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A B S T R A C T

Climate variables are known to be subject to abrupt changes when some threshold levels are surpassed. We
use data for the last 798,000 years on global ice volume (Ice), atmospheric carbon dioxide level (CO2), and
Antarctic land surface temperature (Temp) to model and measure those long-run nonlinear climate effects.
The climate variables have very long and asymmetric cycles, created by periods of upward trends, followed by
periods of downward trends driven by exogenous orbital variables. The exogenous orbital variables considered
by the Milankovitch cycles are eccentricity of Earth’s orbit, obliquity, and precession of the equinox. We
show that our new score-driven threshold ice-age models improve the statistical inference and forecasting
performance of competing ice-age models from the literature. The drawback of using our 1000-year frequency
observations, is that we cannot measure the nonlinear climate effects of humanity created during the last
250 years, which are known to have generated abrupt structural changes in the Earth’s climate, due to
unprecedented high levels of CO2 and Temp, and low levels of Ice volume. On the other hand, the advantage
of using low-frequency data is that they allow us to obtain long-run forecasts on what would have occurred
if humanity had not burned fossil fuels since the start of the Industrial Revolution. These long-run forecasts
can serve as benchmarks for the long-run evaluation of the impact of humanity on climate variables. Without
the impact of humanity on climate, we predict the existence of turning points in the evolution of the three
climate variables for the next 5,000 years: an upward trend in global ice volume, and downward trends in
atmospheric CO2 level and Antarctic land surface temperature.
1. Introduction

Climate change is the most important global issue on Earth. Com-
pared to the end of the 19th century, the global surface temperature
for the end of the 21st century is very likely to rise by 1.0 to 1.8
degrees Celsius (◦C) under the ‘‘very low greenhouse gas emissions
scenario’’, by 2.1 to 3.5 ◦C for the ‘‘intermediate scenario’’, and by
.3 to 5.7 ◦C under the worst-case scenario, ‘‘very high greenhouse
gas emissions scenario’’ (Intergovernmental Panel on Climate Change,
021). The latter scenario implies dramatic consequences on nature and
ildlife in terrestrial, wetland, and ocean ecosystems, and on humanity
ith respect to food and water security, migration, health, higher risk
f conflict worldwide, reduction of global economic product, and a
ossible collapse of the current societal organization. Climate change
s due to exogenous orbital variables during the history of Earth, and
artly the influence of humanity during the most recent 10,000 to
5,000 years.
First, during the 4.5 billion-year history of Earth, climate change

as driven by orbital variables which influenced global ice volume,
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atmospheric carbon dioxide (CO2) level, and land surface temperature.
The atmospheric CO2 level and land surface temperature are related to
melting glaciers and sea ice. Hence, we name the climate-econometric
models of those variables as ice-age models, in accordance with the
work of Castle and Hendry (2020). The main orbital variables which
drive Earth’s climate are: (i) changes in the non-circularity of Earth’s
orbit with a period of 100,000 years, (ii) changes in the tilt of Earth’s
rotational axis relative to the ecliptic with a period of 41,000 years,
and (iii) circular rotation of the rotational axis itself, which changes
the season at which Earth’s orbit is nearest to the Sun, with a period
that is between 19,000 to 23,000 years. The cycles of those variables
(i.e., the Milankovitch cycles) are the most important orbital variables
which influence Earth’s climate, and we use them as strictly exogenous
explanatory variables in our climate-econometric models.

Second, the influence of humanity on Earth’s climate started ap-
proximately 10,000 to 15,000 years ago, by commencing agricultural
activities such as cultivating plants and livestock (Ruddiman, 2005).
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Fig. 1. Evolution of Ice𝑡, CO2,𝑡, and Temp𝑡 from 798,000 years ago to 1000 years ago.
Source: Castle and Hendry (2020).
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hat influence significantly increased after the Industrial Revolution
from 1769 to 1840, approximately), and it has further increased with
n accelerating growth rate since then. Earth’s population rose from
billion in 1800 to 8 billion in 2022, which was associated with a
ignificant global-scale economic expansion. One of the consequences
s rising global greenhouse gas emissions (GHGs).
In the recent work of Blazsek and Escribano (2022), the score-

riven ice-age model is introduced, and it is shown that the statistical
erformance of the score-driven ice-age model is superior to the sta-
istical performance of the ice-age model of Castle and Hendry (2020).
oreover, Blazsek and Escribano (2022) also show that the forecasting
erformances of both models are similar and not very effective for the
limate variables for the last 10,000 to 15,000 years when humanity
2

nfluenced Earth’s climate. The present paper is motivated by this issue, i
and we introduce the score-driven threshold ice-age model to improve
forecasting performances.

We use the same data for climate and orbital variables for the last
798,000-year period as Castle and Hendry (2020) and Blazsek and
scribano (2022), and we forecast global ice volume, atmospheric CO2,
nd Antarctic land surface temperature for the last 100,000 years of the
ample and the forthcoming 5000 years. We use 1,000-year frequency
bservations, which do not allow the measurement of climate effects
f humanity for the last 250 years when a new regime started in
arth’s climate with unprecedented high levels of CO2,𝑡 and Temp𝑡, and
nprecedented low levels of Ice𝑡.
First, we introduce the score-driven Markov-switching (MS) ice-age
odel, and we provide evidence of structural changes in the climate,

ndicating periods of sharply increasing CO2,𝑡 and Temp𝑡. Motivated
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by this, by using Ward’s linkage clustering method (Ward, 1963), we
define dummy variables which indicate subperiods in Earth’s climate,
and we introduce the score-driven threshold ice-age model. The results
support the use of the threshold ice-age models, since the forecasting
performances of the models of Castle and Hendry (2020) and Blazsek
and Escribano (2022) for the last 100,000 years are improved. Our in-
sample forecasting results, compared to the corresponding results of
the aforementioned authors are impressive, motivating the use of the
new score-driven threshold ice-age models. Finally, we provide out-of-
sample forecasts of the climate variables for the following 5000 years,
and we show a turning point for the climate variables: an increasing
global ice volume Ice𝑡, a decreasing atmospheric CO2,𝑡 volume, and a
decreasing Antarctic land surface temperature Temp𝑡 are predicted for
the forthcoming period. Those forecasts can be interpreted as bench-
marks, which would have occurred if humanity had not burned any
fossil fuels since the Industrial Revolution.

The remainder of this paper is organized as follows: Section 2 de-
scribes the climate and orbital data. Section 3 presents the econometric
methods and the empirical results. Section 4 concludes.

2. Data

All data in this paper are from Jennifer L. Castle and David F.
Hendry (Castle and Hendry, 2020). In this section, we provide a de-
scription of the dependent and explanatory variables.

The dependent variables are global ice volume Ice𝑡, atmospheric
CO2,𝑡 volume, and Antarctic land surface temperature Temp𝑡, which
are observed for the period of 798,000 years ago to 1000 years ago
with a 1,000-year observation frequency. The data source of global ice
volume Ice𝑡 is the work of Lisiecki and Raymo (2005), in which time
series of the 𝛿18O, obtained from calcium carbonate (CaCO3) shells of
foraminifera, are used to approximate temperature. Those authors use
benthic records of foraminifera from seafloor sediment, which were col-
lected at 57 globally distributed sites. Those sites are well-distributed
in latitude, longitude, and depth in the Atlantic, Pacific, and Indian
Oceans. The data source of atmospheric CO2,𝑡 is the work of Lüthi
et al. (2008), in which changes in past atmospheric CO2 concentrations
are determined by measuring the composition of air trapped in ice
cores from Antarctica. Within the European Project for Ice Coring in
Antarctica (EPICA), two deep ice cores have been drilled at the Kohnen
Station and the Concordia Station (Dome C). The drillings were stopped
at or a few meters above bedrock at a depth of 2,774 meters and 3,270
m, respectively. The data source of Antarctic land surface temperature
Temp𝑡 is the work of Jouzel et al. (2007), in which temperature data
were obtained within the EPICA at the Concordia Station (Dome C), by
using deuterium 𝛿Dice measurements from the surface down to 3,259.7
m.

The exogenous explanatory variables are eccentricity of Earth’s orbit
Ec𝑡, obliquity of Earth’s rotational axis relative to the ecliptic Ob𝑡,
and precession of the equinox Pr𝑡. We obtained data for the period of
798,000 years ago to 100,000 years in the future (from the present)
with a 1,000-year observation frequency. Nevertheless, for the out-
of-sample predictions of this paper, we focus on the data for the
forthcoming 5000 years from the future data. The sources of those data
are the works of Paillard et al. (1996) and Castle and Hendry (2020).
Additional explanatory variables, which are exogenous to humanity are
omitted from the econometric models of this paper. For example, the
following variables are omitted: (i) the variations in the Sun’s radiation
output, (ii) volcanic eruption particles in the atmosphere and ice cover,
and (iii) changes in the magnetic poles. For further discussion on why
these variables are omitted, see the Appendix in the work of Blazsek
and Escribano (2022).

In Table 1, the dependent and explanatory variables for the histor-
ical period are presented. The table shows the definitions of variables,
observation period, units of measurement, data sources, and some
3

descriptive statistics for each variable. Due to the 1,000-year observa-
tion frequency, we cannot measure the effects of humanity on Earth’s
climate for the last decades, or predict climate data for the forthcoming
decades. Hence, we cannot comment on the results of the Intergov-
ernmental Panel on Climate Change (2021), and we are not able to
measure the impact of humanity compared to the climate impact of
the Milankovitch cycles since the Industrial Revolution. Therefore, the
forecasts of future values of the climate variables reported in this paper
can be interpreted as benchmarks, which would have occurred if the
humanity had not burned any fossil fuels during the last 250 years.

In Figs. 1 and 2, the evolution of the dependent and explanatory
variables, respectively, are presented. According to Figs. 1(b) and 1(c),
atmospheric CO2,𝑡 and Antarctic land surface temperature Temp𝑡, re-
spectively, remarkably are in unison. In Fig. 1(a), it can also be noticed
that global ice volume Ice𝑡 moves in the opposite direction from CO2,𝑡
and Temp𝑡, creating the ice-age and inter-glacial periods periodically.
The cyclical evolution of the dependent variables, which is partly due
to the three main interacting orbital changes over time affecting solar
radiation, is clearly observed in Figs. 1 and 2.

In Fig. 1, a significant impact of the Milankovitch cycles on Earth’s
temperature is observed for the last 21,000 years, when the Antarctic
land surface temperature increased from the −9.5177 ◦C of 21,000 years
ago to the −0.2174 ◦C of 11,000 years ago. That sharp increase is due to
the Milankovitch cycles, because during that period of time humanity
had little influence on Earth’s climate. From 10,000 to 1000 years
ago, when humanity influenced more Earth’s climate, the Antarctic
land surface temperature was at a relatively stable high level with a
−0.6060 ◦C average and a 0.4539 ◦C standard deviation. Hence, from
the Antarctic land surface temperature time series we do not see direct
evidence of the impact of humanity on climate for the period of the
last 10,000 years. Our results can be used as benchmarks for researchers
who use more frequently observed data for the last 250 years to predict
climate variables, in order to separate the effects of orbital variables
and humanity in their forecasts.

3. Climate-econometric models

3.1. Score-driven ice-age model

Score-driven time series models are introduced in the works of Creal
et al. (2008) and Harvey and Chakravarty (2008). Those authors name
the score-driven models generalized autoregressive score (GAS) and
dynamic conditional score (DCS) models, respectively. Score-driven
models are observation-driven time series models (Cox, 1981), in which
the filters are updated using the scaled conditional score functions of
the log-likelihood (LL) of the dependent variables. Score-driven models
are estimated by using the maximum likelihood (ML) method (Harvey,
2013; Blasques et al., 2022).

Some of the statistical advantages of the score-driven models are the
following. (i) The updating mechanisms of those models are general-
izations of those of the classical time series models such as: ARMA (au-
toregressive moving average) (Box and Jenkins, 1970), GARCH (gen-
eralized autoregressive conditional heteroskedasticity) (Engle, 1982;
Bollerslev, 1986), and VARMA (vector ARMA) (Tiao and Tsay, 1989).
(ii) Score-driven models are robust to outliers and missing observations
(Harvey, 2013; Blazsek and Escribano, 2016a,b, 2022; Ayala et al.,
2022). (iii) A score-driven update locally reduces the Kullback–Leibler
distance between the true and estimated values of the score-driven
filter in every step, and only score-driven models have this property
(Blasques et al., 2015). Thus, score-driven filters use an information-
theoretically optimal updating mechanism. These advantages of the
score-driven models motivate their application to climate data. We
also note that the linear updating mechanisms of ARMA and VARMA,
and the quadratic updating mechanism of GARCH are optimal from an

information-theoretic perspective only if the data generating process
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Table 1
Descriptive statistics.
(a) Dependent variables Ice𝑡 CO2,𝑡 Temp𝑡
Variable Ice volume Atmospheric CO2 Antarctic-based land surface temperature
Data frequency 1,000 years 1,000 years 1,000 years
Measurement Based on the 𝛿18O proxy 1 unit = 780 gigatonnes of CO2 1 unit = 1 ◦C
Data source Lisiecki and Raymo (2005) Lüthi et al. (2008) Jouzel et al. (2007)

Descriptive statistics for the dependent variables for the historical period:

Start date 798,000 years ago 798,000 years ago 798,000 years ago
End date 1,000 years ago 1,000 years ago 1,000 years ago
Sample size 798 798 798
Minimum 3.1000 1.7269 −10.2530
Maximum 5.0800 2.9500 3.7662
Mean 4.1707 2.2382 −5.2892
Standard deviation 0.4467 0.2546 2.9009

(b) Explanatory variables Ec𝑡 Ob𝑡 Pr𝑡
Variable Eccentricity of Earth’s orbit Obliquity Precession of the equinox
Data frequency 1,000 years 1,000 years 1,000 years
Measurement Periodicity deriving from the Periodicity deriving from the Periodicity deriving from the

changing non-circularity of Earth’s orbit changes in the tilt of Earth’s rotational axis precession of the equinox
(zero denotes circularity). relative to the ecliptic (1 unit = 10 degrees). (1 unit = 1 degree).

