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GENERALIZED A-COHERENT PAIRS

K. H. Kwon, J. H. LEE, AND F. MARCELLAN

ABSTRACT. A pair of quasi-definite linear functionals {uo,u1} is a
generalized A-coherent pair if monic orthogonal polynomials

{Pn(z)}nto
and
{Rn(2)}nZ0o
relative to up and w1, respectively, satisfy a relation

Ru(z) = —— APpi1(z) — %APn(x) — "L AP, (2), n > 2,

S on+l n—1
where o, and 7, are arbitrary constants and Ap = p(z + 1) — p(x)
is the difference operator.

We show that if {uo,u1} is a generalized A-coherent pair, then
ug and v must be discrete-semiclassical linear functionals. We also
find conditions under which either ug or w; is discrete-classical.

1. Introduction

Concerning the problem of evaluating the Fourier coefficients in the
Fourier expansion of functions by polynomials orthogonal with respect
to a Sobolev inner product

1) ae - | " f@)g(@)duo(z) + A / " @) @) (@),

where dug and du; are positive Borel measures with finite moments
and A\ € RT, Iserles et al. [8] introduced the concept of coherency and
symmetric coherency for the measures dug and duq.
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After the work by Iserles et al. [8], there have been many works
[4, 12, 13, 14, 15, 17, 18, 20] on coherency from different points of view
even allowing dug and dug to be signed or even complex valued measures.
In particular, in [10], we introduced generalized coherency which unifies
both coherency and symmetric coherency.

In [2, 3], they introduced a discrete version of coherency, that is,
A-coherency. Here A is the difference operator defined as Af(z) =
fla+1) = f(a).

In this work, we will study the generalized A-coherency in a more
general setting by using the formal approach to orthogonality via linear
functionals as was done in [10]. See also [2, 3, 14, 15].

In Section 2, we collect basic definitions, notations, and lemmas that
we will use later. In Section 3, we define (see Definition 4.1) and analyze
the generalized A-coherency.

2. Preliminaries

Let P be the linear space of all polynomials in one variable with
complex coefficients. We denote the degree of a polynomial P(z) by
deg(P) with the convention that deg(0) = —1. A polynomial system(PS)
is a sequence of polynomials {P,(x)}5, with deg(F,) =n, n > 0.

A linear functional u on P is called a moment functional and we
denote its action on a polynomial ¢(z) by (u,$). We say that a mo-
ment functional u is quasi-definite(positive-definite, respectively) if its
moments a, := (u,z"), n > 0, satisfy the Hamburger condition

Ap(u) = detlaiyglij—0 # 0,  (An(u) > 0, respectively), n > 0.

DEFINITION 2.1. A PS {P,(z)}5°, is said to be an orthogonal poly-
nomial system(OPS) if there is a linear functional w on P such that

<u, PmPn> = pn(smna m,n > 07

where p, are non-zero constants. In this case, we call {P,(z)}>2, an
OPS relative to v and w is said to be an orthogonalizing moment func-
tional of {P,(x)}>2,. A linear functional u is quasi-definite if and only
if there is an OPS {P,(z)}52, relative to u (see [6]). Moreover, in this
case, each P, () is uniquely determined up to a non-zero constant factor.

For a moment functional u, a polynomial ¢(x), and a constant ¢, we
define moment functionals Au, ¢u , and (z — ¢)~'u by

(Au,p(x)) := —(u, Ap(x — 1));
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(Pu,p) := (u, ¢p);
p(l’) — p(C) >

—C

((x =) u,p) = (u, ., peP.

