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GENERALIZED ∆-COHERENT PAIRS

K. H. Kwon, J. H. Lee, and F. Marcellán

Abstract. A pair of quasi-definite linear functionals {u0, u1} is a
generalized ∆-coherent pair if monic orthogonal polynomials

{Pn(x)}∞n=0

and
{Rn(x)}∞n=0

relative to u0 and u1, respectively, satisfy a relation

Rn(x) =
1

n + 1
∆Pn+1(x)− σn

n
∆Pn(x)− τn−1

n− 1
∆Pn−1(x), n ≥ 2,

where σn and τn are arbitrary constants and ∆p = p(x + 1)− p(x)
is the difference operator.

We show that if {u0, u1} is a generalized ∆-coherent pair, then
u0 and u1 must be discrete-semiclassical linear functionals. We also
find conditions under which either u0 or u1 is discrete-classical.

1. Introduction

Concerning the problem of evaluating the Fourier coefficients in the
Fourier expansion of functions by polynomials orthogonal with respect
to a Sobolev inner product

(1.1) φλ(f, g) :=
∫ ∞

−∞
f(x)g(x)dµ0(x) + λ

∫ ∞

−∞
f ′(x)g′(x)dµ1(x),

where dµ0 and dµ1 are positive Borel measures with finite moments
and λ ∈ R+, Iserles et al. [8] introduced the concept of coherency and
symmetric coherency for the measures dµ0 and dµ1.
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After the work by Iserles et al. [8], there have been many works
[4, 12, 13, 14, 15, 17, 18, 20] on coherency from different points of view
even allowing dµ0 and dµ1 to be signed or even complex valued measures.
In particular, in [10], we introduced generalized coherency which unifies
both coherency and symmetric coherency.

In [2, 3], they introduced a discrete version of coherency, that is,
∆-coherency. Here ∆ is the difference operator defined as ∆f(x) =
f(x + 1)− f(x).

In this work, we will study the generalized ∆-coherency in a more
general setting by using the formal approach to orthogonality via linear
functionals as was done in [10]. See also [2, 3, 14, 15].

In Section 2, we collect basic definitions, notations, and lemmas that
we will use later. In Section 3, we define (see Definition 4.1) and analyze
the generalized ∆-coherency.

2. Preliminaries

Let P be the linear space of all polynomials in one variable with
complex coefficients. We denote the degree of a polynomial P (x) by
deg(P ) with the convention that deg(0) = −1. A polynomial system(PS)
is a sequence of polynomials {Pn(x)}∞n=0 with deg(Pn) = n, n ≥ 0.

A linear functional u on P is called a moment functional and we
denote its action on a polynomial φ(x) by 〈u, φ〉. We say that a mo-
ment functional u is quasi-definite(positive-definite, respectively) if its
moments an := 〈u, xn〉, n ≥ 0, satisfy the Hamburger condition

∆n(u) := det[ai+j ]ni,j=0 6= 0, (∆n(u) > 0, respectively), n ≥ 0.

Definition 2.1. A PS {Pn(x)}∞n=0 is said to be an orthogonal poly-
nomial system(OPS) if there is a linear functional u on P such that

〈u, PmPn〉 = pnδmn, m, n ≥ 0,

where pn are non-zero constants. In this case, we call {Pn(x)}∞n=0 an
OPS relative to u and u is said to be an orthogonalizing moment func-
tional of {Pn(x)}∞n=0. A linear functional u is quasi-definite if and only
if there is an OPS {Pn(x)}∞n=0 relative to u (see [6]). Moreover, in this
case, each Pn(x) is uniquely determined up to a non-zero constant factor.

For a moment functional u, a polynomial φ(x), and a constant c, we
define moment functionals ∆u, φu , and (x− c)−1u by

〈∆u, p(x)〉 := −〈u,∆p(x− 1)〉;
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〈φu, p〉 := 〈u, φp〉;

〈(x− c)−1u, p〉 := 〈u,
p(x)− p(c)

x− c
〉, p ∈ P.

Then we have for polynomials p(x) and q(x)

∆(p(x)q(x)) = q(x)∆p(x) + p(x + 1)∆q(x),

∆(p(x)u) = p(x + 1)∆u + ∆p(x)u.

For a constant c, let δ(x− c) be the moment functional defined by

〈δ(x− c), p(x)〉 = p(c), p(x) ∈ P.
For a PS {Pn(x)}∞n=0, the dual basis of {Pn(x)}∞n=0 is the sequence

{un}∞n=0 of moment functionals defined by the relation

〈un, Pm〉 = δmn, m, n ≥ 0.

In particular, u0 is said to be the canonical moment functional of
{Pn(x)}∞n=0. If {Pn(x)}∞n=0 is a monic OPS(MOPS), then {Pn(x)}∞n=0

must be orthogonal with respect to u0 and

un =
Pn(x)

pn
u0, n ≥ 0.

