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Preface

Path planning is defined as the process to establish the sequence of states a system
must go through in order to reach a desired state. Additionally, motion planning (or
trajectory planning) aims to compute the sequence of motions (or actions) to take
the system from one state to another. In robotics path planning can refer for instance
to the waypoints a robot should follow through a maze or the sequence of points a
robotic arm has to follow in order to grasp an object. Motion planning is considered
a more general problem, since it includes kinodynamic constraints.

As motion planning is a more complex problem, it is often solved in a two-level
approach: path planning in the first level and then a control layer tries to drive
the system along the specified path. However, it is hard to guarantee that the final
trajectory will keep the initial characteristics.

The objective of this work is to solve different path and motion planning problems
under a common framework in order to facilitate the integration of the different
algorithms that can be required during the nominal operation of a mobile robot.
Also, other related areas such as motion learning are explored using this framework.
In order to achieve this, a simple but powerful algorithm called Fast Marching will
be used. Originally, it was proposed to solve optimal control problems. However, it
has became very useful to other related problems such as path and motion planning.

Since Fast Marching was initially proposed, many different alternative approaches
have been proposed. Therefore, the first step is to formulate all these methods within
a common framework and carry out an exhaustive comparison in order to give a final
answer to: which algorithm is the best under which situations?

This Thesis shows that the different versions of Fast Marching Methods become
useful when applied to motion and path planning problems. Usually, high-level prob-
lems as motion learning or robot formation planning are solved with completely differ-
ent algorithms, as the problem formulation are mixed. Under a common framework,
task integration becomes much easier bringing robots closer to everyday applications.

The Fast Marching Method has also inspired modern probabilistic methodologies,
where computational cost is enormously improved at the cost of bounded, stochastic
variations on the resulting paths and trajectories. This Thesis also explores these
novel algorithms and their performance.
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me the money to buy bread when I forgot it, and listening to me when my code did
not compile.

iii



iv



Contents

Preface i

Acknowledgments iii

1 Introduction 1
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5
2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Path planning problem formulation . . . . . . . . . . . . . . . 6
2.1.3 Optimal path planning problem formulation . . . . . . . . . . 7

2.2 Classification of the path planning algorithms . . . . . . . . . . . . . 7
2.3 Latest trends in path planning research . . . . . . . . . . . . . . . . . 10
2.4 Fast Marching Methods in path planning: previous work . . . . . . . 12
2.5 Open Issues and Contributions . . . . . . . . . . . . . . . . . . . . . 12

3 Eikonal Equation and the Fast Marching Method 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Introduction to Fast Marching Methods . . . . . . . . . . . . . . . . . 16
3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 n-Dimensional Discrete Eikonal Equation . . . . . . . . . . . . 19
3.3.2 Solving the nD discrete Eikonal equation . . . . . . . . . . . . 20

3.4 Fast Marching Method . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Path planning with the Fast Marching Method . . . . . . . . . . . . . 23

4 Fast Methods 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Fast Marching Methods . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Binary and Fibonacci Heaps . . . . . . . . . . . . . . . . . . . 29

v



4.2.2 Simplified Fast Marching Method . . . . . . . . . . . . . . . . 30
4.2.3 Untidy Fast Marching Method . . . . . . . . . . . . . . . . . . 32

4.3 Fast Sweeping Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Lock Sweeping Methods . . . . . . . . . . . . . . . . . . . . . 35

4.4 Other Fast Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Group Marching Method . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Double Dynamic Queue Method . . . . . . . . . . . . . . . . . 38
4.4.3 Fast Iterative Method . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Experimental Comparison . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Fast Marching Square motion planning algorithm 59
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Fast Marching Square . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 FM2: The Saturated Variation . . . . . . . . . . . . . . . . . . 61
5.3 FM2∗: Fast Marching Square Star . . . . . . . . . . . . . . . . . . . . 63
5.4 Greedy Fast Marching Square Star . . . . . . . . . . . . . . . . . . . 64
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Directional Fast Marching Square . . . . . . . . . . . . . . . . . . . . 69
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Fast Marching Square applied to the ITER project 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Transport cask . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.3 Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.4 Optimization criteria . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Current solution: a three-step approach . . . . . . . . . . . . . . . . . 81
6.3.1 Geometric Path Evaluation . . . . . . . . . . . . . . . . . . . 82
6.3.2 Path Optimization . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Trajectory Evaluation . . . . . . . . . . . . . . . . . . . . . . 83
6.3.4 Geometric Path Evaluation Issues . . . . . . . . . . . . . . . . 85

6.4 Path optimization and trajectory evaluation . . . . . . . . . . . . . . 85
6.5 Simulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5.1 Comparison against previous ITER solution . . . . . . . . . . 98
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vi



7 Fast Marching-based motion learning 107
7.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Path Planning Learning with Fast Marching Square . . . . . . . . . . 109

7.2.1 Fast Marching Learning Method . . . . . . . . . . . . . . . . . 110
7.2.2 Including Obstacles in the Workspace . . . . . . . . . . . . . . 112

7.3 Analysis of the Fast Marching Learning Method . . . . . . . . . . . . 113
7.3.1 FML Main Characteristics . . . . . . . . . . . . . . . . . . . . 114
7.3.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.3 Parameters Analysis . . . . . . . . . . . . . . . . . . . . . . . 116

7.4 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Bidirectional Fast Marching Trees: motion planning in high-dimensional
spaces 125
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 The BFMT∗ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 FMT∗– High-level description . . . . . . . . . . . . . . . . . . 127
8.2.2 BFMT∗– High-level description . . . . . . . . . . . . . . . . . 128
8.2.3 BFMT∗– Detailed description . . . . . . . . . . . . . . . . . . 129

8.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 136

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 General Conclusions 141
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A n-Dimensional Grid Maps 145
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.3 General Neighbor Extraction . . . . . . . . . . . . . . . . . . . . . . . 147

A.3.1 2-dimensional Neighbor Extraction . . . . . . . . . . . . . . . 148
A.3.2 3-dimensional Neighbor Extraction . . . . . . . . . . . . . . . 150
A.3.3 n-dimensional Neighbor Extraction . . . . . . . . . . . . . . . 152

A.4 Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.4.1 Index to coordinates . . . . . . . . . . . . . . . . . . . . . . . 153
A.4.2 Coordinates to index . . . . . . . . . . . . . . . . . . . . . . . 153

A.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.5.1 nDGridCell::getNeigbors() . . . . . . . . . . . . . . . . . . . . 155
A.5.2 nDGridCell::idx2coord() . . . . . . . . . . . . . . . . . . . . . 156
A.5.3 nDGridCell::coord2idx() . . . . . . . . . . . . . . . . . . . . . 157

vii



Bibliography 159

viii



List of Tables

4.1 Summary of amortized time complexities for common heaps used in
FMM (n is the number of elements in the heap). . . . . . . . . . . . 30

4.2 Largest L1 and L∞ errors for UFMM in the random velocities experiment. 54
4.3 Largest L1 and L∞ errors for UFMM in the checkerboard experiment. 57

5.1 Time (ms) comparison for the proposed FM2 variants. . . . . . . . . . 65

6.1 Clearance distributions for the initialization (Xi) and optimized (Xo)
trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Results of SEDS and FML in the handwriting motions dataset. . . . 120

ix



x



List of Figures

2.1 Classification of the current path planning approaches. . . . . . . . . 10

3.1 Examples of a wave propagation through media with different velocities. 17

3.2 3D representation of the FMM output in a 2D grid. The arrival time
is shown in the Z axis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Example of a path planning problem solved with Fast Marching. . . . 26

4.1 Comparisons among algorithms. Colors refer to different works: orange
[1], gray [2], yellow [3], green [4], black [5], and blue [6]. . . . . . . . . 28

4.2 Untidy priority queue representation. Top: first iteration, the four
neighbors of the initial point are pushed. Middle: the first bucket
became empty, so the circular array advances one position. Cell c2 is
first evaluated because it was the first pushed in the bucket. Bottom:
after a few iterations, a complete loop on the queue is about to be
completed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 FSM sweep directions in 2D represented with arrows. The darkest
cell is the initial point and the shaded cells are those analyzed by the
current sweep (time improved or maintained). . . . . . . . . . . . . . 33

4.4 2D alternating barriers environments. . . . . . . . . . . . . . . . . . . 46

4.5 2D random velocities environments. Lighter color means faster wave
propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 2D checkerboard environments. Lighter color means faster wave prop-
agation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Example of the resulting time-of-arrival maps applying FMM to the
empty environment in 2D. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Computation times and ratios for the empty map environment in 2D. 48

4.9 Computation times and ratios for the empty map experiment in 3D. . 49

4.10 Computation times and ratios for the empty map experiment in 4D. . 49

4.11 Example of the resulting time-of-arrival maps applying FMM to some
of the alternating barriers environment in 2D. . . . . . . . . . . . . . 50

xi



4.12 Computation times and ratios for the alternating barriers experiment
in 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.13 Computation times and ratios for the alternating barriers experiment
in 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.14 Example of the resulting time-of-arrival maps applying FMM to the
random velocities environment in 2D. . . . . . . . . . . . . . . . . . . 52

4.15 Computation times and ratios for the random velocities experiment in
2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.16 Computation times and ratios for the random velocities experiment in
3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.17 Computation times and ratios for the random velocities experiment in
4D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.18 Example of the resulting time-of-arrival maps applying FMM to the
checkerboard environment in 2D. . . . . . . . . . . . . . . . . . . . . 55

4.19 Computation times for the checkerboard experiment in 2D. . . . . . . 55

4.20 Computation times for the checkerboard experiment in 3D. . . . . . . 56

4.21 Computation times for the checkerboard experiment in 4D. . . . . . . 56

5.1 FM2 steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Saturated FM2 steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Comparison between FM2 and FM2∗ . . . . . . . . . . . . . . . . . . 64

5.4 Comparison between FM2∗ and Greedy FM2∗. . . . . . . . . . . . . . 65

5.5 Map used to experiment FM2 and its variants. . . . . . . . . . . . . 66

5.7 Wave propagation comparison: experiment 2. . . . . . . . . . . . . . 66

5.6 Wave propagation comparison: experiment 1. . . . . . . . . . . . . . 67

5.8 Wave propagation comparison: experiment 3. . . . . . . . . . . . . . 67

5.9 Wave propagation comparison: experiment 4. . . . . . . . . . . . . . 68

5.10 Wave propagation comparison: experiment 5. . . . . . . . . . . . . . 68

5.12 Desired FM2 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.11 FM2 drawback example. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.13 DFM2 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 The ITER tokamak and the scientific buildings and facilities that will
house the ITER experiments in Cadarache, South of France. . . . . . 76

6.2 The three main level of Tokamak Building in ITER (left) and the 2D
representation of the level B1 (right). . . . . . . . . . . . . . . . . . . 78

6.3 The five main levels of Hot Cell Building in ITER (left) and the 2D
representation of the level L1 (right). . . . . . . . . . . . . . . . . . . 79

6.4 Rhombic vehicle model and the possible path following approaches. . 80

xii



6.5 Workflow for trajectory optimization. This Thesis studies a new imple-
mentation of the Initial Trajectory block and how it affects remaining
blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 From left to right: the initial map with the generated Constrained De-
launay Triangulation and the computed sequence of triangles between
start and goal points, initial geometric path, path optimization and
final optimized trajectory [7, 8]. . . . . . . . . . . . . . . . . . . . . . 84

6.7 Steps of the proposed method on level TB/B1 (from left to right):
initial map, velocity map, time-of-arrival map and FM2 path, FM2

path evaluated with the cask with a collision, and path after the the
optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.8 From left to right: map of level B1 in Tokamak Building, generated
Constrained Delaunay Triangulation of the map, geometric path ob-
tained from Constrained Delaunay Triangulation and path obtained
with Fast Marching Square. . . . . . . . . . . . . . . . . . . . . . . . 85

6.9 Elastic band concept: elastic forces to smooth the path (left) and re-
pulsive forces generated by the closest obstacles (right). . . . . . . . . 86

6.10 Schema of the path evolution in each iteration during the trajectory
optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.11 Definition of the variation of the path between consecutive iterations:
distance evaluated to a single point. . . . . . . . . . . . . . . . . . . . 88

6.12 The path evaluation from the lift to the port 10 in level L1 of TB:
the results from the initialization step (left) and from the optimization
step (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.13 The spanned areas along the initialized path (left) and along the opti-
mized path (right), from the lift to the port 10 in level L1 of TB. . . 91

6.14 The minimum distance between the vehicle and the closest obstacles
(top) and the speed of the vehicle (bottom) along the optimized path,
from the lift to the port 10 in level L1 of TB. . . . . . . . . . . . . . 91

6.15 Metrics comparison for different levels in TB and HCB: initialization
(Init.) versus optimization (Opt.). . . . . . . . . . . . . . . . . . . . . 93

6.16 Smoothness metric comparison for different levels in TB and HCB:
initialization (Init.) versus optimization (Opt.). . . . . . . . . . . . . 94

6.17 Evaluation of the distances between each point of the path along the
iterations and its final value in the optimized path. . . . . . . . . . . 95

6.18 The path evaluation from the lift to all ports in level L1 of TB: the
results from the initialization step (left) and from the optimization step
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.19 Path initialization and optimization from the lift to main parking
places in levels L1 and B2 of HCB. . . . . . . . . . . . . . . . . . . . 97

xiii



6.20 Path for a parking place in level B2 of HCB, in collision with a tem-
porary vehicle (left), and the re-optimization of the path without the
need of the initialization step (right). . . . . . . . . . . . . . . . . . . 98

6.21 Example of a double maneuver in level B1 of TB, port 7: initialization
(top) and optimization (bottom). . . . . . . . . . . . . . . . . . . . . 99

6.22 Left - initial geometric path obtained with Constrained Delaunay Tri-
angulation; Right - trajectory obtained with FM2. . . . . . . . . . . . 100

6.23 Top: the initial trajectory for port 12 using as initialization the Con-
strained Delaunay Triangulation (left) and the Fast Marching Square
(right); bottom: the final optimized trajectory for port 12 using as
initialization the Constrained Delaunay Triangulation (left) and Fast
Marching Square (right). . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.24 Variation of the median (in red) along iterations for port 12 in level
B1 of Tokamak Building. . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.25 Comparison between the minimum distances along the optimized tra-
jectories using the Constrained Delaunay Triangulation and Fast March-
ing Square initializations for port 12 in level B1 of Tokamak Building. 102

6.26 Top: the initial trajectory for port 7 using as initialization the Con-
strained Delaunay Triangulation (left) and the Fast Marching Square
(right); bottom: the final optimized trajectory for port 7 using as
initialization the Constrained Delaunay Triangulation (left) and Fast
Marching Square (right). . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.27 Variation of the median along iterations for port 7 in level B1 of Toka-
mak Building. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.28 Comparison between the minimum distances along the optimized tra-
jectories using the Constrained Delaunay Triangulation and Fast March-
ing Square initializations for port 7 in level B1 of the Tokamak Building.104

6.29 Comparisons of computational time (left) and number of iterations
(right) for trajectory optimization using Constrained Delaunay Trian-
gulation and Fast Marching Square. . . . . . . . . . . . . . . . . . . . 105

7.1 FM2 saturated variation: modification of the path depending on the
saturation value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Fast Marching Learning steps. sat = 0.1 and aoi = 25 cells. . . . . . . 112

7.3 Left: FM2 time-of-arrival map T using the modified F . Right: stream-
lines (set of possible reproductions) of T with parameters sat = 0.1
and aoi = 25 cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Fast Marching Learning obstacles update steps. sat = 0.1 and aoi = 25
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiv



7.5 Left: map of times using the propagation velocities learned. Right:
result of the learning method with parameters sat = 0.1 and aoi = 25
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Behaviour of the Fast Marching Learning algorithm in zones with no
experience, and its adaptation when new experience is included. sat =
0.1 and aoi = 20 cells. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.7 One-shot against many demonstrations. Workspace: 300x500 cells. . . 116
7.8 Analysis of the results using different parameter settings. Workspace:

250x185 cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.9 The shape of the trajectories to learn could influence the parameters

of the algorithm. Workspace: 250x185 cells. . . . . . . . . . . . . . . 119
7.10 Results of the Fast Marching Learning algorithm applied to handwrit-

ing motions. sat = 0.1 and aoi = 25 cells. . . . . . . . . . . . . . . . . 121
7.11 Results of the Fast Marching Learning algorithm in three dimensions,

sat = 0.05 and aoi = 10 cells. . . . . . . . . . . . . . . . . . . . . . . 122
7.12 Qualitative comparison of the learning results of algorithms SEDS and

FML in the handwriting motions dataset. . . . . . . . . . . . . . . . . 122

8.1 The BFMT∗ algorithm generates a pair of search trees: one in cost-to-
come space from the initial configuration (blue) and another in cost-
to-go space from the goal configuration (purple). The path found by
the algorithm is in green color. . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Depictions of the three OMPL rigid-body planning problems . . . . . 135
8.3 Simulation results for the three OMPL scenarios. . . . . . . . . . . . 137
8.4 FMT∗ and BFMT∗ results for 5D and 10D cluttered hypercubes, 50%

obstacle coverage; all success rates were 100%. . . . . . . . . . . . . . 139
8.5 Results for the previous version of FMT∗ in α-puzzle, without Insert

procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1 Example of a 2D and a 3D grid map. Usually, 3D grid maps are
represented with cubes. The numbers within the cells represent the
indices of those cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2 4 neighbors highlighted in red of cell with index 7 (shaded) in a 2D
grid map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.3 4 neighbors highlighted in red of cell with index i (shaded) in a generic
2D grid map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.4 6 neighbors highlighted in red of cell with index i (shaded) in a 3D
grid map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xv



xvi



Chapter 1

Introduction to motion planning

1



2 Chapter 1. Introduction

The path planning problem is considered solved by some researchers. They argue
that the current existing solutions are good enough to solve most of the problems
that require robot motion. However, it is still one of the most active fields in robotics
research. In fact, in the last editions of the most important robotic conferences
(IROS, ICRA, RSS) path and motion planning are still among the topics with more
accepted papers. Therefore, many researchers are still focusing their efforts on the
path planning problem, trying to come up with better, faster and more general plan-
ning frameworks or modelling the real world in a more complex way so that motion
planning do not require an intense computational effort.

Hence, it turns out that the path planning problem is not as solved as many
people think. It is true that there exist very good solutions but none of them can
be considered as a general framework. In fact some approaches only perform well
in specific cases or are not able to adapt to new models of robots or environments.
For example, those algorithms which perform well in low dimensions become much
slower when increasing the dimensionality of the problem. Analogously, fastest algo-
rithms provide stochastic solutions with few guarantees about their solutions. Other
planners are difficult to tune if the configuration space does not follow an Euclidean
metric. Furthermore, robotics is moving towards small, more agile robots with fewer
computational capabilities. Thus, even faster solutions are desired. Not to mention
problems with kinodynamic constraints, in which state-of-the-art planners could take
hundreds of seconds to come up with a satisfactory solution.

It is important to remark the differences between path planning and motion plan-
ning. Path planning tries to compute purely geometric paths which go from one state
to another one. Typically, states are only positions and orientations. However, mo-
tion or trajectory planning also computes dynamic properties along the path, such as
velocities, accelerations, etc. Although there is a distinction between path and motion
planning, sometimes these terms are interchangeably used as motion planning can be
solved by just incrementing the dimensionality of the configuration space and apply-
ing path planning techniques, with the proper feasibility checks. Most of the work
of this Thesis builds upon a trajectory planner called Fast Marching Square (FM2),
which provides a path and a velocities profile. FM2 is applied to many different
problems but some of the solutions proposed do not take into account the velocities
profile, dealing only with the path planning part of the problem.

1.1 Context and motivation

As mentioned before, in order to consider a path planning algorithm ”good” it has to
perform well in many different cases, because it is not desirable to have different path
planning algorithms for every different situation. This would require to distinguish
those different situations and implement many different algorithms, which is complex
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and very time consuming.
In this context, this work focuses on analyzing the capabilities of the Fast March-

ing Method (FMM) and its variations when applied to path and motion planning.
The FM2 algorithm will be the focus which, in parallel development to this Thesis,
has shown its great adaptability to several motion planning problems such as robot
formation motion planning [9], grasp planning [10], socially-aware path planning [11],
etc.

This Thesis focuses on the FM2 adaptability, pushing the algorithm towards new
problems, such as motion learning. It is also deeply examined how the algorithm
performs in real-world scenarios where the path planning is critical. Furthermore,
new variants to the FM2 are proposed which bring it closer to problems where its
application was not practical, such as high-dimensional problems. For example, the
application of cost-to-go heuristics with the purpose of boosting the planning com-
putation time is studied.

Although an in-depth explanation of the contributions is contained in the next
Chapter, Section 2.5, they are outlined here as well. Firstly, this Thesis addresses a
comparison of the different Fast Methods available in the literature, which are the
basis of the algorithms contained in this Thesis. Then, high-level applications such
as path planning and motion learning are studied from the perspective of these Fast
Methods. Lastly, latest trends in stochastic motion planning are explored maintaining
the Fast Methods perspective.

1.2 Document structure

The document is divided in 8 Chapters and an Appendix apart from this introduc-
tion. The first 3 Chapters are introductory and provide the required background to
understand this Thesis and its contribution. The following Chapters (except the last
one), contain specific methodologies and algorithms. Thus, a more detailed formula-
tion and state of the art is given in each one of them. They also contain their own
results section.

Chapter 2 formalizes the path planning problem and provides a detailed state of
the art of path and motion algorithms. It also summarizes the previous work in FM2.

Chapter 3 introduces the Eikonal equation and how it is solved by means of the
Fast Marching Method.

Chapter 4 carries out a exhaustive description of the Fast Marching Method and
the variations proposed in the last years. Nine different Fast Marching-based al-
gorithms are detailed and experimentally compared under a common mathematical
formulation.

Chapter 5 builds on top of Chapters 4 and 3, as it introduces the Fast Marching
Square (FM2) motion planning algorithm, which relies on the Fast Marching Method.
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Three new variants are included, focusing on improving the FM2 performance and
output quality.

Chapter 6 extensively analyzes the performance of FM2 in a real-world scenario:
the ITER project, where the path planning is a critical step in a process where a
failure could suppose a environmental disaster. The problem is described and the
results of applying FM2 are analyzed.

Chapter 7 proposes a novel motion learning algorithm, the Fast Marching Learning
(FML) method. Based on FM2, this algorithm is able to accurately replicate and
generalize taught motions given by an expert. It is deeply tested and compared with
a state-of-the art method.

Chapter 8 introduces a novel, bi-directional, asymptotically optimal, sampling-
based path planning method based on the Fast Marching Method which clearly out-
performs its counterparts.

Then, Chapter 9 outlines the main conclusions extracted from this Thesis and its
results, pointing out the most promising ideas in this area.

Finally, Appendix A is attached, which details the formulation of n-dimensional
gridmaps and specifies how to generalize operations such as neighbor extraction in
these grids.
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Path planning has been a very active field since the days humankind started to
think about artificial intelligence. Although currently there are very good approaches,
there is not any algorithm able to satisfy all the requirements that a path planning
algorithm needs to satisfy: low computational complexity, reliability, completeness,
robustness, smooth paths, optimal solutions, safety, etc.

The algorithms which are very fast usually provide non-smooth paths, so a smooth-
ing step is required afterward. On the other hand, the algorithms whose solutions
are smooth are usually fast in 2 dimensions (or even 3) but their usefulness decrease
as the dimensionality is increased.

2.1 Problem formulation

The path planning problem formulation is clearly described in the literature. This
Section details the formal definition based on the one given in [12]. Note that only the
path planning formulation is detailed. This Thesis focuses in both path and motion
planning with FM2. However, the motion planning algorithm can be understood as
the path planning algorithm with the only difference that the output is no longer a
path, but a trajectory: a sequence of actions and durations, or the combination of a
path plus a velocity reference to traverse the path.

2.1.1 Notation

This Section describes the mathematical notation to be used along the Thesis.
Consider the Euclidean space in N dimensions, i.e., RN . A ball of radius r > 0

centered at x̄ ∈ Rd is defined as B(x̄; r) := {x ∈ Rd | ‖x − x̄‖ < r}. Given a subset
X of RN , its boundary is denoted by ∂X and its closure is denoted by cl(X ).

2.1.2 Path planning problem formulation

Let X = [0, 1]N be the configuration space, where the number of dimensions, N , is
an integer larger than or equal to two. Xobs represents the obstacle set (or region),
while Xfree contains the obstacle-free space, being both mutually exclusive. Usually,
it is considered Xobs such that X \Xobs is an open set and thus Xfree = cl(X \Xobs). In
other words, the boundary of the space belongs to the obstacle set ∂X ⊂ Xobs. As this
is necessary in some mathematical demonstrations, it has not noticeable consequences
in practice.

The initial condition (or state) Xs is an element of Xfree, and the goal region Xgoal

is an open subset of Xfree. A path planning problem is fully defined by a triplet
(Xfree,Xs,Xgoal). A d-dimensional function σ : [0, 1] → Rd is called a path if it is
continuous and has bounded variation (see [13, Section 2.1] for a formal definition). As
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the path is defined as a continuous function on a one-dimensional, bounded domain,
bounded variation can be understood as finite length.

In order to be useful the path requires to be collision-free. More formally, a path is
denoted as collision-free if σ(τ) ∈ Xfree for all τ ∈ [0, 1]. Furthermore, a collision-free
path for the planning problem (Xfree,Xs,Xgoal) is said feasible path if σ(0) = Xs, and
σ(1) ∈ cl(Xgoal).

The goal Xgoal region is expected to be a “well-behaved” set, that is, it has at least
an arbitrarily minimum volume and its boundary has bounded curvature. Formally,
Xgoal is said to be regular if ∃ξ > 0 such that ∀x ∈ ∂Xgoal, there exists a ball in
the goal region B(x̄; ξ) ⊆ Xgoal such that x ∈ ∂B(x̄; ξ). Although this requirement
might seem also too formal, in fact it is critical to guarantee that it is possible to
find a solution. Planning algorithms require these assumptions in order to identify
the goal region. Non-bounded curvature on goal regions or infinitesimal volume cause
the path planning problem to be not well defined.

2.1.3 Optimal path planning problem formulation

So far, the problem definition does not give preference for a solution path over the
rest of feasible paths. Therefore, a metric is required in order to sort the paths and
select the more convenient depending on the application.

Let Σ be the set of all feasible paths. A cost function for the planning problem
(Xfree,Xs,Xgoal) is a function c : Σ → R≥0 that assigns a non-negative value to each
feasible path. The cost function is often required to satisfy the triangle inequality,
and this is assumed along this Thesis unless stated otherwise. Some examples of this
case are arc length of σ with respect to the Euclidean metric in X , time required to
traverse the whole path, or energy consumed by the system.

The optimal path planning problem is then defined as follows:

Optimal path planning problem: Given a path planning problem
(Xfree,Xs,Xgoal) with a regular goal region and an arc cost function c : Σ→
R≥0, find a feasible path σ∗ such that c(σ∗) = min{c(σ) : σ is feasible}.
If no such path exists, report failure.

2.2 Classification of the path planning algorithms

There is a huge literature in path planning. However, most of the path planning
algorithms can be classified as follows:

• Geometric methods : The environment is described as a set of polygons and,
from their properties, the paths are computed as a sequence of geometric prim-
itives such as lines, arcs, splines, etc. The most common approach of this class
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are those based on visibility graphs [14, 15]. The visibility graph of a set of
non-intersecting polygonal obstacles in the plane is an undirected graph whose
vertices are the vertices of the obstacles and whose edges are pairs of vertices
such that the open line segment between each two vertices does not intersect
any of the obstacles. Although this approach is very intuitive and provide op-
timal paths in 2D (in terms of path length), its extension to more dimensions
is not trivial and optimality is lost. Also, to determine the visible portions of
the map is a complex and computationally intense problem.

Other common geometric approach is to compute the path using the Delaunay
triangulation of the environment [16]. This is one of the most widely-employed
triangulation algorithms because it minimizes the sum of all the angles of the
triangles in the triangulation. Although its complexity is O(n log n) [17], its
main drawback is that the triangulation is not unique and it can lead to very
weird paths, as detailed in Chapter 6.

• Graph- and tree-based methods : This is the class with most research effort during
the recent years. In this class, the environment is modeled by the state of the
robot with respect to environment. A graph is built in which every node is
one state of the robot (a state can be for instance a pose or velocities and
accelerations). The transitions between states are modeled as costs and the
path chosen is the one that minimizes the total cost of reaching a goal state
from a current state.