Then we have for polynomials p(z) and ¢(x)
A(p(z)q(z)) = q(z)Ap(z) + p(z + 1)Aq(z),
A(p(x)u) = p(x + 1)Au + Ap(x)u.
For a constant ¢, let 6(x — ¢) be the moment functional defined by
(0(z — ), p(z)) = p(c), p(z) € P.
For a PS {P,(z)}5%, the dual basis of {P,(x)}>2, is the sequence

n=0»
{un}72 oy of moment functionals defined by the relation

<u7’L7Pm> - 5mn, m,n Z 0

In particular, ug is said to be the canonical moment functional of
{Pn(z)}02y. If {Py(2)}52, is a monic OPS(MOPS), then {P,(z)}5,

n=0"
must be orthogonal with respect to ug and
P, (x
Up = Muo, n > 0.
Pn

DEFINITION 2.2. ([16]) A quasi-definite moment functional u is said
to be discrete-semiclassical if u satisfies

(2.1) A(pu) = Yu,
for some polynomials ¢(x) and ¢ (z) with (¢,¢) # (0,0). We then

have deg(y¢) > 0 and deg(¢) > 1. The corresponding OPS is called a
discrete-semiclassical OPS.

For a discrete-semiclassical moment functional wu,
s := min max(deg(y) — 2,deg(y)) — 1)

the class number of u, where the minimum is taken over all pairs (¢, ©) #
(0,0) of polynomials satisfying (2.1). In particular, a discrete-semi-
classical moment functional of class 0 is called a discrete-classical mo-
ment functional.

Discrete-classical moment functionals can be characterized in many
other ways. For an MOPS {P,(z)}5, relative to u, the following state-
ments are all equivalent ([1]):

(1) {Pn(2)}52, is a discrete-classical OPS, that is, A(pu) = ¢u for
some polynomial ¢ and ¢ with 0 < deg(y) < 2 and deg(y)) = 1;
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(i) ([7]) ,
{Qn(z) := mAPn-&-l}%o:O

is also an MOPS. Then {Q,(x)}>2, is orthogonal relative to @ =
pu satisfying

(2.2) Alp(z)u) = (P(2) + Ap(x — 1))u;
(iii) There are polynomials ¢ and ¢ with 0 < deg(y) < 2 and deg(¢y)) =
1 such that
P(@)A?P, (2) + () AP, (2)
(2.3) 1

= (gn(n—l)ﬁz () +nAp(z)) Po(z + 1), n >0 ([11]).

It is well-known that there are essentially four distinct discrete-class-
ical OPS’s, up to a linear change of variable ([7, 19]):

(i) Charlier polynomials {cf{‘) (@)} plz) =p, Y(x) =p—2 (n>
0);

(ii) Meixner polynomials {m(vu ()10 @(x) = ply + x), P(x) =
py —2(1=p) (>0, pe (0,1));

(iii) Kravchuk polynomials {k:n)( TN o p(x) = N — 2, Y(z) =
NPt (p e (0,1), N € Z*);

(iv) Hahn polynomials {hﬁ?’ (x, N)} o o(x) = (N—2z—1)(z+4+1),
()= (N-1)(+1) —z(a++2) (0, > ~1, N € Z7).

We denote by ug 2 $,;”‘), ,(CP’N) and u (a AN the orthogonalizing mo-
ment functionals for Charher Meixner, Kravchuk, and Hahn polynomi-
als, respectively. Notice that the moment functionals for Kravchuk and
Hahn polynomials are not quasi-definite.

For an MOPS {P,(z ) o relative to u and complex numbers £ and
¢, let {Pr(&2)}0, {Pa 1)( ) o 0, and {Py(c; ) }52, be the monic ker-
nel polynomials, the monic numerator polynomials(also called the as-
sociated polynomials of first kind (see [6])), and the monic co-recursive
polynomials of {P,(z)}>2,, respectively:

. u, P2) ~ Py(z)P,
Pitgn) = G S IR = oo

" 2
(24)  Pulx) = Py(&2) - PZnZS) <z<a 7Pii>1>

(25) Pu(ciz) = Po(x) — P, (2), n > 1([5]).
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It is well-known (see Theorem 7.1 on p. 36 in [6]) that for a quasi-
definite moment functional u with MOPS {P,(z)}32, and a complex
number &, (z — &)u is also quasi-definite if and only if P,(§) # 0, n > 1.
Then the MOPS relative to (z — §)u is {Py(§;x)}02,. Moreover (see
Theorem 3.6 in [9]), if w is discrete-semiclassical of class s satisfying
(2.1), then (x — &)u is also discrete-semiclassical of class

s —1if (&) = (&) = 0
s if o(§) = 0 and (&) # 0
s+ 1if (&) #0.

