of constant correlation in Equation 2.9 has to be relaxed, such that

Σεε,t = ρij,t. Asai & McAleer (2009) proposed a MSV model based on Wishart distribu-

tion. For more details, see Asai et al. (2006) and the original paper by Asai & McAleer

(2009).

To sum up, there exists a wide variety of MSV models, including alternative speci-

fications, such as based on the matrix exponential transformation, Cholesky decom-

position, etc. Concerning the choice of a MSV model, see Yu & Meyer (2006), who

have estimated and compared nine MSV models and found strong evidence in favor of

asymmetric models, allowing for time-varying correlations.

As seen above, the use of MCMC methods in SV context and beyond is quite recent and

developing fast. One can be referred to a survey by Chib (2001) on MCMC methods in

a general context. Even though earlier MCMC estimation of SV models was very com-

putationally demanding, nowadays it can be easily implemented using basic software,

such as BUGS (Bayesian analysis using Gibbs sampling), as demonstrated by Meyer &

Yu (2000).

All the previously introduced methods rely on parametric assumptions for the distri-

bution of the errors. However, imposing a certain distribution can be rather restrictive.
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Bayesian non-parametric methods become especially useful, since they do not impose

any specific distribution on the standardized returns.

2.3 Dirichlet Process Mixture

Bayesian non-parametrics is an alternative approach to the classical parametric Bayesian

statistics, where one usually gives some prior for the parameters of interest, whose dis-

tribution is unknown, and then observes the data and calculates the posterior. The pri-

ors come from the family of parametric distributions. Bayesian non-parametrics uses a

prior over distributions with the support being the space of all distributions. Then, it

can be viewed as a distribution over distributions.

One of the most popular Bayesian non-parametric modeling approach is based on

Dirichlet processes (DP) and mixtures of Dirichlet processes (DPM), see Ferguson (1973),

Antoniak (1974) and Lo (1984) among others. Suppose that we have a sequence of

exchangeably distributed random variables X1, X2, . . . from an unknown distribution

F, where the support for Xi is Ω. In order to perform Bayesian inference, we need

to define the prior for F. This can be done by considering partitions of Ω, such as

Ω = C1 ∪ C2 ∪ . . . ∪ Cm, and defining priors over all possible partitions. We say that F

has a Dirichlet process prior, denoted as

F ∼ DP(α, F0),

if the set of associated probabilities given F for any partition follows a Dirichlet distri-

bution,

{F(C1), . . . , F(Cm)} ∼ Dirichlet (αF0(C1), . . . , αF0(Cm)),

where α > 0 is a precision parameter that represents our prior certainty of how con-

centrated the distribution is around F0, which is a known base distribution on Ω. The

Dirichlet process is a conjugate prior. Thus, given n independent and identically dis-

tributed samples from F, the posterior distribution of F is also a Dirichlet process such

that
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F ∼ DP
(

α + n,
αF0 + nFn

α + n

)
,

where Fn is the empirical distribution function of X1, . . . , Xn.

There are two main ways for generating a sample from the marginal distribution of X,

where X|F ∼ F and F ∼ DP(α, F0): the Polya urn and stick breaking procedures. On

the one hand, the Polya urn scheme can be illustrated in terms of a urn with α black

balls; when a non-black ball is drawn, it is placed back in the urn together with another

ball of the same color. If the drawn ball is black, a new color is generated from F0 and

a ball of this new color is added to the urn together with the black ball we drew. This

process gives a discrete marginal distribution for X since there is always a probability

that a previously seen value is repeated. Regarding inference algorithms, the marginal

methods, such as those proposed by Escobar & West (1995), MacEachern (1994) and

Neal (2000), are based on integrating out the infinite dimensional part of the model.

On the other hand, the stick-breaking procedure is based on the representation of the

random distribution F as a countably infinite mixture:

F =
∞

∑
m=1

ωmδXm ,

where δX is a Dirac measure, Xm ∼ F0 and the weights are such that ω1 = β1, ωm =

βm ∏m−1
i=1 (1− βi), for m = 1, . . . , where βm ∼ Beta (1, α). This implies that the weights

ω → Dirichlet(α/K, . . . , α/K) as K → ∞. This class of algorithms, called conditional

methods, leave the infinite part in the model and sample a finite number of variables.

These include procedures by Ishwaran & James (2001), Walker (2007), Papaspiliopoulos

& Roberts (2008), Papaspiliopoulos (2008) and Kalli et al. (2011).

The discreteness of the Dirichlet process is clearly a disadvantage in practice. A solution

was proposed by Antoniak (1974) by using DPM models where a DP prior is imposed

over the distribution of the model parameters, θ, as follows:

Xi|θi ∼ F(X|θi),

θi|G ∼ G(θ),

G|α, G0 ∼ DP(α, G0).
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Observe that G is a random distribution drawn from the DP and because it is discrete,

multiple θi’s can take the same value simultaneously, making it a mixture model. In

fact, using the stick-breaking representation, the hierarchical model above can be seen

as an infinite mixture of distributions:

f (X|θ, ω) =
∞

∑
m=1

ωmk(X|θm),

where the weights are obtained as before: ω1 = β1, ωm = βm ∏m−1
i=1 (1− βi),

for m = 1, . . ., and where βm ∼ Beta (1, α) and θm ∼ G0 and k is some density kernel

with parameters θ. For more on DPM see the discussion in Section 3.1.1.

Bayesian non-parametric models in econometrics. The use of Bayesian non - para-

metric methods in econometric modeling is relatively recent with increasing number of

papers, starting after the seminal work of Hirano (2002). The author proposes a semi-

parametric random effects autoregressive model for dynamic panel data, where the

error term is modeled using DPM models. Rodriguez & ter Horst (2008) develop sta-

tistical methods to estimate and predict time-varying densities, which can be viewed

as an extension of the DPM models to a sequence of distributions that evolve in dis-

crete time. The authors present an illustration that estimates the distribution of travel

reimbursement claims, noting, that the proposed methodology can be adapted to a

wide range of econometric models in areas such as insurance, time-varying volatilities,

risk management, actuarial science, epidemiology, climatology etc. Taddy & Kottas

(2009) have presented a general framework for a semi - parametric hidden Markov

switching regression, where the model formulation involves a finite mixture of con-

ditionally independent DPMs, with a Markov chain for the mixing distribution. The

proposed methodology has been illustrated to a problem from fisheries research, that

investigates stock - recruitment data under shifts in the ecosystem state. Taddy (2010)

proposes a dependent stick-breaking mixture model with marginal DP priors, that al-

lows a non - parametric density to be time-varying. The introduced methodology is

applied to tracking weekly maps of violent crime events in Cincinnati, and can be

adapted to a wide variety of alternative settings in a straightforward manner. Bassetti

et al. (2014) propose two classes of prior distributions, called beta-product dependent
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Pitman-Yor (DPY) processes, which extend the independent Dirichlet priors. The au-

thors present an application to a multi-country macroeconomic data set of industrial

production indexes growth rate series for the EU and US and find that the results fa-

vor DPY against the independent Dirichlet prior. Jochmann (2014) have proposed a

Bayesian non-parametric approach, in particular sticky infinite hidden Markov model,

to explain U.S. inflation dynamics. This approach is capable of incorporating unknown

number of breakpoints in the time series process. Burda et al. (2014) have analyzed

unemployment duration data from the US Department of Labor by considering a new

specification for the competing risk model, where unobserved individual heterogeneity

is modeled via DPM.

The above papers illustrate the flexibility of the DPM approach in econometric model-

ing, since it can be applied in various settings and in diverse areas of research. Next,

we briefly review the latest developments of Bayesian non-parametrics in time-varying

volatility modeling.

2.3.1 Volatility modeling using DPM

As mentioned above, modeling time-varying volatilities with non-parametric errors is

quite a recent topic of research with increasing popularity due to its flexibility. Ausín

et al. (2014) propose models for univariate GARCH, Jensen & Maheu (2013) for

MGARCH, Jensen & Maheu (2010, 2014) and Delatola & Griffin (2011, 2013) for uni-

variate SV.

Non-parametric GARCH-type models. Ausín et al. (2014) have applied semi-

parametric Bayesian techniques to estimate univariate GARCH-type models. These

authors have used the class of scale mixtures of Gaussian distributions, that allow for

the variances to change over components, with a Dirichlet process prior on the mix-

ing distribution to model innovations of the GARCH process. The resulting class of

models is called DPM-GARCH type models. In order to perform Bayesian inference

on the new model, the authors employ a stick-breaking sampling scheme and make

use of the ideas proposed in Walker (2007), Papaspiliopoulos & Roberts (2008) and

Papaspiliopoulos (2008). The new scale mixture model was compared to a simpler

mixture of two Gaussians, Student-t and the usual Gaussian models. The estimation
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results in all three cases were quite similar, however, the scale mixture model is able

to capture skewness as well as kurtosis and, based on the approximated Log Marginal

Likelihood (LML) and DIC, provided the best performance in simulated and real data.

Finally, Ausín et al. (2014) have applied the resulting model to perform one-step-ahead

predictions for volatilities and VaR. In general, the non-parametric approach leads to

wider Bayesian credible intervals and can better describe long tails.

Jensen & Maheu (2013) propose a Bayesian non-parametric modeling approach for the

innovations in MGARCH models. They use a MGARCH specification, proposed by

Ding & Engle (2001), which is a different representation of a well known DVEC model,

introduced above. The innovations are modeled as an infinite mixture of multivariate

Normals with a DP prior. The authors have employed Polya urn and stick-breaking

schemes and, using two data sets, compared the three model specifications: paramet-

ric MGARCH with Student-t innovations (MGARCH-t), GARCH-DPM-Λ that allows

for different covariances (scale mixture) and MGARCH-DPM, allowing for different

means and covariances of each component (location-scale mixture). In general, both

semi-parametric models produced wider density intervals. However, in MGARCH-t

model a single degree of freedom parameter determines the tail thickness in all direc-

tions of the density, meanwhile the non-parametric models are able to capture various

deviations from Normality by using a certain number of components. These results

are consistent with the findings of Ausín et al. (2014) in univariate setting. As for pre-

dictions, both semi-parametric models performed equally good and outperformed the

parametric MGARCH-t specification.

Non-parametric SV-type models. Jensen & Maheu (2010) construct an MCMC sam-

pler for their proposed SV-DPM model, where latent volatilities are sampled via ran-

dom length block sample, which helps to reduce correlation between draws. The au-

thors found that the semi-parametric SV model is more robust to non-Normal data and

provides better forecasts. In another paper, Jensen & Maheu (2014) consider an asym-

metric SV-DPM model. The authors extend their previous semi-parametric sampler to

a bivariate setting, where the innovations of the returns and volatilities are modeled

jointly via infinite scale mixture of bivariate Normals.

Meanwhile, Delatola & Griffin (2011) use a linearized version of SV model. Condi-

tional on knowing which mixture component the data belongs to, the linearized SV
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model is just a Normal Dynamic Linear Model (NDLM) and the latent volatilities are

updated by forward filtering backward sampling (FFBS). The rest of the model param-

eters are sampled via an extension of Gibbs sampler, called hybrid Gibbs sampler. In

their subsequent paper, Delatola & Griffin (2013) consider and asymmetric SV model.

Same as before, they make use of the linearization and update the latent log-volatilities

by FFBS. The rest of the parameters are sampled via Metropolis-Hastings. All above

MCMC schemes are costly in the context of SV models where we consider daily return

data.

To sum up, the findings in the above papers are consistent: the Bayesian semi-

parametric approach leads to more flexible models and is better in explaining heavy-

tailed return distributions, which parametric models cannot fully capture. This pro-

vides a more adequate measure of uncertainty. However, the question if non-parametric

errors can incorporate model-specific asymmetries or Markov switching jumps in vo-

latilities is still open.

2.4 Sequential Monte Carlo

As seen from the previous sections, MCMC has been a dominant Bayesian estima-

tion approach for time-varying volatility models. Meanwhile MCMC estimation of

GARCH-type models most of the time does not present problems of elevated computa-

tional cost and auto-correlated draws, the estimation of SV-type models is rather more

complicated. SV models, as compared to GARCH, include an extra level of complexity

by considering non-deterministic volatility evolution. In other words, SV is a state-

space model, where apart from parameter estimation one also has to consider filtering

of the latent states. MCMC estimation can become computationally costly, since inside

the chain some volatility filter has to be considered as well. This presents unbearable

computational burden whenever a new observation arrives and the chain has to be

re-run all over again.

An alternative approach to MCMC is to rely on Sequential Monte Carlo techniques, or

particle filters (PF), for state filtering and parameter learning. For thorough reviews

of particle methods in general, see Lopes & Tsay (2011) and Lopes & Carvalho (2013).

Basically, there are a lot of filers in the literature that are able to recover the unobserved
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states, however, sequential parameter learning is a particularly difficult problem. Three

of the most popular approaches for sequential state filtering and parameter learning

include filters by Liu & West (2001), Storvik (2002) and a Particle Learning filter by

Carvalho, Johannes, Lopes & Polson (2010).

Using PF for SV-type models is quite a new field of research and recent works include

Carvalho & Lopes (2007), Lopes & Polson (2010) and Rios & Lopes (2013), among oth-

ers. The main concern of using PF is particle degeneracy, which means that after certain

time the variability among particles decreases and they collapse into one point. The

most recent PF method, called Particle Learning (PL), avoids this problem by relying

on resample-propagate type algorithm and by using a set of sufficient statistics to be

tracked in time, which is sufficient for learning about the parameters. Next, we present

in short the main idea behind PL.

Consider a general state space model for the returns defined by the observation and

evolution equations:

rt ∼ p(rt|ht, Θ),

ht ∼ p(ht|ht−1, Θ).

Define an essential state vector St to be tracked in time that will usually contain the

filtered states and the hyper-parameters for the distributions of the model parameters

Θ. St is sufficient for the computation of p(rt+1|St), p(St+1|St, rt+1) and p(Θ|St+1). PL,

differently than other particle methods, relies on a resample-propagate scheme, that

can be understood by rewriting the Bayes theorem:

p(St|rt+1) ∝ p(rt+1|St)p(St|rt) :

Resample p(St|rt) with weights p(rt+1|St),

p(St+1|rt+1) =
∫

p(St+1|St, rt+1)dP(St|rt+1) :

Propagate St+1 via some propagation rules.

Here rt+1 = (r1, . . . , rt+1). At t = 0 initial values for parameters and states are simulated

from their prior distributions: Θ0 of dimension K×N (N is the number of particles and
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K is the number of model parameters) and h0 of dimension 1× N (in case of a single

state variable). Also, an essential state vector S0 is constructed, containing all the hyper-

parameters for the parameters of the model and the volatility states. Then, PL iterates

through three steps, for each particle (i), for i = 1, . . . , N:

1. Resampling.

Resample the particles with weights proportional to the posterior predictive den-

sity w(i) ∝ p(rt+1|S(i)
t ) to obtain resampled particles S̃(i)

t . In other words, we

obtain a new essential state vector S̃t by sampling from the existing essential state

vector St with weights that give more importance to the particles that produce

higher likelihood with respect to the new data point.