Data source Paillard et al. (1996) Paillard et al. (1996) Paillard et al. (1996)

Descriptive statistics for the explanatory variables for the historical period:

Start date 798,000 years ago 798,000 years ago 798,000 years ago
End date 1,000 years ago 1,000 years ago 1,000 years ago
Sample size 798 798 798
Minimum 0.0042 2.2076 0.0008
Maximum 0.0500 2.4455 0.3593
Mean 0.0271 2.3342 0.1802
Standard deviation 0.0119 0.0591 0.1039
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(DGP) has a normal distribution, which may not be satisfied in practical
applications.

In the work of Castle and Hendry (2020), estimation and forecasting
results are presented for a general unrestricted model (GUM), named
the ice-age model. In the work of Blazsek and Escribano (2022), the
score-driven ice-age model is introduced. Those authors show that
the statistical performance of their model is superior to the statistical
performance of the ice-age model of Castle and Hendry (2020). Nev-
rtheless, Blazsek and Escribano (2022) also show that the forecasting
erformance of the score-driven ice-age model does not improve the
orecasting performance of the ice-age model of Castle and Hendry
2020). Blazsek and Escribano (2022) find that the multi-step ahead
orecasting results for the climate variables indicate that both models
ail to predict well the evolution of climate variables for the last 10,000
o 15,000 years, when humanity has influenced Earth’s climate. On the
orecasting results, see Castle and Hendry (2020, p. 111) and Blazsek
nd Escribano (2022).
The starting point of the econometric modeling of this paper is the

core-driven homoskedastic ice-age model of Blazsek and Escribano
2022). Our objective is to improve the statistical and forecasting
erformances of that model, in order to forecast the climate variables
or the forthcoming 5000 years, and predict whether we can expect
turning point in global warming within that period. The dependent
ariables 𝑦𝑡 (3 × 1) of the ice-age model are 𝑦𝑡 = (Ice𝑡,CO2,𝑡,Temp𝑡)′
or 𝑡 = 1,… , 𝑇 , where Ice𝑡 denotes global ice volume, CO2,𝑡 denotes
tmospheric carbon dioxide level, and Temp𝑡 denotes Antarctic-based
and surface temperature. The order of the variables in 𝑦𝑡 is defined in
he work of Castle and Hendry (2020). In the remainder of this section,
e review the score-driven ice-age model:

𝑡 = 𝜇𝑡 + 𝑣𝑡 (1)

𝑡 = 𝛾0 + 𝛤1𝜇𝑡−1 + 𝛤2𝑧𝑡 + 𝛤3𝑧𝑡−1 + 𝛹𝑢𝑡−1 (2)

here 𝑣𝑡 ∼ 𝑡3(0, 𝛴, 𝜈) is the reduced-form error term which has a
ultivariate i.i.d. 𝑡-distribution, where the scale matrix is 𝛴 ≡ 𝛺𝛺′
4

s

3 × 3), for which 𝛺 (3 × 3) is a lower-triangular squared matrix
ith positive elements in the diagonal, and 𝜈 > 2 is the degrees
f freedom parameter (the restriction on the parameter space 𝜈 > 2
nsures that the covariance matrix of 𝑣𝑡 is well-defined). The variance
f the reduced-form error term is factorized, as follows:

ar(𝑣𝑡) = 𝛴 × 𝜈
𝜈 − 2

=
( 𝜈
𝜈 − 2

)1∕2
×𝛺𝛺′ ×

( 𝜈
𝜈 − 2

)1∕2
(3)

Based on that, the following multivariate i.i.d. structural-form error
term 𝜖𝑡 is introduced:

𝑣𝑡 =
( 𝜈
𝜈 − 2

)1∕2
𝛺 × 𝜖𝑡 (4)

where 𝐸(𝜖𝑡) = 0, Var(𝜖𝑡) = 𝐼3 and 𝜖𝑡 ∼ 𝑡3[0, 𝐼3 × (𝜈 − 2)∕𝜈, 𝜈].
Moreover, 𝜇𝑡 (3 × 1) is the conditional mean of 𝑦𝑡 given 𝑡−1 ≡

(𝑦1,… , 𝑦𝑡−1, 𝑧1,… , 𝑧𝑡), 𝑢𝑡 (3 × 1) is the vector of scaled score functions
(Harvey, 2013), and 𝑧𝑡 (9 × 1) is the vector of strictly exogenous
xplanatory variables. The assumption of strict exogeneity of 𝑧𝑡 for
core-driven models is from the work of Harvey (2013, p. 56), which is
upported in the work of Castle and Hendry (2020, p. 95). The elements
f 𝑧𝑡 are three main interacting orbital changes over time affecting solar
adiation that could drive ice ages (Castle and Hendry, 2020):

𝑡 = (Ec𝑡,Ob𝑡,Pr𝑡,Ec𝑡 × Ob𝑡,Ec𝑡 × Pr𝑡,Ob𝑡 × Pr𝑡,Ec2𝑡 ,Ob
2
𝑡 ,Pr

2
𝑡 )

′ (5)

where ‘Ec’ measures the eccentricity (i.e., non-circularity) of Earth’s
orbit, ‘Ob’ is obliquity measuring the tilt of Earth’s rotational axis
relative to the ecliptic, and ‘Pr’ is a measure of the precession of the
equinox (i.e., circular rotation of the rotational axis itself).

The conditional mean 𝜇𝑡 includes the following parameters: the
vector of constant parameters 𝛾0 (3 × 1), and the parameter matrices
𝛤1 (3 × 3), 𝛤2 (3 × 9), 𝛤3 (3 × 9), and 𝛹 (3 × 3). We assume that
the maximum modulus of the eigenvalues of 𝛤1 is less than one, which
ensures that 𝜇𝑡 is asymptotically covariance stationary (Harvey, 2013;
Blasques et al., 2022; Blazsek et al., 2022a,b). We initialize 𝜇𝑡 by using
he start values of the dependent variables 𝑦1.
For 𝛤1, 𝛤2, and 𝛤3, we use the same restrictions as in the work of

astle and Hendry (2020), which is also motivated by the general-to-

pecific model selection procedure for the score-driven ice-age model
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Fig. 2. Evolution of Ec𝑡, Ob𝑡, and Pr𝑡 from 798,000 years ago to 100,000 years in the future. Note: In each panel a vertical thick line divides the past and the future. From the
future data, we focus on the forthcoming 5000 years of data for the out-of-sample predictions in this paper.
Source: Castle and Hendry (2020).
explained in the work of Blazsek and Escribano (2022). Moreover, the
ame elements of 𝛤1 and 𝛹 are restricted for the score-driven models
s for matrix 𝛤1 in the work of Castle and Hendry (2020). According
to Castle and Hendry (2020, p. 104), the following elements of 𝛤1 are
ot restricted to zero: 𝛤1,1,1, 𝛤1,1,3, 𝛤1,2,2, 𝛤1,2,3, 𝛤1,3,2, and 𝛤1,3,3. The
following elements of 𝛤2 are not restricted to zero: 𝛤2,1,1, 𝛤2,1,4, 𝛤2,1,5,
𝛤2,2,1, 𝛤2,2,8, 𝛤2,3,1, 𝛤2,3,4, and 𝛤2,3,5. Moreover, the following elements of
𝛤3 are also not restricted to zero: 𝛤3,1,1, 𝛤3,1,2, 𝛤3,1,4, 𝛤3,2,1, 𝛤3,2,2, 𝛤3,2,4,
and 𝛤3,3,4.

For the interpretation of the parameter estimates in 𝜇𝑡, we present
the specification of the conditional location under the aforementioned
5

restrictions:

𝜇Ice,𝑡 = 𝛾0,1 + 𝛤1,1,1𝜇Ice,𝑡−1 + 𝛤1,1,3𝜇Temp,𝑡−1
+𝛤2,1,1Ec𝑡 + 𝛤2,1,4(Ec𝑡 × Ob𝑡) + 𝛤2,1,5(Ec𝑡 × Pr𝑡)
+𝛤3,1,1Ec𝑡−1 + 𝛤3,1,2Ob𝑡−1 + 𝛤3,1,4(Ec𝑡−1 × Ob𝑡−1)
+𝛹1,1𝑢1,𝑡−1 + 𝛹1,3𝑢3,𝑡−1

(6)

𝜇CO2 ,𝑡 = 𝛾0,2 + 𝛤1,2,2𝜇CO2 ,𝑡−1 + 𝛤1,2,3𝜇Temp,𝑡−1
+𝛤2,2,1Ec𝑡 + 𝛤2,1,8 × Ob2𝑡
+𝛤3,2,1Ec𝑡−1 + 𝛤3,2,2Ob𝑡−1 + 𝛤3,2,4(Ec𝑡−1 × Ob𝑡−1)

(7)
+𝛹2,2𝑢2,𝑡−1 + 𝛹2,3𝑢3,𝑡−1
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𝜇Temp,𝑡 = 𝛾0,3 + 𝛤1,3,2𝜇CO2 ,𝑡−1 + 𝛤1,3,3𝜇Temp,𝑡−1
+𝛤2,3,1Ec𝑡 + 𝛤2,3,4(Ec𝑡 × Ob𝑡) + 𝛤2,3,5(Ec𝑡 × Pr𝑡)
+𝛤3,3,4(Ec𝑡−1 × Ob𝑡−1)
+𝛹3,2𝑢2,𝑡−1 + 𝛹3,3𝑢3,𝑡−1

(8)

Eqs. (6) to (8) can also be used for the interpretation of parameters for
the score-driven MS ice-age model (Section 3.2) and the score-driven
threshold ice-age model (Section 3.3).

The scaled score function 𝑢𝑡 is defined as follows. The log of the
conditional density of 𝑦𝑡 is:

ln 𝑓 (𝑦𝑡|𝑡−1;𝛩) = ln𝛤
( 𝜈 + 3

2

)

− ln𝛤
( 𝜈
2

)

− 3
2
ln(𝜋𝜈) − 1

2
ln |𝛴|

− 𝜈 + 3
2

ln

[

1 +
𝑣′𝑡𝛴

−1𝑣𝑡
𝜈

]

(9)

here 𝑣𝑡 = 𝑦𝑡 − 𝜇𝑡, 𝛩 = (𝛩1,… , 𝛩𝑆 )′ is the vector of time-invariant
arameters, which includes the elements of 𝛾0, 𝛤1, 𝛤2, 𝛤3, 𝛹 , 𝛺, and
. The partial derivative of the log conditional density ln 𝑓 (𝑦𝑡|𝑡−1;𝛩)
ith respect to 𝜇𝑡 is (Harvey, 2013):

𝜕 ln 𝑓 (𝑦𝑡|𝑡−1;𝛩)
𝜕𝜇𝑡

= 𝜈 + 3
𝜈

𝛴−1 ×

(

1 +
𝑣′𝑡𝛴

−1𝑣𝑡
𝜈

)−1

𝑣𝑡 ≡
𝜈 + 3
𝜈

𝛴−1 × 𝑢𝑡

(10)

The scaled score function 𝑢𝑡 is defined in the second equality of Eq. (10),
where 𝑣𝑡 is multiplied by [1 + (𝑣′𝑡𝛴

−1𝑣𝑡)∕𝜈]−1 = 𝜈∕(𝜈 + 𝑣′𝑡𝛴
−1𝑣𝑡) ∈ (0, 1).

Therefore, the scaled score function is bounded by the reduced-form
error term: |𝑢𝑡| < |𝑣𝑡|. All elements of 𝑢𝑡 are bounded functions of 𝑣𝑡
for 𝜈 < ∞ (Harvey, 2013), hence all moments of 𝑢𝑡 are well-defined.
In the work of Harvey (2013), it is shown that 𝑢𝑡 is multivariate i.i.d.
with mean zero and a covariance matrix:

Var(𝑢𝑡) = 𝐸
[

𝜕 ln 𝑓 (𝑦𝑡|𝑡−1;𝛩)
𝜕𝜇𝑡

×
𝜕 ln 𝑓 (𝑦𝑡|𝑡−1;𝛩)

𝜕𝜇′
𝑡

]

= 𝜈 + 3
𝜈 + 5

× 𝛴−1 (11)

In Fig. 3, we present the scaled score function 𝑢𝑡 as a function of
𝜖𝑡. The figure presents 𝑢𝑡 for the estimates for the score-driven ice-
age model. In the three-dimensional graphs of Fig. 3, we present the
elements of 𝑢𝑡 as functions of 𝜖1,𝑡 and 𝜖2,𝑡, where 𝜖3,𝑡 = 0 for the purpose
of illustration. The figure indicates that the score-driven ice-age model
is robust to extreme observations.