Conversely if (x — &)u is discrete-semiclassical of class s, then u is
discrete-semiclassical of class either s — 1, s, or s + 1.

PROPOSITION 2.1. Let {P,(x)}22, and {Qn(z)}52, be the MOPS’s
relative to w and v respectively. Then, {Qn(x)}>2y = {P; (&)},
for some complex number £ if and only if there are complex numbers
an(n > 1) such that oy # 0 and

Pp(z) = Qn(z) — 0nQn-1(x), n > 0 (Q-1(z) = 0, ap arbitrary).
In this case o, # 0, n > 1 (cf. (2.4)), P,(§) #0, n > 1 and (x—&)u = v.
Proof. See Theorem 3.2, Theorem 3.3, and Theorem 3.4 in [9]. [

3. Generalized A,-coherency

Consider the inner product on P

(3.1) oa(f.9) /f )dpo(x +)\ZAw1f Yi) D, 9 (k) 1 (Yk),

k=1

where p; is a discrete measure supported on a uniform lattice {y;}72,
with step wy.
We let A, be the difference operator defined by

Ay fa) — Tt w) @)

w1
Notice that lim0 Ay, is the standard derivative operator.
w1 —

We will consider the basis 1% = 1, 2" = 2(z—wy) --- (= (n—1)wy),
n =1,2,... in the linear space P. Notice that Awlx[n} = nzl"=1. This
basis will play in our work the same role as the canonical basis for the
derivative operator.
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We introduce the generalized moments for the inner product (3.1) as
follows
Hmmn = ¢>\ (x[m},x[n}) = Ngg?n + )‘mnug)—l,n—l'

Here uﬁ,??n and u%)n will denote the moments associated with the basis

(x[”])neN for the inner products

(.9 o—/f 2)dpo(z),

(f,9h :Zf Y)9 (i) p1(Yk)-
k=1

Using the standard Gram-Schmidt orthogonalization process, we can
obtain a sequence {Q,(z; A)}22, of monic polynomials orthogonal with
respect to the inner product (3.1). Notice that when w; — 0, (3.1)
becomes a Sobolev inner product in the standard sense.

Thus, the monic polynomlal {Qn(z; A)}52, can be explicitly given by
a determlnantal expression

Qn(z;N)

1 1% - T
0 0 1 0 1

uéi uﬁHM” u51)1+/\nufl)1o

0 0 1 0 1

ME); 1 N(u)L 1+)\(”_1)M(()312 N;Zz 1+)‘”( )M;)1n2
1 L Ll
= (0) n—1

Dividing the numerator and the denominator by \*~2 and taking limit
in the resulting expression when \ — oo, we get

Sul(@) = lim Qu(w; \)

0 0 0
"
0 M((),()) T ”1%(1—)1,0
0 (n— 1)#(()272 on(n— 1)#2121,7%2
- . n-t
det {kjuéjlvffl}kao

(0)

with the convention gy 0,0 = 1, i.e., we assume that pg is a probability
measure.
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THEOREM 3.1. The following statements hold.
(i) (Sn(z),1)o = 0;
(ii) (Ay,Sn(z),z*); =0, k=0,1,...,n — 2.
Proof. Both results are direct consequences of the determinantal rep-
resentation of Sy, (z). O

If {P,(x)}22, and {R,(x)}>2, denote, respectively, the MOPS rela-
tive to pp and p;p, then we get from Theorem 3.1
Ay, Sn(z) = nRp_1(z).
On the other hand

n—1

nRy_1(z) = Au, Po(7) + Y o Aoy, Pi().
k=1

Thus

n—1
Sn(x) = Po(z) + > otnjPul(x) + anoPo().
k=1

But by taking into account of (i) in Theorem 3.1, a0 = 0 and, as a
consequence,

n—1
Sn(x) = Po(x) + 3 otn 1 Pu(a).
k=1

DEFINITION 3.1. The pair of measures {pg, p1} is said to be a gen-
eralized A,-coherent pair if there is a non-negative integer N such that

n—1

(3.2) nRy 1(x) = AyPo(z) + Y anpAuPi(z)
k=n—N

with oy, n—n # 0.