There exist several subclasses within the graph search method, depending on
how the graph is constructed and also how the costs are assigned. One of the
possible classifications is:

– Grid-based methods: characterized by discretization of the space in grid
cells. The most common grid representations are with rectangular or tri-
angular cells. This discretization can lead to a loss of accuracy, but this
issue is overcome by choosing an appropriate cell size. Every cell of the
space is a node of a graph, and it is connected with its neighbours (4 or
8-connectivity in 2D, depending on the algorithm) and the cost of travel-
ling from one node to other can be set on many different ways. Once the
costs are set, graph search algorithms can be applied in order to choose
the path which allows to reach the goal point with the minimum possible
cost.

Within this group, the typical graph search algorithms can be found, such
Dijkstra [18] or A* [19]. Modifications of these have been already proposed,
such as D* [20], which efficiently reuses information from previous steps
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to avoid redundant computations in dynamically changing scenarios or
D*-lite [21] which simplifies D*.

Finally, wavefront propagation methods, such as Fast Marching Method
(FMM) [22] which is the focus of this Thesis (see Chapter 4), lies also in
this group. In this case, the cost for each node is related with the time
a propagating wave takes to reach that node. Its formulation allows to
guarantee a convergence to the optimal path in terms of traversal time as
the grid is refined. When the propagation velocity is constant, the path
becomes also the optimal in terms of length.

– Sampling-based methods: this type of algorithms incrementally searches
in the space for a solution using a collision detection algorithm [23]. The
most extended algorithms of this group are those based on rapidly explor-
ing random trees (RRTs) [24]. The branches of these trees are randomly
created from the initial point of the trajectory. Another common approach
is the Probabilistic RoadMaps (PRM) [25]. PRM creates a roadmap (set
of connections) among a set of points randomly sampled.

The main problem of sampling-based algorithms is their stochasticity.
Most of the times the computed paths are far from the optimal one, are
neither safe nor smooth. However, since RRT∗ and PRM∗ were proposed
[26], this problem has vanished and thus this family of algorithms is the
most widely used in practical applications. Finding faster approaches is
a very active field nowadays, and many more asymptotically-optimal al-
gorithms have been proposed, for instance BIT∗ [27] and RRT# [28]. A
detailed state of the art is given in the next Section and in Chapter 8.

• Artificial potential fields methods: These algorithms rely in a grid representation
but are conceptually different from other grid-based methods.Artificial potential
fields can be included in this group. Conceptually, they represent the robot as
a punctual electric charge and the goal point as a charge of opposite sign [29].
Thus, the robot is attracted by the goal. Obstacles are modeled by charges of the
same sign of the robot, so that it is repelled and collisions are avoided. Although
they are conceptually simple and easy to implement, their main drawback is that
their are prone to local minima and oscillatory paths.

Figure 2.1 summarizes this classification. It is important to remark that this classi-
fication might be considered not unique, as other criteria could be chosen: stochastic-
ity, optimality, etc. For example, artificial potential methods are usually implemented
using a grid discretization. A* models the environment as a grid as well, but it is
a graph search algorithm. In the same way, RRT and FMM could be in the same
group considering that both work on a continuous space representation. However,
this classification was chosen as it is the most common and the easiest to understand.
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Figure 2.1: Classification of the current path planning approaches.

In the next sections the state of the art of path planning research is summarized
as it is the main topic of this Thesis.

2.3 Latest trends in path planning research

Many researchers consider that the path planning problem as a solved one. However,
most (if not all) current approaches perform poorly when they are applied to problems
in which different assumptions are made, even if these are considered simpler. Current
research efforts focus on more realistic environment representations and reformulating
the path planning problem in order to get it closer to the real problem robots have
to face when working among humans.

For instance, during recent years many researchers have focused on path planning
in dynamic environments with high uncertainty, due to sensor noise or also due to a
movement of other agents in the surroundings of the robot or crowded places. Also,
navigation in large environments, in which all the obstacles are not modelled.

For instance, in dynamic, uncertain environments (DUEs), robots must work in
close proximity with many other moving agents, whose future actions and reactions
are difficult to predict accurately. Robot motion planning in dynamic environments
has recently received substantial attention because of the Defense Advanced Research
Project Agency (DARPA) Urban Challenge [30] and growing interest in service and
assistive robots (see, e.g., [31] and [32]). In urban environments, traffic rules define
the expected behaviors of the dynamic agents and constrain expected future locations
of moving objects. In other applications, agent behaviors are less well defined, and
the prediction of their future trajectories is more uncertain.

When the future locations of moving agents are known, the two common ap-
proaches are to add a time dimension to the configuration space, or to separate the
spatial and temporal planning problems [23]. When the future locations are unknown,
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the planning problem is solved locally (via reactive planners) [33], [34] or in conjunc-
tion with a global planner that guides the robot toward a goal [35]. The work in [36]
presents an initial approach to a general framework that integrates planning, predic-
tion an estimation, incorporating as well the effect of anticipated future measurements
in the motion planning process.

Another important problem which still remains open are those systems with high
dimensional configuration spaces. These approaches are usually based on RRT, with
smoothing steps [37]. Most of these approaches are just modifications of the RRT
basic algorithm to apply it to specific cases: Transition-based RRT (T-RRT) [38]
which includes a state transitions cost, Manhattan-like RRT (ML-RRT) [39] which
incorporates a mix of active and passive parameters, or MLT-RRT [40] which is a
combination of the aforementioned. Other approaches simply focus on dealing with
much higher dimensionality, but under very specific contexts [41].

Other interesting problems have been faced as well such path planning for multi-
section continuum arms [42] or maximum planning coverage minimizing energy [43].

This Thesis focuses on optimal path planning methods where the cost metric is ar-
bitrarily defined, usually under the assumption that this metric satisfies the triangle
inequality. This problem has been mainly solved by means of deterministic meth-
ods, using graph-based algorithms [23] or through Fast Marching-based approaches
(see Section 2.4 for a detailed state of the art). However, Karaman and his colleagues
were the firsts to design asymptotically-optimal, sampling-based algorithms (the main
drawback of this family of algorithms) proposing the RRG, PRM∗ and RRT∗ algo-
rithms [26]. This boosted the research in this field, as these algorithms provide opti-
mality guarantees while maintaining the key properties of sampling-based methods:
fastness and dimensional scalability.

After Karaman’s groundbreaking work, many new approaches have been proposed
following the same formulation and mathematical framework. Informed-RRT∗ [44]
uses the best current best path cost to prematurely reject samples before inserting
them into the tree, boosting RRT∗ convergence. CForest [45] proposes a simple but
powerful paralellizing framework for incremental, asymptotically-optimal, sampling-
and tree-based algorithms, integrated into the most used path planning library, the
OMPL [46, 47], by the author of this Thesis. Kinodynamic RRT∗ versions have been
also proposed [48, 49].

In fact, Janson et al [12] went a step further and proposed the Fast Marching
Trees (FMT∗): an asymptotically-optimal, sampling-based path planning algorithm
inspired in the Fast Marching Method. This novel approach relaxes the mathematical
requirements and thus provides faster convergence towards the optimum path than
its counterparts. In fact, this method has been rapidly adopted and improved by the
community, proposing anytime versions [50], kinodynamic versions [51, 52], and bidi-
rectional versions, detailed in this Thesis in Chapter 8. Also inspiring new algorithms
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as the Batch Informed Trees [27].
Last but not least, Yershov proposed a very different approach to bringing to-

gether Fast Marching and sampling-based methods [53]. His approach implements a
modified Fast Marching Method over a simplicial mesh incrementally refined. Thus,
the convergence to the optimum is fast as continuous spaces are volumetrically dis-
cretized, while previous approaches are graph-based, and thus the whole space is
reduced to a set of uni-dimensional connections among states, requiring infinite time
to cover the whole space.

The literature in path and motion planning, specially for sampling-based methods
is quite vast. This state of the art has focused on the works closely related to this
Thesis and some other examples. A recent, more detailed review can be found in [54].

2.4 Fast Marching Methods in path planning: pre-

vious work

The Fast Marching Method (FMM), detailed in Chapter 4, is the central algorithm of
this Thesis. This Section details its road map during the last years of FMM applied
to path and motion planning. The application of the Fast Marching Method in
path planning is not novel but recent. At the beginning, the Fast Marching Method
was used to find paths within the Voronoi diagram [55]. Later, Fast Marching was
combined with the Extended Voronoi Transform (EVT) in what was called Voronoi
Fast Marching (VFM) [56]. This approach has been applied to exploration of cluttered
environments [57] and to 2D robot formations [58]. An improvement of the VFM was
the Fast Marching Square (FM2) planning method [59].

The VFM and FM2 have been applied to other planning problems such as: 3D
robot formations [9], smooth planning for non-holonomic robots [60, 61], simultane-
ous robot localization and mapping [62], planning in outdoor environments [63], [64],
RRT path smoothing [65], tube skeletons [66], grasp planning [10], socially-aware
motion planning [11], underwater vehicle planning [67], formations of unmanned sur-
face vehicles [68], and many others. As described in previous section, FMM has also
inspired sampling-based algorithms such as FMT∗ [12] and simplicial-based methods
[53].

2.5 Open Issues and Contributions

Despite the great amount of work available in the topic, there are still plenty of
open problems to be addressed. Furthermore, although some of the problems are, in
practice, solved, latest robotic trends have made researchers to revisit some of the
approaches already accepted by the community.
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To be more specific, this Thesis studies, among others, three of these cases. Al-
though there are many sound approaches to motion learning, most of them suffer
from the main drawback: stochasticity. That is, a good learning is probable but
not guaranteed and it mostly depends on the demonstrations given to be learned.
Another example is that, when building real-world robotic applications, some of the
latest planning approaches are not robust enough to be used without any supervi-
sion. Therefore, more basic, stable approaches are used that guarantee a minimum
quality of the solutions. Finally, the last example is the constant search for more
computationally-efficient algorithms. Robots are becoming smaller and thus their
computational capabilities are shrank. Thus, more efficient algorithms are required
so that automony is not affected.

The main contribution of this Thesis is to address those examples aforementioned
and therefore to push the application of Fast Marching-based methods to robotic
applications. Three specific contributions can be identified:

• Fast wavefront methods comparison: in Chapter 4 the complete family of se-
quential, isotropic wavefront propagation methods, called Fast Methods, is in-
troduced and compared, both qualitatively and quantitatively. Although these
methods are widely used nowadays, there is a lack of a deep comparison among
all the algorithms.

• High-level applications: Chapter 6 proposes a FM2 application to the ITER
project. This research lead to a more robust solution to the motion planned
problem proposed by the ITER project, of critical relevance for the future of
humankind. The Fast Marching Learning algorithm is proposed in Chapter 7.
Up to author’s knowledge, it is the first non-Bayesian motion learning algorithm.
Therefore, a novel approach motion learning is proposed.

• Improve FMT∗: In Chapter 8 a resampling strategy is proposed to improve the
FMT∗ algorithm. FMT∗ main drawback is its batch design, where the number
of samples to be used is a parameter to be set by the user. In some cases,
the sampled set is not enough to find a feasible solution and thus FMT∗ would
return failure. With the proposed resampling strategy this drawback no longer
exists, drastically increasing success rates. It is presented together with the
Bi-Directional FMT∗, a work carried out in collaboration with the Autonomous
Systems Lab from Stanford University, where this bidirectional approach was
initially proposed.
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3.1 Introduction

The Fast Marching Method (FMM) has been extensively applied since it was firstly
proposed in 1995 [69] as a solution to isotropic control problems using first-order semi-
Langragian discretizations on Cartesians grids. Their main field of application are
robotics [70, 71, 68] and computer vision [72], mainly medical image segmentation
[73, 74]. However, it has proven to be useful in many other applications such as
tomography [75] or seismology [76].

The first approach was proposed by Tsitsiklis [69], but the most popular solution
was given few months later by Sethian [22] using first-order upwind-finite differences
in the context of isotropic front propagation. Differences and similarities between
both works can be found in [77].

FMM was originally proposed to simulate a wavefront propagation through a
regular discretization of the space. However, many different approaches have been
proposed, extending these methods to other discretizations and formulations. For a
more detailed history of Fast Marching methods, interested readers are referred to
[78].

This Chapter introduces FMM, its formulation and its application to path plan-
ning, which is the main topic of this Thesis. In particular, next Section provides an
intuitive explanation to FMM. Then, Section 3.3 details the formulation and how to
solve the Eikonal equation in n-dimensions. Section 3.4 details the FMM and, finally,
Section 3.5 outlines how the FMM can be applied to path planning.

3.2 Introduction to Fast Marching Methods

The FMM can be intuitively understood considering the expansion of a wave. If a
stone is thrown into a pond a wavefront is originated, and this wave expands with
a circle shape around the point where the stone fell. In this example the fluid is
always water, thus the wave expansion velocity is always the same, and thus the
wavefront is circular. Instead, if this experiment is repeated mixing water and oil,
it would be observed that the wave expands at different speeds in each medium. As
a consequence, the wavefront will not be circular anymore. If another point on the
fluid is considered (a target point), the wavefront will arrive to that point after a
certain time. The path that the wavefront has followed from the origin to the target
point will be the shortest path (in terms of time), considering that the traveling speed
along the path is the expansion velocity of the wavefront (which differs depending
on the fluid). This path can be computed by using gradient descent (following the
direction of maximum change) from any given point. The smoother the variations are
in the wave propagation velocities, the smoother the path will be. These concepts are
plotted in Figure 3.1. In few words, FMM computes the arrival times of the wavefront
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from a starting point to all the points of the reachable space.

relat ive velocity =  0 relat ive velocity =  1

relat ive velocity =  1

relat ive velocity =  0

Wavefront paths Wave source point Points in the space

Figure 3.1: Examples of a wave propagation through media with different velocities.

The FMM is a particular case of Level Set Methods, initially developed by Osher
and Sethian [79]. The FMM assumes that the wave propagation velocity is always
non-negative, and thus the wavefront will never contract. Usually, propagation ve-
locities are defined by the environment or by higher-level algorithmic layers so that
it is easy to satisfy this assumption. Therefore, if only one wave source is used FMM
ensures that the time-of-arrival map will have only one minimum (both local and
global) at the start point. Section 3.5 details how FMM deals when obstacles are
present in the environment.

Many different wave sources can be set. In that case, there will be as many minima
as starting points, each one of them located at these wave sources. An example is
shown in Figure 3.2 with a 3D interpretation of the arrival times represented in the
Z axis.

From a high-level perspective, FMM computes the arrival time for one point at
every iteration. This is done efficiently by selecting the non-visited points with lower
value calculated so far. When evaluating a point, its value is increased taking into
account current propagation velocity and only the neighbors with lower times in each
dimension. As velocities are always non-negative current value will be at least as high
as the neighbor with lower value, and thus no local minima can appear. However,
saddle points are possible but they are not a problem as gradient descent (used to
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(a) One wave source (b) Two wave sources

Figure 3.2: 3D representation of the FMM output in a 2D grid. The arrival time is
shown in the Z axis .

compute the paths) will be able to continue without problems. In this case, it means
that two solution with the same propagation time are possible and which one is chosen
uniquely depends on the gradient descent implementation.

3.3 Problem Formulation

Formally, FMM is built to solve the nonlinear boundary value problem1. That is,
given a domain X and a velocity field function F : X → R+ which represents the
local speed of the motion, drive a system from a starting set Xs ⊂ X to a goal set
Xgoal ⊂ X through the fastest possible path. The Eikonal equation computes the
minimum time-of-arrival function T (x) as follows:∣∣∇T (x)

∣∣F (x) = 1, X ⊂ RN

T (x) = 0,x ⊂ Xs
(3.1)

Once solved, T (x) represents a distance (time-of-arrival) field containing the time
it takes to go from any point x to the closest point in Xs following the velocities on
F (x).

It is assumed, without loss of generality, that the domain is a unit hypercube of
N dimensions: X = [0, 1]N . The domain is represented with a rectangular Cartesian

1This problem formulation closely follows [80]
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grid X ⊂ RN , containing the discretizations of the functions F (x) and T (x), F and
T respectively. The grid points xij = (xi, yi),xij ∈ X represents the point x = (x, y)
in the space corresponding to a cell (i, j) of the grid (for the 2D case). For notation
simplicity, Tij = T (xij) ≈ T (x), Tij ∈ T , that is, Tij represents an approximation to
the real value of the function T (x). Analogously, Fij = F (xij) ≈ F (x), Fij ∈ F . The
set of Von-Neumann neighbors (4-connectivity in 2D) of grid point xij is denoted as
N (xij). For a general grid of N -dimensions, cells will be referred by their indices (or
keys) i as xi, since a flat representation is more efficient for such datastructure. More
details about n-dimensional grids formulation and representation through flat arrays
is given in Appendix A.

3.3.1 n-Dimensional Discrete Eikonal Equation

In this Section the most common first-order discretization of the Eikonal equation is
detailed. There exist many other first-order and higher-order approaches on grids,
meshes and manifolds [81, 82, 83, 84].

The discrete Eikonal equation is derived in 2D for better understanding. The most
common first-order discretization is given in [79], which uses an upwind-difference
scheme to approximate partial derivatives of T (x) (D±xij represents the one-sided
partial difference operator in direction ±x and ∆x and ∆y are the grid spacing in the
x and y directions):

Tx(x) ≈ D±xij T =
Ti±1,j−Tij
±∆x

Ty(x) ≈ D±yij T =
Ti,j±1−Tij
±∆y

(3.2)

{
max(D−xij T, 0)2 + min(D+x

ij T, 0)2+

max(D−yij T, 0)2 + min(D+y
ij T, 0)2

}
=

1

F 2
ij

(3.3)

Simpler but less accurate solution to Equation 3.3 is proposed in [85]:{
max(D−xij T,−D+x

ij T, 0)2+

max(D−yij T,−D
+y
ij T, 0)2

}
=

1

F 2
ij

(3.4)

Replacing Equation 3.2 in Equation 3.4 and letting

T = Ti,j
Tx = min(Ti−1,j, Ti+1,j)
Ty = min(Ti,j−1, Ti,j+1)

(3.5)
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the Eikonal Equation can be rewritten for a discrete 2D space as:

max

(
T − Tx

∆x

, 0

)2

+ max

(
T − Ty

∆y

, 0

)2

=
1

F 2
ij

(3.6)

Since it is assumed that the speed of the front is positive (F > 0), T must be
greater than Tx and Ty whenever the front wave has not already visited the point at
coordinates (i, j). Therefore, it is safe to simplify Equation 3.6 to:

(
T − Tx

∆x

)2

+

(
T − Ty

∆y

)2

=
1

F 2
ij

(3.7)

Equation 3.7 is a regular quadratic equation of the form aT 2 + bT + c = 0, where:

a = ∆2
x + ∆2

y

b = −2(∆2
yTx + ∆2

xTy)

c = ∆2
yT

2
x + ∆2

xT
2
y −

∆2
x∆2

y

F 2
ij

(3.8)

In order to simplify the notation for the n-dimensional case, let us assume that
the grid is composed by (hyper)cubic cells, that is, ∆x = ∆y = ∆z = · · · = h. Let us
denote Td as the generalization of Tx or Ty for dimension d, up to N dimensions. F
denotes the propagation velocity for point with coordinates (i, j, k, . . . ). Operating
and simplifying terms, the discretization of the Eikonal is a quadratic equation with
parameters:

a = N

b = −2
N∑
d=1

Td

c = (
N∑
d=1

T 2
d )− h2

F 2

(3.9)

3.3.2 Solving the nD discrete Eikonal equation

Wavefront propagation follows causality. That is, in order to reach a point with
higher time of arrival, it should firstly travel through neighbors of such point with
smaller values. The opposite would imply a jump in time continuity and therefore
the solutions would be erroneous.

The proposed Eikonal solution (quadratic equation with parameters of Equation
3.9) does not guarantee the causality of the resulting distance map, as F and h can
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have arbitrary values. Therefore, before accepting a solution as valid its causality has
to be checked. For instance, in 2D the Eikonal is solved as:

T =
Tx + Ty

2
+

1

2

√
2h2

F 2
−
(
Tx − Ty

)2
(3.10)

called the two-sided update, as both parents Tx and Ty are taken into account. The
solution is only accepted if T ≥ max

(
Tx, Ty

)
. The upwind condition [78] shows that:

T ≥ max
(
Tx, Ty

)
⇐⇒

∣∣Tx − Ty

∣∣ ≤ h

F
(3.11)

If this condition fails, the one-sided update is applied instead:

T = min
(
Tx, Ty

)
+
h

F
(3.12)

This is a top-down approach: the parents are iteratively discarded until a causal
solution is found. To generalize Equation 3.11 is complex. Therefore, a bottom-up
approach is chosen: Equation 3.12 is solved and parents are iteratively included until
the time of the next parent is higher than the current solution: Tk > T . The procedure
is detailed in Algorithms 1 and 2. The MinTDim() function returns the minimum
time of the neighbors in a given dimension (left and right for dim = 1, bottom and
top for dim = 2, etc.). The experiments found this approach more robust for 3 or
more dimensions with negligible impact on the computational performance.

Algorithm 1 Solve Eikonal Equation

1: procedure SolveEikonal(xi, T ,F)
2: a← N
3: for dim = 1 : N do
4: minT ←MinTDim(dim)
5: if minT 6=∞ and minT < Ti then
6: Tvalues.push(minT )
7: else
8: a← a− 1

9: if a = 0 then . Fast Sweeping Method can cause this situation.
10: return ∞
11: Tvalues ← Sort(Tvalues)
12: for dim = 1 : a do
13: T̃i ← SolveNDims(xi, dim, Tvalues,F)

14: if dim = a or T̃i < Tvalues,dim+1 then
15: break
16: return T̃i
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Algorithm 2 Solve Eikonal for n dimensions

1: procedure SolveNDims(xi, dim, Tvalues,F)
2: if dim = 1 then
3: return Tvalues,1 + h

Fi

4: sumT ←
dim∑
i=1

Tvalues,i

5: sumT 2 ←
dim∑
i=1

T 2
values,i

6: a← dim
7: b← −2sumT
8: c← sumT 2 − h2

Fi

9: q ← b2 − 4ac
10: if q < 0 then . Non-causal solution
11: return ∞
12: else
13: return −b+sqrt(q)

2a

3.4 Fast Marching Method

The Fast Marching Method (FMM) [22] is the most common Eikonal solver. It
can be classified as a label-setting, Dijkstra-like algorithm [18]. It uses a first-order
upwind-finite difference scheme to simulate an isotropic front propagation. The main
difference with Dijkstra’s algorithm is the operation carried out on every node. Dijk-
stra’s algorithm is designed to work on graphs. Therefore, the value for every node
xi only depends on one parent xj, following the Bellman’s optimality principle [86]:

Ti = min
xi∈N (xi)

(cij + Tj) (3.13)

In other words, a node xi is connected to the parent xj in its neighborhood N (xi)
which minimizes (or maximizes) the function value (in this case Ti) composed by the
value of Tj plus the addition of the cost of traveling from xj to xi, represented as cij.

The FMM follows Bellman’s optimality principle but the value for every node is
computed following first-order upwind discretization of the Eikonal equation, which
is described in detail in Section 3.3. This discretization takes into account the spa-
tial representation (i.e. a rectangular grid) and the value of all the causal upwind
neighbors. Thus, the time-of-arrival field computed by FMM is more accurate than
Dijkstra’s.

The algorithm labels the cells in three different sets: 1) Frozen: those cells which
value is computed and cannot change, 2) Unknown: cells with no value assigned, to
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be evaluated, and 3) Narrow band (or just Narrow): frontier between Frozen and
Unknown containing those cells with a value assigned that can be improved. These
sets are mutually exclusive, that is, a cell cannot belong to more than one of them at
the same time. The implementation of the Narrow set is a critical aspect of FMM. A
more detailed discussion will be carried out in Section 4.2.1.

The procedure is detailed in Algorithm 3. Initially, all points2 in the grid belong
to the Unknown set with infinite arrival time. The initial points (wave sources) are
assigned a value 0 and introduced in Frozen (lines 2-7). Then, the main FMM loop
starts by choosing the element with minimum arrival time from Narrow (line 9). All
its non-Frozen neighbors are evaluated: for each of them the Eikonal is solved and
the new arrival time value is kept if it is improved. In case the cell is in Unknown, it is
transferred to Narrow (lines 10-16). Finally, the previously chosen point from Narrow

is transferred to Frozen (lines 17 and 18) and a new iteration starts until the Narrow

set is empty. The arrival times map T is returned as the result of the procedure.

3.5 Path planning with the Fast Marching Method

Analyzing the FMM formulation given in 3.3, it can be seen that there are many
common components with the path planning problem formulation detailed in Chapter
2. Therefore, it is possible to solve the path planning method with FMM, but also
with any of the algorithms detailed in the next Chapter as they all share the same
formulation.

The configuration space X corresponds with the domain X of the FMM (reason
why they are named the same). Xobs corresponds to the subset of X and represents
those points in the space in which the wave cannot propagate. Although theoretically
obstacles and zero-velocity cells are different, in practice they are treated the same as
they output the same infinite value as the wave never reach such point. Consequently,
Xfree contains the rest of the cells.

For path planning, it is assumed that a Xgoal ⊂ Xfree occupies at least one cell of
the configuration space discretization. In other words, a well-behaved goal set will be
in practice at least of the size of a cell. Analogously, the start set Xs ⊂ Xfree is also
represented by at least one cell.

In order to compute the path, the wave is propagated from Xs to Xgoal, obtaining
a time-of-arrival map T . Applying gradient descent over T from Xgoal, it is satisfied
that σ(1) ∈ cl(Xgoal). Gradient descent will compute the path to the unique minimum
of T and therefore σ(0) = Xs. In terms of implementation, this will actually return
the path inverted, as its waypoints will travel from Xgoal to Xs. Thus the wave is
often propagated from Xgoal or the path is inverted. However, this has no effect in

2From now on, point, cell or node will indistinctly used to refer to each element of the grid.
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Algorithm 3 Fast Marching Method

1: procedure FMM(X , T ,F ,Xs)
Initialization:

2: Unknown← X , Narrow← ∅, Frozen← ∅
3: Ti ←∞ ∀xi ∈ X
4: for xi ∈ Xs do
5: Ti ← 0
6: Unknown← Unknown\{xi}
7: Narrow← Narrow ∪ {xi}

Propagation:
8: while Narrow 6= ∅ do
9: xmin ← arg minxi∈Narrow {Ti} . Narrow top operation.

10: for xi ∈ (N (xmin) ∩ X\Frozen) do . For all neighbors not in Frozen.

11: T̃i ← SolveEikonal(xi, T ,F)

12: if T̃i < Ti then
13: Ti ← T̃i . Narrow increase operation if xi ∈ Narrow.

14: if xi ∈ Unknown then . Narrow push operation.
15: Narrow← Narrow ∪ {xi}
16: Unknown← Unknown\{xi}
17: Narrow← Narrow\{xmin} . Narrow pop operation: add to Frozen.
18: Frozen← Frozen ∪ {xmin}
19: return T
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the path, as isotropic FMM are being considered.

Regarding optimality, the cost function is defined as c = T . That is, the time of
arrival of each cell actually represents its cost from the start point. FMM guarantees
that the path returned by gradient descent are optimal, as every cell has the lowest
possible value Ti assigned, and therefore there is not better alternative to reach that
cell.

Concretely, the maximum gradient direction is computed applying the Sobel op-
erator over the grid map.

gradx =

−1 0 1
−2 0 2
−1 0 1

 ? T grady =

 1 2 1
0 0 0
−1 −2 −1

 ? T (3.14)

For tracing the path between the initial and the goal points the maximum gradi-
ent direction has to be follown starting at the initial point. The path is computed
iteratively. gradix and gradiy are computed at every point pi. From pi is computed
pi+1 (Equation 3.15) successively until the minimum is reached. The step size (step)
is user-defined. Thus one advantage of FMM is that the extracted paths have a large
number of points, a useful feature when implementing path following on a real robot.
As the goal point is located at the global minima it is always reached (whenever there
is path).

modi =
√
grad2

ix + grad2
iy

alphai = arctan(
gradiy
gradix

)

p(i+1)x = pix + step · cos(alphai)
p(i+1)y = piy + step · sin(alphai)

(3.15)

Figure 3.3 shows an example of a path planning problem solved with FMM in
2D. The velocity map F is a binary map: every cell in Xfree has velocity 1 (white)
and Xobs is represented with cells with zero velocity (black). Usually, obstacles are
dilated in order to provide minimum safety guarantees, but this is very application
dependent.
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Figure 3.3: Example of a path planning problem solved with Fast Marching.