One of the reasons why the score-driven ice-age model (Blazsek and
Escribano, 2022) and the ice-age model (Castle and Hendry, 2020) are
not able to predict well the climate variables for the last 10,000 to
15,000 years, when humanity has influenced Earth’s climate, is that
they do not account for possible structural changes in the climate DGP.
In the following section, we present a MS model for the climate data to
motivate the use of structural changes in climate-econometric models.

3.2. Score-driven Markov-switching (MS) ice-age model

In this section, we introduce the score-driven MS ice-age model,
and we provide evidence of structural changes in the climate, indi-
cating periods of sharply increasing CO2,𝑡 and Temp𝑡. We extend the
single-regime score-driven ice-age model as follows:

𝑦𝑡 = 𝜇𝑡(𝑠𝑡) + 𝑣𝑡(𝑠𝑡) (12)

𝜇𝑡(𝑠𝑡) = 𝛾0(𝑠𝑡) + 𝛤1(𝑠𝑡)𝜇𝑡−1(𝑠𝑡) + 𝛤2(𝑠𝑡)𝑧𝑡 + 𝛤3(𝑠𝑡)𝑧𝑡−1 + 𝛹 (𝑠𝑡)𝑢𝑡−1(𝑠𝑡) (13)

for regimes 𝑠𝑡 = 1, 2 and 𝑡 = 1,… , 𝑇 . The regime variable 𝑠𝑡 is a
Markov process with the following time-invariant transition probability
parameters: Pr(𝑠𝑡 = 1|𝑠𝑡−1 = 1) = 𝑝 and Pr(𝑠𝑡 = 2|𝑠𝑡−1 = 2) = 𝑞. The
time-invariant probabilities of regimes are given by: 𝜋∗

1 = Pr(𝑠𝑡 = 1) =
(1−𝑞)∕(2−𝑝−𝑞) and 𝜋∗

2 = Pr(𝑠𝑡 = 2) = (1−𝑝)∕(2−𝑝−𝑞). The asymptotic
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covariance stationarity of 𝑦𝑡 is provided if the maximum modulus of s
ll the eigenvalues of 𝛤1(𝑠𝑡) for 𝑠𝑡 = 1, 2 is less than one, where we
denote the maximum moduli for the two regimes by using 𝐶1 and 𝐶2,
respectively. This is a relatively strict condition because it requires that
both regimes are asymptotically covariance stationary. Therefore, we
also use a less restrictive condition of asymptotic covariance stationar-
ity from the work of Blazsek et al. (2021), which allows that one of the
egimes is non-stationary. We define the matrix:

=

⎡

⎢

⎢

⎢

⎣

𝛤1(1)
𝜋∗1
𝜋∗1
𝑝 𝛤1(1)

𝜋∗2
𝜋∗1
(1 − 𝑞)

𝛤1(2)
𝜋∗1
𝜋∗2
(1 − 𝑝) 𝛤1(2)

𝜋∗2
𝜋∗2
𝑞

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝛤1(1)𝑝 𝛤1(1)
𝜋∗2
𝜋∗1
(1 − 𝑞)

𝛤1(2)
𝜋∗1
𝜋∗2
(1 − 𝑝) 𝛤1(2)𝑞

⎤

⎥

⎥

⎥

⎦

(14)

he dependent variable 𝑦𝑡 in the score-driven MS ice-age model is
symptotically covariance stationary if the maximum modulus of all
he eigenvalues of 𝐴, denoted as 𝐶Stat, is less than one.
The error term 𝑣𝑡(𝑠𝑡) ∼ 𝑡3[0, 𝛴(𝑠𝑡), 𝜈(𝑠𝑡)] has a multivariate i.i.d. 𝑡-

istribution, where the scale matrix is 𝛴(𝑠𝑡) ≡ 𝛺(𝑠𝑡)𝛺(𝑠𝑡)′ (3 × 3), for
hich 𝛺(𝑠𝑡) (3 × 3) is a lower-triangular squared matrix with positive
lements in the diagonal, and 𝜈(𝑠𝑡) > 2 is the degrees of freedom
arameter.
The filter 𝜇𝑡(𝑠𝑡) (3×1) is the conditional mean of 𝑦𝑡|(𝑡−1, 𝑠𝑡) ≡ 𝑦𝑡|(𝑦1,

… , 𝑦𝑡−1, 𝑧1,… , 𝑧𝑡, 𝑠𝑡). We initialize the conditional mean 𝜇𝑡(𝑠𝑡) for both
regimes by using the start values of the dependent variables 𝑦1. The
regime-switching conditional mean 𝜇𝑡(𝑠𝑡) includes the following param-
eters: the vector of parameters 𝛾0(𝑠𝑡) (3×1), and the parameter matrices
𝛤1(𝑠𝑡) (3 × 3), 𝛤2(𝑠𝑡) (3 × 9), 𝛤3(𝑠𝑡) (3 × 9), and 𝛹 (𝑠𝑡) (3 × 3). For
𝛤1(𝑠𝑡), 𝛤2(𝑠𝑡), 𝛤3(𝑠𝑡), and 𝛹 (𝑠𝑡) we use the same restrictions as for the
single-regime score-driven homoskedastic ice-age model (Blazsek and
Escribano, 2022).

In Eq. (13), the filter is updated by 𝑧𝑡 (9×1), the first lag of 𝑧𝑡, and the
conditional mean of the first lags of 𝜇𝑡(𝑠𝑡) and 𝑢𝑡(𝑠𝑡) (both 3 × 1), where
the latter is the regime-switching vector of scaled score functions. The
updating terms of 𝜇𝑡(𝑠𝑡) are defined as 𝜇𝑡−1(𝑠𝑡) = 𝐸[𝜇𝑡−1(𝑠𝑡−1)|𝑡−1, 𝑠𝑡]
and 𝑢𝑡−1(𝑠𝑡) = 𝐸[𝑢𝑡−1(𝑠𝑡−1)|𝑡−1, 𝑠𝑡]. The computation of these condi-
tional expectations for score-driven models is presented in the work
of Blazsek et al. (2021).

The scaled score function 𝑢𝑡(𝑠𝑡) is defined as follows. The log condi-
tional density of 𝑦𝑡 is:

ln 𝑓 (𝑦𝑡|𝑡−1, 𝑠𝑡;𝛩) = ln𝛤
[

𝜈(𝑠𝑡) + 3
2

]

− ln𝛤
[

𝜈(𝑠𝑡)
2

]

− 3
2
ln[𝜋𝜈(𝑠𝑡)] (15)

−1
2
ln |𝛴(𝑠𝑡)| −

𝜈(𝑠𝑡) + 3
2

ln
{

1 +
𝑣𝑡(𝑠𝑡)′[𝛴(𝑠𝑡)]−1𝑣𝑡(𝑠𝑡)

𝜈(𝑠𝑡)

}

where 𝑣𝑡(𝑠𝑡) = 𝑦𝑡−𝜇𝑡(𝑠𝑡), 𝛩 = (𝛩1,… , 𝛩𝑆 )′ is the vector of time-invariant
parameters, which includes the elements of 𝛾0(𝑠𝑡), 𝛤1(𝑠𝑡), 𝛤2(𝑠𝑡), 𝛤3(𝑠𝑡),
𝛹 (𝑠𝑡), 𝛺(𝑠𝑡), and 𝜈(𝑠𝑡). The partial derivative of the log conditional
density ln 𝑓 (𝑦𝑡|𝑡−1, 𝑠𝑡;𝛩) with respect to 𝜇𝑡(𝑠𝑡) is:
𝜕 ln 𝑓 (𝑦𝑡|𝑡−1, 𝑠𝑡;𝛩)

𝜕𝜇𝑡(𝑠𝑡)

=
𝜈(𝑠𝑡) + 3
𝜈(𝑠𝑡)

[𝛴(𝑠𝑡)]−1 ×
{

1 +
𝑣𝑡(𝑠𝑡)′[𝛴(𝑠𝑡)]−1𝑣𝑡(𝑠𝑡)

𝜈(𝑠𝑡)

}−1

𝑣𝑡(𝑠𝑡) (16)

≡
𝜈(𝑠𝑡) + 3
𝜈(𝑠𝑡)

[𝛴(𝑠𝑡)]−1 × 𝑢𝑡(𝑠𝑡)

The score-driven MS ice-age model is estimated by using the ML
method (Blazsek et al., 2021). We note that the conditional distribution
of 𝑦𝑡 depends only on the contemporaneous regime 𝑠𝑡, which greatly
implifies the statistical inference of the model.
For the empirical results reported in this paper only parameters

0(𝑠𝑡) and 𝛤1(𝑠𝑡) are regime-switching. This is a result of an extensive
ork on a general-to-specific approach involving a large number of esti-
ations of alternative score-driven MS ice-age model specifications, to
etermine which parameters should be regime-switching to effectively
eparate the regimes. We start with the most general version of the MS
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Fig. 3. Robustness of the scaled score function to extreme values. Note: 𝜖3,𝑡 = 0 is assumed for this figure.
model in which all parameters of the score-driven ice-age model are
regime-switching. We impose single-regime restrictions on the parame-
ters step-by-step, until we find the best-performing MS specification, in
which only 𝛾0(𝑠𝑡) and 𝛤1(𝑠𝑡) are regime-switching. Moreover, we assume
that there are two latent states 𝑠𝑡 ∈ {1, 2}, which is supported by using a
likelihood ratio (LR) test for MS models (Kasahara and Shimotsu, 2018)
in a preliminary analysis.

In Table 2(a), by using the estimation window for the period of
798,000 years ago to 1000 years ago, we present the parameter esti-
mates and diagnostic test results for the score-driven MS ice-age model.
The 𝐶1, 𝐶2, and 𝐶Stat statistics indicate that 𝑦𝑡 is covariance stationary.
The Ljung–Box (LB) tests (Ljung and Box, 1978) for 𝑣𝑡 and 𝑢𝑡 indicate
that all elements of those vectors form an independent time series.
These diagnostic test results support the MS model specification.

We use the score-driven MS ice-age model to show evidence of
structural changes in the climate variables, which are not captured
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by the ice-age model (Castle and Hendry, 2020) and the score-driven
ice-age model (Blazsek and Escribano, 2022). In Fig. 4, by using the
estimation window for the period of 798,000 years ago to 1000 years
ago, we present the evolution of the smoothed probability of 𝑠𝑡 = 1,
i.e., 𝜋1,𝑡 = Pr(𝑠𝑡 = 1|𝑦1,… , 𝑦𝑇 ), and climate variables Ice𝑡, CO2,𝑡, and
Temp𝑡 for the period of 798,000 years ago to 1000 years ago. We note
that the computation of 𝜋1,𝑡 for score-driven MS models is presented
in the work of Blazsek et al. (2021). Fig. 4 indicates that 𝑠𝑡 = 1 is
associated with sharp increases in the Atmospheric carbon dioxide level
CO2,𝑡 and Antarctic-based land surface temperature Temp𝑡, for which
we find that 𝑠𝑡 = 1 is not persistent. On the other hand, 𝑠𝑡 = 2 indicates
the rest of the time periods, for which we find that 𝑠𝑡 = 2 is highly
persistent and dominates most of the observation period. The results
indicate structural changes for the variables Ice𝑡, CO2,𝑡, and Temp𝑡.