In particular, if N = 1 we get the usual A,-coherent pairs considered
by I. Area, E. Godoy, and F. Marcellan [2, 3] for w = 1.

On the other hand, if we expand the polynomial S,(z) in terms of
the MOPS {Qn(x; \)}52), then we get

n—1

Sn(®) = Qu(@; X) + D BurQi(w; M),

k=0

where
O (Sn(z), Qr(z; X))
oA (Qr(w; A), Qr(w; X))

ﬁn,k =
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Notice that according to (3.1), the numerator is

(Sn(x)v Qk>0 =+ >‘<Aw1 Sn(x)v Aw1Qk(x§ )\)>1
= (S (), Qr())o + AnRn—1(z), Ay Qr (x5 A))1-

From (3.2), the first term vanishes when k < n— N, while the second
one vanishes for £ <n — 1.
Thus B, =0 for k <n—N. For k =n — N, we get

an,n—N<Pn—N( ) P ( )>

ﬁn,nf = 0.
N oA Quon (). Qo (@) T
Thus, generalized A, -coherency yields
n—1
(33)  Qu(m N+ D BrsQilw;N) +Zankpk
k=n—N

where 3, ,—n # 0 and oy, ,—n # 0. Here
B N = G (Pr-n(2), Pa=n(2))o
e T oA (Quen (w5 A), Quen (3 X))

Notice that if (3.3) holds, then taking into account of (3.1) for j =
0,1,....n— N —1,

0= ox(Qn(z; \) + Z Bk Qi (5 A), 2

k=n—N

Z an,kpk(x)7xm>0 + )‘<Aw1 (Pn(l')
k=n—N

n—1
(3.4) + ) anpPr(), Ay, zll)y
k=n—N

n—1
= MAy, (Po(z) + Z an,kpk(m))ajx[jilblv
k=n—N

ie.,

n—1 n—2
Z an i Pr(x)) = nRp—1(x) + Z Yr, ke B ()

k=n—N k=n—N-1

according to the orthogonality condition (3.4).
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In this work we are interested in the case of generalized A,,,-coherent
pairs when N = 2, i.e, the MOPS’s relative to pg and p; satisfy

(3.5)  nRy_1(z) = Ay, (Pr(z) + ann—1Pr-1(z) + apn—2Pn—2(x))
with oy, p,—2 # 0. For a sake of simplicity we will assume w; = 1.
We now give an example of generalized A-coherent pair for N = 2.
pL(y + )
Let po(z) = ————~
) = R D)
function supported in the set No = {0} UN. It is well known [19] that
the sequence of monic Meixner polynomials {M;ﬂ’” ) (x)}22, satisfies

. 1 (7717/‘)
- n -+ 1AM’H,+1 (I‘),

1 v
(V) () = (7:12) (v:1)
(3.6) MW () 1AMn 1 (x) + 1 AMH (x).

(0 < < 1,y > 0) be the Meixner weight

Thus, if the sequence of monic polynomials { R, (z)}"2, orthogonal
relative to a discrete measure p; satisfies

Rooi(z) = MM (@) + Buaa MO (2)

with (,-1 # 0, i.e., the pair {pg, p1} is a A-coherent pair with N = 1,
then from (3.6) we get

AR (@) = A (@) + T (@)

n

AM (@) 4+ T2 M7 (@),

n—1

+ ﬁnfl(

n—1
i.e., (3.5) holds.

Thus every A-coherent pair with pg(Meixner weight) and N =1 is a
generalized A-coherent pair with N = 2.