The main drawbacks of Fast Marching-based planning methods are: 1) robot
dimensions are not explicitly taken into account, and 2) kinematic constraints are
not taken into account. 1) is partially solved in practice by obstacle dilation as shown
in Figure 3.3. Sometimes, if enough computation resources are available, the obstacle
set in the grid already takes the shape of the robot into account, commonly by using
the maximum radius of the robot projection on the ground or by including a third
dimension to the configuration space in order to represent the yaw (heading angle) of
the robot. However, 2) is still an open issue. Some approaches to include kinodynamic
constraints have been proposed. For instance, [87] uses a two-step approach which
first computes a geodesic-based path initialization (Fast Marching can be thought as a
geodesic finder) and then an optimization procedure based on Bézier curves is applied
to satisfy robot’s kinodynamic constraints. Or [88] which samples the space mixing a
wavefront-propagation schema and forward-simulation of the system’s kinematics and
dynamics. However, these approaches represent a mixture of problems and further
testing is required before using them in real robotic applications.
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4.1 Introduction

Although this Thesis is focusing on FMM, many other different approaches exists,
providing the same (or very similar) output. There are referred as Fast Methods, as
they are inspired in FMM but more computationally efficient.

In this Chapter, nine sequential single-threaded, isotropic, grid-based Fast Meth-
ods are detailed: Fast Marching Method (FMM), Fibonacci-Heap FMM (FMMFib),
Simplified FMM (SFMM), Untidy FMM (UFMM), Group Marching Method (GMM),
Fast Iterative Method (FIM), Fast Sweeping Method (FSM), Lock Sweeping Method
(LSM) and Double Dynamic Queue Method (DDQM). All these algorithms provide
exactly the same solution except for UFMM and FIM, which have bounded errors.
However, the question of which one is the best for which applications is still open.
For example, [2] compares only FMM and FSM in spite of the fact that GMM and
UFMM were already published. Survey [6] mentions most of the algorithms but only
compares FMM and SFMM. A more recent work compares FMM, FSM and FIM in
2D [4]. However, FIM is paralellized and implemented in CUDA providing a biased
comparison. Figure 4.1 schematically shows the comparisons among algorithms car-
ried out in the literature. Methods such as UFMM have been barely compared to
their counterparts while others as FMM and FSM are compared in many works de-
spite the fact that it is well known when each perform better: FSM is faster in simple
environments with constant velocity. In addition, results from one work cannot be
directly extrapolated to other works since the performance of these methods highly
depend on their implementation.

FMM

FMMFib

DDQM

LSM

FIM GMM

UFMM

SFMM

FSM

Figure 4.1: Comparisons among algorithms. Colors refer to different works: orange
[1], gray [2], yellow [3], green [4], black [5], and blue [6].

This Chapter has three different contributions: 1) Based on previous works, a
common formulation and notation is given for all the algorithms following the previ-
ous Chapter formulation. This way, it is possible to easily understand the working
principles and mathematical formulation. More detailed formulations are available in
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the literature but this Chapter focuses on a practical perspective, as the rest of this
Thesis. 2) A recent survey of the work on designing sequential Fast Methods during
the last years. Parallel or high-accuracy approaches are not taken into account as
these fields are dense enough to fill another survey. 3) Extensive and systemic com-
parison among the mentioned methods with experiments designed taking into account
their applications and results previously reported.

The two-scale methods are proposed in [78], namely Fast Marching-Sweeping
Method (FMSM), Heap Cell Method (HCM), and Fast Heap Cell Method (FHCM).
They combine the FMM and FSM in order obtain the best features of both algo-
rithms, dividing the grid into two different levels and performing marching on a
coarser scale and then sweeping on a finer scale. However, these methods have not
been included in this analysis for different reasons: 1) HCM and FHCM performance
depend on the discretization of the coarse grid, where the optimal parameter depends
on the velocities profile. Furthermore, FHCM includes additional error. 2) FMSM
error is not mathematically bounded. Thus, the comparison with other Fast Methods
becomes more complex. Additionally, an efficient n-dimensional implementation of
these methods is overly complex, even given the fact that they are based on other
Fast Methods.

Additionally, single-pass methods proposed in [89] have not been included in this
Chapter because, as the authors acknowledge, it is not always possible to know in
advance which method among the proposed should be used. This is an important
drawback for practical applications such as robotics.

This Chapter is organized as follows: next Section includes Fast Marching-like
algorithms, Section 4.3 Fast Sweeping-based, and Section 4.4 contains other Fast
Methods. The benchmark and its results are included in Section 4.5, followed by a
discussion in Section 4.6. Finally, Section 4.7 outlines the conclusions and proposes
future works.

4.2 Fast Marching Methods

4.2.1 Binary and Fibonacci Heaps

FMM requires the implementation of the Narrow set to have four different operations:
1) Push: to insert a new element to the set, 2) Increase: to reorder an element already
existing in the set which value has been improved, 3) Top: retrieve the element with
minimum value, and 4) Pop: remove the element with minimum value. As stated
before, this is the most critical aspect of the FMM implementation. The most efficient
way to implement Narrow is by using a min-heap data structure. A heap is an ordered
tree in which every parent is ordered with respect to its children. In a min-heap, the
minimum value is at the root of the tree and the children have higher values. This is
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satisfied for any parent node of the tree.
Among all the existing heaps, FMM is usually implemented with a binary heap

[90]. However, the Fibonacci Heap [91] has a better amortized time for Increase
and Push operations, but it has additional computational overhead with respect to
other heaps. For relatively small grids, where the narrow band is composed by few
elements and the performance is still far from its asymptotic behavior, the binary
heap performs better. Table 4.1 summarizes the time complexities for these heaps1

(the priority queue will be detailed in Section 4.2.2). Note that n is the number of
cells in the map, as the worst case is to have all the cells in the heap.

Table 4.1: Summary of amortized time complexities for common heaps used in FMM
(n is the number of elements in the heap).

Push Increase Top Pop
Fibonacci O(1) O(1) O(1) O(log n)

Binary O(log n) O(log n) O(1) O(log n)
Priority Queue O(log n) – O(1) O(log n)

Each cell is pushed and popped at most once in the heap. For each loop, the top of
Narrow is accessed (O(1)), the Eikonal is solved for at most 2N neighbors (O(1) for a
given N), these cells are pushed or increased (O(log n) in the worst case), and finally
the top cell is popped (O(log n)). Therefore each loop is at most O(log n). Since this
loop is executed at most n times, the total FMM complexity is O(n log n), where n
represents the total number of cells of the grid in the worst case scenario.

4.2.2 Simplified Fast Marching Method

The Simplified Fast Marching Method (SFMM) [6] is a relatively unknown varia-
tion of the standard FMM but with an impressive performance. SFMM, detailed in
Algorithm 4, is a reduced version of FMM where Narrow, implemented as a simple
priority queue, can contain different instances of the same cell with different values.
Additionally, it can happen that the same cell belongs to Narrow and Frozen at the
same time. The simplification occurs since no Increase operation is required. Every
time a cell has an updated value, it is pushed to the priority queue. Once it is popped
and inserted in Frozen, the remaining instances in the queue are simply ignored.

The advantage is that all the increase operations are substituted by push oper-
ations. Although both have the same computational complexity, the constant for
push is much lower (increase requires removal and Push operations). Note that the
computational complexity is maintained, O(n log n).

1http://bigocheatsheet.com/
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Algorithm 4 Simplified Fast Marching Method

1: procedure SFMM(X , T ,F ,Xs)
Initialization as FMM (Algorithm 3)

Propagation:
2: while Narrow 6= ∅ do
3: xmin ← arg minxi∈Narrow {Ti} . Narrow top operation.
4: if xmin ∈ Frozen then
5: Narrow← Narrow\{xmin}
6: else
7: for xi ∈ (N (xmin) ∩ X\Frozen) do . For all neighbors not in Frozen.

8: T̃i ← SolveEikonal(xi, T ,F)

9: if T̃i < Ti then . Update arrival time.
10: Ti ← T̃i

11: Narrow← Narrow ∪ {xi} . Narrow push operation.

12: if xi ∈ Unknown then
13: Unknown← Unknown\{xi}
14: Narrow← Narrow\{xmin} . Narrow pop operation.
15: Frozen← Frozen ∪ {xmin}
16: return T
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4.2.3 Untidy Fast Marching Method

The Untidy Fast Marching Method (UFMM) [5, 92] follows exactly the same proce-
dure as FMM. However, a special heap structure is used which reduces the overall
computational complexity to O(n): the untidy priority queue.

This untidy priority queue is closer to a look-up table than to a tree. It assumes
that the F values are bounded, hence the T values are also bounded. The untidy
queue, depicted in Figure 4.2, is a circular array which divides the maximum range
of T into a set of k consecutive buckets. Each bucket contains an unordered list
of cells with similar Ti value. The threshold values for each bucket evolve with the
algorithm, trying to maintain an uniform distribution of the elements in Narrow

among the buckets.

Since the index of the corresponding bucket can be analytically computed, Push
is O(1) as well as Top. Pop and Increase operation are, in average, O(1) as long
as #buckets <O(n). Therefore, the total UFMM complexity is O(n). However, since
elements within a bucket are not sorted (FIFO strategy is applied in each bucket),
errors are being introduced in the final result. In fact, it is shown that the accumulated
additional error is bounded by O(h) (h is the cell size), which is the same order of
magnitude as in the original FMM.

0 dt 2dt k·dt (max. range)(k-1)dt

c1 c3 c2 c4

dt 2dt (k+1)dtk·dt3dt  

c2 c8 c7 c6 c5

2k·dt2(k-1)·dt (k-1)dt k·dt

 

(k+1)dt

c4 c36 c42 c21 c84 c92 c22

Figure 4.2: Untidy priority queue representation. Top: first iteration, the four neigh-
bors of the initial point are pushed. Middle: the first bucket became empty, so the
circular array advances one position. Cell c2 is first evaluated because it was the first
pushed in the bucket. Bottom: after a few iterations, a complete loop on the queue
is about to be completed.
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4.3 Fast Sweeping Methods

The Fast Sweeping Method (FSM) [93, 94] is an iterative algorithm which computes
the time-of-arrival map by successively sweeping (traversing) the whole grid follow-
ing a specific order. FSM performs Gauss-Seidel iterations in alternating directions.
These directions are chosen so that all the possible characteristic curves of the solu-
tion to the Eikonal are divided into the possible quadrants (or octants in 3D) of the
environment. For instance, a bi-dimensional grid has 4 possible Gauss-Seidel itera-
tions (the combinations of traversing x and y dimensions forwards and backwards):
are North-East, North-West, South-East and South-West, as shown in Figure 4.3.

Figure 4.3: FSM sweep directions in 2D represented with arrows. The darkest cell is
the initial point and the shaded cells are those analyzed by the current sweep (time
improved or maintained).

The FSM is a simple algorithm: it performs sweeps until no value is improved. In
each sweep, the Eikonal equation is solved for every cell. However, to generalize this
algorithm to N -dimensions is complex. Up to author’s knowledge, there are only 2D
and 3D implementations. However, Algorithm 5 introduces a N -dimensional version.
Sweeping directions are denoted as a binary array SweepDirs with elements 1 or −1,
with 1 (−1) meaning forwards (backwards) traversal in that dimension. This array
is initialized to 1 (North-East in the 2D case or North-East-Top in 3D) and the grid
is initialized as in FMM (lines 2-5). The main loop updates SweepDirs and a sweep
is performed in the new direction (lines 8-9).

The GetSweepDirs() procedure (see Algorithm 6) is in charge of generating the
appropriate Gauss-Seidel iteration directions. If a 3D SweepDirs = [1, 1, 1] vector is
given, the following sequence will be generated:

1− [−1,−1,−1]

2− [1,−1,−1]

3− [−1, 1,−1]

4− [1, 1,−1]

5− [−1,−1, 1]

6− [1,−1, 1]

7− [−1, 1, 1]

8− [1, 1, 1]
(4.1)
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Note that this sequence creates a sweep pattern which is not exactly the same as
detailed in the literature, but it is equally valid as the same directions are visited and
the same number of sweeps are required to cover the whole grid.

Finally, the Sweep() procedure (see Algorithm 7) recursively generates the Gauss-
Seidel iterations following the traversal directions specified by the corresponding value
of SweepDirs (line 4). Each recursive level traverses the whole corresponding dimen-
sion. The extent of dimension n is denoted as Xn. Once the most inner loop is
reached, the corresponding cell is evaluated and its value updated if necessary (lines
7-11).

Algorithm 5 Fast Sweeping Method

1: procedure FSM(X , T ,F ,Xs)
Initialization.

2: SweepDirs← [1, . . . , 1] . Initialize sweeping directions.
3: Ti ←∞ ∀xi ∈ X
4: for xi ∈ Xs do
5: Ti ← 0

Propagation:
6: stop← False

7: while stop 6= True do
8: SweepDirs← getSweepDirs(X , SweepDirs)
9: stop← Sweep(X , T ,F , SweepDirs, N)

10: return T

Algorithm 6 Sweep directions algorithm

1: procedure getSweepDirs(X , SweepDirs)
2: for i = 1 : N do
3: SweepDirsi ← SweepDirsi + 2
4: if SweepDirsi ≤ 1 then
5: break . Finish For loop.
6: else
7: SweepDirsi ← −1

8: return SweepDirs

The FSM carries out as many grid traversals as necessary until the value Ti for
every cell has converged. Since no ordering is implied, the evaluation of each cell
is O(1). As there are n cells, the total computational complexity of FSM is O(n).
However, note that the constants highly depend on the velocity function F (x). In the
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Algorithm 7 Recursive sweeping algorithm

1: procedure Sweep(X , T ,F , SweepDirs, n)
2: stop← True

3: if n > 1 then
4: for i ∈ Xn following SweepDirsn do
5: stop← Sweep(X , T ,F , SweepDirs, n− 1)

6: else
7: for i ∈ X1 following SweepDirs1 do

8: T̃i ← SolveEikonal(xi, T ,F) . xi is the corresponding cell.

9: if T̃i < Ti then
10: Ti ← T̃i

11: stop← False

12: return stop

case of an empty environment with constant F (x), only 2N sweeps will be required
as the characteristic directions are straight lines. However, for environment with
obstacles or complex velocities functions, where the characteristics directions change
frequently, the number of sweeps required can be much higher and therefore FSM will
take longer to return a solution. Note as well that the T returned by FSM is exactly
the same as all the FMM-like algorithms (except UFMM).

4.3.1 Lock Sweeping Methods

The Lock Sweeping Method (LSM) [1] is a natural improvement over FSM. The FSM
might spend computation time recomputing Ti even if none of the neighbors of xi

has improved their value since the last sweep. LSM labels a cell as unlocked if any of
its neighbors has changed and thus its value can be improved. Otherwise, the cell is
labeled as locked and it will be skipped.

The LSM procedure is detailed in Algorithm 8. It is basically the same as FSM
but with the addition of tracking if a point is locked (Frozen) or unlocked (Narrow).
Analogously, the LockSweep() (see Algorithm 9) procedure is similar to Sweep()
with two differences: 1) if a point is not unlocked it is skipped (see line 8), and 2)
neighbors of xi are unlocked if the new value Ti is better that their current value.

Note that the asymptotic computational complexity of FSM is kept, O(n). The
number of required sweeps is also maintained. However, in practice it turns out that
most of the cells are locked during a sweep. Therefore, the computation time saved
is important.
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Algorithm 8 Lock Sweeping Method

1: procedure LSM(X , T ,F ,Xs)
Initialization.

2: Frozen← X , Narrow← ∅
3: Ti ←∞ ∀xi ∈ X
4: SweepDirs← [1, . . . , 1] . Initialize sweeping directions.
5: for xi ∈ Xs do
6: Ti ← 0
7: for xj ∈ N (xi) do . Unlocking neighbors of starting cells.
8: Frozen← Frozen\{xj}
9: Narrow← Narrow ∪ {xj}

Propagation:
10: stop← False

11: while stop 6= True do
12: SweepDirs← getSweepDirs(X , SweepDirs)
13: stop← LockSweep(X , T ,F , SweepDirs, N)

14: return T

4.4 Other Fast Methods

4.4.1 Group Marching Method

The Group Marching Method (GMM) [95] is an FMM-based Eikonal solver which
solves a group of grid points in Narrow at once, instead of sorting them in a heap
structure.

Consider a front propagating. At a given time, Narrow will be composed by the set
of cells belonging to the wavefront. GMM selects a group G out of Narrow composed
by the global minimum and the local minima in Narrow. Then, every neighboring
cell to G is evaluated and added to Narrow. These points in G have to be chosen
carefully so that causality is not violated since GMM does not sort the Narrow set.
For that, GMM selects those points following Equation 4.2:

G = {xi ∈ Narrow : Ti ≤ min(TNarrow) + δτ} (4.2)

where

δτ =
1

max(F)
(4.3)

In the original GMM work [95] δτ = h
max(F)

√
N

. However, Equation 4.3 is referred
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Algorithm 9 Recursive sweeping algorithm

1: procedure LockSweep(X , T ,F , SweepDirs, n)
2: stop← True

3: if n > 1 then
4: for i ∈ Xn following SweepDirsn do
5: stop← LockSweep(X , T ,F , SweepDirs, n− 1)

6: else
7: for i ∈ X1 following SweepDirs1 do
8: if xi ∈ Narrow then
9: T̃i ← SolveEikonal(xi, T ,F) . xi is the corresponding cell.

10: if T̃i < Ti then
11: Ti ← T̃i

12: stop← False

13: for xj ∈ N (xi) do
14: if Ti < Tj then . Add improvable neighbors to Narrow.
15: Frozen← Frozen\{xj}
16: Narrow← Narrow ∪ {xj}
17: Narrow← Narrow\{xi} . Add xi to Frozen.
18: Frozen← Frozen ∪ {xi}
19: return stop
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in [3]. Although this second formula is not mathematically proven, the results for
the original δτ are much worse than FMM in most of the cases, reaching one order of
magnitude of difference.

If the time difference between two adjacent cells is larger than δτ , their values will
barely affect each other since the wavefront propagation direction is more perpendic-
ular than parallel to the line segment formed by both cells. However, the downwind
points (those to be evaluated in future iterations) can be affected by both adjacent
cells. Therefore, points in G are evaluated twice to avoid instabilities.

GMM is detailed in Algorithm 10. Its initialization is FMM-like. Note that δτ
depends on the maximum velocity value in the grid. The main loop updates the
threshold Tm every iteration. Firstly, it carries out a reverse traversal through the
selected points, computing and updating their value (lines 17-21). Then, lines 22-31
perform a forward traversal with the same operations as the reverse traversal but
updating the Narrow and Frozen sets in the same way as FMM.

Note that GMM returns the same solution as FMM. GMM evaluates twice every
node before inserting it in Frozen while FMM only evaluates it once. However, GMM
does not require any sorting. Therefore, GMM is an O(n) iterative algorithm that
converges in only 2 iterations (traversals). The value of δτ can be modified: higher
δτ would require more iterations to converge. However, smaller δτ will require also 2
traversals but the group G will be composed by fewer cells. As GMM authors point
out, GMM can be interpreted as an intermediary point between FMM (δτ = 0) and
a purely iterative method [96] (δτ =∞).

Additionally, a generalized N -dimensional implementation is straightforward.

4.4.2 Double Dynamic Queue Method

The Double Dynamic Queue Method (DDQM) [1] is inspired in LSM but resembles to
GMM. DDQM is conceptually simple. Narrow is divided into two non-sorted FIFO
queues: one with cells to be evaluated sooner and the other one with cells to be
evaluated later. Every iteration takes an element from the first queue and evaluates
it. If the time is improved, the neighboring cells with higher time are unlocked
and added to the first or second queue depending on the value of the cell updated.
Once the first queue is empty, queues are swapped and the algorithm continues. The
purpose is to achieve a pseudo-ordering of the cells, so that cells with lower value are
evaluated first.

Since queues are not sorted, it could require to solve many times the same cell until
its value converges. DDQM dynamically computes the threshold value depending on
the number of points inserted in each queue, trying to reach an equilibrium. The
original paper includes an important analysis about this threshold update. Initially,
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Algorithm 10 Group Marching Method

1: procedure GMM(X , T ,F ,Xs)
Initialization:

2: Unknown← X , Narrow← ∅, Frozen← ∅
3: Ti ←∞ ∀xi ∈ X
4: δτ ← 1

max(F)

5: for xi ∈ Xs do
6: Ti ← 0
7: Unknown← Unknown\{xi}
8: Frozen← Frozen ∪ {xi}
9: for xj ∈ N (xi) do . Adding neighbors of starting points to Narrow.

10: Ti ← SolveEikonal(xj, T ,F)
11: if Ti < Tm then
12: Tm ← Ti

13: Unknown← Unknown\{xi}
14: Narrow← Narrow ∪ {xi}

Propagation:
15: while Narrow 6= ∅ do
16: Tm ← Tm + δτ
17: for xi ∈ (Narrow ≤ Tm) REVERSE do . Reverse traversal.
18: for xj ∈ (N (xi) ∩ X\Frozen) do

19: T̃i ← SolveEikonal(xj, T ,F)

20: if T̃i < Ti then
21: Ti ← T̃i

22: for xi ∈ (Narrow ≤ Tm) FORWARD do . Forward traversal.
23: for xj ∈ (N (xi) ∩ X\Frozen) do

24: T̃i ← SolveEikonal(xj, T ,F)

25: if T̃i < Ti then
26: Ti ← T̃i

27: if xi ∈ Unknown then
28: Unknown← Unknown\{xi}
29: Narrow← Narrow ∪ {xi}
30: Narrow← Narrow\{xi}
31: Frozen← Frozen ∪ {xi}
32: return T
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the step value of the threshold is increased every iteration and is computed as:

step =
1.5hn∑
i

Fi

(4.4)

where n is the total number of cells in the grid. Originally, this step was proposed
as step = 1.5n

h
∑
i

1
Fi

. However, step should have time units and this expression has [t−1]

units (probably an error due to the ambiguity of using speed F or slowness f = 1
F

).
Therefore, Equation 4.4 is proposed.

Every time the first queue is empty, UpdateStep() (see Algorithm 11) is called,
with the value of the current step, c1, and ctotal which are the number of cells inserted
in the first queue and the total number of cells inserted, correspondingly. step is
modified so that the number of cells inserted in the first queue is between 65% and
75% of the total inserted cells. This is a conservative approach, since the closer this
percentage is to 50% the faster DDQM is. However, the penalization for percentages
lower than 50% is much important than for higher percentages.

Note that the step is increased by a factor 1.5 but decreased by a factor of 2. This
makes step to converge to a value instead of overshooting around the optimal value.
Dividing by a larger number causes the first queue to become empty earlier. Thus,
next iteration will finish faster and a better step value can be computed.

Algorithm 11 DDQM Threshold Increase

1: procedure UpdateStep(step, c1, ctotal)
2: m← 0.65
3: M← 0.75
4: Perc← 1
5: if c1 > 0 then
6: Perc← c1

ctotal

7: if Perc ≤ m then
8: step← step ∗ 1.5
9: else if Perc ≥M then

10: step← step
2

11: return step

DDQM is detailed in Algorithm 12. As in LSM, points are locked (Frozen) or
unlocked (Narrow). Initialization sets all points as frozen except the neighbors of the
start points, which are added to the first queue (lines 2-12). While first queue is
not empty, its front element is extracted and evaluated (lines 14-16). If its value is
improved, all its locked neighbors with higher value are unlocked and added to its
corresponding queue.
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Algorithm 12 Double Dynamic Queue Method

1: procedure DDQM(X , T ,F ,Xs)
Initialization:

2: Frozen← X , Narrow← ∅
3: Q1 ← ∅,Q2 ← ∅, c1 ← 0, ctotal ← 0
4: step = 1.5hn∑

i
Fi

. n is the total number of cells.

5: th← step
6: Ti ←∞ ∀xi ∈ X
7: for xi ∈ Xs do
8: Ti ← 0
9: for xj ∈ N (xi) do

10: Q1 ← Q1 ∪ {xj}
11: Unknown← Unknown\{xi}
12: Narrow← Narrow ∪ {xi}

Propagation:
13: while Q1 6= ∅ or Q2 6= ∅ do
14: while Q1 6= ∅ do
15: xi ← Q1.front() . Extracts the front element.

16: T̃i ← SolveEikonal(xi, T ,F)

17: if T̃i < Ti then
18: Ti ← T̃i

19: for xj ∈ (N (xi) ∩ Frozen) do
20: if Ti < Tj then . Add improvable neighbors to queue.
21: Frozen← Frozen\{xj}
22: Narrow← Narrow ∪ {xj}
23: ctotal ← ctotal + 1
24: if Ti ≤ th then
25: Q1 ← Q1 ∪ {xj}
26: c1 ← c1 + 1
27: else
28: Q2 ← (Q2 ∪ {xj})
29: Narrow← Narrow\{xi}
30: Frozen← Frozen ∪ {xi}
31: step← UpdateStep(step, c1, ctotal)
32: swap(Q1,Q2)
33: c1 ← 0, ctotal ← 0
34: th← th+ step

35: return T
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In the original work, three methods were proposed: 1) single-queue (SQ), and
therefore simpler algorithm, 2) two-queue static (TQS), where the step is not up-
dated, and 3) two-queue dynamic (called DDQM). SQ and TQS slightly improve
DDQM in some experiments, but when DDQM improves SQ and TQS (for instance
environments with noticeable speed changes) the difference can reach one order of
magnitude. Therefore, DDQM was included instead of SQ and TQS since it has
shown a more adaptive behaviour. In any case, any of these methods return the same
solution as FMM.

In the worst case, the whole grid is contained in both queues and traversed
many times during the propagation. However, since queue insertion and deletion
are O(1) operations, the overall complexity is O(n). Note that SWAP() can be ef-
ficiently implemented in O(1) as a circular binary index, or updating references (or
pointers). There is not need for a real swap operation.

4.4.3 Fast Iterative Method

The Fast Iterative Method (FIM) [3] is based on the iterative method proposed by
[96] but inspired in FMM. It also resembles to DDQM (concretely to its single queue
variant). It iteratively evaluates every point in Narrow until it converges. Once a
node has converged its neighbors are inserted into Narrow and the process continues.
Narrow is implemented as a non-sorted list. The algorithm requires a convergence
parameter ε: if Ti is improved less than ε, it is considered converged. FIM has also
been proposed for triangulated surfaces [97].

FIM is designed to be efficient for parallel computing, since all the elements in
Narrow can be evaluated simultaneously. However, this Chapter focuses on its se-
quential implementation in order to have a fair comparison with other methods.

Algorithm 13 details FIM. Its initialization is the same as FMM. Then, for each
element in Narrow, its value is updated (lines 11-12). If the value difference is less than
ε, the neighbors are evaluated and added to Narrow in case their value is improved
(lines 13-19). Since Narrow is a list, the new elements should be inserted just before
the point being currently evaluated, xi. Finally, this point is removed from Narrow

and labeled as Frozen (lines 20 and 21).

A node can be added several times to Narrow during FIM execution, since every
time an upwind (parent) neighbor is updated, the node can improve its value. In
the worst case, Narrow contains the whole grid and the loop would go through all
the points several times. Operations on the list are O(1). Therefore, the overall
computational complexity of FIM is O(n).

For a small enough ε (depending on the environment), FIM will return the same
solution as FMM. However, it can be speed up allowing small errors bounded by ε.
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Algorithm 13 Fast Iterative Method

1: procedure FIM(X , T ,F ,Xs, ε)
Initialization:

2: Frozen← X , Narrow← ∅
3: Ti ←∞ ∀xi ∈ X
4: for xi ∈ Xs do
5: Ti ← 0
6: for xj ∈ (N (xi) ∩ Unknown) do
7: Frozen← Frozen\{xi}
8: Narrow← Narrow ∪ {xi}

Propagation:
9: while Narrow 6= ∅ do

10: for xi ∈ Narrow do
11: T̃i ← Ti

12: Ti ← SolveEikonal(xi, T ,F)

13: if
∣∣∣Ti − T̃i

∣∣∣ < ε then

14: for xj ∈ (N (xi) ∩ Frozen) do

15: T̃j ← SolveEikonal(xj, T ,F)

16: if T̃j < Tj then

17: Tj ← T̃j

18: Frozen← Frozen\{xj}
19: Narrow← Narrow ∪ {xj} . Insert in the list just before xi

20: Narrow← Narrow\{xi}
21: Frozen← Frozen ∪ {xi}
22: return T
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4.5 Experimental Comparison

4.5.1 Experimental setup

In order to give an impartial and meaningful comparison, all the algorithms have been
implemented from scratch, in C++11 using the Boost.Heap library2. An automatic
benchmarking application has also been created so that the experiments are carried
out and evaluated in the most systematic possible way.