3.3. Score-driven threshold ice-age model

Motivated by the results on the score-driven MS ice-age model,
we cluster the climate observations using Ward’s linkage clustering
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Table 2
In-sample estimates for the score-driven Markov-switching (MS) ice-age model, and the score-driven threshold ice-age model for two clusters with respect to Temp𝑡, where the
latter specification provides the most accurate forecasts for the last 20,000 years) (see Table 3), for the period of 798,000 years ago to 1000 years ago.
(a). Score-driven Markov-switching ice-age model (b). Score-driven threshold ice-age model with clustering with respect to Temp𝑡
Regime 1 = sharply increasing Temp𝑡; Regime 2 = otherwise Regime 1 = low Temp𝑡; regime 2 = high Temp𝑡
𝛾0,1(1) 1.7946***(0.3198) 𝛾0,1(2) 1.1154***(0.2584) 𝛾0,1(1) 2.8696***(0.9571) 𝛾0,1(2) 0.8702***(0.2883) 𝐶1 0.8376
𝛾0,2(1) 1.2341***(0.3597) 𝛾0,2(2) 1.1293***(0.3149) 𝛾0,2(1) 3.8581***(1.0618) 𝛾0,2(2) 1.3515***(0.4151) 𝐶2 0.9074
𝛾0,3(1) −8.4994***(2.6519) 𝛾0,3(2) −1.0862(0.8078) 𝛾0,3(1) 5.4906*(3.0986) 𝛾0,3(2) −1.9692**(0.9585) LB 𝑣1,𝑡 20.3465(0.8515)
𝛤1,1,1(1) 0.7010***(0.0520) 𝛤1,1,1(2) 0.9127***(0.0155) 𝛤1,1,1(1) 0.8376***(0.0351) 𝛤1,1,1(2) 0.8947***(0.0185) LB 𝑣2,𝑡 27.5458(0.4887)
𝛤1,1,3(1) −0.0416***(0.0078) 𝛤1,1,3(2) −0.0117***(0.0024) 𝛤1,1,3(1) −0.0138**(0.0068) 𝛤1,1,3(2) −0.0134***(0.0037) LB 𝑣3,𝑡 30.5789(0.3361)
𝛤1,2,2(1) 0.8689***(0.0694) 𝛤1,2,2(2) 0.8656***(0.0222) 𝛤1,2,2(1) 0.5346***(0.0871) 𝛤1,2,2(2) 0.8582***(0.0298) LB 𝑢1,𝑡 22.0181(0.7805)
𝛤1,2,3(1) 0.0080(0.0056) 𝛤1,2,3(2) 0.0096***(0.0021) 𝛤1,2,3(1) 0.0329***(0.0082) 𝛤1,2,3(2) 0.0096***(0.0035) LB 𝑢2,𝑡 25.6766(0.5908)
𝛤1,3,2(1) 3.3994***(1.0233) 𝛤1,3,2(2) 0.2473(0.2959) 𝛤1,3,2(1) −1.9465*(1.1069) 𝛤1,3,2(2) 0.3553(0.3342) LB 𝑢3,𝑡 34.7165(0.1783)
𝛤1,3,3(1) 0.6442***(0.0818) 𝛤1,3,3(2) 0.9112***(0.0278) 𝛤1,3,3(1) 0.9392***(0.1024) 𝛤1,3,3(2) 0.8380***(0.0422) LL 1.6927
𝛤2,1,1 87.5148***(26.5560) 𝑝 0.4412***(0.0749) 𝛤2,1,1(1) −31.4162(107.6720) 𝛤2,1,1(2) 87.3692***(33.3199) AIC −3.1999
𝛤2,1,4 −45.3373***(10.9720) 𝑞 0.9384***(0.0120) 𝛤2,1,4(1) 1.0635(45.2982) 𝛤2,1,4(2) −44.1306***(13.7167) BIC −2.7657
𝛤2,1,5 −5.1217***(0.9538) 𝐶1 0.9563 𝛤2,1,5(1) −4.7914**(2.1320) 𝛤2,1,5(2) −5.3557***(1.1671) HQC −3.0330
𝛤2,2,1 12.6727***(3.6288) 𝐶2 0.9421 𝛤2,2,1(1) −0.7702(18.3994) 𝛤2,2,1(2) 14.6027***(4.8421)
𝛤2,2,8 0.0765*(0.0459) 𝐶Stat 0.9478 𝛤2,2,8(1) 0.4307***(0.1532) 𝛤2,2,8(2) 0.1035*(0.0590)
𝛤2,3,1 −335.7532***(37.3845) LB 𝑣1,𝑡 20.4634(0.8470) 𝛤2,3,1(1) −321.9976***(103.6567) 𝛤2,3,1(2) −241.2780***(46.3039)
𝛤2,3,4 243.1959***(27.2797) LB 𝑣2,𝑡 27.4371(0.4946) 𝛤2,3,4(1) 242.9438**(102.8331) 𝛤2,3,4(2) 192.9595***(31.0481)
𝛤2,3,5 28.5945***(7.5770) LB 𝑣3,𝑡 37.0713(0.1173) 𝛤2,3,5(1) 13.8527(12.9534) 𝛤2,3,5(2) 32.0467***(8.9383)
𝛤3,1,1 −83.5604***(28.1047) LB 𝑢1,𝑡 20.3781(0.8503) 𝛤3,1,1(1) 15.5797(120.0182) 𝛤3,1,1(2) −73.2639**(34.7783)
𝛤3,1,2 −0.3420***(0.1046) LB 𝑢2,𝑡 25.4290(0.6044) 𝛤3,1,2(1) −0.9883**(0.3897) 𝛤3,1,2(2) −0.2061*(0.1153)
𝛤3,1,4 43.8732***(11.6186) LB 𝑢3,𝑡 37.1578(0.1154) 𝛤3,1,4(1) 6.3876(49.7383) 𝛤3,1,4(2) 38.2138***(14.3819)
𝛤3,2,1 −30.8272***(6.2538) LL 1.6837 𝛤3,2,1(1) −0.8960(25.5736) 𝛤3,2,1(2) −32.7165***(8.5696)
𝛤3,2,2 −0.5120**(0.2238) AIC −3.2472 𝛤3,2,2(1) −2.1019***(0.7590) 𝛤3,2,2(2) −0.6669**(0.2911)
𝛤3,2,4 7.6086***(2.0094) BIC −2.9656 𝛤3,2,4(1) −0.0189(6.8009) 𝛤3,2,4(2) 7.9011**(3.0940)
𝛤3,3,4 −101.9864***(22.3188) HQC −3.1390 𝛤3,3,4(1) −115.3612(97.7131) 𝛤3,3,4(2) −88.9701***(25.2036)
𝛹1,1,1 0.8551***(0.0445) 𝛹1,1,1(1) 0.9704***(0.1246) 𝛹1,1,1(2) 0.8866***(0.0497)
𝛹1,1,3 −0.0223***(0.0054) 𝛹1,1,3(1) −0.0360**(0.0143) 𝛹1,1,3(2) −0.0244***(0.0059)
𝛹1,2,2 1.3508***(0.0562) 𝛹1,2,2(1) 1.0676***(0.1325) 𝛹1,2,2(2) 1.4589***(0.0688)
𝛹1,2,3 0.0176***(0.0024) 𝛹1,2,3(1) 0.0432***(0.0104) 𝛹1,2,3(2) 0.0141***(0.0034)
𝛹1,3,2 4.8316***(0.8794) 𝛹1,3,2(1) 1.2620(1.7254) 𝛹1,3,2(2) 5.7135***(0.8303)
𝛹1,3,3 0.9438***(0.0455) 𝛹1,3,3(1) 1.3422***(0.1534) 𝛹1,3,3(2) 0.8016***(0.0534)
𝛺1,1 0.0837***(0.0021) 𝛺1,1(1) 0.0874***(0.0050) 𝛺1,1(2) 0.0833***(0.0024)
𝛺2,1 −0.0041***(0.0015) 𝛺2,1(1) −0.0124**(0.0052) 𝛺2,1(2) −0.0068***(0.0021)
𝛺2,2 0.0368***(0.0010) 𝛺2,2(1) 0.0511***(0.0033) 𝛺2,2(2) 0.0439***(0.0011)
𝛺3,1 −0.1279***(0.0265) 𝛺3,1(1) −0.1171*(0.0604) 𝛺3,1(2) −0.1467***(0.0336)
𝛺3,2 0.2427***(0.0269) 𝛺3,2(1) 0.4059***(0.0517) 𝛺3,2(2) 0.2941***(0.0291)
𝛺3,3 0.6413***(0.0153) 𝛺3,3(1) 0.5316***(0.0335) 𝛺3,3(2) 0.6479***(0.0184)
𝜈 43.0056***(7.7986) 𝜈(1) 20.0801***(5.6218) 𝜈(2) 37.6512***(7.7197)

Note: 𝐶1 < 1 is covariance stationarity of regime 1; 𝐶2 < 1 is covariance stationarity of regime 2; 𝐶Stat < 1 is covariance stationarity of the MS model. The Ljung–Box (LB) statistics
(𝑝-values in parentheses) use the lag-order

√

𝑇 ≃ 28. Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-Quinn criterion (HQC).
Gradient-based standard errors are reported in parentheses.
*Parameter significance at the 10% level.
**Parameter significance at the 5% level.
***Parameter significance at the 1% level.
𝑣

method. We use Ward’s method because many of the standard clus-
tering methods are special cases of this very general clustering method
(Ward, 1963). Ward’s clustering method identifies the different histor-
ical periods of abrupt climate changes (periods of structural changes
in climate variables), by forming hierarchical combinations of pairs of
clusters that minimize the increase in information-loss (error sum of
squares for error, SSE) at each step (Everitt, 1993). The use of Ward’s
clustering method to specify the score-driven threshold ice-age model is
also motivated by its impressive forecasting performance, compared to
the forecasting performance of the score-driven MS ice-age model. For
a successful application of Ward’s linkage clustering method, we also
refer to the works of Blazsek and Escribano (2016a,b). We use Ward’s
method for all alternative subsets of the variables Ice𝑡, CO2,𝑡, and Temp𝑡
as follows: (i) We cluster with respect to each climate variable (i.e., Ice𝑡
or CO2,𝑡 or Temp𝑡). (ii) We cluster with respect to all possible pairs of
the climate variables (i.e., Ice𝑡 and CO2,𝑡, or Ice𝑡 and Temp𝑡, or CO2,𝑡
and Temp𝑡). (iii) We cluster with respect to the three climate variables
(i.e., Ice𝑡, CO2,𝑡, and Temp𝑡). These subsets provide seven ways for the
selection of clustering variables, and for each of those we use two and
three clusters for the climate variables.

First, two clusters define the dummy variables 𝐷1,𝑡 and 𝐷2,𝑡, which
indicate a cluster for each observation. We assume that 𝐷1,𝑡 and 𝐷2,𝑡 are
strictly exogenous. We use the exogeneity assumption for all dummy
8

variables of this paper, because for our dataset we assume that the
structural changes in Earth’s climate are caused by the exogenous
orbital variables. We use a general notation for 𝐷1,𝑡 and 𝐷2,𝑡, which may
represent clustering with respect to any of the aforementioned subsets
of Ice𝑡, CO2,𝑡, and Temp𝑡, and formulate the following score-driven
threshold ice-age model:

𝑦𝑡 = 𝜇𝑡 + 𝑣𝑡 (17)

𝜇𝑡 = 𝛾0(1)𝐷1,𝑡 + 𝛾0(2)𝐷2,𝑡 + [𝛤1(1)𝐷1,𝑡 + 𝛤1(2)𝐷2,𝑡]𝜇𝑡−1
+ [𝛤2(1)𝐷1,𝑡 + 𝛤2(2)𝐷2,𝑡]𝑧𝑡 + [𝛤3(1)𝐷1,𝑡 + 𝛤3(2)𝐷2,𝑡]𝑧𝑡−1
+ [𝛹 (1)𝐷1,𝑡 + 𝛹 (2)𝐷2,𝑡]𝑢𝑡−1

(18)

𝑡 ∼ 𝑡3[0, 𝛺(1)𝛺(1)′𝐷1,𝑡 +𝛺(2)𝛺(2)′𝐷2,𝑡, 𝜈(1)𝐷1,𝑡 + 𝜈(2)𝐷2,𝑡] (19)

for 𝑡 = 1,… , 𝑇 . The definitions of the variables and parameters and the
methods of statistical inference coincide with those for the score-driven
ice-age model of Section 3.1.

In Table 2(b), by using the estimation window for the period
of 798,000 years ago to 1000 years ago, we present the parameter
estimates and diagnostic tests for the score-driven threshold ice-age
model, for which two clusters are defined by using the variable Temp𝑡.
We present the in-sample estimates for this clustering specification
in Table 2(b), because its forecasting performance is superior to the

forecasting performances of all alternative clustering specifications of
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Fig. 4. Ice𝑡, CO2, Temp𝑡, and smoothed probability of 𝑠𝑡 = 1, i.e., 𝜋1,𝑡 = Pr(𝑠𝑡 = 1|𝑦1 ,… , 𝑦𝑇 ), for the score-driven MS ice-age model, from 798,000 years ago to 1000 years ago.
Note: Regime 𝑠𝑡 is during periods of sharply increasing CO2,𝑡 and Temp𝑡.
the score-driven threshold ice-age model for the last 20,000 years (see
more on this later in this section for the forecasting results). The 𝐶1 and
𝐶2 statistics indicate that 𝑦𝑡 is covariance stationary for both clusters.
The LB tests for 𝑣𝑡 and 𝑢𝑡 indicate that all elements of those vectors
form an independent time series. These diagnostic tests support the
score-driven threshold ice-age model specification of Table 2(b). We
9

note that, for some alternative specifications of two clusters, the LB
test does not support the independence of 𝑣𝑡 and 𝑢𝑡.

In Fig. 5, by using the estimation window for the period of 798,000
years ago to 1000 years ago, we present three alternative methods for
the definition of two clusters: (i) Ice𝑡 is clustered with respect to Ice𝑡
(Fig. 5(a)), for which (𝐷 ,𝐷 ) = (1, 0) indicates a regime with high
1,𝑡 2,𝑡
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Fig. 5. Ward’s linkage clustering for two clusters with respect to each of the three climate variables (i.e., Ice𝑡, CO2, and Temp𝑡). Note: The best-performing model for two clusters
or the forecasting of last the 20,000 years uses Temp𝑡 for clustering for all climate variables (Table 3), which is presented in Panel (c) of this figure.
evel of Ice𝑡, and (𝐷1,𝑡, 𝐷2,𝑡) = (0, 1) indicates a regime with low level of
ce𝑡. (ii) CO2,𝑡 is clustered with respect to CO2,𝑡 (Fig. 5(b)), for which
𝐷1,𝑡, 𝐷2,𝑡) = (1, 0) indicates low level of CO2,𝑡, and (𝐷1,𝑡, 𝐷2,𝑡) = (0, 1)
ndicates high level of CO2,𝑡. (iii) Temp𝑡 is clustered with respect to
emp𝑡 (Fig. 5(c)), for which (𝐷1,𝑡, 𝐷2,𝑡) = (1, 0) indicates a regime
ith low level of Temp , and (𝐷 ,𝐷 ) = (0, 1) indicates high level
10

𝑡 1,𝑡 2,𝑡
of Temp𝑡. The forecasting performance of clustering with respect to
Temp𝑡 (Fig. 5(c)) is superior to the forecasting performances of the
alternatives, for the last 20,000 years of our sample.

