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Abstract

This paper introduces a new non-parametric approach to the modeling of circu-

lar data, based on the use of Bernstein polynomial densities which generalizes

the standard Bernstein polynomial model to account for the specific characteris-

tics of circular data. It is shown that the trigonometric moments of the proposed

circular Bernstein polynomial distribution can all be derived in closed form. We

comment on how to fit the Bernstein polynomial density approximation to a

sample of data and illustrate our approach with a real data example.

Keywords: circular data, non-parametric modeling, Bernstein polynomials.

1. Introduction

Problems where the data are angular directions occur in many different

scientific fields such as biology (direction of movement of migrating animals),

meteorology (wind directions) and geology (directions of joints and faults). Also,

phenomena that are periodic in time such as times of hospital admittance for

births or the times when crimes are committed may also be converted to angular

data via a simple transformation modulo some period. Data of this type are

commonly known as circular data and are usually represented as points on the

circumference of an unit circle or as angles, �, where 0 ≤ � < 2� radians, which

represent the positive angle of rotation from some arbitrarily chosen origin,

� = 0.
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A number of parametric models for circular data have been developed using a

variety of techniques, see e.g. Mardia and Jupp (1999) for a full review. However,

most parametric models developed for circular data are unimodal and symmetric

but in many cases,both multimodal and asymmetric data may be encountered.

In such cases, semi-parametric or non-parametric approaches might be preferred.

Semi-parametric approaches based on trigonometric sums and mixtures of von

Mises or circular normal distributions have been introduced in Fernández-Durán

(2004) and Mooney et al. (2003) respectively, but with the exception of Fisher

(1989), where a kernel based approach is considered, there has been little work

on non-parametric modeling of circular data.

In this paper, we introduce an alternative non-parametric approach based on

the use of Bernstein polynomials. It is well known that the Bernstein polynomial

is a useful tool for interpolating functions defined on a closed interval. Bern-

stein polynomials have been proposed as density estimators for variables with

finite support in a number of articles, see e.g. (Vitale, 1975; Petrone, 1999a,b;

Petrone and Wassermann, 2002; Babu et al., 2002; Kakizawa, 2004). However,

a problem with generalizing standard Bernstein polynomial density approaches

to circular data is that these can lead to fitted densities with discontinuities

which is generally unreasonable for continuous circular data. Here, we show

that this problem is easily solved.

The article is organized as follows. In Section 2 we define the Bernstein

polynomial density approximation and show how this can be extended to circular

variables. In Section 3 we demonstrate how to calculate the circular moments of

a Bernstein polynomial density and in Section 4 we comment on how the model

can be fitted to a sample of data. Finally, we illustrate our results with a real

data set in Section 5.

2. The circular Bernstein polynomial distribution

Let X be a random variable with support [0, 1] and continuous distribution

function FX(⋅). Then the Bernstein polynomial distribution function of order k
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is defined to be

Bk(x) =

k
∑

j=0

FX

(

j

k

)

⎛

⎝

k

j

⎞

⎠ xj(1− x)k−j for 0 ≤ x ≤ 1 and k ∈ N (1)

It is well known that Bk(x) converges uniformly to FX(x) as k goes to infinity,

see e.g. Vitale, (1975). The associated Bernstein density function is given by

bk(x) =

k
∑

j=1

(

FX

(

j

k

)

− FX

(

j − 1

k

))

�(x ∣ j, k − j + 1), (2)

where �(⋅ ∣ a, b) is a beta density function:

�(x ∣ a, b) = 1

B(a, b)
xa−1 (1− x)

b−1
(3)

and B(a, b) = (a+ b− 1)!/(a− 1)!(b− 1)!, for a, b ∈ N, is the beta function.

Clearly it is straightforward to extend the use of Bernstein polynomials to

densities defined on any closed interval, e.g. [0, 2�]. However, in order to define

a distribution on the circle, it is first necessary to formally define the density

function of a circular random variable.

The density function, fΘ(�) of a continuous, circular random variable, Θ, is

a non-negative, continuous function such that

fΘ(� + 2�) = fΘ(�) for � ∈ R

and
∫ 2�

0
fΘ(�) d� = 1. Then, in order to define a cumulative distribution

function of a circular random variable, it is necessary to establish an origin,

0 ≤ � < 1. Given this origin, the cumulative distribution function is

F �
Θ(�) =

∫ �+�

�

fΘ(u) du for 0 ≤ � < 2�.