This implementation is focused on time performance and compiled using G++
4.9.2 with optimizations flag -Ofast. However, no special optimizations have been
included. All algorithms use the same primitive functions for grid and cell computa-
tions. The times reported correspond to an Ubuntu 14.04 64 bits computer running
in a Dual Core 3.3 GHz with 4Gb of RAM. However, all experiments were carried out
in one core. Only propagation times are taken into account. The computation time
used in the initialization has been omitted since it can be done offline, besides it is
similar for all algorithms and represents a little percentage of the total computation
time.

Since the algorithms are deterministic, the deviation in the computation time
between different runs is theoretically 0. In fact, this deviation mostly depends on
the OS scheduler and not on the algorithm, as this will perform the exact same
number of operations in all runs. However, the results shown are the mean of 10 runs
for every algorithm, so that the deviation of the results is practically 0.

For UFMM, the default parameters are a maximum range of T of 2 units and
1000 buckets (the checkerboard experiment required different parameters, see Section
4.5.1). The ε parameter for FIM is set to 0 (actually 10−47 to provide robust 64bit
double comparison).

Although error analysis is not in the scope of this Chapter, it can be compared
among the existing papers since it is implementation-independent. UFMM errors are
reported in those experiments with non-constant velocity. Usually, L1 and L∞ norms
of the error are reported. Most of the works compute norm L1 as:

|T |1 =
∑
xi∈X

|Ti| (4.5)

where X is treated as a regular vector. However, following [78], numerical solutions
are treated as elements of Lp spaces (generalization of the p-norm to vector spaces),
where L1 norm is defined as an integral over the function. The result is a norm closely
related to its physical meaning and independent of the cell size. L1 is numerically
integrated over the domain and therefore computed as (assuming hypercubic cells

2The source code is available at https://github.com/jvgomez/fastmarching
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and grids):

|T |1 =
∑
xi∈X

|Tih
N | = hN

∑
xi∈X

|Ti| (4.6)

Four different experiments have been carried out, which represent the most char-
acteristic cases for the Fast Methods. They have been chosen so that the advantages
and disadvantages of each algorithm are remarked. By combining these problems it
is possible to get close to any situation. These experiments were chosen attending
also to the most common situations tested in the literature.

Empty map

This experiment is designed to show the performance of the methods in the most basic
situation, where most of the algorithms perform best. An empty map with constant
velocity represents the simplest possible case for the Fast Methods. In fact, analytical
methods could be implemented by computing the euclidean distance from every point
to the initial point. However, it is interesting because it shows the performance of
the algorithms on open spaces which, in a real application, can be part of large
environments.

The same environment is divided into a different number of cells to study how the
algorithms behave as the number of cell increases. Composed by an empty 2D, 3D
and 4D hyper-cubical environment of size [0, 1]N , with N = 2, 3, 4. Constant velocity
Fi = 1 on X . The wavefront starts at the center of the grid.

The number of cells was chosen so that an experiment has the same (or as close
as possible) number of cells in all dimensions. For instance, a 50x50 2D grid has 2500
cells. Therefore, the equivalent 3D grid is 14x14x14 (2744) and in 4D is 7x7x7x7
(2401). This way, it is possible to also analyze the performance of the algorithms
for a different number of dimensions. Thus, the following number of cells for each
dimension for 2D grid have been chosen:

2D : {50, 100, 200, 400, 800, 1000, 1500, 2000, 2500, 3000, 4000}
Consequently, the 3D and 4D cells are:

3D :{14, 22, 34, 54, 86, 100, 131, 159, 184, 208, 252}
4D :{7, 10, 14, 20, 28, 32, 39, 45, 450, 55, 63}

Alternating barriers

In this case, the objective is to analyze how the algorithms behave with obstacles
(Fi = 0) in a constant velocity environment (Fi = 1). The obstacles cause the
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characteristics to change.

The experiment contains a 2D environment of constant size [0, 1]x[0, 2] discretized
in a 1000x2000 grid. A variable number of alternating barriers are equally distributed
along the longest dimension. The number of barriers goes from 0 to 9. Examples are
shown in Figure 4.4. Analogously, in 3D a [0, 1]x[0, 1]x[0, 2] environment represented
by a 100x100x200 is chosen, with equally-distributed alternating barriers (from 0 to
9) along the z axis. The wavefront starts in all cases close to a corner of the map.

Start point

(a) 1 barrier. (b) 5 barriers. (c) 9 barriers.

Figure 4.4: 2D alternating barriers environments.

Random velocities

This experiment aims to test the performance of the algorithms with random velocities
(similar to noisy images as in the case of medical computer vision). It creates a 2D,
3D and 4D environment of size [0, 1]N with N = 2, 3, 4 discretized in a 2000x2000
grid in 2D, 159x159x159 in 3D and 45x45x45x45 in 4D. These discretizations are
chosen so that it is possible to compare directly with the empty map problem for the
corresponding grid sizes. The wavefront starts in the center of the grid.

Additionally, the maximum velocity is increased from 10 to 100 (in steps of 10
units) to analyze how the algorithms behave with increasing velocity changes. 2D
examples are shown in Figure 4.5.

Checkerboard

The random velocities experiment already tested changes in velocities. However, those
are high-frequency changes because it is unlikely to have 2 adjacent cells with the same
velocitiy. In this experiment low-frequency changes are studied. The same environ-
ment and discretizations as in random velocities are now divided like a checkerboard,
alternating minimum and maximum velocities. Analogously, the maximum velocity
is increased from 10 to 100, while the minimum velocity is always 1. There are 10
checkerboard divisions on each dimension. The wavefront starts in the center of the
grid. 2D examples are shown in Figure 4.6.
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(a) Max. velocity = 30 (b) Max. velocity = 60. (c) Max. velocity = 100.

Figure 4.5: 2D random velocities environments. Lighter color means faster wave
propagation.

In this case, UFMM in 3D and 4D performed very poorly with the default param-
eters. Additional tests not reported show that the best parameters for UFMM are
approximately 1000 buckets with a maximum range of 0.01 in 3D. In the 4D case,
20000 buckets and maximum range of 0.025 are used.

4.5.2 Results

Empty map

An example of the time-of-arrival field computed by FMM is shown in Figure 4.7.
Note that all algorithms provide the same exact solution in this case. The higher the
resolution the better the accuracy.

The results for the empty map experiment are shown in Figure 4.8 for 2D, Figure
4.9 for 3D, and Figure 4.10 for 4D. In all cases 2 plots are included: raw computation
times for each algorithm, and time ratios computed as:

ratio =
Alg. Time

FMM Time
(4.7)
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(a) Max. velocity = 30 (b) Max. velocity = 60. (c) Max. velocity = 100.

Figure 4.6: 2D checkerboard environments. Lighter color means faster wave propa-
gation.

(a) 50x50 (b) 800x800 (c) 4000x4000
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Figure 4.7: Example of the resulting time-of-arrival maps applying FMM to the empty
environment in 2D.
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Figure 4.8: Computation times and ratios for the empty map environment in 2D.
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Figure 4.9: Computation times and ratios for the empty map experiment in 3D.
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Figure 4.10: Computation times and ratios for the empty map experiment in 4D.

In all cases, both LSM and DDQM are the fastest algorithms. DDQM tends to
perform better in smaller grids, specially en 4D. This was an expected result since
this is the case in which they perform less sweeps (queue recomputations in DDQM).
Besides, FSM is slower than UFMM in all cases, and than FIM in 3D and 4D. As
velocity is constant all over the grid, UFMM provides the same solution as other
methods.

GMM slightly improves FMM and FMMFib in 2D. However in higher dimensions
this improvement becomes larger, but it always performs worse than UFMM, FIM,
DDQM and LSM. In a previous comparison between GMM and FMM [3], GMM was
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about 50% faster than FMM in all cases than FMM. In this results GMM is at most
40% better. This difference is attributed to implementation, as the heaps for FMM
and FMMFib are highly optimized. FIM is always faster than GMM as it only needs
one iteration trough the narrow band, while GMM always performs two.

SFMM results are of special interest since it is a minor modification of FMM but,
however, highly outperforms FMM in all cases, and even FIM in 2D and small 3D
grids. In 4D FIM becomes faster.

As expected, FMMFib is worse than FMM for almost all sizes in the 2D case. How-
ever, when dimensions increase FMMFib quickly outperforms FMM as the number of
elements in the narrow band increases exponentially with the number of dimensions,
therefore the better amortized times of Fibonacci heap become useful.

Alternating barriers

An example of FMM results in some of the alternating barriers environment is shown
in Figure 4.11, while performance results (times and ratios) for 2D and 3D are shown
in Figure 4.12 and Figure 4.13 correspondingly.

0

1

2

(a) 1 barrier.

0

2

4

(b) 5 barriers.

2

4

6

8

0

(c) 9 barriers.

Figure 4.11: Example of the resulting time-of-arrival maps applying FMM to some
of the alternating barriers environment in 2D.

In this case, results are very similar to the empty map experiment. However,
as the number of barriers increases and the environment becomes more complex, the
characteristics changes their directions more often and thus more sweeps are required.
Therefore, FSM and LSM decrease their performance despite the fact that the more
barriers the less cells are to evaluate. This is the reason why all other algorithms tend
to lower times as the number of barriers increases. However, LSM is still faster than
some algorithms in most cases, as its computational overhead is low even though it
performs many sweeps. DDQM also suffers from map complexity, however it affects
much less and only in 3D.

UFMM provides again the same solution as other methods. It is the second fastest
algorithm behind DDQM, closely followed by SFMM and FIM.
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Figure 4.12: Computation times and ratios for the alternating barriers experiment in
2D.
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(b) Time ratios against FMM.

Figure 4.13: Computation times and ratios for the alternating barriers experiment in
3D.

Random velocities

The output of the FMM for the random velocity map is apparently close to the one
of the empty map (Figure 4.14), but with the wavefronts slightly distorted because
of the velocity changes.
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Figure 4.14: Example of the resulting time-of-arrival maps applying FMM to the
random velocities environment in 2D.

Although the results on the time-of-arrival map are slightly different from the
results obtained in the empty map, the performance of the algorithms is highly mod-
ified. 2D, 3D and 4D results are shown respectively in Figure 4.15, Figure 4.16, and
Figure 4.17. In this case, raw computation times are shown together with a zoomed
view of the fastest algorithms to make the analysis easier. Note that all methods be-
come slower with non-constant velocities. The reason is that the narrow band tends
to have more elements in this cases.

Some algorithms become unstable (in terms of asymptotic computational time)
with non-uniform velocities: FSM, LSM and DDQM. DDQM is able to maintain the
fastest time for slight velocity changes. But when these are sharper the double-queue
threshold becomes unstable. However, for a high number of dimensions this effect
vanishes (its computation time is barely modified with the number of dimensions)
and DDQM becomes the fastest algorithms together with FIM and GMM.

SFMM provides one of the best performances across all dimensions. And FIM
becomes relatively faster in 3D and 4D. However, in most of the cases GMM is the
fastest algorithm. FIM requires now multiple iterations to converge to the solution
while GMM guarantees convergence with only 2 iterations.

Finally, UFMM requires special attention as it does not return the same solution
than the other Fast Methods. Its performance is highly affected by the number of
dimensions. The main reason is the election of the parameters: they were exper-
imentally chosen to optimize 2D performance. However, these parameters are no
longer useful in other number of dimensions. UFMM parameter tuning is therefore
considered to be a complex task.
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Figure 4.15: Computation times and ratios for the random velocities experiment in
2D.
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Figure 4.16: Computation times and ratios for the random velocities experiment in
3D.
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Figure 4.17: Computation times and ratios for the random velocities experiment in
4D.

Table 4.2 summarizes the largest errors for this experiment. As the number of
dimensions is increased, the error decreases while the computation time increases
exponentially. Therefore, by properly tuning parameters for 3D and 4D better times
could be achieved while keeping a negligible error in most practical cases.

Table 4.2: Largest L1 and L∞ errors for UFMM in the random velocities experiment.
2D 3D 4D

L1 10−3 1.3 · 10−10 6.9 · 10−12

L∞ 4.8 · 10−3 10−6 10−7

Checkerboard

Finally, different time-of-arrival map returned by FMM applied to the checkerboard
map are shown in Figure 4.18. Numerical results of the computation times are in-
cluded in Figure 4.19 for 2D, Figure 4.20 for 3D, and Figure 4.21 for 4D.

The results are relatively close to the random velocities experiment. However, the
differences for FSM, LSM and DDQM are much smaller. In fact, DDQM presents
a poor performance in 2D, but in 3D and 4D it becomes the fastest algorithm for
higher velocity modifications.

In both 3D and 4D, GMM and FIM spend practically the same time. Since the
environment is structured, FIM does not require too many iterations to compute the
final value.
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Figure 4.18: Example of the resulting time-of-arrival maps applying FMM to the
checkerboard environment in 2D.
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Figure 4.19: Computation times for the checkerboard experiment in 2D.
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Figure 4.20: Computation times for the checkerboard experiment in 3D.
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Figure 4.21: Computation times for the checkerboard experiment in 4D.

UFMM errors are shown in Table 4.3. In this case, UFMM becomes worse with
the number of dimensions but it is among the fastest algorithms in lower dimensions.

The differences between this experiments and random velocities is that the en-
vironment presents a well-defined structure, and locally acts as a constant velocity
environment, as in empty map experiment.
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Table 4.3: Largest L1 and L∞ errors for UFMM in the checkerboard experiment.
2D 3D 4D

L1 1.7 · 10−7 1.2 · 10−9 1.9 · 10−10

L∞ 2.5 · 10−6 5 · 10−7 10−6

4.6 Discussion

With the four experiments designed, the main characteristics of the Fast Methods
have been shown. Any other environment can be thought as a combination of free
space with obstacles and high-frequency or low-frequency velocity changes of differ-
ent magnitude. Note also that the grid sizes covered by the experiments vary from
extremely small to extremely big grids. In practice, it is hard to find applications
requiring more than 16 million cells.

FIM results can be speeded up for non-constant velocity problems if larger errors
are allowed. UFMM can be probably improved as well. However, our experience is
that the configuration of its parameters is complex and requires a deep knowledge of
the environment to be applied on.

Several conclusions can be extracted from the conducted experiments: 1) There
is no practical reasons to use FMM or FMMFib as SFMM is faster in all cases with
the same behaviour as its counterparts. 2) If a sweep-based method is required, LSM
should be always chosen, as it greatly outperforms FSM. 3) In problems with constant
velocity DDQM should be chosen, as it has shown the best performance for the empty
map and the alternating barriers environments. 4) For variable velocities, but simple
scenarios, GMM is the algorithm to choose. 5) UFMM is hard to tune and the result
has errors. Also, it has been outperformed in most of the cases by DDQM in constant
velocity scenarios, or by SFMM or FIM in experiments with variable velocities. 6)
There is not a clear winner for complex scenarios with variable velocity. UFMM
can perform well in all cases if tuned properly. Otherwise, SFMM is a safe choice,
specially in cases where there is not too much information about the environment.

If a goal point is selected, cost-to-go heuristics could be applied [98], and thus
enormously affect the results. Heuristics for FMM, FMMFib and SFMM are straight-
forward. They would improve the results in most of the cases. They could also be
applied to UFMM. However, it is not clear if they can be applied to other Fast Meth-
ods. It is also of interest the solution of anisotropic problems [99], solved only by
FMM-based methods.

Since all of the Fast Methods share the same formulation and the output is prac-
tically the same, all of them can be used as path planners following the same criteria
as detailed in previous Chapter. Note that most of the Fast Methods would return
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the same exact path for a given path planning problem, since the computed time-
of-arrival maps T are equal. Methods which introduce errors such as UFMM, and
potentially FIM, will introduce slight variations in the paths, which in most cases will
be negligible.

If different velocities field F are provided, the resulting path can change its shape.
However, the time optimality will be always kept, as the wave and thus the path will
be computed according the best time of arrival. This is discussed deeper in the next
Chapter.

4.7 Conclusions

Along this Chapter the main Fast Methods have been introduced under a common
mathematical framework, focusing on a practical point of view.

The main purpose is closing the discussion about which method should be used in
which case, as this is the first exhaustive comparison of the main Fast Methods (up
to author’s knowledge).

The code is publicly available as well as the automatic benchmark programs. This
code has been deeply tested and it can serve as a base for future algorithm design, as it
provides all the tools required to easily implement and compare novel Fast Methods.

The future work focuses in 3 different aspects: develop the analogous work for
parallel Fast Methods [100], study the application of these methods to anisotropic
problems and also to the new Fast Marching-based solutions focused on path plan-
ning applications [12, 53]. Finally, the combination of UFMM and SFMM seems
straightforward and it would presumably outperform both algorithms.
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5.1 Motivation

The path calculated by FMM is the shortest in terms of length but it might not be
safe due to its proximity to obstacles or even not feasible due to robot kinematic
constraints. In practice, this aspect also causes the path not to be the shortest in
time, as the robot must move slowly when it is close to the obstacles in order to
decrease damages if a collision occurs because of reasons external to planning such as
sensor or motor failures. The usual solution is to expand obstacles before calculating
the path, or to compute artificial repulsive potentials. However, these classic methods
generate other problems such as local minima or deletion of actually feasible paths.

In this Chapter a robust, efficient and safe motion planner is proposed. More
concretely, four different methods based on Fast Marching are introduced: the Fast
Marching Square (FM2) method for path planning, two heuristic modifications of it,
FM2∗ and Greedy FM2∗, and the Directional Fast Marching Square Method (DFM2).

These methods are considered robust as they are deterministic, it is easy to predict
their output and they never produce unexpected results or failures. Also, from an
engineering point of view, their memory usage is clearly upper-bounded by the size
of the grid representing the environment and the amount of time required in order
to get a solution is also accurately predictable as it mainly depends on the grid size.
Efficient as they will analyze the environment and return a path with a relatively light
algorithm, specially in the new proposed versions. And safe because they keep paths
away from obstacles and it is theoretically impossible for the trajectory to collide with
obstacles.

5.2 Fast Marching Square

Let us take an evidence gridmap in which obstacles are labeled as 0 and free space as
1. The Fast Marching Method can be applied to this map considering all the obstacles
to be wave sources. In the previous Chapter, there was just one wave source (at the
target point). Here all the obstacles are a source of the wave, and hence, several waves
are being expanded at the same time. The map resulting from applying this wave
expansion to a simple map with a cross-shaped obstacle can be seen in Figure 5.1.
This resulting map is denoted as fast marching gridmap (FMGridMap); it represents
a potential field of the original map. As cells get further from the obstacles, the
computed Ti value is greater. This map can be seen as a slowness map: Ti value
can be considered to be proportional to the maximum allowed speed of the robot at
each point. It can be appreciated that speeds are lower when the cell is close to the
obstacles, and greater when far away from them. In fact, a robot whose speed at
each point is given by the Ti value will never collide, as Ti → 0 when approaching the
obstacles. Making an appropriate scaling of the FMGridMap cell values to the robot
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allowed speeds, a slowness map is obtained, that provides a safe speed for the robot
at any point of the environment. In Figure 5.1 d) the speed profile is shown. In the
image it is clear that speed becomes greater far from the obstacles.

(a) FMGridMap (b) 3D Representation

(c) Second Fast Marching and Path (d) Speed Profile

Figure 5.1: FM2 steps.

The path is calculated as in the previous Chapter, so that the robot is still consid-
ered as a holonomic point. But instead of taking a constant value for the propagation
velocity F , the value of the slowness map is used. If a wave is expanded from one
point of the grid, considering that the expansion speed Fi = Ti, being Ti the value of
the FMGridMap at cell i, the expansion speed will depend on the position. Given
the Fast Marching properties, the obtained trajectory is the fastest path (in time)
assuming the robot moves at the maximum allowed speed at every point.

5.2.1 FM2: The Saturated Variation

In Fig. 5.1 c) it can be appreciated that the computed path is not the logical/optimal
trajectory one would expect. The FM2 computed path, as it has been presented, tries
to keep the trajectory as far as possible from obstacles. This computed trajectory is
similar to the path computed with the Voronoi diagram [101]. But there are environ-
ments in which there is no need to follow a trajectory so far away from obstacles, as a
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smaller distance may be safe enough to navigate. To solve this a saturated variation
of the FMGridMap is implemented. When the first fast marching has been computed,
the FMGridMap is first scaled and then saturated.

The map is scaled according to two configuration parameters:

• Maximum allowed speed, which is the maximum control speed the robot may
receive.

• Safe distance, which is the distance from the closest obstacle at which the
maximum speed can be reached.

Finally the map is saturated to the maximum allowed speed. After this scaling
and saturation process the slowness map provides the maximum speed for all the
points that are farther than the safe distance from the obstacles and the control
speed varying form 0 (at obstacles) to the maximum speed (at safe distance) for the
rest of points.

Figure 5.2 shows the saturated variation of Figure 5.1 with the new computed
trajectory. It can appreciated that now the path and speed profile are as expected.

(a) Saturated FMGridMap (b) 3D Representation

(c) Second Fast Marching and Path (d) Speed Profile

Figure 5.2: Saturated FM2 steps.
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5.3 FM2∗: Fast Marching Square Star

Consider a rectangular map in which a trajectory among two points on a free space
must be computed. Figure 5.3 a) shows the FM2 wave expansion originated from
the target point. As it can be appreciated the wave grows concentrically around the
target point until it reaches the initial point. The FM2∗ (to be read as FM2 star,
where star indicates the heuristic version, analogous to A* and Dijkstra) method is
an extension of the FM2 method. It tries to reduce the total number of expanded
cells (wave expansion) by incorporating a heuristic estimate of the cost to get to the
goal from a given point.

The FM2∗ algorithm’s principle is the same as for the FM2 algorithm. The only
difference is the function used to sort the narrow band queue. The FM2 sorts the
narrow band cells in increasing Ti order, so that in each iteration, the first element
in the queue (lowest Ti) becomes frozen and it is expanded. In FM2∗ the algorithm
uses the cost-to-come Ti, which is known, and the optimal cost-to-go, that is, the
minimum time the robot would employ to reach the target. This implies that the
narrow band queue is sorted by estimates of the optimal cost from the given cell to
the target. Whenever the optimal cost-to-go is an underestimate of the real cost-to-go
the algorithm will still work. In fact, if the optimal cost-to-go is assigned to be 0, the
FM2∗ algorithm is equivalent to the FM2 algorithm. If the estimation is greater than
the real cost-to-go, the FM2∗ algorithm could take more computational steps than
the FM2 to find the path and the path could be not the shortest.

In this problem, the optimal cost-to-go (optimal time to reach the target) would
happen if the robot went directly towards the goal at maximum speed. This cost-to-
go is given by the Cartesian distance (minimum distance) divided by the maximum
speed the robot can reach. It is known that the real cost-to-go will always be greater
than this computed value. So, the narrow band queue is ordered according to the
value T ∗i :

T ∗i = Ti +
cartesian distance to target

robot max speed
(5.1)

These two methods are analogous to Dijkstra and A* in path-finding over graphs.
The result for FM2∗ is shown in Figure 5.3 b). The original method explores all the
space at the same distance in time from the source point until the goal is reached.
However, FM2∗ focuses the space exploration on those areas which are closer to the
goal point, so that the wavefront is biased. The consequence is that only a portion of
the space is explored and thus the computation time is improved.
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(a) FM2 wave expansion and path. (b) FM2∗ wave expansion and path.

Figure 5.3: Comparison between FM2 and FM2∗

5.4 Greedy Fast Marching Square Star

The previous Section improved FM2 by including an Euclidean-based cost-to-go heuris-
tic, as the distance was computed according the Euclidean metric. However, the wave
propagation does not take place in an Euclidean space, but in a time-based metric.

Equation 5.1 does not take into account the velocity propagation in the current
cell. Therefore, it will give higher priority in the narrow band to points which are
closer to obstacles, and thus have a lower propagation velocity, but are closer in terms
of Euclidean distance to the goal. Once evaluated, these new cells will be inserted at
very end of the narrow band as they will have high arrival time. The consequence is
the evaluation of cells which are not likely to belong to the final solution.

Thus, the greedy variation of FM2∗ takes into account the velocity of the cell being
computed when computing the cost-to-go heuristic:

T ∗i = Ti +
cartesian distance to target

Fi

(5.2)

Applying this heuristic, cells with higher velocity will be given preference even if
they are far from the goal point. And cells with same velocity will be sorted giving
priority to those with smaller distance to the goal, and thus greatly improving the
computational time with negligible impact on the final result. A comparison against
FM2∗ in an empty environment is shown in Figure 5.4. Greedy FM2∗ returns a path
close to FM2 and FM2∗ but even less space is explored by the wave front and thus
less computation effort is required.

5.5 Results

FM2 and its two heuristic versions are compared. A 2D map representing a complex
environment is chosen, with a combination of empty spaces, corridors and small rooms
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(a) Wave Expansion and Path with FM2∗ (b) Wave Expansion and Path with Greedy FM2∗

Figure 5.4: Comparison between FM2∗ and Greedy FM2∗.

(Figure 5.5). Table 5.1 reports the computation times of the second FM2 wave using
FM2 with Binary heap (FM2 for simplicity), FM2∗ and Greedy FM2∗ (G-FM2∗), and
the corresponding for SFMM, SFMM-based FM2 (SFM2), SFM2∗, and G-SFM2∗.
for the path queries included in Figures 5.6 to 5.10. These figures show the final
propagated wave of FM2 with Binary heap, as the propagation is exactly the same
for SFMM. Experiments were run in an dual-core machine 2.2 GHz with 4 GB of
RAM, running Ubuntu 14.04 64bits. In these images it is possible to appreciate
that the wavefront always explores much less space for the Greedy FM2∗, while FM2∗

implies just a little improvement. However, in all cases the paths are almost identical
(differences would not be meaningful in a real robotic application).

Table 5.1: Time (ms) comparison for the proposed FM2 variants.
Exp. FM2 SFM2 FM2∗ SFM2∗ G-FM2∗ G-SFM2∗

1 91 60 68 51 2 1
2 142 96 137 106 93 62
3 150 100 89 66 14 11
4 30 24 24 17 6 6
5 91 82 81 66 50 35

In some cases SFM2 is even faster than FM2∗. However, G-SFM2∗ is clearly faster
in all cases while keeping the main FM2 properties: safety and smoothness, as the
path is minimally modified.
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(a) Environment map. (b) Velocities map, F .

Figure 5.5: Map used to experiment FM2 and its variants.

(a) FM2 Binary heap. (b) FM2∗. (c) Greedy FM2∗.

Figure 5.7: Wave propagation comparison: experiment 2.
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(a) FM2 Binary heap. (b) FM2∗. (c) GreedyFM2∗.

Figure 5.6: Wave propagation comparison: experiment 1.

(a) FM2 Binary heap. (b) FM2∗. (c) Greedy FM2∗.

Figure 5.8: Wave propagation comparison: experiment 3.
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(a) FM2 Binary heap. (b) FM2∗. (c) Greedy FM2∗.

Figure 5.9: Wave propagation comparison: experiment 4.

(a) FM2 Binary heap. (b) FM2∗. (c) Greedy FM2∗.

Figure 5.10: Wave propagation comparison: experiment 5.
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5.6 Directional Fast Marching Square

The Directional Fast Marching Square (DFM2) tries to solve one of the most impor-
tant problems of FM2: in environments with large, clear areas the FM2 trajectory will
be not as expected: it will steer towards the center of these areas and the velocities
profile will command a slow velocity even if the path is getting away from obstacles.
Figure 5.11 shows a clear example of this problem. Velocity reference is slow at the
beginning of the path, where the path is safe with respect to obstacles and, once the
room is reached, the path is bended towards the center of the room, increasing its
length. Figure 5.12 shows the desired result for an efficient algorithm: maximum ve-
locity when obstacles do not represent a danger and paths closer to its optimal length.
This problem is partially solved with the saturated variation of FM2. However, there
are cases in which the robot can be close to an obstacle, in the not-saturated area of
the velocity map, and getting farther for this obstacle. While maximum speed is safe,
the reference velocity will still increase as the robot gets farther from the obstacle.
DFM2 also aims to solve this case.

Map

Start GoalPath
(a) FM2 desired result.
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(b) FM2 desired velocities profile.

Figure 5.12: Desired FM2 results.

DFM2 tries to solve these two problems at once. For that, the velocities of the
next cell to evaluate and current cell are compared. If the velocity in the following
cell is lower than the velocity of the current cell the wave is then approaching to an
obstacle. However, the path in that cell will be getting farther from that obstacle, as
the path travels in the opposite direction than the wave front. Therefore, in this case
it does not make sense to follow the reference velocity given by the velocity map, but
use the maximum velocity.