Second, three clusters define the dummy variables 𝐷1,𝑡, 𝐷2,𝑡, and
𝐷3,𝑡, which indicate a cluster for each observation. We assume that 𝐷1,𝑡,
𝐷 , and 𝐷 are strictly exogenous. We use a general notation for the
2,𝑡 3,𝑡
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Table 3
Mean squared errors (MSEs) of multi-step ahead forecasts for the period of 100,000 years ago to 1000 years ago for the ice-age model (Castle and Hendry, 2020), score-driven
homoskedastic 𝑡 ice-age model (Blazsek and Escribano, 2022), and score-driven threshold ice-age model with two clusters using Temp𝑡.

Ice-age model Score-driven Score-driven Score-driven Score-driven Score-driven Score-driven Score-driven Score-driven
of Castle and
Hendry (2020)

ice-age model of
Blazsek and
Escribano (2022)

threshold
ice-age model,
clustering for

threshold
ice-age model,
clustering for

threshold
ice-age model,
clustering for

threshold
ice-age model,
clustering for

threshold
ice-age model,
clustering for

threshold
ice-age model,
clustering for

threshold
ice-age model,
ice-a

Ice𝑡, CO2,𝑡, Ice𝑡 and CO2,𝑡 Ice𝑡 and Temp𝑡 CO2,𝑡 and Temp𝑡 Ice𝑡 CO2,𝑡 Temp𝑡
and Temp𝑡

Ice𝑡 MSE MSE MSE MSE MSE MSE MSE MSE MSE

last 100000 years0.0917 0.0969 0.0598 0.0648 0.0598 0.0766 𝟎.𝟎𝟓𝟐𝟑 0.0705 0.0596
last 90000 years 0.1003 0.1058 0.0628 0.0686 0.0628 0.0816 𝟎.𝟎𝟓𝟓𝟏 0.0742 0.0623
last 80000 years 0.1081 0.1148 0.0637 0.0686 0.0637 0.0782 𝟎.𝟎𝟓𝟐𝟔 0.0791 0.0671
last 70000 years 0.1186 0.1258 0.0687 0.0759 0.0687 0.0842 𝟎.𝟎𝟓𝟕𝟕 0.0871 0.0656
last 60000 years 0.1259 0.1317 0.0740 0.0838 0.0740 0.0895 0.0640 0.0951 𝟎.𝟎𝟓𝟗𝟓
last 50000 years 0.1416 0.1472 0.0833 0.0915 0.0833 0.1029 0.0729 0.1030 𝟎.𝟎𝟔𝟎𝟓
last 40000 years 0.1712 0.1765 0.1023 0.1122 0.1023 0.1255 0.0899 0.1264 𝟎.𝟎𝟕𝟑𝟕
last 30000 years 0.2148 0.2134 0.1325 0.1474 0.1325 0.1607 0.1186 0.1662 𝟎.𝟎𝟗𝟓𝟑
last 20000 years 0.3049 0.2911 0.1965 0.2182 0.1965 0.2383 0.1740 0.2454 𝟎.𝟏𝟑𝟔𝟎
last 10000 years 0.4889 0.4527 0.3043 0.3524 0.3043 0.3732 0.2636 0.3887 𝟎.𝟏𝟔𝟐𝟕

CO2,𝑡 MSE MSE MSE MSE MSE MSE MSE MSE MSE

last 100000 years0.0399 0.0424 0.0287 0.0331 0.0287 0.0312 0.0384 0.0206 𝟎.𝟎𝟐𝟎𝟑
last 90000 years 0.0440 0.0470 0.0308 0.0363 0.0308 0.0338 0.0424 0.0224 𝟎.𝟎𝟐𝟐𝟑
last 80000 years 0.0460 0.0494 0.0290 0.0354 0.0290 0.0300 0.0430 𝟎.𝟎𝟐𝟏𝟕 0.0231
last 70000 years 0.0513 0.0552 0.0318 0.0399 0.0318 0.0330 0.0484 0.0245 𝟎.𝟎𝟐𝟑𝟔
last 60000 years 0.0590 0.0634 0.0355 0.0457 0.0355 0.0371 0.0538 0.0278 𝟎.𝟎𝟐𝟔𝟑
last 50000 years 0.0692 0.0746 0.0407 0.0529 0.0407 0.0405 0.0626 0.0315 𝟎.𝟎𝟑𝟎𝟐
last 40000 years 0.0842 0.0902 0.0465 0.0635 0.0465 0.0465 0.0749 0.0364 𝟎.𝟎𝟑𝟓𝟕
last 30000 years 0.1104 0.1165 0.0550 0.0817 0.0550 0.0574 0.0980 𝟎.𝟎𝟒𝟓𝟒 0.0457
last 20000 years 0.1269 0.1224 0.0670 0.1041 0.0670 0.0726 0.1008 0.0576 𝟎.𝟎𝟑𝟗𝟗
last 10000 years 0.1891 0.1733 0.0954 0.1548 0.0954 0.1055 0.1276 0.0835 𝟎.𝟎𝟐𝟑𝟐

Temp𝑡 MSE MSE MSE MSE MSE MSE MSE MSE MSE

last 100000 years4.1809 4.5168 2.1591 3.2180 2.1591 2.6635 3.5485 2.3664 𝟏.𝟖𝟖𝟕𝟖
last 90000 years 4.4536 4.8533 𝟏.𝟖𝟕𝟖𝟒 3.3024 𝟏.𝟖𝟕𝟖𝟒 2.4976 3.6959 2.3339 1.9771
last 80000 years 4.5747 5.0628 𝟏.𝟔𝟖𝟓𝟎 3.1170 𝟏.𝟔𝟖𝟓𝟎 1.8404 3.5842 2.2398 2.1104
last 70000 years 5.0599 5.6177 𝟏.𝟕𝟑𝟒𝟓 3.3472 𝟏.𝟕𝟑𝟒𝟓 1.9755 3.8953 2.3890 2.2622
last 60000 years 5.7960 6.4482 𝟏.𝟖𝟕𝟓𝟗 3.7591 𝟏.𝟖𝟕𝟓𝟗 2.1604 4.2985 2.6119 2.5300
last 50000 years 6.4533 7.2948 𝟐.𝟏𝟐𝟎𝟒 3.9418 𝟐.𝟏𝟐𝟎𝟒 2.4787 4.9986 2.5043 2.7074
last 40000 years 7.3939 8.1927 𝟐.𝟒𝟖𝟖𝟓 4.7341 𝟐.𝟒𝟖𝟖𝟓 2.9774 5.7713 2.9031 3.0469
last 30000 years 8.8750 9.3292 𝟑.𝟎𝟖𝟓𝟗 6.0600 𝟑.𝟎𝟖𝟓𝟗 3.7412 7.2605 3.5894 3.5919
last 20000 years 10.0692 9.5685 3.4864 7.6342 3.4864 4.6083 7.4055 4.3769 𝟐.𝟖𝟑𝟔𝟐
last 10000 years 14.0302 12.8303 3.8247 9.4035 3.8247 5.5465 8.4037 5.0836 𝟎.𝟓𝟗𝟖𝟒
dummy variables, which may represent clustering with respect to any
of the subsets of Ice𝑡, CO2,𝑡, and Temp𝑡. We formulate the following
score-driven threshold ice-age model:

𝑦𝑡 = 𝜇𝑡 + 𝑣𝑡 (20)

𝜇𝑡 = 𝛾0(1)𝐷1,𝑡 + 𝛾0(2)𝐷2,𝑡 + 𝛾0(3)𝐷3,𝑡 + [𝛤1(1)𝐷1,𝑡 + 𝛤1(2)𝐷2,𝑡

+𝛤1(3)𝐷3,𝑡]𝜇𝑡−1 + [𝛤2(1)𝐷1,𝑡 + 𝛤2(2)𝐷2,𝑡 + 𝛤2(3)𝐷3,𝑡]𝑧𝑡
+ [𝛤3(1)𝐷1,𝑡 + 𝛤3(2)𝐷2,𝑡 + 𝛤3(3)𝐷3,𝑡]𝑧𝑡−1
+ [𝛹 (1)𝐷1,𝑡 + 𝛹 (2)𝐷2,𝑡 + 𝛹 (3)𝐷3,𝑡]𝑢𝑡−1

(21)

𝑣𝑡 ∼ 𝑡3[0, 𝛺(1)𝛺(1)′𝐷1,𝑡

+ 𝛺(2)𝛺(2)′𝐷2,𝑡 +𝛺(3)𝛺(3)′𝐷3,𝑡, 𝜈(1)𝐷1,𝑡 + 𝜈(2)𝐷2,𝑡 + 𝜈(3)𝐷3,𝑡]
(22)

for 𝑡 = 1,… , 𝑇 . The definitions of the variables and parameters and the
methods of statistical inference coincide with those for the score-driven
ice-age model of Section 3.1.

In Tables A.1, A.2, and A.3 of the Appendix, by using the esti-
mation window for the period of 798,000 years ago to 1000 years
ago, we present the parameter estimates and diagnostic test results for
the score-driven threshold ice-age model, for which two clusters are
defined using: (i) Ice𝑡 and CO2,𝑡 for Table A.1, (ii) CO2,𝑡 and Temp𝑡 for
Table A.2, and (iii) Ice𝑡, CO2,𝑡, and Temp𝑡 for Table A.3. We use these
subsets of clustering variables, because they provide superior forecast-
11

ing performances for the last 100,000 years, i.e., the specification of
Table A.1 provides the most accurate forecasts for Ice𝑡, the specification
of Table A.2 provides the most accurate forecasts for CO2,𝑡, and the
specification of Table A.3 provides the most accurate forecasts for
Temp𝑡 (see more on this later in this section for the forecasting results).
The 𝐶1, 𝐶2, and 𝐶3 statistics indicate that 𝑦𝑡 is covariance stationary for
the three clusters. The LB tests for 𝑣𝑡 and 𝑢𝑡 indicate that each element
of those vectors forms an independent time series. These diagnostic
tests support the score-driven threshold ice-age model specifications of
Table A.1, A2, and A3. We note that, for some alternative specifications
of three clusters, the LB test does not support the independence of 𝑣𝑡
and 𝑢𝑡.

In Fig. 6, by using the estimation window for the period of 798,000
years ago to 1000 years ago, we present the clusters which are used
in the models of Table A.1, A2, A3; hence, (i) Ice𝑡 is clustered with
respect to Ice𝑡 and CO2,𝑡 (Fig. 6(a)), (ii) CO2,𝑡 is clustered with respect
to CO2,𝑡 and Temp𝑡 (Fig. 6(b)), and (iii) Temp𝑡 is clustered with respect
to Ice𝑡, CO2,𝑡, and Temp𝑡 (Fig. 6(c)). For all these clustering methods,
the dummies can be interpreted as follows: (i) (𝐷1,𝑡, 𝐷2,𝑡, 𝐷3,𝑡) = (1, 0, 0)
indicates a regime with high level of Ice𝑡, low level of CO2,𝑡, and low
level of Temp𝑡. (ii) (𝐷1,𝑡, 𝐷2,𝑡, 𝐷3,𝑡) = (0, 1, 0) indicates a regime with
average level of Ice𝑡, average level of CO2,𝑡, and average level of Temp𝑡.
(iii) (𝐷1,𝑡, 𝐷2,𝑡, 𝐷3,𝑡) = (0, 0, 1) indicates a regime with low level of Ice𝑡,
high level of CO2,𝑡, and high level of Temp𝑡. We note that for the most
recent regime, 𝐷1,𝑡 = 0, 𝐷2,𝑡 = 0, and 𝐷3,𝑡 = 1 are observed, i.e., high
level of global temperature, which started approximately 12,000 years

ago.
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Fig. 6. Ward’s linkage clustering for three clusters with respect to the best-performing clustering method for each climate variable from Table 4. Note: We do not report cut-points,
because clustering is done by using more than one variable for each panel.
Motivated by the work of Harvey (2013, p. 56), by comparing the
likelihood-based model selection metrics of the score-driven threshold
ice-age model using two clusters (Table 2(b)) and three clusters (Ta-
ble A.1, A2, and A3), for almost all likelihood-based model selection
metrics, for the estimation window for the period of 798,000 years
ago to 1000 years ago, we find that the log-likelihood (LL) estimate
12
is higher for three clusters than for two clusters, and the Akaike
information criterion (AIC), Bayesian information criterion (BIC), and
Hannan–Quinn criterion (HQC) estimates are lower for three clusters
than for two clusters. The results indicate that for the score-driven
threshold ice-age model it is better to use three clusters rather than
two.
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Fig. 7. Multi-step ahead forecasts of Ice𝑡, CO2,𝑡, and Temp𝑡 from 100,000 years ago to 1000 years ago, by using the best-performing score-driven threshold ice-age model with
two clusters from Table 3. Note: The confidence interval is ± 2 standard deviations of the forecasts. The best-performing model for two clusters for the forecasting of the last
20,000 years uses Temp𝑡 for clustering for all climate variables (Table 3). The dashed lines indicate 20,000 years ago.
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3.4. Forecasting results