Definition 2.2. ([16]) A quasi-definite moment functional u is said
to be discrete-semiclassical if u satisfies

(2.1) ∆(ϕu) = ψu,

for some polynomials ϕ(x) and ψ(x) with (ϕ,ψ) 6= (0, 0). We then
have deg(ϕ) ≥ 0 and deg(ψ) ≥ 1. The corresponding OPS is called a
discrete-semiclassical OPS.

For a discrete-semiclassical moment functional u,

s := minmax(deg(ϕ)− 2,deg(ψ)− 1)

the class number of u, where the minimum is taken over all pairs (ϕ,ψ) 6=
(0, 0) of polynomials satisfying (2.1). In particular, a discrete-semi-
classical moment functional of class 0 is called a discrete-classical mo-
ment functional.

Discrete-classical moment functionals can be characterized in many
other ways. For an MOPS {Pn(x)}∞n=0 relative to u, the following state-
ments are all equivalent ([1]):

(i) {Pn(x)}∞n=0 is a discrete-classical OPS, that is, ∆(ϕu) = ψu for
some polynomial ϕ and ψ with 0 ≤ deg(ϕ) ≤ 2 and deg(ψ) = 1;
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(ii) ([7])

{Qn(x) :=
1

n + 1
∆Pn+1}∞n=0

is also an MOPS. Then {Qn(x)}∞n=0 is orthogonal relative to ũ =
ϕu satisfying

(2.2) ∆(ϕ(x)ũ) = (ψ(x) + ∆ϕ(x− 1))ũ;

(iii) There are polynomials ϕ and ψ with 0 ≤ deg(ϕ) ≤ 2 and deg(ψ) =
1 such that

(2.3)
ϕ(x)∆2Pn(x) + ψ(x)∆Pn(x)

= (
1
2
n(n− 1)∆2ϕ(x) + n∆ψ(x))Pn(x + 1), n ≥ 0 ([11]).

It is well-known that there are essentially four distinct discrete-class-
ical OPS’s, up to a linear change of variable ([7, 19]):

(i) Charlier polynomials {c(µ)
n (x)}∞n=0: ϕ(x) = µ, ψ(x) = µ − x (µ >

0);
(ii) Meixner polynomials {m(γ,µ)

n (x)}∞n=0: ϕ(x) = µ(γ + x), ψ(x) =
µγ − x(1− µ) (γ > 0, µ ∈ (0, 1));

(iii) Kravchuk polynomials {k(p)
n (x; N)}∞n=0: ϕ(x) = N − x, ψ(x) =

Np−x
p (p ∈ (0, 1), N ∈ Z+);

(iv) Hahn polynomials {h(α,β)
n (x,N)}∞n=0: ϕ(x) = (N−x−1)(x+β+1),

ψ(x) = (N − 1)(β + 1)− x(α + β + 2) (α, β > −1, N ∈ Z+).

We denote by u
(µ)
c , u

(γ,µ)
m , u

(p,N)
k , and u

(α,β,N)
h the orthogonalizing mo-

ment functionals for Charlier, Meixner, Kravchuk, and Hahn polynomi-
als, respectively. Notice that the moment functionals for Kravchuk and
Hahn polynomials are not quasi-definite.

For an MOPS {Pn(x)}∞n=0 relative to u and complex numbers ξ and
c, let {P ∗

n(ξ; x)}∞n=0, {P (1)
n (x)}∞n=0, and {Pn(c;x)}∞n=0 be the monic ker-

nel polynomials, the monic numerator polynomials(also called the as-
sociated polynomials of first kind (see [6])), and the monic co-recursive
polynomials of {Pn(x)}∞n=0, respectively:

P ∗
n(ξ;x) =

〈u, P 2
n〉

Pn(ξ)

n∑

k=0

Pk(x)Pk(ξ)
〈u, P 2

k 〉
, n ≥ 0([6]);

Pn(x) = P ∗
n(ξ; x)− Pn−1(ξ)

Pn(ξ)
〈u, P 2

n〉
〈u, P 2

n−1〉
P ∗

n−1(ξ; x), n ≥ 1([9]);(2.4)

Pn(c;x) = Pn(x)− cP
(1)
n−1(x), n ≥ 1([5]).(2.5)
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It is well-known (see Theorem 7.1 on p. 36 in [6]) that for a quasi-
definite moment functional u with MOPS {Pn(x)}∞n=0 and a complex
number ξ, (x− ξ)u is also quasi-definite if and only if Pn(ξ) 6= 0, n ≥ 1.
Then the MOPS relative to (x − ξ)u is {P ∗

n(ξ; x)}∞n=0. Moreover (see
Theorem 3.6 in [9]), if u is discrete-semiclassical of class s satisfying
(2.1), then (x− ξ)u is also discrete-semiclassical of class





s− 1 if ϕ(ξ) = ψ(ξ) = 0

s if ϕ(ξ) = 0 and ψ(ξ) 6= 0

s + 1 if ϕ(ξ) 6= 0.

Conversely if (x − ξ)u is discrete-semiclassical of class s, then u is
discrete-semiclassical of class either s− 1, s, or s + 1.