2. Propagation.

Propagate the particles S(i)
t+1 ∼ p(St+1|S̃(i)

t , rt+1). In this step we update all the

elements of the essential state vector through some propagation rules. The hyper-

parameters of the distributions of the static parameters Θ can be updated via de-

terministic rules. The latent states are propagated by sampling from

p(ht+1|S̃t, rt+1).

3. Learning.

Learn about the parameters on-line or off-line by approximating p(Θ|rt+1) as fol-

lows:

p(Θ|rt+1) ≈ 1/N
N

∑
i=1

p(Θ|St+1).

In this step, once the elements of the essential state vector have been propa-

gated, we use those updated hyper-parameters to sample from the posterior dis-

tributions of the parameters, obtaining new samples for the parameters Θ. In

some cases it is possible to integrate out the parameter uncertainty in resam-

ple step. Then, the predictive density depends only on the essential state vec-

tor p(rt+1|S(i)
t ). However, in many other cases it is not possible to integrate out

the parameter uncertainty analytically. Then, in order to calculate the predictive

density in the resample step, we use the sampled parameters, obtained from the

hyper-parameters in the essential state vector: p(rt+1|Θ(i)
t , S(i)

t ).
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Carvalho, Lopes, Polson & Taddy (2010) presented a detailed explanation of PL meth-

ods for general mixtures, including DPM models. Call nt,j a number of observations

assigned to the jth mixture component at time t and kt is an allocation variable that

indicates which mixture component the observation belongs to. We can augment the

essential state vector St by including nt,j and kt. Then density estimation by using a in-

finite location-scale mixture of Normals via PL can be carried out by iterating through

the following two steps, for each particle (i):

1. Resampling.

Resample with weights proportional to the predictive density w(i) ∝ p(rt+1|S(i)
t )

to obtain resampled particles S̃(i)
t ;

2. Propagation.

(a) Propagate allocation variable k(i)t+1 ∼ p(kt+1|S̃(i)
t , yt+1).

(b) Propagate the rest of the sufficient statistics S(i)
t+1 = p(St+1|S̃(i)

t , kt+1, yt+1),

including n(i)
t+1, via some deterministic rules.

The third step, parameter learning, can be performed off-line since the parameter un-

certainty, as mentioned before, can be integrated out. In various simulation studies,

presented in the aforementioned papers, the authors show that PL outperforms other

particle filtering approaches, and is a cost-efficient alternative to MCMC methods. For

a more detailed explanation of PL with illustrations refer to Carvalho, Johannes, Lopes

& Polson (2010) and Lopes et al. (2011), among others.

2.5 Conclusions

In this chapter we reviewed univariate and multivariate GARCH and SV models and

inference methods, putting emphasis on the Bayesian approach. We have surveyed

the existing literature that concerns various Bayesian inference methods for these mod-

els, outlining the advantages of the Bayesian approach versus the classical procedures.

We have also discussed in more detail recent Bayesian non-parametric methods for

GARCH and SV models, which avoid imposing arbitrary parametric distributional as-

sumptions. Additionally, we have reviewed an alternative Bayesian estimation ap-

proach - SMC, in particular, PL. The mentioned SMC technique can be seen as true



Chapter 2. Review 37

competitor to MCMC, since it produces a very similar posterior output at a much lower

computational cost and allows for on-line estimation.

The main contributions of this thesis are included in the following chapters. Chap-

ter 3 explores an asymmetric multivariate GARCH model with non-parametric errors.

The inference is carried out using MCMC techniques. We show that non-parametric

errors are not able to account for leverage effect, since the asymmetric non-parametric

MGARCH specification outperforms its symmetric counterpart. We also present an il-

lustrative portfolio allocation exercise. Chapter 4 employs the aforementioned PL to

estimate a non-parametric SV model. We show that PL and MCMC produce very sim-

ilar outputs for this model. Then the SV-DPM is augmented to incorporate Markov

switching jumps, resulting into a MSSV-DPM model, which is tested on synthetic data

and validated on real returns.





Chapter 3

A Bayesian Approach to the ADCC

Model with Application to Portfolio

Selection

This chapter presents a non-parametric multivariate asymmetric GARCH model for

multiple financial returns and the MCMC scheme for inference and prediction. As

mentioned before, ARCH-family models, first introduced by Engle (1982) and then gen-

eralized by Bollerslev (1986), are without doubt the most analyzed and used in practice

to explain time-varying volatilities, see Bollerslev et al. (1992), Bollerslev et al. (1994),

Engle (2002b), Teräsvirta (2009) and Tsay (2010).

Empirical evidence shows that returns and volatilities exhibit three types of asymme-

tries. The first two asymmetries are present in the dynamics of volatilities and corre-

lations: these respond to changes in returns in an asymmetric manner that depends

on the sign of the return. The third type of asymmetry is present in the unconditional

distribution of the returns and is modeled via distributional assumptions for the error

term.

Asymmetry in the volatility response to the changes in the returns, sometimes also

called “leverage effect", was first introduced by Black (1976). It means that negative

shocks to the returns have a stronger effect on volatility than positive ones of the same

magnitude. When dealing with multiple returns, one must also take into considera-

tion the mutual dependence between them, see Bauwens et al. (2006), Silvennoinen &

39
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Teräsvirta (2009) and Tsay (2010). In particular, conditional correlation models, firstly

proposed by Engle (2002b), Tse & Tsui (2002) and Christodoulakis & Satchell (2002),

play an important role because there is evidence that conditional correlations between

returns are time dependent. More recently, Cappiello et al. (2006) have proposed Asym-

metric Dynamic Conditional Correlation (ADCC) model for time-varying correlations.

Cappiello et al. (2006) argue that correlations between asset returns might be higher

after a negative return than after a positive one of the same size. These two types of

asymmetries govern the deterministic evolution of volatilities and correlations.

On the other hand, the third type of asymmetry - the unconditional one - can be mod-

eled via the distribution of the returns. Many of the GARCH models, univariate or mul-

tivatriate, rely on Gaussianity assumption for the error term. However, the traditional

premises of Normal distribution may be rather restrictive because the empirical uncon-

ditional distribution of returns, as mentioned before, is usually slightly skewed (asym-

metric) and fat-tailed, see Rossi & Spazzini (2010), for example. Alternative parametric

choices, such as the Student-t density, see Fiorentini et al. (2003), the skew-Student-t dis-

tribution, see Bauwens & Laurent (2005), or finite mixtures of Gaussian distributions,

see e.g. Ausín & Galeano (2007) and Galeano & Ausín (2010), have been proposed in

the literature and they usually improve the fit of GARCH models. However, all of them

require the assumption of a certain parametric model. An alternative is to abandon the

parametric setting altogether and consider a Dirichlet Process Mixture (DPM) model

of Gaussian distributions, firstly introduced by Lo (1984). This is a very flexible model

which can be viewed as a location-scale mixture of Gaussian distributions and is ca-

pable of modeling the Gaussian, Student-t, logistic, double exponential, Cauchy and

generalized hyperbolic distributions, among others, see e.g. Tokdar (2006) and Mencía

& Sentana (2009). The use of Bayesian non-parametrics in econometric modeling is rel-

atively recent with rapidly increasing popularity for its superior performance. For a

short review of existing works and possible econometric applications refer to the last

paragraph of Section 2.3.

Therefore, in this chapter we consider an ADCC model for time-varying correlations

with GJR-GARCH for individual volatilities (Glosten et al. 1993) and a DPM model

for the return innovations, resulting into Bayesian non-parametric ADCC model (BNP-

ADCC). We follow closely the works of Kalli et al. (2013) and Ausín et al. (2014), who

have applied the DPM models for univariate GJR-GARCH and Jensen & Maheu (2013),
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who have used DPM models for the multivariate symmetric DVEC (Ding & Engle

2001). Non-parametric time-varying volatility models have been of great interest in

the recent literature, in both, GARCH and Stochastic Volatility setting, see Jensen &

Maheu (2010, 2013, 2014), Delatola & Griffin (2011, 2013), Kalli et al. (2013), Ausín et al.

(2014). For a survey on Bayesian inference methods for univariate and multivariate

GARCH models see Chapter 2.

Jensen & Maheu (2013) have established the superiority of non-parametric errors in

MGARCH models as compared to most commonly used parametric distributions, such

as Gaussian and Student-t. In this chapter, we carry out an extensive comparison be-

tween our proposed BNP-ADCC model and its fully symmetric version, BNP-DCC,

both with non-parametric errors.

The improved fit of the model to multiple financial time series can be applied to risk

management problems, such as, portfolio optimization, for example. In this chapter,

we propose a Bayesian method which provides the posterior distributions of the one-

step-ahead optimal portfolio weights, which are more informative than simple point

estimates. The Bayesian approach also helps to deal with parameter uncertainty in

portfolio decision problems, see e.g. Jorion (1986), Greyserman et al. (2006), Avramov

& Zhou (2010) and Kang (2011), among others. This is in contrast with the usual max-

imum likelihood estimation approach, which assumes a “certainty equivalence” view-

point, where the sample estimates are treated as the true values, which is not in general

correct and has been criticized in a number of papers, see Brown (1978) and Jorion

(1986), among others.

Therefore, the main contribution of this chapter is the proposal of a Bayesian non-

parametric method for explaining the asymmetric dynamics of the assets’ returns via

a BNP-ADCC model. We carry out a comparison with a fully symmetric BNP-DCC

model to examine if by considering the asymmetric volatility and correlation response

we can improve the prediction accuracy. Also, we present an application of Bayesian

non-parametric techniques in portfolio decision problems and explore the differences

in uncertainty between the two models. This chapter extends the work by Ausín et al.

(2014) to the multivariate framework and the recent work by Jensen & Maheu (2013)

to the asymmetric setting. Also, differently from the work of Jensen & Maheu (2013),
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we always assume a conjugate prior specification and we use a different sampling ap-

proach.

The outline of the chapter is as follows: Section 3.1 describes the model, inference and

prediction from a Bayesian perspective. Section 3.2 introduces the time-varying port-

folio optimization problem. Section 3.3 presents a short simulation study. Section 3.4

illustrates the proposed approach using a real data example, compares the models and

solves a portfolio allocation problem. Section 3.5 concludes.

3.1 Model, inference and prediction

This section describes the asymmetric dynamic conditional correlation GJR-GARCH

model used for volatilities and correlations and the DPM specification for the error

term, resulting in the BNP-ADCC model. Then we provide a detailed explanation of

the implementation of Bayesian non-parametric inference and the methodology of ob-

taining predictive densities of returns and volatilities.

3.1.1 The Bayesian non-parametric ADCC model

Financial returns usually exhibit asymmetries in individual volatilities and in condi-

tional correlations. Therefore, on the one hand, we choose the GJR-GARCH model

proposed by Glosten et al. (1993) for individual returns to incorporate asymmetric vo-

latility effects, while, on the other hand, we use the ADCC model proposed by Cap-

piello et al. (2006) to model joint volatilities. Then, we assume that the vector of K asset

returns is given by:

rt = H1/2
t εt, (3.1)

for t = 1, 2, . . ., where Ht is a symmetric K × K scale matrix and εt are a sequence of

iid random variables with an unknown K-dimensional distribution FK. As usual in all

DCC models, the matrix Ht can be decomposed as follows:

Ht = DtRtDt, (3.2)
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where Dt is a diagonal matrix that contains the square root of the elements of the main

diagonal of Ht, denoted by dii,t, for i = 1, 2, . . . , K, and Rt is a time-varying correlation

matrix. The dii,t’s are assumed to follow GJR-GARCH (1,1) models given by:

d2
ii,t = ωi + (αi + φi Ii,t−1)r2

i,t−1 + βid2
ii,t−1, (3.3)

with parameters ωi, αi, φi, βi > 0 and αi + βi + φi/2 < 1, for i = 1, 2, . . . , K and where

Ii,t−1 is an indicator function such that Ii,t−1 = 1 if ri,t−1 < 0 and Ii,t−1 = 0 otherwise.

On the other hand, to introduce Rt, we need to define

εt = D−1
t rt, and ηt = εt � I(εt < 0), (3.4)

where � denotes Hadamard matrix product operator and I(εt < 0) is a vector with

ith component equal to 1 if ε i,t < 0, and 0 otherwise. The Hadamard product operator

helps to create a new vector of only negative residuals by multiplying entry-wise the

original residual vector εt by an indicator function. Then, Rt is given by:

Rt = Q?−1
t QtQ?−1

t , (3.5)

where Qt is the K× K matrix given by:

Qt = S(1− κ − λ− δ/2) + κ × εt−1ε′t−1 + λ×Qt−1 + δ× ηt−1η′t−1, (3.6)

and Q?
t is a diagonal matrix with the square root of the ith diagonal element of Qt

on its ith diagonal position. As pointed out by Cappiello et al. (2006), Q?
t is a matrix

that guarantees Rt is a correlation matrix, as long as Qt is positive definite, S being

the sample correlation matrix of εt. In Equation 3.6 we impose that κ, λ, δ > 0 and

κ + λ + δ/2 < 1 to ensure the positivity and stationarity of Qt. Finally, the vector

Φ = (ω, α, β, φ, κ, λ, δ) summarizes the set of parameters describing the matrices Ht,

for t = 1, 2, . . ..

Popular parametric choices for the unknown distribution of εt ∼ FK include Student-t,

skewed Student-t, finite mixtures of Gaussian distributions. However, as pointed out

by Jensen & Maheu (2013), these models still remain parametric. Next, we present a
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flexible DPM specification for the errors and some of the most important special cases

arising from this model. Using the stick-breaking representation by Sethuraman (1994),

a DPM of Gaussian distributions can be expressed as a location-scale Gaussian mixture

model with infinitely many components and therefore, it can be easily defined as an

extension of a parametric mixture model. The base distribution of the DP, usually de-

noted by G0, corresponds to the prior distribution of the component parameters in the

infinite mixture.

The concentration parameter, denoted by c, can be interpreted as the prior belief about

the number of clusters in the mixture. Small values of c assume a priori an infinite mix-

ture model with a small number of components with large weights. On the contrary,

large values of c assume a priori an infinite mixture model with all the weights being

very small. Additionally, c can be seen as a precision parameter that indicates how

close G is to the base distribution G0, where larger c indicates that G is closer to G0. So,

if the base measure is not chosen well, it will impact on FK. As pointed out by Kalli

et al. (2013), c controls the decay of weights, which is exponential. This might be a dis-

advantage of DPM models in the case that more mixture components are needed. An

alternative could be to consider more general stick-breaking processes, for more details

refer to Kalli et al. (2013).