In Tables 3 and 4, the multi-step ahead forecasting performances
or Ice𝑡, CO2,𝑡, and Temp𝑡 are compared, for which the estimation
indow is for the period of 798,000 years ago to 101,000 years ago
𝑇 = 698) and the multi-step ahead forecasting window is for the period
f the last 100,000 years (𝑇𝑓 = 100). We use the mean square error
MSE) loss function for performance evaluation. We note that similar
orecasting performance results are obtained for the mean absolute
rror (MAE) loss function; those estimates are not reported here, but are
vailable from the authors upon request. The loss function is averaged
or different periods of the last 100,000 years (see Tables 3 and 4).
13

2

In Table 3, by using the estimation window for the period of
98,000 years ago to 101,000 years ago, the forecasting results com-
are the ice-age models of Castle and Hendry (2020) and Blazsek and
scribano (2022) with the score-driven threshold ice-age model for all
lternative clustering methods using two clusters. The results indicate
hat the forecasting accuracies of the score-driven threshold ice-age
odels dominate the forecasting accuracies of the ice-age models of
astle and Hendry (2020) and Blazsek and Escribano (2022). For most
f the cases, the MSE results indicate that the score-driven thresh-
ld ice-age model using Temp𝑡 for clustering has the most accurate
orecasting performance. Moreover, we also find that the forecasting
erformance of the score-driven threshold ice-age model using clus-
ering for Temp𝑡 is superior to all alternatives in Table 3 for the last
0,000 years of the historical sample period.
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Fig. 8. Multi-step ahead forecasts of Ice𝑡, CO2,𝑡, and Temp𝑡 from 100,000 years ago to 1000 years ago, by using the best-performing score-driven threshold ice-age models for
three clusters from Table 4. Note: The confidence interval is ± 2 standard deviations of the forecasts. Notice an increasing forecasting precision for all climate variables: (i) The
true values are closer to the forecasts than in Fig. 7. (ii) The forecast intervals are narrower than in Fig. 7. The dashed lines indicate 20,000 years ago.
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In Fig. 7, we present the multi-step ahead forecasts of the cli-
mate variables for the last 100,000 years of the sample period, by
using the estimation window for the period of 798,000 years ago to
101,000 years ago, for score-driven threshold ice-age model by using
Temp𝑡 in order to define two clusters. The results indicate that the
forecasting precision of the score-driven threshold ice-age model using
clustering for Temp𝑡 is superior to that of the ice-age model of Castle
and Hendry (2020, p. 111).

In Table 4, by using the estimation window for the period of
798,000 years ago to 101,000 years ago, the forecasting results com-
pare the score-driven threshold ice-age models for all alternative clus-
tering methods, using three clusters. The results support the best-
performing specifications from Table A.1, A2, and A3, and Fig. 6.
Moreover, by comparing Tables 3 and 4 we find that the estimates
f the forecasting performances of the score-driven threshold ice-age
odels using three clusters (Table 4) are superior to those of the
14

core-driven threshold ice-age models using two clusters (Table 3).
In Fig. 8, we present the multi-step ahead forecasts of the cli-
ate variables for the last 100,000 years of the sample period, by
sing the estimation window for the period of 798,000 years ago to
01,000 years ago, for the best-performing score-driven threshold ice-
ge model using three clusters: (i) Ice𝑡 is clustered with respect to Ice𝑡
nd CO2,𝑡 (Fig. 8(a)), (ii) CO2,𝑡 is clustered with respect to CO2,𝑡 and
emp𝑡 (Fig. 8(b)), and (iii) Temp𝑡 is clustered with respect to Ice𝑡, CO2,𝑡,
nd Temp𝑡 (Fig. 8(c)). We find an increasing forecasting precision for
ll climate variables, because the true values of the climate variables
re closer to their forecasts in Fig. 8 than in Fig. 7. We also find that
he forecast intervals are narrower in Fig. 8 than in Fig. 7.
Finally, we use the best-performing score-driven threshold ice-age

models, using two and three clusters to forecast the climate variables
for the forthcoming 5000 years, by using the estimation window for
the period of 798,000 years ago to 1000 years ago. Due to the 1,000-
year observation frequency, those forecasting results can be interpreted

as benchmarks, which would have happened if humanity had not
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Fig. 9. Multi-step ahead out-of-sample forecasts of Ice𝑡, CO2,𝑡, and Temp𝑡 for the forthcoming 5000 years, by using the best-performing score-driven ice-age model with structural
changes with two clusters from Table 3. Note: The confidence interval is ± 2 standard deviations of the forecasts. The best-performing model for two clusters for the forecasting
of the last 20,000 years uses Temp𝑡 for clustering of all climate variables (Table 3).
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burned fossil fuels since the Industrial Revolution. The corresponding
multi-step ahead out-of-sample forecasts are presented in Figs. 9 and
10, respectively. These figures use the same model specifications for
forecasting as Figs. 7 and 8, respectively. For the forecasting formulas of
Figs. 9 and 10, we assume that the last regime of the historical sample
period will continue for the forthcoming 5000 years, i.e., 𝐷1,𝑡 = 0 and
𝐷2,𝑡 = 1 (Fig. 9), and 𝐷1,𝑡 = 0, 𝐷2,𝑡 = 0, and 𝐷3,𝑡 = 1 (Fig. 10),
which are low level of Ice𝑡, high level of CO2,𝑡, and high level of Temp𝑡
for both figures. For the forthcoming 5,000 year period this is the
most realistic assumption on the climate regime. For the purpose of
robustness analysis, we also performed the same forecasting exercise of
the less realistic case of 𝐷1,𝑡 = 0, 𝐷2,𝑡 = 1, and 𝐷3,𝑡 = 0 which is average
level of Ice𝑡, average level of CO2,𝑡, and average level of Temp𝑡, and the
unrealistic case of 𝐷1,𝑡 = 1, 𝐷2,𝑡 = 0, and 𝐷3,𝑡 = 0 which is high level
of Ice𝑡, low level of CO2,𝑡, and low level of Temp𝑡. The forecasts of the
climate variables for the forthcoming 5000 years for those alternatives
15

n

are practically identical to the forecasts of Figs. 9 and 10. Hence, the
forecasting results of Figs. 9 and 10 are robust predictions of the climate
variables.

By comparing Figs. 9 and 10, we find that the forecasting intervals
or Ice𝑡 and Temp𝑡 are clearly narrower in Fig. 10 than in Fig. 9.
oreover, we also find that the forecasting interval for CO2,𝑡 is slightly
arrower in Fig. 10 than in Fig. 9. Hence, we find that the fore-
casting accuracy of the score-driven threshold ice-age models using
three clusters is superior to the forecasting accuracy of the score-driven
threshold ice-age models using two clusters. Both Figs. 9 and 10 show
ncreasing global ice volume Ice𝑡, decreasing atmospheric CO2,𝑡 volume,
nd decreasing Antarctic land surface temperature Temp𝑡 for the next
000 years. This indicates a turning point in the climate variables for
he forthcoming 5000 years, under the assumption that humanity has

ot influenced significantly Earth’s climate during the last 250 years.
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Fig. 10. Multi-step ahead out-of-sample forecasts of Ice𝑡, CO2,𝑡, and Temp𝑡 for the forthcoming 5000 years, by using the best-performing score-driven threshold ice-age models for
three clusters from Table 4. Note: The confidence interval is ± 2 standard deviations of the forecasts. Notice an increasing forecasting precision: (i) The forecast intervals for Ice𝑡
nd Temp𝑡 are clearly narrower than in Fig. 9. (ii) The forecast interval for CO2,𝑡 is slightly narrower than in Fig. 9.
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. Conclusions

In the recent work of Blazsek and Escribano (2022), it is shown that
he statistical performance of score-driven ice-age models is superior to
hat of the ice-age model of Castle and Hendry (2020), without using
ny sort of intervention analysis (i.e., impulse saturation variables), and
t is also shown that the score-driven ice-age models are able to solve
revious dynamic misspecifications. However, Blazsek and Escribano
2022) also show that the forecasting performances of both models are
imilar and none of those models are able to anticipate well the climate
ariables for the last 10,000 to 15,000 years. Motivated by this result,
n this paper, we introduce new regime-switching score-driven ice-age
odels to capture the abrupt changes observed when climate variables
xceed certain threshold values.
First, we have considered a score-driven Markov-switching ice-age
odel and we provided empirical evidence of having structural changes
n our three climate variables. In particular, we have found clear
symmetric cyclical reactions during low-persistence periods of rapid
ncreases in CO2 and temperature versus the other regime of high-
16

ersistence periods with decreasing CO2 and temperature. Furthermore, o
e have also identified alternative regime switching periods by using
emporal clusters built on high levels of one, two, or three of our
limate variables. We have used Ward’s clustering method and we have
amed our models score-driven threshold ice-age models. Estimation
nd forecasting results have supported the use of those models, since we
ave been able to anticipate well the evolution of the climate variables
or the last 10,000 to 15,000 years. We have suggested using the op-
imal clustering which might be different for each of the three climate
ariables. Finally, by using the best-performing score-driven threshold
ce-age models, we have provided out-of-sample forecasts of the climate
ariables for the forthcoming 5000 years. Without considering the
xtreme climate effects of the most recent 250 years of fossil fuels
urned by humanity, we have identified the existence of synchronous
urning points in the long-run cyclical evolution of the three climate
ariables, moving to a new period of increasing global ice volume,
ecreasing atmospheric CO2 volume, and decreasing Antarctic land
urface temperature in the next 5000 years. These long-run forecasting
esults may be used as a benchmark for comparisons with the forecasts

f researchers who use more recent and more frequently observed data
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Table 4
Mean squared errors (MSEs) of multi-step ahead forecasts for the period of 100,000 years ago to 1000 years ago for the score-driven threshold ice-age models with three clusters

Score-driven Score-driven Score-driven Score-driven Score-driven Score-driven Score-driven
threshold threshold threshold threshold threshold threshold threshold
ice-age model, ice-age model, ice-age model, ice-age model, ice-age model, ice-age model, ice-age model,
clustering for clustering for clustering for clustering for clustering for clustering for clustering for
Ice𝑡, CO2,𝑡, Ice𝑡 and CO2,𝑡 Ice𝑡 and Temp𝑡 CO2,𝑡 and Temp𝑡 Ice𝑡 CO2,𝑡 Temp𝑡
and Temp𝑡

Ice𝑡 MSE MSE MSE MSE MSE MSE MSE

last 100000 years 0.0466 𝟎.𝟎𝟐𝟓𝟓 0.0469 0.0504 0.0735 0.0696 0.0430
last 90000 years 0.0496 𝟎.𝟎𝟐𝟓𝟓 0.0499 0.0536 0.0336 0.0755 0.0448
last 80000 years 0.0515 𝟎.𝟎𝟐𝟒𝟏 0.0515 0.0514 0.0314 0.0793 0.0473
last 70000 years 0.0535 𝟎.𝟎𝟐𝟓𝟗 0.0535 0.0539 0.0343 0.0864 0.0512
last 60000 years 0.0538 𝟎.𝟎𝟐𝟔𝟒 0.0540 0.0530 0.0388 0.0947 0.0519
last 50000 years 0.0570 𝟎.𝟎𝟐𝟑𝟏 0.0575 0.0575 0.0446 0.1057 0.0578
last 40000 years 0.0693 𝟎.𝟎𝟐𝟔𝟔 0.0701 0.0703 0.0546 0.1300 0.0704
last 30000 years 0.0899 𝟎.𝟎𝟑𝟑𝟏 0.0912 0.0916 0.0717 0.1714 0.0901
last 20000 years 0.1330 𝟎.𝟎𝟒𝟔𝟔 0.1352 0.1357 0.1024 0.2541 0.1335
last 10000 years 0.1851 𝟎.𝟎𝟑𝟑𝟗 0.1900 0.1468 0.1306 0.4160 0.1503

CO2,𝑡 MSE MSE MSE MSE MSE MSE MSE

last 100000 years 0.0176 0.0183 0.0179 0.0166 1.3852 0.0234 𝟎.𝟎𝟏𝟕𝟒
last 90000 years 0.0195 0.0201 0.0198 𝟎.𝟎𝟏𝟖𝟒 0.0720 0.0251 0.0191
last 80000 years 0.0207 𝟎.𝟎𝟏𝟖𝟒 0.0208 0.0185 0.0568 0.0245 0.0201
last 70000 years 0.0219 𝟎.𝟎𝟐𝟎𝟑 0.0219 0.0204 0.0521 0.0277 0.0228
last 60000 years 0.0241 0.0229 0.0242 𝟎.𝟎𝟐𝟏𝟑 0.0499 0.0319 0.0230
last 50000 years 0.0263 0.0253 0.0264 𝟎.𝟎𝟐𝟏𝟒 0.0553 0.0362 0.0240
last 40000 years 0.0286 0.0290 0.0288 𝟎.𝟎𝟐𝟐𝟖 0.0651 0.0422 0.0257
last 30000 years 0.0315 0.0359 0.0319 𝟎.𝟎𝟐𝟓𝟒 0.0846 0.0526 0.0296
last 20000 years 0.0328 0.0349 0.0334 𝟎.𝟎𝟐𝟐𝟒 0.0744 0.0714 0.0247
last 10000 years 0.0360 0.0204 0.0378 𝟎.𝟎𝟎𝟗𝟎 0.0689 0.1049 0.0099