More formally, let Fi and Fj be the velocities for the current and next cell, cor-
respondingly. The Eikonal equation for the next cell is solved using the propagation
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(b) FM2 velocities profile.

Figure 5.11: FM2 drawback example.

velocity Fprop computed as:

Fprop =

{
Fmax, if Fi > Fj

Fj, otherwise
(5.3)

However, if the wave is propagated using Fprop its behaviour will be unpredictable.
Therefore, a two-layer approach is required: the wave is propagated and as usual,
using Fj, but Fprop is computed and stored to apply gradient descent and compute
the velocities profile. This approach is obviously slower than FM2 but the objective
of DFM2 is to have better quality paths. Figure 5.13 shows the result in the example
map given in previous figures. The final velocity map completely depends on the path
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query and it is very sensitive to small changes in the original velocity map. However,
the resulting path is clearly shorter and the velocities profile is closer to the desired
result. However, the velocities profile would require a post-processing step (not in the
focus of this Thesis) since it presents sharp changes unreliable for a real system. In
fact, DFM2 looks to behave like FMM when getting farther from obstacles, but like
FM2 when getting closer.

Velocities9map FM29and9DFM29results
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(a) DFM2 velocity map and result.
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(b) DFM2 velocities profile.

Figure 5.13: DFM2 results.

However, DFM2 results in more complex scenarios are not this satisfactory, since
its behaviour in cluttered environments is close to FMM in most of the cases. However,
it has been shown that the idea is sound and can be improved by taking into account
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the propagation direction and the velocities gradient. A more detailed analysis about
DFM2 and possible improvements is included in [102].

5.7 Conclusions

FM2 and its variations have been explained in detail. FM2 computes two wave expan-
sions over the gridmap. The first expansion computes the FMGridMap, a slowness
map that provides the maximum allowed speed at each point of the map. This slow-
ness map is used to compute the second expansion, form the target point to the
initial point. As a result of the second expansion, the trajectory is computed (using
the maximum gradient direction). This solution provides both a path (waypoint) and
the control speed at each point. As a result, this trajectory is safe and optimal in
time. The FM2 computes paths that tend to navigate far from obstacles, but this
situation is not always necessary.

Two variations to the FM2 to avoid this problem were presented: the saturated
FM2 and DFM2. Also, to reduce the computation time, other two heuristics were
proposed to improve FM2: FM2∗ and Greedy FM2∗. The experimental analysis shows
that the computation time is reduced while providing a trajectory that are practically
the same.

As discussed in previous sections, these algorithms do not take explicitly into ac-
count robot’s dimensions and its kinematic constraints. FM2 and their versions rely
on a basic obstacle dilation pre-processing step in order to solve the first problem.
Given the smoothness of the solutions, in most cases output trajectories can be di-
rectly used in robots kinematically constrained. However, a validation step should
be included. This issue is addressed in [67], where the velocity field is iteratively
modified in order ensure that the minimum turning radius is satisfied.
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DISCLAIMER: Research contained in this Chapter was devel-
oped jointly between the author of this Thesis and members
of the Instituto de Plasmas e Fusão Nuclear (IPFN), Instituto
Superior Técnico, University of Lisbon. Specifically, the Fast
Marching Square experimentation and results comparison rep-
resent the authors’ collective contribution. The remaining CDT,
optimization algorithm and the Trajectory Evaluator and Sim-
ulator (TES) simulation were performed by members of IPFN.

6.1 Introduction

Path planning is one of the key issues for hazardous transport operations using au-
tonomous mobile robots. Not only for scenarios of disaster, but also when work-
ing in experimental scenarios testing new sources of energy where human being is
not allowed. In particular, the International Thermonuclear Experimental Reactor
(ITER) is a worldwide research experiment that aims to explore nuclear fusion as
a viable source of energy for the coming years. The ITER project aims to make
the long-awaited transition from experimental studies of plasma physics to full-scale
electricity-producing fusion power plants. The largest experimental tokamak nuclear
fusion reactor, depicted in Figure 6.1, will be located at the Cadarache facility, in the
south of France.

Besides the major scientific objective of exploring the nuclear fusion as a source
of energy, ITER aims to demonstrate that the future fusion power plants can be
safely and effectively maintained through Remote Handling (RH) techniques, due to
restrictions on human being in activated areas. The RH approach must be from the
outset as flexible as possible with minimum reliance on the tokamak configuration,
such as in ITER, [103].

The top level maintenance functions of RH in ITER are the exchange of blanket
segments, divertor cassettes, perform in-vessel inspection and recovery tasks, allow
remote maintenance of ex-vessel systems including heating and current drive sys-
tems, ex-vessel transfer casks and servo manipulators. In particular, the maintenance
functions of ex-vessel transfer cask has a relevant reliance not only with the reactor,
but with the entire power plant. Transportation of equipment for storage, refurbish-
ment and repair requires vehicles of transportation that navigate along corridors of
the power plant. A transport cask system (simply identified as cask) is required to
accomplish the maintenance operations that includes transportation. Pre-computed
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paths assuming the well-known scenarios are expected for nominal operations. How-
ever, during the maintenance operations, new paths must be computed. For instance,
when a cask fails, another rescue cask has to dock into the first one, remove the ac-
tivated load and then drive it to the maintenance area.

The cask, depicted at the bottom of Figure 6.1, is a large and complex unit to
transport heavy and contaminated components between the two main buildings of
ITER: the Tokamak Building (TB), where the reactor is installed, and the Hot Cell
Building (HCB) for refurbishment and storage. The geometry of the cask and its
payload vary according to the components to be transported and hence, different
cask typologies are expected. As a reference, the largest cask dimensions are 8.5m x
2.62m x 3.62m (length x width x height) and the total weight can reach up to 100
tons.

The maintenance operations of transportation require the cask to move throughout
the cluttered environments of the TB and the HCB, equivalent to drive a truck under
30 cm of safety margins to the closest walls and pillars. The constrained space may
also rise a logistic problem, where multiple vehicles have to move and different paths
must be computed. Because of this, some of the choices are subject to be changed.
This Chapter focuses in the most probable ITER scenario as ITER as not officially
accepted and adopted these methodologies.

The most probable kinematics of the cask are equivalent to a rhombic like vehicle,
with two drivable and steerable wheels. Given this configuration, proposed in [104,
105], the cask has a higher maneuverability in confined spaces than the traditional
cars with Ackerman or tricycle configurations [106].

From previous work of RH in ITER, the optimized paths would most probably
be implemented on the scenario using buried wired systems [104]. Presently, the
buried wired systems are being superseded by other systems, as a line painted on
the floor or, simply, by a virtual path. These systems are used in several Automatic
Guided Vehicles (AGV) applications [107, 108, 109]. In this navigation methodology,
the vehicles would follow the path by using a line guidance approach: both wheels
following the same path. The proposed planning methodology returns directly the
path to be followed by the center of the wheels and not the one corresponding to the
center of the vehicle (identified as the free roaming, out of the scope of this Chapter).

A nominal operation of the vehicle for a specified environment determines a motion
between two configurations (2D points with specific orientations). The first step of
this planning methodology is to find an initial geometric path, i.e. a set of 2D points,
connecting the initial and final configurations. The previous implemented approach
was based on the Constrained Delaunay Triangulation (CDT) [7, 8]. This solution
presents some limitations in terms of path smoothness that are solved with the next
stages of the algorithm. In complex scenarios, the geometric representation results
in a huge number of triangles with rough initial paths still far from the optimal
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Figure 6.1: The ITER tokamak and the scientific buildings and facilities that will
house the ITER experiments in Cadarache, South of France.
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one, yielding to a computational effort [110]. The FM2 is an alternative approach
for the initialization as it provides an initial path closer to the optimal solution and
in a shorter period of time, resulting in an improvement of the computational effort.
Therefore, in this Chapter an in-depth analysis of the FM2 performance when applied
to such a complex and critical problem as ITER.

Previous works have already addressed the application of the FMM to kinemati-
cally constrained systems. One of the first approaches is an iterative method which
in every iteration computes a different path [67]. If this path does not satisfy the
kinematic constraints, the obstacles are smoothly dilated, so that the next computed
path will have smoother, larger curves. This process is repeated until a valid path
was found. Another different approach is to compute an initial path with FMM
and then propagate a second FMM wave within a tube in the initial path surround-
ings [111, 71]. In this second wave expansion, the FMM is modified so that neighbors
of the grid cell are no longer computing according Von Neumann neighborhood, but
are computed by propagating the system with different input actions. The main
drawback of this problem is its computational complexity. Ryo et al. [112] proposed
a new Hamilton-Jacobi formulation for computing optimal trajectories for systems
with limited curvature. This formulation has been successfully applied to Dubin’s
and ReedsShepp car models. However, the whole formulation needs to be done from
scratch for every different kinematic system.

Previous work in this topic also includes the application of FM2 in a 3-dimensional
configuration space (two spatial dimensions and the vehicle orientation) [60]. When
applying FM2 in this configuration space, smooth paths are guaranteed. However,
this approach did not take into account explicitly the kinematic constraints. However,
in this Chapter the regular 2-dimensional version is being applied since the vehicle
employed (detailed in section 6.2.2) does not have kinematic constraints. However,
the vehicle’s kinematics and dimensions require a similar study to that carried out in
vehicles with such constraints.

During the maintenance operations of transportation, the pose (position and ori-
entation) of each vehicle must be continuously evaluated using sensors data. Although
the first studies of localization of the CTS in ITER have been accomplished, as de-
scribed in [113], in this Chapter it is assumed that the pose of the vehicle is always
known without any uncertainty.

The Chapter is organized as follows. Section 6.2 describes the ITER problem
statement: the scenario, the vehicle, the goals and the optimization criteria. Next,
Section 6.3 introduces the solution proposed for trajectory planning at ITER. Sec-
tion 6.4 describes the optimization in terms of clearance and smoothness applied to
the paths returned by the FM2 (or CDT). Section 6.5 presents simulated results in
the ITER scenarios, including a comparison between CDT and FM2 initializations.
Finally, conclusions and future work are pointed out in Section 6.6.
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6.2 Problem Statement

The problem statement description is divided into four different issues: the environ-
ments, the vehicles, the missions (goals) and the optimization criteria.

6.2.1 Environments

The TB, shown in Figure 6.2, lodges the tokamak reactor with access by vacuum vessel
port cells (from this point forward simply identified as ports). The HCB, depicted in
Figure 6.3, will work mainly as a support area. A lift establishes the only interface
between the different levels of TB and the HCB.

In ITER, the environments in all levels of TB and HCB are mostly composed by
static and well structured scenarios. Each level of the buildings is modeled as 2D map
representation, M , with a set of 2D points, pi, on the global Cartesian referential of
ITER and a set line segments, ljk, where each line segment connects two different
points pj and pk, i.e.,

M = {pi, ljk|i, j, k = 1, . . . ,Mp} (6.1)

where MP is the number of points, pi = (x, y) and ljk = {(1− t) · pj + t · pk|t ∈ [0, 1]}.

Figure 6.2: The three main level of Tokamak Building in ITER (left) and the 2D
representation of the level B1 (right).
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Figure 6.3: The five main levels of Hot Cell Building in ITER (left) and the 2D
representation of the level L1 (right).

6.2.2 Transport cask

The vehicle, represented in Figure 6.1, is a large and complex unit to transport heavy
and contaminated loads between the TB and the HCB. The geometry of the vehicle
and its payload vary according to the cask and the components to be transported
and hence, different vehicle typologies will operate. The vehicle is composed by three
sub-systems: the cask envelope, the Cask Transfer System (CTS), and the pallet.
The cask envelope is a container that enclosures the in-vessel components and the
RH tools to be transported. The CTS acts as a mobile robot. The pallet is the
interface between the cask and the CTS. It is equipped with a handling platform to
support the cask load and help on docking procedures. When underneath the pallet
the CTS transports the cask, but it can also move independently of the pallet and
cask.

The CTS is equipped with two pairs of drivable and steerable wheels: one for
nominal operation and the other for redundancy, operating in case of failure of the
first pair, [114]. These locomotion wheels are installed along the longitudinal axis of
the vehicle, providing the rhombic like capabilities. Since the locomotion wheels are
installed along a straight line, there are free wheels in the vicinity of the boundaries of
the vehicle’s shape to assure the CTS’s stability. For simplicity and from this point
forward, the CTS is only represented with a single pair of drivable and steerable
wheels, identified as ‘F’ront and ‘R’ear wheels, as illustrated in Figure 6.4. This
configuration gives the vehicle a higher maneuverability in confined spaces than the
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traditional cars with Ackerman or tricycle configurations [106].
As illustrated in Figure 6.4, consider the state vector q = [xc yc θ] as a representa-

tion of the vehicle pose in the frame {I}, with (xc, yc) the coordinates of the center of
the vehicle and θ the orientation of the vehicle. Also, consider v as the longitudinal
speed and β the controllable side-slip angle of the vehicle, both defined in {I}. A
kinematic model for a rhombic like vehicle in {I}, that allows the simulation of the
vehicle motion directly through the desired longitudinal speed v, instead of imposing
an individual linear speed for each wheel, was introduced in [115] as:

Figure 6.4: Rhombic vehicle model and the possible path following approaches.


ẋc

ẏc

θ̇m

 =


cos(θ + β)

sin(θ + β)

cosβ·[tan θF−tan θR]
M

 · v, (6.2)

where

β = arctan

(
vF · sin θF + vR · sin θR

2 · vR · cos θR

)
(6.3)

and

v =
vF · cos θF + vR · cos θR

2 · cos β
. (6.4)

This modeling entails that the wheels of the vehicle roll without slipping, a con-
straint inherent to the nonholonomy of rhombic like vehicles, and also considers a
rigid body constraint, common to this type of vehicles, as follows:

vF cos θF = vR cos θR. (6.5)

The values vF , vR, θF and θR are the inputs to guide the vehicle, as detailed in
[116].
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6.2.3 Missions

The maintenance operations of transportation in ITER require the vehicle to move
throughout the cluttered environments of the TB and the HCB, i.e. a mesh of paths
between the target poses inside the buildings. For instance, a mission of transporta-
tion of a load for refurbishment requires a path between a port and the lift in TB
and then between the lift and a docking port in HCB.

6.2.4 Optimization criteria

During a mission the vehicle describes a swept volume when follows its path. The
volume is important given the free space available in the scenario, or given other
parked vehicles. The speed of the path following is also relevant not only for the
mission execution time, but in particularly given the dynamics of the vehicle, since it
can reach up to 100 tons. As a result, each mission requires an optimized trajectory.

The trajectory optimization problem stated for the vehicle consists on evalu-
ating a trajectory, i.e. a geometric path defined by a set of N points Pi, i.e.,
S = {P0, P1, . . . , PN}, combined with a speed profile. The geometric path must
guarantee that the vehicle departs from the initial configuration qS and achieves the
specified goal qF , without colliding with obstacles and keeping a safety margin. The
trajectory optimization has three stages: the geometric path evaluation, the path op-
timization and the trajectory evaluation. The geometric path evaluation aims to find
a path connecting the initial and goal configurations. This path acts as an initial con-
dition for the path optimization stage. The geometric path evaluation is implemented
using FM2. The path optimization receives the preceding geometric solution as input
and returns an optimized path. The optimization process, described in Section 6.4,
first applies a spline interpolation to satisfy weaker differential constraints such as
smoothness requirements. Afterward, a clearance based optimization is carried out
to guarantee a collision free path that meets the safety requirements. In general, a
minimum safety distance between the vehicle and the obstacles must be guaranteed.
Finally, the trajectory evaluation defines the velocity function along the optimized
path transforming it into a trajectory, which is the final output.

6.3 Current solution: a three-step approach

The vehicle is required to move along a path that simultaneously maximizes the
clearance to obstacles and reducing the distance between the start and goal poses
(position and orientation). The proposed motion planning methodology is based on
a three step approach [7], as shown in Figure 6.5:
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Figure 6.5: Workflow for trajectory optimization. This Thesis studies a new imple-
mentation of the Initial Trajectory block and how it affects remaining blocks.

Geometric path evaluation: given the environment model and initial and goal
poses, an initial geometric path is found. At this point the aim is to find a path
connecting the initial and goal objectives that can act as an initial condition for the
next path optimization step. The contribution of this Thesis focuses on this stage, as
FM2 is proposed as planner instead of the current.

Path optimization: this module receives the preceding geometric solution as
input and returns an optimized path. The results in this Thesis use the path opti-
mization procedure detailed in previous ITER works.

Trajectory evaluation: in this final module, the speed profile is defined along
the optimized path transforming it into a trajectory, which is the output of the
proposed motion planning methodology. As for path optimization, this Thesis uses
the same trajectory evaluation method than in previous ITER works.

6.3.1 Geometric Path Evaluation

From the 3D CAD models, a 2D representation is obtained by projecting at floor
level all the relevant elements that might conflict with the CTS. The levels of TB
and HCB are well structured scenarios that can be modeled as a set of planar walls,
whose footprint is a line segment and thus the 2D map can be considered as a set
of line segments. The 2D map is decomposed into a set of triangles, by using CDT,
to account for all walls. Afterward the algorithm determines the set of sequence of
triangles that contain and link the start and goal positions. Each sequence of triangles
is then converted into a sequence of points (mid point of the common edge of two
consecutive triangles) yielding a path. The shortest and feasible path is chosen as the
geometric path, acting as the initial condition for the path optimization step.

The novel approach proposed consists on substituting CDT by FM2, as shown in
Figure 6.5 and analyze the performance in terms of robustness and how it is affected
by the following path optimization procedure. Comparisons against the CDT-based
path initialization are also included.
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6.3.2 Path Optimization

The initial geometric path does not guarantee a collision free path for a rigid body,
such as the CTS, as shown in the second image of Figure 6.6 and thus may be
unfeasible. Moreover this path is not smooth. To obtain an optimized path, two
criteria are included in the algorithm [7]: clearance from obstacles, by increasing the
distance from the vehicle to the walls and path smoothness, entailing getting shorter
and smoother paths without slacks. To address the referred issues, the optimization
step uses the elastic band concept [117], where the path is modeled as an elastic band,
similar to a series of connected springs, subjected to two types of forces: internal and
external forces. The first are the internal contraction forces, whose magnitude is
proportional to the amplitude of displacement and determine that the path becomes
retracted and shorter. The repulsive forces are responsible for keeping the path, and
consequently the vehicle, away from obstacles. As detailed in [7], the kinematics of
the vehicle are taken into account in the optimization step. Even though unfeasible
trajectories may occur only given the maximum angle achieved by the orientation
of the wheels and the respective velocities. The proposed method is able to identify
these cases. The path optimization procedure is detailed in Section 6.4.

6.3.3 Trajectory Evaluation

The final trajectory is obtained by defining the speed of the vehicle at each point
of the optimized path. In order to reduce the risk of collision in the case of major
malfunction, the speed is reduced once the distance to the nearest obstacle decreases
below a threshold value. Dynamic constraints, such acceleration and speed limits, are
also considered [7].

The entire process is summarized in Figures 6.6 for CDT-based initialization and
6.7 for FM2-based initialization. In both cases, the output is an optimized path in
terms of distance and smoothness, with a speed profile, assuming that the vehicle
starts and ends with velocity equal to zero.
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Figure 6.6: From left to right: the initial map with the generated Constrained De-
launay Triangulation and the computed sequence of triangles between start and goal
points, initial geometric path, path optimization and final optimized trajectory [7, 8].

Figure 6.7: Steps of the proposed method on level TB/B1 (from left to right): initial
map, velocity map, time-of-arrival map and FM2 path, FM2 path evaluated with the
cask with a collision, and path after the the optimization.
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6.3.4 Geometric Path Evaluation Issues

A geometric representation of the environment has some advantages since it provides
a very accurate representation of the scenario and it does not depends on grid cell
discretization. However, in complex scenarios, the geometric representation results in
some issues. In particular with the CDT, the representation requires a huge number
of triangles, yielding to a computational effort. In addition, the CDT may result
on sharp initial paths still far from the optimal one, as shown in Figure 6.8. As a
consequence, the optimization takes longer. To overcome these issues, in this Chapter
a new initialization method is proposed based on FM2.

Figure 6.8: From left to right: map of level B1 in Tokamak Building, generated
Constrained Delaunay Triangulation of the map, geometric path obtained from Con-
strained Delaunay Triangulation and path obtained with Fast Marching Square.

6.4 Path optimization and trajectory evaluation

An optimization methodology based on the elastic bands method [117] was designed [118].
The original concept associated with this approach appeared in the computer vision
field, with the presentation of the so called “snakes” algorithm [119]. A snake is a
deformable curve guided by artificial forces that pull it towards image features such
as lines and edges. The solution herein proposed with the elastic bands methodology
is similar to the snakes approach. Instead of retracting a curve to image features,
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in the path planning problem, it repels the path out from obstacles. Following this
approach, the path is modeled as an elastic band which can be compared to a series
of connected springs subjected to two types of forces, as illustrated in Figure 6.9:

• Internal forces or elastic forces: the internal contraction force simulates the
Hooke’s elasticity concept [120, 121], i.e., the magnitude force is proportional
to the amplitude of displacement. This modeling approach allows the simulation
of the behavior of a stretched band. This is the reason why the paths become
retracted and shorter.

• External forces or repulsive forces: the obstacle clearance is achieved using
repulsive forces to keep the path, and consequently the vehicle, away from
obstacles.

Figure 6.9: Elastic band concept: elastic forces to smooth the path (left) and repulsive
forces generated by the closest obstacles (right).

When submitted to these artificial forces, the elastic band is deformed over time
becoming a shorter and smoother path, increasing clearance from obstacles. Hooke’s
law evaluates the elastic force Fe applied to path point Pi as:

Fe(Pi) = ke ·
[
(Pi−1 − Pi)− (Pi − Pi+1)

]
(6.6)

where ke is the elastic gain and Pi−1 and Pi+1 are the path points adjacent to Pi.
The elastic band behavior can be controlled through ke. The band stretches with
high values of ke while low values increase the band flexibility.

To determine the external forces, a collision detector algorithm is used to evaluate
the nearest obstacle point (OP) to each vehicle pose. The use of a single OP to
determine the repulsive forces may not be satisfactory to maintain clearance from
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obstacles, and therefore, a larger set of obstacle points, such as the k-nearest (k-
OPs), must be considered, as illustrated in Figure 6.9. This leads to a more balanced
repulsive contribution ensuring effectiveness on most situations.

The repulsive force for each Pi is determined as a combination of different repulsive
contributions

Fr(Pi) = kr ·
∑

l={F,R}

K∑
k=1

rl,k(Pi) (6.7)

where kr is the repulsive gain, F and R the front and rear wheels and rl,k is the
inverse of the distance between the k-OPs and the vehicle, considering the front and
rear wheels, as detailed in [7].

Once the elastic and the repulsive forces are computed, an update equation pro-
cedure that defines the path evolution along each iteration is applied as

Pi,new = Pi,old + k · Ftotal(Pi,old) (6.8)

where k is a normalization factor adding up the total force contribution applied to
all points Pi,old and the total force contribution is given by

Ftotal(Pi,old) = Fe(Pi,old) + Fr(Pi,old) (6.9)

Under the influence of these artificial forces, the elastic band is deformed over
time becoming a shorter and smoother path. The stopping criteria is defined by
detecting that the magnitude changes on Ftotal are smaller than a given threshold
and by setting a maximum number of iterations. The path optimization is thus
carried out by a path deformation approach where the computed paths are treated as
flexible and deformable bands. Elastic interactions smooth the path by removing any
existing slack, whereas repulsive forces improve clearance from obstacles by pushing
away the points of the path.

In Figure 6.10 it is shown a schematic of the evolution of the path during the
optimization step. The path connects the fixed initial and final points and has 3
additional points. The index n identifies the iteration of the optimization step.

At each iteration it is computed the variation of the path in relation to the previous
iteration. The variation is computed evaluating the distance between each point of
the path at iteration n and the line segment defined by the two nearest points of the
path from iteration n-1, as illustrated in Figure 6.11. The 20 highest distances are
selected and their median is computed. The stopping criteria is achieved when the
median value is below a threshold (defined as 0.02 m) or if the number of iterations
reaches 70. These values have shown good performance in all cases so that they are
fixed for all results along this Chapter.

The output of the path optimization is a collision free path suitable for execution.
Then, the optimized paths are parametrized in terms of velocities, converting the
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Figure 6.10: Schema of the path evolution in each iteration during the trajectory
optimization.
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Figure 6.11: Definition of the variation of the path between consecutive iterations:
distance evaluated to a single point.
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paths into trajectories. Since the safety requirements are mandatory and the risk of
collision shall be reduced in the cluttered environment, an initial approach defines
the vehicle speed profile as a function of the distance to the obstacles. The velocity
assumes low values when the vehicle is closer to the obstacles. Otherwise, the velocity
is higher, under safety levels. To generate this initial speed profile, the minimum
distance from the vehicle to the closest obstacle is identified for each point in the
optimized path.

A maximum and minimum allowable speed are set to this profile, in order to
integrate kinematic constraints. The safety margin identifies the threshold distance
above which the maximum speed is considered. The speed profile thus obtained
is saturated when the distance is above the threshold or below the safety margin
and is referred as C-based speed profile [8]. However, the C-based speed profile
is unable to handle vehicle dynamics constraints, meaning that the constraints on
the admissible accelerations of the vehicle are ignored. To sidestep this issue, it
has been developed a specific routine, which tests each one of the C-based speed
profile transitions, checking whether the accelerations are feasible or not. Whenever
a dynamic unfeasible transition is found (e.g., the calculated acceleration is out of
the admissible bounds), the routine corrects the speed accordingly.

6.5 Simulated Results

FM2 was implemented in MATLAB environment (using compiled MEX functions) and
integrated in the specially designed software tool Trajectory Evaluator and Simulator
(TES), developed at the Instituto de Plasmas e Fusão Nuclear (IPFN), Instituto
Superior Técnico, University of Lisbon. The TES receives the models of the buildings,
generates trajectories using line guidance and free roaming, evaluates the resulted 3D
volume swept by the vehicle along the optimized paths and exports the optimized
trajectories and the corresponding 3D swept volume directly to the CAD software.
The TES provides also a GUI to preview the trajectory optimization, to manipulate
the scenarios, to easily choose the vehicle typology to be used in the simulation and
to generate results. The output of TES is a set of optimized trajectories which were
validated by an independent software developed by ASTRIUM SAS [122]. The results
achieved by the algorithms implemented in TES applied in the models of the real
scenarios were important to proceed with the construction of the Tokamak Building.

The line guidance algorithm, using the FM2 and the elastic bands optimization,
were applied and tested in some levels of the TB and HCB to generate trajectories.
Each optimized trajectory corresponds to a nominal operation of transportation be-
tween the lift and a port in the TB or a parking place in the HCB. Each mission only
constrains the initial and final poses (positions and orientations) of the vehicle. A
path is considered feasible when the minimum distance between the vehicle and the
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closest elements of the scenario is above a safety margin. This minimum clearance is
only allowed to be infringed when entering/exiting the lift and in the docking phase.

First, an individual result of the optimization procedure is included before pro-
ceeding with the full results. This example is a mission from the lift to the port 10
of the level L1 of the TB, since it is one of the most complicated cases. Figure 6.12
shows that the FM2 initialization contains points in the path with collisions, since
the standard FM2 in 2 dimensions does not take into account the size of the vehicle
when planning. However, the optimization provides a shorter, smoother path without
collisions. In Figure 6.13 the spanned areas for both initialization and optimization
are shown. It is possible to see that the optimization has reduced the spanned area,
since most of the FM2 small oscillations have been reduced. Finally, Figure 6.14
shows the evolution of the minimum clearances and the velocities profile. Clearances
are improved in those places in which the initialization had collisions. In some points
of the path clearances are decreased (always above the safety margin, depicted by a
dashed line) in order to reduce path length. This causes the speed profile to decrease
in those places as well.

Figure 6.12: The path evaluation from the lift to the port 10 in level L1 of TB: the
results from the initialization step (left) and from the optimization step (right).
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Figure 6.13: The spanned areas along the initialized path (left) and along the opti-
mized path (right), from the lift to the port 10 in level L1 of TB.
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Figure 6.14: The minimum distance between the vehicle and the closest obstacles
(top) and the speed of the vehicle (bottom) along the optimized path, from the lift
to the port 10 in level L1 of TB.
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A total of 47 missions have been analyzed between the 2 buildings: 35 missions
in the TB (7 in level B1, 14 in level L1, and 14 in level L2) and 12 in the HCB
(7 in level L1 and 5 in level B2). Different metrics are used for both initialization
and optimization: path length, swept area, total vehicle rotation angle, estimated
execution time and minimum clearance along the path. The results of these metrics,
except clearance, are shown in Figure 6.15.