Therefore, the resulting density function of εt can be written as:

f (εt|w, µ, Λ) =
∞

∑
j=1

wjNK

(
εt|µj, Λ−1

j

)
, (3.7)

where NK denotes a K-variate Normal density. Let us denote by

Ω =
{

wj, µj, Λj
}∞

j=1 the infinite-dimensional parameter vector describing the mixture

distribution for the innovations. Here wj represent the component weights, µj are the

component means and Λj are the precision matrices, for j = 1, 2, . . .. Using the stick-

breaking representation, the weights of the infinite mixture components are reparam-

eterized as follows: w1 = v1, wj = (1− v1) · · · (1− vj−1)vj, where we assume a Beta

prior distribution for vj, vj ∼ B(1, c), for j = 1, 2, . . .. Clearly, there will be some sen-

sitivity to the choice of the concentration parameter c. Therefore, we further assume a

Gamma hyper-prior distribution for c, c ∼ G(a0, b0), as seen in Escobar & West (1995).

Finally, as a base distribution, we assume a conjugate Normal-Wishart prior for (µj, Λj),

(µj, Λj) ∼ NW(m0, s0, W0, d0), where



Chapter 3. ADCC-DPM Model 45

µj|Λj ∼ NK

(
m0, (s0Λj)

−1
)

,

Λj ∼ W(W0, d0),

for j = 1, 2, . . ., such that E
[
Λj
]
= d0 ×W−1

0 and E
[
Λ−1

j

]
= (d0 − (K + 1)/2)−1 ×W0.

In summary, the complete set of model parameters is denoted by Θ = (Φ, Ω). Given

the information available up to time t− 1, denoted by rt−1, the conditional density of

the returns can be written as follows:

f (rt|Θ, rt−1) =
∞

∑
j=1

wjNK

(
rt|H1/2

t µj, H1/2
t Λ−1

j (H1/2
t )′

)
, (3.8)

with conditional mean given by:

µ?
t = E

[
rt|Θ, rt−1

]
= H1/2

t

∞

∑
j=1

wjµj, (3.9)

and conditional covariance matrix:

H?
t = Cov

[
rt|Θ, rt−1

]
= H1/2

t Cov [εt|Ω] (H1/2
t )′, (3.10)

where

Cov [εt|Ω] =
∞

∑
j=1

wj

(
Λ−1

j + µj(µj)
′
)
−
(

∞

∑
j=1

wjµj

)(
∞

∑
j=1

wjµj

)′
.

It is important to notice that this full unrestricted model induces GARCH-in-Mean

effects, since the conditional mean of the returns is not restricted to be zero. More-

over, the DPM model for εt does not assume an identity covariance matrix. As noted in

Jensen & Maheu (2013), imposing moment restrictions in DPM models is still an open

question. However, the prior information considered centers εt around an identity co-

variance matrix.
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3.1.2 MCMC algorithm

The following section describes a Markov Chain Monte Carlo (MCMC) algorithm to

sample from the posterior distribution of the parameters of the BNP-ADCC model in-

troduced in the previous section. The algorithm is based on the slice-sampler by Kalli

et al. (2011), which is an improved version of the algorithm by Walker (2007). This al-

gorithm belongs to a general class of conditional methods, that sample a sufficient and

finite number of variables to deal with the infiniteness problem, see Ishwaran & James

(2001), Walker (2007), Papaspiliopoulos & Roberts (2008), Papaspiliopoulos (2008) and

Kalli et al. (2011).

Following Kalli et al. (2011), in order to avoid the problem of sampling an infinite num-

ber of values at each MCMC step, we introduce a latent variable ut, such that the joint

density of (εt, ut) given Ω is:

f (εt, ut|Ω) =
∞

∑
j=1

1
¯
(ut < wj)NK(εt|µj, Λ−1

j ). (3.11)

Let Aw(ut) = {j : wj > ut} be a set of size Nut , which is finite for all ut > 0. Then

the joint density of (εt, ut) in Equation 3.11 can be equivalently written as f (εt, ut|Ω) =

∑j∈Aw(ut)NK(εt|µj, Λ−1
j ). Integrating over ut gives us the density of infinite mixture

of distributions Equation 3.7. Finally, given ut, the number of mixture components is

finite.

In order to simplify the likelihood, we also need to introduce a further indicator latent

variable zt, which indicates the mixture component that εt comes from:

f (εt, zt = j, ut|Ω) = NK(εt|µ, Λ−1)1
¯
(j ∈ Aw(ut)).

Then, the log-likelihood of Θ, given the latent variables ut and zt looks as follows:

log L(Θ| {rt, ut, zt}T
t=1) = −

1
2

T

∑
t=1

(
K log(2π) + log |H?

t,zt
|+ (rt − µ?

t,zt
)H?−1

t,zt
(rt − µ?

t,zt
)′
)

.

(3.12)

Here µ?
t,zt

and H?
t,zt

are the conditional mean vector and conditional covariance matrix

given zt, i.e., µ?
t,zt

= H1/2
t µzt and H?

t,zt
= H1/2

t Λ−1
zt

H1/2
t , respectively. Using these latent
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variables, we now construct the following MCMC algorithm that is described step by

step.

1. Sampling c

Firstly, given zt, for t = 1, 2, . . . , T, the conditional posterior distribution of the

concentration parameter c is independent of the rest of the parameters, as seen in

Escobar & West (1995). So, we first sample an auxiliary variable ξ ∼ B(c + 1, T)

and then c from a Gamma mixture:

πξG(a0 + z?, b0 − log(ξ)) + (1− πξ)G(a0 + z? − 1, b0 − log(ξ)),

where z? = max(z1, . . . , zT) and πξ = (a0 + z?− 1)/(a0 + z?− 1+T(b0− log(ξ))).

2. Sampling v

In the second step, we sample from the conditional posterior of vj for j = 1, 2, . . . , z?,

which is given by:

vj| {zt}T
t=1 ∼ B(nj + 1, T −

j

∑
l=1

nl + c),

where nj is the number of observations in the jth component and ∑
j
l=1 nl gives

the cumulative sum of the groups. Also, w1 = v1, wj = (1− v1) · · · (1− vj−1)vj,

for j = 2, . . . , z?. Then, we sample the uniform latent variables ut ∼ U (0, wzt), for

t = 1, 2, . . . , T. Following Kalli et al. (2011), we need to find the smallest j? such

that ∑
j?

j=1 wj > (1− u?), where u? = min(u1, . . . , uT). Then, if z? < j?, we need to

sample vj from the prior and sample wj accordingly, for j = z? + 1, . . . , j?.

3. Sampling µ and Λ

As for the mixture parameters, we sample them from the conditional posterior

Normal-Wishart distribution (µj, Λj) ∼ NW(mj, sj, Wj, dj), for j = 1, 2, . . . , j?,

where:
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mj =
s0m0 + njε̄j

s0 + nj
, sj = s0 + nj,

Wj = W−1
0 + Sj +

s0nj

s0 + nj
(m0 − ε̄j)(m0 − ε̄j)

′,

Sj =
1
nj

T

∑
t:zt=j

(εt − ε̄j)(εt − ε̄j)
′, ε̄j =

1
nj

T

∑
t:zt=j

εt,

dj = d0 + nj.

Note that this approach is different from the one described in Jensen & Maheu

(2013) since they assume independent prior distributions for µj and Λj and in-

clude some Gibbs steps to sample from the conditional posterior.

4. Sampling z

In this step we assign to which component each observation belongs to by sam-

pling the latent indicator variable zt from its conditional posterior distribution:

Pr(zt = j|...) ∝ 1
¯
(j ∈ Aw (ut))NK(εt|µj, Λ−1

j ).

5. Sampling parameters Φ

The rest of the steps of the algorithm concern updating the parameters of the

BNP-ADCC model. For that, we use the Random Walk Metropolis Hasting

(RWMH), following a similar procedure as in Jensen & Maheu (2013). For the set

of parameters Φ, we generate a candidate value Φ̃ from a D-variate Normal distri-

bution with mean equal to the previous value of the parameter, where D = 4K+ 3

is the number of parameters in Φ, as follows:

Φ̃ ∼

 ND (Φ, V) w.p. p

ND (Φ, 100V) w.p. 1− p

The probability of accepting a proposed value Φ̃, given the current value Φ, is

α(Φ, Φ̃) = min
{

1, ∏T
t=1 l(rt|Φ)/ ∏T

t=1 l̃(rt|Φ̃)
}

, where the likelihood used is as

in Equation 3.12, see e.g. Robert & Casella (2004). The covariance matrix V is ob-

tained by running some initial MCMC iterations and then adjusting the sample

covariance matrix by some factor in order to achieve the desired acceptance prob-

ability. In this chapter the acceptance probabilities are adjusted to be between 20%

and 50%, while we fix p = 0.9.
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In the simulation and real data application studies in the following sections we as-

sume uninformative uniform priors restricted to the stationary region for Φ and set-

ting m0 = 02, s0 = 0.1, d0 = 5, W0 = I2/5, a0 = 4 and b0 = 4. The choice of

hyper-parameters is such that the mixture components would initially center at zero

and have unit variances. The MCMC algorithm is run for 10k burn-in plus 40k itera-

tions for the simulation study and 50k + 50k for the real data application, in order to

ensure convergence.

3.1.3 Prediction

In this section, we are mainly interested in estimating the one-step-ahead predictive

density of the returns:

f (rT+1|rT) =
∫

f (rT+1|Θ, rT) f (Θ|rT)dΘ, (3.13)

where f (rT+1|Θ, rT) is specified in Equation 3.8. Although this integral is not analyti-

cally tractable, it can be approximated using the MCMC output:

f (rT+1|rT) ' 1
M

M

∑
m=1

f (rT+1|Θ(m), rT), (3.14)

where M is the length of the MCMC chain and Θ(m) is the infinite set of parameters

at the m-th iteration. However, in practice, at each iteration, there is a finite number

of weights w(m)
j , means µ

(m)
j and precision matrices Λ

(m)
j , for j = 1, 2, . . . , j?(m), where

j?(m) is a number of components to sample at the step 2 of MCMC sampler at the m-th

iteration. Then, as seen in Jensen & Maheu (2013), we repeat for r = 1, 2, . . . , R at each

MCMC iteration, where R a is number of components to sample and is fixed a priori:

i. Sample a random variable a ∼ U (0, 1).

ii. Take such w(m)
r for which ∑r−1

j=1 w(m)
j−1 < a < ∑r

j=1 w(m)
j and the corresponding

(µr, Λr)(m).

iii. If ∑
j?(m)

j=1 w(m)
j < a, sample (µr, Λr)

(m) from the Normal-Wishart prior.

Then, approximate the one-step-ahead density in Equation 3.14 by
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f (rT+1|Θ(m), rT) ' 1
R

R

∑
r=1
NK

(
rT+1|µ(m)

r H(m)1/2
T+1 , H(m)1/2

T+1

(
Λ

(m)
r

)−1
(H(m)1/2

T+1 )′
)

,

(3.15)

where (µr, Λr)
(m) are the R pairs of means and precision matrices simulated for r =

1, 2, . . . , R, and H(m)
T+1 is the value of the HT+1 matrix at the m-th MCMC iteration.

This simulation procedure also delivers predictions for many other important mea-

sures. For example, the posterior expected value of the adjusted one-step-ahead mean

and volatility matrix, introduced in Equation 3.9 and Equation 3.10, can be approxi-

mated by:

E
[
µ?

T+1 | rT
]
' 1

M

M

∑
m=1

µ
?(m)
T+1 , (3.16)

and

E
[

H?
T+1 | rT

]
' 1

M

M

∑
m=1

H?(m)
T+1 , (3.17)

respectively, where,

µ
?(m)
T+1 = H(m)1/2

T+1

(
1
R

R

∑
r=1

µ
(m)
r

)
, (3.18)

and

H?(m)
T+1 = H(m)1/2

T+1

(
1
R

R

∑
r=1

((
Λ

(m)
r

)−1
+ µ

(m)
r (µ

(m)
r )′

)
−
(

1
R

R

∑
r=1

µ
(m)
r

)(
1
R

R

∑
r=1

µ
(m)
r

)′)
(3.19)

×
(

H(m)1/2
T+1

)′
.

In order to obtain the posterior distributions of the adjusted means and volatilities, one

should fix a certain R. Since the number of components in the data is not known a

priori, one might choose R depending on the number of clusters in the data. However,

this implies that there is no upper limit for R, which might result into sampling a very

large number of components at each step and increasing computational cost. Instead,
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we propose to use j? components with their corresponding weights w at each step, such

that equations Equation 3.18 and Equation 3.19 become the following:

µ
?(m)
T+1 = H(m)1/2

T+1

j?(m)

∑
j=1

w(m)
j µ

(m)
j

 , (3.20)

and

H?(m)
T+1 = H(m)1/2

T+1 × (3.21)j?(m)

∑
j=1

w(m)
j

((
Λ

(m)
j

)−1
+ µ

(m)
j (µ

(m)
j )′

)
−

j?(m)

∑
j=1

w(m)
j µ

(m)
j

j?(m)

∑
j=1

w(m)
j µ

(m)
j

′
×
(

H(m)1/2
T+1

)′
.

Similarly, we can approximate the posterior median and credible intervals using the

quantiles of the posterior samples
{

µ
?(m)
T+1

}M

m=1
and

{
H?(m)

T+1

}M

m=1
.

3.2 Portfolio decisions

Optimal asset allocation is greatly affected by the parameter uncertainty, see Jorion

(1986) and Greyserman et al. (2006), among others. In the frequentist setting, the es-

timated parameter values are considered to be the true ones, therefore, the optimal

portfolio weights tend to inherit this estimation error. Instead of solving the optimiza-

tion problem on the basis of the choice of unique parameter values, the investor can

choose the Bayesian approach, because it accounts for parameter uncertainty, as seen

in Kang (2011) and Jacquier & Polson (2013), for example.

The main objective of diversification is to reduce investor’s exposure to risk. See

Markowitz (1952) and Merton (1972) for some classical portfolio optimization refer-

ences. Nowadays, there is a wide variety of portfolio optimization objectives, such as

maximizing agent’s utility or minimizing expected shortfall, among many others. In

this chapter we consider one of the most frequently used objectives, where the investor

minimizes the portfolio variance. The Global Minimum Variance (GMV) portfolio can

be found at the very peak of the efficient frontier. Given the time series of returns
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r1, . . . , rT, the standard approach is to consider the unconditional covariance matrix of

the returns, Σ = Cov[rt], and solve the following optimization problem:

p? = arg min
p:p′1K=1

Var[rP
t ],

where p is the weight vector, 1K is a K-vector of ones and rP
t = p′rt is the portfolio

return at time t. The problem has the solution:

p? =
Σ−11K

1′KΣ−11K
,

that is independent of the time point T. Note that if we choose to impose the short

sale constraint, i.e., pi ≥ 0, ∀i = 1, 2, . . . , K, the problem cannot be solved analytically

anymore and it requires numerical optimization techniques.