However, if we wish to consider the Bernstein polynomial density approximation

of order k, with respect to the origin �, that is

f�
k (�) =

1

2�

k
∑

j=1

(

F �
Θ

(

2�j

k

)

− F �
Θ

(

2�(j − 1)

k

))

�

(

�

2�

∣

∣

∣

∣

j, k − j + 1

)

(4)

for this to be a strictly continuous, circular density then it is necessary that,

F �
Θ

(

2�

k

)

= 1− F �
Θ

(

2�(k − 1)

k

)

, (5)
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where F �
Θ(�). The following theorem guarantees the existence of at least one

origin satisfying (5).

Theorem 1. Let f be a density function for a continuous, circular random vari-

able. Then there exists at least one point � ∈ [0, 2�) such that for any k ∈ N,

∫ �+ 2�
k

�

f(�) d� =

∫ �

�− 2�
k

f(�) d�.

Proof. Define G(�) =
∫ �+ 2�

k

�
f(�) d�−

∫ �

�− 2�
k

f(�) d�. If there exist two points,

0 ≤ �1 ∕= �2 < 2� such that G(�1) ≤ 0 and G(�2) ≥ 0, then by Bolzano’s

theorem, there exists at least one point, 0 ≤ �0 < 2� such that G(�0) = 0.

Otherwise, suppose that G(�) is always positive. Then, we have

∫ �

�− 2�
k

f(�) d� <

∫ �+ 2�
k

�

f(�) d� <

∫ �+2�

�+2�− 2�
k

f(�) d�

which is impossible, as, due to the periodicity of f , we have that

∫ �

�− 2�
k

f(�) d� =

∫ �+2�

�+2�− 2�
k

f(�) d�.

Similarly, G cannot always be negative and so the theorem is proved. □

3. Trigonometric moments of the circular Bernstein polynomial dis-

tribution

For a circular random variable, Θ, the p’th trigonometric moment is defined

to be

�
′
p = E

[

eipΘ
]

= E[cos pΘ] + iE[sin pΘ] where i =
√
−1

def
= �p

(

cos�′
p + i sin�′

p

)

where

�p =
√

E[cos pΘ]2 + E[sin pΘ]2 and (6)

�′
p =

⎧









⎨









⎩

tan−1 E[sin pΘ]
E[cos pΘ] if E[sin pΘ] > 0 and E[cos pΘ] > 0

tan−1 E[sin pΘ]
E[cos pΘ] + � if E[cos pΘ] < 0

tan−1 E[sin pΘ]
E[cos pΘ] + 2� if E[sin pΘ] < 0 and E[cos pΘ] > 0

(7)
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for p = 1, 2, . . .. In particular, when p = 1, we write � for �′
1 and � for �1. Then,

� is the mean direction and � is the mean resultant length, see e.g. Mardia and

Jupp (1999) for more details.

The trigonometric moments of the circular Bernstein polynomial distribution

can be derived using the following theorem.

Theorem 2. The p’th trigonometric moments of a circular Bernstein polynomial

distribution are given by

�
′
p =

k
∑

j=1

wj (E[cos 2�pℬj] + iE[sin 2�pℬj])

where

!j = F �
Θ

(

j

k

)

− F �
Θ

(

j − 1

k

)

and where ℬj is a beta random variable with density function �(⋅ ∣ j, k − j + 1)

as defined in (3) such that

E[cos(2�pℬj)] = 1
B(j,k−j+1)

∑k−j

r=0(−1)r

⎛

⎝

k − j

r

⎞

⎠ Ip(j + r − 1) (8)

= 1
B(j,k−j+1)

∑j−1
r=0(−1)r

⎛

⎝

j − 1

r

⎞

⎠ Ip(k − j + r) (9)

E[sin(2�pℬj)] = 1
B(j,k−j+1)

∑k−j

r=0(−1)r

⎛

⎝

k − j

r

⎞

⎠Jp(j + r − 1) (10)

= 1
B(j,k−j+1)

∑j−1
r=0(−1)r+1

⎛

⎝

j − 1

r

⎞

⎠Jp(k − j + r) (11)

where

Ip(j) =

∫ 1

0

cos(2�x)xj dx Jp(j) =

∫ 1

0

sin(2�x)xj dx for j = 0, 1, 2, . . .

and Ip(0) = Jp(0) = Ip(1) = 0, Jp(1) = − 1
2�p and for C = 2, 3, 4, . . .,

Ip(C) =
∑⌊C

2
⌋

c=1 (−1)c−1 C!
(C−2c+1)!