4. Generalized A-coherent pairs

Let ug and u; be quasi-definite moment functionals with correspond-
ing MOPS’s { P, ()}, and {R,(z)}2, respectively, satisfying three-
term recurrence relations

Poi1(z) = (x—0by)Py(x) — cynPy—1(z), n >0
(41) and <u07P’3> =pn, n > 0;

Rn+1(.%') = ($ - /Bn)Rn(x) - ’Yan—l(x); n >0
(4.2) and (u1, R2) = r,, n > 0.
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DEFINITION 4.1. {ug,u1} is a generalized A-coherent pair if there
exist complex numbers {0, }5° ; and {7,}5°; such that

(4‘3) Rn(x) = Qn(af) - O'nQn—l(x) - Tn—lQn—2(x); n >0,

where Q_1(z) = Q-2(z) = 0, Qn(z) = %_HAPn—H(x)v n > 0, and
og=7T-1=19=0.

In particular, if o, # 0 for some n > 1 and 7, = 0, n > 1(resp.
Tn # 0 for some n > 1), then we call {ug,u;} a 2-term(resp. 3-term)
A-coherent pair.

In these cases, we call uj(resp. ug) a “companion” of ug(resp. uy).

In the following, we always assume that {ug,u;} is a generalized A-
coherent pair unless stated otherwise.

PROPOSITION 4.1. We have

(4.4) nPn(gc)uo = A(Gp(x)ur), n > 1,
Pn
where
(45)  Gu(@) = " Rosr () + 2R (2) — —— Ry 1(2), n > 1,
T’n+1 Tn Tn—1

so that n — 1 < deg(G,) <n+ 1.

Proof. Let u,(lo), &7(10), and ug), n > 0 be the dual bases of { P,,(x)}5°

n=0>
{Qn(2)}5%,, and {R,(z)}72 ), respectively. Then, it is easy to see that
_ 1 1
i) = ul) — 0’n+1U5Ll1 - Tn+1uq(q,+)2 = —Gpt1u (n > 0).

Hence,

1
A(ﬂslo)) = —(n—i-l)ug&)l = —(TL—|— 1)p71 Pn+1u0 = —A(Gn+1u1), n Z 0.
n+

Therefore, we have the result. O
THEOREM 4.2. Both ug and u; are discrete-semiclassical (of class < 6

for ug and of class < 2 for uy) satisfying

as well as

(4.7) pi(z+1)Auy = v(x)ur, pi(x)ug = H(z)u1, v(z)ug = H(x)Auy,
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where
48) i) =220 Vg ) - @D g 0
D2 P1
. APQ(.T — 1) _ APl (37)
mia) =226 o) - 20y ),

(4.9) pola) = pi(x)H(x),
nole) = H(z + )v(x) + pi(z + 1)(AH(w) + AH(z — 1)),

(4.10) H(z) :=Gi(z +1)AGa(z) — G2(x + 1)AG (z),
V= MAGQ(Z) - 2MAG1({£).
b1 b1

Moreover,

(4.11) nPZSU)H(x) = pi(x + 1)AG,(z) + v(z)Gp(x), n > 1.

Proof. Set n =1 and 2 in (4.4). Then

(4.12) P;(:U) uyp = AGi(z)ur + Gi(x + 1)Auy,
1
(4.13) 2P2($) Uy = AGQ(Z')Ul + GQ(.%' + l)Aul.

D2

Eliminating ug, u;, and Au; from (4.12) and (4.13) gives (4.6) for i = 1
and (4.7).

We also have A(pg(z)uo) = A(p1(z)H (z)ug) = A(H(x—1)H(x)u1) =
noup by (4.7) and (4.9), which gives (4.6) for i = 0.

By (4.4) and (4.7), we have

Pn
P,(x)

n

— 0 o (@ 4 Lug = (pr(@ + DAG (@) + 1(2)Gale + 1))us
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since p1(z + 1)Au; = v(z)ug so that (4.11) holds. It is now easy to see
that H = 1244 ]ower degree terms so that deg(H) < 4 and

r2r3

4 if 7'17'2750
3if 7'120, 0'17'2750

2if (i) oy =11 =072 #0or
- (ii) 1 # 0,72 =0,0102+ 7 # 0 or
(4.14)  deg(H) = (iil) 71 = 72 = 0,010 # 0
Lif (1) 72 0,7 = 102+ 7 = 0 or
(i) o1 =71 =72 =0,00 #0

\ 0if o9=7=7=0.