The optimization procedure has reduced the path length in all cases. Also the
swept area has been optimized in all the missions. The total steered angle by the ve-
hicle is also significantly reduced since most of the oscillations created by the FM2 ini-
tialization have been eliminated. However, it is increased in 3 missions in the TB and
in all missions in the HCB/L1. These cases corresponds to sharp curves in confined
spaces in which the only option for the vehicle is to get a better angle by first turning
to the opposite side. As a counterpart, the estimated path execution time has been
increased in all cases.

Smoothness require a more careful analysis. The smoothness metric employed
creates triangles formed by consecutive path segments and compute the angle be-
tween those segments using the Pythagoras’ theorem. Then, its conjugate angle is
normalized by the path segment. Finally, all the normalized angles along the path
are added. The higher this value is, the less smooth the path is. Minimum value is
0 for a straight line and there is no maximum value. Therefore, it is important that
both initial and optimized paths have the same number of points. Otherwise, the
comparison would not be fair. This metric is formally defined as:

smoothness =
n−1∑
i=2


2

(
π − arccos

(
a2i +b2i−c2i

2aibi

))
ai + bi


2

(6.10)

where ai = dist(si−2, si−1), bi = dist(si−1, si) , ci = dist(si−2, si), si is the ith state
along the path, and dist(si, sj) gives the distance (Euclidean in this case) between
states i and j.

Smoothness results are shown in Figure 6.16. Smoothness is worsened in all cases.
However, this is not an actual negative result. Note that the smoothness values for
the initial FM2 paths is low (highly smooth). However, these paths present collisions.
Therefore, the optimization procedure decreases smoothness only as much as required
in order to satisfy the clearance requirements. On the other hand, the total rotation
angle has been decreased in most cases.

The optimization provokes a redistribution of the minimum clearance along the
trajectories which have to be carefully analyzed. Table 6.1 shows that the percentage
of points with clashes have been reduced to 0 in all TB levels. However, the amount
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Figure 6.16: Smoothness metric comparison for different levels in TB and HCB:
initialization (Init.) versus optimization (Opt.).

of points below the minimum clearance (0.3m) have increased. In TB there are two
critical places in which it is not possible to accomplish this restriction: the lift exit and
the docks gate. Therefore, the optimization sacrifices points in the surroundings of
those critical places in order to avoid clashes by bringing them closer to the obstacles.
This allows paths to have longer but smoother curves. The FM2 method provides
paths close to the optimal in terms of obstacle clearance. However, the optimization,
in order to reduce oscillations and path length, decreases the clearance also in some of
the points which are already far from obstacles. Thus, the percentage of points with
clearance higher than a meter decreases while the group between 0.5-1m increases.

Figure 6.17 illustrates how close the path returned by the FM2 is to the final
solution and how fast the optimization is. As described in Section 6.1, a path is a
set of 2D Cartesian points. During the optimization, each point moves as a result of
the elastic and repulsive forces. Figure 6.17 presents, along the z-axis, the distance
between each point and its final position, along the iterations represented in the x-
axis. The y-axis represents the sequence of the points of the path. At iteration 30,
the distance at all points are zero, since the optimized path was achieved and the
points do not move anymore (or the oscillations are not perceptible, e.g., below a
small threshold value). Figure 6.17 presents large distance values in the points that
correspond to the areas of the scenario with more clearance. In the places where the
scenario is very narrow, the points are stuck along all the iterations.

Figure 6.18 presents all the missions to the level L1 of TB. Figure 6.18 - left shows
the paths resulted form the FM2 algorithm applied to all ports. The paths are close
to the optimized solutions, but with some clashes identified by circles. Figure 6.18 -
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Table 6.1: Clearance distributions for the initialization (Xi) and optimized (Xo) tra-
jectories.

Map / Level Clash (0, 0.3)m [0.3, 0.5)m [0.5, 1)m [1,∞)m

HCB

B2i 0 % 5.48 % 2.74 % 44.52 % 47.26 %
B2o 0 % 2.91 % 5.81 % 42.44 % 48.84 %

L1i 0.82 % 2.45 % 3.67 % 47.35 % 45.7 %
L1o 0 % 3.69 % 4.43 % 43.17 % 50.21 %

TB

B1i 1.14 % 3.42 % 3.42 % 23.29 % 68.72 %
B1o 0 % 4.26 % 9.36 % 36.17 % 50.21 %

L1i 1.49 % 1.8 % 2.82 % 14.58 % 79.31 %
L1o 0 % 6.6 % 4.83 % 24 % 64.57 %

L2i 0.66 % 0.88 % 2.86 % 19.03 % 76.57 %
L2o 0 % 2.75 % 4.48 % 36.3 % 56.47 %

Init.

Opt.

Figure 6.17: Evaluation of the distances between each point of the path along the
iterations and its final value in the optimized path.
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Figure 6.18: The path evaluation from the lift to all ports in level L1 of TB: the
results from the initialization step (left) and from the optimization step (right).

right shows all the optimized paths. In some situations, as in the mission to port 11,
the clearance of the path returned by the FM2 in the vicinity of the pillars is greater
when compared to the optimized path to the same port. However, the optimized
path has no collision in the entrance to the same port while satisfying the clearance
constraints. Figure 6.19 includes all the trajectories studied for the HCB. In this case
the optimization is not essential as most of the paths are collision-free. However,
optimization is applied in order to guarantee that the requirements are accomplished.
Figure 6.19 - right shows the effect the optimization algorithm has in very cluttered
scenarios: before entering the parking place, the cask has to get away from the wall
in order to obtain a better angle to enter. As result, the total rotation angle is
incremented.

Finally, an interesting point is raised. Different scenarios require different FM2 ve-
locity maps. However, for small modifications in the scenario it is not necessary to
recompute the velocity map, since the optimization procedure will successfully adapt
the path. For instance, Figure 6.20 - left shows an optimized path between the lift
and a parking place where the initial map and the respective velocity map did not
considered the parked vehicle. Running again the optimization algorithm, the new
optimized path is still smooth, but without clashes, as illustrated in Figure 6.20 -
right.
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Figure 6.19: Path initialization and optimization from the lift to main parking places
in levels L1 and B2 of HCB.
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Figure 6.20: Path for a parking place in level B2 of HCB, in collision with a temporary
vehicle (left), and the re-optimization of the path without the need of the initialization
step (right).

The parameters ke and kr play an important rule for tuning the final trajectory
in terms of shortness and smoothness. The ke regulates the elastic path behavior.
Higher values increase the path shortness approaching the path points connectiv-
ity. Lower values allow to increase path flexibility to obstacle-repulsive deformation.
Outsized values either make the deformation process unstable or compromise path
clearance. The kr controls the repulsion behavior by determining the preponderance
of the repulsive forces from obstacles. Gain increase allows to improve path clearance.
Outsized values conflict with path smoothness and connectivity. These parameters
were largely tested in several scenarios with similar dimensions and layout of ITER
and the best results, as the ones depicted in previous figures, were achieved with
values of ke and kr between [0.3; 0.4] and [0.05; 0.01], respectively.

Lastly, the proposed framework allows to include trajectories with maneuvers [110],
as shown in Figure 6.21. So far, the maneuver poses have to be manually defined and
they will not be modified by the optimization procedure. This allows to increase
clearance, find feasible paths where it was not possible before, and to accomplish
restrictions about the orientation of the final poses within the ports.

6.5.1 Comparison against previous ITER solution

The trajectory provided by FM2 algorithm does not take into account the kinematics
of the vehicle, neither it assures that it is feasible, since clashes might occur. However,
the trajectory given by FM2 algorithm is closer to a final solution, when compared
to the initial geometric path obtained with CDT, as illustrated in the right image of
Figure 6.22.

Comparisons will be made considering only line guidance, as most of the nominal
operations are accomplished using line guidance. For simplicity, only results of the
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Figure 6.21: Example of a double maneuver in level B1 of TB, port 7: initialization
(top) and optimization (bottom).
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Figure 6.22: Left - initial geometric path obtained with Constrained Delaunay Tri-
angulation; Right - trajectory obtained with FM2.

level B1 of the TB are included. However, these results are close to those obtained
for the rest of the ITER environments.

In order to assess the quality of the trajectories obtained using either CDT or
FM2 initializations a comparison criteria is defined. The trajectories are compared
in terms of clearance and smoothness of the final trajectory, computation time and
number of iterations required in the optimization step.

In Figure 6.23 it is presented a comparison between the initial and final trajecto-
ries using CDT and FM2, for port 12. The map was slightly modified to reduce the
effect of the triangulation in CDT in the vicinity of the lift, as illustrated in Figure 6.8.
Initially both present clashes, but the initial trajectory using FM2 is smoother. How-
ever, the final optimized trajectories using the CDT and FM2 initialization are very
similar as illustrated in Figure 6.23. The variation of the 20 highest distances and the
respective median along the iterations are shown in Figure 6.24, where the method-
ology with the FM2 initialization required less number of iterations to converge. The
differences between the optimized trajectories are difficult to appreciate but they can
be identified when comparing the minimum distances to the closest obstacle, as de-
picted in Figure 6.25. The trajectory using FM2 initialization in general has slightly
higher obstacles clearance.

In Figure 6.26 it is presented the initial and final results for a trajectory to port
cell 7. Once again the FM2 initialization proves to be a smoother path and takes less
iterations to converge when comparing with CDT initialization, see Figure 6.27. The
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Figure 6.23: Top: the initial trajectory for port 12 using as initialization the Con-
strained Delaunay Triangulation (left) and the Fast Marching Square (right); bottom:
the final optimized trajectory for port 12 using as initialization the Constrained De-
launay Triangulation (left) and Fast Marching Square (right).
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Figure 6.24: Variation of the median (in red) along iterations for port 12 in level B1
of Tokamak Building.
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Figure 6.25: Comparison between the minimum distances along the optimized tra-
jectories using the Constrained Delaunay Triangulation and Fast Marching Square
initializations for port 12 in level B1 of Tokamak Building.
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Figure 6.26: Top: the initial trajectory for port 7 using as initialization the Con-
strained Delaunay Triangulation (left) and the Fast Marching Square (right); bot-
tom: the final optimized trajectory for port 7 using as initialization the Constrained
Delaunay Triangulation (left) and Fast Marching Square (right).

minimum distance for the trajectory with FM2 initialization also presents slightly
higher values, as shown in Figure 6.28.

In Figure 6.29 it is presented a summary of the comparison of results between
FM2 and CDT initializations. In general the FM2 initialization requires less compu-
tation time and number of iterations to converge, over the CDT initialization, which
allows to decrease the computational effort that is needed for the optimization.

6.6 Conclusions

This Chapter presented a summary of an algorithm to optimize trajectories in terms
of clearance, smoothness and execution time. The algorithm has three steps: the
initialization based on the FM2, the path optimization using rigid body dynamics and
the trajectory evaluation, where a velocity profile is created attending the clearance
and maximum/minimum velocities and accelerations. The inputs of the 2D path
planning algorithm are: the vehicle dimensions, the map of the environment and the
initial and final goals of each mission. The path initialization is fast, robust and close
to the final solution. The FM2-based initialization proposed in this Chapter also
provides trajectories with no clashes whenever possible, but with better performance
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Figure 6.27: Variation of the median along iterations for port 7 in level B1 of Tokamak
Building.
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Figure 6.28: Comparison between the minimum distances along the optimized tra-
jectories using the Constrained Delaunay Triangulation and Fast Marching Square
initializations for port 7 in level B1 of the Tokamak Building.
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Figure 6.29: Comparisons of computational time (left) and number of iterations
(right) for trajectory optimization using Constrained Delaunay Triangulation and
Fast Marching Square.

in terms of computation time, smoothness, and safety than the previous CDT-based
approach.

The algorithm was extensively tested using the maps of the ITER test facility:
a structured, but complex and cluttered scenario. More experiments were done in
the reactor building, since it is the core of the ITER. Results show how robust and
flexible outputs are. The algorithm is also applicable to other environments, such as
warehouses and using other vehicle kinematic configurations.

The future work focuses on extending the algorithm to a free roaming level (wheels
do not follow the same path) avoiding the inclusion of maneuvers.

Further details about the ITER project and the proposed solutions for robotic
navigation can be found in [123].
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7.1 Introduction and motivation

The development of human-like robots has led to an increase in the number of de-
grees of freedom, which makes the planning and control tasks very difficult to be
accomplished in real time. Nowadays, it is common to have redundant manipulators
carrying out complex tasks in which conventional control over the inverse kinematics
is not enough for successfully completing a given motion. The main trend to overcome
this problem is the use of learning techniques. Learning algorithms try to identify
and generalize the relevant features of a motion in order to be able to reproduce pre-
viously given experience, even if the environment has changed or the motion query is
not the same as the one taught.

This Chapter focuses on programming by demonstration (PbD): the robot is given
a set of demonstrations as an input for the learning algorithm. In PbD the demonstra-
tions can be provided either by observing a demonstrator doing a task or by physical
guiding of the robot during the task (kinesthetic teaching). While the first method re-
quires the system to handle the re-targeting problem, the kinesthetic teaching method
simplifies the problem using the same embodiment for both demonstration and re-
production. At the end, a set of motions (usually given as point-to-point trajectories)
is given as input to the learning algorithm.

The motion learning objectives is commonly to execute a specific task as it was
previously taught to the robot. Two different task types can be distinguished: 1) to
execute a motion in which accuracy is not a critical point but the motion dynamics
is, 2) to execute a motion which surely reaches a specific point of the space (the
importance of dynamics depends on the problem).

The first task type focuses on teaching the robot how to complete a given task
with no specific initial or final points, e.g. ball-in-a-cup game[124] or hitting a table
tennis over the net[125]. In these cases, Dynamic Motion Primitives (DMP)[126, 127],
a set of nonlinear differential equations which creates smooth control policies have
become very popular[128]. For learning the primitives, reinforcement learning has
played an important role during the last years[129]. A more recent approach based
on the motion primitives idea is proposed in [130], where the primitives learning is
carried out using incremental kinesthetic teaching by means of Hidden Markov Models
(HMM).

The second task type consists of completing a given motion in which there exists
a specific goal but the initial states can change. Concretely, it faces the problem of
showing the robot how to perform a discrete motion (i.e. point-to-point trajectories).
The Stable Estimator of Dynamical Systems (SEDS) approach[131] is able to gener-
alize and reproduce the demonstrations even when spatial and temporal perturbation
appear. Calinon goes a step further proposing a control strategy for a robotic manipu-
lator operating in unstructured environments while interacting with human operators
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[132]. Such situations are starting to be common in manufacturing applications. In
fact, dynamical systems have shown to be a powerful alternative to model robot mo-
tions [133, 134] and different statistical approaches have been proposed: Gaussian
Process Regression [135], Locally Weighted Projection Regression [136] and so on.

Other approaches have been proposed in order to leverage previous robot experi-
ence. For instance, obstacle rearrangement for faster replanning in a new environment
[137] or the creation of a collision-free paths database so that paths can be reused
in the future to speed up the planning process[138]. In these cases, the objective
is to reduce the computational time when planning in a high-dimensional space by
previously training the robot with environment-path information. The consequence
is that the computed paths will be similar to those given during the training phase.
Other example is trajectory prediction[139, 140] which is also able to adapt path
initialisations to new environments for optimal planning.

Most of the previous approaches have shown a good performance[141], but their
underlying mathematical model is usually based on probabilistic terms, causing the
learning to be stochastic. Depending on the problem to solve, this stochasticity may
not be a desirable property since with the same demonstrations different solutions
are given each time. It could also not converge to a solution, becoming unstable
under certain conditions since stochastic optimization algorithms are used to solve
the learning. Besides, most of these approaches are based on learning motion control
parameters. To include changes in the environment becomes challenging[142].

In this Chapter the Fast Marching Learning (FML) algorithm is detailed: a de-
terministic, asymptotically globally stable motion learning algorithm designed from
a path planning point of view, using FM2 algorithm as the underlying path planning
method.

The rest of the Chapter is organized as follows. Section 7.2 details FML and some
simulation results are shown. Section 7.3 includes an in-depth analysis of the proposed
method, its characteristics and parameters. Experimental evaluation and comparison
against SEDS method are shown in section 7.4. Finally, section 7.5 outlines the main
conclusions of this Chapter and the future work in this area.

7.2 Path Planning Learning with Fast Marching

Square

The FM2 paths tend to go through those places in which the propagation velocity is
higher, since it means that the total path can be covered in less time (as depicted
in Figure 7.1). This fact can be exploited by forcing the path to take a specific
direction if the map F is carefully modified. Therefore, the objective is to encode the
experience given to the robot by an expert in the velocity map. The consequence is
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that the final paths could be completely different to those given by the standard FM2

method. However, the main characteristics of the FM2 method will remain, such as
smoothness and local-minima-free.

(a) Saturation: 0.75 (b) Saturation: 0.5 (c) Saturation: 0.25 (d) Saturation: 0

Figure 7.1: FM2 saturated variation: modification of the path depending on the
saturation value.

This Chapter is focused on point-to-point demonstrations: taught trajectories are
codified as points in the workspace. Therefore, the principal objective of motion
learning is to be able to successfully reproduce the taught motion when the robot is
asked for a similar plan. The experience is expected to be generalized while improving
the motion taught by making it faster, more efficient, smoother, etc.

7.2.1 Fast Marching Learning Method

The algorithm described next takes as input data gathered during a kinesthetic teach-
ing process. Although it is applicable to any number of dimensions, end-effector’s
Cartesian coordinates will be used in order to help the reader to understand the
methodology. In this case, the re-targeting problem is avoided, as the dataset (set
of end-effector’s positions) is recorded in Cartesian coordinates. Every taught path
P will contain a set of N three-dimensional points p(x, y, z) sampled with a constant
cycle time T . If K paths are taught to the system, the experience E can be codified
then as:

E = 〈P1, P2, ..., PK〉 (7.1)

where
Pi = 〈pi,1, pi,2, ..., pi,Ni

〉 (7.2)

The environment representation is the same as for FM2, an n-dimensional cell
grid. An empty workspace is assumed. However, obstacles can be directly included
in the algorithm as shown in sections 7.2.2 and 7.3.1. Hence, the steps of the Fast
Marching Learning (FML) method are the following:
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1. All the points contained in E are labeled as 1 (white) in an workspace with no
data (represented in black, value 0). This workspace is denoted as Fp.

2. Apply the dilation operation on Fp by the size aoi, measured in cells, which
defines the area of influence of the taught data.

These two steps divide the workspace into two different zones: those affected
by the previous experience, and those not influenced (where the algorithm will
behave as a regular path planner). The aoi parameter sets the size of these
zones since it is responsible for dilating the initial demonstrations.

3. The FMM is applied as done in the first step of the FM2 method, so that Fp
is converted into a velocity map. All the zero-valued points of Fp are used as
wave sources.

4. By linearly rescaling Fp in order to be within the bounds defined by [sat, 1]
the final velocity map F is obtained. This second parameter sat is a satu-
ration which weights the importance of the new data against the rest of the
environment.

At this point, Fp contains a generalization of the demonstrations. Those areas
with higher value (lighter) represent, in an intuitive manner, the center of the
demonstrations.

5. Apply FMM over the entire workspace using as unique wave source point the
centroid of the final point of all the trajectories Pi ∈ E, and considering the
velocity map F .

This algorithm is formalized in algorithm 14. DILATE(map, s) applies the mor-
phological dilation operation on map with a structuring element with size s, given in
cells. Any shape of this structuring element is valid. For the examples of this Chapter
the ball shape has been used. FastMarching(F , xS) applies the FMM using the
velocity map F and the point s as wave source (s can be an array with more than
one wave source). RESCALE(map,min,max)) linearly rescales map between min
and max values. Finally, CENTROID(E) takes as input a set of trajectories and
output the centroid of the first point of all the demonstrations. Lines 1-9 create the
velocity map according to the demonstrations, as shown in Figure 7.2. This way, the
second FMM wave (lines 10-12) can travel through areas with no experience but with
less priority to those affected by DILATE(). In case of new path queries, paths will
be attracted towards areas with experience since the second FM2 wave will expand
faster as depicted in Figure 7.3.
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Algorithm 14 The Fast Marching Learning algorithm

Input: Experience E = 〈P1, P2, ..., PK〉.
Output: Modified velocity map F , reproduction field T .

1: Fp ← {0};
2: for i = 1 to K do
3: for j = 1 to Ni do
4: x← Pi,j;
5: Fp(x) := 1;

6: Fp ← Dilate(Fp, aoi);
7: xS ← {∀x ∈ Fp|Fp(x) = 0};
8: Fp ← FastMarching(Fp, xS);
9: F ← Rescale(Fp, sat, 1);

10: xS ← Centroid(E);
11: T ← FastMarching(F , xS);
12: return F , T ;

(a) Demonstrations (b) Initial Fp (c) Dilated Fp (d) F

Figure 7.2: Fast Marching Learning steps. sat = 0.1 and aoi = 25 cells.

7.2.2 Including Obstacles in the Workspace

In case that the workspace is not completely free, obstacles are required to be included.
Obstacles can either be part of the workspace from the beginning or appear once after
demonstrations were done. Thanks to the FM2 underlying method, both methods
can be easily addressed.

Let us assume that the robot has been given an experience E and a velocity
map F has been already computed. Let also assume that the initial workspace X
is not obstacle-free, or that it was free in the beginning but new obstacles appear.
In this case, the updated velocity map of the workspace Fup has to be computed by
saturating at level sat. Finally, in order to compute the final velocity map F , the
following update step is necessary for all those points in which Fup is not saturated:

F := min(Fup,F) ∀i ∈ Fup|Fup(i) < sat (7.3)
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Figure 7.3: Left: FM2 time-of-arrival map T using the modified F . Right: streamlines
(set of possible reproductions) of T with parameters sat = 0.1 and aoi = 25 cells.

This operation has to be repeated any time a new obstacle appears. The T needs
also to be updated by propagating an FMM wave from the target point. It will
take into account the demonstrations given to the robot as much as possible while
avoiding the new obstacles. However, it would be worthy to recompute F from scratch
with different, more restrictive parameters sat and aoi because the new obstacles
will deviate the reproductions and the behaviour of the solution could change. The
algorithm is detailed in Figure 7.4 and its results are shown in Figure 7.5.

7.3 Analysis of the Fast Marching Learning Method

In this Section an in-depth analysis of the FML and its characteristics is carried out.

(a) Demonstrations (b) F (c) Fup (d) Updated F

Figure 7.4: Fast Marching Learning obstacles update steps. sat = 0.1 and aoi = 25
cells.
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Figure 7.5: Left: map of times using the propagation velocities learned. Right: result
of the learning method with parameters sat = 0.1 and aoi = 25 cells.

7.3.1 FML Main Characteristics

Duality

Let us suppose that the taught paths have a starting point close to a region A of
the workspace and the final points are close to any region B of the same workspace.
Usually, motion learning algorithms are designed supposing that the new queries
(reproductions of the robot) will be in the same direction A → B. In the case of a
query which asks for a plan in the opposite direction, B → A, the behaviour of other
learning algorithms could be unexpected. However, in the case of FML the same
motion as taught will be performed but in the opposite direction. Although this
property could become a limitation under some circumstances, it allows to predict
the behaviour of the robot which is a very desirable property regarding safety.

Determinism

The FMM is a deterministic method. This means that the output will remain always
the same if the input does not change. Since FML is based on FMM, and the way F
is computed is deterministic, FML is also deterministic. This is an important factor
since the behaviour is easy to be predicted and no spurious behaviours will occur,
which is common in probabilistic, optimization-based learning methods.

Behaviour with no experience

In other learning algorithms, if a motion query is done from a point far away from
the given experience, the behaviour is often unpredictable. In those cases, the FML
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method will provide the fastest path from the starting point to the goal point accord-
ing to the metrics given by the velocity map F . Since it has a constant value of sat
in those places away from the experience, the fastest path also means the shortest
path to the goal point in terms of distance. This is shown in Figure 7.6.

One-shot Learning

One-shot learning refers to the characteristic of a learning system to be able to suc-
cessfully reproduce and generalize the experience when only one demonstration has
been given [143]. This is a desirable characteristic from the point of view of the final
user of the system.

When many demonstrations are given to the FML method, the dilation step of
the algorithm brings all these demonstrations together into one area of influence of
the learning (depending on the aoi parameter). Therefore, many demonstrations act
as just one demonstration with a larger aoi. If the robot is going to be taught with
only one demonstration, then the aoi parameter has to be set with a larger value than
when many demonstrations are provided.

Figure 7.7 shows an example of FML one-shot learning in an environment with
one obstacle. Notice that in both cases, it is possible that the generated reproduction
fields are very similar.

7.3.2 Stability Analysis

Although the FML method is not based on dynamical systems, its stability is analyzed
with an analogy to the the Lyapunov Stability theorem [144].This theorem expresses
that a function ẋ = f(x) is asymptotically stable at the point xg if a continuous
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Figure 7.6: Behaviour of the Fast Marching Learning algorithm in zones with no
experience, and its adaptation when new experience is included. sat = 0.1 and
aoi = 20 cells.
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and continuously differentiable Lyapunov function V (x) can be found such that it is
always positive, its derivative is always negative and V (xg) = V̇ (xg) = 0.

Let us consider as Lyapunov function the one generated when expanding the
second wave of FM2, T (x). This function starts at the goal point of the robot xg,
where the T (xg) value is 0. Given the fact that this wave expands always with non-
negative velocities, the value of T (x) will be higher (positive) as the wave gets farther
from xg. Finally, the derivative of the function is always the same sign since T (x)
is free of local minima. Actually, the derivative of equation T is always positive at
any point, as the time is always increasing from the wave source point. However,
when running gradient descent from a given point, the path generated will follow the
direction in which the time decreases the most. Therefore, in this case the Lyapunov
conditions are satisfied to ensure a globally asymptotically stable system. In other
words, all the motion reproductions of the FML will converge to the same point as
the T (x) function has a unique minimum.

Conceptually, FML is really close to the work presented in [145], where vector
fields are created using different Lyapunov function candidates. Qualitatively, their
results are close to the SEDS algorithm [131], but prone to have local attractors
and unexpected behaviours. However, FML guarantees a globally stable system by
numerically computing the Lyapunov function with FMM. This Lyapunov function
is modified by parameters sat and aoi.

7.3.3 Parameters Analysis

The proposed FML method counts with two parameters whose configuration changes
the behaviour of the learning procedure. In this Section an intuitive explanation of

Reproductions Demonstrations Initial Points Target Point

(a) sat = 0.1 and aoi = 50 cells (b) sat = 0.1 and aoi = 25 cells

Figure 7.7: One-shot against many demonstrations. Workspace: 300x500 cells.
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their influence is given. Also, Figure 7.8 includes the learning results when the same
demonstrations but different set of parameters are given.

Saturation, sat

The possible values of the saturation are sat ∈ (0, 1]. This is the value of F in
those places where no experience is given, which represents the propagation velocity
of the FMM wave. According to the design of the FML algorithm, the places with
experience have a higher propagation velocity. Therefore, the places with experience
will be reached earlier by the wave.

The reproductions will only ignore the experience when it takes less time for the
wave to reach the target points by propagating through the zones with no experience.
Hence, the saturation parameter acts as a weighting factor between the importance of
the experience given to the robot and the rest of the space. Since the objective is for
the robot to reproduce the motions that have been taught, this factor is usually close
to zero. When an excessively high value is given to this parameter, the reproductions
will ignore the experience (top row of Figure 7.8). On the other hand, a extremely
low value will result in a very greedy learning, where reproductions will always go to
those zones with experience (bottom row of Figure 7.8). Along this Chapter, good
results are commonly given when sat ∈ [0.05, 0.1].

Area of influence, aoi

This is the size used in the dilation step of the FML, where all the recorded points
are enlarged in order to give connectivity to the demonstrations and its spatial sur-
roundings. It is measured in cells and directly depends on the size of the workspace.
Experimentally, it has been found that a good value for this parameter is around 5%
for multiple demonstrations and 10% for one-shot learning (percentage given over the
smallest dimension of the workspace).

This parameter affects the generalization of the learning. When an excessively
low value is given, the algorithm will not generalize and it will follow the taught
trajectories strictly (left column of Figure 7.8). In the opposite case, the reproductions
will generalize too much and the shape of the demonstrations will be lost (right
columns of Figure 7.8).

Special attention is required by the aoi parameter when working in dimensions
which are not in the same domain. This Chapter is focused on working in end-
effector’s Cartesian coordinates, so the three dimensions are in the same spatial do-
main. However, when using other dimensions, i. e. velocities or angles, the size of
this parameter has to be coherent with the desired result.