However, recent results suggest that the use of the time-varying covariance matrix to

determine portfolio weights leads to better performing portfolios than the use of a con-

stant covariance matrix. For instance, Giamouridis & Vrontos (2007) find that portfo-

lios, constructed under a dynamic approach, have lower average risk and higher out-

of-sample risk-adjusted realized return, see also Yilmaz (2011). Cecchetti et al. (1988)

was the first to suggest the use of MGARCH models in optimal allocation context. Since

then, there has been a number of papers investigating the differences in estimation and

evaluating their performance using various approaches, from simple OLS, to bivariate

vector autorregression (VAR), to GARCH. In particular, Kroner & Sultan (1993), Rossi

& Zucca (2002) and Yang & Allen (2004), among others, have shown that GARCH-type

models lead to the overall portfolio risk reduction.

Consequentely, to solve the portfolio allocation problem in our case, instead of Σ, we

use the adjusted one-step-ahead conditional covariance matrix for the assets returns

H?
T+1, defined in Equation 3.10, which varies continuously on the basis of available

information up to time T, rT. Therefore, we are able to obtain optimal portfolio weights

for time point T + 1 as follows:

p?T+1 =
H?−1

T+11K

1′K H?−1
T+11K

. (3.22)
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Using the MCMC output, we can obtain samples from the entire posterior distribution

of optimal portfolio weights for T + 1, f (p?T+1|rT). This approach relies on solving the

allocation problem at every MCMC iteration and approximating the posterior mean of

the optimal portfolio weights as follows:

E[p?T+1|rT] =
∫

p?T+1 f (Θ|rT)dΘ ≈ 1
M

M

∑
m=1

p?(m)
T+1 ,

where
{

p?(m)
T+1

}M

m=1
is a posterior sample of optimal portfolio weights obtained from

Equation 3.22 for each value of one-step-ahead conditional covariance matrix of the

returns
{

H?(m)
T+1

}M

m=1
in the MCMC sample. In other words, since we have assembled

M one-step-ahead volatility matrices, we can solve the portfolio allocation problem M

times. As in the previous section, we can similarly approximate the posterior median

and credible intervals of p?T+1 by using the quantiles of the sample of optimal portfolio

weights. In this manner, we are able to draw samples from the posterior distribution of

the optimal portfolio variance, σ2?
T+1, and optimal portfolio gain, g?T+1 as follows:

{
(σ2?

T+1)
(m)
}M

m=1
∼ p

(
σ2?

T+1|rT
)

,{
(g?T+1)

(m)
}M

m=1
∼ p

(
g?T+1|rT

)
,

where {(σ2?
T+1)

(m)}M
m=1 = {(p?

′
T+1H?

T+1 p?T+1)
(m)}M

m=1 and {(g?T+1)
(m)}M

m=1 =

{(p?T+1µ?′
T+1)

(m)}M
m=1.

3.3 Simulation study

The goal of this simulation study is to show the flexibility and adaptability of the DPM

specification for the innovations for the BNP-ADCC model introduced in Section 3.1.

In particular, we demonstrate that the DPM error specification can adapt to some of

the most popular parametric distributions used in financial return data. For this, we

consider three bivariate time series of 3000 observations simulated from a BNP-ADCC

model with the following innovation distributions: (a) GaussianN (0, I2); (b) Student-t

T (I2, ν = 8); (c) Mixture of two bivariate Normals 0.9N (0, σ2
1 = 0.8, σ12 = 0.0849, σ2

2 =

0.9) + 0.1N (0, σ2
1 = 2.8, σ12 = −0.7637, σ2

2 = 1.9). Note that, in the third case, we have
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FIGURE 3.1: Contour plots of the true and estimated one-step-ahead predictive densi-
ties, f (rT+1 | rT), for the three simulated data sets.
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chosen larger variances for the second mixture component to allow for the presence of

extreme returns but preserving an identity covariance matrix. Then, we estimate all

three data sets using the proposed BNP-ADCC model.

Figure 3.1 presents the contour plots that compare the true one-step-ahead predictive

densities of returns, given the model parameters, with the estimated ones, obtained

from Equation 3.14 by setting R = 3. As we can see, the estimated contours of the one-

step ahead return densities are very close to the true ones. Note that these contours

can be seen as a summary of the estimation results for all 11 model parameters Φ =

(ω, α, β, φ, κ, λ, δ) and the distribution for the error term. Therefore, it seems that the

proposed infinite mixture model is a very flexible tool that is able to adjust to rather

different return specifications. This is of primary interest because in practice one never

knows which is the true error distribution.

Table 3.1 presents the estimated posterior mean, median and 95% credible intervals for

the number of clusters, z?, for the three generated datasets. For the Gaussian dataset,

the proposed DPM model estimates very few non-empty components, 1.23 on aver-

age, where there is always a clear dominant weight. For the Student-t dataset, the

proposed DPM model estimates a large number of clusters, around 19.66, with sim-

ilar small weights. This is expected since, as commented in Jensen & Maheu (2013),

the Student-t distribution can be viewed as a limiting case of a DPM model when the

concentration parameter goes to infinity and, consequently, the number of clusters in-

creases indefinitely. Finally, for the two-component mixture data, the DPM model can
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identify very well the two underlying clusters with posterior mean around 2.68. Next,

Table 3.1 shows the estimation results for the concentration parameter, c, and its trans-

formed value A = c/(1 + c), where 0 < A < 1, that has been used by Jensen &

Maheu (2013) to provide an intuition of the probability of having infinite clusters in the

mixture. However, note that, different to Jensen & Maheu (2013), we have previously

defined a Gamma prior on c instead of a Uniform prior on A. Observe that the obtained

results are coherent, since the posterior mean of A for the Gaussian case is the smallest

(A = 0.2509), while for the Student-t case is the largest (A = 0.6892). Finally, for the

two-component mixture dataset, the posterior mean of A is between the corresponding

values of the Gaussian and Student-t, that can be seen as a compromise between the

two extreme cases. The rest of the Table 3.1 contains the true and estimated parameter

values and the corresponding 95% Bayesian credible intervals. As can be seen from the

table, the estimation of parameters is quite good.

Finally, we have estimated the generated Normal and Student-t data sets assuming

Gaussian and Student-t distributions, respectively. We used the RWMH with 10k burn-

in plus 40k iterations. This way we were able to obtain a sample of one-step-ahead

covariance matrices {H(m)
t+1}M

m=1, estimated using the true return distributions. Fig-

ure 3.2 compares the densities for one-step-ahead covariances {H?(m)
t+1 }M

m=1 assuming

a DPM for (a) and (b) with the true data generating model, Gaussian and Student-t,

respectively. As we can see, the mean estimates, the width and shape of the poste-

rior distributions are very similar for DPM and the ones obtained using the true return

distribution. A few different data sets were used to test the performance of the DPM

model. It was always able to “recover" the underlying distribution of the error term,

and, in turn, estimate well the posterior densities of the elements of the one-step-ahead

covariance matrix. Therefore, we can conclude that DPM model can adjust to differ-

ent frequently used distributions for the return data without making any restrictive

distributional assumptions.

3.4 Real data and results

In this section, we illustrate the performance of the proposed methodology using a real

dataset and solve a portfolio allocation problem as described in Section 3.2.
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TABLE 3.1: Posterior means, medians and 95% credible intervals for the number of
non-empty clusters z?, concentration parameter c, quantity A = c/(1 + c), and model

parameters for the three simulated data sets.

Gaussian Student-t 2 comp. mixture
True Mean 95% CI Mean 95% CI Mean 95% CI
value Median Median Median

z? 1.2330 (1.0000, 3.0000) 19.6612 (9.0000, 33.0000) 2.6765 (2.0000, 5.0000)
1.0000 19.0000 2.0000

c 0.3578 (0.0934, 0.8072) 2.5037 (0.9327, 5.0059) 0.4863 (0.1512, 1.0408)
0.3252 2.3308 0.4462

A 0.2509 (0.0855, 0.4467) 0.6892 (0.4826, 0.8335) 0.3122 (0.1314, 0.5100)
0.2454 0.6998 0.3085

ω1 0.01 0.0075 (0.0045, 0.0104) 0.0110 (0.0072, 0.0154) 0.0201 (0.0104, 0.0315)
0.0077 0.0110 0.0201

ω2 0.01 0.0138 (0.0071, 0.0204) 0.0109 (0.0065, 0.0182) 0.0130 (0.0071, 0.0218)
0.0142 0.0103 0.0118

α1 0.1 0.0595 (0.0383, 0.0858) 0.0970 (0.0740, 0.1277) 0.1473 (0.0808, 0.2570)
0.0582 0.0953 0.1353

α2 0.08 0.0699 (0.0402, 0.0930) 0.0710 (0.0500, 0.0998) 0.0962 (0.0512, 0.1408)
0.0716 0.0693 0.0944

β1 0.85 0.8625 (0.8388, 0.8816) 0.8244 (0.7920, 0.8481) 0.8426 (0.8076, 0.8710)
0.8629 0.8262 0.8441

β2 0.88 0.8695 (0.8478, 0.8946) 0.8727 (0.8539, 0.8888) 0.8939 (0.8589, 0.9130)
0.8686 0.8734 0.8952

φ1 0.025 0.0299 (0.0085, 0.0544) 0.0395 (0.0049, 0.0749) 0.0463 (0.0034, 0.0800)
0.0285 0.0392 0.0475

φ2 0.025 0.0385 (0.0137, 0.0705) 0.0229 (0.0031, 0.0554) 0.0438 (0.0147, 0.0729)
0.0373 0.0204 0.0443

κ 0.05 0.0504 (0.0366, 0.0681) 0.0501 (0.0347, 0.0648) 0.0615 (0.0407, 0.0878)
0.0495 0.0503 0.0588

λ 0.9 0.8908 (0.8670, 0.9136) 0.8946 (0.8786, 0.9075) 0.8898 (0.8674, 0.9167)
0.8903 0.8957 0.8884

δ 0.025 0.0221 (0.0015, 0.0475) 0.0312 (0.0098, 0.0536) 0.0265 (0.0011, 0.0551)
0.0216 0.0311 0.0264

3.4.1 Estimation

We consider the daily price data of Apple Inc. company (PA
t ) and NASDAQ Industrial

index (PN
t ) from January 1, 2000 till May 7, 2012, obtained from Yahoo Finance. Then,

daily prices are transformed into daily logarithmic returns (in %), resulting in T = 3098

observations. Table 3.2 provides the basic descriptive statistics and Figure 3.3 illustrates

the dynamics of the log-returns.

As expected, Apple Inc. has higher overall variance because of the higher mean return.

Both returns do not exhibit any evidence of autoregressive behavior. Apple Inc. returns
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FIGURE 3.2: Densities of the elements of the one-step-ahead covariance matrices for
Normal and Student-t data estimated using (a) DPM and Normal and (b) DPM and

Student-t errors.
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FIGURE 3.3: Log-returns (in %) and histograms of Apple Inc. and NASDAQ Ind. in-
dex.
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TABLE 3.2: Descriptive statistics of the Apple Inc. and NASDAQ Ind. index return
series.

100× ln
(

PA
t

PA
t−1

)
100× ln

(
PN

t
PN

t−1

)
Mean 0.0973 0.0020

Median 0.1007 0.0766
Variance 9.7482 3.1537
Skewness −4.2492 −0.1487
Kurtosis 102.0411 7.1513

Correlation 0.5376

contain one atypical data point, corresponding to September 29, 2000. The very low

return is due to an announcement the day before about lower than expected sales.

Next, the return series was estimated assuming fully symmetric BNP-DCC (M0) and

asymmetric BNP-ADCC (M1) models, both with DPM errors. Table 3.3 reports the pa-

rameter estimation results. As we can see from the table, the constant volatility param-

eter for the first series is twice as big for the asymmetric model. On the other hand, the

volatility persistence parameter for the first series is bigger for the symmetric model, as

well as the correlation persistence. Without the asymmetry parameters (φ1, φ2, δ), these

persistence parameters incorporate some part of the persistence that otherwise would

be captured by the asymmetry parameters. As expected, the average number of non-

empty clusters for the mixture distribution z? is greater for the symmetric (M0) model,

since it tries to compensate the absence of the asymmetry parameters by including ex-

tra mixture components. The same conclusion is reflected in the parameter A, which

is greater for the symmetric model meaning that the probability of observing an extra

mixture component is greater for the BNP-DCC model. Figure 3.4 presents the traces,

histograms and running mean plots of the parameter A. The autocorrelation is smaller

in the BNP-ADCC model.

Next, Figure 3.5 compares the predictive densities of the one-step-ahead returns rT+1.

The densities are rather similar, but they present important differences in the tail be-

havior. These differences can be better understood from Figure 3.6, where the marginal

log-predictive densities are presented. The log-predictive for Apple Inc. data is almost

identical for both models, whereas the log-predictive for the NASDAQ Ind. data has

fatter tails for the asymmetric model M1. Therefore, it seems that although the DPM
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TABLE 3.3: Estimation results for Apple Inc. (1) and NASDAQ Ind. (2) returns assum-
ing fully symmetric (M0) and asymmetric (M1) multivariate GARCH models.

BNP-DCC (M0) BNP-ADCC (M1)
Mean 95% CI Mean 95% CI

ω1 0.0653 (0.0228, 0.1305) 0.1344 (0.0738, 0.2097)
ω2 0.0072 (0.0034, 0.0131) 0.0095 (0.0050, 0.0217)
α1 0.0527 (0.0312, 0.0763) 0.0608 (0.0412, 0.0790)
α2 0.0269 (0.0164, 0.0411) 0.0060 (0.0007, 0.0128)
β1 0.9306 (0.9027, 0.9532) 0.8950 (0.8565, 0.9188)
β2 0.9198 (0.9049, 0.9375) 0.9235 (0.9079, 0.9378)
φ1 0.0500 (0.0216, 0.0765)
φ2 0.0393 (0.0250, 0.0700)
κ 0.0211 (0.0064, 0.0361) 0.0213 (0.0068, 0.0392)
λ 0.9080 (0.7995, 0.9854) 0.8494 (0.7855, 0.9185)
δ 0.0285 (0.0036, 0.0557)
z? 8.1838 (4.0000, 14.0000) 7.3411 (4.0000, 12.0000)
A 0.4933 (0.2806, 0.6839) 0.4726 (0.2650, 0.6596)

FIGURE 3.4: Traces, histograms and running mean plots of A = c/(1 + c) for fully
symmetric BNP-DCC (M0) and asymmetric BNP-ADCC (M1) models.
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in the asymmetric model M1 uses fewer mixture components, it can better capture the

heavy tails in one-step-ahead predictive densities of the returns.