Proposition 2.1. Let {Pn(x)}∞n=0 and {Qn(x)}∞n=0 be the MOPS’s
relative to u and v respectively. Then, {Qn(x)}∞n=0 = {P ∗

n(ξ; x)}∞n=0

for some complex number ξ if and only if there are complex numbers
αn(n ≥ 1) such that α1 6= 0 and

Pn(x) = Qn(x)− αnQn−1(x), n ≥ 0 (Q−1(x) = 0, α0 arbitrary).

In this case αn 6= 0, n ≥ 1 (cf. (2.4)), Pn(ξ) 6= 0, n ≥ 1 and (x−ξ)u = v.

Proof. See Theorem 3.2, Theorem 3.3, and Theorem 3.4 in [9].

3. Generalized ∆w-coherency

Consider the inner product on P

(3.1) φλ(f, g) =
∫

R
f(x)g(x)dρ0(x) + λ

∞∑

k=1

∆w1f(yk)∆w1g(yk)ρ1(yk),

where ρ1 is a discrete measure supported on a uniform lattice {yk}∞k=0
with step w1.

We let ∆w1 be the difference operator defined by

∆w1f(x) =
f(x + w1)− f(x)

w1
.

Notice that lim
w1→0

∆w1 is the standard derivative operator.

We will consider the basis x[0] = 1, x[n] = x(x−w1) · · · (x−(n−1)w1),
n = 1, 2, . . . in the linear space P. Notice that ∆w1x

[n] = nx[n−1]. This
basis will play in our work the same role as the canonical basis for the
derivative operator.
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We introduce the generalized moments for the inner product (3.1) as
follows

µm,n = φλ(x[m], x[n]) = µ(0)
m,n + λmnµ

(1)
m−1,n−1.

Here µ
(0)
m,n and µ

(1)
m,n will denote the moments associated with the basis

(x[n])n∈N for the inner products

〈f, g〉0 =
∫

R
f(x)g(x)dρ0(x),

〈f, g〉1 =
∞∑

k=1

f(yk)g(yk)ρ1(yk).

Using the standard Gram-Schmidt orthogonalization process, we can
obtain a sequence {Qn(x; λ)}∞n=0 of monic polynomials orthogonal with
respect to the inner product (3.1). Notice that when w1 → 0, (3.1)
becomes a Sobolev inner product in the standard sense.

Thus, the monic polynomial {Qn(x; λ)}∞n=0 can be explicitly given by
a determinantal expression

Qn(x; λ)

=

∣∣∣∣∣∣∣∣∣∣∣∣

µ
(0)
0,0 µ

(0)
1,0 · · · µ

(0)
n,0

µ
(0)
0,1 µ

(0)
1,1 + λµ

(1)
0,0 · · · µ

(0)
n,1 + λnµ

(1)
n−1,0

...
...

. . .
...

µ
(0)
0,n−1 µ

(0)
1,n−1 + λ(n− 1)µ

(1)
0,n−2 · · · µ

(0)
n,n−1 + λn(n− 1)µ

(1)
n−1,n−2

1 x[1] · · · x[n]

∣∣∣∣∣∣∣∣∣∣∣∣

det
[
µ

(0)
k,j + λkjµ

(1)
k−1,j−1

]n−1

k,j=0

.

Dividing the numerator and the denominator by λn−2 and taking limit
in the resulting expression when λ →∞, we get

Sn(x) = lim
λ→∞

Qn(x; λ)

=

∣∣∣∣∣∣∣∣∣∣∣∣

µ
(0)
0,0 µ

(0)
1,0 · · · µ

(0)
n,0

0 µ
(1)
0,0 · · · nµ

(1)
n−1,0

...
...

. . .
...

0 (n− 1)µ(1)
0,n−2 · · · n(n− 1)µ(1)

n−1,n−2

1 x[1] · · · x[n]

∣∣∣∣∣∣∣∣∣∣∣∣

det
[
kjµ

(1)
k−1,j−1

]n−1

k,j=0

with the convention µ
(0)
0,0 = 1, i.e., we assume that ρ0 is a probability

measure.
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Theorem 3.1. The following statements hold.

(i) 〈Sn(x), 1〉0 = 0;

(ii) 〈∆w1Sn(x), x[k]〉1 = 0, k = 0, 1, . . . , n− 2.

Proof. Both results are direct consequences of the determinantal rep-
resentation of Sn(x).

If {Pn(x)}∞n=0 and {Rn(x)}∞n=0 denote, respectively, the MOPS rela-
tive to ρ0 and ρ1, then we get from Theorem 3.1

∆w1Sn(x) = nRn−1(x).

On the other hand

nRn−1(x) = ∆w1Pn(x) +
n−1∑

k=1

αn,k∆w1Pk(x).

Thus

Sn(x) = Pn(x) +
n−1∑

k=1

αn,kPk(x) + αn,0P0(x).

But by taking into account of (i) in Theorem 3.1, αn,0 = 0 and, as a
consequence,

Sn(x) = Pn(x) +
n−1∑

k=1

αn,kPk(x).