Temp𝑡 MSE MSE MSE MSE MSE MSE MSE

last 100000 years 𝟎.𝟖𝟎𝟒𝟑 2.2282 0.8109 1.0177 24.3943 2.5421 1.0812
last 90000 years 𝟎.𝟖𝟓𝟑𝟕 2.2020 0.8590 1.0409 10.5759 2.5202 1.1254
last 80000 years 𝟎.𝟗𝟑𝟏𝟖 1.9131 0.9363 1.0560 4.5172 2.4398 1.1783
last 70000 years 0.9917 1.9628 𝟎.𝟗𝟖𝟗𝟖 1.1895 3.9975 2.6847 1.1633
last 60000 years 𝟏.𝟎𝟎𝟒𝟒 2.1460 1.0127 1.1916 3.9305 2.9893 1.1782
last 50000 years 𝟏.𝟏𝟏𝟖𝟕 1.9586 1.1273 1.3304 4.6014 3.0771 1.3067
last 40000 years 𝟏.𝟐𝟑𝟔𝟒 2.2527 1.2470 1.5603 5.3153 3.6479 1.5533
last 30000 years 𝟏.𝟒𝟏𝟒𝟎 2.7468 1.4306 1.8421 6.6035 4.6595 1.8770
last 20000 years 𝟎.𝟗𝟖𝟑𝟑 2.6371 1.0227 1.6540 5.8365 6.1343 1.6439
last 10000 years 𝟎.𝟑𝟓𝟕𝟒 0.4236 0.4307 0.9056 4.4157 7.4776 0.9700
Table A.1
Score-driven threshold ice-age model with three clusters which provides the most accurate forecasts of Ice𝑡 (Table 4) for the period of 798,000 to 1000 years ago.
Score-driven threshold ice-age model with clustering with respect to Ice𝑡 and CO2,𝑡
Regime 1 = high Ice𝑡 and low CO2,𝑡; regime 2 = middle Ice𝑡 and CO2,𝑡; regime 3 = low Ice𝑡 and high CO2,𝑡

𝛾0,1(1) 1.4277***(0.4542) 𝛾0,1(2) 1.2157**(0.5742) 𝛾0,1(3) 3.1102***(0.8325) 𝐶1 0.8842
𝛾0,2(1) 1.4277**(0.6434) 𝛾0,2(2) 2.1594***(0.5851) 𝛾0,2(3) 4.4886***(1.4178) 𝐶2 0.8425
𝛾0,3(1) −1.9481(1.7411) 𝛾0,3(2) 0.4278(1.2814) 𝛾0,3(3) 6.6513+(4.1852) 𝐶3 0.6987
𝛤1,1,1(1) 0.8842***(0.0270) 𝛤1,1,1(2) 0.7524***(0.0286) 𝛤1,1,1(3) 0.6325***(0.0486) LB 𝑣1,𝑡 21.3765(0.8093)
𝛤1,1,3(1) 0.0005(0.0053) 𝛤1,1,3(2) −0.0073*(0.0040) 𝛤1,1,3(3) −0.0222***(0.0055) LB 𝑣2,𝑡 34.4545(0.1863)
𝛤1,2,2(1) 0.7157***(0.0437) 𝛤1,2,2(2) 0.7946***(0.0415) 𝛤1,2,2(3) 0.4893***(0.1290) LB 𝑣3,𝑡 28.6976(0.4280)
𝛤1,2,3(1) 0.0220***(0.0055) 𝛤1,2,3(2) 0.0131***(0.0041) 𝛤1,2,3(3) 0.0294***(0.0086) LB 𝑢1,𝑡 24.2263(0.6695)
𝛤1,3,2(1) 0.1311(0.6347) 𝛤1,3,2(2) −0.4361(0.4632) 𝛤1,3,2(3) −2.4115+(1.5197) LB 𝑢2,𝑡 29.8172(0.3720)
𝛤1,3,3(1) 0.7864***(0.0722) 𝛤1,3,3(2) 0.8860***(0.0435) 𝛤1,3,3(3) 0.8527***(0.1063) LB 𝑢3,𝑡 31.5100(0.2949)
𝛤2,1,1(1) 70.0455(55.8945) 𝛤2,1,1(2) 42.1530(44.7704) 𝛤2,1,1(3) −124.7862(116.7117) LL 1.7830
𝛤2,1,4(1) −34.6457+(23.5207) 𝛤2,1,4(2) −31.6182*(17.7643) 𝛤2,1,4(3) 57.1456(50.5386) AIC −3.2879
𝛤2,1,5(1) −5.4665**(2.1688) 𝛤2,1,5(2) −5.8799***(1.3888) 𝛤2,1,5(3) −2.7563+(1.7315) BIC −2.6366
𝛤2,2,1(1) 18.2079***(5.8146) 𝛤2,2,1(2) 14.1910+(9.1732) 𝛤2,2,1(3) −30.1201*(16.9529) HQC −3.0376
𝛤2,2,8(1) 0.1656*(0.0925) 𝛤2,2,8(2) 0.2388***(0.0832) 𝛤2,2,8(3) 0.6516***(0.2409)
𝛤2,3,1(1) −279.7774***(74.3145) 𝛤2,3,1(2) −321.0749***(62.1935) 𝛤2,3,1(3) −189.3791(137.5875)
𝛤2,3,4(1) 201.2026***(42.3791) 𝛤2,3,4(2) 303.3058***(52.9524) 𝛤2,3,4(3) 64.4725(105.3050)
𝛤2,3,5(1) 32.3395*(17.6699) 𝛤2,3,5(2) 29.9243***(9.2833) 𝛤2,3,5(3) 41.7598***(13.2628)
𝛤3,1,1(1) −73.4795(55.1368) 𝛤3,1,1(2) −10.6816(51.8357) 𝛤3,1,1(3) 114.7731(133.7364)
𝛤3,1,2(1) −0.3783**(0.1691) 𝛤3,1,2(2) −0.0989(0.2397) 𝛤3,1,2(3) −0.7981**(0.3303)
𝛤3,1,4(1) 36.4495+(23.4059) 𝛤3,1,4(2) 18.1064(20.5495) 𝛤3,1,4(3) −52.1673(56.4184)
𝛤3,2,1(1) −51.1168***(12.7793) 𝛤3,2,1(2) −23.5842+(14.8972) 𝛤3,2,1(3) 55.4346**(27.2512)
𝛤3,2,2(1) −1.1129**(0.4541) 𝛤3,2,2(2) −1.2507***(0.4080) 𝛤3,2,2(3) −2.8456**(1.1417)
𝛤3,2,4(1) 13.9247***(5.2111) 𝛤3,2,4(2) 4.0613(3.8751) 𝛤3,2,4(3) −11.1995+(7.4730)
𝛤3,3,4(1) −82.0721**(31.9618) 𝛤3,3,4(2) −165.6717***(44.3043) 𝛤3,3,4(3) 2.6060(96.7154)
𝛹1,1,1(1) 0.7840***(0.0664) 𝛹1,1,1(2) 0.8733***(0.0860) 𝛹1,1,1(3) 1.0173***(0.1613)

(continued on next page)
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Table A.1 (continued).
Score-driven threshold ice-age model with clustering with respect to Ice𝑡 and CO2,𝑡
Regime 1 = high Ice𝑡 and low CO2,𝑡; regime 2 = middle Ice𝑡 and CO2,𝑡; regime 3 = low Ice𝑡 and high CO2,𝑡

𝛹1,1,3(1) −0.0229***(0.0078) 𝛹1,1,3(2) −0.0225***(0.0087) 𝛹1,1,3(3) −0.0727***(0.0175)
𝛹1,2,2(1) 1.3569***(0.0776) 𝛹1,2,2(2) 1.4874***(0.0955) 𝛹1,2,2(3) 0.9933***(0.1829)
𝛹1,2,3(1) 0.0169***(0.0043) 𝛹1,2,3(2) 0.0194***(0.0057) 𝛹1,2,3(3) 0.0121***(0.0022)
𝛹1,3,2(1) 3.7478***(1.2826) 𝛹1,3,2(2) 6.9428***(1.2316) 𝛹1,3,2(3) 1.2666(2.2240)
𝛹1,3,3(1) 0.8312***(0.0731) 𝛹1,3,3(2) 1.0423***(0.0804) 𝛹1,3,3(3) 2.5247***(0.2118)
𝛺1,1(1) 0.0819***(0.0032) 𝛺1,1(2) 0.0800***(0.0034) 𝛺1,1(3) 0.0523***(0.0052)
𝛺2,1(1) −0.0070***(0.0027) 𝛺2,1(2) −0.0075**(0.0030) 𝛺2,1(3) −0.0083(0.0084)
𝛺2,2(1) 0.0408***(0.0015) 𝛺2,2(2) 0.0480***(0.0020) 𝛺2,2(3) 0.0468***(0.0058)
𝛺3,1(1) −0.1553***(0.0462) 𝛺3,1(2) −0.0857**(0.0410) 𝛺3,1(3) −0.0480(0.0819)
𝛺3,2(1) 0.2604***(0.0412) 𝛺3,2(2) 0.3927***(0.0404) 𝛺3,2(3) 0.3164***(0.0602)
𝛺3,3(1) 0.6699***(0.0256) 𝛺3,3(2) 0.5835***(0.0245) 𝛺3,3(3) 0.4362***(0.0460)
𝜈(1) 3.5274***(0.2063) 𝜈(2) 3.1033***(0.1755) 𝜈(3) 1.8076***(0.1757)

Note: 𝐶1 < 1 is covariance stationarity of regime 1; 𝐶2 < 1 is covariance stationarity of regime 2; 𝐶3 < 1 is covariance stationarity of regime 3. The Ljung–Box (LB) statistics
(𝑝-values in parentheses) use the lag-order

√

𝑇 ≃ 28. Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-Quinn criterion (HQC).
Gradient-based standard errors are reported in parentheses.
+Parameter significance at the 15% level.
*Parameter significance at the 10% level.
**Parameter significance at the 5% level.
***Parameter significance at the 1% level.
Table A.2
Score-driven threshold ice-age model with three clusters which provides the most accurate forecasts of CO2,𝑡 (Table 4) for the period of 798,000 to 1000 years ago.

Score-driven threshold ice-age model with clustering with respect to CO2,𝑡 and Temp𝑡
Regime 1 = low Temp𝑡, CO2,𝑡; regime 2 = middle Temp𝑡, CO2,𝑡; regime 3 = high Temp𝑡, CO2,𝑡