Hence H # 0sothat 0 < deg(H) < 4,0 < deg(p1) <4, 0 <deg(pp) <38,
and 0 < deg(v) < 3, by (4.7) and (4.9). Hence up and u; are discrete-
semiclassical of class < 6 and < 2, respectively, and so 1 < deg(m) < 3,
1 <deg(no) <7. O

Marcelldn et al. ([2]) proved: if {ug,u1} is a 2-term A-coherent pair,
then either ug or uq must be classical under some extra relations between
up and uq.

We say that a quasi-definite moment functional v with MOPS

{Pn(z)}no

is strongly discrete-classical if there is another MOPS {S,,(x)}22, rela-
tive to w such that P,(z) = %HASHH(:L‘), n > 0. Then v and w must
be discrete-classical moment functionals of the same type satisfying

Alp(x)u) = P(@)u, Alp(r)w) = (Y(z+1) = Ap(x))w, and p(z)w = u.

Discrete-classical moment functionals ugﬂ ) and ugl’“ ) (v > 1) are strongly

discrete-classical.
In our more general case, both ug and u; may not be discrete-classical
but we have:

THEOREM 4.3. ([10]) Assume that either ug is discrete-classical or uy
is strongly discrete-classical.

(i) If 7, = 0 for some k > 1, then 7, = 0 for all n > 1.
(ii) If oj = 0 for some j > 1 and 17, = 0 for some k > 1, then

0n, = ™, = 0 for all n > 1 so that uy and u; must be discrete-
classical of the same family.

Proof. See the proof of Theorem 3.4 in [10]. O
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PROPOSITION 4.4. If ug is discrete-classical, then Giuy is also dis-
crete-classical of the same type as ug. Moreover if deg(G1) = 0, then
on = T = 0, n > 1. Moreover if deg(G1) = 1, ie., Gi(z) = gi(x —

§) (g1 # 0), then Qn(§) # 0, on = RE;(lg()g)'Yn: m = 0, n > 1, and
{Qn(2)}520 = {Ra (& 2) 1o

Proof. Assume ug is a discrete-classical moment functional satisfying
A(pug) = Yup with 0 < deg(p) < 2 and deg(¢)) = 1. Then (cf. (2.3))

() AP, () + h(2) APy (z) = M Pp(z +1),n >0,

where A\, = in(n — 1)A%p(z) + nAy(z) and A, # 0, n > 1. Hence
P(x) = A\ Pi(x) so that by (3.4) forn =1

A(pug) = M Prug = Mip1 A(Grug).

Therefore Giuy = ()qpl)_lgouo is also a discrete-classical moment func-
tional of the same type as ug. If deg(Gy) = 0, then o1 = 71 = 0(cf.
(4.5)) so that o, = 7, = 0, n > 1 by Theorem 4.3. If deg(G;) = 1, then
o1 # 0and 7 = 0so that o, #0, 7, =0, n > 1, and (z — {)uy =
(Mp1g1) tpug. Hence, (z — &)up is quasi-definite so that Q, (&) #
0, n > 1, {Qu(@) o = {R)(E )}, and o, = =ty 5 > 1
(see (2.4)). O

The discrete-semiclassical character of ug and u; depends on deg(H).
It is the same as for generalized coherent pair [10]. In this paper, we
see only the cases when {ug,u;} has discrete-classical character, which
occurs when deg(H) = 2 (iii) and deg(H) = 4 in (4.14).

Consider the case deg(H ) = 2 (iii), that is, 71 = 7o = 0 and o102 # 0.
In this case, there are three cases: H(z) = h(z — &)(x — & — 1) or
Hxz)=hlzx =& x—-¢) ((#&€+£1) and 7, =0, n > 1or H(z) =
h(zx —&)(x—¢) ((#&€+1) and 7, # 0 for some n > 3.