1
(2�p)2c (12)

Jp(C) =
∑⌊C+1

2
⌋

c=1 (−1)c C!
(C−2c+2)!

1
(2�p)2c−1 . (13)
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Proof. First note that

E[cos(2�pℬj)] =

∫ 1

0

cos(2�px)
1

B(j, k − j + 1)
xj−1(1− x)k−j dx

=
1

B(j, k − j + 1)

k−j
∑

r=0

(−1)r

⎛

⎝

k − j

r

⎞

⎠

∫ 1

0

cos(2�px)xj−1+r dx

=

∫ 1

0

cos(2�py)
1

B(j, k − j + 1)
(1− y)j−1yk−j dy

=
1

B(j, k − j + 1)

j−1
∑

r=0

(−1)r

⎛

⎝

j − 1

r

⎞

⎠

∫ 1

0

cos(2�py)yk−j+r dy

which gives the expressions for (8) and (9). In a similar way, the expressions

(10) and (11) can be derived, recalling that sin(2�− �) = − sin(�). Now we can

demonstrate formulas (12) and (13) by induction.

Now observe that

Ip(0) =

∫ 1

0

cos(2�px) dx = 0

Jp(0) =

∫ 1

0

sin(2�px) dx = 0

Ip(1) =

∫ 1

0

x cos(2�px) dx =
1

2�p
[x sin(2�px)]

1
0 −

1

2�p

∫ 1

0

sin(2�px) dx = 0

Jp(1) =

∫ 1

0

x sin(2�px) dx = − 1

2�p
[x cos(2�px)]

1
0 +

1

2�p

∫ 1

0

cos(2�px) dx = − 1

2�p

Now consider Ip(C). For C ≥ 2,

Ip(C) =

∫ 1

0

xC cos(2�px) dx

=
1

2�p

[

xC sin(2�px)
]1

0
− C

2�p

∫ 1

0

xC−1 sin(2�px) dx

= − C

2�p

∫ 1

0

xC−1 sin(2�px) dx

=
C

(2�p)2
[

xC−1 cos(2�px)
]1

0
− C(C − 1)

(2�p)2

∫ 1

0

xC−2 cos(2�px) dx

=
C

(2�p)2
− C(C − 1)

(2�p)2
Ip(C − 2) (14)

and therefore Ip(2) =
2

(2�p)2 and Ip(3) =
3

(2�p)2 which satisfy (12). Assume now

6



that the formula is valid for c = 2, . . . , C. Then

Ip(C + 2) =
C + 2

(2�p)2
− (C + 2)(C + 1)

(2�p)2
Ip(C) from (14)

=
C + 2

(2�p)2
−

⌊C
2
⌋

∑

c=1

(−1)c−1 C!

(C − 2c+ 1)!

1

(2�p)2c
from the induction assumption

=
C + 2

(2�p)2
+

⌊C
2
⌋

∑

c=1

(−1)c+1−1 (C + 2)!

(C + 2− 2(c+ 1) + 1)!

1

(2�p)2(c+1)

=
C + 2

(2�p)2
+

⌊C+2

2
⌋

∑

c=2

(−1)c−1 (C + 2)!

(C + 2− 2c+ 1)!

1

(2�p)2c

=

⌊C+2

2
⌋

∑

c=1

(−1)c−1 (C + 2)!

(C + 2− 2c+ 1)!

1

(2�p)2c

which demonstrates (12).

Equally, we have the recurrence relation

Jp(C) = − 1

2�p
− C(C − 1)

(2�p)2
Jp(C − 2) (15)

which implies that Jp(2) = − 1
2�p and Jp(3) = − 1

2�p +
3!

(2�p)3 which satisfy (13).

Assuming the formula is valid for c = 2, . . . , C then

Jp(C + 2) = − 1

2�p
− (C + 2)(C + 1)

(2�p)2
Jp(C) from (15)

= − 1

2�p
− (C + 2)(C + 1)

(2�p)2

⌊C+1

2
⌋

∑

c=1

(−1)c
C!

(C − 2c+ 2)!

1

(2�p)2c−1

from the induction assumption

= − 1

2�p
−

⌊C+1

2
⌋

∑

c=1

(C + 2)!

(C − 2c+ 2)!

1

(2�p)2c+1

=

⌊C+2+1

2
⌋

∑

c=1

(−1)c
(C + 2)!

(C + 2− 2c+ 2)!