Next, similar to Jensen & Maheu (2013), we compare the two estimated models using

predictive likelihoods based on a small set of out-of-sample observations
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FIGURE 3.5: Contours of the predictive densities for rT+1 for fully symmetric BNP-
DCC (M0) and asymmetric BNP-ADCC (M1) models.
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FIGURE 3.6: Marginal log-predictive densities for the one-step-ahead Apple Inc. (r(1)T+1)

and NASDAQ Ind. (r(2)T+1) return data, for fully symmetric BNP-DCC (M0) and asym-
metric BNP-ADCC (M1) models.
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{T + 1, . . . , T + τ}, where τ = 233, the end date of the series is April 5, 2013, see Fig-

ure 3.7. However, differently from Jensen & Maheu (2013), we do not re-estimate the

model whenever a new observation arrives to avoid an increase in the computational

cost, but we use the already estimated model parameters up to time T. This results into

approximated predictive likelihoods rather than pure predictive likelihoods as consid-

ered in Jensen & Maheu (2014). Since predictive likelihoods are very sensitive to the

behavior of the last return used on the model’s estimation, the obtained results can be

generalized only to some extent, and a full valid model comparison still needs to be

carried out.

The ratio of predictive likelihoods is called Bayes factor. Since in this chapter we are
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FIGURE 3.7: Log-returns (in %) of Apple Inc. and NASDAQ Ind. index for t =
3099, . . . , 3331.
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considering approximated predictive likelihoods, we will refer as pseudo Bayes factor

to the resulting ratios. As seen in Kass & Raftery (1995), the predictive likelihood for

the ith data point, given the kth model, can be obtained as

p(rT+i|rT+i−1, Mk) =
∫

p(rT+i|rT+i−1, Mk, Θk)π(Θk|rT+i−1, Mk)dΘk,

where Θk is a set of parameters associated with the kth model. Since this integral is not

analytically tractable, we can approximate it using the MCMC output:

p(rT+i|rT+i−1, Mk) =
1
M

M

∑
m=1

p(rT+i|rT+i−1, Mk, Θ
(m)
k ), for i = 1, 2, . . . , τ,

and then calculate the sum of the logarithms over the entire out-of-sample period:

log p(rT+1, . . . , rT+τ|Mk) =
τ

∑
i=1

log p(rT+i|rT+i−1, Mk).

Table 3.4 presents the cumulative approximated log-predictive likelihood for the two

models using τ = 233 out-of-sample observations. The log of the pseudo Bayes factor

can be obtained as a difference of the likelihoods:

log BF10 = log p(rT+1, . . . , rT+τ|M1)− log p(rT+1, . . . , rT+τ|M0),

where BFij represents a pseudo Bayes Factor comparing models i and j. As seen in

Kass & Raftery (1995), if 2 log BF10 ≥ 10, then M1 is strongly preferred to M0, since the
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FIGURE 3.8: Posterior distributions of one-step-ahead volatilities for fully symmetric
BNP-DCC (M0) and asymmetric BNP-ADCC (M1) models.
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former can predict the data better. In our case, 2 log BF10 = 9.9876, which favors the

fully asymmetric BNP-ADCC model.

TABLE 3.4: Cumulative log-predictive likelihoods for fully symmetric BNP-DCC (M0)
and asymmetric BNP-ADCC (M1) models.

Model log p(rT+1, . . . , rT+τ|rT)

M0 -751.5094

M1 -746.5156

# of out-of-sample obs. τ = 233

Figure 3.8 draws the posterior densities of the volatilities and Table 3.5 presents the pos-

terior means, medians and confidence intervals for the elements of the one-step-ahead

volatility matrix. These are obtained using Equation 3.17 and the explanations given

in Section 3.1.3. Even though the posterior densities are of similar shape, the CI width

in all cases is smaller for the asymmetric model M1. It seems that by incorporating the

asymmetric assumption in the model we may obtain more precision in the predicted

volatilities and, consequently, in optimal portfolio weights and variances.

Finally, we have performed a sensitivity analysis on the posterior distribution of A =

c/(1 + c) and number of non-empty clusters z? by changing the hyper-parameters of

the concentration parameter c. In the simulation study and real data application we

have assumed c ∼ G(4, 4). In the sensitivity analysis we have tried two more combina-

tions: c ∼ G(1.5, 1) and c ∼ G(1/6, 1/3), such that a priori c would center at 0.5 and 1.5,

respectively. Table 3.6, Figure 3.9 and Figure 3.10 present the estimation results, which



Chapter 3. ADCC-DPM Model 63

TABLE 3.5: Posterior means, medians and confidence intervals for the elements of the
one-step-ahead volatility matrix for fully symmetric BNP-DCC (M0) and asymmetric

BNP-ADCC (M1) models.

BNP-DCC (M0) BNP-ADCC (M1)
Mean 95% HPD Mean 95% HPD

Median Median
H?(1,1)

T+1 6.0656 (4.8345, 7.1482) 6.4182 (5.3852, 7.4298)
6.0780 6.4377

H?(1,2)
T+1 1.4350 (1.0478, 1.7431) 1.6296 (1.3340, 1.8923)

1.4614 1.6504
H?(2,2)

T+1 1.2346 (0.9647, 1.4132) 1.4369 (1.2345, 1.6322)
1.2636 1.4469

FIGURE 3.9: Posterior distributions for A = c/(1 + c) and a number of non-empty
clusters z? for different hyper-parameters for c ∼ G(a0, b0) for BNP-ADCC model for

Apple-NASDAQ data.

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4
Posterior of A

 

 
G(4,4)
G(1.5,1)
G(1/6,1/3)

0 5 10 15 20
0

0.05

0.1

0.15

0.2
Posterior of z*

 

 
G(4,4)
G(1.5,1)
G(1/6,1/3)

seem to be rather robust to the changes in hyper-parameters for the prior of c as long

as the priors are not very informative.

TABLE 3.6: Posterior means and 95% credible intervals for A = c/(1 + c) and a num-
ber of non-empty clusters z? for different hyper-parameters for c ∼ G(a0, b0) for BNP-

ADCC model for Apple-NASDAQ data.

c ∼ G(4, 4) c ∼ G(1.5, 1) c ∼ G(1/6, 1/3)
Mean of A 0.4726 0.4766 0.4588

95% CI of A (0.2650, 0.6596) (0.2011, 0.7305) (0.1648, 0.7296)
Mean of z? 7.3411 7.4071 7.6391

95% CI of z? (4, 12) (4, 14) (4, 14)
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FIGURE 3.10: Prior and posterior distributions for c for BNP-ADCC model for Apple-
NASDAQ data.
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3.4.2 Portfolio allocation

Here we are interested in estimating the GMV optimal portfolio of the two real assets,

without the short-sale constraint, using the procedure described in Section 3.2. Firstly,

we will make predictions on the optimal one-step-ahead portfolio and then, we will

consider all the 233 out-of-sample future observations, adjusting the optimal portfolio

weights at each time period. Throughout the portfolio allocation exercise, we report

only the first portfolio weight p?(1)T+1, as the other can be obtained as p?(2)T+1 = 1− p?(1)T+1.

The estimation results for the T + 1 period are presented in Table 3.7 and the poste-

rior densities for optimal portfolio weights and variances can be seen in Figure 3.11.

The point estimates for the optimal portfolio weights for T + 1 period are very similar,

however, the asymmetric model estimates greater portfolio variance for T + 1 since the

estimated one-step-ahead volatilites for the BNP-ADCC model are greater. However,

note that, as before, the CI width is smaller for the M1 model.

TABLE 3.7: Posterior mean, median and 95% credible intervals for the optimal one-
step-ahead portfolio weight and variance.

BNP-DCC (M0) BNP-ADCC (M1)
Mean 95% CI Mean 95% CI

Median Median
p?T+1 -0.0457 (-0.0907, -0.0011) -0.0428 (-0.0869, 0.0017)

-0.0457 -0.0426
σ2?

T+1 1.2234 (1.1570, 1.5924) 1.4266 (1.5175, 1.7722)
1.2522 1.4352
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FIGURE 3.11: Posterior distributions of one-step-ahead optimal portfolio weights p?T+1
and overall portfolio variances σ2?

T+1 for fully symmetric BNP-DCC (M0) and asym-
metric BNP-ADCC (M1) models .
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Next, we estimate the optimal portfolio weights for the entire out-of-sample period of

233 observations. Figure 3.12 and Figure 3.13 present the dynamics of the estimated

portfolio weights and variances with corresponding CIs for each of the models. It

shows that along time the mean portfolio weights are rather similar across the two

models. Since the asymmetric model can predict the data better, the estimated port-

folio weights for the M1 model would be more precise. NASDAQ Ind. exhibits more

volatile behavior in the first half of the data set, as compared to the second half, mean-

while Apple Inc. returns behave in a reverse manner - the first half is less volatile than

the second, see Figure 3.7. This is is reflected in the optimal portfolio allocation: till

around 12/10 Apple Inc. has a positive portfolio weight, see Figure 3.12, and from

12/10 the optimal decision is to short-sell Apple Inc. shares. Also, looking at the model

parameters, greater differences in marginal volatilities between models M0 and M1 are

observed for negative returns. Therefore, greater differences in portfolio weights and

variances ( Figure 3.12 and Figure 3.13) between models M0 and M1 should be observed

when the returns are negative. Finally, the BNP-ADCC model has thinner CIs (8 to 9

percent on average), as seen in Figure 3.14, making the point estimation more precise.

To sum up, these portfolio allocation exercises helped to illustrate the consequences

for financial decisions of assuming different models for return series. The DPM model

permits the investor to perform inference and prediction about the returns and their

volatilities without imposing arbitrary restrictions on the data generating process. Ad-

ditionally, the use of asymmetric model results into more precise point estimates and
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FIGURE 3.12: A sequence of portfolio weights and their corresponding 95% CIs for
τ = 1, . . . , 233 for fully symmetric BNP-DCC (M0) and asymmetric BNP-ADCC (M1)

models.
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FIGURE 3.13: A sequence of portfolio variances and their corresponding 95% CIs for
τ = 1, . . . , 233 for fully symmetric BNP-DCC (M0) and asymmetric BNP-ADCC (M1)

models.
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FIGURE 3.14: Mean cumsum of the of 95% CI width for the optimal portfolio weights
and variances for τ = 1, . . . , 233 for fully symmetric BNP-DCC (M0) and asymmetric

BNP-ADCC (M1) models.
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better predictive performance. In the portfolio allocation context, adjusting portfolio

weights at each period might lead to high transaction costs, thus the investor will ad-

just her portfolio only if the expected utility after the adjustment minus the transaction

costs is greater than the expected utility without the adjustment.

On the other hand, an essential issue in choosing more complicated models versus the

simple ones is the ability to handle numerous assets, especially in financial applica-

tions, such as portfolio optimization. The DPM model is very flexible in this sense,

since the general specification described before contains numerous simplified models.

For example, it clearly contains the single Gaussian as a special case when the first mix-

ture weight is equal to one. Also, it is possible to impose a symmetric distribution for

the innovations by simply assuming that the mixture means are all equal and, in par-

ticular, it could be reasonable to impose µj = 0, for j = 1, 2, . . .. If we further assume

that the precision matrices are all diagonal, Λj = diag
(
λj1, . . . , λjK

)
, this will lead to

uncorrelated innovations. Finally, we could in addition assume that the diagonal ele-

ments of each precision matrix are all equal by considering Λj = λj IK. In this chapter

we have used the full version of the DPM model to illustrate the flexibility of it. The

adaptation of the model to these particular cases in order to simplify the problem of

many assets is straightforward from the theoretical point of view, but it might present

a heavy computational burden and some additional issues, such as convergence to a

stable posterior.
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3.5 Conclusions

In this chapter we have proposed a Bayesian non-parametric approach for modeling

the distribution of multiple returns. We have used a BNP-ADCC model to explain the

individual volatilities and the time-varying correlations, taking into consideration the

asymmetries in individual assets’ volatilities, as well as in the correlations. The errors

are modeled using a location-scale mixture of infinite Gaussian distributions that has

been shown to allow for a great flexibility in the return distribution in terms of skew-

ness and kurtosis. An MCMC method has been presented for model estimation and

prediction. For that, DPM prior has been given to the infinite mixture of multivariate

Gaussian distribution. We have presented a short simulation study that illustrates the

differences arising from different assumptions for the errors and shows the adaptability

of the DPM model. The simulation results suggest that the proposed approach appears

to be able to fit adequately several frequently used distributions. Finally, we have pre-

sented a real data application that compares the proposed BNP-ADCC with a fully

symmetric BNP-DCC model by using return series of Apple Inc. and NASDAQ Indus-

trial index. Model comparison via approximated log-predictive likelihood favors the

asymmetric BNP-ADCC, which also produces thinner credible intervals for one-step-

ahead volatilities. Additionally, we have employed the proposed approach to solve a

portfolio allocation problem. The explained methodology and obtained results are not

limited to this specific risk management problem and could be expanded into various

other topics in applied finance and risk management.



Chapter 4

A Bayesian Non-Parametric

Approach to a MSSV Model with

Particle Learning

The previously reviewed Stochastic Volatility model, as introduced by Taylor (1982),

allows for time-varying volatility but it is unable to capture the usual heavy-tailed be-

havior of conditional distribution of the returns, since they are assumed to be Gaussian.

One alternative is to abandon parametric assumptions for the returns altogether and

consider a semi-parametric SV model, where the distribution of the returns is modeled

non-parametrically, at the same time conserving the parametric discrete representation

of the SV model.

Bayesian non-parametric approach in SV models is quite a new field of research, with

growing popularity due to its flexibility and superior performance, see Jensen & Maheu

(2010, 2014) and Delatola & Griffin (2011, 2013). In these works it is assumed that the

distribution of the returns follows an infinite mixture of Normals via Dirichlet Process

Mixture (DPM) models (see Ferguson 1983 and Lo 1984, among others) and Bayesian

estimation is performed using MCMC methods. The MCMC approach for SV models is

the usual methodology since the seminal work by Jacquier et al. (1994), where Bayesian

inference for standard SV models was firstly developed. However, MCMC methods in

general are computationally demanding and inherently non-sequential (Lopes & Pol-

son 2010). Alternatively, one can rely on Sequential Monte Carlo (SMC) methods, also

69
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known as particle filters, that allow for on-line type inference by updating the posterior

distribution as the new data is observed.

Therefore, in this chapter we use SMC methods for Bayesian non-parametric SV models

which allows us to incorporate new information on-line, i.e. as it arrives. In particular,

we make use of the PL approach, which is a particle based method, firstly introduced

by Carvalho, Johannes, Lopes & Polson (2010). Differently from other particle methods,

it does not suffer from particle degeneracy. It also makes model comparison easy, since

at each step we have the predictive likelihood as a by-product. PL methods have been

shown to outperform the existing particle filtering alternatives and to be a competitor

to MCMC, see Lopes et al. (2011).