THEOREM 4.5. (cf. [3, 10]) Assume 11 = 72 = 0 and 0102 # 0 so that
deg(H) = 2.
(i) IfH(x) = h(z—¢&)(z—E&—1), then uy and Gyu, are discrete-classical
of the same type, deg(n1) =2, and 0, #0, 7, =0, n > 1.
(ii) fH(x) = h(z = &)(x—C) (C#EE£L), 7, =0, n > 1, then ug
is discrete-classical. Moreover, if uy is strongly discrete-classical,
then o, #0, n > 1.
(iii) If 7, # 0 for somen > 3, then H(z) = h(z—&)(x—() (( #&,€£1)
and 1 < s9 < 3,0 < s; <1, and u; cannot be strongly discrete-
classical.
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Proof. Note that deg(G1) = 1 and deg(G2) = 2 when 71 = 7 = 0
and o 102 75 0.
(i) The following proof is essentially the same as that of Theorem 4.2

in [3], where it is assumed that o,, # 0 and 7, =0, n > 1.
Assume H(z) = h(z — &)(x — & — 1) (h = g192). Then

H(§) = G1(§+1)AG2(§)—g1G2(§+1) = 0and AH(§) = 292G1(§+1) = 0

so that G1(§ +1) = G2(§ +1) = 0. Hence Gi(z) = q1(z — € — 1)
and G (z) = G1(2)G2(x), deg(G2) = 1. Then

pi(z) = Gi(z)p1(z), 0 < deg(p1) <2
n(z) = Gi(x)i(x), 0 < deg() < 1.

Multiplying (4.12) by G and then subtracting (4.13), we have
(415) [31 (l‘)uO = G1 (SU)Aégul = g2G1 (:c)ul

so that by (4.12) A(prug) = ¢2A(G1(x)uy) = gg%uo. There-
fore, ug is discrete-classical and Giuq is also discrete-classical of

the same type as ug by Proposition 4.4 satisfying
A(p1(x)Gr(z)ur) = i (x)Gr(w)us.

Hence deg(7;) = 1 and so deg(n1) = 2. Finally o, # 0 and
7o, =0, n > 1, by Theorem 4.3.

(ii) It is also proved in Theorem 4.6 in [3] assuming o, # 0 and 7, =
0, n > 1. But, the inspection of the proof of Theorem 4.6 in [3]
reveals that we only need o109 # 0 and 7,, = 0, n > 1. Then, by
Theorem 4.3, o, # 0, n > 1, if uy is strongly discrete-classical.

(iii) Assume 7, # 0 for some n > 3. Then, H (z) cannot have a repeated
zero by (i) so that H(z) = h(z — &)(x — () (( # &, £ 1) and the
conclusion follows from Theorem 4.3. 0

The relation (4.15) between up and u; also holds in case Theorem 4.5
(i) (see Theorem 4.6 in [3]) for £ = & or &. Hence we have in case (i)
or (ii) in Theorem 4.5

huy = (x — & — 1) prug + rod(z — £).

Now consider the case deg(H) = 4, that is, 7172 # 0.

THEOREM 4.6. If G divides G35, then ug and Giuy are discrete-
classical of the same type, deg(n) = 3, and 7, # 0, n > 1. More
precisely, we have:
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(i) IfH(z) = h(z—¢&)(z—E&—1)(x—£—2)(z—&—3) and G1(£+1) =0,
then G divides Go
ur = (g2) "z — &) *prug +106(x — £) + (R1(0) + &)rod' (z — ).

(i) fH(z) =z =& (z -1z -z —C—-1) ((#EE+1,E+2)
and G1(§ + 1), then G; divides G and

uy =(p1page) Mz — &) Nz — &) hruo

+3 D [(Ri(0) + €1)8(z — &2) — (Ru(0) + &2)d(x — &1)].
1—&

Here, p1(z) = G1(z)p1(z).
Proof. Since 173 # 0, deg(G1) = 2 and deg(G2) = 3. Assume that
Gy divides Go. Set Gy = G1G4, deg(G2) = 1. Then
p1(x) = Gi(z)p1 (0 < deg(p1) < 2)
m = Gi(z)in (0 < deg(m) <1).