1

(2�p)2c−1

which demonstrates (13) and proves the theorem. □

4. Estimation for the Circular Bernstein Polynomial

Given a sample of n data generated from a linear variable, X , with support

[0, 1], then from (2), the natural Bernstein polynomial estimator of order k for

7



the density of X is given by,

b̂k(x) =

k
∑

j=1

(

F̂X

(

j

k

)

− F̂X

(

j − 1

k

))

�(x ∣ j, k − j + 1),

where F̂X(⋅) is the empirical distribution function, see e.g. Vitale (1975). Ob-

serve that this estimator can be seen as a smoothed histogram because a his-

togram is simply a function

ℎ (x) =

k
∑

j=1

(

F̂X

(

j

k

)

− F̂X

(

j − 1

k

))

I[ j−1

k
,
j
k ]
(x) ,

where IA (x) is the indicator function in the set A.

Suppose that we have a sample of n circular data. Then the Bernstein

polynomial density approximation can be fitted in various steps. Firstly, for a

given order, k, we need to select an origin. Analogous to (5), it may be that

there exist multiple origins, �, such that the empirical distribution function,

F̂ �(⋅), satisfies the condition

F̂ �

(

2�

k

)

= 1− F̂ �

(

2�(k − 1)

k

)

(16)

when the fitted Bernstein polynomial density is from (4)

f̂ �̂
k (�) =

1

2�

k
∑

j=1

(

F̂ �̂

(

2�j

k

)

− F̂ �̂

(

2�(j − 1)

k

))

�

(

�

2�

∣

∣

∣

∣

j, k − j + 1

)

and �̂ is chosen to maximize the log-likelihood estimate

n
∑

r=1

log

k
∑

j=1

(

F̂ �

(

2�j

k

)

− F̂ �

(

2�(j − 1)

k

))

�

(

�r
2�

∣

∣

∣

∣

j, k − j + 1

)

.

However, as the observed data are discrete, the existence of an origin which

satisfies (16) is not guaranteed and if no such origin exists, an origin �̂ is chosen

such that the distance,
∣

∣

∣

∣

F̂ �

(

2�

k

)

+ F̂ �

(

2�(k − 1)

k

)

− 1

∣

∣

∣

∣

is minimized. Then the Bernstein polynomial density estimate is given by

f̂ �̂
k (�) =

1

2�

[

1

2

{

F̂ �̂

(

2�

k

)

+ 1− F̂ �̂

(

2�(k − 1)

k

)}

�

(

�

2�

∣

∣

∣

∣

1, k

)

+
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k−1
∑

j=2

{

F̂ �̂

(

2�j

k

)

− F̂ �̂

(

2�(j − 1)

k

)}

�

(

�

2�

∣

∣

∣

∣

j, k − j + 1

)

+

1

2

{

F̂ �̂

(

2�

k

)

+ 1− F̂ �̂

(

2�(k − 1)

k

)}

�

(

�

2�

∣

∣

∣

∣

k, 1

)]

so that the weights of the first and last beta densities are equal and the fit-

ted density is circular. This procedure is this analogous to that of minimizing

enclosure in operational research problems, see e.g. Lutterkort et al. (2001).

The problem of choosing the order, k, of the Bernstein polynomial can be

viewed as similar to the problem of choosing the number of bars for the his-

togram. Small values of k will lead to a very poor approximation and high

values will lead to overfitting. One possibility is to choose k = ⌈√n⌉. The

goodness of fit of the fitted Bernstein polynomial density can then be tested

using standard tests such as those of Watson (1961) or Kuiper (1960) and if

the fitted model is rejected at a given significance level (e.g. 10%), k can be

increased until the fitted model is accepted.

5. Example

Here we consider data which correspond to the twenty four hour clock

times of 1297 crimes perpetrated in Chicago on May 11th, 2007, obtained from

www.chicagocrime.org. A Bernstein polynomial density approximation of or-

der k = 37 = ⌈√1297⌉ was fitted to these data. Figure 5 shows a histogram

of the data and the fitted density. The data are plotted so that the origin is

set to the fitted origin time, �̂ = 06 : 20 hours. The fitted and empirical mean

direction and 17:39 hours and 17:42 hours and the fitted and empirical mean

circular resultant lengths are 0.1998 and 0.1880 respectively. Thus, there is good

agreement between the fitted and empirical moments.

Both the Kuiper and Watson tests were used to test the goodness of fit of

the Bernstein polynomial density and in both cases, the model was not rejected

at a 10% level.
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Figure 1: Histogram of the Chicago crime data with fitted Bernstein polynomial density

approximation
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