Definition 3.1. The pair of measures {ρ0, ρ1} is said to be a gen-
eralized ∆w-coherent pair if there is a non-negative integer N such that

(3.2) nRn−1(x) = ∆wPn(x) +
n−1∑

k=n−N

αn,k∆wPk(x)

with αn,n−N 6= 0.

In particular, if N = 1 we get the usual ∆w-coherent pairs considered
by I. Area, E. Godoy, and F. Marcellán [2, 3] for w = 1.

On the other hand, if we expand the polynomial Sn(x) in terms of
the MOPS {Qn(x;λ)}∞n=0, then we get

Sn(x) = Qn(x; λ) +
n−1∑

k=0

βn,kQk(x; λ),

where

βn,k =
φλ(Sn(x), Qk(x; λ))

φλ(Qk(x; λ), Qk(x; λ))
.
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Notice that according to (3.1), the numerator is

〈Sn(x), Qk〉0 + λ〈∆w1Sn(x),∆w1Qk(x;λ)〉1
= 〈Sn(x), Qk(x)〉0 + λ〈nRn−1(x),∆w1Qk(x; λ)〉1.

From (3.2), the first term vanishes when k < n−N , while the second
one vanishes for k ≤ n− 1.

Thus βn,k = 0 for k < n−N . For k = n−N , we get

βn,n−N =
αn,n−N 〈Pn−N (x), Pn−N (x)〉0
φλ(Qn−N (x; λ), Qn−N (x; λ))

6= 0.

Thus, generalized ∆w1-coherency yields

(3.3) Qn(x; λ) +
n−1∑

k=n−N

βn,kQk(x; λ) = Pn(x) +
n−1∑

k=0

αn,kPk(x),

where βn,n−N 6= 0 and αn,n−N 6= 0. Here

βn,n−N = αn,n−N
〈Pn−N (x), Pn−N (x)〉0

φλ(Qn−N (x; λ), Qn−N (x; λ))
.

Notice that if (3.3) holds, then taking into account of (3.1) for j =
0, 1, . . . , n−N − 1,

0 = φλ(Qn(x;λ) +
n−1∑

k=n−N

βn,kQk(x; λ), x[j])

= 〈Pn(x) +
n−1∑

k=n−N

αn,kPk(x), x[j]〉0 + λ〈∆w1(Pn(x)

+
n−1∑

k=n−N

αn,kPk(x)),∆w1x
[j]〉1(3.4)

= λ〈∆w1(Pn(x) +
n−1∑

k=n−N

αn,kPk(x)), jx[j−1]〉1,

i.e.,

∆w1(Pn(x) +
n−1∑

k=n−N

αn,kPk(x)) = nRn−1(x) +
n−2∑

k=n−N−1

γn,kRk(x),

according to the orthogonality condition (3.4).



Generalized ∆-coherent pairs 985

In this work we are interested in the case of generalized ∆w1-coherent
pairs when N = 2, i.e, the MOPS’s relative to ρ0 and ρ1 satisfy

(3.5) nRn−1(x) = ∆w1(Pn(x) + αn,n−1Pn−1(x) + αn,n−2Pn−2(x))

with αn,n−2 6= 0. For a sake of simplicity we will assume w1 = 1.
We now give an example of generalized ∆-coherent pair for N = 2.

Let ρ0(x) =
µxΓ(γ + x)

Γ(x + 1)Γ(γ)
(0 < µ < 1, γ > 0) be the Meixner weight

function supported in the set N0 = {0} ∪ N. It is well known [19] that
the sequence of monic Meixner polynomials {M (γ,µ)

n (x)}∞n=0 satisfies

M (γ,µ)
n (x) =

1
n + 1

∆M
(γ−1,µ)
n+1 (x),

M (γ,µ)
n (x) =

1
n + 1

∆M
(γ,µ)
n+1 (x) +

µ

1− µ
∆M (γ,µ)

n (x).(3.6)

Thus, if the sequence of monic polynomials {Rn(x)}∞n=0 orthogonal
relative to a discrete measure ρ1 satisfies

Rn−1(x) = M
(γ,µ)
n−1 (x) + βn−1M

(γ,µ)
n−2 (x)

with βn−1 6= 0, i.e., the pair {ρ0, ρ1} is a ∆-coherent pair with N = 1,
then from (3.6) we get

nRn−1(x) = ∆(M (γ,µ)
n (x) +

µ

1− µ
nM

(γ,µ)
n−1 (x))

+ βn−1(
n

n− 1
∆M

(γ,µ)
n−1 (x) +

µ

1− µ
M

(γ,µ)
n−2 (x)),

i.e., (3.5) holds.
Thus every ∆-coherent pair with ρ0(Meixner weight) and N = 1 is a

generalized ∆-coherent pair with N = 2.