In the first part of the chapter we design a PL algorithm for a SV model with DPM

innovations, referred to as a SV-DPM, similar to that of Delatola & Griffin (2011), and

compare the performance of the algorithm to MCMC. We find that PL performs as well

as MCMC, but, as commented above, the PL method provides the advantage of easily

incorporating the information from the new observation, while MCMC requires to re-

run the algorithm again.

In the second part of the chapter we augment the SV-DPM model by incorporating

Markov switching jumps, as seen in So et al. (1998) and Carvalho & Lopes (2007), re-

sulting into a new MSSV-DPM model. We extend the previously developed PL algo-

rithm to this new model and apply it on simulated data. Then, the performance of the

new MSSV-DPM model is compared with the SV-DPM specification using real financial

time series and we obtain that the new model provides better predictive power in the

tails of the distribution.

The chapter is structured as follows. Section 4.1 presents the linearized SV model with

non-parametric errors and compares the estimation output for the SV-DPM model by

using PL and MCMC. Then, Section 4.2 introduces a new MSSV-DPM model and de-

signs a PL algorithm for inference and prediction. Section 4.3 compares the perfor-

mance of the two non-parametric models by using real data. Finally, Section 4.4 con-

cludes.
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4.1 SV-DPM Model

In this section we briefly review a commonly used version of the standard stochastic

volatility model with Normal errors. We then drop the normality hypothesis and intro-

duce a novel particle learning scheme to perform sequential Bayesian learning in the

class of SV model with Dirichlet Process Mixture models innovations (SV-DPM). We

show, via synthetic examples, that our particle filter performs similarly to the standard

MCMC scheme, with the advantage of producing online inference and, as a by product,

online model comparison/selection statistics.

Normal errors

The standard SV model looks as follows:

yt = exp {ht/2} vt,

ht = α + βht−1 + τηt,

where we impose |β| < 1 for the stationarity of the volatilities; vt and ηt are the error

terms, such that ηt ∼ N (0, 1) and the distribution of the vt with zero mean and unit

variance takes many different forms in the existing literature: from a standard Normal,

to heavy-tailed Student-t and others (see Kim et al. 1998, Chib et al. 2002, for example).

Kim et al. (1998) proposed linearlization of the standard SV model by defining rt =

log y2
t and εt = log v2

t , resulting into the following dynamic linear model:

rt = ht + εt, where εt ∼ F , (4.1)

ht = α + βht−1 + τηt, where ηt ∼ N (0, 1). (4.2)

Observe that the distribution of εt is a log χ2
1 if vt is Normally distributed. Kim et al.

(1998) and Omori et al. (2007) use carefully tuned finite mixtures of Normals to ap-

proximate the distribution of log χ2
1 and use a data augmentation argument to propose

fast MCMC schemes that jointly sample {h1, . . . , hT} based on the well-known forward

filtering, backward sampling (FFBS) algorithm of Carter & Kohn (1994) and Frühwirth-

Schnatter (1994).
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However, the recent literature is abundant in showing that the distribution of vt has

heavier tails than Normal, rendering the above approximations useless. Below we in-

troduce the simple linearlized SV model with non-parametric errors to model the un-

known return distribution.

Non-Normal errors

Delatola & Griffin (2011, 2013), for example, propose to approximate the log-square of

the unknown return distribution εt ∼ F as an infinite mixture of Normals by relying

on DPM models. The simple SV-DPM model presented in this section is of the same

spirit as the model in Delatola & Griffin (2011).

Another important issue concerns the moments of the distribution of εt. Even though

the original errors vt are generated by a process with zero mean and unit variance,

the resulting moments of εt can vary greatly, depending on the distribution of vt. For

example, if vt ∼ N (0, 1), then E[εt] = −1.272, V[εt] = 4.946, S[εt] = −1.539 and

K[εt] = 7.015, where E[·], V[·], S[·] and K[·] denote mean, variance, skewness and

kurtosis, respectively. On the other hand, if vt ∼ ST (7), scaled in such a way that

E[vt] = 0 and V[vt] = 1, then E[εt] = −1.428, V[εt] = 5.218, S[εt] = −1.404 and

K[εt] = 6.583. However, Student-t and Normal are not the only possible distributions

for the errors. There is an infinite number of possibilities for the distribution of the

error term, whose moments are impossible to “map" backwards in order to recover the

true error distribution. Actually, the main interest is usually not the distribution of the

error term, but filtering and predicting the volatilities of the returns, which are highly

sensitive to the choice of the error distribution.

The model specification in Equation 4.1 and Equation 4.2 is slightly different from the

one in Delatola & Griffin (2011), since we do not sum the constant volatility parameter

α into the mixture. We leave this constant separate since in Section 4.2 we augment the

model by considering two different volatility levels, i.e. αst , where st ∈ {0, 1}.

Next, we do not specify a parametric model for the error density, but instead, we as-

sume a Dirichlet Process Mixture prior, firstly introduced by Lo (1984). DPM mod-

els have been widely used for modeling time-varying volatilities, see Jensen & Maheu
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(2010, 2013, 2014), Delatola & Griffin (2011, 2013), Kalli et al. (2013), and Ausín et al.

(2014). This type of approach is known as time-invariant (independent) DPM.

As seen in Escobar & West (1995), the DPM model has the following density function:

f (εt; G) =
∫

k(εt; θt)dG(θt),

where k is some density kernel with parameters θt and the mixing distribution G has

a DP prior, denoted here by G ∼ DP(c, G0(θ; $)). Here the sub-index t in θt does not

mean time-varying parameters, but refers to the fact that at each time t the observation

εt comes from a different kernel density with some parameters θt, following the mixing

distribution G. Parameter c is called the concentration parameter and G0(θ; $) is called

the base distribution. The concentration parameter c can be interpreted as the prior

belief about the number of clusters in the mixture. Small values of c assume a priori an

infinite mixture model with a small number of components with large weights. On the

contrary, large values of c assume a priori an infinite mixture model with all the weights

being very small. c is also called a precision parameter and indicates how close G is to

the base distribution G0, where larger c indicates that G is closer to G0.

Gaussian kernel and conjugate base prior. Considering a Gaussian kernel density,

εt ∼ N (µt, σ2
t ), the conjugate base prior G0(µ, σ2; $) is a Normal - Inverse Gamma

prior, denoted here by G0 ∼ NIG(µ, σ2; m0, V0, a0, a0σ2
0 ), such that µ|σ2 is Normal,

N (µ; m0, V0σ2) and σ2 is Inverse Gamma, IG(σ2; a0/2, a0σ2
0 /2). Here m0, V0, a0 and

a0σ2
0 are the hyper-parameters in $.

Define Φ =
(
α, β, τ2) as the set of parameters associated with the parametric part of

the model, Ω = {(µ, σ2)(j)}∞
j=1 as a set of parameters associated with the distribution

of the error term, and Θ = (Φ, Ω) as a complete set of all model parameters. Therefore,

the model in Equation 4.1 and Equation 4.2 can be rewritten as follows:

rt|ht, Θ ∼ c
c + t− 1

N (rt; µ0 + ht, σ2
0 ) +

1
c + t− 1

L?
t−1

∑
j=1

nt−1,jN (rt; µj + ht, σ2
j ), (4.3)

ht|ht−1, Θ ∼ N (ht; α + βht−1, τ2), (4.4)
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where nt,j is a number of observations assigned to jth component at time t and L?
t is

a number of non-empty components in the mixture at time t. Given this missing in-

formation, the mixture becomes finite, where the maximum number of components

theoretically is limited by the number of observations. In practice, data tends to cluster,

meaning that some observations come from the same component, therefore L?
t ≤ t.

4.1.1 MCMC for SV-DPM

The standard Bayesian estimation of SV models, parametric or non-parametric, relies

on MCMC methods, which, however, can be costly, because they have to consider a

sampler for latent volatilities.

Jensen & Maheu (2010) construct a MCMC scheme for their proposed SV-DPM model,

where latent volatilities are sampled via random length block sampler, which helps

to reduce correlation between draws. The authors found that the semi-parametric SV

model is more robust to non-Normal data and provides better forecasts. In another

paper, Jensen & Maheu (2014) consider an asymmetric SV-DPM model. The authors

extend their previous semi-parametric sampler to a bivariate setting, where the inno-

vations of the returns and volatilities are modeled jointly via infinite scale mixture of

bivariate Normals.

Meanwhile, Delatola & Griffin (2011) use a linearized version of SV model. Conditional

on knowing which mixture component the data belongs to, the linearized SV model is

just a Normal Dynamic Linear Model (NDLM) and the latent volatilities are updated

by FFBS (see the discussion at the end of Section 4.1). The remainder of the model pa-

rameters are sampled via an extension of Gibbs sampler, called hybrid Gibbs sampler.

In their subsequent paper, Delatola & Griffin (2013) consider an asymmetric SV model.

Same as before, they make use of the linearization and update the latent log-volatilities

via FFBS and the other parameters via Metropolis-Hastings. All above MCMC schemes

are costly in the context of SV models for at least two reasons: (1) the MCMC sampler

has to include a filter for latent volatilities, and (2) the sampler has to be re-run each

time a new observation arrives.
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4.1.2 PL for SV-DPM

In this section we present the algorithm to perform PL estimation for a SV model with

non-parametric errors. PL, which was firstly introduced by Carvalho, Johannes, Lopes

& Polson (2010), allows for sequential filtering, smoothing and parameter learning by

including state-sufficient statistics in a set of particles. For reviews of particle methods

in general, see Lopes & Tsay (2011) and Lopes & Carvalho (2013). For a more detailed

explanation of PL with illustrations refer to Carvalho, Johannes, Lopes & Polson (2010)

and Lopes et al. (2011), among others.

The priors for model parameters are chosen to be conditionally conjugate:

h0 ∼ N (c0, C0), σ2 ∼ IG(a0/2, a0σ2
0 /2), µ|σ2 ∼ N (m0, V0σ2), τ2 ∼ IG(b0/2, b0τ2

0 /2),

β|τ2 ∼ T N (−1,1)(mβ, Vβτ2), α ∼ N (mα, Vα). Here T N (a,b) represents Normal distri-

bution, truncated at a and b. c0, C0, a0, a0σ2
0 , m0, V0, b0, b0τ2

0 , mβ, Vβ, mα and Vα are

hyper-parameters. Then, a set of sufficient statistics St contains all updated hyper-

parameters, necessary for the parameter simulation, as well as filtered state variables,

which are of two kinds: the latent log-volatilities ht and the indicator variable kt, which

tells us to which mixture component the error data point belongs to. For t = 1 . . . , T

and for each particle (i) iterate through three steps:

1. Resampling.

Resample old particles (states, sufficient statistics and parameters) with weights

w ∝
1

c + t− 1

L?
t−1

∑
j=0

nj fN(rt; α + βht−1 + µj, τ2 + σ2
j ),

proportional to the predictive density of the returns (n0 = c). The components

of Θ = (α, β, τ2, µ1, . . . , µL?
t−1

, σ2
1 , . . . , σ2

L?
t−1
) have been simulated at the end of the

previous period.

2. Sampling.

(a) Sample new log-volatilities ht from

p(ht|h̃t−1, Θ̃, ñ, L̃?
t−1, rt) =

L?
t−1

∑
j=0

nj

c + t− 1
N (ht; mhj, Vhj),
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where, Vhj = Ajσ̃
2
j , mhj = Aj(rt − µ̃j) + (1 − Aj)(α̃ + β̃h̃t−1), and Aj =

τ̃2/(τ̃2 + σ̃2
j ).

(b) Sample new indicators kt from {1, . . . , L?
t−1 + 1}, with weights proportional

to

ñj fN(rt; α + βht−1 + µj, τ2 + σ2
j ), j = 1, . . . , L?

t−1 + 1,

where ñL?
t−1+1 = c and σ2

L?
t−1+1 = σ2

0 .

3. Propagating sufficient statistics and learning Θ.

(c.1) Sample τ2 from IG(τ2; b?0/2, b?0τ2?
0 /2), where

b?0 = b̃0 + 1 and b?0τ2?
0 = b̃0τ̃2

0 +
(m̃βh̃t−1 − (ht − α̃))2

1 + Ṽβh̃2
t−1

.

(c.2) Sample β from T N (−1,1)(β; m?
β, V?

β τ2), where

m?
β =

m̃β + Ṽβh̃t−1(ht − α̃)

1 + Ṽβh̃2
t−1

and V?
β =

Ṽβ

1 + Ṽβh̃2
t−1

.

(c.3) Sample α from N (α; m?
α, V?

α ), where

m?
α =

m̃ατ2 + Ṽα(ht − βh̃t−1)

τ2 + Ṽα
and V?

α =
τ2Ṽα

τ2 + Ṽα
.

(c.4) Sample σ2
kt

from IG(σ2
kt

; a?0/2, a?0σ2?/2), where

a?0 = ã0 + 1 and a?0σ2?
0 = ã0σ̃2

0 +
(yt − ht − m̃0)2

1 + Ṽ0
.

(c.5) Sample µkt from N (µkt ; m?
0 , V?

0 σ2), where

m?
0 =

m̃0 + Ṽ0(yt − ht)

1 + Ṽ0
and V?

0 =
Ṽ0

1 + Ṽ0
.

4.1.3 Simulation exercise

We compare, based on simulated data, the posterior output for the SV-DPM model,

estimated using MCMC and PL. A time series of length T = 3000 was simulated di-

rectly from the linearized model with α = 0, β = 0.98 and τ2 = 0.10, where the log-

square of the returns εt comes from the mixture of 7 Normals proposed by Kim et al.
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(1998) to approximate the log χ2
1 distribution. Simulated returns can be recovered as

yt = exp{rt/2}. MCMC results are obtained via Matlab code of Delatola & Griffin

(2011), which is available on Jim Griffin’s website1. The MCMC algorithm was run

for a total of 100k iterations, with the first 50k discarded as burn-in. The prior on the

persistence parameter is β ∼ T N (−1,1)(0.95, 0.1) and the prior for the volatility of the

volatility is τ2 ∼ IG(8, 0.24). The prior for the mixture components is different than

ours, since Delatola & Griffin (2011) use an alternative specification for the base distri-

bution (see Griffin 2010). Our PL algorithm, written in R, was run for a total of 300k

particles. The hyper-parameters in the PL scheme are set as c0 = 0, C0 = 0.1, mα = 0,

Vα = 0.01, mβ = 0.98, Vβ = 0.1, b0 = 6, b0τ2
0 = 1.20, a0 = 6, a0σ2

0 = 19, m0 = −1.27,

V0 = 5. The concentration parameter c in both codes is set to be equal to one. For vola-

tility process and the parameters we report the median particle as an estimate together

with 97.5% and 2.5% percentile particles for 95% credible intervals (CIs). For asym-

metric distributions instead of quantiles we are using the corresponding HPD (Highest

Posterior Density) intervals.