Figure 7.9 shows examples of learning results with wrong parameters. In Figure 7.9
a) reproduction queries are demanded from points which are close to the target point.
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Figure 7.8: Analysis of the results using different parameter settings. Workspace:
250x185 cells.

In this case the weight of the experience has to be very high in relation to the rest
of the space, so that by decreasing the value of sat the learning becomes successful
(Figure 7.9 b) ). A different example is given in Figure 7.9 c). In this case the
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Reproductions Demonstrations Initial Points Target Point

(a) sat = 0.1, aoi = 25 cells (b) sat = 0.05, aoi = 25 cells

(c) sat = 0.1, aoi = 25 cells (d) sat = 0.1, aoi = 10 cells

Figure 7.9: The shape of the trajectories to learn could influence the parameters of
the algorithm. Workspace: 250x185 cells.

excessively high value of aoi converts the N-shaped path into a much smoother shape.
By decreasing the size of the aoi it is possible to keep the shape of the demonstrations,
as shown in Figure 7.9 d).
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Table 7.1: Results of SEDS and FML in the handwriting motions dataset.

Times (s)
FML SEDS
µ σ µ σ

0.17 0.12 23.28 15.58

7.4 Experimental Evaluations

This Section includes several demonstrations of the FML performance using real and
simulated data. Since the proposed method does not include dynamics, it is not
possible to carry out an exhaustive comparison against those learning methods based
on dynamical systems. However, a brief comparison against the SEDS method [131]
is included. It has been carried out over the 2D handwriting motions described in
the SEDS paper: 24 different handwriting motions collected with a Tablet-PC. Each
motion is composed by three demonstrations with a uniform sampling time T = 0.02s.

Figure 7.10 shows the results of FML over 9 of the motions in the dataset. The last
row of the Figure is worthy to mention since it is composed by multi-model motions:
the motion to learn changes completely depending on the area of the workspace. FML
is able to generalize the demonstrations.

Examples in a three-dimensional space are shown in Figure 7.11. The demonstra-
tions given in this case are simulated, manually introduced.

The FML-SEDS comparison, shown in Figure 7.12, focuses on the reproduction
field of these methods. Both are running in two dimensions, in a workspace of 250x185
cells. The parameter set in SEDS is: 4 Gaussian distributions and a likelihood
optimization method with a maximum of 500 iterations. In FML parameters are,
sat = 0.1 and aoi = 25 cells. These results show that the performance of both al-
gorithms is quite different. While SEDS looks for a complete generalization of the
motion, following the same motion pattern from any point of the space, FML con-
verges to the area with experience in a smooth way, creating motions always similar to
the reproductions. However, the behaviour of SEDS in some areas is unexpected and
may cause problems when operating in a real robot. This is likely to occur in those
places close to the target point but in the opposite direction of the demonstrations
or in places far away from the target. Table 7.1 includes the average and standard
deviation of the computation times as an interesting result. However, this is very
implementation-dependent.
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Reproductions Demonstrations Initial Points Target Point

Figure 7.10: Results of the Fast Marching Learning algorithm applied to handwriting
motions. sat = 0.1 and aoi = 25 cells.
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Figure 7.11: Results of the Fast Marching Learning algorithm in three dimensions,
sat = 0.05 and aoi = 10 cells.
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Figure 7.12: Qualitative comparison of the learning results of algorithms SEDS and
FML in the handwriting motions dataset.
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7.5 Conclusions

Along this Chapter FML, a novel learning algorithm for robot motions, has been
detailed. It has been shown that it can work well with an empty workspace and also
with obstacles. It is not based on an optimization procedure but on a well-studied
path planning algorithm, FM2. This means a completely different point of view of
the previous work in motion learning.

A deep analysis on the performance of FML and the dependance on its parame-
ters has been carried out. The main advantages of this method against others are:
determinism, asymptotically globally stable, one-shot learning method and low com-
putational time. Besides, experimental results show that FML is reliable and safe.
No major problems have been identified.

A brief comparison with a state of the art method has been included. Other met-
rics could be employed, such as storage size, adaptation to online changes, accuracy
reproducing demonstrations, etc. However, the nature of FML regarding the current
learning algorithms is very different. Therefore a deeper comparison would not be
meaningful. FML does not pretend to improve SEDS, DMP or other methods, but to
propose an alternative in which simpler, robust solutions are required. For example,
writing motions, door openings, boosting planning from experience (to be addressed
in future work), and other problems in which the dynamics are not critical but the
final trajectory is.

The main current drawback is that motion dynamics are not codified into the
learning. Also, as FML is based on grid cell, the application to more than 3 dimensions
can be very expensive in terms of computational time.

Therefore, future work will focus on solving both of these problems. The anisotropic
Fast Marching Method, together with parallel implementations are promising research
lines which can improve the proposed method significantly. It is also worthy to explore
optimization methods in order to automatically set the parameters involved. Finally,
to study the influence of the grid resolution in the reproduction field would be very
valuable, as it would be possible to optimize the computation-time/reproduction-
quality ratio.
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high-dimensional spaces

DISCLAIMER: The BFMT* algorithm [146] was developed
jointly between the author of this Thesis and members of the
Stanford Autonomous Systems Laboratory (ASL). Specifically,
the implementation code and design of the algorithm resampling
strategy upon failure (presented as Algorithm 18) represent the
author’s collective contribution. The remaining algorithm de-
sign, theoretical work, and simulation results were performed
by members of ASL.

8.1 Introduction

Arguably, sampling-based algorithms are among the most pervasive, widespread plan-
ners available in robotics, including the Probabilistic Roadmap algorithm (PRM)[25],
the Expansive Space Trees algorithm (EST) [147, 148], and the Rapidly-Exploring
Random Tree algorithm (RRT) [24]. Since their development, efforts to improve the
“quality” of paths led to asymptotically-optimal (AO) variants of RRT and PRM,
named RRT∗ and PRM∗, respectively, whereby the cost of the returned solution con-
verges almost surely to the optimum as the number of samples approaches infinity
[26, 149]. Many other planners followed, including BIT∗ [27] and RRT# [28] to name
a few. Recently, a conceptually different asymptotically-optimal, sampling-based mo-
tion planning algorithm, called the Fast Marching Tree (FMT∗) algorithm, has been
presented in [150, 12]. Numerical experiments suggested that FMT∗ converges to an
optimal solution faster than PRM∗ or RRT∗, especially in high-dimensional configu-
ration spaces and in scenarios where collision-checking is expensive.

It is a well-known fact that bi-directional search can dramatically increase the con-
vergence rate of planning algorithms, prompting some authors [151] to advocate its
use for accelerating essentially any motion planning query. This was first rigorously
studied in [152] and later investigated, for example, in [153, 154]. Collectively, the al-
gorithms presented in [152, 153, 154, 151] belong to the family of non-sampling-based
approaches and are more or less closely related to a bi-directional implementation of
the Dijkstra Method. More recently, and not surprisingly in light of these performance
gains, bi-directional search has been merged with the sampling-based approach, with
RRT-Connect and SBL representing the most notable examples [155, 156].

Though such bi-directional versions of RRT and PRM are probabilistically com-
plete, they do not enjoy optimality guarantees. The next logical step in the quest for
fast planning algorithms is the design of bi-directional, sampling-based, asymptotically-
optimal algorithms. To the best of author’s knowledge, the only available results in
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this context are [157] and the unpublished work [158], both of which discuss bi-
directional implementations of RRT∗. Neither work, however, provides a rigorous
proof of asymptotic optimality starting from first principles.

This Chapter introduces the Bi-directional Fast Marching Tree (BFMT∗) algo-
rithm which, to the best of the author’s knowledge, is the first asymptotically-optimal,
bi-directional, tree-based, sampling-based planner. BFMT∗ extends FMT∗ to bi-
directional search and essentially performs a “lazy,” bi-directional dynamic program-
ming recursion over a set of probabilistically-drawn samples in the free configuration
space.

Firstly, the BFMT∗ algorithm is presented in Section 8.2. Then numerical exper-
iments are performed in Section 8.3 across a number of planning spaces that suggest
BFMT∗ converges to an optimal solution at least as fast as FMT∗, PRM∗, and RRT∗,
and sometimes significantly faster. Finally, conclusions for BFMT∗ are pointed out
in Section 8.4. Mathematical proofs are omitted as this Thesis focuses on practical
applications. Interested readers are referred to [12] for mathematical proofs.

8.2 The BFMT∗ Algorithm

In this Section, the Bi-Directional Fast Marching Tree algorithm, BFMT∗, is repre-
sented in pseudocode as Algorithm 15. To begin, a high-level description of FMT∗

is provided in Section 8.2.1, on which BFMT∗ is based. Following in Section 8.2.2
with BFMT∗’s own high-level description, and then additional details are discussed
in Section 8.2.3.

As these algorithms rely on graph theory, the nomenclature of this Chapter is not
consistent with the rest of this Thesis. This way, the nomenclature used along this
Chapter is consistent with the rest of literature on FMT∗ and asymptotically-optimal,
sampling-based methods (with the exception of Chapter 2, as this Chapter relies on
the same problem formulation).

8.2.1 FMT∗ – High-level description

The FMT∗ algorithm, introduced in [150, 12], is a unidirectional algorithm that es-
sentially performs a forward dynamic programming recursion over a set of sampled
points and correspondingly generates a tree of paths that grow steadily outward in
cost-to-come space. The recursion performed by FMT∗ is characterized by three key
features: (1) It is tailored to disk-connected graphs, where two samples are consid-
ered neighbors (hence connectable) if their distance is below a given bound, referred
to as the connection radius ; (2) It performs graph construction and graph search
concurrently ; and (3) For the evaluation of the immediate cost in the dynamic pro-
gramming recursion, one “lazily” ignores the presence of obstacles, and whenever
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high-dimensional spaces

a locally-optimal (assuming no obstacles) connection to a new sample intersects an
obstacle, that sample is simply skipped and left for later (as opposed to looking for
other locally-optimal connections in the neighborhood).

In order for two points to be considered neighbors, FMT∗ establishes a lower-
bound in the connection radius to use. Two points are considered neighbors if their
Euclidean distance (or more generally, the cost) is smaller than:

rn = 2(1 + η)1/d ·
(

1

d

)1/d(
µ(Xfree)

ζd

)1/d(
log(n)

n

)1/d

(8.1)

where n is the number of samples used, η ≥ 0 is a tuning parameter, d is the number
of dimensions, µ(Xfree) is the Lebesgue measure of the free space (its hypervolume),
a ζd is the Lebesgue measure of a ball of unit radius. This rn, derived from the
Poisson point processes theory, provides guarantees regarding the connectivity of the
points randomly sampled in the space. Increasing η causes a point to have more
neighbors, which will lead to more optimal paths, but slower computation times as
the nearest neighbor search has to explore more space. Therefore, this parameter is
experimentally tuned. In [12] a in-depth analysis of the influence of this parameter is
included.

The last feature, which makes the algorithm “lazy,” may cause suboptimal connec-
tions. A central property of FMT∗ is that the cases where a suboptimal connection is
made become vanishingly rare as the number of samples goes to infinity, which helps
maintain the algorithm’s asymptotical optimality. This manifests itself into a key
computational advantage—by restricting collision detection to only locally-optimal
connections, FMT∗ (as opposed to, e.g ., PRM∗ [26]) avoids a large number of costly
collision-check computations, at the price of a vanishingly small “degree” of subop-
timality. Interested readers are referred to [150, 12] for a detailed description of the
algorithm and its characteristics.

8.2.2 BFMT∗ – High-level description

At its core, BFMT∗ implements a bi-directional version of the FMT∗ algorithm by
simultaneously propagating two wavefronts (henceforth, the leaves of an expanding
tree will be referred to as the wavefront of the tree) through the free configuration
space. BFMT∗, therefore, performs a two-source dynamic programming recursion
over a set of sampled points, and correspondingly generates a pair of search trees:
one in cost-to-come space from the initial configuration and another in cost-to-go
space from the goal configuration (see Figure 8.1). Throughout the remainder of the
Chapter, these will be referred correspondingly as the forward tree and backward tree.

The dynamic programming recursion performed by BFMT∗ is characterized by
the same lazy feature of FMT∗ (see Section 8.2.1). However, the time it takes to run
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(a) 0% Obstacle coverage (b) 25% Obstacle coverage (c) 50% Obstacle coverage

Figure 8.1: The BFMT∗ algorithm generates a pair of search trees: one in cost-to-
come space from the initial configuration (blue) and another in cost-to-go space from
the goal configuration (purple). The path found by the algorithm is in green color.

BFMT∗ on a given number of samples can be substantially smaller than for FMT∗.
Indeed, for uncluttered configuration spaces, the search trees grow hyperspherically,
and hence BFMT∗ only has to expand about half as far (in both trees) as FMT∗

in order to return a solution. This is made clear in Figure 8.1(a), in which FMT∗

would have to expand the forward tree twice as far to find a solution. Since runtime
scales approximately with edge number, which scales as the linear distance covered
by the tree raised to the dimension of the state space, it is expected in loosely clut-
tered configuration spaces an approximate speed-up of a factor 2d−1 over FMT∗ in
d-dimensional space (the −1 in the exponent is because BFMT∗ has to expand 2 trees,
so it loses one factor of 2 advantage). Note that the connection radius rn remains the
same as in FMT∗.

8.2.3 BFMT∗ – Detailed description

To understand the BFMT∗ algorithm, some background notation must first be in-
troduced. Let S be a set of points sampled independently and identically from the
uniform distribution on Xfree, to which xinit and xgoal are added. Let tree T be the
quadruple (V , E ,Vunvisited,Vopen), where V is the set of tree nodes, E is the set of tree
edges, and Vunvisited and Vopen are mutually exclusive sets containing the unvisited
samples in S and the wavefront nodes in V , correspondingly. To be precise, the un-
visited set Vunvisited stores all samples in the sample set S that have not yet been
considered for addition to the tree of paths. The wavefront set Vopen, on the other
hand, tracks in sorted order (by cost from the root) only those nodes which have
already been added to the tree that are near enough to tree leaves to actually form
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better connections. These sets play the same role as their counterparts in FMT∗,
see [150, 12]. However, in this case BFMT∗ “grows” two such trees, referred to as
T = (V , E ,Vunvisited,Vopen) and T ′ = (V ′, E ′,V ′unvisited,V ′open). Initially, T is the tree
rooted at xinit, while T ′ is the tree rooted at xgoal. Note, however, that the trees are
exchanged during the execution of BFMT∗, so T in Algorithm 15 is not always the
tree that contains xinit.

The BFMT∗ algorithm is represented in Algorithm 15. Before describing BFMT∗

in detail, the basic planning functions employed by the algorithm are listed. Let
SampleFree(n) be a function that returns a set of n ∈ N points sampled inde-
pendently and identically from the uniform distribution on Xfree. Let Cost(x′x) be
the cost of the straight-line path between configurations x′ and x. Let Path(z, T )
return the unique path in tree T from its root to node z. Also, with a slight abuse
of notation, let Cost(x, T ) return the cost of the unique path in tree T from its
root to node x, and let CollisionFree(x, y) be a boolean function returning true
if the straight-line path between configurations x and y is collision free. Given a
set of samples A, let Near(A, z, r) return the subset of A within a ball of radius
r centered at sample z (i.e., the set

{
x ∈ A

∣∣‖x− z‖ < r
}

). Let the Terminate
function represent an external termination criterion (i.e., timeout, maximum number
of samples, etc.) which can be used to force early termination (or prevent infinite
runtime for infeasible problems). Finally, regarding tree expansion, let Swap(T , T ′)
be a function that swaps the two trees T and T ′. and let Companion(T ) return the
companion tree T ′ to T (or vice versa).

Now the BFMT∗ algorithm is described. First, a set of n configurations in Xfree

is determined by drawing samples uniformly. Two trees are then initialized using
Initialize as shown in Algorithm 16, with a forward tree rooted at xinit and a
reverse tree rooted at xgoal. Once complete, tree expansion begins starting with tree
T rooted at xinit using the Expand procedure in Algorithm 17. In the following, the
node selected for expansion will be consistently denoted by z, while xmeet will denote
the lowest-cost candidate node for tree connection (i.e., for joining the two trees).
The Expand procedure requires the specification of a connection radius parameter,
rn.

Expand implements the “lazy” dynamic programming recursion described (at
a high level) in Section 8.2.2, making locally-optimal collision-free connections from
nodes x near z unvisited by tree T (those in set Vunvisited within search radius rn of
z) to wavefront nodes x′ near each x (those in set Vopen within search radius rn of
x). Any collision-free edges and newly-connected nodes found are then added to T ,
the connection candidate node xmeet is updated, and z is dropped from the list of
wavefront nodes. The key feature of the Expand function is that in the execution of
the dynamic programming recursion it “lazily” ignores the presence of obstacles (see
line 6) – this comes at no loss of (asymptotic) optimality (see also [150, 12]). Note
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the Expand function is identical to that of unidirectional FMT∗, with the exception
here of additional lines for tracking the connection candidate xmeet.

After expansion, the algorithm checks whether a feasible path is found on line 8.
If unsuccessful so far, Terminate (which reports failure upon early termination) is
checked before proceeding. If the algorithm has not terminated, it checks whether
the wavefront of the companion tree is empty (line 14). If this is the case, the Insert
function shown in Algorithm 18 samples a new configuration s uniformly from Xfree

and tries to connect it to a nearest neighbor in the companion tree within radius
rn. This way, the expanding tree is ensured to have at least one configuration in its
wavefront available for expansion on subsequent iterations (the alternative would be
to report failure). This mimics anytime behavior, and by forcing samples to lie close
to tree nodes they algorithm effectively “reopens” closed nodes for expansion again.
Uniform resampling may require many attempts before finding a configuration s which
can be successfully connected to V ′open, though this appeared to have a negligible
impact on running time in the experiments. On the other hand, a more effective
strategy might bias resampling towards areas requiring expansion (e.g ., bottlenecks,
traps) rather than uniformly within tree coverage.

The algorithm then proceeds on lines 16-17 with the selection of the next node
(and corresponding tree) for expansion. As shown, BFMT∗ “swaps” the forward and
backward trees on each iteration, each being expanded in turns. As Insert ensures
the companion tree T ′ always has at least one node in its frontier V ′open, a node is
always available for subsequent expansion as the next z.

After selection, the entire process is iterated.

BFMT∗ – Variations

As for any bi-directional planner, the correctness and computational efficiency of
BFMT∗ hinge upon two key aspects: (i) how computation is interleaved among the
two trees (in other words, which wavefront at each step should be chosen for expan-
sion), and (ii) when the algorithm should terminate. For instance, as an alternative
tree expansion strategy (i.e., item (i)), one could replace lines 16-17 with the “bal-
anced trees” condition which enforces more of a balanced search, maintaining equal
costs from the root within each wavefront such that the two wavefronts propagate
and meet roughly equidistantly in cost-to-go from their roots:

16: z1 ← arg min
x∈Vopen

{Cost(x, T )}

17: z2 ← arg min
x′∈V ′open

{Cost(x′, T ′)}

18: (z, T )← arg min
(z1,T ),(z2,T ′)

{
Cost(zi, Ti)

}
19: T ′ = Companion(T )
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Algorithm 15 The Bi-directional Fast Marching Tree Algorithm (BFMT∗)

Require: Motion query
(
xinit,xgoal

)
, Connection radius rn

1: S ← {xinit,xgoal} ∪ SampleFree(n)
2: T ← Initialize(S, xinit)
3: T ′ ← Initialize(S, xgoal)

4: z← xinit, xmeet ← ∅
5: success ← false
6: while success = false do
7: Expand(T , z, xmeet)
8: if xmeet 6= ∅
9: σ∗ ← Path(xmeet, T ) ∪ Path(xmeet, T ′)

10: success ← true
11: else
12: if Terminate()
13: return Failure
14: else if V ′open = ∅
15: Insert(T ′)
16: z←arg min

x′∈V ′open
{Cost(x′, T ′)}

17: Swap(T , T ′)
18: return σ∗

Similarly, as an alternative termination condition (i.e., item (ii)), one might replace
line 8 with the “best path” criterion:

8: z ∈
(
V ′ \ V ′open

)
Currently line 8 returns the first available path discovered, at the moment that the
two wavefronts touch at xmeet (which is not, in general, the lowest cost path). This
alternative condition, on the other hand, returns the exact optimal path from xinit to
xgoal through the given set S of n samples. This change terminates BFMT∗ when
the two wavefronts have propagated sufficiently far through each other that no better
solution can be discovered. Intuitively-speaking, this occurs at the first moment where
the two trees have both selected, at the current iteration or previously, the same node
as the minimum cost node z from their respective roots.

Though seemingly promising ideas, no appreciable differences in performance were
found using the above criteria in combination or otherwise; hence the simplest version
of BFMT∗ is reported in Algorithm 15.
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Algorithm 16 Initializes a Fast Marching Tree

1: function Initialize(S, x0)
2: V ← {x0}
3: E ← ∅
4: Vunvisited ← S \ {x0}
5: Vopen ← {x0}
6: return T ← (V , E ,Vunvisited,Vopen)
7: end function

8.3 Experimental results

In this Section, numerical path-planning experiments are provided. The objective is
to compare the performance of BFMT∗ with other sampling-based, asymptotically-
optimal planning algorithms (namely, FMT∗, RRT∗, and PRM∗)1. Given a planning
workspace and query, the quality of the solution returned as a function of the ex-
ecution time allotted to the algorithm is observed. Here dynamic constraints are
neglected and arc-length is used as path cost. As a basis for quality comparison be-
tween incremental or ”anytime” planners (such as RRT∗) and non-incremental plan-
ners (such as BFMT∗, which generate solutions via sample batches), the number of
samples drawn by the planners during the planning process is varied (which in essence
serves as a proxy to execution time). Note sample count has a different connotation
depending on the planner that will not necessarily be the number of nodes stored in
the constructed solution graph – for RRT∗ (with one sample drawn per iteration),
this is the number of iterations, while for FMT∗, PRM∗, and BFMT∗, this is the
number of free space samples taken during initialization.

8.3.1 Simulation Setup

To generate simulation data for a given experiment, the planning algorithms were
queried once each for a series of sample counts, recorded the cost of the solution
returned, the planner execution time2, and whether the planner succeeded or not,
then repeated this process over 50 trials. To ensure a fair comparison, each planning
algorithm was tested using the Open Motion Planning Library (OMPL) v1.0.0 [159],
which provides high-quality implementations of many state-of-the-art planners and
a common framework for executing motion plans. In this way, it is ensured that

1Existing state-of-the-art sampling-based, bi-directional algorithms (namely, RRT-Connect and
SBL) were initially also included. However, average costs for RRT-Connect and SBL were roughly
2-4x greater, which occluded the details of other curves; they were thus omitted for clarity

2Code for all experiments was written in C++. Corresponding programs were compiled and run
on a Linux-operated PC, clocked at 2.4 GHz and equipped with 7.5 GB of RAM.
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Algorithm 17 Fast Marching Tree Expansion Step

Require: Connection radius rn
1: function Expand(T = (V , E ,Vunvisited,Vopen), z, xmeet)
2: Vopen,new ← ∅
3: Znear ← Near(Vunvisited, z, rn)
4: for x ∈ Znear do
5: Xnear ← Near(Vopen,x, rn)
6: xmin ← arg min

x′∈Xnear

{Cost(x′, T )+Cost(x′x)}

7: if CollisionFree(xmin,x) then
8: V ← V ∪ {x} . Add x to tree
9: E ← E ∪ {(xmin,x)} . Add edge to tree

10: Vunvisited ← Vunvisited\{x} . Mark x visited
11: Vopen,new ← Vopen,new ∪ {x} . Save x

12: if {x ∈ V ′ and Cost(x, T ) + Cost(x, T ′) < Cost(xmeet, T ) +
Cost(xmeet, T ′)}

then

13: xmeet←x . Save x as best connection

14: Vopen ←
(
Vopen ∪ Vopen,new

)
\{z} . Add new nodes to wavefront; drop z

from the wavefront
15: return T ← (V , E ,Vunvisited,Vopen)
16: end function

all algorithms employed the exact same primitive routines (e.g ., nearest-neighbor
search, collision-checking, data handling, etc.), and their performances can be fairly
measured. Regarding implementation, BFMT∗, FMT∗, and PRM∗ used η = 0 for
the nearest-neighbor radius rn in order to satisfy the theoretical bounds provided in
[26]. For RRT∗, the default OMPL settings were used; namely, a 5% goal bias and a
steering parameter equal to 20% of the maximum extent of the configuration space.
For FMT∗, the same Insert routine as BFMT∗ for configuration resampling upon
failure is included. For all algorithms, early termination (e.g ., using Terminate
for BFMT∗) was suppressed by defining a 1000 second time limit, well above each
planner’s worst-case execution time.

Three benchmarking test scenarios were considered: (1) a 2D “bug trap” and (2)
a 2D “maze” problem for a convex polyhedral robot in the SE(2) configuration space,
as well as (3) a challenging 3D problem called the “α-puzzle” in which two loops of
metal (non-convex) are untangled in the SE(3) configuration space.

All problems were drawn directly from OMPL’s bank of tests, and are illustrated in
Figure 8.2. In each case, collision-checks relied on OMPL’s built-in collision-checking
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Algorithm 18 Insertion of New Samples

Require: Connection radius rn
1: function Insert(T = (V , E ,Vunvisited,Vopen))
2: while Vopen = ∅ and not Terminate() do
3: s← SampleFree(1)
4: Vnear ← Near(V , s, rn)
5: while Vnear 6= ∅ do
6: xmin ← arg min

x∈Vnear
{Cost(x, T )+Cost(xs)}

7: if CollisionFree(xmin, s) then
8: V ← V ∪ {s} . Add s to tree
9: E ← E ∪ {(xmin, s)} . Add edge to tree

10: Vopen ← Vopen ∪ {s} . Add to wavefront
11: break
12: else
13: Vnear ← Vnear \ {xmin}
14: return T ← (V , E ,Vunvisited,Vopen)
15: end function

library, FCL. Additionally, to tease out the performance of BFMT∗ relative to FMT∗

in high-dimensional environments, a point mass robot moving in cluttered unit hy-
percubes of 5 and 10 dimensions is studied.3

(a) SE(2) bug trap (b) SE(2) maze (c) SE(3) α-puzzle

Figure 8.2: Depictions of the three OMPL rigid-body planning problems

3The space is populated up to 50% obstacle coverage with randomly-sized, axis-oriented hyper-
rectangles. xinit was set to the center at [0.5, . . . , 0.5], with the goal xgoal at the ones-vector (i.e.,
[1, . . . , 1]).



136
Chapter 8. Bidirectional Fast Marching Trees: motion planning in

high-dimensional spaces

Before proceeding, note that each marker shown on the plots throughout this
Section represents a single simulation at a fixed sample count. The points on the
curves, however, represent the mean cost/time of successful algorithm runs only for a
particular sample count, with error bars corresponding to one standard deviation of
the 50 run sample mean.4 Sample counts varied from the order of 200 to 2000 points
for 2D problems, from 1000 to 30000 points for 3D problems, and 500 to 4000 points
for the hypercube examples.

8.3.2 Results and Discussion

Here benchmarking results are presented(average solution cost versus average execu-
tion times and success rates) comparing BFMT∗ to other state-of-the-art sampling-
based planners.

Figure 8.3 shows the results for each BFMT∗, FMT∗, RRT∗, and PRM∗. Per-
formance here is measured by execution time on the x-axis and solution cost on the
y-axis—high quality data points are therefore located in the lower-left corner (low-
cost solutions obtained quickly). The plots reveal that both FMT∗ and BFMT∗ for
the most part outperform RRT∗ as well as PRM∗. In particular, BFMT∗ and FMT∗

achieve higher success rates (always a flat 100% for the cases studied) in shorter time.
To extract further information, each test is examined in detail.

4Standard deviation of the mean indicates where it is expected with one-σ confidence the distri-
bution mean to lie based on the 50-run sample mean, and is related to the standard deviation of the
distribution by σµ = σ/

√
50.
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Figure 8.3: Simulation results for the three OMPL scenarios.