4. Generalized ∆-coherent pairs

Let u0 and u1 be quasi-definite moment functionals with correspond-
ing MOPS’s {Pn(x)}∞n=0 and {Rn(x)}∞n=0, respectively, satisfying three-
term recurrence relations

Pn+1(x) = (x− bn)Pn(x)− cnPn−1(x), n ≥ 0
and 〈u0, P

2
n〉 = pn, n ≥ 0;(4.1)

Rn+1(x) = (x− βn)Rn(x)− γnRn−1(x), n ≥ 0
and 〈u1, R

2
n〉 = rn, n ≥ 0.(4.2)
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Definition 4.1. {u0, u1} is a generalized ∆-coherent pair if there
exist complex numbers {σn}∞n=1 and {τn}∞n=1 such that

(4.3) Rn(x) = Qn(x)− σnQn−1(x)− τn−1Qn−2(x), n ≥ 0,

where Q−1(x) = Q−2(x) = 0, Qn(x) = 1
n+1∆Pn+1(x), n ≥ 0, and

σ0 = τ−1 = τ0 = 0.
In particular, if σn 6= 0 for some n ≥ 1 and τn = 0, n ≥ 1(resp.

τn 6= 0 for some n ≥ 1), then we call {u0, u1} a 2-term(resp. 3-term)
∆-coherent pair.

In these cases, we call u1(resp. u0) a “companion” of u0(resp. u1).

In the following, we always assume that {u0, u1} is a generalized ∆-
coherent pair unless stated otherwise.

Proposition 4.1. We have

(4.4) n
Pn(x)

pn
u0 = ∆(Gn(x)u1), n ≥ 1,

where

(4.5) Gn(x) =
τn

rn+1
Rn+1(x) +

σn

rn
Rn(x)− 1

rn−1
Rn−1(x), n ≥ 1,

so that n− 1 ≤ deg(Gn) ≤ n + 1.

Proof. Let u
(0)
n , ũ

(0)
n , and u

(1)
n , n ≥ 0 be the dual bases of {Pn(x)}∞n=0,

{Qn(x)}∞n=0, and {Rn(x)}∞n=0, respectively. Then, it is easy to see that

ũ(0)
n = u(1)

n − σn+1u
(1)
n+1 − τn+1u

(1)
n+2 = −Gn+1u1 (n ≥ 0).

Hence,

∆(ũ(0)
n ) = −(n+1)u(0)

n+1 = −(n+1)
1

pn+1
Pn+1u0 = −∆(Gn+1u1), n ≥ 0.

Therefore, we have the result.

Theorem 4.2. Both u0 and u1 are discrete-semiclassical (of class ≤ 6
for u0 and of class ≤ 2 for u1) satisfying

(4.6) ∆(ρiui) = ηiui, i = 0, 1,

as well as

(4.7) ρ1(x + 1)∆u1 = ν(x)u1, ρ1(x)u0 = H(x)u1, ν(x)u0 = H(x)∆u1,
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where

(4.8) ρ1(x) := 2
P2(x− 1)

p2
G1(x)− P1(x− 1)

p1
G2(x),

η1(x) := 2
∆P2(x− 1)

p2
G1(x)− ∆P1(x)

p1
G2(x),

(4.9) ρ0(x) := ρ1(x)H(x),

η0(x) := H(x + 1)ν(x) + ρ1(x + 1)(∆H(x) + ∆H(x− 1)),

(4.10) H(x) := G1(x + 1)∆G2(x)−G2(x + 1)∆G1(x),

ν :=
P1(x)

p1
∆G2(x)− 2

P2(x)
p1

∆G1(x).

Moreover,

(4.11) n
Pn(x)

pn
H(x) = ρ1(x + 1)∆Gn(x) + ν(x)Gn(x), n ≥ 1.

Proof. Set n = 1 and 2 in (4.4). Then

P1(x)
p1

u0 = ∆G1(x)u1 + G1(x + 1)∆u1,(4.12)

2
P2(x)

p2
u0 = ∆G2(x)u1 + G2(x + 1)∆u1.(4.13)

Eliminating u0, u1, and ∆u1 from (4.12) and (4.13) gives (4.6) for i = 1
and (4.7).

We also have ∆(ρ0(x)u0) = ∆(ρ1(x)H(x)u0) = ∆(H(x−1)H(x)u1) =
η0u0 by (4.7) and (4.9), which gives (4.6) for i = 0.

By (4.4) and (4.7), we have

n
Pn(x)

pn
H(x)u1

= n
Pn(x)

pn
ρ1(x + 1)u0 = (ρ1(x + 1)∆Gn(x) + ν(x)Gn(x + 1))u1
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since ρ1(x + 1)∆u1 = ν(x)u1 so that (4.11) holds. It is now easy to see
that H = τ1τ2

r2r3
x4+lower degree terms so that deg(H) ≤ 4 and

(4.14) deg(H) =





4 if τ1τ2 6= 0
3 if τ1 = 0, σ1τ2 6= 0
2 if (i) σ1 = τ1 = 0, τ2 6= 0 or

(ii) τ1 6= 0, τ2 = 0, σ1σ2 + τ1 6= 0 or
(iii) τ1 = τ2 = 0, σ1σ2 6= 0

1 if (i) τ1 6= 0, τ2 = σ1σ2 + τ1 = 0 or
(ii) σ1 = τ1 = τ2 = 0, σ2 6= 0

0 if σ2 = τ1 = τ2 = 0.