As in the proof of Theorem 4.2, by eliminating Awu; from (4.12) and
(4.13), we obtain

(4.16) 01 (.’B + 1)u0 =Gy (.%')Aégul
so that by (4.12),

Py (z)
b1
Hence ug and Giu; are discrete-classical of the same type by Proposition
4.4 and A(p1(x)G1(z)ur) = 71 (z)G1(x)u;. Hence, deg(n1(x)) = 1 and
so deg(m (x)) = 3. Finally, 7, # 0, n > 1 by Theorem 4.3.
() Hx)=h(z—&)(xz—€&—1)(z—&—2)(x — & —3). Then A*H(z) =
24h(z — ). By (4.10), we have

H(z) =Gi(x+1)AG2(x) — Ga(x + 1)AG:(x)
AH(z) = Gy(z + 1)A%Gy(z) — Go(z + 1)A%Gy
(4.17) A’H(z) = Gi(z + 2)A3Gy + AG: (v + 1) A?Ga(x + 1)
— AGy(z +1)A%G,
(4.18) A3H(z) = A3Go(AG: (x + 1) + AGy (z + 2)).
Since G1(£ +1) =01i.e., Gi(z) = gi(x — & — 1)(z —m) so we have
(4.19) AGi(x) = g1(2x — & —m).

Since ASH () = 0, we have AG1(£ + 1) + AG1(€ +2) = 0 so that
m =&+ 3. Hence G1(£+3) = 0. Since H(§) = H(( +2) =0 but

A(pr(x + Dug) = AGa(z)A(G1(2)u1) = AGa(x)

Uug-
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AG1(§) # 0and AG1(£+2) # 0, we have G2(€+1) = G2(£+3) =0

by (4.18). Hence G1(z) divides Ga(z).

(if) Assume H(z) = h(z =) (z —&—1)(x =)z —¢=1) ((#&E+
1,€ 4 2). Then since A3H (z) = 24h(z — T52), by using (4.19),
we have m = (+1. Hence G1((+1) = 0. Since H(§) = H(¢) =0,
but AG1(§) # 0 and AG1(¢) # 0, by (4.18) we have Ga({ + 1) =

G2(¢C + 1) = 0. Hence G (z) divides Ga(z).

O]

By the essentially same methods used in [10] for ordinary coherent

pairs, we now have:

THEOREM 4.7. Let ug be a discrete-classical moment functional satis-
fying A(pup) = Yug (0 < deg(p) < 2, deg(y)) = 1). Assume (ug, ) = 1.

Then uy is a 3-term companion of ug if and only if either

(4.20) up = (z — 51)_1(33 — fg)‘lcpuo +ad(x — &) + bo(x — &)

or
(4.21) up = (z — &) 2pug + ad(z — &) + bd'(z — &)
for some complex numbers &1 # &2, a, and b satisfying

(i) in case of (4.20)

a+b#0,
a(é — aéy — b&)? + b(& — a&y — b&)? # 1,
(u1, Pry1) (uy, Py)

#0, n>0;

(= &)ur, Poy1) (& —&1)ur, Pr)
(ii) in case of (4.21)
a#0, a—b>#0,

<u17Pn+1> <U1,Pn>
((x = &)ur, Pugr)  ((x — &)ur, P)

Proof. See Theorem 4.5 in [10].

Conversely we have:

%0, n>0.

O]

THEOREM 4.8. Let u; be a strongly discrete-classical moment func-

tional satisfying A(puy) = Yu; (0 < deg(p) < 2, deg(y)

1) and

{T, ()}, the discrete-classical MOPS relative to w with %HAT n+1(x)
= Ry(x), n > 0. Then vy is a 3-term companion of uy if and only if

either

up = (z — &) (z — &Jw



Generalized A-coherent pairs 993

for some complex numbers &1 # & satisfying

or

T(&1) Tht1(61)

To(&2) Tny1(&e) 70, n=1

ug = (x — 51)210

for some complex number &, satisfying

2

[3

(4]

[5]

(6]

(8]

(9]

Tn(&1) Thv1(&1)
0, n>1.
T(E) T 7" "7
Proof. See Theorem 4.6 in [10]. O
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