𝛾0,1(1) 1.4169***(0.3849) 𝛾0,1(2) 0.8729+(0.6037) 𝛾0,1(3) 2.9979***(0.9448) 𝐶1 0.9633
𝛾0,2(1) 1.4169**(0.5773) 𝛾0,2(2) 2.1366***(0.6505) 𝛾0,2(3) 3.7865***(1.0300) 𝐶2 0.8162
𝛾0,3(1) −7.6029***(1.4823) 𝛾0,3(2) −2.2624**(1.0791) 𝛾0,3(3) 6.1613*(3.1907) 𝐶3 0.8323
𝛤1,1,1(1) 0.9633***(0.0248) 𝛤1,1,1(2) 0.8162***(0.0278) 𝛤1,1,1(3) 0.8323***(0.0339) LB 𝑣1,𝑡 18.5292(0.9120)
𝛤1,1,3(1) 0.0147**(0.0060) 𝛤1,1,3(2) −0.0177***(0.0060) 𝛤1,1,3(3) −0.0148**(0.0068) LB 𝑣2,𝑡 31.7889(0.2832)
𝛤1,2,2(1) 0.8017***(0.0345) 𝛤1,2,2(2) 0.8104***(0.0403) 𝛤1,2,2(3) 0.5245***(0.0884) LB 𝑣3,𝑡 36.2249(0.1370)
𝛤1,2,3(1) 0.0146***(0.0042) 𝛤1,2,3(2) 0.0040(0.0041) 𝛤1,2,3(3) 0.0331***(0.0083) LB 𝑢1,𝑡 21.5846(0.8001)
𝛤1,3,2(1) 1.2984***(0.4932) 𝛤1,3,2(2) −0.0377(0.3915) 𝛤1,3,2(3) −2.1979*(1.1425) LB 𝑢2,𝑡 32.9488(0.2376)
𝛤1,3,3(1) 0.3788***(0.0727) 𝛤1,3,3(2) 0.5447***(0.0512) 𝛤1,3,3(3) 0.9444***(0.1049) LB 𝑢3,𝑡 29.5934(0.3829)
𝛤2,1,1(1) 28.5553(46.3229) 𝛤2,1,1(2) 28.5553(46.3229) 𝛤2,1,1(3) −29.7489(106.6205) LL 1.9213
𝛤2,1,4(1) −16.3650(19.4494) 𝛤2,1,4(2) −16.3650(19.4494) 𝛤2,1,4(3) 1.0636(44.6027) AIC −3.5643
𝛤2,1,5(1) −4.5588***(1.6229) 𝛤2,1,5(2) −4.5588***(1.6229) 𝛤2,1,5(3) −4.8361**(2.0406) BIC −2.9131
𝛤2,2,1(1) 9.7223*(5.8362) 𝛤2,2,1(2) 9.7223*(5.8362) 𝛤2,2,1(3) −0.9530(17.6886) HQC −3.3141
𝛤2,2,8(1) 0.1615*(0.0863) 𝛤2,2,8(2) 0.1615*(0.0863) 𝛤2,2,8(3) 0.4144***(0.1485)
𝛤2,3,1(1) −290.8906***(67.4776) 𝛤2,3,1(2) −290.8906***(67.4776) 𝛤2,3,1(3) −313.4403***(106.2669)
𝛤2,3,4(1) 103.7901**(41.7651) 𝛤2,3,4(2) 103.7901**(41.7651) 𝛤2,3,4(3) 233.3530**(102.1411)
𝛤2,3,5(1) 26.9295*(15.7809) 𝛤2,3,5(2) 26.9295*(15.7809) 𝛤2,3,5(3) 15.9502(12.6705)
𝛤3,1,1(1) −49.6861(45.6694) 𝛤3,1,1(2) −49.6861(45.6694) 𝛤3,1,1(3) 10.9718(118.8264)
𝛤3,1,2(1) −0.4798***(0.1414) 𝛤3,1,2(2) −0.4798***(0.1414) 𝛤3,1,2(3) −1.0341***(0.3846)
𝛤3,1,4(1) 25.6552(19.2396) 𝛤3,1,4(2) 25.6552(19.2396) 𝛤3,1,4(3) 7.6045(49.0217)
𝛤3,2,1(1) −36.1261***(11.9673) 𝛤3,2,1(2) −36.1261***(11.9673) 𝛤3,2,1(3) −1.6609(24.7657)
𝛤3,2,2(1) −1.0757**(0.4248) 𝛤3,2,2(2) −1.0757**(0.4248) 𝛤3,2,2(3) −2.0220***(0.7342)
𝛤3,2,4(1) 11.1919**(4.5159) 𝛤3,2,4(2) 11.1919**(4.5159) 𝛤3,2,4(3) 0.3632(6.7152)
𝛤3,3,4(1) 19.4779(32.0427) 𝛤3,3,4(2) 19.4779(32.0427) 𝛤3,3,4(3) −109.9444(97.0771)
𝛹1,1,1(1) 0.7537***(0.0694) 𝛹1,1,1(2) 0.9655***(0.0817) 𝛹1,1,1(3) 1.0149***(0.1273)
𝛹1,1,3(1) −0.0116(0.0097) 𝛹1,1,3(2) −0.0117(0.0125) 𝛹1,1,3(3) −0.0376**(0.0154)
𝛹1,2,2(1) 1.4896***(0.0936) 𝛹1,2,2(2) 1.5014***(0.0983) 𝛹1,2,2(3) 1.1020***(0.1349)
𝛹1,2,3(1) 0.0110**(0.0052) 𝛹1,2,3(2) 0.0016(0.0069) 𝛹1,2,3(3) 0.0059***(0.0014)
𝛹1,3,2(1) 4.4487***(1.1206) 𝛹1,3,2(2) 3.4156***(1.0317) 𝛹1,3,2(3) 1.4002(1.7893)
𝛹1,3,3(1) 0.5619***(0.0676) 𝛹1,3,3(2) 0.7642***(0.0918) 𝛹1,3,3(3) 1.4215***(0.1638)
𝛺1,1(1) 0.0802***(0.0035) 𝛺1,1(2) 0.0778***(0.0037) 𝛺1,1(3) 0.0866***(0.0050)
𝛺2,1(1) −0.0048*(0.0025) 𝛺2,1(2) −0.0067**(0.0031) 𝛺2,1(3) −0.0127**(0.0053)
𝛺2,2(1) 0.0382***(0.0014) 𝛺2,2(2) 0.0444***(0.0019) 𝛺2,2(3) 0.0507***(0.0033)
𝛺3,1(1) −0.0639*(0.0364) 𝛺3,1(2) −0.0610+(0.0382) 𝛺3,1(3) −0.1205**(0.0605)
𝛺3,2(1) 0.1475***(0.0379) 𝛺3,2(2) 0.2160***(0.0366) 𝛺3,2(3) 0.4018***(0.0518)
𝛺3,3(1) 0.5430***(0.0219) 𝛺3,3(2) 0.5045***(0.0271) 𝛺3,3(3) 0.5248***(0.0331)
𝜈(1) 3.3456***(0.2150) 𝜈(2) 3.1586***(0.2537) 𝜈(3) 2.7838***(0.2407)

Note: 𝐶1 < 1 is covariance stationarity of regime 1; 𝐶2 < 1 is covariance stationarity of regime 2; 𝐶3 < 1 is covariance stationarity of regime 3. The Ljung–Box (LB) statistics
(𝑝-values in parentheses) use the lag-order

√

𝑇 ≃ 28. Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-Quinn criterion (HQC).
Gradient-based standard errors are reported in parentheses.
+Parameter significance at the 15% level.
*Parameter significance at the 10% level.
**Parameter significance at the 5% level.
***Parameter significance at the 1% level.
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Table A.3
Score-driven threshold ice-age model with three clusters which provides the most accurate forecasts of Temp𝑡 (Table 4) for the period of 798,000 to 1000 years ago.
Score-driven threshold ice-age model with clustering with respect to Ice𝑡, CO2,𝑡, and Temp𝑡
Regime 1 = high Ice𝑡, low Temp𝑡 and CO2,𝑡; regime 2 = middle Ice𝑡, Temp𝑡, and CO2,𝑡; regime 3 = low Ice𝑡, high Temp𝑡 and CO2,𝑡

𝛾0,1(1) 1.0889***(0.3594) 𝛾0,1(2) 0.6614(0.9558) 𝛾0,1(3) 2.7643***(0.7455) 𝐶1 0.9674
𝛾0,2(1) 1.0889**(0.5321) 𝛾0,2(2) 2.6976***(0.9024) 𝛾0,2(3) 2.6669***(0.7089) 𝐶2 0.8066
𝛾0,3(1) −6.8238***(1.3727) 𝛾0,3(2) −2.9773***(0.8022) 𝛾0,3(3) 0.8206(2.3245) 𝐶3 0.8389
𝛤1,1,1(1) 0.9674***(0.0239) 𝛤1,1,1(2) 0.8053***(0.0370) 𝛤1,1,1(3) 0.8389***(0.0258) LB 𝑣1,𝑡 20.2289(0.8560)
𝛤1,1,3(1) 0.0100*(0.0056) 𝛤1,1,3(2) −0.0184**(0.0091) 𝛤1,1,3(3) −0.0135***(0.0051) LB 𝑣2,𝑡 29.9351(0.3663)
𝛤1,2,2(1) 0.7930***(0.0306) 𝛤1,2,2(2) 0.8060***(0.0423) 𝛤1,2,2(3) 0.7300***(0.0609) LB 𝑣3,𝑡 18.0759(0.9242)
𝛤1,2,3(1) 0.0174***(0.0040) 𝛤1,2,3(2) −0.0017(0.0048) 𝛤1,2,3(3) 0.0159***(0.0058) LB 𝑢1,𝑡 19.0565(0.8964)
𝛤1,3,2(1) 1.2116***(0.4619) 𝛤1,3,2(2) −0.1617(0.2957) 𝛤1,3,2(3) −0.3390(0.8389) LB 𝑢2,𝑡 31.8646(0.2801)
𝛤1,3,3(1) 0.4466***(0.0680) 𝛤1,3,3(2) 0.3410***(0.0434) 𝛤1,3,3(3) 0.8048***(0.0960) LB 𝑢3,𝑡 21.0742(0.8222)
𝛤2,1,1(1) 36.0145(45.4817) 𝛤2,1,1(2) 76.7199+(50.5119) 𝛤2,1,1(3) 45.8113(70.9087) LL 1.9596
𝛤2,1,4(1) −18.8903(19.0435) 𝛤2,1,4(2) −37.2693*(21.5833) 𝛤2,1,4(3) −30.1589(29.2719) AIC −3.6411
𝛤2,1,5(1) −4.5857***(1.5247) 𝛤2,1,5(2) −5.8856***(1.7520) 𝛤2,1,5(3) −4.5873***(1.6636) BIC −2.9898
𝛤2,2,1(1) 9.8492*(5.7035) 𝛤2,2,1(2) 19.1657*(10.2329) 𝛤2,2,1(3) −2.3528(13.5333) HQC −3.3909
𝛤2,2,8(1) 0.1667**(0.0827) 𝛤2,2,8(2) 0.2317*(0.1199) 𝛤2,2,8(3) 0.3432***(0.1018)
𝛤2,3,1(1) −264.5521***(64.6204) 𝛤2,3,1(2) −115.9592**(48.6373) 𝛤2,3,1(3) −355.4575***(83.6406)
𝛤2,3,4(1) 108.0166***(41.1198) 𝛤2,3,4(2) 113.5697***(43.5344) 𝛤2,3,4(3) 225.4502***(83.5444)
𝛤2,3,5(1) 32.2982**(15.6664) 𝛤2,3,5(2) 23.8292**(9.6551) 𝛤2,3,5(3) 16.2034+(10.2112)
𝛤3,1,1(1) −48.1296(45.3757) 𝛤3,1,1(2) −38.3228(58.2920) 𝛤3,1,1(3) −65.5521(82.9802)
𝛤3,1,2(1) −0.3646***(0.1347) 𝛤3,1,2(2) 0.0278(0.4131) 𝛤3,1,2(3) −0.9393***(0.3092)
𝛤3,1,4(1) 24.3584(19.0105) 𝛤3,1,4(2) 20.8430(24.7440) 𝛤3,1,4(3) 38.9456(34.0419)
𝛤3,2,1(1) −31.6416***(11.3099) 𝛤3,2,1(2) −46.6994**(21.2248) 𝛤3,2,1(3) 0.1578(18.6213)
𝛤3,2,2(1) −1.0745***(0.3984) 𝛤3,2,2(2) −1.5093**(0.6094) 𝛤3,2,2(3) −1.6297***(0.5003)
𝛤3,2,4(1) 9.1421**(4.3105) 𝛤3,2,4(2) 11.7559+(7.4019) 𝛤3,2,4(3) 0.7905(4.9049)
𝛤3,3,4(1) 3.2870(31.0725) 𝛤3,3,4(2) −65.6671**(32.7232) 𝛤3,3,4(3) −78.7713(78.6988)
𝛹1,1,1(1) 0.8107***(0.0674) 𝛹1,1,1(2) 0.8630***(0.1095) 𝛹1,1,1(3) 0.9455***(0.0899)
𝛹1,1,3(1) −0.0087(0.0094) 𝛹1,1,3(2) −0.0341**(0.0169) 𝛹1,1,3(3) −0.0387***(0.0118)
𝛹1,2,2(1) 1.4668***(0.0847) 𝛹1,2,2(2) 1.5761***(0.1083) 𝛹1,2,2(3) 1.0984***(0.1030)
𝛹1,2,3(1) 0.0101**(0.0050) 𝛹1,2,3(2) −0.0041(0.0090) 𝛹1,2,3(3) 0.0054***(0.0011)
𝛹1,3,2(1) 4.3751***(1.0807) 𝛹1,3,2(2) 1.9444*(1.0943) 𝛹1,3,2(3) 2.4483*(1.3496)
𝛹1,3,3(1) 0.5884***(0.0683) 𝛹1,3,3(2) 0.4538***(0.0955) 𝛹1,3,3(3) 1.3219***(0.1167)
𝛺1,1(1) 0.0813***(0.0034) 𝛺1,1(2) 0.0747***(0.0048) 𝛺1,1(3) 0.0844***(0.0041)
𝛺2,1(1) −0.0056**(0.0025) 𝛺2,1(2) −0.0045(0.0042) 𝛺2,1(3) −0.0116***(0.0039)
𝛺2,2(1) 0.0394***(0.0014) 𝛺2,2(2) 0.0408***(0.0023) 𝛺2,2(3) 0.0522***(0.0028)
𝛺3,1(1) −0.0907**(0.0384) 𝛺3,1(2) −0.0198(0.0381) 𝛺3,1(3) −0.1107**(0.0446)
𝛺3,2(1) 0.1800***(0.0350) 𝛺3,2(2) 0.1070***(0.0393) 𝛺3,2(3) 0.3772***(0.0407)
𝛺3,3(1) 0.5732***(0.0217) 𝛺3,3(2) 0.3904***(0.0312) 𝛺3,3(3) 0.5131***(0.0264)
𝜈(1) 3.3412***(0.2095) 𝜈(2) 3.3006***(0.3037) 𝜈(3) 3.1541***(0.2392)

Note: 𝐶1 < 1 is covariance stationarity of regime 1; 𝐶2 < 1 is covariance stationarity of regime 2; 𝐶3 < 1 is covariance stationarity of regime 3. The Ljung–Box (LB) statistics
(𝑝-values in parentheses) use the lag-order

√

𝑇 ≃ 28. Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-Quinn criterion (HQC).
Gradient-based standard errors are reported in parentheses.
+Parameter significance at the 15% level.
*Parameter significance at the 10% level.
**Parameter significance at the 5% level.
***Parameter significance at the 1% level.
than us for the last 250 years period, and therefore could separate
the future climate impacts of humanity from the long-run effects of
exogenous orbital variables.
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