Hence H 6≡ 0 so that 0 ≤ deg(H) ≤ 4, 0 ≤ deg(ρ1) ≤ 4, 0 ≤ deg(ρ0) ≤ 8,
and 0 ≤ deg(ν) ≤ 3, by (4.7) and (4.9). Hence u0 and u1 are discrete-
semiclassical of class ≤ 6 and ≤ 2, respectively, and so 1 ≤ deg(η1) ≤ 3,
1 ≤ deg(η0) ≤ 7.

Marcellán et al. ([2]) proved: if {u0, u1} is a 2-term ∆-coherent pair,
then either u0 or u1 must be classical under some extra relations between
u0 and u1.

We say that a quasi-definite moment functional u with MOPS

{Pn(x)}∞n=0

is strongly discrete-classical if there is another MOPS {Sn(x)}∞n=0 rela-
tive to w such that Pn(x) = 1

n+1∆Sn+1(x), n ≥ 0. Then u and w must
be discrete-classical moment functionals of the same type satisfying

∆(ϕ(x)u) = ψ(x)u, ∆(ϕ(x)w) = (ψ(x+1)−∆ϕ(x))w, and ϕ(x)w = u.

Discrete-classical moment functionals u
(µ)
c and u

(γ,µ)
m (γ > 1) are strongly

discrete-classical.
In our more general case, both u0 and u1 may not be discrete-classical

but we have:

Theorem 4.3. ([10]) Assume that either u0 is discrete-classical or u1

is strongly discrete-classical.

(i) If τk = 0 for some k ≥ 1, then τn = 0 for all n ≥ 1.
(ii) If σj = 0 for some j ≥ 1 and τk = 0 for some k ≥ 1, then

σn = τn = 0 for all n ≥ 1 so that u0 and u1 must be discrete-
classical of the same family.

Proof. See the proof of Theorem 3.4 in [10].
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Proposition 4.4. If u0 is discrete-classical, then G1u1 is also dis-
crete-classical of the same type as u0. Moreover if deg(G1) = 0, then
σn = τn = 0, n ≥ 1. Moreover if deg(G1) = 1, i.e., G1(x) = g1(x −
ξ) (g1 6= 0), then Qn(ξ) 6= 0, σn = Rn−1(ξ)

Rn(ξ) γn, τn = 0, n ≥ 1, and

{Qn(x)}∞n=0 = {R∗
n(ξ; x)}∞n=0.

Proof. Assume u0 is a discrete-classical moment functional satisfying
∆(ϕu0) = ψu0 with 0 ≤ deg(ϕ) ≤ 2 and deg(ψ) = 1. Then (cf. (2.3))

ϕ(x)∆2Pn(x) + ψ(x)∆Pn(x) = λnPn(x + 1), n ≥ 0,

where λn = 1
2n(n − 1)∆2ϕ(x) + n∆ψ(x) and λn 6= 0, n ≥ 1. Hence

ψ(x) = λ1P1(x) so that by (3.4) for n = 1

∆(ϕu0) = λ1P1u0 = λ1p1∆(G1u1).

Therefore G1u1 = (λ1p1)−1ϕu0 is also a discrete-classical moment func-
tional of the same type as u0. If deg(G1) = 0, then σ1 = τ1 = 0(cf.
(4.5)) so that σn = τn = 0, n ≥ 1 by Theorem 4.3. If deg(G1) = 1, then
σ1 6= 0 and τ1 = 0 so that σn 6= 0, τn = 0, n ≥ 1, and (x − ξ)u1 =
(λ1p1g1)−1ϕu0. Hence, (x − ξ)u1 is quasi-definite so that Qn(ξ) 6=
0, n ≥ 1, {Qn(x)}∞n=0 = {R∗

n(ξ; x)}∞n=0, and σn = Rn−1(ξ)
Rn(ξ) γn, n ≥ 1

(see (2.4)).

The discrete-semiclassical character of u0 and u1 depends on deg(H).
It is the same as for generalized coherent pair [10]. In this paper, we
see only the cases when {u0, u1} has discrete-classical character, which
occurs when deg(H) = 2 (iii) and deg(H) = 4 in (4.14).

Consider the case deg(H) = 2 (iii), that is, τ1 = τ2 = 0 and σ1σ2 6= 0.
In this case, there are three cases: H(x) = h(x − ξ)(x − ξ − 1) or
H(x) = h(x − ξ)(x − ζ) (ζ 6= ξ, ξ ± 1) and τn = 0, n ≥ 1 or H(x) =
h(x− ξ)(x− ζ) (ζ 6= ξ, ξ ± 1) and τn 6= 0 for some n ≥ 3.

Theorem 4.5. (cf. [3, 10]) Assume τ1 = τ2 = 0 and σ1σ2 6= 0 so that
deg(H) = 2.

(i) If H(x) = h(x−ξ)(x−ξ−1), then u0 and G1u1 are discrete-classical
of the same type, deg(η1) = 2, and σn 6= 0, τn = 0, n ≥ 1.