We have split the sample into three data sets of T = 1000, 2000 and 3000 observations.

In this way it is possible to see how PL is learning as compared to MCMC. The true

advantage of the PL procedure becomes evident at the moment when the new obser-

vation arrives. In MCMC setting we need to re-run the entire chain all over again in

order to incorporate this new information, meanwhile in PL we just add this new in-

formation to the existing output to obtain new updated parameters and states, which

is just a matter of seconds. The CPU time for both estimation approaches is presented

in Table 4.1.

TABLE 4.1: CPU time in seconds for MCMC and PL.

T MCMC (50k+50k) PL (300k particles)
1000 23356
2000 51796
3000 80401 56999

Next, we compare the posterior output for both estimation methods graphically in Fig-

ure 4.1, Figure 4.2 and Figure 4.3 and Table 4.2. Figure 4.1 draws the estimated density

at T = 3000 for the log of the squared returns for PL and MCMC, compared to the true

1http://www.kent.ac.uk/smsas/personal/jeg28/index.htm
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FIGURE 4.1: Density of a mixture of 7 Normals and the density of the simulated data
compared to the predictive density for εt = log ε2

t , estimated by PL and MCMC for
T = 3000.
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one. Both estimations seem reasonable and very close to the true data generating den-

sity. Table 4.2 presents the estimated median parameter values with their correspond-

ing 95% CIs or HPDs for the PL and MCMC estimation procedures. Estimation of the

persistence parameter β is almost identical among both procedures. The posterior dis-

tribution of the volatility parameter τ2 is always slightly more peaked in PL setting. In

fact, as the sample size increases, the width of the HPD intervals for τ2 for MCMC and

PL decreases, and PL always presents around 20% thinner HPD intervals. This might

be influenced by the fact the original model specifications are slightly different.

TABLE 4.2: Parameter estimates and their corresponding 95% CIs for PL and MCMC
for T = 1000, 2000, 3000.

MCMC PL
T Mean 95%CI Mean 95%CI

1000 0.9616 (0.9368, 0.9826) 0.9671 (0.9464, 0.9841)
β = 0.98 2000 0.9701 (0.9552, 0.9833) 0.9753 (0.9627, 0.9854)

3000 0.9809 (0.9721, 0.9889) 0.9843 (0.9768, 0.9906)
1000 0.1303 (0.0856, 0.1887) 0.1060 (0.0705, 0.1457)

τ2 = 0.10 2000 0.1140 (0.0805, 0.1538) 0.0837 (0.0590, 0.1147)
3000 0.1021 (0.0774, 0.1295) 0.0727 (0.0610, 0.1010)

Figure 4.2 presents the posterior distributions for the log-volatilities at three different



Chapter 4. MSSV-DPM with PL 79

FIGURE 4.2: Posterior distributions of the log-volatilities for MCMC and PL for T =
1000, 2000 and 3000.

FIGURE 4.3: PL parameter estimates with 95% CI for one run of 300k particles, com-
pared to the true parameter values.
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data points T = 1000, 2000 and 3000. The posterior distributions for T = 2000 and

T = 3000 look identical among PL and MCMC. However, in order to obtain these

distributions MCMC had to be re-run three times for three "different“ data sets, mean-

while PL just incorporated new information sequentially and the posterior distribution

of any p(ht|rt) is readily available in the estimation output. Finally, Figure 4.3 draws

the PL parameter estimation path with 95% confidence bounds, as compared with the

true parameter values. As we can see, the parameter estimations become stable around

the 1500th observation. Also, there is no sign of particle degeneracy, which is a problem

in other particle filtering methods, see Rios & Lopes (2013) for example. Therefore, PL

can be seen as an efficient alternative to MCMC methods. Moreover, once the chain

has been run, at the arrival of the new observation the posterior distributions can be

updated at a very low computational cost.

In the next section we extend the non-parametric SV model to include Markov switch-

ing jumps and design a PL algorithm for inference and prediction.

4.2 MSSV-DPM Model

The simple SV model has some limitations such as it does not account for structural

changes in the volatility process, which we have to take into consideration, other-

wise the persistence parameter might be overestimated. For a brief review of Markov

switching GARCH and SV models refer to Section 2.1 and Section 2.2.

Consider a J-state Markov switching SV (MSSV) model, based on the model of So et al.

(1998), where the log-volatility equation is of the following form:

ht = αst + βht−1 + τηt, ηt ∼ N (0, 1),

where st are the regime variables following a two-state first order Markov Process:

pij = P [st = j|st−1 = i] , for i, j = 1, . . . , J.

As seen in Carvalho & Lopes (2007), we have to introduce the following reparametriza-

tion for αst in order to avoid identification issues:
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αst = γ1 +
J

∑
j=2

γj1 {st ≥ j} , γ1 ∈ < and γj > 0 for j > 1.

Here 1{st ≥ j} is an indicator function that takes values equal to one if st ≥ j and zero

otherwise (st < j).

In this section we consider a two-state MSSV model, as seen in Carvalho & Lopes

(2007), since it is a natural starting point. However, the a priori selection of number of

states might not fully capture the underlying data structure, since more regimes might

be necessary, especially after the 2007-2009 financial crisis. Therefore, a natural exten-

sion could be to compare models with different number of volatility states and select

the most appropriate one, as has been done by Bauwens et al. (2014) in MS-GARCH

setting, among many others. Therefore, in the case of only two regimes the st variables

follow a two-state first order Markov Process:

pij = P [st = j|st−1 = i] , for i, j = 0, 1.

And the αst reparametrization is as follows:

αst = γ0 + γ11 {st = 1} , γ0 ∈ < and γ1 > 0,

where the indicator function 1{st = 1} takes values equal to one if the volatility is in

the high state (st = 1) and zero otherwise (st = 0). We also need to define the transition

matrix between the states 0 and 1:

T =

 P(st = 0|st−1 = 0) P(st = 1|st−1 = 0)

P(st = 0|st−1 = 1) P(st = 1|st−1 = 1)

 =

 p 1− p

1− q q

 .

There are several papers that consider regime switching SV models in Bayesian con-

text. Kalimipalli & Susmel (2004) have proposed a two-factor SV model with regime

switching and estimated it using Gibbs sampler. They find that the high volatility per-

sistence is reduced when the regimes are incorporated in the model. Also, the authors

compare the new model with other two alternative two-factor models, simple SV and

GARCH, and find that SV always outperforms GARCH, both in sample and out of
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sample. The regime switching SV performs better than the simple SV in sample, how-

ever, out of sample, it is only marginally better. Lopes & Carvalho (2007) extend SV

model to multivariate case and present a Factor Stochastic Volatility (FSV) model with

Markov switching jumps. They construct a novel MCMC scheme for inference and find

that the new model can capture market crashes in an instantaneous way, as opposed

to the traditional FSV models. Carvalho & Lopes (2007) have constructed a sequential

Monte Carlo filter by combining auxiliary particle filter (APF) with the filter of Liu &

West (2001) to estimate a SV model with Markov switching regimes. They found that

in terms of prediction the Markov switching SV specification outperforms a simple SV

model.

Here we extend the SV-DPM model in Equation 4.3 and Equation 4.4 to accommodate

the above regime-shifting structure:

rt|ht, Θ ∼ c
c + t− 1

N (rt; µ0 + ht, σ2
0 ) +

1
c + t− 1

L?
t−1

∑
j=1

nt−1,jN (rt; µj + ht, σ2
j ),

ht|ht−1, λt, Θ ∼ N (ht; γ0 + γ1λt + βht−1, τ2),

λt|Θ ∼ BER
(
(1− p)1−λt−1 qλt−1

)
,

where BER(p) denotes a Bernoulli distribution with parameter p and λt is a Bernoulli

distributed state variable.

4.2.1 PL for MSSV-DPM

We extend the previous PL algorithm of SV-DPM for MSSV-DPM, by incorporating the

estimation of three extra parameters and filtering of one more state variable λt. The

set of the parameters for the parametric part of the model is Φ = (γ0, γ1, β, τ2, p, q).

Also, priors for the new parameters are: γ0 ∼ N (mγ0 , Vγ0), γ1 ∼ T N (0,+∞)(mγ1 , Vγ1),

p ∼ B(αp, βp) and q ∼ B(αq, βq). For t = 1 . . . , T and for each particle (i) iterate

through three steps:

1. Resampling.

Resample with weights proportional to the predictive density of the returns:
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w(i) ∝
1

c + t− 1

L?
t−1

∑
j=1

nj fN(rt; γ0 + γ1λt−1 + βht−1 + µj, τ2 + σ2
j )+

c
c + t− 1

fN(rt; γ0 + γ1λt−1 + βht−1 + µ0, τ2 + σ2
0 ).

Here Θ = (γ0, γ1, β, τ2, p, q, µ1, . . . , µL?
t−1

, σ2
1 , . . . , σ2

L?
t−1
) have been simulated at the

end of the previous period.

2. Sampling.

(a) Sample new states of the log-volatilities λt:

λt|λt−1, ht−1, Θ, rt ∼ BER
(

z2

z1 + z2

)
,

where

z1 =
1

c + t− 1

L?
t−1

∑
j=1

nj fN(rt; γ0 + βht−1 + µj, τ2 + σ2
j )+

c
c + t− 1

fN(rt; γ0 + βht−1 + µ0, τ2 + σ2
0 )× Pr(λt = 0|λt−1, Θ),

z2 =
1

c + t− 1

L?
t−1

∑
j=1

nj fN(rt; γ0 + γ1λt−1 + βht−1 + µj, τ2 + σ2
j )+

c
c + t− 1

fN(rt; γ0 + γ1λt−1 + βht−1 + µ0, τ2 + σ2
0 )× Pr(λt = 1|λt−1, Θ).

Then call α̃ = γ̃0 + γ̃1λt.

(b) Sample new log-volatilities ht:

p(ht|h̃t−1, Θ̃, ñ, L̃?
t−1, rt) =

L?
t−1

∑
j=1

nj

c + t− 1
N (ht; mhj, Vhj) +

c
c + t− 1

N (ht; mh0, Vh0),

where

mhj =
τ̃2(rt − µ̃j) + σ̃2

j (α̃ + β̃h̃t−1)

τ̃2 + σ̃2
j

and Vhj =
σ̃2

j τ̃2

σ̃2
j + τ̃2

.

For each particle we sample ht from a mixture of L?
t−1 + 1 components with

the corresponding weights from the previous period.

(c) Sample new indicators kt from {1, . . . , L?
t−1 + 1}, with weights proportional

to:
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ñj fN(rt; α + βht−1 + µj, τ2 + σ2
j ), j = 1, . . . , L?

t−1,

where ñL?
t−1+1 = c and σ2

L?
t−1+1 = σ2

0 .

3. Propagating sufficient statistics and learning Θ.

(c.1) Sample γ0 from N (γ0; m?
γ0

, V?
γ0
), where

m?
γ0

=
m̃γ0 τ̃2 + Ṽγ0(ht − (γ̃1λt + β̃h̃t−1))

τ̃2 + Ṽγ0

and V?
γ0

=
τ̃2Ṽγ0

τ̃2 + Ṽγ0

.

(c.2) Sample γ1 from T N (0,+∞)(γ1; m?
γ1

, V?
γ1
), where

m?
γ1

=
m̃γ1 τ̃2 + Ṽγ1 λt(ht − (γ0 + β̃h̃t−1))

Ṽγ1 λt + τ̃2
and V?

γ1
=

τ̃2Ṽγ1

τ̃2 + λtṼγ1

.

Call α = γ0 + γ1λt.

(c.3) Sample p from B(p; α?
p, β?

p), where

α?
p = αp + 1 if λt = 0|λt−1 = 0 and β?

p = βp + 1 if λt = 1|λt−1 = 0.

(c.4) Sample q from B(q; α?
q , β?

q), where

α?
q = αq + 1 if λt = 1|λt−1 = 1 and β?

q = βq + 1 if λt = 0|λt−1 = 1.

(c.5) Sample τ2 from IG(τ2; b?0/2, b?0τ2?
0 /2), where

b?0 = b̃0 + 1 and b?0τ2?
0 = b̃0τ̃2

0 +
(m̃βh̃t−1 − (ht − α))2

1 + Ṽβh̃2
t−1

.

(c.6) Sample β from T N (−1,1)(β; m?
β, V?

β τ2), where

m?
β =

m̃β + Ṽβh̃t−1(ht − α)

1 + Ṽβh̃2
t−1

and V?
β =

Ṽβ

1 + Ṽβh̃2
t−1

.

(c.7) Sample σkt from IG(σ2
kt

; a?0/2, a?0σ2?/2), where

a?0 = ã0 + 1 and a?0σ2?
0 = ã0σ̃2

0 +
(rt − ht − m̃0)2

1 + Ṽ0
.

(c.8) Sample µkt from N (µkt ; m?
0 , V?

0 σ2), where

m?
0 =

m̃0 + Ṽ0(rt − ht)

1 + Ṽ0
and V?

0 =
Ṽ0

1 + Ṽ0
.
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FIGURE 4.4: Simulated data: daily returns (top graph), true and estimated log-
volatilities (middle graph) and true and estimated regimes (bottom graph).
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4.2.2 Simulated data

In order to test the proposed model we use a simulated data set with the following

parameters: γ0 = −0.06, γ1 = 0.08, β = 0.92, τ2 = 0.01, p = 0.995, q = 0.995. The

errors follow a standard Normal distribution εt ∼ N (0, 1). The hyper-parameters are:

mγ0 = γ0, Vγ0 = γ2
0, mγ1 = γ1, Vγ1 = γ2

1, αp = 4, βp = 1, αq = 4, βq = 1, mβ = β,

Vβ = 0.1, b0 = 3, b0τ2
0 = 0.01, m0 = −1.2704, V0 = 5, a0 = 5 and a0σ2

0 = 15. We

estimate this data with MSSV-DPM model using PL, number of particles N = 300k.

The estimation results are presented in the Figure 4.4, Figure 4.5 and Figure 4.6.

Figure 4.4 top graph draws the simulated returns. The middle graph represents the true

realization of the log-volatility (in black) and the mean estimated filtered log-volatility

(in grey). The estimation of the latent log-volatility seems reasonable. The bottom

graph of the same figure draws the mean probability of being in a state one (st = 1).

As seen from the figure, PL takes some time to learn, since at first it is not able to

distinguish the regimes well. However, around observation 1000 the algorithm is able

to correctly identify the regimes with the overall miss-classification rate equal to 13%.
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FIGURE 4.5: Simulated data: true and estimated density for log-squared return distri-
bution.