In the Bug Trap and Maze problems, BFMT∗ notably generates the same cost-
time curve as FMT∗ (meaning they return solutions of very similar cost for a given
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high-dimensional spaces

sample count), but with data points shifted to the left (indicating they were obtained
in shorter execution time). Though not shown due to slow running times for PRM∗

(whose results had to be truncated to clarify detail), all planners appear to tend
towards similar low-cost solutions as more execution time was allocated. However
BFMT∗ and FMT∗ seem to converge to an optimum much faster, particularly for
the Maze problem (on the order of 1.5 and 2.0 seconds respectively, compared to
3-4 seconds for RRT∗ and 5-7 seconds for PRM∗). This contrast becomes even more
evident for the α-puzzle. Here an unusual spread of solutions is appreciated– one in
a band at around 500 cost and another at around 275. These indicate the presence
of two solution types, or homotopy classes : one corresponding to the true α-puzzle
solution, and another less-efficient path. This appears to have yielded a “bump”
in the BFMT∗ cost-curve, where increasing the sample count momentarily gives an
increased average cost. It is believed this is a result of how BFMT∗ trees interconnect;
at this count, by unlucky circumstance, the longer homotopy seems to be found first
more often than usual. But the behavior disappears as n→∞. Note RRT∗ seems to
avoid this issue through goal biasing. Despite the difficult problem structure, BFMT∗

finds the cheaper homotopy faster than other planners, with many more of its data
points clustered in the lower-left corner, generally at lower costs and times than RRT∗

and of equal quality but faster times than FMT∗.

These results suggest that BFMT∗ tends to an optimal cost at least as fast as the
other planners, and sometimes much faster. To shed light on the relative performance
of FMT∗ and BFMT∗ further, they are compared in higher dimensions. Results for
the 5D and 10D hypercube are shown in Figure 8.4 (success rates were again at 100%,
and were thus omitted). Here BFMT∗ substantially outperforms FMT∗, particularly
as dimension increases, with convergence in roughly 0.5 and 1.4 seconds (5D), and 5
and 20 seconds (10D) on average.

This suggests that reachable volumes play a significant role in their execution
time. The relatively small volume of reachable configurations around the goal at the
corner implies that the reverse tree of BFMT∗ expands its wavefront through many
fewer states than the forward tree of FMT∗ (which in fact needlessly expands towards
the zero-vector); tree interconnection in the bi-directional case prevents its forward
tree from growing too large compared to unidirectional search. This is pronounced
exponentially as the dimension increases. In trap or maze-like scenarios, however,
bi-directionality does not seem to change significantly the number of states explored
by the marching trees, leading to comparable performance for the SE(2) bug-trap and
maze.

Note it is expected a greater contrast in execution times in favor of BFMT∗ as
the cost of collision-checking increases, such as with many non-convex obstacles or in
time-varying environments.

Finally, in order to analyze the impact of the Insert function introduced, the
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Figure 8.4: FMT∗ and BFMT∗ results for 5D and 10D cluttered hypercubes, 50%
obstacle coverage; all success rates were 100%.

results of the previous FMT∗ version for the α-puzzle are taken directly from the
literature [12], shown in Figure 8.5. Although computation times are not directly
comparable (since these results correspond to a different hardware setup), it is possible
to compare its evolution with respect to RRT∗. The results of this Chapter present a
better convergence rate for FMT∗ than for RRT∗, as the gap among them is larger.
This is related with many implementation improvements not mentioned in this Thesis,
such as better data structures and collision-check caching.
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Figure 8.5: Results for the previous version of FMT∗ in α-puzzle, without Insert
procedure.

The success rate, however, can be directly compared as in FMT∗ is only depends
on the sample set (given that the maximum computation time, 1000 seconds, is by far
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enough to solve the α-puzzle). In fact, previous FMT∗ version required a huge number
of samples in order to reach 100% success rate. However, in the results presented in
this Chapter both FMT∗ and BFMT∗ present a constant success rate of 100%.

8.4 Conclusion

In this Chapter, a bi-directional, sampling-based, asymptotically-optimal motion
planning algorithm named BFMT∗ has been presented. Numerical experiments in
Rd, SE(2), and SE(3) revealed that BFMT∗ tends to an optimal solution at least as
fast as its state-of-the-art counterparts, and in some cases significantly faster. Con-
vergence rates are expected to improve with parallelization, in which each tree is
grown using a separate CPU.

Future research will examine BFMT∗’s interaction with more advanced techniques,
such as adaptive sampling near narrow passages or sample biasing in Insert (Algo-
rithm 18) towards failed wavefronts. It is also planned to extend BFMT∗ to dynamic
environments through lazy re-evaluation (leveraging its tree-like forward and reverse
path structures) in a way that reuses previous results as much as possible. Maintain-
ing bounds on run-time performance and solution quality in this new context will be
the greatest challenges. Ultimately, it is expected that BFMT∗ will enable fast, easy-
to-implement planning and re-planning in a wide range of time-varying scenarions,
much as shown here for the static case.
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This Thesis has focused on a practical approach to path and motion planning.
The Fast Marching Method has been used along the document as a basis for the
algorithms built. Despite the fact that this method is considered a classic approach,
it has been shown that there is still room for improvement. Each Chapter contains
specific conclusions about its content and possible future work. However, general
conclusions are discussed here.

The key factors of FMM is that it is well formulated, easy to understand and to
implement, while providing robust and deterministic results. Combined with addi-
tional methods, it is able to solve complex tasks such as motion learning or navigation
of large robots in cluttered environments.

On the other hand, its main disadvantage is that is suffers from the curse of di-
mensionality. Although it can be very efficiently implemented using O(n) approaches,
where n is the number of cells in the environment, its execution time escalates ex-
ponentially with the number of dimensions, as n is a power function of the number
of dimensions. However, recent work shows that FMM-like algorithms can be ex-
trapolated to sampling-based algorithms. This enormously increases the possibilities
of FMM, as sampling-based algorithms evolve almost linearly with the number of
dimensions. Therefore, most of the work done with classic, grid-based FMM (and
derivatives) can be replicated using FMT∗ and BFMT∗.

9.1 Future Work

This Thesis has explored many different aspects of FMM-like algorithms and their
application to path and motion planning. Therefore, new ideas have arose given the
flexibility of FMM-based methods. Concretely, three different main future works are
devised:

Firstly, the proposal of new FMM-based methods with the objective of improving
even further the computational time. For this, it is proposed to create a hybrid
method between UFMM and SFMM. Although not deeply discussed in this Thesis,
FMM and SFMM can be extended with cost-to-go heuristics. However, up to the
author’s knowledge, there is no previous work including these heuristics to other
methods. Apparently, it is straight forward for UFMM and GMM. The addition of
heuristics to DDQM and FIM do not seem that easy but could highly improve the
computational time of these methods. However, given the nature of FSM and LSM,
it seems complicated to include any kind of heuristics to these methods.

Regarding motion learning, the main drawback of the FML algorithm is that it is
not able to properly generalize velocities of the motion for places without experience.
Also, complex motions such loops or spirals cannot be properly learned: FML with
take shortcut the motion in the intersection of the loop. This could be easily solved by
increasing the number of dimensions, and using time derivatives as new dimensions,
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but at the cost of exponentially increased computational time. A very promising idea
is to use the anisotropic variations of Fast Marching. This way, the velocity map is
a vector field, instead of scalar. Therefore, velocities could be also encoded without
increasing number of dimensions. Together with optimization algorithms, it would
return a policy with motion velocities and accelerations properly generalized.

Lastly, the combination of Fast Marching with sampling-based methods has proven
to be a powerful idea, improving state-of-the-art methods. More basic research in
this area is required in order to optimize the algorithms proposed. However, obvious
improvements can be done, such as paralellize the BFMT∗, nearest-neighbor precom-
putation, heuristics addition, etc. Furthermore, motion learning and other high-level
task could be solved in higher dimensions and lower computational time using FMT∗

and BFMT∗.
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Appendix A.1: Introduction

Mathematically, grid maps are data structures that divide (discretize) the space in
cubes (hypercubes) ofN dimensions. They are commonly used in artificial intelligence
algorithms, such path planning. Although their mathematical definition is clear and
simple, it is not that easy to work with them when the number of dimensions is vari-
able. Therefore, this Appendix details the mathematical generalization of common
operations with grid maps and how to implement them. Another useful tutorial on
grid maps (but only for 2D) can be found in http://www-cs-students.stanford.

edu/~amitp/game-programming/grids/ which includes triangular and hexagonal
grids.

The main reason of this Appendix is that, when trying to implement such struc-
tures, it becomes difficult to generalize. For example, boost::multi array library pro-
vides tools to create n-dimensional arrays in which the number of dimensions has
to be known in compilation time, which is an important limitation. There is a lack
in the available software of n-dimensional grid maps in which the size can be dy-
namic, even in the number of dimensions, in run time. Therefore, all the operations
in this Appendix are parametrized by the number of dimensions and their size. This
is probably not a novel work, but it is not easy to find a similar document in the
literature.

Appendix A.2: Definitions

The definitions of this Appendix apply for any parallelogram-based grid map. Hence,
define an n-dimensional grid map as the set of cells correctly ordered whose dimensions
are consistent in terms of size. In other words, if the first row has 5 columns, the
second row will also have 5 columns.

An n-dimensional grid map G is composed by ndims dimensions. The size of each
dimension is stored in a vector d = [d0, d1, . . . , dn−1] and the size of the total grid
map, given in number of cells, is:

size(G) =
n−1∏
i=0

di = d0 · d1 · · · · · dn−1 (A.1)

Each cell within the grid map can be accessed in a double manner:

1. By its index. Each cell has a specific index within the grid map which com-
pletely depends on the ordering convention chosen.

2. By its coordinates, giving a set of coordinates c = [c0, c1, . . . , cn−1].

http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
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The conversion from index to coordinates and vice-versa is well-known for a given
number of dimensions. However, to parametrize is more complex. These operations
are detailed in Section A.4

In Figure A.1 examples of 2D and 3D grid maps are shown. Note that the index
ordering is not unique. In this case this specific ordering has been chosen ordering
since it is easier to match with the physical dimensions of the grid (dimension 0 is
x, dimension 1 is y, and so on). For instance, in computer vision it is almost an
standard to place the first cell (pixel) in the top-left of the grid map (image) with the
dimension 0 (rows) going downwards and dimension 1 (columns) leftwards. In any
case, the formulation should be valid in any case (with minor adjustements).
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Figure A.1: Example of a 2D and a 3D grid map. Usually, 3D grid maps are rep-
resented with cubes. The numbers within the cells represent the indices of those
cells.

Appendix A.3: General Neighbor Extraction

In this Section the generalization of the neighbor extraction in a 4-connectivity
scheme is detailed.

In order to help the reader, the 2D and 3D cases will be exposed, and the n-
dimensional formulation will be derived. Along the Appendix cells are always referred
by their indices. When the dimensions of the grid are known it is easy to build a vector
of size ndims and check the neighbors by doing ±1 in each coordinate. However, in this
case the dimensions of the grid are not known until execution. Therefore, to generalize
it is much easier and efficient to work indices, as shown in the next paragraphs.
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A.3.1 2-dimensional Neighbor Extraction

In a 2-dimensional map, the neighbor extraction is almost direct. In this case, there
are 4 neighbors, as shown in Figure A.2.
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Figure A.2: 4 neighbors highlighted in red of cell with index 7 (shaded) in a 2D grid
map.

Now, focus on the case shown in Figure A.3: a general 2D grid map where d =
[d0, d1] is not known in advance. The neighbors of a cell with index i, N (i) are given
by the following expression:

N (i) =



{
i− 1

i+ 1
for dimension 0{

i− d0

i+ d0

for dimension 1

(A.2)

In the case shown in Figure A.3, i = 2d0 + 2. Hence, its neighbors will be:

N (i) = N (2d0 + 2) =



{
i− 1 = 2d0 + 3

i+ 1 = 2d0 + 1
for dimension 0{

i− d0 = d0 + 2

i+ d0 = 3d0 + 2
for dimension 1

(A.3)
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Figure A.3: 4 neighbors highlighted in red of cell with index i (shaded) in a generic
2D grid map.

Checking neighbors validity

If the queried index i is in one of the borders of the grid map, it will happen that
the neighbors are not valid. Recalling Figure A.2, suppose that the cell i = 19
is queried for neighbors. According equation (A.2), the set of neighbors would be
N (19) = 18, 20, 14, 24. However, the cells with index greater or equal to 20 does
not exist. The returned neighbor is out of bounds of the given grid map. Also,
N (14) = 13, 15, 9, 19 gives index 15 as neighbor. In this case it is supposed to be a
neighbor in dimension 0, but its value for dimension 1 (coordinate 1) is c1 = 3 while
this value for cell index 14 is c1 = 2. Therefore, it is not a neighbor, as their value
for dimension 0 is not the same.

This checking is easy if when working with coordinates. Coordinates of cell index
14 are c(14) = [4, 2]. Neighbors in each dimension can be obtained by doing ±1 in
each dimension. This means N ([4, 2]) = [3, 2], [5, 2], [4, 1], [4, 3], where [5, 2] is out of
bounds of the grid. When working with indices, the following has to be checked:

• Dimension 0: Are the 2 neighbors in the same row (c1) that the queried cell?
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• Dimension 1: Are the 2 neighbors within grid bounds?

The mathematical expression to check if the given indices are neighbors of i is as
follows:

1. Neighbors of i in dimension 0 are valid if (operator [·] means the integer part,
this is, the integer number immediately below):[

(i± 1)/d0

]
=
[
i/d0

]
(A.4)

2. Neighbors of i in dimension 1 are valid if:

i− d0 ≥ 0
i+ d0 < size(g) = d0 · d1

(A.5)

A.3.2 3-dimensional Neighbor Extraction

Following the same procedure as for 2D grid maps, the neighbors extraction in a 3D
grid map whose dimensions are not known until run time, as shown in Figure A.4, is
detailed in the following lines. In this case, there are a maximum of 6 neighbors. The
schema of a 3D grid map with undefined dimensions size is omitted as is too complex
to interpret. The following expression is valid to get the neighbors of such grid map:

N (i) =



{
i− 1

i+ 1
for dimension 0{

i− d0

i+ d0

for dimension 1{
i− d0 · d1

i+ d0 · d1

for dimension 2

(A.6)

Checking neighbors validity

The validity of the indices returned by the neighbors extraction function has to be
checked as done previously for 2D grid maps. Analogously, the procedure is as follows:

• Dimension 0: Are the 2 neighbors in the same row (c1) that the queried cell?

• Dimension 1: Are the 2 neighbors within the same 2D grid slice?

• Dimension 2: Are the 2 neighbors within grid bounds?
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Figure A.4: 6 neighbors highlighted in red of cell with index i (shaded) in a 3D grid
map.

The mathematical expression to check if the given indices are neighbors of i is as
follows:

1. Neighbors of i in dimension 0 are valid if (operator [·] means the integer part,
this is, the integer number immediately below):

[
(i± 1)/d0

]
=
[
i/d0

]
(A.7)

2. Neighbors of i in dimension 1 are valid if:

[
(i± d0)/(d0 · d1)

]
=
[
i/(d0 · d1)

]
(A.8)

3. Neighbors of i in dimension 2 are valid if:

[
(i± d0 · d1)/(d0 · d1 · d2)

]
=
[
i/(d0 · d1 · d2)

]
(A.9)
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A.3.3 n-dimensional Neighbor Extraction

In light of the step from 2D to 3D neighbor extraction, it is possible to generalize the
formulation for n-dimensions according to the next expressions:

N (i) =



{
i− 1

i+ 1
for dimension 0{

i− d0

i+ d0

for dimension 1{
i− d0 · d1

i+ d0 · d1

for dimension 2

...{
i−
∏n−2

k=0 dk = i− d0 · d1 · d2 · · · · · dn−2

i+
∏n−2

k=0 dk = i+ d0 · d1 · d2 · · · · · dn−2

for dimension n-1

(A.10)

Checking neighbors validity

• Dimension 0: Are the 2 neighbors in the same row (c1) that the queried cell?

• Dimension 1: Are the 2 neighbors within the same 2D grid slice?

• Dimension 2: Are the 2 neighbors within the same 3D grid slice?
...

• Dimension n-1: Are the 2 neighbors within the same nD grid slice (in bounds)?

More formally:

1. Neighbors of i in dimension 0 are valid if (operator [·] means the integer part,
this is, the integer number immediately below):[

(i± 1)/d0

]
==

[
i/d0

]
(A.11)

2. Neighbors of i in dimension 1 are valid if:

[
(i± d0)/(d0 · d1)

]
=
[
i/(d0 · d1)

]
(A.12)
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...
n. Neighbors of n− 1 in dimension 2 are valid if:(i±

n−2∏
k=0

dk)/
n−1∏
k=0

dk

 =

i/ n−1∏
k=0

 (A.13)

that means:

[
(i± d0 · d1 · · · · · dn−2)/(d0 · d1 · · · · · dn−1)

]
=
[
i/(d0 · d1 · · · · · dn−1)

]
(A.14)

Appendix A.4: Helper Functions

This Section describes helpful functions that to handle such n-dimensional grid maps.

A.4.1 Index to coordinates

It is useful to transform cell indices into sets of coordinates for debug or printing
purposes, or just to give a better interface to the user. Given an index i of an
grid map with n dimensions with dimension sizes d, the set of coordinates c can be
computed as follows (it is easier to start from the last dimension):

cn−1 =
[
i/
∏n−2

k=0 dk

]
cn−2 =

[
(i− cn−1 ·

∏n−2
k=0 dk)/

∏n−3
k=0 dk

]
cn−3 =

[
(i− cn−1 ·

∏n−2
k=0 dk − cn−2 ·

∏n−3
k=0 dk)/

∏n−4
k=0 dk

]
...

c0 =
[
(i− cn−1 ·

∏n−2
k=0 dk − cn−2 ·

∏n−3
k=0 dk − · · · − c1 · d0)/1

]
(A.15)

Note Special care has to be taken with parenthesis and operators preference when
implementing this functions.

A.4.2 Coordinates to index

This operation can be also very useful when dealing with n-dimensional grid maps.
Given a set of coordinates c of a cell within a grid map with n dimensions and
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dimension sizes d, the cell index can be computed as shown in the next equation:

i = cn−1 ·
n−2∏
k=0

dk + cn−2 ·
n−3∏
k=0

dk + · · ·+ c1 · d0 + c0 (A.16)

Appendix A.5: Implementation

An open-source implementation of the previous formulation is available online: https:
//github.com/jvgomez/fastmarching/tree/master/ndgridmap The software is dis-
tributed under the free software license GNU/GPL v3.0.

This implementation is based on the STL vector and array templated classes.
Previous versions allowed run time modifications in the number of dimensions and
their size (no other code was found on the internet with this feature). However, in
new versions it was decided to set the number of dimensions in compilation time
(since this is easy to predict). This gives a plus of efficiency to the class since most of
the for loops can be optimized by the compiler. To turn on this feature of the latest
version is not difficult and does not require too much time.

The class is templated so that the cell element can be whatever the user wants
(as long as a minimal required interface is accomplished) following a policies design
(also called C++ traits). Its declaration is simple, mainly:

template <class T, size_t ndims> class nDGridMap {

public:

nDGridMap<T,ndims>() {leafsize_ = 1.0f;}

nDGridMap<T,ndims> (const std::array<int, ndims> & dimsize, const float

leafsize = 1.0f);

virtual ~nDGridMap<T,ndims>();

void resize (const std::array<int, ndims> & dimsize);

int size () const;

T & operator[](const int idx);

T & getCell (const int idx);

int getNeighbors (const int idx, std::array<int, 2*ndims> & neighs);

void getNeighborsInDim (const int idx, std::array<int, 2*ndims>& neighs,

const int dim);

int idx2coord (const int idx, std::array<int, ndims> & coords);

int coord2idx (const std::array<int, ndims> & coords, int & idx);

private:

std::vector<T> cells_; // The main container for the class.

https://github.com/jvgomez/fastmarching/tree/master/ndgridmap
https://github.com/jvgomez/fastmarching/tree/master/ndgridmap
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std::array<int, ndims> dimsize_; // Contains the size of each dimension.

int ncells_; // Number of cells in the grid (size).

// Auxiliar arrays to improve performance.

std::array<int, ndims> d_;

std::array<int, 2> n; // Internal use in getMinValueInDim().

int n_neighs;

};

An important performance trick is the array d . This array DOES NOT corre-
spond to the d vector explained in previous sections (this one is dimsize ). The array
d is computed in a way that d [0] = dimsize [0], d [1] = dimsize [0] · dimsize [1],
d [2] = dimsize [0] · dimsize [1] · dimsize [2], and so on. It is precomputed in the
constructor (and resize() method) as follows:

for (int i = 0; i < ndims; ++i) {

ncells_ *= dimsize_[i];

d_[i] = ncells_;

}

This array is used in many different functions in order to not compute every time
the iterative product operation which, in the previous Section, it was used many
times.

A.5.1 nDGridCell::getNeigbors()

This function implements the formulation give in equations A.10 and A.13 for n
dimensions. The code is as follows:

int getNeighbors (const int idx, std::array<int, 2*ndims> & neighs) {

n_neighs = 0;

for (int i = 0; i < ndims; ++i)

getNeighborsInDim(idx,neighs,i);

return n_neighs;

}

Explanation: In order to get the 4-connectivity neighbors, every dimension is an-
alyzed separately, putting all the found neighbors in the neighs aerray. When this
function is called, the private attribute n neighs is set to 0 and it will count how
many neighbors are found, up to a maximum up 2*ndims. Therefore, the getNeigh-
borsInDim() function is called for each dimension:
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void getNeighborsInDim(const int idx, std::array<int, 2*ndims>& neighs, const int

dim) {

int c1,c2;

if (dim == 0) {

c1 = idx-1;

c2 = idx+1;

// Checking neighbor 1.

if ((c1 >= 0) && (c1/d_[0] == idx/d_[0]))

neighs[n_neighs++] = c1;

// Checking neighbor 2.

if (c2/d_[0] == idx/d_[0])

neighs[n_neighs++] = c2;

}

else {

// neighbors proposed.

c1 = idx-d_[dim-1];

c2 = idx+d_[dim-1];

// Checking neighbor 1.

if ((c1 >= 0) && (c1/d_[dim] == idx/d_[dim]))

neighs[n_neighs++] = c1;

// Checking neighbor 2.

if (c2/d_[dim] == idx/d_[dim])

neighs[n_neighs++] = c2;

}

}

Equations A.10 and A.13 are applied but with the small modification of using d
which already contains the iterative product results. Dimension 0 is done apart for
code simplicity.

Note the bound checking (c1 >= 0) when checking the neighbor computed with
−. For instance, neighbors of index 0 in a uni-dimensional grid of size 5 would be
indices -1 and 1. In C/C++, (int)-1/5 will be 0, while the integer part is -1. Because
of this, this additional checking is required. This behavior may differ in different
programming languages. In this case, this implementation was chosen as it is more
efficient than actually computing the integer part.

A.5.2 nDGridCell::idx2coord()

This function implements the equation A.15 with the same modification as before
leveraging d . This function takes as input the index of the cell and the array of
coordinates where the output will be stored. The code is:

int idx2coord (const int idx, std::array<int, ndims> & coords) {

if (coords.size() != ndims)

return -1;

else {
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coords[ndims-1] = idx/d_[ndims-2]; // First step done apart.

int aux = idx - coords[ndims-1]*d_[ndims-2];

for (int i = ndims - 2; i > 0; --i) {

coords[i] = aux/d_[i-1];

aux -= coords[i]*d_[i-1];

}

coords[0] = aux; //Last step done apart.

}

return 1;

}

Explanation: First, a dimensional check is carried out to avoid incorrect parame-
ters. The coordinate of the last dimension is done first outside the for loop to initialize
the aux variable, which accumulates the subtraction of the values to the index before
the division. Lastly, the first coordinate is done as the rest of the subtraction.

A.5.3 nDGridCell::coord2idx()

In this case, the implementation of equation A.16 is much straight forward:

int coord2idx (const std::array<int, ndims> & coords, int & idx) {

if (coords.size() != ndims)

return -1;

else {

idx = coords[0];

for(int i = 1; i < ndims; ++i)

idx += coords[i]*d_[i-1];

}

return 1;

}

Explanation: The function gets as parameters the array of indices to convert and
the index to be returned. After a checking the dimensions, the idx variable is incre-
mented for every dimension according to its coordinate in that dimension.

IMPORTANT NOTE Note that the indexing is not valid for certain languages.
In Matlab, for instance, all the indices of an array (or matrix) will be from 1 to
n (instead from 0 to n − 1 as in C++). This applies to all the code shown in
this Appendix. Take into account also the language-dependent behavior of certain
functions, such as integer division.





Bibliography

[1] S. Bak, J. McLaughlin, and D. Renzi, “Some improvements for the fast sweeping
method,” SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 2853–2874,
2010.

[2] P. Gremaud and C. Kuster, “Computational study of fast methods for the
eikonal equation,” SIAM Journal on Scientific Computing, vol. 27, no. 6,
pp. 1803–1816, 2006.

[3] W. Jeong and R. Whitaker, “A fast iterative method for eikonal equations,”
SIAM Journal on Scientific Computing, vol. 30, no. 5, pp. 2512–2534, 2008.

[4] A. Capozzoli, C. Curcio, A. Liseno, and S. Savarese, “A comparison of fast
marching, fast sweeping and fast iterative methods for the solution of the eikonal
equation,” in 21st Telecommunications Forum, pp. 685–688, 2013.

[5] L. Yatziv, A. Bartesaghi, and G. Sapiro, “O(n) implementation of the fast
marching algorithm,” Journal of Computational Physics, vol. 212, pp. 393–399,
2005.

[6] M. Jones, J. Baerentzen, and M. Sramek, “3D Sistance Fields: a Survey of Tech-
niques and Applications,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 7, pp. 581–599, 2006.

[7] D. Fonte, F. Valente, A. Vale, and I. Ribeiro, “A Motion Planning Methodology
for Rhombic-like Vehicles for ITER Remote Handling Operations,” in IFAC
Symposium on Intelligent Autonomous Vehicles, pp. 443–448, 2010.

[8] F. Valente, A. Vale, D. Fonte, and I. Ribeiro, “Optimized Trajectories of
the Transfer Cask System in ITER,” Fusion Engineering and Design, vol. 86,
pp. 1967–1970, 2011.
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[25] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional spaces,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[26] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” International Journal of Robotics Research, vol. 30, no. 7, pp. 846–
894, 2011.

[27] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (bit*):
Sampling-based optimal planning via the heuristically guided search of implicit
random geometric graphs,” Feb. 2015. Available at http://arxiv.org/abs/

1405.5848.

[28] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based al-
gorithms for optimal motion planning,” in Proceedings of the IEEE Conference
on Robotics and Automation, pp. 2421–2428, 2013.

[29] J. Barranquand, B. Langlois, and J. C. Latombe, “Numerical Potential Field
Techniques for Robot Path Planning,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 22, no. 2, pp. 224–241, 1992.

[30] DARPA, “Urban Challenge, last visit: November, 2012,” 2011.

[31] S. Tadokoro, M. Hayashi, Y. Manabe, Y. Nakami, and T. Takamori, “On Motion
lanning of Mobile Robots which Coexist and Cooperate with Humans ,” in
IEEE/RSJ International Conference on Intelligent Robots & Systems, vol. 2,
pp. 518–523, 1995.

[32] N. Roy, G. J. Gordon, and S. Thrun, “Planning under Uncertainty for Reli-
able Health Care Robotics,” in International Conference on Field and Service
Robots, vol. 24, pp. 417–426, 2003.

[33] P. Fiorini and Z. Shiller, “Motion Planning in Dynamic Environments Using
Velocity Obstacles ,” International Journal of Robotics Research, vol. 17, no. 7,
pp. 760–772, 1998.

http://arxiv.org/abs/1405.5848
http://arxiv.org/abs/1405.5848


162 Bibliography

[34] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun, Principles of Robot Motion. MIT Press, 2007.

[35] B. Xu, D. J. Stilwell, and A. Kurdila, “A Receding Horizon Controller for
Motion Planning in the Presence of Moving Obstacles,” in Proceedings of the
IEEE Conference on Robotics and Automation, pp. 974–980, 2010.

[36] N. E. Du Toit and J. W. Burdick, “Robot Motion Planning in Dynamic, Uncer-
tain Environments,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 101–115,
2012.

[37] A. Ettlin and H. Bleuler, “Randomised Rough-Terrain Robot Motion Plan-
ning,” in IEEE/RSJ International Conference on Intelligent Robots & Systems,
pp. 5798–5803, IEEE, 2006.

[38] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based Path Planning on
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[159] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,”
IEEE Robotics and Automation Magazine, vol. 19, pp. 72–82, Dec. 2012.

http://people.csail.mit.edu/aperez/obirrt/csailtech.pdf
http://people.csail.mit.edu/aperez/obirrt/csailtech.pdf

	modelo_de_portada (1).pdf
	TESIS DOCTORAL
	UNIVERSIDAD CARLOS III DE MADRID