(ii) If H(x) = h(x − ξ)(x − ζ) (ζ 6= ξ, ξ ± 1), τn = 0, n ≥ 1, then u1

is discrete-classical. Moreover, if u1 is strongly discrete-classical,
then σn 6= 0, n ≥ 1.

(iii) If τn 6= 0 for some n ≥ 3, then H(x) = h(x−ξ)(x−ζ) (ζ 6= ξ, ξ±1)
and 1 ≤ s0 ≤ 3, 0 ≤ s1 ≤ 1, and u1 cannot be strongly discrete-
classical.
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Proof. Note that deg(G1) = 1 and deg(G2) = 2 when τ1 = τ2 = 0
and σ1σ2 6= 0.

(i) The following proof is essentially the same as that of Theorem 4.2
in [3], where it is assumed that σn 6= 0 and τn = 0, n ≥ 1.
Assume H(x) = h(x− ξ)(x− ξ − 1) (h = g1g2). Then

H(ξ) = G1(ξ+1)∆G2(ξ)−g1G2(ξ+1) = 0 and ∆H(ξ) = 2g2G1(ξ+1) = 0

so that G1(ξ + 1) = G2(ξ + 1) = 0. Hence G1(x) = g1(x − ξ − 1)
and G2(x) = G1(x)G̃2(x), deg(G̃2) = 1. Then

ρ1(x) = G1(x)ρ̃1(x), 0 ≤ deg(ρ̃1) ≤ 2

η1(x) = G1(x)η̃1(x), 0 ≤ deg(η̃1) ≤ 1.

Multiplying (4.12) by G̃2 and then subtracting (4.13), we have

(4.15) ρ̃1(x)u0 = G1(x)∆G̃2u1 = g2G1(x)u1

so that by (4.12) ∆(ρ̃1u0) = g2∆(G1(x)u1) = g2
P1(x)

p1
u0. There-

fore, u0 is discrete-classical and G1u1 is also discrete-classical of
the same type as u0 by Proposition 4.4 satisfying

∆(ρ̃1(x)G1(x)u1) = η̃1(x)G1(x)u1.

Hence deg(η̃1) = 1 and so deg(η1) = 2. Finally σn 6= 0 and
τn = 0, n ≥ 1, by Theorem 4.3.

(ii) It is also proved in Theorem 4.6 in [3] assuming σn 6= 0 and τn =
0, n ≥ 1. But, the inspection of the proof of Theorem 4.6 in [3]
reveals that we only need σ1σ2 6= 0 and τn = 0, n ≥ 1. Then, by
Theorem 4.3, σn 6= 0, n ≥ 1, if u1 is strongly discrete-classical.

(iii) Assume τn 6= 0 for some n ≥ 3. Then, H(x) cannot have a repeated
zero by (i) so that H(x) = h(x− ξ1)(x− ζ) (ζ 6= ξ, ξ ± 1) and the
conclusion follows from Theorem 4.3.

The relation (4.15) between u0 and u1 also holds in case Theorem 4.5
(ii) (see Theorem 4.6 in [3]) for ξ = ξ1 or ξ2. Hence we have in case (i)
or (ii) in Theorem 4.5

hu1 = (x− ξ − 1)−1ρ̃1u0 + r0δ(x− ξ).

Now consider the case deg(H) = 4, that is, τ1τ2 6= 0.

Theorem 4.6. If G1 divides G2, then u0 and G1u1 are discrete-
classical of the same type, deg(η1) = 3, and τn 6= 0, n ≥ 1. More
precisely, we have:
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(i) If H(x) = h(x−ξ)(x−ξ−1)(x−ξ−2)(x−ξ−3) and G1(ξ+1) = 0,
then G1 divides G2

u1 = (g2)−1(x− ξ)−2ρ̃1u0 + r0δ(x− ξ) + (R1(0) + ξ)r0δ
′(x− ξ).

(ii) If H(x) = h(x− ξ)(x− ξ− 1)(x− ζ)(x− ζ − 1) (ζ 6= ξ, ξ +1, ξ +2)
and G1(ξ + 1), then G1 divides G2 and

u1 =(p1p2g2)−1(x− ξ1)−1(x− ξ2)−1ρ̃1u0

+
r0

ξ1 − ξ2
[(R1(0) + ξ1)δ(x− ξ2)− (R1(0) + ξ2)δ(x− ξ1)].

Here, ρ1(x) = G1(x)ρ̃1(x).

Proof. Since τ1τ2 6= 0, deg(G1) = 2 and deg(G2) = 3. Assume that
G1 divides G2. Set G2 = G1G̃2, deg(G̃2) = 1. Then

ρ1(x) = G1(x)ρ̃1 (0 ≤ deg(ρ̃1) ≤ 2)

η1 = G1(x)η̃1 (0 ≤ deg(η̃1) ≤ 1).

As in the proof of Theorem 4.2, by eliminating ∆u1 from (4.12) and
(4.13), we obtain

(4.16) ρ̃1(x + 1)u0 = G1(x)∆G̃2u1

so that by (4.12),

∆(ρ̃1(x + 1)u0) = ∆G̃2(x)∆(G1(x)u1) = ∆G̃2(x)
P1(x)

p1
u0.