FIGURE 4.6: Simulated data: true and estimated parameters with 95% HPD intervals.
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FIGURE 4.7: Simulated data II: daily returns (top graph), true and estimated volatilities
(middle graph) and true and estimated regimes (bottom graph).
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Figure 4.5 draws the true and estimated density for the log-squared returns, which is

log χ2
1. Finally, Figure 4.6 draws the sequential estimation of the model parameters and

their 95% HPD intervals. Overall, the obtained estimation results seem quite reasonable

and PL is able to correctly identify volatility regimes, filter log-volatilities, estimate

the density of the errors and the parameters in an efficient sequential manner. The

classification would become more troublesome once one of the regimes becomes less

persistent, and it would even worsen if both of the regimes become less persistent. This

would mean very frequent changes in volatility states that the model would not have

time to capture properly. See, for example, estimation results of another simulation

study in Figure 4.7, where the high volatility state regime is less persistent q = 0.950.

4.3 Real data application

In this section we present a real data application using return time series for various

financial assets, in particular one index - S&P500, one company - Ford - and one com-

modity - natural gas. The S&P500 prices are from Jan 2nd 1997 till Sept 9th 2014, Ford
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FIGURE 4.8: Daily log-returns (in %) and corresponding histograms for S&P500, Ford
and Natural gas data.
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from Jan 2nd 1997 till Sept 9th 2014 and Henry Hub natural gas spot prices (dollars per

million btu) from Jan 5th 1997 till Sept 9th 2014. The summary of descriptive statistics

can be seen in Table 4.3 and Figure 4.8.

TABLE 4.3: Descriptive statistics for S&P500, Ford and Gas data.

S&P500 Ford Gas
Mean 0.0223 0.0182 0.0104

Median 0.0690 -0.0778 0.0668
St.dev. 1.2752 2.8026 4.4554

Skewness -0.2237 -0.0220 0.7370
Kurtosis 10.4789 15.8981 28.3024

T 4447 4329 4193

Next, we estimate the data with two non-parametric models, SV-DPM and MSSV-DPM.

The hyper-parameters for the priors are as follows: c0 = 0, C0 = 0.1, mα = 0, Vα =
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0.001, mβ = 0.95, Vβ = 0.1, b0 = 8, b0τ2
0 = 0.24, a0 = 6, a0σ2

0 = 18, m0 = −1.26, V0 = 5

for SV-DPM and mγ0 = −0.10, Vγ0 = 0.01, mγ1 = 0.20, Vγ1 = 0.04, αp = 7, βp = 1,

αq = 7, βq = 1, mβ = 0.95, Vβ = 0.01, b0 = 8, b0τ2
0 = 0.456, m0 = −1.26, V0 = 5, a0 = 6,

a0σ2
0 = 18 for MSSV-DPM. The codes were run for 500k particles each.

To compare the performance of the models, we use the average log-predictive score

(LPS) and average log-predictive tail score (LPTSα), which restrics attention to the

events in the upper 100α% of the empirical distribution of the squared returns, as seen

in Delatola & Griffin (2011). The LPS is defined as follows:

LPS = − 1
T

T

∑
t=1

log p(rt|rt−1),

and LPTSα is defined as:

LPTSα = − 1
T
∑

t=1
1{rt > zα}

T

∑
t=1

1{rt > zα} log p(rt|rt−1),

where zα is the upper 100α percentile of the empirical distribution of rt. As Delatola &

Griffin (2011) point out, the LPTSα is not considered a proper scoring rule, however, it

can be very useful for understanding how the model performs in the tails.

The log-predictive densities are very easy to obtain in SMC setting, since they are a

by-product of the estimation procedure and, for each t = 1, . . . , T, are calculated as

log p(rt|rt−1) =
1
N

N

∑
i=1

log p(rt|(Θ, ht, kt)
(i)). (4.5)

Differently than in Delatola & Griffin (2011), there is no need to fix a certain Θ̂ for

the calculation of the LPS and LPTSα, since we can account for parameter and state

uncertainty by using the approximation in Equation 4.5.

Next, we present the estimation results for the S&P500 data set. Figure 4.9 and Fig-

ure 4.10 present estimated predictive densities, filtered volatilities and volatility states

and Table 4.4 presents the estimated parameters. Figure 4.9 shows the estimated densi-

ties for the error term as compared to the frequently used mixture of 7 Normals, as an

approximation of log χ2
1. SV-DPM and MSSV-DPM models estimates are very similar to
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FIGURE 4.9: Estimated densities for the log-squared error term for SV-DPM and
MSSV-DPM models.
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each other and different from the 7N approximation. This shows that the assumption of

Normality is very restrictive and in most cases incorrect. As we can see in Figure 4.10,

the filtered volatility for both models is very similar (second and third graphs). Ad-

ditionally, the MSSV-DPM model is able to identify some different volatility regimes,

especially in the second half of the data series when the algorithm had time to learn

(bottom graph). As for the parameter estimation in Table 4.4, the volatility persistence

parameter tends to be larger for the SV-DPM model, as expected, see So et al. (1998)

and Kalimipalli & Susmel (2004), among others.

TABLE 4.4: Parameter estimation for SV-DPM and MSSV-DPM models for S&P500
data at time T.

SV-DPM MSSV-DPM
Mean 95%CI Mean 95%CI

α 0.0144 (0.0098, 0.0190) - -
β 0.9792 (0.9747, 0.9837) 0.9474 (0.9383, 0.9550)
τ2 0.0187 (0.0172, 0.0202) 0.0255 (0.0239, 0.0276)
γ0 - - 0.0052 (-0.0010, 0.0131)
γ1 - - 0.1279 (0.1069, 0.1497)
p - - 0.9943 (0.9898, 0.9973)
q - - 0.9585 (0.9352, 0.9782)
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FIGURE 4.10: Filtered volatilities and volatility states for S&P500 data for SV-DPM
and MSSV-DPM models.
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TABLE 4.5: LPS and LPTSα for SV-DPM and MSSV-DPM for S&P500 data.

SV-DPM MSSV-DPM difference
LPS 2.1907 2.2029 -0.0122

LPTS0.10 2.6444 2.6610 -0.0166
LPTS0.05 2.9369 2.9282 0.0087
LPTS0.01 3.6168 3.5068 0.1100

Table 4.5 presents the LPS and LPTSα for the S&P500 data. Same as in the paper by De-

latola & Griffin (2011), where the authors compare parametric and non-parametric SV

models, the LPS are very similar thus making the models virtually indistinguishable.

However, once we concentrate on the tails, the MSSV-DPM model tends to perform

better, especially if we consider the very extreme events (the 99th percentile).

Similar results can be seen in the estimation of the other two data sets, see Table 4.6,

Table 4.7, Table 4.8 and Table 4.9 and Figure 4.11 and Figure 4.12. For Ford and Natural

gas data the SV-DPM model estimates larger persistence parameter, same as in the

S&P500 data set. Also, the LPS for both models are very similar, but the differences

appear when we consider only the tails of the distribution.

TABLE 4.6: Parameter estimation for SV-DPM and MSSV-DPM models for Ford data
at time T.

SV-DPM MSSV-DPM
Mean 95%CI Mean 95%CI

α 0.0198 (-0.0238, 0.0264) - -
β 0.9738 (0.9678, 0.9791) 0.9389 (0.9287, 0.9481)
τ2 0.0274 (0.0171, 0.0366) 0.0474 (0.0442, 0.0509)
γ0 - - 0.0013 (-0.0088, 0.0089)
γ1 - - 0.0875 (0.0731, 0.1087)
p - - 0.9944 (0.9909, 0.9974)
q - - 0.9854 (0.9755, 0.9929)

To conclude, it seems that the SV-DPM and MSSV-DPM models tend to perform sim-

ilarly, if we consider the entire predictive distribution of the returns. However, the

identification of different volatility regimes becomes important if we consider the tails

of the distributions, where the MSSV-DPM model performs better. This is of major

interest not only in portfolio allocation setting, but also in risk measurement and man-

agement problems, where the agents are usually more interested in the tails than the

entire distribution.
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TABLE 4.7: LPS and LPTSα for SV-DPM and MSSV-DPM for Ford data.

SV-DPM MSSV-DPM difference
LPS 2.0718 2.0851 -0.0133

LPTS0.10 2.7639 2.7687 -0.0048
LPTS0.05 3.1086 3.0956 0.0130
LPTS0.01 4.1864 4.1007 0.0857

FIGURE 4.11: Filtered volatilities and volatility states for Ford data for SV-DPM and
MSSV-DPM models.
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FIGURE 4.12: Filtered volatilities and volatility states for Gas data for SV-DPM and
MSSV-DPM models.

−6
0

0
60

Daily log−returns (in %)

ene 1997 sep 1999 abr 2002 oct 2004 may 2007 oct 2009 abr 2012

−3
0

2

Log−volatility (SV in black & MSSV in grey)

ene 1997 sep 1999 abr 2002 oct 2004 may 2007 oct 2009 abr 2012

0
10

20

Volatility (SV in black & MSSV in grey)

ene 1997 sep 1999 abr 2002 oct 2004 may 2007 oct 2009 abr 2012

0.
2

0.
6

MSSV volatility states

ene 1997 sep 1999 abr 2002 oct 2004 may 2007 oct 2009 abr 2012



Chapter 4. MSSV-DPM with PL 95

TABLE 4.8: Parameter estimation for SV-DPM and MSSV-DPM models for Gas data at
time T.

SV-DPM MSSV-DPM
Mean 95%CI Mean 95%CI

α -0.0430 (-0.0481, -0.0342) - -
β 0.9823 (0.9755, 0.9845) 0.9458 (0.9414, 0.9502)
τ2 0.0278 (0.0253, 0.0441) 0.0374 (0.0340, 0.0404)
γ0 - - -0.1103 (-0.1173, -0.1030)
γ1 - - 0.3961 (0.3574, 0.4314)
p - - 0.9682 (0.9596, 0.9761)
q - - 0.6458 (0.5762, 0.7125)

TABLE 4.9: LPS and LPTSα for SV-DPM and MSSV-DPM for Gas data.

SV-DPM MSSV-DPM difference
LPS 2.1431 2.1485 -0.0054

LPTS0.10 2.7865 2.8091 -0.0226
LPTS0.05 3.1608 3.1560 0.0049
LPTS0.01 4.5336 4.2702 0.2634

4.4 Discussion

This chapter designs a more efficient estimation procedure, based on SMC schemes, for

a non-parametric SV-DPM model. We compare the performance of PL with the stan-

dard Bayesian estimation methods - MCMC. PL performs as well as MCMC, however,

at a much lower computational cost whenever the new observation arrives. PL pro-

vides on-line type inference, which enables us to see the evolution of parameter learn-

ing and also provides the predictive likelihoods at each data point as a by-product.

Next, the existing SV-DPM model is augmented with Markov switching jumps to cap-

ture different volatility regimes. We test the new model on simulated data and find

that it is able to identify different volatility regimes. Finally, we present a real data

application using three financial time series of the returns for one index - S&P500, one

company - Ford, and one commodity - Natural gas. We find that the new MSSV-DPM

model performs as good as the SV-DPM model if we consider the entire predictive dis-

tribution of the returns. However, the MSSV-DPM model outperforms the SV-DPM

model if we consider only the tails of the distribution, especially, very rare events (the

99th percentile). This result leads to a straightforward extension for future research,
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which is comparison of competing parametric and non-parametric SV-type models in

terms of VaR and CVaR estimation having in mind the computational cost and increase

in the parameter space for more complicated models.



Chapter 5

Conclusions and Extensions

5.1 Conclusions

In this thesis we have put emphasis on two recent developments in time-varying vola-

tility literature: the non-parametric error specification and efficient sequential estima-

tion. We have expanded on time-varying volatility models in two directions. Firstly,

we have showed that even though non-parametric errors are very flexible as compared

to the parametric specifications, they are still not able to account for the asymmetries

in time-varying volatilities and correlations. By using real data we have showed that a

Bayesian non-parametric ADCC model has higher predictive power than its symmetric

counterpart. Secondly, we have presented the most recent SMC estimation technique -

PL. We have designed an efficient PL scheme for the estimation of non-parametric SV

model and compared the output with MCMC. PL performs as well as MCMC, how-

ever, presents a true advantage in terms of computational costs when a new data point

arrives, since it is not necessary to run the entire chain again. We have generalized

the SV-DPM model by introducing Markov switching jumps and showed that the new

model has higher predictive power in the tails of the distribution. Therefore, even

though it has been established that non-parametric error specification outperforms the

parametric one, it still cannot account for the asymmetries or jumps in the volatilities.

97
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5.2 Extensions

The first extension concerns Chapter 3. There are many ways to improve model com-

parison, both, via predictive likelihoods and via VaR/CVaR estimation. The improve-

ment, as already discussed in the paper, would be is not to approximate the log - pre-

dictive likelihoods, but to re-estimate the model as new data arrives and obtained the

exact log-predictive likelihoods. Also, model performance in the tails is of special in-

terest, since it is relevant in many fields, such as portfolio allocation problems, risk

measurement and management. Therefore, one could compare the models in terms of

the estimation of VaR and/or CVaR.

The superiority of non-parametric time-varying volatility models over their parametric

counterparts has already been established in the previous literature, see Jensen & Ma-

heu (2010, 2013), Kalli et al. (2013), Ausín et al. (2014), Delatola & Griffin (2010). How-

ever, as we have seen in the previous chapters, there are some model specifications

that the non-parametric errors cannot capture. Those include the asymmetric volatility

effect or Markov switching jumps in the volatility process. Therefore, the most natu-

ral extension is to consider a non-parametric SV model with leverage effect. In fact,

there has been two papers concerning this topic, those are Delatola & Griffin (2013)

and Jensen & Maheu (2014). However, in both works the authors use MCMC schemes

for inference and prediction, which, as already shown before, are prohibitively costly

when new observation arrives. Thus the first extension is to estimate the asymmetric

SV-DPM model using sequential Monte Carlo techniques, in particular, Particle Learn-

ing.

As already seen in Chapter 4, PL can be seen as a true competitor to MCMC meth-

ods and in many cases provides more for less. Therefore, the use of an algorithm that

combines auxiliary particle filters (APF) and sufficient statistics (SS) can be extended to

more complex models, such as time-varying dependencies between two series, that in

turn could be individual asset returns. Thus the second extension concerns sequential

estimation of a time-varying copula in order to capture complex dependencies between

two series in an efficient manner. Almeida & Czado (2012) have proposed an efficient

Bayesian estimation for stochastic time-varying copulas via MCMC. However, differ-

ently from the mentioned paper, SMC scheme for the estimation of the parameters
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could be developed, since the time-varying copula parameters can be seen as a latent

state of a general state-space model.
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