Hence u0 and G1u1 are discrete-classical of the same type by Proposition
4.4 and ∆(ρ̃1(x)G1(x)u1) = η̃1(x)G1(x)u1. Hence, deg(η̃1(x)) = 1 and
so deg(η1(x)) = 3. Finally, τn 6= 0, n ≥ 1 by Theorem 4.3.

(i) H(x) = h(x− ξ)(x− ξ− 1)(x− ξ− 2)(x− ξ− 3). Then ∆3H(x) =
24h(x− ξ). By (4.10), we have

H(x) = G1(x + 1)∆G2(x)−G2(x + 1)∆G1(x)

∆H(x) = G1(x + 1)∆2G2(x)−G2(x + 1)∆2G1

∆2H(x) = G1(x + 2)∆3G2 + ∆G1(x + 1)∆2G2(x + 1)(4.17)

−∆G2(x + 1)∆2G1

∆3H(x) = ∆3G2(∆G1(x + 1) + ∆G1(x + 2)).(4.18)

Since G1(ξ + 1) = 0 i.e., G1(x) = g1(x− ξ − 1)(x−m) so we have

(4.19) ∆G1(x) = g1(2x− ξ −m).

Since ∆3H(ξ) = 0, we have ∆G1(ξ + 1) + ∆G1(ξ + 2) = 0 so that
m = ξ + 3. Hence G1(ξ + 3) = 0. Since H(ξ) = H(ξ + 2) = 0 but
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∆G1(ξ) 6= 0 and ∆G1(ξ+2) 6= 0, we have G2(ξ+1) = G2(ξ+3) = 0
by (4.18). Hence G1(x) divides G2(x).

(ii) Assume H(x) = h(x− ξ)(x− ξ − 1)(x− ζ)(x− ζ − 1) (ζ 6= ξ, ξ +
1, ξ + 2). Then since ∆3H(x) = 24h(x − ξ+ζ+2

2 ), by using (4.19),
we have m = ζ +1. Hence G1(ζ +1) = 0. Since H(ξ) = H(ζ) = 0,
but ∆G1(ξ) 6= 0 and ∆G1(ζ) 6= 0, by (4.18) we have G2(ξ + 1) =
G2(ζ + 1) = 0. Hence G1(x) divides G2(x).

By the essentially same methods used in [10] for ordinary coherent
pairs, we now have:

Theorem 4.7. Let u0 be a discrete-classical moment functional satis-
fying ∆(ϕu0) = ψu0 (0 ≤ deg(ϕ) ≤ 2, deg(ψ) = 1). Assume 〈u0, ϕ〉 = 1.
Then u1 is a 3-term companion of u0 if and only if either

(4.20) u1 = (x− ξ1)−1(x− ξ2)−1ϕu0 + aδ(x− ξ1) + bδ(x− ξ2)

or

(4.21) u1 = (x− ξ1)−2ϕu0 + aδ(x− ξ1) + bδ′(x− ξ1)

for some complex numbers ξ1 6= ξ2, a, and b satisfying

(i) in case of (4.20)





a + b 6= 0,

a(ξ1 − aξ1 − bξ2)2 + b(ξ2 − aξ1 − bξ2)2 6= 1,∣∣∣∣
〈u1, Pn+1〉 〈u1, Pn〉

〈(x− ξ1)u1, Pn+1〉 〈(x− ξ1)u1, Pn〉
∣∣∣∣ 6= 0, n ≥ 0;

(ii) in case of (4.21)




a 6= 0, a− b2 6= 0,∣∣∣∣
〈u1, Pn+1〉 〈u1, Pn〉

〈(x− ξ1)u1, Pn+1〉 〈(x− ξ1)u1, Pn〉
∣∣∣∣ 6= 0, n ≥ 0.

Proof. See Theorem 4.5 in [10].

Conversely we have:

Theorem 4.8. Let u1 be a strongly discrete-classical moment func-
tional satisfying ∆(ϕu1) = ψu1 (0 ≤ deg(ϕ) ≤ 2, deg(ψ) = 1) and
{Tn(x)}∞n=0 the discrete-classical MOPS relative to w with 1

n+1∆Tn+1(x)
= Rn(x), n ≥ 0. Then u0 is a 3-term companion of u1 if and only if
either

u0 = (x− ξ1)(x− ξ2)w
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for some complex numbers ξ1 6= ξ2 satisfying
∣∣∣∣
Tn(ξ1) Tn+1(ξ1)
Tn(ξ2) Tn+1(ξ2)

∣∣∣∣ 6= 0, n ≥ 1

or

u0 = (x− ξ1)2w

for some complex number ξ1 satisfying
∣∣∣∣
Tn(ξ1) Tn+1(ξ1)
T ′n(ξ1) T ′n+1(ξ1)

∣∣∣∣ 6= 0, n ≥ 1.

Proof. See Theorem 4.6 in [10].
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